xref: /openbmc/qemu/target/i386/nvmm/nvmm-all.c (revision effd60c8)
1 /*
2  * Copyright (c) 2018-2019 Maxime Villard, All rights reserved.
3  *
4  * NetBSD Virtual Machine Monitor (NVMM) accelerator for QEMU.
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "cpu.h"
12 #include "exec/address-spaces.h"
13 #include "exec/ioport.h"
14 #include "qemu/accel.h"
15 #include "sysemu/nvmm.h"
16 #include "sysemu/cpus.h"
17 #include "sysemu/runstate.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/error-report.h"
20 #include "qapi/error.h"
21 #include "qemu/queue.h"
22 #include "migration/blocker.h"
23 #include "strings.h"
24 
25 #include "nvmm-accel-ops.h"
26 
27 #include <nvmm.h>
28 
29 struct AccelCPUState {
30     struct nvmm_vcpu vcpu;
31     uint8_t tpr;
32     bool stop;
33 
34     /* Window-exiting for INTs/NMIs. */
35     bool int_window_exit;
36     bool nmi_window_exit;
37 
38     /* The guest is in an interrupt shadow (POP SS, etc). */
39     bool int_shadow;
40 };
41 
42 struct qemu_machine {
43     struct nvmm_capability cap;
44     struct nvmm_machine mach;
45 };
46 
47 /* -------------------------------------------------------------------------- */
48 
49 static bool nvmm_allowed;
50 static struct qemu_machine qemu_mach;
51 
52 static struct nvmm_machine *
53 get_nvmm_mach(void)
54 {
55     return &qemu_mach.mach;
56 }
57 
58 /* -------------------------------------------------------------------------- */
59 
60 static void
61 nvmm_set_segment(struct nvmm_x64_state_seg *nseg, const SegmentCache *qseg)
62 {
63     uint32_t attrib = qseg->flags;
64 
65     nseg->selector = qseg->selector;
66     nseg->limit = qseg->limit;
67     nseg->base = qseg->base;
68     nseg->attrib.type = __SHIFTOUT(attrib, DESC_TYPE_MASK);
69     nseg->attrib.s = __SHIFTOUT(attrib, DESC_S_MASK);
70     nseg->attrib.dpl = __SHIFTOUT(attrib, DESC_DPL_MASK);
71     nseg->attrib.p = __SHIFTOUT(attrib, DESC_P_MASK);
72     nseg->attrib.avl = __SHIFTOUT(attrib, DESC_AVL_MASK);
73     nseg->attrib.l = __SHIFTOUT(attrib, DESC_L_MASK);
74     nseg->attrib.def = __SHIFTOUT(attrib, DESC_B_MASK);
75     nseg->attrib.g = __SHIFTOUT(attrib, DESC_G_MASK);
76 }
77 
78 static void
79 nvmm_set_registers(CPUState *cpu)
80 {
81     CPUX86State *env = cpu_env(cpu);
82     struct nvmm_machine *mach = get_nvmm_mach();
83     AccelCPUState *qcpu = cpu->accel;
84     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
85     struct nvmm_x64_state *state = vcpu->state;
86     uint64_t bitmap;
87     size_t i;
88     int ret;
89 
90     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
91 
92     /* GPRs. */
93     state->gprs[NVMM_X64_GPR_RAX] = env->regs[R_EAX];
94     state->gprs[NVMM_X64_GPR_RCX] = env->regs[R_ECX];
95     state->gprs[NVMM_X64_GPR_RDX] = env->regs[R_EDX];
96     state->gprs[NVMM_X64_GPR_RBX] = env->regs[R_EBX];
97     state->gprs[NVMM_X64_GPR_RSP] = env->regs[R_ESP];
98     state->gprs[NVMM_X64_GPR_RBP] = env->regs[R_EBP];
99     state->gprs[NVMM_X64_GPR_RSI] = env->regs[R_ESI];
100     state->gprs[NVMM_X64_GPR_RDI] = env->regs[R_EDI];
101 #ifdef TARGET_X86_64
102     state->gprs[NVMM_X64_GPR_R8]  = env->regs[R_R8];
103     state->gprs[NVMM_X64_GPR_R9]  = env->regs[R_R9];
104     state->gprs[NVMM_X64_GPR_R10] = env->regs[R_R10];
105     state->gprs[NVMM_X64_GPR_R11] = env->regs[R_R11];
106     state->gprs[NVMM_X64_GPR_R12] = env->regs[R_R12];
107     state->gprs[NVMM_X64_GPR_R13] = env->regs[R_R13];
108     state->gprs[NVMM_X64_GPR_R14] = env->regs[R_R14];
109     state->gprs[NVMM_X64_GPR_R15] = env->regs[R_R15];
110 #endif
111 
112     /* RIP and RFLAGS. */
113     state->gprs[NVMM_X64_GPR_RIP] = env->eip;
114     state->gprs[NVMM_X64_GPR_RFLAGS] = env->eflags;
115 
116     /* Segments. */
117     nvmm_set_segment(&state->segs[NVMM_X64_SEG_CS], &env->segs[R_CS]);
118     nvmm_set_segment(&state->segs[NVMM_X64_SEG_DS], &env->segs[R_DS]);
119     nvmm_set_segment(&state->segs[NVMM_X64_SEG_ES], &env->segs[R_ES]);
120     nvmm_set_segment(&state->segs[NVMM_X64_SEG_FS], &env->segs[R_FS]);
121     nvmm_set_segment(&state->segs[NVMM_X64_SEG_GS], &env->segs[R_GS]);
122     nvmm_set_segment(&state->segs[NVMM_X64_SEG_SS], &env->segs[R_SS]);
123 
124     /* Special segments. */
125     nvmm_set_segment(&state->segs[NVMM_X64_SEG_GDT], &env->gdt);
126     nvmm_set_segment(&state->segs[NVMM_X64_SEG_LDT], &env->ldt);
127     nvmm_set_segment(&state->segs[NVMM_X64_SEG_TR], &env->tr);
128     nvmm_set_segment(&state->segs[NVMM_X64_SEG_IDT], &env->idt);
129 
130     /* Control registers. */
131     state->crs[NVMM_X64_CR_CR0] = env->cr[0];
132     state->crs[NVMM_X64_CR_CR2] = env->cr[2];
133     state->crs[NVMM_X64_CR_CR3] = env->cr[3];
134     state->crs[NVMM_X64_CR_CR4] = env->cr[4];
