1 #include "qemu/osdep.h" 2 #include "cpu.h" 3 #include "exec/exec-all.h" 4 #include "hw/i386/pc.h" 5 #include "hw/isa/isa.h" 6 #include "migration/cpu.h" 7 #include "hyperv.h" 8 #include "kvm_i386.h" 9 10 #include "sysemu/kvm.h" 11 #include "sysemu/tcg.h" 12 13 #include "qemu/error-report.h" 14 15 static const VMStateDescription vmstate_segment = { 16 .name = "segment", 17 .version_id = 1, 18 .minimum_version_id = 1, 19 .fields = (VMStateField[]) { 20 VMSTATE_UINT32(selector, SegmentCache), 21 VMSTATE_UINTTL(base, SegmentCache), 22 VMSTATE_UINT32(limit, SegmentCache), 23 VMSTATE_UINT32(flags, SegmentCache), 24 VMSTATE_END_OF_LIST() 25 } 26 }; 27 28 #define VMSTATE_SEGMENT(_field, _state) { \ 29 .name = (stringify(_field)), \ 30 .size = sizeof(SegmentCache), \ 31 .vmsd = &vmstate_segment, \ 32 .flags = VMS_STRUCT, \ 33 .offset = offsetof(_state, _field) \ 34 + type_check(SegmentCache,typeof_field(_state, _field)) \ 35 } 36 37 #define VMSTATE_SEGMENT_ARRAY(_field, _state, _n) \ 38 VMSTATE_STRUCT_ARRAY(_field, _state, _n, 0, vmstate_segment, SegmentCache) 39 40 static const VMStateDescription vmstate_xmm_reg = { 41 .name = "xmm_reg", 42 .version_id = 1, 43 .minimum_version_id = 1, 44 .fields = (VMStateField[]) { 45 VMSTATE_UINT64(ZMM_Q(0), ZMMReg), 46 VMSTATE_UINT64(ZMM_Q(1), ZMMReg), 47 VMSTATE_END_OF_LIST() 48 } 49 }; 50 51 #define VMSTATE_XMM_REGS(_field, _state, _start) \ 52 VMSTATE_STRUCT_SUB_ARRAY(_field, _state, _start, CPU_NB_REGS, 0, \ 53 vmstate_xmm_reg, ZMMReg) 54 55 /* YMMH format is the same as XMM, but for bits 128-255 */ 56 static const VMStateDescription vmstate_ymmh_reg = { 57 .name = "ymmh_reg", 58 .version_id = 1, 59 .minimum_version_id = 1, 60 .fields = (VMStateField[]) { 61 VMSTATE_UINT64(ZMM_Q(2), ZMMReg), 62 VMSTATE_UINT64(ZMM_Q(3), ZMMReg), 63 VMSTATE_END_OF_LIST() 64 } 65 }; 66 67 #define VMSTATE_YMMH_REGS_VARS(_field, _state, _start, _v) \ 68 VMSTATE_STRUCT_SUB_ARRAY(_field, _state, _start, CPU_NB_REGS, _v, \ 69 vmstate_ymmh_reg, ZMMReg) 70 71 static const VMStateDescription vmstate_zmmh_reg = { 72 .name = "zmmh_reg", 73 .version_id = 1, 74 .minimum_version_id = 1, 75 .fields = (VMStateField[]) { 76 VMSTATE_UINT64(ZMM_Q(4), ZMMReg), 77 VMSTATE_UINT64(ZMM_Q(5), ZMMReg), 78 VMSTATE_UINT64(ZMM_Q(6), ZMMReg), 79 VMSTATE_UINT64(ZMM_Q(7), ZMMReg), 80 VMSTATE_END_OF_LIST() 81 } 82 }; 83 84 #define VMSTATE_ZMMH_REGS_VARS(_field, _state, _start) \ 85 VMSTATE_STRUCT_SUB_ARRAY(_field, _state, _start, CPU_NB_REGS, 0, \ 86 vmstate_zmmh_reg, ZMMReg) 87 88 #ifdef TARGET_X86_64 89 static const VMStateDescription vmstate_hi16_zmm_reg = { 90 .name = "hi16_zmm_reg", 91 .version_id = 1, 92 .minimum_version_id = 1, 93 .fields = (VMStateField[]) { 94 VMSTATE_UINT64(ZMM_Q(0), ZMMReg), 95 VMSTATE_UINT64(ZMM_Q(1), ZMMReg), 96 VMSTATE_UINT64(ZMM_Q(2), ZMMReg), 97 VMSTATE_UINT64(ZMM_Q(3), ZMMReg), 98 VMSTATE_UINT64(ZMM_Q(4), ZMMReg), 99 VMSTATE_UINT64(ZMM_Q(5), ZMMReg), 100 VMSTATE_UINT64(ZMM_Q(6), ZMMReg), 101 VMSTATE_UINT64(ZMM_Q(7), ZMMReg), 102 VMSTATE_END_OF_LIST() 103 } 104 }; 105 106 #define