xref: /openbmc/qemu/target/i386/nvmm/nvmm-all.c (revision ac12b601)
1 /*
2  * Copyright (c) 2018-2019 Maxime Villard, All rights reserved.
3  *
4  * NetBSD Virtual Machine Monitor (NVMM) accelerator for QEMU.
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "cpu.h"
12 #include "exec/address-spaces.h"
13 #include "exec/ioport.h"
14 #include "qemu-common.h"
15 #include "qemu/accel.h"
16 #include "sysemu/nvmm.h"
17 #include "sysemu/cpus.h"
18 #include "sysemu/runstate.h"
19 #include "qemu/main-loop.h"
20 #include "qemu/error-report.h"
21 #include "qapi/error.h"
22 #include "qemu/queue.h"
23 #include "migration/blocker.h"
24 #include "strings.h"
25 
26 #include "nvmm-accel-ops.h"
27 
28 #include <nvmm.h>
29 
30 struct qemu_vcpu {
31     struct nvmm_vcpu vcpu;
32     uint8_t tpr;
33     bool stop;
34 
35     /* Window-exiting for INTs/NMIs. */
36     bool int_window_exit;
37     bool nmi_window_exit;
38 
39     /* The guest is in an interrupt shadow (POP SS, etc). */
40     bool int_shadow;
41 };
42 
43 struct qemu_machine {
44     struct nvmm_capability cap;
45     struct nvmm_machine mach;
46 };
47 
48 /* -------------------------------------------------------------------------- */
49 
50 static bool nvmm_allowed;
51 static struct qemu_machine qemu_mach;
52 
53 static struct qemu_vcpu *
54 get_qemu_vcpu(CPUState *cpu)
55 {
56     return (struct qemu_vcpu *)cpu->hax_vcpu;
57 }
58 
59 static struct nvmm_machine *
60 get_nvmm_mach(void)
61 {
62     return &qemu_mach.mach;
63 }
64 
65 /* -------------------------------------------------------------------------- */
66 
67 static void
68 nvmm_set_segment(struct nvmm_x64_state_seg *nseg, const SegmentCache *qseg)
69 {
70     uint32_t attrib = qseg->flags;
71 
72     nseg->selector = qseg->selector;
73     nseg->limit = qseg->limit;
74     nseg->base = qseg->base;
75     nseg->attrib.type = __SHIFTOUT(attrib, DESC_TYPE_MASK);
76     nseg->attrib.s = __SHIFTOUT(attrib, DESC_S_MASK);
77     nseg->attrib.dpl = __SHIFTOUT(attrib, DESC_DPL_MASK);
78     nseg->attrib.p = __SHIFTOUT(attrib, DESC_P_MASK);
79     nseg->attrib.avl = __SHIFTOUT(attrib, DESC_AVL_MASK);
80     nseg->attrib.l = __SHIFTOUT(attrib, DESC_L_MASK);
81     nseg->attrib.def = __SHIFTOUT(attrib, DESC_B_MASK);
82     nseg->attrib.g = __SHIFTOUT(attrib, DESC_G_MASK);
83 }
84 
85 static void
86 nvmm_set_registers(CPUState *cpu)
87 {
88     struct CPUX86State *env = (CPUArchState *)cpu->env_ptr;
89     struct nvmm_machine *mach = get_nvmm_mach();
90     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
91     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
92     struct nvmm_x64_state *state = vcpu->state;
93     uint64_t bitmap;
94     size_t i;
95     int ret;
96 
97     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
98 
99     /* GPRs. */
100     state->gprs[NVMM_X64_GPR_RAX] = env->regs[R_EAX];
101     state->gprs[NVMM_X64_GPR_RCX] = env->regs[R_ECX];
102     state->gprs[NVMM_X64_GPR_RDX] = env->regs[R_EDX];
103     state->gprs[NVMM_X64_GPR_RBX] = env->regs[R_EBX];
104     state->gprs[NVMM_X64_GPR_RSP] = env->regs[R_ESP];
105     state->gprs[NVMM_X64_GPR_RBP] = env->regs[R_EBP];
106     state->gprs[NVMM_X64_GPR_RSI] = env->regs[R_ESI];
107     state->gprs[NVMM_X64_GPR_RDI] = env->regs[R_EDI];
108 #ifdef TARGET_X86_64
109     state->gprs[NVMM_X64_GPR_R8]  = env->regs[R_R8];
110     state->gprs[NVMM_X64_GPR_R9]  = env->regs[R_R9];
111     state->gprs[NVMM_X64_GPR_R10] = env->regs[R_R10];
112     state->gprs[NVMM_X64_GPR_R11] = env->regs[R_R11];
113     state->gprs[NVMM_X64_GPR_R12] = env->regs[R_R12];
114     state->gprs[NVMM_X64_GPR_R13] = env->regs[R_R13];
115     state->gprs[NVMM_X64_GPR_R14] = env->regs[R_R14];
116     state->gprs[NVMM_X64_GPR_R15] = env->regs[R_R15];
117 #endif
118 
119     /* RIP and RFLAGS. */
120     state->gprs[NVMM_X64_GPR_RIP] = env->eip;
121     state->gprs[NVMM_X64_GPR_RFLAGS] = env->eflags;
122 
123     /* Segments. */
124     nvmm_set_segment(&state->segs[NVMM_X64_SEG_CS], &env->segs[R_CS]);
125     nvmm_set_segment(&state->segs[NVMM_X64_SEG_DS], &env->segs[R_DS]);
126     nvmm_set_segment(&state->segs[NVMM_X64_SEG_ES], &env->segs[R_ES]);
127     nvmm_set_segment(&state->segs[NVMM_X64_SEG_FS], &env->segs[R_FS]);
128     nvmm_set_segment(&state->segs[NVMM_X64_SEG_GS], &env->segs[R_GS]);
129     nvmm_set_segment(&state->segs[NVMM_X64_SEG_SS], &env->segs[R_SS]);
130 
131     /* Special segments. */
132     nvmm_set_segment(&state->segs[NVMM_X64_SEG_GDT], &env->gdt);
133     nvmm_set_segment(&state->segs[NVMM_X64_SEG_LDT], &env->ldt);
134     nvmm_set_segment(&state->segs[NVMM_X64_SEG_TR], &env->tr);
135     nvmm_set_segment(&state->segs[NVMM_X64_SEG_IDT], &env->idt);
136 
137     /* Control registers. */
138     state->crs[NVMM_X64_CR_CR0] = env->cr[0];
139     state->crs[NVMM_X64_CR_CR2] = env->cr[2];
