xref: /openbmc/qemu/target/i386/nvmm/nvmm-all.c (revision 11058123)
1 /*
2  * Copyright (c) 2018-2019 Maxime Villard, All rights reserved.
3  *
4  * NetBSD Virtual Machine Monitor (NVMM) accelerator for QEMU.
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "cpu.h"
12 #include "exec/address-spaces.h"
13 #include "exec/ioport.h"
14 #include "qemu-common.h"
15 #include "qemu/accel.h"
16 #include "sysemu/nvmm.h"
17 #include "sysemu/cpus.h"
18 #include "sysemu/runstate.h"
19 #include "qemu/main-loop.h"
20 #include "qemu/error-report.h"
21 #include "qapi/error.h"
22 #include "qemu/queue.h"
23 #include "migration/blocker.h"
24 #include "strings.h"
25 
26 #include "nvmm-accel-ops.h"
27 
28 #include <nvmm.h>
29 
30 struct qemu_vcpu {
31     struct nvmm_vcpu vcpu;
32     uint8_t tpr;
33     bool stop;
34 
35     /* Window-exiting for INTs/NMIs. */
36     bool int_window_exit;
37     bool nmi_window_exit;
38 
39     /* The guest is in an interrupt shadow (POP SS, etc). */
40     bool int_shadow;
41 };
42 
43 struct qemu_machine {
44     struct nvmm_capability cap;
45     struct nvmm_machine mach;
46 };
47 
48 /* -------------------------------------------------------------------------- */
49 
50 static bool nvmm_allowed;
51 static struct qemu_machine qemu_mach;
52 
53 static struct qemu_vcpu *
54 get_qemu_vcpu(CPUState *cpu)
55 {
56     return (struct qemu_vcpu *)cpu->hax_vcpu;
57 }
58 
59 static struct nvmm_machine *
60 get_nvmm_mach(void)
61 {
62     return &qemu_mach.mach;
63 }
64 
65 /* -------------------------------------------------------------------------- */
66 
67 static void
68 nvmm_set_segment(struct nvmm_x64_state_seg *nseg, const SegmentCache *qseg)
69 {
70     uint32_t attrib = qseg->flags;
71 
72     nseg->selector = qseg->selector;
73     nseg->limit = qseg->limit;
74     nseg->base = qseg->base;
75     nseg->attrib.type = __SHIFTOUT(attrib, DESC_TYPE_MASK);
76     nseg->attrib.s = __SHIFTOUT(attrib, DESC_S_MASK);
77     nseg->attrib.dpl = __SHIFTOUT(attrib, DESC_DPL_MASK);
78     nseg->attrib.p = __SHIFTOUT(attrib, DESC_P_MASK);
79     nseg->attrib.avl = __SHIFTOUT(attrib, DESC_AVL_MASK);
80     nseg->attrib.l = __SHIFTOUT(attrib, DESC_L_MASK);
81     nseg->attrib.def = __SHIFTOUT(attrib, DESC_B_MASK);
82     nseg->attrib.g = __SHIFTOUT(attrib, DESC_G_MASK);
83 }
84 
85 static void
86 nvmm_set_registers(CPUState *cpu)
87 {
88     struct CPUX86State *env = (CPUArchState *)cpu->env_ptr;
89     struct nvmm_machine *mach = get_nvmm_mach();
90     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
91     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
92     struct nvmm_x64_state *state = vcpu->state;
93     uint64_t bitmap;
94     size_t i;
95     int ret;
96 
97     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
98 
99     /* GPRs. */
100     state->gprs[NVMM_X64_GPR_RAX] = env->regs[R_EAX];
101     state->gprs[NVMM_X64_GPR_RCX] = env->regs[R_ECX];
102     state->gprs[NVMM_X64_GPR_RDX] = env->regs[R_EDX];
103     state->gprs[NVMM_X64_GPR_RBX] = env->regs[R_EBX];
104     state->gprs[NVMM_X64_GPR_RSP] = env->regs[R_ESP];
105     state->gprs[NVMM_X64_GPR_RBP] = env->regs[R_EBP];
106     state->gprs[NVMM_X64_GPR_RSI] = env->regs[R_ESI];
107     state->gprs[NVMM_X64_GPR_RDI] = env->regs[R_EDI];
108 #ifdef TARGET_X86_64
109     state->gprs[NVMM_X64_GPR_R8]  = env->regs[R_R8];
110     state->gprs[NVMM_X64_GPR_R9]  = env->regs[R_R9];
111     state->gprs[NVMM_X64_GPR_R10] = env->regs[R_R10];
112     state->gprs[NVMM_X64_GPR_R11] = env->regs[R_R11];
113     state->gprs[NVMM_X64_GPR_R12] = env->regs[R_R12];
114     state->gprs[NVMM_X64_GPR_R13] = env->regs[R_R13];
115     state->gprs[NVMM_X64_GPR_R14] = env->regs[R_R14];
116     state->gprs[NVMM_X64_GPR_R15] = env->regs[R_R15];
117 #endif
118 
119     /* RIP and RFLAGS. */
120     state->gprs[NVMM_X64_GPR_RIP] = env->eip;
121     state->gprs[NVMM_X64_GPR_RFLAGS] = env->eflags;
122 
123     /* Segments. */
124     nvmm_set_segment(&state->segs[NVMM_X64_SEG_CS], &env->segs[R_CS]);
125     nvmm_set_segment(&state->segs[NVMM_X64_SEG_DS], &env->segs[R_DS]);
126     nvmm_set_segment(&state->segs[NVMM_X64_SEG_ES], &env->segs[R_ES]);
127     nvmm_set_segment(&state->segs[NVMM_X64_SEG_FS], &env->segs[R_FS]);
128     nvmm_set_segment(&state->segs[NVMM_X64_SEG_GS], &env->segs[R_GS]);
129     nvmm_set_segment(&state->segs[NVMM_X64_SEG_SS], &env->segs[R_SS]);
130 
131     /* Special segments. */
132     nvmm_set_segment(&state->segs[NVMM_X64_SEG_GDT], &env->gdt);
133     nvmm_set_segment(&state->segs[NVMM_X64_SEG_LDT], &env->ldt);
134     nvmm_set_segment(&state->segs[NVMM_X64_SEG_TR], &env->tr);
135     nvmm_set_segment(&state->segs[NVMM_X64_SEG_IDT], &env->idt);
136 
137     /* Control registers. */
138     state->crs[NVMM_X64_CR_CR0] = env->cr[0];
139     state->crs[NVMM_X64_CR_CR2] = env->cr[2];