VMSTATE_Hi16_ZMM_REGS_VARS(_field, _state, _start) \ 107 VMSTATE_STRUCT_SUB_ARRAY(_field, _state, _start, CPU_NB_REGS, 0, \ 108 vmstate_hi16_zmm_reg, ZMMReg) 109 #endif 110 111 static const VMStateDescription vmstate_bnd_regs = { 112 .name = "bnd_regs", 113 .version_id = 1, 114 .minimum_version_id = 1, 115 .fields = (VMStateField[]) { 116 VMSTATE_UINT64(lb, BNDReg), 117 VMSTATE_UINT64(ub, BNDReg), 118 VMSTATE_END_OF_LIST() 119 } 120 }; 121 122 #define VMSTATE_BND_REGS(_field, _state, _n) \ 123 VMSTATE_STRUCT_ARRAY(_field, _state, _n, 0, vmstate_bnd_regs, BNDReg) 124 125 static const VMStateDescription vmstate_mtrr_var = { 126 .name = "mtrr_var", 127 .version_id = 1, 128 .minimum_version_id = 1, 129 .fields = (VMStateField[]) { 130 VMSTATE_UINT64(base, MTRRVar), 131 VMSTATE_UINT64(mask, MTRRVar), 132 VMSTATE_END_OF_LIST() 133 } 134 }; 135 136 #define VMSTATE_MTRR_VARS(_field, _state, _n, _v) \ 137 VMSTATE_STRUCT_ARRAY(_field, _state, _n, _v, vmstate_mtrr_var, MTRRVar) 138 139 typedef struct x86_FPReg_tmp { 140 FPReg *parent; 141 uint64_t tmp_mant; 142 uint16_t tmp_exp; 143 } x86_FPReg_tmp; 144 145 static void cpu_get_fp80(uint64_t *pmant, uint16_t *pexp, floatx80 f) 146 { 147 CPU_LDoubleU temp; 148 149 temp.d = f; 150 *pmant = temp.l.lower; 151 *pexp = temp.l.upper; 152 } 153 154 static floatx80 cpu_set_fp80(uint64_t mant, uint16_t upper) 155 { 156 CPU_LDoubleU temp; 157 158 temp.l.upper = upper; 159 temp.l.lower = mant; 160 return temp.d; 161 } 162 163 static int fpreg_pre_save(void *opaque) 164 { 165 x86_FPReg_tmp *tmp = opaque; 166 167 /* we save the real CPU data (in case of MMX usage only 'mant' 168 contains the MMX register */ 169 cpu_get_fp80(&tmp->tmp_mant, &tmp->tmp_exp, tmp->parent->d); 170 171 return 0; 172 } 173 174 static int fpreg_post_load(void *opaque, int version) 175 { 176 x86_FPReg_tmp *tmp = opaque; 177 178 tmp->parent->d = cpu_set_fp80(tmp->tmp_mant, tmp->tmp_exp); 179 return 0; 180 } 181 182 static const VMStateDescription vmstate_fpreg_tmp = { 183 .name = "fpreg_tmp", 184 .post_load = fpreg_post_load, 185 .pre_save = fpreg_pre_save, 186 .fields = (VMStateField[]) { 187 VMSTATE_UINT64(tmp_mant, x86_FPReg_tmp), 188 VMSTATE_UINT16(tmp_exp, x86_FPReg_tmp), 189 VMSTATE_END_OF_LIST() 190 } 191 }; 192 193 static const VMStateDescription vmstate_fpreg = { 194 .name = "fpreg", 195 .fields = (VMStateField[]) { 196 VMSTATE_WITH_TMP(FPReg, x86_FPReg_tmp, vmstate_fpreg_tmp), 197 VMSTATE_END_OF_LIST() 198 } 199 }; 200 201 static int cpu_pre_save(void *opaque) 202 { 203 X86CPU *cpu = opaque; 204 CPUX86State *env = &cpu->env; 205 int i; 206 207 /* FPU */ 208 env->fpus_vmstate = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11; 209 env->fptag_vmstate = 0; 210 for(i = 0; i < 8; i++) { 211 env->fptag_vmstate |= ((!env->fptags[i]) << i); 212 } 213 214 env->fpregs_format_vmstate = 0; 215 216 /* 217 * Real mode guest segments register DPL should be zero. 218 * Older KVM version were setting it wrongly. 219 * Fixing it will allow live migration to host with unrestricted guest 220 * support (otherwise the migration will fail with invalid guest state 221 * error). 