135     state->crs[NVMM_X64_CR_CR8] = qcpu->tpr;
136     state->crs[NVMM_X64_CR_XCR0] = env->xcr0;
137 
138     /* Debug registers. */
139     state->drs[NVMM_X64_DR_DR0] = env->dr[0];
140     state->drs[NVMM_X64_DR_DR1] = env->dr[1];
141     state->drs[NVMM_X64_DR_DR2] = env->dr[2];
142     state->drs[NVMM_X64_DR_DR3] = env->dr[3];
143     state->drs[NVMM_X64_DR_DR6] = env->dr[6];
144     state->drs[NVMM_X64_DR_DR7] = env->dr[7];
145 
146     /* FPU. */
147     state->fpu.fx_cw = env->fpuc;
148     state->fpu.fx_sw = (env->fpus & ~0x3800) | ((env->fpstt & 0x7) << 11);
149     state->fpu.fx_tw = 0;
150     for (i = 0; i < 8; i++) {
151         state->fpu.fx_tw |= (!env->fptags[i]) << i;
152     }
153     state->fpu.fx_opcode = env->fpop;
154     state->fpu.fx_ip.fa_64 = env->fpip;
155     state->fpu.fx_dp.fa_64 = env->fpdp;
156     state->fpu.fx_mxcsr = env->mxcsr;
157     state->fpu.fx_mxcsr_mask = 0x0000FFFF;
158     assert(sizeof(state->fpu.fx_87_ac) == sizeof(env->fpregs));
159     memcpy(state->fpu.fx_87_ac, env->fpregs, sizeof(env->fpregs));
160     for (i = 0; i < CPU_NB_REGS; i++) {
161         memcpy(&state->fpu.fx_xmm[i].xmm_bytes[0],
162             &env->xmm_regs[i].ZMM_Q(0), 8);
163         memcpy(&state->fpu.fx_xmm[i].xmm_bytes[8],
164             &env->xmm_regs[i].ZMM_Q(1), 8);
165     }
166 
167     /* MSRs. */
168     state->msrs[NVMM_X64_MSR_EFER] = env->efer;
169     state->msrs[NVMM_X64_MSR_STAR] = env->star;
170 #ifdef TARGET_X86_64
171     state->msrs[NVMM_X64_MSR_LSTAR] = env->lstar;
172     state->msrs[NVMM_X64_MSR_CSTAR] = env->cstar;
173     state->msrs[NVMM_X64_MSR_SFMASK] = env->fmask;
174     state->msrs[NVMM_X64_MSR_KERNELGSBASE] = env->kernelgsbase;
175 #endif
176     state->msrs[NVMM_X64_MSR_SYSENTER_CS]  = env->sysenter_cs;
177     state->msrs[NVMM_X64_MSR_SYSENTER_ESP] = env->sysenter_esp;
178     state->msrs[NVMM_X64_MSR_SYSENTER_EIP] = env->sysenter_eip;
179     state->msrs[NVMM_X64_MSR_PAT] = env->pat;
180     state->msrs[NVMM_X64_MSR_TSC] = env->tsc;
181 
182     bitmap =
183         NVMM_X64_STATE_SEGS |
184         NVMM_X64_STATE_GPRS |
185         NVMM_X64_STATE_CRS  |
186         NVMM_X64_STATE_DRS  |
187         NVMM_X64_STATE_MSRS |
188         NVMM_X64_STATE_FPU;
189 
190     ret = nvmm_vcpu_setstate(mach, vcpu, bitmap);
191     if (ret == -1) {
192         error_report("NVMM: Failed to set virtual processor context,"
193             " error=%d", errno);
194     }
195 }
196 
197 static void
198 nvmm_get_segment(SegmentCache *qseg, const struct nvmm_x64_state_seg *nseg)
199 {
200     qseg->selector = nseg->selector;
201     qseg->limit = nseg->limit;
202     qseg->base = nseg->base;
203 
204     qseg->flags =
205         __SHIFTIN((uint32_t)nseg->attrib.type, DESC_TYPE_MASK) |
206         __SHIFTIN((uint32_t)nseg->attrib.s, DESC_S_MASK) |
207         __SHIFTIN((uint32_t)nseg->attrib.dpl, DESC_DPL_MASK) |
208         __SHIFTIN((uint32_t)nseg->attrib.p, DESC_P_MASK) |
209         __SHIFTIN((uint32_t)nseg->attrib.avl, DESC_AVL_MASK) |
210         __SHIFTIN((uint32_t)nseg->attrib.l, DESC_L_MASK) |
211         __SHIFTIN((uint32_t)nseg->attrib.def, DESC_B_MASK) |
212         __SHIFTIN((uint32_t)nseg->attrib.g, DESC_G_MASK);
213 }
214 
215 static void
216 nvmm_get_registers(CPUState *cpu)
217 {
218     CPUX86State *env = cpu_env(cpu);
219     struct nvmm_machine *mach = get_nvmm_mach();
220     AccelCPUState *qcpu = cpu->accel;
221     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
222     X86CPU *x86_cpu = X86_CPU(cpu);
223     struct nvmm_x64_state *state = vcpu->state;
224     uint64_t bitmap, tpr;
225     size_t i;
226     int ret;
227 
228     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
229 
230     bitmap =
231         NVMM_X64_STATE_SEGS |
232         NVMM_X64_STATE_GPRS |
233         NVMM_X64_STATE_CRS  |
234         NVMM_X64_STATE_DRS  |
235         NVMM_X64_STATE_MSRS |
236         NVMM_X64_STATE_FPU;
237 
238     ret = nvmm_vcpu_getstate(mach, vcpu, bitmap);
239     if (ret == -1) {
240         error_report("NVMM: Failed to get virtual processor context,"
241             " error=%d", errno);
242     }
243 
244     /* GPRs. */
245     env->regs[R_EAX] = state->gprs[NVMM_X64_GPR_RAX];
246     env->regs[R_ECX] = state->gprs[NVMM_X64_GPR_RCX];
247     env->regs[R_EDX] = state->gprs[NVMM_X64_GPR_RDX];
248     env->regs[R_EBX] = state->gprs[NVMM_X64_GPR_RBX];
249     env->regs[R_ESP] = state->gprs[NVMM_X64_GPR_RSP];
250     env->regs[R_EBP] = state->gprs[NVMM_X64_GPR_RBP];
251     env->regs[R_ESI] = state->gprs[NVMM_X64_GPR_RSI];
252     env->regs[R_EDI] = state->gprs[NVMM_X64_GPR_RDI];
253 #ifdef TARGET_X86_64
254     env->regs[R_R8]  = state->gprs[NVMM_X64_GPR_R8];
255     env->regs[R_R9]  = state->gprs[NVMM_X64_GPR_R9];