140     state->crs[NVMM_X64_CR_CR3] = env->cr[3];
141     state->crs[NVMM_X64_CR_CR4] = env->cr[4];
142     state->crs[NVMM_X64_CR_CR8] = qcpu->tpr;
143     state->crs[NVMM_X64_CR_XCR0] = env->xcr0;
144 
145     /* Debug registers. */
146     state->drs[NVMM_X64_DR_DR0] = env->dr[0];
147     state->drs[NVMM_X64_DR_DR1] = env->dr[1];
148     state->drs[NVMM_X64_DR_DR2] = env->dr[2];
149     state->drs[NVMM_X64_DR_DR3] = env->dr[3];
150     state->drs[NVMM_X64_DR_DR6] = env->dr[6];
151     state->drs[NVMM_X64_DR_DR7] = env->dr[7];
152 
153     /* FPU. */
154     state->fpu.fx_cw = env->fpuc;
155     state->fpu.fx_sw = (env->fpus & ~0x3800) | ((env->fpstt & 0x7) << 11);
156     state->fpu.fx_tw = 0;
157     for (i = 0; i < 8; i++) {
158         state->fpu.fx_tw |= (!env->fptags[i]) << i;
159     }
160     state->fpu.fx_opcode = env->fpop;
161     state->fpu.fx_ip.fa_64 = env->fpip;
162     state->fpu.fx_dp.fa_64 = env->fpdp;
163     state->fpu.fx_mxcsr = env->mxcsr;
164     state->fpu.fx_mxcsr_mask = 0x0000FFFF;
165     assert(sizeof(state->fpu.fx_87_ac) == sizeof(env->fpregs));
166     memcpy(state->fpu.fx_87_ac, env->fpregs, sizeof(env->fpregs));
167     for (i = 0; i < CPU_NB_REGS; i++) {
168         memcpy(&state->fpu.fx_xmm[i].xmm_bytes[0],
169             &env->xmm_regs[i].ZMM_Q(0), 8);
170         memcpy(&state->fpu.fx_xmm[i].xmm_bytes[8],
171             &env->xmm_regs[i].ZMM_Q(1), 8);
172     }
173 
174     /* MSRs. */
175     state->msrs[NVMM_X64_MSR_EFER] = env->efer;
176     state->msrs[NVMM_X64_MSR_STAR] = env->star;
177 #ifdef TARGET_X86_64
178     state->msrs[NVMM_X64_MSR_LSTAR] = env->lstar;
179     state->msrs[NVMM_X64_MSR_CSTAR] = env->cstar;
180     state->msrs[NVMM_X64_MSR_SFMASK] = env->fmask;
181     state->msrs[NVMM_X64_MSR_KERNELGSBASE] = env->kernelgsbase;
182 #endif
183     state->msrs[NVMM_X64_MSR_SYSENTER_CS]  = env->sysenter_cs;
184     state->msrs[NVMM_X64_MSR_SYSENTER_ESP] = env->sysenter_esp;
185     state->msrs[NVMM_X64_MSR_SYSENTER_EIP] = env->sysenter_eip;
186     state->msrs[NVMM_X64_MSR_PAT] = env->pat;
187     state->msrs[NVMM_X64_MSR_TSC] = env->tsc;
188 
189     bitmap =
190         NVMM_X64_STATE_SEGS |
191         NVMM_X64_STATE_GPRS |
192         NVMM_X64_STATE_CRS  |
193         NVMM_X64_STATE_DRS  |
194         NVMM_X64_STATE_MSRS |
195         NVMM_X64_STATE_FPU;
196 
197     ret = nvmm_vcpu_setstate(mach, vcpu, bitmap);
198     if (ret == -1) {
199         error_report("NVMM: Failed to set virtual processor context,"
200             " error=%d", errno);
201     }
202 }
203 
204 static void
205 nvmm_get_segment(SegmentCache *qseg, const struct nvmm_x64_state_seg *nseg)
206 {
207     qseg->selector = nseg->selector;
208     qseg->limit = nseg->limit;
209     qseg->base = nseg->base;
210 
211     qseg->flags =
212         __SHIFTIN((uint32_t)nseg->attrib.type, DESC_TYPE_MASK) |
213         __SHIFTIN((uint32_t)nseg->attrib.s, DESC_S_MASK) |
214         __SHIFTIN((uint32_t)nseg->attrib.dpl, DESC_DPL_MASK) |
215         __SHIFTIN((uint32_t)nseg->attrib.p, DESC_P_MASK) |
216         __SHIFTIN((uint32_t)nseg->attrib.avl, DESC_AVL_MASK) |
217         __SHIFTIN((uint32_t)nseg->attrib.l, DESC_L_MASK) |
218         __SHIFTIN((uint32_t)nseg->attrib.def, DESC_B_MASK) |
219         __SHIFTIN((uint32_t)nseg->attrib.g, DESC_G_MASK);
220 }
221 
222 static void
223 nvmm_get_registers(CPUState *cpu)
224 {
225     struct CPUX86State *env = (CPUArchState *)cpu->env_ptr;
226     struct nvmm_machine *mach = get_nvmm_mach();
227     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
228     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
229     X86CPU *x86_cpu = X86_CPU(cpu);
230     struct nvmm_x64_state *state = vcpu->state;
231     uint64_t bitmap, tpr;
232     size_t i;
233     int ret;
234 
235     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
236 
237     bitmap =
238         NVMM_X64_STATE_SEGS |
239         NVMM_X64_STATE_GPRS |
240         NVMM_X64_STATE_CRS  |
241         NVMM_X64_STATE_DRS  |
242         NVMM_X64_STATE_MSRS |
243         NVMM_X64_STATE_FPU;
244 
245     ret = nvmm_vcpu_getstate(mach, vcpu, bitmap);
246     if (ret == -1) {
247         error_report("NVMM: Failed to get virtual processor context,"
248             " error=%d", errno);
249     }
250 
251     /* GPRs. */
252     env->regs[R_EAX] = state->gprs[NVMM_X64_GPR_RAX];
253     env->regs[R_ECX] = state->gprs[NVMM_X64_GPR_RCX];
254     env->regs[R_EDX] = state->gprs[NVMM_X64_GPR_RDX];
255     env->regs[R_EBX] = state->gprs[NVMM_X64_GPR_RBX];
256     env->regs[R_ESP] = state->gprs[NVMM_X64_GPR_RSP];
257     env->regs[R_EBP] = state->gprs[NVMM_X64_GPR_RBP];
258     env->regs[R_ESI] = state->gprs[NVMM_X64_GPR_RSI];
259     env->regs[R_EDI] = state->gprs[NVMM_X64_GPR_RDI];
260 #ifdef TARGET_X86_64
261     env->regs[R_R8]  = state->gprs[NVMM_X64_GPR_R8];
262     env->regs[R_R9]  = state->gprs[NVMM_X64_GPR_R9];