222 */ 223 if (!(env->cr[0] & CR0_PE_MASK) && 224 (env->segs[R_CS].flags >> DESC_DPL_SHIFT & 3) != 0) { 225 env->segs[R_CS].flags &= ~(env->segs[R_CS].flags & DESC_DPL_MASK); 226 env->segs[R_DS].flags &= ~(env->segs[R_DS].flags & DESC_DPL_MASK); 227 env->segs[R_ES].flags &= ~(env->segs[R_ES].flags & DESC_DPL_MASK); 228 env->segs[R_FS].flags &= ~(env->segs[R_FS].flags & DESC_DPL_MASK); 229 env->segs[R_GS].flags &= ~(env->segs[R_GS].flags & DESC_DPL_MASK); 230 env->segs[R_SS].flags &= ~(env->segs[R_SS].flags & DESC_DPL_MASK); 231 } 232 233 #ifdef CONFIG_KVM 234 /* 235 * In case vCPU may have enabled VMX, we need to make sure kernel have 236 * required capabilities in order to perform migration correctly: 237 * 238 * 1) We must be able to extract vCPU nested-state from KVM. 239 * 240 * 2) In case vCPU is running in guest-mode and it has a pending exception, 241 * we must be able to determine if it's in a pending or injected state. 242 * Note that in case KVM don't have required capability to do so, 243 * a pending/injected exception will always appear as an 244 * injected exception. 245 */ 246 if (kvm_enabled() && cpu_vmx_maybe_enabled(env) && 247 (!env->nested_state || 248 (!kvm_has_exception_payload() && (env->hflags & HF_GUEST_MASK) && 249 env->exception_injected))) { 250 error_report("Guest maybe enabled nested virtualization but kernel " 251 "does not support required capabilities to save vCPU " 252 "nested state"); 253 return -EINVAL; 254 } 255 #endif 256 257 /* 258 * When vCPU is running L2 and exception is still pending, 259 * it can potentially be intercepted by L1 hypervisor. 260 * In contrast to an injected exception which cannot be 261 * intercepted anymore. 262 * 263 * Furthermore, when a L2 exception is intercepted by L1 264 * hypervisor, it's exception payload (CR2/DR6 on #PF/#DB) 265 * should not be set yet in the respective vCPU register. 266 * Thus, in case an exception is pending, it is 267 * important to save the exception payload seperately. 268 * 269 * Therefore, if an exception is not in a pending state 270 * or vCPU is not in guest-mode, it is not important to 271 * distinguish between a pending and injected exception 272 * and we don't need to store seperately the exception payload. 273 * 274 * In order to preserve better backwards-compatabile migration, 275 * convert a pending exception to an injected exception in 276 * case it is not important to distingiush between them 277 * as described above. 278 */ 279 if (env->exception_pending && !(env->hflags & HF_GUEST_MASK)) { 280 env->exception_pending = 0; 281 env->exception_injected = 1; 282 283 if (env->exception_has_payload) { 284 if (env->exception_nr == EXCP01_DB) { 285 env->dr[6] = env->exception_payload; 286 } else if (env->exception_nr == EXCP0E_PAGE) { 287 env->cr[2] = env->exception_payload; 288 } 289 } 290 } 291 292 return 0; 293 } 294 295 static int cpu_post_load(void *opaque, int version_id) 296 { 297 X86CPU *cpu = opaque; 298 CPUState *cs = CPU(cpu); 299 CPUX86State *env = &cpu->env; 300 int