256     env->regs[R_R10] = state->gprs[NVMM_X64_GPR_R10];
257     env->regs[R_R11] = state->gprs[NVMM_X64_GPR_R11];
258     env->regs[R_R12] = state->gprs[NVMM_X64_GPR_R12];
259     env->regs[R_R13] = state->gprs[NVMM_X64_GPR_R13];
260     env->regs[R_R14] = state->gprs[NVMM_X64_GPR_R14];
261     env->regs[R_R15] = state->gprs[NVMM_X64_GPR_R15];
262 #endif
263 
264     /* RIP and RFLAGS. */
265     env->eip = state->gprs[NVMM_X64_GPR_RIP];
266     env->eflags = state->gprs[NVMM_X64_GPR_RFLAGS];
267 
268     /* Segments. */
269     nvmm_get_segment(&env->segs[R_ES], &state->segs[NVMM_X64_SEG_ES]);
270     nvmm_get_segment(&env->segs[R_CS], &state->segs[NVMM_X64_SEG_CS]);
271     nvmm_get_segment(&env->segs[R_SS], &state->segs[NVMM_X64_SEG_SS]);
272     nvmm_get_segment(&env->segs[R_DS], &state->segs[NVMM_X64_SEG_DS]);
273     nvmm_get_segment(&env->segs[R_FS], &state->segs[NVMM_X64_SEG_FS]);
274     nvmm_get_segment(&env->segs[R_GS], &state->segs[NVMM_X64_SEG_GS]);
275 
276     /* Special segments. */
277     nvmm_get_segment(&env->gdt, &state->segs[NVMM_X64_SEG_GDT]);
278     nvmm_get_segment(&env->ldt, &state->segs[NVMM_X64_SEG_LDT]);
279     nvmm_get_segment(&env->tr, &state->segs[NVMM_X64_SEG_TR]);
280     nvmm_get_segment(&env->idt, &state->segs[NVMM_X64_SEG_IDT]);
281 
282     /* Control registers. */
283     env->cr[0] = state->crs[NVMM_X64_CR_CR0];
284     env->cr[2] = state->crs[NVMM_X64_CR_CR2];
285     env->cr[3] = state->crs[NVMM_X64_CR_CR3];
286     env->cr[4] = state->crs[NVMM_X64_CR_CR4];
287     tpr = state->crs[NVMM_X64_CR_CR8];
288     if (tpr != qcpu->tpr) {
289         qcpu->tpr = tpr;
290         cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
291     }
292     env->xcr0 = state->crs[NVMM_X64_CR_XCR0];
293 
294     /* Debug registers. */
295     env->dr[0] = state->drs[NVMM_X64_DR_DR0];
296     env->dr[1] = state->drs[NVMM_X64_DR_DR1];
297     env->dr[2] = state->drs[NVMM_X64_DR_DR2];
298     env->dr[3] = state->drs[NVMM_X64_DR_DR3];
299     env->dr[6] = state->drs[NVMM_X64_DR_DR6];
300     env->dr[7] = state->drs[NVMM_X64_DR_DR7];
301 
302     /* FPU. */
303     env->fpuc = state->fpu.fx_cw;
304     env->fpstt = (state->fpu.fx_sw >> 11) & 0x7;
305     env->fpus = state->fpu.fx_sw & ~0x3800;
306     for (i = 0; i < 8; i++) {
307         env->fptags[i] = !((state->fpu.fx_tw >> i) & 1);
308     }
309     env->fpop = state->fpu.fx_opcode;
310     env->fpip = state->fpu.fx_ip.fa_64;
311     env->fpdp = state->fpu.fx_dp.fa_64;
312     env->mxcsr = state->fpu.fx_mxcsr;
313     assert(sizeof(state->fpu.fx_87_ac) == sizeof(env->fpregs));
314     memcpy(env->fpregs, state->fpu.fx_87_ac, sizeof(env->fpregs));
315     for (i = 0; i < CPU_NB_REGS; i++) {
316         memcpy(&env->xmm_regs[i].ZMM_Q(0),
317             &state->fpu.fx_xmm[i].xmm_bytes[0], 8);
318         memcpy(&env->xmm_regs[i].ZMM_Q(1),
319             &state->fpu.fx_xmm[i].xmm_bytes[8], 8);
320     }
321 
322     /* MSRs. */
323     env->efer = state->msrs[NVMM_X64_MSR_EFER];
324     env->star = state->msrs[NVMM_X64_MSR_STAR];
325 #ifdef TARGET_X86_64
326     env->lstar = state->msrs[NVMM_X64_MSR_LSTAR];
327     env->cstar = state->msrs[NVMM_X64_MSR_CSTAR];
328     env->fmask = state->msrs[NVMM_X64_MSR_SFMASK];
329     env->kernelgsbase = state->msrs[NVMM_X64_MSR_KERNELGSBASE];
330 #endif
331     env->sysenter_cs  = state->msrs[NVMM_X64_MSR_SYSENTER_CS];
332     env->sysenter_esp = state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
333     env->sysenter_eip = state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
334     env->pat = state->msrs[NVMM_X64_MSR_PAT];
335     env->tsc = state->msrs[NVMM_X64_MSR_TSC];
336 
337     x86_update_hflags(env);
338 }
339 
340 static bool
341 nvmm_can_take_int(CPUState *cpu)
342 {
343     CPUX86State *env = cpu_env(cpu);
344     AccelCPUState *qcpu = cpu->accel;
345     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
346     struct nvmm_machine *mach = get_nvmm_mach();
347 
348     if (qcpu->int_window_exit) {
349         return false;
350     }
351 
352     if (qcpu->int_shadow || !(env->eflags & IF_MASK)) {
353         struct nvmm_x64_state *state = vcpu->state;
354 
355         /* Exit on interrupt window. */
356         nvmm_vcpu_getstate(mach, vcpu, NVMM_X64_STATE_INTR);
357         state->intr.int_window_exiting = 1;
358         nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_INTR);
359 
360         return false;
361     }
362 
363     return true;
364 }
365 
366 static bool
367 nvmm_can_take_nmi(CPUState *cpu)
368 {
369     AccelCPUState *qcpu = cpu->accel;
370 
371     /*
372      * Contrary to INTs, NMIs always schedule an exit when they are
373      * completed. Therefore, if window-exiting is enabled, it means
374      * NMIs are blocked.