263     env->regs[R_R10] = state->gprs[NVMM_X64_GPR_R10];
264     env->regs[R_R11] = state->gprs[NVMM_X64_GPR_R11];
265     env->regs[R_R12] = state->gprs[NVMM_X64_GPR_R12];
266     env->regs[R_R13] = state->gprs[NVMM_X64_GPR_R13];
267     env->regs[R_R14] = state->gprs[NVMM_X64_GPR_R14];
268     env->regs[R_R15] = state->gprs[NVMM_X64_GPR_R15];
269 #endif
270 
271     /* RIP and RFLAGS. */
272     env->eip = state->gprs[NVMM_X64_GPR_RIP];
273     env->eflags = state->gprs[NVMM_X64_GPR_RFLAGS];
274 
275     /* Segments. */
276     nvmm_get_segment(&env->segs[R_ES], &state->segs[NVMM_X64_SEG_ES]);
277     nvmm_get_segment(&env->segs[R_CS], &state->segs[NVMM_X64_SEG_CS]);
278     nvmm_get_segment(&env->segs[R_SS], &state->segs[NVMM_X64_SEG_SS]);
279     nvmm_get_segment(&env->segs[R_DS], &state->segs[NVMM_X64_SEG_DS]);
280     nvmm_get_segment(&env->segs[R_FS], &state->segs[NVMM_X64_SEG_FS]);
281     nvmm_get_segment(&env->segs[R_GS], &state->segs[NVMM_X64_SEG_GS]);
282 
283     /* Special segments. */
284     nvmm_get_segment(&env->gdt, &state->segs[NVMM_X64_SEG_GDT]);
285     nvmm_get_segment(&env->ldt, &state->segs[NVMM_X64_SEG_LDT]);
286     nvmm_get_segment(&env->tr, &state->segs[NVMM_X64_SEG_TR]);
287     nvmm_get_segment(&env->idt, &state->segs[NVMM_X64_SEG_IDT]);
288 
289     /* Control registers. */
290     env->cr[0] = state->crs[NVMM_X64_CR_CR0];
291     env->cr[2] = state->crs[NVMM_X64_CR_CR2];
292     env->cr[3] = state->crs[NVMM_X64_CR_CR3];
293     env->cr[4] = state->crs[NVMM_X64_CR_CR4];
294     tpr = state->crs[NVMM_X64_CR_CR8];
295     if (tpr != qcpu->tpr) {
296         qcpu->tpr = tpr;
297         cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
298     }
299     env->xcr0 = state->crs[NVMM_X64_CR_XCR0];
300 
301     /* Debug registers. */
302     env->dr[0] = state->drs[NVMM_X64_DR_DR0];
303     env->dr[1] = state->drs[NVMM_X64_DR_DR1];
304     env->dr[2] = state->drs[NVMM_X64_DR_DR2];
305     env->dr[3] = state->drs[NVMM_X64_DR_DR3];
306     env->dr[6] = state->drs[NVMM_X64_DR_DR6];
307     env->dr[7] = state->drs[NVMM_X64_DR_DR7];
308 
309     /* FPU. */
310     env->fpuc = state->fpu.fx_cw;
311     env->fpstt = (state->fpu.fx_sw >> 11) & 0x7;
312     env->fpus = state->fpu.fx_sw & ~0x3800;
313     for (i = 0; i < 8; i++) {
314         env->fptags[i] = !((state->fpu.fx_tw >> i) & 1);
315     }
316     env->fpop = state->fpu.fx_opcode;
317     env->fpip = state->fpu.fx_ip.fa_64;
318     env->fpdp = state->fpu.fx_dp.fa_64;
319     env->mxcsr = state->fpu.fx_mxcsr;
320     assert(sizeof(state->fpu.fx_87_ac) == sizeof(env->fpregs));
321     memcpy(env->fpregs, state->fpu.fx_87_ac, sizeof(env->fpregs));
322     for (i = 0; i < CPU_NB_REGS; i++) {
323         memcpy(&env->xmm_regs[i].ZMM_Q(0),
324             &state->fpu.fx_xmm[i].xmm_bytes[0], 8);
325         memcpy(&env->xmm_regs[i].ZMM_Q(1),
326             &state->fpu.fx_xmm[i].xmm_bytes[8], 8);
327     }
328 
329     /* MSRs. */
330     env->efer = state->msrs[NVMM_X64_MSR_EFER];
331     env->star = state->msrs[NVMM_X64_MSR_STAR];
332 #ifdef TARGET_X86_64
333     env->lstar = state->msrs[NVMM_X64_MSR_LSTAR];
334     env->cstar = state->msrs[NVMM_X64_MSR_CSTAR];
335     env->fmask = state->msrs[NVMM_X64_MSR_SFMASK];
336     env->kernelgsbase = state->msrs[NVMM_X64_MSR_KERNELGSBASE];
337 #endif
338     env->sysenter_cs  = state->msrs[NVMM_X64_MSR_SYSENTER_CS];
339     env->sysenter_esp = state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
340     env->sysenter_eip = state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
341     env->pat = state->msrs[NVMM_X64_MSR_PAT];
342     env->tsc = state->msrs[NVMM_X64_MSR_TSC];
343 
344     x86_update_hflags(env);
345 }
346 
347 static bool
348 nvmm_can_take_int(CPUState *cpu)
349 {
350     struct CPUX86State *env = (CPUArchState *)cpu->env_ptr;
351     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
352     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
353     struct nvmm_machine *mach = get_nvmm_mach();
354 
355     if (qcpu->int_window_exit) {
356         return false;
357     }
358 
359     if (qcpu->int_shadow || !(env->eflags & IF_MASK)) {
360         struct nvmm_x64_state *state = vcpu->state;
361 
362         /* Exit on interrupt window. */
363         nvmm_vcpu_getstate(mach, vcpu, NVMM_X64_STATE_INTR);
364         state->intr.int_window_exiting = 1;
365         nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_INTR);
366 
367         return false;
368     }
369 
370     return true;
371 }
372 
373 static bool
374 nvmm_can_take_nmi(CPUState *cpu)
375 {
376     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
377 
378     /*
379      * Contrary to INTs, NMIs always schedule an exit when they are
380      * completed. Therefore, if window-exiting is enabled, it means
381      * NMIs are blocked.