140     state->crs[NVMM_X64_CR_CR3] = env->cr[3];
141     state->crs[NVMM_X64_CR_CR4] = env->cr[4];
142     state->crs[NVMM_X64_CR_CR8] = qcpu->tpr;
143     state->crs[NVMM_X64_CR_XCR0] = env->xcr0;
144 
145     /* Debug registers. */
146     state->drs[NVMM_X64_DR_DR0] = env->dr[0];
147     state->drs[NVMM_X64_DR_DR1] = env->dr[1];
148     state->drs[NVMM_X64_DR_DR2] = env->dr[2];
149     state->drs[NVMM_X64_DR_DR3] = env->dr[3];
150     state->drs[NVMM_X64_DR_DR6] = env->dr[6];
151     state->drs[NVMM_X64_DR_DR7] = env->dr[7];
152 
153     /* FPU. */
154     state->fpu.fx_cw = env->fpuc;
155     state->fpu.fx_sw = (env->fpus & ~0x3800) | ((env->fpstt & 0x7) << 11);
156     state->fpu.fx_tw = 0;
157     for (i = 0; i < 8; i++) {
158         state->fpu.fx_tw |= (!env->fptags[i]) << i;
159     }
160     state->fpu.fx_opcode = env->fpop;
161     state->fpu.fx_ip.fa_64 = env->fpip;
162     state->fpu.fx_dp.fa_64 = env->fpdp;
163     state->fpu.fx_mxcsr = env->mxcsr;
164     state->fpu.fx_mxcsr_mask = 0x0000FFFF;
165     assert(sizeof(state->fpu.fx_87_ac) == sizeof(env->fpregs));
166     memcpy(state->fpu.fx_87_ac, env->fpregs, sizeof(env->fpregs));
167     for (i = 0; i < CPU_NB_REGS; i++) {
168         memcpy(&state->fpu.fx_xmm[i].xmm_bytes[0],
169             &env->xmm_regs[i].ZMM_Q(0), 8);
170         memcpy(&state->fpu.fx_xmm[i].xmm_bytes[8],
171             &env->xmm_regs[i].ZMM_Q(1), 8);
172     }
173 
174     /* MSRs. */
175     state->msrs[NVMM_X64_MSR_EFER] = env->efer;
176     state->msrs[NVMM_X64_MSR_STAR] = env->star;
177 #ifdef TARGET_X86_64
178     state->msrs[NVMM_X64_MSR_LSTAR] = env->lstar;
179     state->msrs[NVMM_X64_MSR_CSTAR] = env->cstar;
180     state->msrs[NVMM_X64_MSR_SFMASK] = env->fmask;
181     state->msrs[NVMM_X64_MSR_KERNELGSBASE] = env->kernelgsbase;
182 #endif
183     state->msrs[NVMM_X64_MSR_SYSENTER_CS]  = env->sysenter_cs;
184     state->msrs[NVMM_X64_MSR_SYSENTER_ESP] = env->sysenter_esp;
185     state->msrs[NVMM_X64_MSR_SYSENTER_EIP] = env->sysenter_eip;
186     state->msrs[NVMM_X64_MSR_PAT] = env->pat;
187     state->msrs[NVMM_X64_MSR_TSC] = env->tsc;
188 
189     bitmap =
190         NVMM_X64_STATE_SEGS |
191         NVMM_X64_STATE_GPRS |
192         NVMM_X64_STATE_CRS  |
193         NVMM_X64_STATE_DRS  |
194         NVMM_X64_STATE_MSRS |
195         NVMM_X64_STATE_FPU;
196 
197     ret = nvmm_vcpu_setstate(mach, vcpu, bitmap);
198     if (ret == -1) {
199         error_report("NVMM: Failed to set virtual processor context,"
200             " error=%d", errno);
201     }
202 }
203 
204 static void
205 nvmm_get_segment(SegmentCache *qseg, const struct nvmm_x64_state_seg *nseg)
206 {
207     qseg->selector = nseg->selector;
208     qseg->limit = nseg->limit;
209     qseg->base = nseg->base;
210 
211     qseg->flags =
212         __SHIFTIN((uint32_t)nseg->attrib.type, DESC_TYPE_MASK) |
213         __SHIFTIN((uint32_t)nseg->attrib.s, DESC_S_MASK) |
214         __SHIFTIN((uint32_t)nseg->attrib.dpl, DESC_DPL_MASK) |
215         __SHIFTIN((uint32_t)nseg->attrib.p, DESC_P_MASK) |
216         __SHIFTIN((uint32_t)nseg->attrib.avl, DESC_AVL_MASK) |
217         __SHIFTIN((uint32_t)nseg->attrib.l, DESC_L_MASK) |
218         __SHIFTIN((uint32_t)nseg->attrib.def, DESC_B_MASK) |
219         __SHIFTIN((uint32_t)nseg->attrib.g, DESC_G_MASK);
220 }
221 
222 static void
223 nvmm_get_registers(CPUState *cpu)
224 {
225     struct CPUX86State *env = (CPUArchState *)cpu->env_ptr;
226     struct nvmm_machine *mach = get_nvmm_mach();
227     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
228     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
229     X86CPU *x86_cpu = X86_CPU(cpu);
230     struct nvmm_x64_state *state = vcpu->state;
231     uint64_t bitmap, tpr;
232     size_t i;
233     int ret;
234 
235     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
236 
237     bitmap =
238         NVMM_X64_STATE_SEGS |
239         NVMM_X64_STATE_GPRS |
240         NVMM_X64_STATE_CRS  |
241         NVMM_X64_STATE_DRS  |
242         NVMM_X64_STATE_MSRS |
243         NVMM_X64_STATE_FPU;
244 
245     ret = nvmm_vcpu_getstate(mach, vcpu, bitmap);
246     if (ret == -1) {
247         error_report("NVMM: Failed to get virtual processor context,"
248             " error=%d", errno);
249     }
250 
251     /* GPRs. */
252     env->regs[R_EAX] = state->gprs[NVMM_X64_GPR_RAX];
253     env->regs[R_ECX] = state->gprs[NVMM_X64_GPR_RCX];
254     env->regs[R_EDX] = state->gprs[NVMM_X64_GPR_RDX];
255     env->regs[R_EBX] = state->gprs[NVMM_X64_GPR_RBX];
256     env->regs[R_ESP] = state->gprs[NVMM_X64_GPR_RSP];
257     env->regs[R_EBP] = state->gprs[NVMM_X64_GPR_RBP];
258     env->regs[R_ESI] = state->gprs[NVMM_X64_GPR_RSI];
259     env->regs[R_EDI] = state->gprs[NVMM_X64_GPR_RDI];
260 #ifdef TARGET_X86_64
261     env->regs[R_R8]  = state->gprs[NVMM_X64_GPR_R8];
262     env->regs[R_R9]  = state->gprs[NVMM_X64_GPR_R9];