375      */
376     if (qcpu->nmi_window_exit) {
377         return false;
378     }
379 
380     return true;
381 }
382 
383 /*
384  * Called before the VCPU is run. We inject events generated by the I/O
385  * thread, and synchronize the guest TPR.
386  */
387 static void
388 nvmm_vcpu_pre_run(CPUState *cpu)
389 {
390     CPUX86State *env = cpu_env(cpu);
391     struct nvmm_machine *mach = get_nvmm_mach();
392     AccelCPUState *qcpu = cpu->accel;
393     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
394     X86CPU *x86_cpu = X86_CPU(cpu);
395     struct nvmm_x64_state *state = vcpu->state;
396     struct nvmm_vcpu_event *event = vcpu->event;
397     bool has_event = false;
398     bool sync_tpr = false;
399     uint8_t tpr;
400     int ret;
401 
402     bql_lock();
403 
404     tpr = cpu_get_apic_tpr(x86_cpu->apic_state);
405     if (tpr != qcpu->tpr) {
406         qcpu->tpr = tpr;
407         sync_tpr = true;
408     }
409 
410     /*
411      * Force the VCPU out of its inner loop to process any INIT requests
412      * or commit pending TPR access.
413      */
414     if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
415         cpu->exit_request = 1;
416     }
417 
418     if (!has_event && (cpu->interrupt_request & CPU_INTERRUPT_NMI)) {
419         if (nvmm_can_take_nmi(cpu)) {
420             cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
421             event->type = NVMM_VCPU_EVENT_INTR;
422             event->vector = 2;
423             has_event = true;
424         }
425     }
426 
427     if (!has_event && (cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
428         if (nvmm_can_take_int(cpu)) {
429             cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
430             event->type = NVMM_VCPU_EVENT_INTR;
431             event->vector = cpu_get_pic_interrupt(env);
432             has_event = true;
433         }
434     }
435 
436     /* Don't want SMIs. */
437     if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
438         cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
439     }
440 
441     if (sync_tpr) {
442         ret = nvmm_vcpu_getstate(mach, vcpu, NVMM_X64_STATE_CRS);
443         if (ret == -1) {
444             error_report("NVMM: Failed to get CPU state,"
445                 " error=%d", errno);
446         }
447 
448         state->crs[NVMM_X64_CR_CR8] = qcpu->tpr;
449 
450         ret = nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_CRS);
451         if (ret == -1) {
452             error_report("NVMM: Failed to set CPU state,"
453                 " error=%d", errno);
454         }
455     }
456 
457     if (has_event) {
458         ret = nvmm_vcpu_inject(mach, vcpu);
459         if (ret == -1) {
460             error_report("NVMM: Failed to inject event,"
461                 " error=%d", errno);
462         }
463     }
464 
465     bql_unlock();
466 }
467 
468 /*
469  * Called after the VCPU ran. We synchronize the host view of the TPR and
470  * RFLAGS.