382      */
383     if (qcpu->nmi_window_exit) {
384         return false;
385     }
386 
387     return true;
388 }
389 
390 /*
391  * Called before the VCPU is run. We inject events generated by the I/O
392  * thread, and synchronize the guest TPR.
393  */
394 static void
395 nvmm_vcpu_pre_run(CPUState *cpu)
396 {
397     struct CPUX86State *env = (CPUArchState *)cpu->env_ptr;
398     struct nvmm_machine *mach = get_nvmm_mach();
399     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
400     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
401     X86CPU *x86_cpu = X86_CPU(cpu);
402     struct nvmm_x64_state *state = vcpu->state;
403     struct nvmm_vcpu_event *event = vcpu->event;
404     bool has_event = false;
405     bool sync_tpr = false;
406     uint8_t tpr;
407     int ret;
408 
409     qemu_mutex_lock_iothread();
410 
411     tpr = cpu_get_apic_tpr(x86_cpu->apic_state);
412     if (tpr != qcpu->tpr) {
413         qcpu->tpr = tpr;
414         sync_tpr = true;
415     }
416 
417     /*
418      * Force the VCPU out of its inner loop to process any INIT requests
419      * or commit pending TPR access.
420      */
421     if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
422         cpu->exit_request = 1;
423     }
424 
425     if (!has_event && (cpu->interrupt_request & CPU_INTERRUPT_NMI)) {
426         if (nvmm_can_take_nmi(cpu)) {
427             cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
428             event->type = NVMM_VCPU_EVENT_INTR;
429             event->vector = 2;
430             has_event = true;
431         }
432     }
433 
434     if (!has_event && (cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
435         if (nvmm_can_take_int(cpu)) {
436             cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
437             event->type = NVMM_VCPU_EVENT_INTR;
438             event->vector = cpu_get_pic_interrupt(env);
439             has_event = true;
440         }
441     }
442 
443     /* Don't want SMIs. */
444     if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
445         cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
446     }
447 
448     if (sync_tpr) {
449         ret = nvmm_vcpu_getstate(mach, vcpu, NVMM_X64_STATE_CRS);
450         if (ret == -1) {
451             error_report("NVMM: Failed to get CPU state,"
452                 " error=%d", errno);
453         }
454 
455         state->crs[NVMM_X64_CR_CR8] = qcpu->tpr;
456 
457         ret = nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_CRS);
458         if (ret == -1) {
459             error_report("NVMM: Failed to set CPU state,"
460                 " error=%d", errno);
461         }
462     }
463 
464     if (has_event) {
465         ret = nvmm_vcpu_inject(mach, vcpu);
466         if (ret == -1) {
467             error_report("NVMM: Failed to inject event,"
468                 " error=%d", errno);
469         }
470     }
471 
472     qemu_mutex_unlock_iothread();
473 }
474 
475 /*
476  * Called after the VCPU ran. We synchronize the host view of the TPR and
477  * RFLAGS.