263     env->regs[R_R10] = state->gprs[NVMM_X64_GPR_R10];
264     env->regs[R_R11] = state->gprs[NVMM_X64_GPR_R11];
265     env->regs[R_R12] = state->gprs[NVMM_X64_GPR_R12];
266     env->regs[R_R13] = state->gprs[NVMM_X64_GPR_R13];
267     env->regs[R_R14] = state->gprs[NVMM_X64_GPR_R14];
268     env->regs[R_R15] = state->gprs[NVMM_X64_GPR_R15];
269 #endif
270 
271     /* RIP and RFLAGS. */
272     env->eip = state->gprs[NVMM_X64_GPR_RIP];
273     env->eflags = state->gprs[NVMM_X64_GPR_RFLAGS];
274 
275     /* Segments. */
276     nvmm_get_segment(&env->segs[R_ES], &state->segs[NVMM_X64_SEG_ES]);
277     nvmm_get_segment(&env->segs[R_CS], &state->segs[NVMM_X64_SEG_CS]);
278     nvmm_get_segment(&env->segs[R_SS], &state->segs[NVMM_X64_SEG_SS]);
279     nvmm_get_segment(&env->segs[R_DS], &state->segs[NVMM_X64_SEG_DS]);
280     nvmm_get_segment(&env->segs[R_FS], &state->segs[NVMM_X64_SEG_FS]);
281     nvmm_get_segment(&env->segs[R_GS], &state->segs[NVMM_X64_SEG_GS]);
282 
283     /* Special segments. */
284     nvmm_get_segment(&env->gdt, &state->segs[NVMM_X64_SEG_GDT]);
285     nvmm_get_segment(&env->ldt, &state->segs[NVMM_X64_SEG_LDT]);
286     nvmm_get_segment(&env->tr, &state->segs[NVMM_X64_SEG_TR]);
287     nvmm_get_segment(&env->idt, &state->segs[NVMM_X64_SEG_IDT]);
288 
289     /* Control registers. */
290     env->cr[0] = state->crs[NVMM_X64_CR_CR0];
291     env->cr[2] = state->crs[NVMM_X64_CR_CR2];
292     env->cr[3] = state->crs[NVMM_X64_CR_CR3];
293     env->cr[4] = state->crs[NVMM_X64_CR_CR4];
294     tpr = state->crs[NVMM_X64_CR_CR8];
295     if (tpr != qcpu->tpr) {
296         qcpu->tpr = tpr;
297         cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
298     }
299     env->xcr0 = state->crs[NVMM_X64_CR_XCR0];
300 
301     /* Debug registers. */
302     env->dr[0] = state->drs[NVMM_X64_DR_DR0];
303     env->dr[1] = state->drs[NVMM_X64_DR_DR1];
304     env->dr[2] = state->drs[NVMM_X64_DR_DR2];
305     env->dr[3] = state->drs[NVMM_X64_DR_DR3];
306     env->dr[6] = state->drs[NVMM_X64_DR_DR6];
307     env->dr[7] = state->drs[NVMM_X64_DR_DR7];
308 
309     /* FPU. */
310     env->fpuc = state->fpu.fx_cw;
311     env->fpstt = (state->fpu.fx_sw >> 11) & 0x7;
312     env->fpus = state->fpu.fx_sw & ~0x3800;
313     for (i = 0; i < 8; i++) {
314         env->fptags[i] = !((state->fpu.fx_tw >> i) & 1);
315     }
316     env->fpop = state->fpu.fx_opcode;
317     env->fpip = state->fpu.fx_ip.fa_64;
318     env->fpdp = state->fpu.fx_dp.fa_64;
319     env->mxcsr = state->fpu.fx_mxcsr;
320     assert(sizeof(state->fpu.fx_87_ac) == sizeof(env->fpregs));
321     memcpy(env->fpregs, state->fpu.fx_87_ac, sizeof(env->fpregs));
322     for (i = 0; i < CPU_NB_REGS; i++) {
323         memcpy(&env->xmm_regs[i].ZMM_Q(0),
324             &state->fpu.fx_xmm[i].xmm_bytes[0], 8);
325         memcpy(&env->xmm_regs[i].ZMM_Q(1),
326             &state->fpu.fx_xmm[i].xmm_bytes[8], 8);
327     }
328 
329     /* MSRs. */
330     env->efer = state->msrs[NVMM_X64_MSR_EFER];
331     env->star = state->msrs[NVMM_X64_MSR_STAR];
332 #ifdef TARGET_X86_64
333     env->lstar = state->msrs[NVMM_X64_MSR_LSTAR];
334     env->cstar = state->msrs[NVMM_X64_MSR_CSTAR];
335     env->fmask = state->msrs[NVMM_X64_MSR_SFMASK];
336     env->kernelgsbase = state->msrs[NVMM_X64_MSR_KERNELGSBASE];
337 #endif
338     env->sysenter_cs  = state->msrs[NVMM_X64_MSR_SYSENTER_CS];
339     env->sysenter_esp = state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
340     env->sysenter_eip = state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
341     env->pat = state->msrs[NVMM_X64_MSR_PAT];
342     env->tsc = state->msrs[NVMM_X64_MSR_TSC];
343 
344     x86_update_hflags(env);
345 }
346 
347 static bool
348 nvmm_can_take_int(CPUState *cpu)
349 {
350     struct CPUX86State *env = (CPUArchState *)cpu->env_ptr;
351     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
352     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
353     struct nvmm_machine *mach = get_nvmm_mach();
354 
355     if (qcpu->int_window_exit) {
356         return false;
357     }
358 
359     if (qcpu->int_shadow || !(env->eflags & IF_MASK)) {
360         struct nvmm_x64_state *state = vcpu->state;
361 
362         /* Exit on interrupt window. */
363         nvmm_vcpu_getstate(mach, vcpu, NVMM_X64_STATE_INTR);
364         state->intr.int_window_exiting = 1;
365         nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_INTR);
366 
367         return false;
368     }
369 
370     return true;
371 }
372 
373 static bool
374 nvmm_can_take_nmi(CPUState *cpu)
375 {
376     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
377 
378     /*
379      * Contrary to INTs, NMIs always schedule an exit when they are
380      * completed. Therefore, if window-exiting is enabled, it means
381      * NMIs are blocked.