i; 301 302 if (env->tsc_khz && env->user_tsc_khz && 303 env->tsc_khz != env->user_tsc_khz) { 304 error_report("Mismatch between user-specified TSC frequency and " 305 "migrated TSC frequency"); 306 return -EINVAL; 307 } 308 309 if (env->fpregs_format_vmstate) { 310 error_report("Unsupported old non-softfloat CPU state"); 311 return -EINVAL; 312 } 313 /* 314 * Real mode guest segments register DPL should be zero. 315 * Older KVM version were setting it wrongly. 316 * Fixing it will allow live migration from such host that don't have 317 * restricted guest support to a host with unrestricted guest support 318 * (otherwise the migration will fail with invalid guest state 319 * error). 320 */ 321 if (!(env->cr[0] & CR0_PE_MASK) && 322 (env->segs[R_CS].flags >> DESC_DPL_SHIFT & 3) != 0) { 323 env->segs[R_CS].flags &= ~(env->segs[R_CS].flags & DESC_DPL_MASK); 324 env->segs[R_DS].flags &= ~(env->segs[R_DS].flags & DESC_DPL_MASK); 325 env->segs[R_ES].flags &= ~(env->segs[R_ES].flags & DESC_DPL_MASK); 326 env->segs[R_FS].flags &= ~(env->segs[R_FS].flags & DESC_DPL_MASK); 327 env->segs[R_GS].flags &= ~(env->segs[R_GS].flags & DESC_DPL_MASK); 328 env->segs[R_SS].flags &= ~(env->segs[R_SS].flags & DESC_DPL_MASK); 329 } 330 331 /* Older versions of QEMU incorrectly used CS.DPL as the CPL when 332 * running under KVM. This is wrong for conforming code segments. 333 * Luckily, in our implementation the CPL field of hflags is redundant 334 * and we can get the right value from the SS descriptor privilege level. 335 */ 336 env->hflags &= ~HF_CPL_MASK; 337 env->hflags |= (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; 338 339 #ifdef CONFIG_KVM 340 if ((env->hflags & HF_GUEST_MASK) && 341 (!env->nested_state || 342 !(env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE))) { 343 error_report("vCPU set in guest-mode inconsistent with " 344 "migrated kernel nested state"); 345 return -EINVAL; 346 } 347 #endif 348 349 /* 350 * There are cases that we can get valid exception_nr with both 351 * exception_pending and exception_injected being cleared. 352 * This can happen in one of the following scenarios: 353 * 1) Source is older QEMU without KVM_CAP_EXCEPTION_PAYLOAD support. 354 * 2) Source is running on kernel without KVM_CAP_EXCEPTION_PAYLOAD support. 355 * 3) "cpu/exception_info" subsection not sent because there is no exception 356 * pending or guest wasn't running L2 (See comment in cpu_pre_save()). 357 * 358 * In those cases, we can just deduce that a valid exception_nr means 359 * we can treat the exception as already injected. 360 */ 361 if ((env->exception_nr != -1) && 362 !env->exception_pending && !env->exception_injected) { 363 env->exception_injected = 1; 364 } 365 366 env->fpstt = (env->fpus_vmstate >> 11) & 7; 367 env->fpus = env->fpus_vmstate & ~0x3800; 368 env->fptag_vmstate ^= 0xff; 369 for(i = 0; i < 8; i++) { 370 env->fptags[i] = (env->fptag_vmstate >> i) & 1; 371 } 372 if (tcg_enabled()) { 373 target_ulong dr7; 374 update_fp_status(env); 375 update_mxcsr_status(env); 376 377 cpu_breakpoint_remove_all(cs, BP_CPU); 