478  */
479 static void
480 nvmm_vcpu_post_run(CPUState *cpu, struct nvmm_vcpu_exit *exit)
481 {
482     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
483     struct CPUX86State *env = (CPUArchState *)cpu->env_ptr;
484     X86CPU *x86_cpu = X86_CPU(cpu);
485     uint64_t tpr;
486 
487     env->eflags = exit->exitstate.rflags;
488     qcpu->int_shadow = exit->exitstate.int_shadow;
489     qcpu->int_window_exit = exit->exitstate.int_window_exiting;
490     qcpu->nmi_window_exit = exit->exitstate.nmi_window_exiting;
491 
492     tpr = exit->exitstate.cr8;
493     if (qcpu->tpr != tpr) {
494         qcpu->tpr = tpr;
495         qemu_mutex_lock_iothread();
496         cpu_set_apic_tpr(x86_cpu->apic_state, qcpu->tpr);
497         qemu_mutex_unlock_iothread();
498     }
499 }
500 
501 /* -------------------------------------------------------------------------- */
502 
503 static void
504 nvmm_io_callback(struct nvmm_io *io)
505 {
506     MemTxAttrs attrs = { 0 };
507     int ret;
508 
509     ret = address_space_rw(&address_space_io, io->port, attrs, io->data,
510         io->size, !io->in);
511     if (ret != MEMTX_OK) {
512         error_report("NVMM: I/O Transaction Failed "
513             "[%s, port=%u, size=%zu]", (io->in ? "in" : "out"),
514             io->port, io->size);
515     }
516 
517     /* Needed, otherwise infinite loop. */
518     current_cpu->vcpu_dirty = false;
519 }
520 
521 static void
522 nvmm_mem_callback(struct nvmm_mem *mem)
523 {
524     cpu_physical_memory_rw(mem->gpa, mem->data, mem->size, mem->write);
525 
526     /* Needed, otherwise infinite loop. */
527     current_cpu->vcpu_dirty = false;
528 }
529 
530 static struct nvmm_assist_callbacks nvmm_callbacks = {
531     .io = nvmm_io_callback,
532     .mem = nvmm_mem_callback
533 };
534 
535 /* -------------------------------------------------------------------------- */
536 
537 static int
538 nvmm_handle_mem(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
539 {
540     int ret;
541 
542     ret = nvmm_assist_mem(mach, vcpu);
543     if (ret == -1) {
544         error_report("NVMM: Mem Assist Failed [gpa=%p]",
545             (void *)vcpu->exit->u.mem.gpa);
546     }
547 
548     return ret;
549 }
550 
551 static int
552 nvmm_handle_io(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
553 {
554     int ret;
555 
556     ret = nvmm_assist_io(mach, vcpu);
557     if (ret == -1) {
558         error_report("NVMM: I/O Assist Failed [port=%d]",
559             (int)vcpu->exit->u.io.port);
560     }
561 
562     return ret;
563 }
564 
565 static int
566 nvmm_handle_rdmsr(struct nvmm_machine *mach, CPUState *cpu,
567     struct nvmm_vcpu_exit *exit)
568 {
569     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
570     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
571     X86CPU *x86_cpu = X86_CPU(cpu);
572     struct nvmm_x64_state *state = vcpu->state;
573     uint64_t val;
574     int ret;
575 
576     switch (exit->u.rdmsr.msr) {
577     case MSR_IA32_APICBASE:
578         val = cpu_get_apic_base(x86_cpu->apic_state);
579         break;
580     case MSR_MTRRcap:
581     case MSR_MTRRdefType:
582     case MSR_MCG_CAP:
583     case MSR_MCG_STATUS:
584         val = 0;
585         break;
586     default: /* More MSRs to add? */
587         val = 0;
588         error_report("NVMM: Unexpected RDMSR 0x%x, ignored",
589             exit->u.rdmsr.msr);
590         break;
591     }
592 
593     ret = nvmm_vcpu_getstate(mach, vcpu, NVMM_X64_STATE_GPRS);
594     if (ret == -1) {
595         return -1;
596     }
597 
598     state->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
599     state->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
600     state->gprs[NVMM_X64_GPR_RIP] = exit->u.rdmsr.npc;
601 
602     ret = nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_GPRS);
603     if (ret == -1) {
604         return -1;
605     }
606 
607     return 0;
608 }
609 
610 static int
611 nvmm_handle_wrmsr(struct nvmm_machine *mach, CPUState *cpu,
612     struct nvmm_vcpu_exit *exit)
613 {
614     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
615     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
616     X86CPU *x86_cpu = X86_CPU(cpu);
617     struct nvmm_x64_state *state = vcpu->state;
618     uint64_t val;
619     int ret;
620 
621     val = exit->u.wrmsr.val;
622 
623     switch (exit->u.wrmsr.msr) {
624     case MSR_IA32_APICBASE:
625         cpu_set_apic_base(x86_cpu->apic_state, val);
626         break;
627     case MSR_MTRRdefType:
628     case MSR_MCG_STATUS:
629         break;
630     default: /* More MSRs to add? */
631         error_report("NVMM: Unexpected WRMSR 0x%x [val=0x%lx], ignored",
632             exit->u.wrmsr.msr, val);
633         break;
634     }
635 
636     ret = nvmm_vcpu_getstate(mach, vcpu, NVMM_X64_STATE_GPRS);
637     if (ret == -1) {
638         return -1;
639     }
640 
641     state->gprs[NVMM_X64_GPR_RIP] = exit->u.wrmsr.npc;
642 
643     ret = nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_GPRS);
644     if (ret == -1) {
645         return -1;
646     }
647 
648     return 0;
649 }
650 
651 static int
652 nvmm_handle_halted(struct nvmm_machine *mach, CPUState *cpu,
653     struct nvmm_vcpu_exit *exit)
654 {
655     struct CPUX86State *env = (CPUArchState *)cpu->env_ptr;
656     int ret = 0;
657 
658     qemu_mutex_lock_iothread();
659 
660     if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
661           (env->eflags & IF_MASK)) &&
662         !(cpu->interrupt_request & CPU_INTERRUPT_NMI)) {
663         cpu->exception_index = EXCP_HLT;
664         cpu->halted = true;
665         ret = 1;
666     }
667 
668     qemu_mutex_unlock_iothread();
669 
670     return ret;
671 }
672 
673 static int
674 nvmm_inject_ud(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
675 {
676     struct nvmm_vcpu_event *event = vcpu->event;
677 
678     event->type = NVMM_VCPU_EVENT_EXCP;
679     event->vector = 6;
680     event->u.excp.error = 0;
681 
682     return nvmm_vcpu_inject(mach, vcpu);
683 }
684 
685 static int
686 nvmm_vcpu_loop(CPUState *cpu)
687 {
688     struct CPUX86State *env = (CPUArchState *)cpu->env_ptr;
689     struct nvmm_machine *mach = get_nvmm_mach();
690     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
691     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
692     X86CPU *x86_cpu = X86_CPU(cpu);
693     struct nvmm_vcpu_exit *exit = vcpu->exit;
694     int ret;
695 
696     /*
697      * Some asynchronous events must be handled outside of the inner
698      * VCPU loop. They are handled here.