382      */
383     if (qcpu->nmi_window_exit) {
384         return false;
385     }
386 
387     return true;
388 }
389 
390 /*
391  * Called before the VCPU is run. We inject events generated by the I/O
392  * thread, and synchronize the guest TPR.
393  */
394 static void
395 nvmm_vcpu_pre_run(CPUState *cpu)
396 {
397     struct CPUX86State *env = (CPUArchState *)cpu->env_ptr;
398     struct nvmm_machine *mach = get_nvmm_mach();
399     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
400     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
401     X86CPU *x86_cpu = X86_CPU(cpu);
402     struct nvmm_x64_state *state = vcpu->state;
403     struct nvmm_vcpu_event *event = vcpu->event;
404     bool has_event = false;
405     bool sync_tpr = false;
406     uint8_t tpr;
407     int ret;
408 
409     qemu_mutex_lock_iothread();
410 
411     tpr = cpu_get_apic_tpr(x86_cpu->apic_state);
412     if (tpr != qcpu->tpr) {
413         qcpu->tpr = tpr;
414         sync_tpr = true;
415     }
416 
417     /*
418      * Force the VCPU out of its inner loop to process any INIT requests
419      * or commit pending TPR access.
420      */
421     if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
422         cpu->exit_request = 1;
423     }
424 
425     if (!has_event && (cpu->interrupt_request & CPU_INTERRUPT_NMI)) {
426         if (nvmm_can_take_nmi(cpu)) {
427             cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
428             event->type = NVMM_VCPU_EVENT_INTR;
429             event->vector = 2;
430             has_event = true;
431         }
432     }
433 
434     if (!has_event && (cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
435         if (nvmm_can_take_int(cpu)) {
436             cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
437             event->type = NVMM_VCPU_EVENT_INTR;
438             event->vector = cpu_get_pic_interrupt(env);
439             has_event = true;
440         }
441     }
442 
443     /* Don't want SMIs. */
444     if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
445         cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
446     }
447 
448     if (sync_tpr) {
449         ret = nvmm_vcpu_getstate(mach, vcpu, NVMM_X64_STATE_CRS);
450         if (ret == -1) {
451             error_report("NVMM: Failed to get CPU state,"
452                 " error=%d", errno);
453         }
454 
455         state->crs[NVMM_X64_CR_CR8] = qcpu->tpr;
456 
457         ret = nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_CRS);
458         if (ret == -1) {
459             error_report("NVMM: Failed to set CPU state,"
460                 " error=%d", errno);
461         }
462     }
463 
464     if (has_event) {
465         ret = nvmm_vcpu_inject(mach, vcpu);
466         if (ret == -1) {
467             error_report("NVMM: Failed to inject event,"
468                 " error=%d", errno);
469         }
470     }
471 
472     qemu_mutex_unlock_iothread();
473 }
474 
475 /*
476  * Called after the VCPU ran. We synchronize the host view of the TPR and
477  * RFLAGS.