378 cpu_watchpoint_remove_all(cs, BP_CPU); 379 380 /* Indicate all breakpoints disabled, as they are, then 381 let the helper re-enable them. */ 382 dr7 = env->dr[7]; 383 env->dr[7] = dr7 & ~(DR7_GLOBAL_BP_MASK | DR7_LOCAL_BP_MASK); 384 cpu_x86_update_dr7(env, dr7); 385 } 386 tlb_flush(cs); 387 return 0; 388 } 389 390 static bool async_pf_msr_needed(void *opaque) 391 { 392 X86CPU *cpu = opaque; 393 394 return cpu->env.async_pf_en_msr != 0; 395 } 396 397 static bool pv_eoi_msr_needed(void *opaque) 398 { 399 X86CPU *cpu = opaque; 400 401 return cpu->env.pv_eoi_en_msr != 0; 402 } 403 404 static bool steal_time_msr_needed(void *opaque) 405 { 406 X86CPU *cpu = opaque; 407 408 return cpu->env.steal_time_msr != 0; 409 } 410 411 static bool exception_info_needed(void *opaque) 412 { 413 X86CPU *cpu = opaque; 414 CPUX86State *env = &cpu->env; 415 416 /* 417 * It is important to save exception-info only in case 418 * we need to distingiush between a pending and injected 419 * exception. Which is only required in case there is a 420 * pending exception and vCPU is running L2. 421 * For more info, refer to comment in cpu_pre_save(). 422 */ 423 return env->exception_pending && (env->hflags & HF_GUEST_MASK); 424 } 425 426 static const VMStateDescription vmstate_exception_info = { 427 .name = "cpu/exception_info", 428 .version_id = 1, 429 .minimum_version_id = 1, 430 .needed = exception_info_needed, 431 .fields = (VMStateField[]) { 432 VMSTATE_UINT8(env.exception_pending, X86CPU), 433 VMSTATE_UINT8(env.exception_injected, X86CPU), 434 VMSTATE_UINT8(env.exception_has_payload, X86CPU), 435 VMSTATE_UINT64(env.exception_payload, X86CPU), 436 VMSTATE_END_OF_LIST() 437 } 438 }; 439 440 /* Poll control MSR enabled by default */ 441 static bool poll_control_msr_needed(void *opaque) 442 { 443 X86CPU *cpu = opaque; 444 445 return cpu->env.poll_control_msr != 1; 446 } 447 448 static const VMStateDescription vmstate_steal_time_msr = { 449 .name = "cpu/steal_time_msr", 450 .version_id = 1, 451 .minimum_version_id = 1, 452 .needed = steal_time_msr_needed, 453 .fields = (VMStateField[]) { 454 VMSTATE_UINT64(env.steal_time_msr, X86CPU), 455 VMSTATE_END_OF_LIST() 456 } 457 }; 458 459 static const VMStateDescription vmstate_async_pf_msr = { 460 .name = "cpu/async_pf_msr", 461 .version_id = 1, 462 .minimum_version_id = 1, 463 .needed = async_pf_msr_needed, 464 .fields = (VMStateField[]) { 465 VMSTATE_UINT64(env.async_pf_en_msr, X86CPU), 466 VMSTATE_END_OF_LIST() 467 } 468 }; 469 470 static const VMStateDescription vmstate_pv_eoi_msr = { 471 .name = "cpu/async_pv_eoi_msr", 472 .version_id = 1, 473 .minimum_version_id = 1, 474 .needed = pv_eoi_msr_needed, 475 .fields = (VMStateField[]) { 476 VMSTATE_UINT64(env.pv_eoi_en_msr, X86CPU), 477 VMSTATE_END_OF_LIST() 478 } 479 }; 480 481 static const VMStateDescription vmstate_poll_control_msr = { 482 .name = "cpu/poll_control_msr", 483 .version_id = 1, 484 .minimum_version_id = 1, 485 .needed = poll_control_msr_needed, 486 .fields = (VMStateField[]) { 487 VMSTATE_UINT64(env.poll_control_msr, X86CPU), 