699      */
700     if (cpu->interrupt_request & CPU_INTERRUPT_INIT) {
701         nvmm_cpu_synchronize_state(cpu);
702         do_cpu_init(x86_cpu);
703         /* set int/nmi windows back to the reset state */
704     }
705     if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
706         cpu->interrupt_request &= ~CPU_INTERRUPT_POLL;
707         apic_poll_irq(x86_cpu->apic_state);
708     }
709     if (((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
710          (env->eflags & IF_MASK)) ||
711         (cpu->interrupt_request & CPU_INTERRUPT_NMI)) {
712         cpu->halted = false;
713     }
714     if (cpu->interrupt_request & CPU_INTERRUPT_SIPI) {
715         nvmm_cpu_synchronize_state(cpu);
716         do_cpu_sipi(x86_cpu);
717     }
718     if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
719         cpu->interrupt_request &= ~CPU_INTERRUPT_TPR;
720         nvmm_cpu_synchronize_state(cpu);
721         apic_handle_tpr_access_report(x86_cpu->apic_state, env->eip,
722             env->tpr_access_type);
723     }
724 
725     if (cpu->halted) {
726         cpu->exception_index = EXCP_HLT;
727         qatomic_set(&cpu->exit_request, false);
728         return 0;
729     }
730 
731     qemu_mutex_unlock_iothread();
732     cpu_exec_start(cpu);
733 
734     /*
735      * Inner VCPU loop.
736      */
737     do {
738         if (cpu->vcpu_dirty) {
739             nvmm_set_registers(cpu);
740             cpu->vcpu_dirty = false;
741         }
742 
743         if (qcpu->stop) {
744             cpu->exception_index = EXCP_INTERRUPT;
745             qcpu->stop = false;
746             ret = 1;
747             break;
748         }
749 
750         nvmm_vcpu_pre_run(cpu);
751 
752         if (qatomic_read(&cpu->exit_request)) {
753             nvmm_vcpu_stop(vcpu);
754         }
755 
756         /* Read exit_request before the kernel reads the immediate exit flag */
757         smp_rmb();
758         ret = nvmm_vcpu_run(mach, vcpu);
759         if (ret == -1) {
760             error_report("NVMM: Failed to exec a virtual processor,"
761                 " error=%d", errno);
762             break;
763         }
764 
765         nvmm_vcpu_post_run(cpu, exit);
766 
767         switch (exit->reason) {
768         case NVMM_VCPU_EXIT_NONE:
769             break;
770         case NVMM_VCPU_EXIT_STOPPED:
771             /*
772              * The kernel cleared the immediate exit flag; cpu->exit_request
773              * must be cleared after
774              */
775             smp_wmb();
776             qcpu->stop = true;
777             break;
778         case NVMM_VCPU_EXIT_MEMORY:
779             ret = nvmm_handle_mem(mach, vcpu);
780             break;
781         case NVMM_VCPU_EXIT_IO:
782             ret = nvmm_handle_io(mach, vcpu);
783             break;
784         case NVMM_VCPU_EXIT_INT_READY:
785         case NVMM_VCPU_EXIT_NMI_READY:
786         case NVMM_VCPU_EXIT_TPR_CHANGED:
787             break;
788         case NVMM_VCPU_EXIT_HALTED:
789             ret = nvmm_handle_halted(mach, cpu, exit);
790             break;
791         case NVMM_VCPU_EXIT_SHUTDOWN:
792             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
793             cpu->exception_index = EXCP_INTERRUPT;
794             ret = 1;
795             break;
796         case NVMM_VCPU_EXIT_RDMSR:
797             ret = nvmm_handle_rdmsr(mach, cpu, exit);
798             break;
799         case NVMM_VCPU_EXIT_WRMSR:
800             ret = nvmm_handle_wrmsr(mach, cpu, exit);
801             break;
802         case NVMM_VCPU_EXIT_MONITOR:
803         case NVMM_VCPU_EXIT_MWAIT:
804             ret = nvmm_inject_ud(mach, vcpu);
805             break;
806         default:
807             error_report("NVMM: Unexpected VM exit code 0x%lx [hw=0x%lx]",
808                 exit->reason, exit->u.inv.hwcode);
809             nvmm_get_registers(cpu);
810             qemu_mutex_lock_iothread();
811             qemu_system_guest_panicked(cpu_get_crash_info(cpu));
812             qemu_mutex_unlock_iothread();
813             ret = -1;
814             break;
815         }
816     } while (ret == 0);
817 
818     cpu_exec_end(cpu);
819     qemu_mutex_lock_iothread();
820 
821     qatomic_set(&cpu->exit_request, false);
822 
823     return ret < 0;
824 }
825 
826 /* -------------------------------------------------------------------------- */
827 
828 static void
829 do_nvmm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
830 {
831     nvmm_get_registers(cpu);
832     cpu->vcpu_dirty = true;
833 }
834 
835 static void
836 do_nvmm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
837 {
838     nvmm_set_registers(cpu);
839     cpu->vcpu_dirty = false;
840 }
841 
842 static void
843 do_nvmm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
844 {
845     nvmm_set_registers(cpu);
846     cpu->vcpu_dirty = false;
847 }
848 
849 static void
850 do_nvmm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
851 {
852     cpu->vcpu_dirty = true;
853 }
854 
855 void nvmm_cpu_synchronize_state(CPUState *cpu)
856 {
857     if (!cpu->vcpu_dirty) {
858         run_on_cpu(cpu, do_nvmm_cpu_synchronize_state, RUN_ON_CPU_NULL);
859     }
860 }
861 
862 void nvmm_cpu_synchronize_post_reset(CPUState *cpu)
863 {
864     run_on_cpu(cpu, do_nvmm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
865 }
866 
867 void nvmm_cpu_synchronize_post_init(CPUState *cpu)
868 {
869     run_on_cpu(cpu, do_nvmm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
870 }
871 
872 void nvmm_cpu_synchronize_pre_loadvm(CPUState *cpu)
873 {
874     run_on_cpu(cpu, do_nvmm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
875 }
876 
877 /* -------------------------------------------------------------------------- */
878 
879 static Error *nvmm_migration_blocker;
880 
881 /*
882  * The nvmm_vcpu_stop() mechanism breaks races between entering the VMM
883  * and another thread signaling the vCPU thread to exit.