478  */
479 static void
480 nvmm_vcpu_post_run(CPUState *cpu, struct nvmm_vcpu_exit *exit)
481 {
482     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
483     struct CPUX86State *env = (CPUArchState *)cpu->env_ptr;
484     X86CPU *x86_cpu = X86_CPU(cpu);
485     uint64_t tpr;
486 
487     env->eflags = exit->exitstate.rflags;
488     qcpu->int_shadow = exit->exitstate.int_shadow;
489     qcpu->int_window_exit = exit->exitstate.int_window_exiting;
490     qcpu->nmi_window_exit = exit->exitstate.nmi_window_exiting;
491 
492     tpr = exit->exitstate.cr8;
493     if (qcpu->tpr != tpr) {
494         qcpu->tpr = tpr;
495         qemu_mutex_lock_iothread();
496         cpu_set_apic_tpr(x86_cpu->apic_state, qcpu->tpr);
497         qemu_mutex_unlock_iothread();
498     }
499 }
500 
501 /* -------------------------------------------------------------------------- */
502 
503 static void
504 nvmm_io_callback(struct nvmm_io *io)
505 {
506     MemTxAttrs attrs = { 0 };
507     int ret;
508 
509     ret = address_space_rw(&address_space_io, io->port, attrs, io->data,
510         io->size, !io->in);
511     if (ret != MEMTX_OK) {
512         error_report("NVMM: I/O Transaction Failed "
513             "[%s, port=%u, size=%zu]", (io->in ? "in" : "out"),
514             io->port, io->size);
515     }
516 
517     /* Needed, otherwise infinite loop. */
518     current_cpu->vcpu_dirty = false;
519 }
520 
521 static void
522 nvmm_mem_callback(struct nvmm_mem *mem)
523 {
524     cpu_physical_memory_rw(mem->gpa, mem->data, mem->size, mem->write);
525 
526     /* Needed, otherwise infinite loop. */
527     current_cpu->vcpu_dirty = false;
528 }
529 
530 static struct nvmm_assist_callbacks nvmm_callbacks = {
531     .io = nvmm_io_callback,
532     .mem = nvmm_mem_callback
533 };
534 
535 /* -------------------------------------------------------------------------- */
536 
537 static int
538 nvmm_handle_mem(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
539 {
540     int ret;
541 
542     ret = nvmm_assist_mem(mach, vcpu);
543     if (ret == -1) {
544         error_report("NVMM: Mem Assist Failed [gpa=%p]",
545             (void *)vcpu->exit->u.mem.gpa);
546     }
547 
548     return ret;
549 }
550 
551 static int
552 nvmm_handle_io(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
553 {
554     int ret;
555 
556     ret = nvmm_assist_io(mach, vcpu);
557     if (ret == -1) {
558         error_report("NVMM: I/O Assist Failed [port=%d]",
559             (int)vcpu->exit->u.io.port);
560     }
561 
562     return ret;
563 }
564 
565 static int
566 nvmm_handle_rdmsr(struct nvmm_machine *mach, CPUState *cpu,
567     struct nvmm_vcpu_exit *exit)
568 {
569     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
570     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
571     X86CPU *x86_cpu = X86_CPU(cpu);
572     struct nvmm_x64_state *state = vcpu->state;
573     uint64_t val;
574     int ret;
575 
576     switch (exit->u.rdmsr.msr) {
577     case MSR_IA32_APICBASE:
578         val = cpu_get_apic_base(x86_cpu->apic_state);
579         break;
580     case MSR_MTRRcap:
581     case MSR_MTRRdefType:
582     case MSR_MCG_CAP:
583     case MSR_MCG_STATUS:
584         val = 0;
585         break;
586     default: /* More MSRs to add? */
587         val = 0;
588         error_report("NVMM: Unexpected RDMSR 0x%x, ignored",
589             exit->u.rdmsr.msr);
590         break;
591     }
592 
593     ret = nvmm_vcpu_getstate(mach, vcpu, NVMM_X64_STATE_GPRS);
594     if (ret == -1) {
595         return -1;
596     }
597 
598     state->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
599     state->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
600     state->gprs[NVMM_X64_GPR_RIP] = exit->u.rdmsr.npc;
601 
602     ret = nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_GPRS);
603     if (ret == -1) {
604         return -1;
605     }
606 
607     return 0;
608 }
609 
610 static int
611 nvmm_handle_wrmsr(struct nvmm_machine *mach, CPUState *cpu,
612     struct nvmm_vcpu_exit *exit)
613 {
614     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
615     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
616     X86CPU *x86_cpu = X86_CPU(cpu);
617     struct nvmm_x64_state *state = vcpu->state;
618     uint64_t val;
619     int ret;
620 
621     val = exit->u.wrmsr.val;
622 
623     switch (exit->u.wrmsr.msr) {
624     case MSR_IA32_APICBASE:
625         cpu_set_apic_base(x86_cpu->apic_state, val);
626         break;
627     case MSR_MTRRdefType:
628     case MSR_MCG_STATUS:
629         break;
630     default: /* More MSRs to add? */
631         error_report("NVMM: Unexpected WRMSR 0x%x [val=0x%lx], ignored",
632             exit->u.wrmsr.msr, val);
633         break;
634     }
635 
636     ret = nvmm_vcpu_getstate(mach, vcpu, NVMM_X64_STATE_GPRS);
637     if (ret == -1) {
638         return -1;
639     }
640 
641     state->gprs[NVMM_X64_GPR_RIP] = exit->u.wrmsr.npc;
642 
643     ret = nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_GPRS);
644     if (ret == -1) {
645         return -1;
646     }
647 
648     return 0;
649 }
650 
651 static int
652 nvmm_handle_halted(struct nvmm_machine *mach, CPUState *cpu,
653     struct nvmm_vcpu_exit *exit)
654 {
655     struct CPUX86State *env = (CPUArchState *)cpu->env_ptr;
656     int ret = 0;
657 
658     qemu_mutex_lock_iothread();
659 
660     if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
661           (env->eflags & IF_MASK)) &&
662         !(cpu->interrupt_request & CPU_INTERRUPT_NMI)) {
663         cpu->exception_index = EXCP_HLT;
664         cpu->halted = true;
665         ret = 1;
666     }
667 
668     qemu_mutex_unlock_iothread();
669 
670     return ret;
671 }
672 
673 static int
674 nvmm_inject_ud(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
675 {
676     struct nvmm_vcpu_event *event = vcpu->event;
677 
678     event->type = NVMM_VCPU_EVENT_EXCP;
679     event->vector = 6;
680     event->u.excp.error = 0;
681 
682     return nvmm_vcpu_inject(mach, vcpu);
683 }
684 
685 static int
686 nvmm_vcpu_loop(CPUState *cpu)
687 {
688     struct CPUX86State *env = (CPUArchState *)cpu->env_ptr;
689     struct nvmm_machine *mach = get_nvmm_mach();
690     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
691     struct nvmm_vcpu *vcpu = &qcpu->vcpu;
692     X86CPU *x86_cpu = X86_CPU(cpu);
693     struct nvmm_vcpu_exit *exit = vcpu->exit;
694     int ret;
695 
696     /*
697      * Some asynchronous events must be handled outside of the inner
698      * VCPU loop. They are handled here.