471  */
472 static void
473 nvmm_vcpu_post_run(CPUState *cpu, struct nvmm_vcpu_exit *exit)
474 {
475     AccelCPUState *qcpu = cpu->accel;
476     X86CPU *x86_cpu = X86_CPU(cpu);
477     CPUX86State *env = &x86_cpu->env;
478     uint64_t tpr;
479 
480     env->eflags = exit->exitstate.rflags;
481     qcpu->int_shadow = exit->exitstate.int_shadow;
482     qcpu->int_window_exit = exit->exitstate.int_window_exiting;
483     qcpu->nmi_window_exit = exit->exitstate.nmi_window_exiting;
484 
485     tpr = exit->exitstate.cr8;
486     if (qcpu->tpr != tpr) {
487         qcpu->tpr = tpr;
488         bql_lock();
489         cpu_set_apic_tpr(x86_cpu->apic_state, qcpu->tpr);
490         bql_unlock();
491     }
492 }
493 
494 /* -------------------------------------------------------------------------- */
495 
496 static void
497 nvmm_io_callback(struct nvmm_io *io)
498 {
499     MemTxAttrs attrs = { 0 };
500     int ret;
501 
502     ret = address_space_rw(&address_space_io, io->port, attrs, io->data,
503         io->size, !io->in);
504     if (ret != MEMTX_OK) {
505         error_report("NVMM: I/O Transaction Failed "
506             "[%s, port=%u, size=%zu]", (io->in ? "in" : "out"),
507             io->port, io->size);
508     }
509 
510     /* Needed, otherwise infinite loop. */
511     current_cpu->vcpu_dirty = false;
512 }
513 
514 static void
515 nvmm_mem_callback(struct nvmm_mem *mem)
516 {
517     cpu_physical_memory_rw(mem->gpa, mem->data, mem->size, mem->write);
518 
519     /* Needed, otherwise infinite loop. */
520     current_cpu->vcpu_dirty = false;
521 }
522 
523 static struct nvmm_assist_callbacks nvmm_callbacks = {
524     .io = nvmm_io_callback,
525     .mem = nvmm_mem_callback
526 };
527 
528 /* -------------------------------------------------------------------------- */
529 
530 static int
531 nvmm_handle_mem(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
532 {
533     int ret;
534 
535     ret = nvmm_assist_mem(mach, vcpu);
536     if (ret == -1) {
537         error_report("NVMM: Mem Assist Failed [gpa=%p]",
538             (void *)vcpu->exit->u.mem.gpa);
539     }
540 
541     return ret;
542 }
543 
544 static int
545 nvmm_handle_io(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
546 {
547     int ret;
548 
549     ret = nvmm_assist_io(mach, vcpu);
550     if (ret == -1) {
551         error_report("NVMM: I/O Assist Failed [port=%d]",
552             (int)vcpu->exit->u.io.port);
553     }
554 
555     return ret;
556 }
557 
558 static int
559 nvmm_handle_rdmsr(struct nvmm_machine *mach, CPUState *cpu,
560     struct nvmm_vcpu_exit *exit)
561 {
562     AccelCPUState *qcpu = cpu->accel;
563     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
564     X86CPU *x86_cpu = X86_CPU(cpu);
565     struct nvmm_x64_state *state = vcpu->state;
566     uint64_t val;
567     int ret;
568 
569     switch (exit->u.rdmsr.msr) {
570     case MSR_IA32_APICBASE:
571         val = cpu_get_apic_base(x86_cpu->apic_state);
572         break;
573     case MSR_MTRRcap:
574     case MSR_MTRRdefType:
575     case MSR_MCG_CAP:
576     case MSR_MCG_STATUS:
577         val = 0;
578         break;
579     default: /* More MSRs to add? */
580         val = 0;
581         error_report("NVMM: Unexpected RDMSR 0x%x, ignored",
582             exit->u.rdmsr.msr);
583         break;
584     }
585 
586     ret = nvmm_vcpu_getstate(mach, vcpu, NVMM_X64_STATE_GPRS);
587     if (ret == -1) {
588         return -1;
589     }
590 
591     state->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
592     state->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
593     state->gprs[NVMM_X64_GPR_RIP] = exit->u.rdmsr.npc;
594 
595     ret = nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_GPRS);
596     if (ret == -1) {
597         return -1;
598     }
599 
600     return 0;
601 }
602 
603 static int
604 nvmm_handle_wrmsr(struct nvmm_machine *mach, CPUState *cpu,
605     struct nvmm_vcpu_exit *exit)
606 {
607     AccelCPUState *qcpu = cpu->accel;
608     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
609     X86CPU *x86_cpu = X86_CPU(cpu);
610     struct nvmm_x64_state *state = vcpu->state;
611     uint64_t val;
612     int ret;
613 
614     val = exit->u.wrmsr.val;
615 
616     switch (exit->u.wrmsr.msr) {
617     case MSR_IA32_APICBASE:
618         cpu_set_apic_base(x86_cpu->apic_state, val);
619         break;
620     case MSR_MTRRdefType:
621     case MSR_MCG_STATUS:
622         break;
623     default: /* More MSRs to add? */
624         error_report("NVMM: Unexpected WRMSR 0x%x [val=0x%lx], ignored",
625             exit->u.wrmsr.msr, val);
626         break;
627     }
628 
629     ret = nvmm_vcpu_getstate(mach, vcpu, NVMM_X64_STATE_GPRS);
630     if (ret == -1) {
631         return -1;
632     }
633 
634     state->gprs[NVMM_X64_GPR_RIP] = exit->u.wrmsr.npc;
635 
636     ret = nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_GPRS);
637     if (ret == -1) {
638         return -1;
639     }
640 
641     return 0;
642 }
643 
644 static int
645 nvmm_handle_halted(struct nvmm_machine *mach, CPUState *cpu,
646     struct nvmm_vcpu_exit *exit)
647 {
648     CPUX86State *env = cpu_env(cpu);
649     int ret = 0;
650 
651     bql_lock();
652 
653     if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
654           (env->eflags & IF_MASK)) &&
655         !(cpu->interrupt_request & CPU_INTERRUPT_NMI)) {
656         cpu->exception_index = EXCP_HLT;
657         cpu->halted = true;
658         ret = 1;
659     }
660 
661     bql_unlock();
662 
663     return ret;
664 }
665 
666 static int
667 nvmm_inject_ud(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
668 {
669     struct nvmm_vcpu_event *event = vcpu->event;
670 
671     event->type = NVMM_VCPU_EVENT_EXCP;
672     event->vector = 6;
673     event->u.excp.error = 0;
674 
675     return nvmm_vcpu_inject(mach, vcpu);
676 }
677 
678 static int
679 nvmm_vcpu_loop(CPUState *cpu)
680 {
681     struct nvmm_machine *mach = get_nvmm_mach();
682     AccelCPUState *qcpu = cpu->accel;
683     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
684     X86CPU *x86_cpu = X86_CPU(cpu);
685     CPUX86State *env = &x86_cpu->env;
686     struct nvmm_vcpu_exit *exit = vcpu->exit;
687     int ret;
688 
689     /*
690      * Some asynchronous events must be handled outside of the inner
691      * VCPU loop. They are handled here.