884  */
885 
886 static void
887 nvmm_ipi_signal(int sigcpu)
888 {
889     if (current_cpu) {
890         struct qemu_vcpu *qcpu = get_qemu_vcpu(current_cpu);
891         struct nvmm_vcpu *vcpu = &qcpu->vcpu;
892         nvmm_vcpu_stop(vcpu);
893     }
894 }
895 
896 static void
897 nvmm_init_cpu_signals(void)
898 {
899     struct sigaction sigact;
900     sigset_t set;
901 
902     /* Install the IPI handler. */
903     memset(&sigact, 0, sizeof(sigact));
904     sigact.sa_handler = nvmm_ipi_signal;
905     sigaction(SIG_IPI, &sigact, NULL);
906 
907     /* Allow IPIs on the current thread. */
908     sigprocmask(SIG_BLOCK, NULL, &set);
909     sigdelset(&set, SIG_IPI);
910     pthread_sigmask(SIG_SETMASK, &set, NULL);
911 }
912 
913 int
914 nvmm_init_vcpu(CPUState *cpu)
915 {
916     struct nvmm_machine *mach = get_nvmm_mach();
917     struct nvmm_vcpu_conf_cpuid cpuid;
918     struct nvmm_vcpu_conf_tpr tpr;
919     Error *local_error = NULL;
920     struct qemu_vcpu *qcpu;
921     int ret, err;
922 
923     nvmm_init_cpu_signals();
924 
925     if (nvmm_migration_blocker == NULL) {
926         error_setg(&nvmm_migration_blocker,
927             "NVMM: Migration not supported");
928 
929         (void)migrate_add_blocker(nvmm_migration_blocker, &local_error);
930         if (local_error) {
931             error_report_err(local_error);
932             migrate_del_blocker(nvmm_migration_blocker);
933             error_free(nvmm_migration_blocker);
934             return -EINVAL;
935         }
936     }
937 
938     qcpu = g_malloc0(sizeof(*qcpu));
939     if (qcpu == NULL) {
940         error_report("NVMM: Failed to allocate VCPU context.");
941         return -ENOMEM;
942     }
943 
944     ret = nvmm_vcpu_create(mach, cpu->cpu_index, &qcpu->vcpu);
945     if (ret == -1) {
946         err = errno;
947         error_report("NVMM: Failed to create a virtual processor,"
948             " error=%d", err);
949         g_free(qcpu);
950         return -err;
951     }
952 
953     memset(&cpuid, 0, sizeof(cpuid));
954     cpuid.mask = 1;
955     cpuid.leaf = 0x00000001;
956     cpuid.u.mask.set.edx = CPUID_MCE | CPUID_MCA | CPUID_MTRR;
957     ret = nvmm_vcpu_configure(mach, &qcpu->vcpu, NVMM_VCPU_CONF_CPUID,
958         &cpuid);
959     if (ret == -1) {
960         err = errno;
961         error_report("NVMM: Failed to configure a virtual processor,"
962             " error=%d", err);
963         g_free(qcpu);
964         return -err;
965     }
966 
967     ret = nvmm_vcpu_configure(mach, &qcpu->vcpu, NVMM_VCPU_CONF_CALLBACKS,
968         &nvmm_callbacks);
969     if (ret == -1) {
970         err = errno;
971         error_report("NVMM: Failed to configure a virtual processor,"
972             " error=%d", err);
973         g_free(qcpu);
974         return -err;
975     }
976 
977     if (qemu_mach.cap.arch.vcpu_conf_support & NVMM_CAP_ARCH_VCPU_CONF_TPR) {
978         memset(&tpr, 0, sizeof(tpr));
979         tpr.exit_changed = 1;
980         ret = nvmm_vcpu_configure(mach, &qcpu->vcpu, NVMM_VCPU_CONF_TPR, &tpr);
981         if (ret == -1) {
982             err = errno;
983             error_report("NVMM: Failed to configure a virtual processor,"
984                 " error=%d", err);
985             g_free(qcpu);
986             return -err;
987         }
988     }
989 
990     cpu->vcpu_dirty = true;
991     cpu->hax_vcpu = (struct hax_vcpu_state *)qcpu;
992 
993     return 0;
994 }
995 
996 int
997 nvmm_vcpu_exec(CPUState *cpu)
998 {
999     int ret, fatal;
1000 
1001     while (1) {
1002         if (cpu->exception_index >= EXCP_INTERRUPT) {
1003             ret = cpu->exception_index;
1004             cpu->exception_index = -1;
1005             break;
1006         }
1007 
1008         fatal = nvmm_vcpu_loop(cpu);
1009 
1010         if (fatal) {
1011             error_report("NVMM: Failed to execute a VCPU.");
1012             abort();
1013         }
1014     }
1015 
1016     return ret;
1017 }
1018 
1019 void
1020 nvmm_destroy_vcpu(CPUState *cpu)
1021 {
1022     struct nvmm_machine *mach = get_nvmm_mach();
1023     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
1024 
1025     nvmm_vcpu_destroy(mach, &qcpu->vcpu);
1026     g_free(cpu->hax_vcpu);
1027 }
1028 
1029 /* -------------------------------------------------------------------------- */
1030 
1031 static void
1032 nvmm_update_mapping(hwaddr start_pa, ram_addr_t size, uintptr_t hva,
1033     bool add, bool rom, const char *name)
1034 {
1035     struct nvmm_machine *mach = get_nvmm_mach();
1036     int ret, prot;
1037 
1038     if (add) {
1039         prot = PROT_READ | PROT_EXEC;
1040         if (!rom) {
1041             prot |= PROT_WRITE;
1042         }
1043         ret = nvmm_gpa_map(mach, hva, start_pa, size, prot);
1044     } else {
1045         ret = nvmm_gpa_unmap(mach, hva, start_pa, size);
1046     }
1047 
1048     if (ret == -1) {
1049         error_report("NVMM: Failed to %s GPA range '%s' PA:%p, "
1050             "Size:%p bytes, HostVA:%p, error=%d",
1051             (add ? "map" : "unmap"), name, (void *)(uintptr_t)start_pa,