699      */
700     if (cpu->interrupt_request & CPU_INTERRUPT_INIT) {
701         nvmm_cpu_synchronize_state(cpu);
702         do_cpu_init(x86_cpu);
703         /* set int/nmi windows back to the reset state */
704     }
705     if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
706         cpu->interrupt_request &= ~CPU_INTERRUPT_POLL;
707         apic_poll_irq(x86_cpu->apic_state);
708     }
709     if (((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
710          (env->eflags & IF_MASK)) ||
711         (cpu->interrupt_request & CPU_INTERRUPT_NMI)) {
712         cpu->halted = false;
713     }
714     if (cpu->interrupt_request & CPU_INTERRUPT_SIPI) {
715         nvmm_cpu_synchronize_state(cpu);
716         do_cpu_sipi(x86_cpu);
717     }
718     if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
719         cpu->interrupt_request &= ~CPU_INTERRUPT_TPR;
720         nvmm_cpu_synchronize_state(cpu);
721         apic_handle_tpr_access_report(x86_cpu->apic_state, env->eip,
722             env->tpr_access_type);
723     }
724 
725     if (cpu->halted) {
726         cpu->exception_index = EXCP_HLT;
727         qatomic_set(&cpu->exit_request, false);
728         return 0;
729     }
730 
731     qemu_mutex_unlock_iothread();
732     cpu_exec_start(cpu);
733 
734     /*
735      * Inner VCPU loop.
736      */
737     do {
738         if (cpu->vcpu_dirty) {
739             nvmm_set_registers(cpu);
740             cpu->vcpu_dirty = false;
741         }
742 
743         if (qcpu->stop) {
744             cpu->exception_index = EXCP_INTERRUPT;
745             qcpu->stop = false;
746             ret = 1;
747             break;
748         }
749 
750         nvmm_vcpu_pre_run(cpu);
751 
752         if (qatomic_read(&cpu->exit_request)) {
753 #if NVMM_USER_VERSION >= 2
754             nvmm_vcpu_stop(vcpu);
755 #else
756             qemu_cpu_kick_self();
757 #endif
758         }
759 
760         /* Read exit_request before the kernel reads the immediate exit flag */
761         smp_rmb();
762         ret = nvmm_vcpu_run(mach, vcpu);
763         if (ret == -1) {
764             error_report("NVMM: Failed to exec a virtual processor,"
765                 " error=%d", errno);
766             break;
767         }
768 
769         nvmm_vcpu_post_run(cpu, exit);
770 
771         switch (exit->reason) {
772         case NVMM_VCPU_EXIT_NONE:
773             break;
774 #if NVMM_USER_VERSION >= 2
775         case NVMM_VCPU_EXIT_STOPPED:
776             /*
777              * The kernel cleared the immediate exit flag; cpu->exit_request
778              * must be cleared after
779              */
780             smp_wmb();
781             qcpu->stop = true;
782             break;
783 #endif
784         case NVMM_VCPU_EXIT_MEMORY:
785             ret = nvmm_handle_mem(mach, vcpu);
786             break;
787         case NVMM_VCPU_EXIT_IO:
788             ret = nvmm_handle_io(mach, vcpu);
789             break;
790         case NVMM_VCPU_EXIT_INT_READY:
791         case NVMM_VCPU_EXIT_NMI_READY:
792         case NVMM_VCPU_EXIT_TPR_CHANGED:
793             break;
794         case NVMM_VCPU_EXIT_HALTED:
795             ret = nvmm_handle_halted(mach, cpu, exit);
796             break;
797         case NVMM_VCPU_EXIT_SHUTDOWN:
798             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
799             cpu->exception_index = EXCP_INTERRUPT;
800             ret = 1;
801             break;
802         case NVMM_VCPU_EXIT_RDMSR:
803             ret = nvmm_handle_rdmsr(mach, cpu, exit);
804             break;
805         case NVMM_VCPU_EXIT_WRMSR:
806             ret = nvmm_handle_wrmsr(mach, cpu, exit);
807             break;
808         case NVMM_VCPU_EXIT_MONITOR:
809         case NVMM_VCPU_EXIT_MWAIT:
810             ret = nvmm_inject_ud(mach, vcpu);
811             break;
812         default:
813             error_report("NVMM: Unexpected VM exit code 0x%lx [hw=0x%lx]",
814                 exit->reason, exit->u.inv.hwcode);
815             nvmm_get_registers(cpu);
816             qemu_mutex_lock_iothread();
817             qemu_system_guest_panicked(cpu_get_crash_info(cpu));
818             qemu_mutex_unlock_iothread();
819             ret = -1;
820             break;
821         }
822     } while (ret == 0);
823 
824     cpu_exec_end(cpu);
825     qemu_mutex_lock_iothread();
826 
827     qatomic_set(&cpu->exit_request, false);
828 
829     return ret < 0;
830 }
831 
832 /* -------------------------------------------------------------------------- */
833 
834 static void
835 do_nvmm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
836 {
837     nvmm_get_registers(cpu);
838     cpu->vcpu_dirty = true;
839 }
840 
841 static void
842 do_nvmm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
843 {
844     nvmm_set_registers(cpu);
845     cpu->vcpu_dirty = false;
846 }
847 
848 static void
849 do_nvmm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
850 {
851     nvmm_set_registers(cpu);
852     cpu->vcpu_dirty = false;
853 }
854 
855 static void
856 do_nvmm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
857 {
858     cpu->vcpu_dirty = true;
859 }
860 
861 void nvmm_cpu_synchronize_state(CPUState *cpu)
862 {
863     if (!cpu->vcpu_dirty) {
864         run_on_cpu(cpu, do_nvmm_cpu_synchronize_state, RUN_ON_CPU_NULL);
865     }
866 }
867 
868 void nvmm_cpu_synchronize_post_reset(CPUState *cpu)
869 {
870     run_on_cpu(cpu, do_nvmm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
871 }
872 
873 void nvmm_cpu_synchronize_post_init(CPUState *cpu)
874 {
875     run_on_cpu(cpu, do_nvmm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
876 }
877 
878 void nvmm_cpu_synchronize_pre_loadvm(CPUState *cpu)
879 {
880     run_on_cpu(cpu, do_nvmm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
881 }
882 
883 /* -------------------------------------------------------------------------- */
884 
885 static Error *nvmm_migration_blocker;
886 
887 /*
888  * The nvmm_vcpu_stop() mechanism breaks races between entering the VMM
889  * and another thread signaling the vCPU thread to exit.