488 VMSTATE_END_OF_LIST() 489 } 490 }; 491 492 static bool fpop_ip_dp_needed(void *opaque) 493 { 494 X86CPU *cpu = opaque; 495 CPUX86State *env = &cpu->env; 496 497 return env->fpop != 0 || env->fpip != 0 || env->fpdp != 0; 498 } 499 500 static const VMStateDescription vmstate_fpop_ip_dp = { 501 .name = "cpu/fpop_ip_dp", 502 .version_id = 1, 503 .minimum_version_id = 1, 504 .needed = fpop_ip_dp_needed, 505 .fields = (VMStateField[]) { 506 VMSTATE_UINT16(env.fpop, X86CPU), 507 VMSTATE_UINT64(env.fpip, X86CPU), 508 VMSTATE_UINT64(env.fpdp, X86CPU), 509 VMSTATE_END_OF_LIST() 510 } 511 }; 512 513 static bool tsc_adjust_needed(void *opaque) 514 { 515 X86CPU *cpu = opaque; 516 CPUX86State *env = &cpu->env; 517 518 return env->tsc_adjust != 0; 519 } 520 521 static const VMStateDescription vmstate_msr_tsc_adjust = { 522 .name = "cpu/msr_tsc_adjust", 523 .version_id = 1, 524 .minimum_version_id = 1, 525 .needed = tsc_adjust_needed, 526 .fields = (VMStateField[]) { 527 VMSTATE_UINT64(env.tsc_adjust, X86CPU), 528 VMSTATE_END_OF_LIST() 529 } 530 }; 531 532 static bool msr_smi_count_needed(void *opaque) 533 { 534 X86CPU *cpu = opaque; 535 CPUX86State *env = &cpu->env; 536 537 return cpu->migrate_smi_count && env->msr_smi_count != 0; 538 } 539 540 static const VMStateDescription vmstate_msr_smi_count = { 541 .name = "cpu/msr_smi_count", 542 .version_id = 1, 543 .minimum_version_id = 1, 544 .needed = msr_smi_count_needed, 545 .fields = (VMStateField[]) { 546 VMSTATE_UINT64(env.msr_smi_count, X86CPU), 547 VMSTATE_END_OF_LIST() 548 } 549 }; 550 551 static bool tscdeadline_needed(void *opaque) 552 { 553 X86CPU *cpu = opaque; 554 CPUX86State *env = &cpu->env; 555 556 return env->tsc_deadline != 0; 557 } 558 559 static const VMStateDescription vmstate_msr_tscdeadline = { 560 .name = "cpu/msr_tscdeadline", 561 .version_id = 1, 562 .minimum_version_id = 1, 563 .needed = tscdeadline_needed, 564 .fields = (VMStateField[]) { 565 VMSTATE_UINT64(env.tsc_deadline, X86CPU), 566 VMSTATE_END_OF_LIST() 567 } 568 }; 569 570 static bool misc_enable_needed(void *opaque) 571 { 572 X86CPU *cpu = opaque; 573 CPUX86State *env = &cpu->env; 574 575 return env->msr_ia32_misc_enable != MSR_IA32_MISC_ENABLE_DEFAULT; 576 } 577 578 static bool feature_control_needed(void *opaque) 579 { 580 X86CPU *cpu = opaque; 581 CPUX86State *env = &cpu->env; 582 583 return env->msr_ia32_feature_control != 0; 584 } 585 586 static const VMStateDescription vmstate_msr_ia32_misc_enable = { 587 .name = "cpu/msr_ia32_misc_enable", 588 .version_id = 1, 589 .minimum_version_id = 1, 590 .needed = misc_enable_needed, 591 .fields = (VMStateField[]) { 592 VMSTATE_UINT64(env.msr_ia32_misc_enable, X86CPU), 593 VMSTATE_END_OF_LIST() 594 } 595 }; 596 597 static const VMStateDescription vmstate_msr_ia32_feature_control = { 598 .name = "cpu/msr_ia32_feature_control", 599 .version_id = 1, 600 .minimum_version_id = 1, 601 .needed = feature_control_needed, 602 .fields = (VMStateField[]) { 603 VMSTATE_UINT64(env.msr_ia32_feature_control, X86CPU), 604 VMSTATE_END_OF_LIST() 605 } 606 }; 607 608 static bool pmu_enable_needed(void *opaque) 609 { 610 X86CPU *cpu = opaque; 611 CPUX86State *env = &cpu->env; 612 int i; 613 614 if (env->msr_fixed_ctr_ctrl || env->msr_global_ctrl || 615 env->msr_global_status || env->msr_global_ovf_ctrl) { 616 return true; 617 } 618 for (i = 0; i < MAX_FIXED_COUNTERS; i++) { 619 if (env->msr_fixed_counters[i]) { 620 return true; 621 } 622 } 623 for (i = 0; i < MAX_GP_COUNTERS; i++) { 624 if (env->msr_gp_counters[i] || env->msr_gp_evtsel[i]) { 625 return true; 626 } 627 } 628 629 return false; 630 } 631 632 static const VMStateDescription vmstate_msr_architectural_pmu = { 633 .name = "cpu/msr_architectural_pmu", 634 .version_id = 1, 635 .minimum_version_id = 1, 636 .needed = pmu_enable_needed, 637 .fields = (VMStateField[]) { 638 VMSTATE_UINT64(env.msr_fixed_ctr_ctrl, X86CPU), 639 VMSTATE_UINT64(env.msr_global_ctrl, X86CPU), 640 VMSTATE_UINT64(env.msr_global_status, X86CPU), 641 VMSTATE_UINT64(env.msr_global_ovf_ctrl, X86CPU), 642 VMSTATE_UINT64_ARRAY(env.msr_fixed_counters, X86CPU, MAX_FIXED_COUNTERS), 643 VMSTATE_UINT64_ARRAY(env.msr_gp_counters, X86CPU, MAX_GP_COUNTERS), 644 VMSTATE_UINT64_ARRAY(env.msr_gp_evtsel, X86CPU, MAX_GP_COUNTERS), 645 VMSTATE_END_OF_LIST() 646 } 647 }; 648 649 static bool mpx_needed(void *opaque) 650 { 651 X86CPU *cpu = opaque; 652 CPUX86State *env = &cpu->env; 653 unsigned int i; 654 655 for (i = 0; i < 4; i++) { 656 if (env->bnd_regs[i].lb || env->bnd_regs[i].ub) { 657 return true; 658 } 659 } 660 661 if (env->bndcs_regs.cfgu || env->bndcs_regs.sts) { 662 return true; 663 } 664 665 return !!env->msr_bndcfgs; 666 } 667 668 static const VMStateDescription vmstate_mpx = { 669 .name = "cpu/mpx", 670 .version_id = 1, 671 .minimum_version_id = 1, 672 .needed = mpx_needed, 673 .fields = (VMStateField[]) { 674 VMSTATE_BND_REGS(env.bnd_regs, X86CPU, 4), 675 VMSTATE_UINT64(env.bndcs_regs.cfgu, X86CPU), 676 VMSTATE_UINT64(env.bndcs_regs.sts, X86CPU), 677 VMSTATE_UINT64(env.msr_bndcfgs, X86CPU), 678 VMSTATE_END_OF_LIST() 679 } 680 }; 681 682 static bool hyperv_hypercall_enable_needed(void *opaque) 683 { 684 X86CPU *cpu = opaque; 685 CPUX86State *env = &cpu->env; 686 687 return env->msr_hv_hypercall != 0 || env->msr_hv_guest_os_id != 0; 688 } 689 690 static const VMStateDescription vmstate_msr_hypercall_hypercall = { 691 .name = "cpu/msr_hyperv_hypercall", 692 .version_id = 1, 693 .minimum_version_id = 1, 694 .needed = hyperv_hypercall_enable_needed, 695 .fields = (VMStateField[]) { 696 VMSTATE_UINT64(env.msr_hv_guest_os_id, X86CPU), 697 VMSTATE_UINT64(env.msr_hv_hypercall, X86CPU), 698 VMSTATE_END_OF_LIST() 699 } 700 }; 701 702 static bool hyperv_vapic_enable_needed(void *opaque) 703 { 704 X86CPU *cpu = opaque; 705 CPUX86State *env = &cpu->env; 706 707 return env->msr_hv_vapic != 0; 708 } 709 710 static const VMStateDescription vmstate_msr_hyperv_vapic = { 711 .name = "cpu/msr_hyperv_vapic", 712 .version_id = 1, 713 .minimum_version_id = 1, 714 .needed = hyperv_vapic_enable_needed, 715 .fields = (VMStateField[]) { 716 VMSTATE_UINT64(env.msr_hv_vapic, X86CPU), 