692      */
693     if (cpu->interrupt_request & CPU_INTERRUPT_INIT) {
694         nvmm_cpu_synchronize_state(cpu);
695         do_cpu_init(x86_cpu);
696         /* set int/nmi windows back to the reset state */
697     }
698     if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
699         cpu->interrupt_request &= ~CPU_INTERRUPT_POLL;
700         apic_poll_irq(x86_cpu->apic_state);
701     }
702     if (((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
703          (env->eflags & IF_MASK)) ||
704         (cpu->interrupt_request & CPU_INTERRUPT_NMI)) {
705         cpu->halted = false;
706     }
707     if (cpu->interrupt_request & CPU_INTERRUPT_SIPI) {
708         nvmm_cpu_synchronize_state(cpu);
709         do_cpu_sipi(x86_cpu);
710     }
711     if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
712         cpu->interrupt_request &= ~CPU_INTERRUPT_TPR;
713         nvmm_cpu_synchronize_state(cpu);
714         apic_handle_tpr_access_report(x86_cpu->apic_state, env->eip,
715             env->tpr_access_type);
716     }
717 
718     if (cpu->halted) {
719         cpu->exception_index = EXCP_HLT;
720         qatomic_set(&cpu->exit_request, false);
721         return 0;
722     }
723 
724     bql_unlock();
725     cpu_exec_start(cpu);
726 
727     /*
728      * Inner VCPU loop.
729      */
730     do {
731         if (cpu->vcpu_dirty) {
732             nvmm_set_registers(cpu);
733             cpu->vcpu_dirty = false;
734         }
735 
736         if (qcpu->stop) {
737             cpu->exception_index = EXCP_INTERRUPT;
738             qcpu->stop = false;
739             ret = 1;
740             break;
741         }
742 
743         nvmm_vcpu_pre_run(cpu);
744 
745         if (qatomic_read(&cpu->exit_request)) {
746 #if NVMM_USER_VERSION >= 2
747             nvmm_vcpu_stop(vcpu);
748 #else
749             qemu_cpu_kick_self();
750 #endif
751         }
752 
753         /* Read exit_request before the kernel reads the immediate exit flag */
754         smp_rmb();
755         ret = nvmm_vcpu_run(mach, vcpu);
756         if (ret == -1) {
757             error_report("NVMM: Failed to exec a virtual processor,"
758                 " error=%d", errno);
759             break;
760         }
761 
762         nvmm_vcpu_post_run(cpu, exit);
763 
764         switch (exit->reason) {
765         case NVMM_VCPU_EXIT_NONE:
766             break;
767 #if NVMM_USER_VERSION >= 2
768         case NVMM_VCPU_EXIT_STOPPED:
769             /*
770              * The kernel cleared the immediate exit flag; cpu->exit_request
771              * must be cleared after
772              */
773             smp_wmb();
774             qcpu->stop = true;
775             break;
776 #endif
777         case NVMM_VCPU_EXIT_MEMORY:
778             ret = nvmm_handle_mem(mach, vcpu);
779             break;
780         case NVMM_VCPU_EXIT_IO:
781             ret = nvmm_handle_io(mach, vcpu);
782             break;
783         case NVMM_VCPU_EXIT_INT_READY:
784         case NVMM_VCPU_EXIT_NMI_READY:
785         case NVMM_VCPU_EXIT_TPR_CHANGED:
786             break;
787         case NVMM_VCPU_EXIT_HALTED:
788             ret = nvmm_handle_halted(mach, cpu, exit);
789             break;
790         case NVMM_VCPU_EXIT_SHUTDOWN:
791             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
792             cpu->exception_index = EXCP_INTERRUPT;
793             ret = 1;
794             break;
795         case NVMM_VCPU_EXIT_RDMSR:
796             ret = nvmm_handle_rdmsr(mach, cpu, exit);
797             break;
798         case NVMM_VCPU_EXIT_WRMSR:
799             ret = nvmm_handle_wrmsr(mach, cpu, exit);
800             break;
801         case NVMM_VCPU_EXIT_MONITOR:
802         case NVMM_VCPU_EXIT_MWAIT:
803             ret = nvmm_inject_ud(mach, vcpu);
804             break;
805         default:
806             error_report("NVMM: Unexpected VM exit code 0x%lx [hw=0x%lx]",
807                 exit->reason, exit->u.inv.hwcode);
808             nvmm_get_registers(cpu);
809             bql_lock();
810             qemu_system_guest_panicked(cpu_get_crash_info(cpu));
811             bql_unlock();
812             ret = -1;
813             break;
814         }
815     } while (ret == 0);
816 
817     cpu_exec_end(cpu);
818     bql_lock();
819 
820     qatomic_set(&cpu->exit_request, false);
821 
822     return ret < 0;
823 }
824 
825 /* -------------------------------------------------------------------------- */
826 
827 static void
828 do_nvmm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
829 {
830     nvmm_get_registers(cpu);
831     cpu->vcpu_dirty = true;
832 }
833 
834 static void
835 do_nvmm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
836 {
837     nvmm_set_registers(cpu);
838     cpu->vcpu_dirty = false;
839 }
840 
841 static void
842 do_nvmm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
843 {
844     nvmm_set_registers(cpu);
845     cpu->vcpu_dirty = false;
846 }
847 
848 static void
849 do_nvmm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
850 {
851     cpu->vcpu_dirty = true;
852 }
853 
854 void nvmm_cpu_synchronize_state(CPUState *cpu)
855 {
856     if (!cpu->vcpu_dirty) {
857         run_on_cpu(cpu, do_nvmm_cpu_synchronize_state, RUN_ON_CPU_NULL);
858     }
859 }
860 
861 void nvmm_cpu_synchronize_post_reset(CPUState *cpu)
862 {
863     run_on_cpu(cpu, do_nvmm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
864 }
865 
866 void nvmm_cpu_synchronize_post_init(CPUState *cpu)
867 {
868     run_on_cpu(cpu, do_nvmm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
869 }
870 
871 void nvmm_cpu_synchronize_pre_loadvm(CPUState *cpu)
872 {
873     run_on_cpu(cpu, do_nvmm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
874 }
875 
876 /* -------------------------------------------------------------------------- */
877 
878 static Error *nvmm_migration_blocker;
879 
880 /*
881  * The nvmm_vcpu_stop() mechanism breaks races between entering the VMM
882  * and another thread signaling the vCPU thread to exit.