890  */
891 
892 static void
893 nvmm_ipi_signal(int sigcpu)
894 {
895     if (current_cpu) {
896         struct qemu_vcpu *qcpu = get_qemu_vcpu(current_cpu);
897 #if NVMM_USER_VERSION >= 2
898         struct nvmm_vcpu *vcpu = &qcpu->vcpu;
899         nvmm_vcpu_stop(vcpu);
900 #else
901         qcpu->stop = true;
902 #endif
903     }
904 }
905 
906 static void
907 nvmm_init_cpu_signals(void)
908 {
909     struct sigaction sigact;
910     sigset_t set;
911 
912     /* Install the IPI handler. */
913     memset(&sigact, 0, sizeof(sigact));
914     sigact.sa_handler = nvmm_ipi_signal;
915     sigaction(SIG_IPI, &sigact, NULL);
916 
917     /* Allow IPIs on the current thread. */
918     sigprocmask(SIG_BLOCK, NULL, &set);
919     sigdelset(&set, SIG_IPI);
920     pthread_sigmask(SIG_SETMASK, &set, NULL);
921 }
922 
923 int
924 nvmm_init_vcpu(CPUState *cpu)
925 {
926     struct nvmm_machine *mach = get_nvmm_mach();
927     struct nvmm_vcpu_conf_cpuid cpuid;
928     struct nvmm_vcpu_conf_tpr tpr;
929     Error *local_error = NULL;
930     struct qemu_vcpu *qcpu;
931     int ret, err;
932 
933     nvmm_init_cpu_signals();
934 
935     if (nvmm_migration_blocker == NULL) {
936         error_setg(&nvmm_migration_blocker,
937             "NVMM: Migration not supported");
938 
939         if (migrate_add_blocker(nvmm_migration_blocker, &local_error) < 0) {
940             error_report_err(local_error);
941             error_free(nvmm_migration_blocker);
942             return -EINVAL;
943         }
944     }
945 
946     qcpu = g_malloc0(sizeof(*qcpu));
947     if (qcpu == NULL) {
948         error_report("NVMM: Failed to allocate VCPU context.");
949         return -ENOMEM;
950     }
951 
952     ret = nvmm_vcpu_create(mach, cpu->cpu_index, &qcpu->vcpu);
953     if (ret == -1) {
954         err = errno;
955         error_report("NVMM: Failed to create a virtual processor,"
956             " error=%d", err);
957         g_free(qcpu);
958         return -err;
959     }
960 
961     memset(&cpuid, 0, sizeof(cpuid));
962     cpuid.mask = 1;
963     cpuid.leaf = 0x00000001;
964     cpuid.u.mask.set.edx = CPUID_MCE | CPUID_MCA | CPUID_MTRR;
965     ret = nvmm_vcpu_configure(mach, &qcpu->vcpu, NVMM_VCPU_CONF_CPUID,
966         &cpuid);
967     if (ret == -1) {
968         err = errno;
969         error_report("NVMM: Failed to configure a virtual processor,"
970             " error=%d", err);
971         g_free(qcpu);
972         return -err;
973     }
974 
975     ret = nvmm_vcpu_configure(mach, &qcpu->vcpu, NVMM_VCPU_CONF_CALLBACKS,
976         &nvmm_callbacks);
977     if (ret == -1) {
978         err = errno;
979         error_report("NVMM: Failed to configure a virtual processor,"
980             " error=%d", err);
981         g_free(qcpu);
982         return -err;
983     }
984 
985     if (qemu_mach.cap.arch.vcpu_conf_support & NVMM_CAP_ARCH_VCPU_CONF_TPR) {
986         memset(&tpr, 0, sizeof(tpr));
987         tpr.exit_changed = 1;
988         ret = nvmm_vcpu_configure(mach, &qcpu->vcpu, NVMM_VCPU_CONF_TPR, &tpr);
989         if (ret == -1) {
990             err = errno;
991             error_report("NVMM: Failed to configure a virtual processor,"
992                 " error=%d", err);
993             g_free(qcpu);
994             return -err;
995         }
996     }
997 
998     cpu->vcpu_dirty = true;
999     cpu->hax_vcpu = (struct hax_vcpu_state *)qcpu;
1000 
1001     return 0;
1002 }
1003 
1004 int
1005 nvmm_vcpu_exec(CPUState *cpu)
1006 {
1007     int ret, fatal;
1008 
1009     while (1) {
1010         if (cpu->exception_index >= EXCP_INTERRUPT) {
1011             ret = cpu->exception_index;
1012             cpu->exception_index = -1;
1013             break;
1014         }
1015 
1016         fatal = nvmm_vcpu_loop(cpu);
1017 
1018         if (fatal) {
1019             error_report("NVMM: Failed to execute a VCPU.");
1020             abort();
1021         }
1022     }
1023 
1024     return ret;
1025 }
1026 
1027 void
1028 nvmm_destroy_vcpu(CPUState *cpu)
1029 {
1030     struct nvmm_machine *mach = get_nvmm_mach();
1031     struct qemu_vcpu *qcpu = get_qemu_vcpu(cpu);
1032 
1033     nvmm_vcpu_destroy(mach, &qcpu->vcpu);
1034     g_free(cpu->hax_vcpu);
1035 }
1036 
1037 /* -------------------------------------------------------------------------- */
1038 
1039 static void
1040 nvmm_update_mapping(hwaddr start_pa, ram_addr_t size, uintptr_t hva,
1041     bool add, bool rom, const char *name)
1042 {
1043     struct nvmm_machine *mach = get_nvmm_mach();
1044     int ret, prot;
1045 
1046     if (add) {
1047         prot = PROT_READ | PROT_EXEC;
1048         if (!rom) {
1049             prot |= PROT_WRITE;
1050         }
1051         ret = nvmm_gpa_map(mach, hva, start_pa, size, prot);
1052     } else {
1053         ret = nvmm_gpa_unmap(mach, hva, start_pa, size);
1054     }
1055 
1056     if (ret == -1) {
1057         error_report("NVMM: Failed to %s GPA range '%s' PA:%p, "
1058             "Size:%p bytes, HostVA:%p, error=%d",
1059             (add ? "map" : "unmap"), name, (void *)(uintptr_t)start_pa,
1060             (void *)size, (void *)hva, errno);