1052             (void *)size, (void *)hva, errno);
1053     }
1054 }
1055 
1056 static void
1057 nvmm_process_section(MemoryRegionSection *section, int add)
1058 {
1059     MemoryRegion *mr = section->mr;
1060     hwaddr start_pa = section->offset_within_address_space;
1061     ram_addr_t size = int128_get64(section->size);
1062     unsigned int delta;
1063     uintptr_t hva;
1064 
1065     if (!memory_region_is_ram(mr)) {
1066         return;
1067     }
1068 
1069     /* Adjust start_pa and size so that they are page-aligned. */
1070     delta = qemu_real_host_page_size - (start_pa & ~qemu_real_host_page_mask);
1071     delta &= ~qemu_real_host_page_mask;
1072     if (delta > size) {
1073         return;
1074     }
1075     start_pa += delta;
1076     size -= delta;
1077     size &= qemu_real_host_page_mask;
1078     if (!size || (start_pa & ~qemu_real_host_page_mask)) {
1079         return;
1080     }
1081 
1082     hva = (uintptr_t)memory_region_get_ram_ptr(mr) +
1083         section->offset_within_region + delta;
1084 
1085     nvmm_update_mapping(start_pa, size, hva, add,
1086         memory_region_is_rom(mr), mr->name);
1087 }
1088 
1089 static void
1090 nvmm_region_add(MemoryListener *listener, MemoryRegionSection *section)
1091 {
1092     memory_region_ref(section->mr);
1093     nvmm_process_section(section, 1);
1094 }
1095 
1096 static void
1097 nvmm_region_del(MemoryListener *listener, MemoryRegionSection *section)
1098 {
1099     nvmm_process_section(section, 0);
1100     memory_region_unref(section->mr);
1101 }
1102 
1103 static void
1104 nvmm_transaction_begin(MemoryListener *listener)
1105 {
1106     /* nothing */
1107 }
1108 
1109 static void
1110 nvmm_transaction_commit(MemoryListener *listener)
1111 {
1112     /* nothing */
1113 }
1114 
1115 static void
1116 nvmm_log_sync(MemoryListener *listener, MemoryRegionSection *section)
1117 {
1118     MemoryRegion *mr = section->mr;
1119 
1120     if (!memory_region_is_ram(mr)) {
1121         return;
1122     }
1123 
1124     memory_region_set_dirty(mr, 0, int128_get64(section->size));
1125 }
1126 
1127 static MemoryListener nvmm_memory_listener = {
1128     .begin = nvmm_transaction_begin,
1129     .commit = nvmm_transaction_commit,
1130     .region_add = nvmm_region_add,
1131     .region_del = nvmm_region_del,
1132     .log_sync = nvmm_log_sync,
1133     .priority = 10,
1134 };
1135 
1136 static void
1137 nvmm_ram_block_added(RAMBlockNotifier *n, void *host, size_t size)
1138 {
1139     struct nvmm_machine *mach = get_nvmm_mach();
1140     uintptr_t hva = (uintptr_t)host;
1141     int ret;
1142 
1143     ret = nvmm_hva_map(mach, hva, size);
1144 
1145     if (ret == -1) {
1146         error_report("NVMM: Failed to map HVA, HostVA:%p "
1147             "Size:%p bytes, error=%d",
1148             (void *)hva, (void *)size, errno);
1149     }
1150 }
1151 
1152 static struct RAMBlockNotifier nvmm_ram_notifier = {
1153     .ram_block_added = nvmm_ram_block_added
1154 };
1155 
1156 /* -------------------------------------------------------------------------- */
1157 
1158 static int
1159 nvmm_accel_init(MachineState *ms)
1160 {
1161     int ret, err;
1162 
1163     ret = nvmm_init();
1164     if (ret == -1) {
1165         err = errno;
1166         error_report("NVMM: Initialization failed, error=%d", errno);
1167         return -err;
1168     }
1169 
1170     ret = nvmm_capability(&qemu_mach.cap);
1171     if (ret == -1) {
1172         err = errno;
1173         error_report("NVMM: Unable to fetch capability, error=%d", errno);
1174         return -err;
1175     }
1176     if (qemu_mach.cap.version < NVMM_KERN_VERSION) {
1177         error_report("NVMM: Unsupported version %u", qemu_mach.cap.version);
1178         return -EPROGMISMATCH;
1179     }
1180     if (qemu_mach.cap.state_size != sizeof(struct nvmm_x64_state)) {
1181         error_report("NVMM: Wrong state size %u", qemu_mach.cap.state_size);
1182         return -EPROGMISMATCH;
1183     }
1184 
1185     ret = nvmm_machine_create(&qemu_mach.mach);
1186     if (ret == -1) {
1187         err = errno;
1188         error_report("NVMM: Machine creation failed, error=%d", errno);
1189         return -err;
1190     }
1191 
1192     memory_listener_register(&nvmm_memory_listener, &address_space_memory);
1193     ram_block_notifier_add(&nvmm_ram_notifier);
1194 
1195     printf("NetBSD Virtual Machine Monitor accelerator is operational\n");
1196     return 0;
1197 }
1198 
1199 int
1200 nvmm_enabled(void)
1201 {
1202     return nvmm_allowed;
1203 }
1204 
1205 static void
1206 nvmm_accel_class_init(ObjectClass *oc, void *data)
1207 {
1208     AccelClass *ac = ACCEL_CLASS(oc);
1209     ac->name = "NVMM";
1210     ac->init_machine = nvmm_accel_init;
1211     ac->allowed = &nvmm_allowed;
1212 }
1213 
1214 static const TypeInfo nvmm_accel_type = {
1215     .name = ACCEL_CLASS_NAME("nvmm"),
1216     .parent = TYPE_ACCEL,
1217     .class_init = nvmm_accel_class_init,
1218 };
1219 
1220 static void
1221 nvmm_type_init(void)
1222 {
1223     type_register_static(&nvmm_accel_type);
1224 }
1225 
1226 type_init(nvmm_type_init);
1227