883  */
884 
885 static void
886 nvmm_ipi_signal(int sigcpu)
887 {
888     if (current_cpu) {
889         AccelCPUState *qcpu = current_cpu->accel;
890 #if NVMM_USER_VERSION >= 2
891         struct nvmm_vcpu *vcpu = &qcpu->vcpu;
892         nvmm_vcpu_stop(vcpu);
893 #else
894         qcpu->stop = true;
895 #endif
896     }
897 }
898 
899 static void
900 nvmm_init_cpu_signals(void)
901 {
902     struct sigaction sigact;
903     sigset_t set;
904 
905     /* Install the IPI handler. */
906     memset(&sigact, 0, sizeof(sigact));
907     sigact.sa_handler = nvmm_ipi_signal;
908     sigaction(SIG_IPI, &sigact, NULL);
909 
910     /* Allow IPIs on the current thread. */
911     sigprocmask(SIG_BLOCK, NULL, &set);
912     sigdelset(&set, SIG_IPI);
913     pthread_sigmask(SIG_SETMASK, &set, NULL);
914 }
915 
916 int
917 nvmm_init_vcpu(CPUState *cpu)
918 {
919     struct nvmm_machine *mach = get_nvmm_mach();
920     struct nvmm_vcpu_conf_cpuid cpuid;
921     struct nvmm_vcpu_conf_tpr tpr;
922     Error *local_error = NULL;
923     AccelCPUState *qcpu;
924     int ret, err;
925 
926     nvmm_init_cpu_signals();
927 
928     if (nvmm_migration_blocker == NULL) {
929         error_setg(&nvmm_migration_blocker,
930             "NVMM: Migration not supported");
931 
932         if (migrate_add_blocker(&nvmm_migration_blocker, &local_error) < 0) {
933             error_report_err(local_error);
934             return -EINVAL;
935         }
936     }
937 
938     qcpu = g_new0(AccelCPUState, 1);
939 
940     ret = nvmm_vcpu_create(mach, cpu->cpu_index, &qcpu->vcpu);
941     if (ret == -1) {
942         err = errno;
943         error_report("NVMM: Failed to create a virtual processor,"
944             " error=%d", err);
945         g_free(qcpu);
946         return -err;
947     }
948 
949     memset(&cpuid, 0, sizeof(cpuid));
950     cpuid.mask = 1;
951     cpuid.leaf = 0x00000001;
952     cpuid.u.mask.set.edx = CPUID_MCE | CPUID_MCA | CPUID_MTRR;
953     ret = nvmm_vcpu_configure(mach, &qcpu->vcpu, NVMM_VCPU_CONF_CPUID,
954         &cpuid);
955     if (ret == -1) {
956         err = errno;
957         error_report("NVMM: Failed to configure a virtual processor,"
958             " error=%d", err);
959         g_free(qcpu);
960         return -err;
961     }
962 
963     ret = nvmm_vcpu_configure(mach, &qcpu->vcpu, NVMM_VCPU_CONF_CALLBACKS,
964         &nvmm_callbacks);
965     if (ret == -1) {
966         err = errno;
967         error_report("NVMM: Failed to configure a virtual processor,"
968             " error=%d", err);
969         g_free(qcpu);
970         return -err;
971     }
972 
973     if (qemu_mach.cap.arch.vcpu_conf_support & NVMM_CAP_ARCH_VCPU_CONF_TPR) {
974         memset(&tpr, 0, sizeof(tpr));
975         tpr.exit_changed = 1;
976         ret = nvmm_vcpu_configure(mach, &qcpu->vcpu, NVMM_VCPU_CONF_TPR, &tpr);
977         if (ret == -1) {
978             err = errno;
979             error_report("NVMM: Failed to configure a virtual processor,"
980                 " error=%d", err);
981             g_free(qcpu);
982             return -err;
983         }
984     }
985 
986     cpu->vcpu_dirty = true;
987     cpu->accel = qcpu;
988 
989     return 0;
990 }
991 
992 int
993 nvmm_vcpu_exec(CPUState *cpu)
994 {
995     int ret, fatal;
996 
997     while (1) {
998         if (cpu->exception_index >= EXCP_INTERRUPT) {
999             ret = cpu->exception_index;
1000             cpu->exception_index = -1;
1001             break;
1002         }
1003 
1004         fatal = nvmm_vcpu_loop(cpu);
1005 
1006         if (fatal) {
1007             error_report("NVMM: Failed to execute a VCPU.");
1008             abort();
1009         }
1010     }
1011 
1012     return ret;
1013 }
1014 
1015 void
1016 nvmm_destroy_vcpu(CPUState *cpu)
1017 {
1018     struct nvmm_machine *mach = get_nvmm_mach();
1019     AccelCPUState *qcpu = cpu->accel;
1020 
1021     nvmm_vcpu_destroy(mach, &qcpu->vcpu);
1022     g_free(cpu->accel);
1023 }
1024 
1025 /* -------------------------------------------------------------------------- */
1026 
1027 static void
1028 nvmm_update_mapping(hwaddr start_pa, ram_addr_t size, uintptr_t hva,
1029     bool add, bool rom, const char *name)
1030 {
1031     struct nvmm_machine *mach = get_nvmm_mach();
1032     int ret, prot;
1033 
1034     if (add) {
1035         prot = PROT_READ | PROT_EXEC;
1036         if (!rom) {
1037             prot |= PROT_WRITE;
1038         }
1039         ret = nvmm_gpa_map(mach, hva, start_pa, size, prot);
1040     } else {
1041         ret = nvmm_gpa_unmap(mach, hva, start_pa, size);
1042     }
1043 
1044     if (ret == -1) {
1045         error_report("NVMM: Failed to %s GPA range '%s' PA:%p, "
1046             "Size:%p bytes, HostVA:%p, error=%d",
1047             (add ? "map" : "unmap"), name, (void *)(uintptr_t)start_pa,
1048             (void *)size, (void *)hva, errno);
1049     }
1050 }
1051 
1052 static void
1053 nvmm_process_section(MemoryRegionSection *section, int add)
1054 {
1055     MemoryRegion *mr = section->mr;