1061     }
1062 }
1063 
1064 static void
1065 nvmm_process_section(MemoryRegionSection *section, int add)
1066 {
1067     MemoryRegion *mr = section->mr;
1068     hwaddr start_pa = section->offset_within_address_space;
1069     ram_addr_t size = int128_get64(section->size);
1070     unsigned int delta;
1071     uintptr_t hva;
1072 
1073     if (!memory_region_is_ram(mr)) {
1074         return;
1075     }
1076 
1077     /* Adjust start_pa and size so that they are page-aligned. */
1078     delta = qemu_real_host_page_size - (start_pa & ~qemu_real_host_page_mask);
1079     delta &= ~qemu_real_host_page_mask;
1080     if (delta > size) {
1081         return;
1082     }
1083     start_pa += delta;
1084     size -= delta;
1085     size &= qemu_real_host_page_mask;
1086     if (!size || (start_pa & ~qemu_real_host_page_mask)) {
1087         return;
1088     }
1089 
1090     hva = (uintptr_t)memory_region_get_ram_ptr(mr) +
1091         section->offset_within_region + delta;
1092 
1093     nvmm_update_mapping(start_pa, size, hva, add,
1094         memory_region_is_rom(mr), mr->name);
1095 }
1096 
1097 static void
1098 nvmm_region_add(MemoryListener *listener, MemoryRegionSection *section)
1099 {
1100     memory_region_ref(section->mr);
1101     nvmm_process_section(section, 1);
1102 }
1103 
1104 static void
1105 nvmm_region_del(MemoryListener *listener, MemoryRegionSection *section)
1106 {
1107     nvmm_process_section(section, 0);
1108     memory_region_unref(section->mr);
1109 }
1110 
1111 static void
1112 nvmm_transaction_begin(MemoryListener *listener)
1113 {
1114     /* nothing */
1115 }
1116 
1117 static void
1118 nvmm_transaction_commit(MemoryListener *listener)
1119 {
1120     /* nothing */
1121 }
1122 
1123 static void
1124 nvmm_log_sync(MemoryListener *listener, MemoryRegionSection *section)
1125 {
1126     MemoryRegion *mr = section->mr;
1127 
1128     if (!memory_region_is_ram(mr)) {
1129         return;
1130     }
1131 
1132     memory_region_set_dirty(mr, 0, int128_get64(section->size));
1133 }
1134 
1135 static MemoryListener nvmm_memory_listener = {
1136     .name = "nvmm",
1137     .begin = nvmm_transaction_begin,
1138     .commit = nvmm_transaction_commit,
1139     .region_add = nvmm_region_add,
1140     .region_del = nvmm_region_del,
1141     .log_sync = nvmm_log_sync,
1142     .priority = 10,
1143 };
1144 
1145 static void
1146 nvmm_ram_block_added(RAMBlockNotifier *n, void *host, size_t size,
1147                      size_t max_size)
1148 {
1149     struct nvmm_machine *mach = get_nvmm_mach();
1150     uintptr_t hva = (uintptr_t)host;
1151     int ret;
1152 
1153     ret = nvmm_hva_map(mach, hva, max_size);
1154 
1155     if (ret == -1) {
1156         error_report("NVMM: Failed to map HVA, HostVA:%p "
1157             "Size:%p bytes, error=%d",
1158             (void *)hva, (void *)size, errno);
1159     }
1160 }
1161 
1162 static struct RAMBlockNotifier nvmm_ram_notifier = {
1163     .ram_block_added = nvmm_ram_block_added
1164 };
1165 
1166 /* -------------------------------------------------------------------------- */
1167 
1168 static int
1169 nvmm_accel_init(MachineState *ms)
1170 {
1171     int ret, err;
1172 
1173     ret = nvmm_init();
1174     if (ret == -1) {
1175         err = errno;
1176         error_report("NVMM: Initialization failed, error=%d", errno);
1177         return -err;
1178     }
1179 
1180     ret = nvmm_capability(&qemu_mach.cap);
1181     if (ret == -1) {
1182         err = errno;
1183         error_report("NVMM: Unable to fetch capability, error=%d", errno);
1184         return -err;
1185     }
1186     if (qemu_mach.cap.version < NVMM_KERN_VERSION) {
1187         error_report("NVMM: Unsupported version %u", qemu_mach.cap.version);
1188         return -EPROGMISMATCH;
1189     }
1190     if (qemu_mach.cap.state_size != sizeof(struct nvmm_x64_state)) {
1191         error_report("NVMM: Wrong state size %u", qemu_mach.cap.state_size);
1192         return -EPROGMISMATCH;
1193     }
1194 
1195     ret = nvmm_machine_create(&qemu_mach.mach);
1196     if (ret == -1) {
1197         err = errno;
1198         error_report("NVMM: Machine creation failed, error=%d", errno);
1199         return -err;
1200     }
1201 
1202     memory_listener_register(&nvmm_memory_listener, &address_space_memory);
1203     ram_block_notifier_add(&nvmm_ram_notifier);
1204 
1205     printf("NetBSD Virtual Machine Monitor accelerator is operational\n");
1206     return 0;
1207 }
1208 
1209 int
1210 nvmm_enabled(void)
1211 {
1212     return nvmm_allowed;
1213 }
1214 
1215 static void
1216 nvmm_accel_class_init(ObjectClass *oc, void *data)
1217 {
1218     AccelClass *ac = ACCEL_CLASS(oc);
1219     ac->name = "NVMM";
1220     ac->init_machine = nvmm_accel_init;
1221     ac->allowed = &nvmm_allowed;
1222 }
1223 
1224 static const TypeInfo nvmm_accel_type = {
1225     .name = ACCEL_CLASS_NAME("nvmm"),
1226     .parent = TYPE_ACCEL,
1227     .class_init = nvmm_accel_class_init,
1228 };
1229 
1230 static void
1231 nvmm_type_init(void)
1232 {
1233     type_register_static(&nvmm_accel_type);
1234 }
1235 
1236 type_init(nvmm_type_init);
1237