1056     hwaddr start_pa = section->offset_within_address_space;
1057     ram_addr_t size = int128_get64(section->size);
1058     unsigned int delta;
1059     uintptr_t hva;
1060 
1061     if (!memory_region_is_ram(mr)) {
1062         return;
1063     }
1064 
1065     /* Adjust start_pa and size so that they are page-aligned. */
1066     delta = qemu_real_host_page_size() - (start_pa & ~qemu_real_host_page_mask());
1067     delta &= ~qemu_real_host_page_mask();
1068     if (delta > size) {
1069         return;
1070     }
1071     start_pa += delta;
1072     size -= delta;
1073     size &= qemu_real_host_page_mask();
1074     if (!size || (start_pa & ~qemu_real_host_page_mask())) {
1075         return;
1076     }
1077 
1078     hva = (uintptr_t)memory_region_get_ram_ptr(mr) +
1079         section->offset_within_region + delta;
1080 
1081     nvmm_update_mapping(start_pa, size, hva, add,
1082         memory_region_is_rom(mr), mr->name);
1083 }
1084 
1085 static void
1086 nvmm_region_add(MemoryListener *listener, MemoryRegionSection *section)
1087 {
1088     memory_region_ref(section->mr);
1089     nvmm_process_section(section, 1);
1090 }
1091 
1092 static void
1093 nvmm_region_del(MemoryListener *listener, MemoryRegionSection *section)
1094 {
1095     nvmm_process_section(section, 0);
1096     memory_region_unref(section->mr);
1097 }
1098 
1099 static void
1100 nvmm_transaction_begin(MemoryListener *listener)
1101 {
1102     /* nothing */
1103 }
1104 
1105 static void
1106 nvmm_transaction_commit(MemoryListener *listener)
1107 {
1108     /* nothing */
1109 }
1110 
1111 static void
1112 nvmm_log_sync(MemoryListener *listener, MemoryRegionSection *section)
1113 {
1114     MemoryRegion *mr = section->mr;
1115 
1116     if (!memory_region_is_ram(mr)) {
1117         return;
1118     }
1119 
1120     memory_region_set_dirty(mr, 0, int128_get64(section->size));
1121 }
1122 
1123 static MemoryListener nvmm_memory_listener = {
1124     .name = "nvmm",
1125     .begin = nvmm_transaction_begin,
1126     .commit = nvmm_transaction_commit,
1127     .region_add = nvmm_region_add,
1128     .region_del = nvmm_region_del,
1129     .log_sync = nvmm_log_sync,
1130     .priority = MEMORY_LISTENER_PRIORITY_ACCEL,
1131 };
1132 
1133 static void
1134 nvmm_ram_block_added(RAMBlockNotifier *n, void *host, size_t size,
1135                      size_t max_size)
1136 {
1137     struct nvmm_machine *mach = get_nvmm_mach();
1138     uintptr_t hva = (uintptr_t)host;
1139     int ret;
1140 
1141     ret = nvmm_hva_map(mach, hva, max_size);
1142 
1143     if (ret == -1) {
1144         error_report("NVMM: Failed to map HVA, HostVA:%p "
1145             "Size:%p bytes, error=%d",
1146             (void *)hva, (void *)size, errno);
1147     }
1148 }
1149 
1150 static struct RAMBlockNotifier nvmm_ram_notifier = {
1151     .ram_block_added = nvmm_ram_block_added
1152 };
1153 
1154 /* -------------------------------------------------------------------------- */
1155 
1156 static int
1157 nvmm_accel_init(MachineState *ms)
1158 {
1159     int ret, err;
1160 
1161     ret = nvmm_init();
1162     if (ret == -1) {
1163         err = errno;
1164         error_report("NVMM: Initialization failed, error=%d", errno);
1165         return -err;
1166     }
1167 
1168     ret = nvmm_capability(&qemu_mach.cap);
1169     if (ret == -1) {
1170         err = errno;
1171         error_report("NVMM: Unable to fetch capability, error=%d", errno);
1172         return -err;
1173     }
1174     if (qemu_mach.cap.version < NVMM_KERN_VERSION) {
1175         error_report("NVMM: Unsupported version %u", qemu_mach.cap.version);
1176         return -EPROGMISMATCH;
1177     }
1178     if (qemu_mach.cap.state_size != sizeof(struct nvmm_x64_state)) {
1179         error_report("NVMM: Wrong state size %u", qemu_mach.cap.state_size);
1180         return -EPROGMISMATCH;
1181     }
1182 
1183     ret = nvmm_machine_create(&qemu_mach.mach);
1184     if (ret == -1) {
1185         err = errno;
1186         error_report("NVMM: Machine creation failed, error=%d", errno);
1187         return -err;
1188     }
1189 
1190     memory_listener_register(&nvmm_memory_listener, &address_space_memory);
1191     ram_block_notifier_add(&nvmm_ram_notifier);
1192 
1193     printf("NetBSD Virtual Machine Monitor accelerator is operational\n");
1194     return 0;
1195 }
1196 
1197 int
1198 nvmm_enabled(void)
1199 {
1200     return nvmm_allowed;
1201 }
1202 
1203 static void
1204 nvmm_accel_class_init(ObjectClass *oc, void *data)
1205 {
1206     AccelClass *ac = ACCEL_CLASS(oc);
1207     ac->name = "NVMM";
1208     ac->init_machine = nvmm_accel_init;
1209     ac->allowed = &nvmm_allowed;
1210 }
1211 
1212 static const TypeInfo nvmm_accel_type = {
1213     .name = ACCEL_CLASS_NAME("nvmm"),
1214     .parent = TYPE_ACCEL,
1215     .class_init = nvmm_accel_class_init,
1216 };
1217 
1218 static void
1219 nvmm_type_init(void)
1220 {
1221     type_register_static(&nvmm_accel_type);
1222 }
1223 
1224 type_init(nvmm_type_init);
1225