717 VMSTATE_END_OF_LIST() 718 } 719 }; 720 721 static bool hyperv_time_enable_needed(void *opaque) 722 { 723 X86CPU *cpu = opaque; 724 CPUX86State *env = &cpu->env; 725 726 return env->msr_hv_tsc != 0; 727 } 728 729 static const VMStateDescription vmstate_msr_hyperv_time = { 730 .name = "cpu/msr_hyperv_time", 731 .version_id = 1, 732 .minimum_version_id = 1, 733 .needed = hyperv_time_enable_needed, 734 .fields = (VMStateField[]) { 735 VMSTATE_UINT64(env.msr_hv_tsc, X86CPU), 736 VMSTATE_END_OF_LIST() 737 } 738 }; 739 740 static bool hyperv_crash_enable_needed(void *opaque) 741 { 742 X86CPU *cpu = opaque; 743 CPUX86State *env = &cpu->env; 744 int i; 745 746 for (i = 0; i < HV_CRASH_PARAMS; i++) { 747 if (env->msr_hv_crash_params[i]) { 748 return true; 749 } 750 } 751 return false; 752 } 753 754 static const VMStateDescription vmstate_msr_hyperv_crash = { 755 .name = "cpu/msr_hyperv_crash", 756 .version_id = 1, 757 .minimum_version_id = 1, 758 .needed = hyperv_crash_enable_needed, 759 .fields = (VMStateField[]) { 760 VMSTATE_UINT64_ARRAY(env.msr_hv_crash_params, X86CPU, HV_CRASH_PARAMS), 761 VMSTATE_END_OF_LIST() 762 } 763 }; 764 765 static bool hyperv_runtime_enable_needed(void *opaque) 766 { 767 X86CPU *cpu = opaque; 768 CPUX86State *env = &cpu->env; 769 770 if (!hyperv_feat_enabled(cpu, HYPERV_FEAT_RUNTIME)) { 771 return false; 772 } 773 774 return env->msr_hv_runtime != 0; 775 } 776 777 static const VMStateDescription vmstate_msr_hyperv_runtime = { 778 .name = "cpu/msr_hyperv_runtime", 779 .version_id = 1, 780 .minimum_version_id = 1, 781 .needed = hyperv_runtime_enable_needed, 782 .fields = (VMStateField[]) { 783 VMSTATE_UINT64(env.msr_hv_runtime, X86CPU), 784 VMSTATE_END_OF_LIST() 785 } 786 }; 787 788 static bool hyperv_synic_enable_needed(void *opaque) 789 { 790 X86CPU *cpu = opaque; 791 CPUX86State *env = &cpu->env; 792 int i; 793 794 if (env->msr_hv_synic_control != 0 || 795 env->msr_hv_synic_evt_page != 0 || 796 env->msr_hv_synic_msg_page != 0) { 797 return true; 798 } 799 800 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { 801 if (env->msr_hv_synic_sint[i] != 0) { 802 return true; 803 } 804 } 805 806 return false; 807 } 808 809 static int hyperv_synic_post_load(void *opaque, int version_id) 810 { 811 X86CPU *cpu = opaque; 812 hyperv_x86_synic_update(cpu); 813 return 0; 814 } 815 816 static const VMStateDescription vmstate_msr_hyperv_synic = { 817 .name = "cpu/msr_hyperv_synic", 818 .version_id = 1, 819 .minimum_version_id = 1, 820 .needed = hyperv_synic_enable_needed, 821 .post_load = hyperv_synic_post_load, 822 .fields = (VMStateField[]) { 823 VMSTATE_UINT64(env.msr_hv_synic_control, X86CPU), 824 VMSTATE_UINT64(env.msr_hv_synic_evt_page, X86CPU), 825 VMSTATE_UINT64(env.msr_hv_synic_msg_page, X86CPU), 826 VMSTATE_UINT64_ARRAY(env.msr_hv_synic_sint, X86CPU, HV_SINT_COUNT), 827 VMSTATE_END_OF_LIST() 828 } 829 }; 830 831 static bool hyperv_stimer_enable_needed(void *opaque) 832 { 833 X86CPU *cpu = opaque; 834 CPUX86State *env = &cpu->env; 835 int i; 836 837 for (i = 0; i < ARRAY_SIZE(env->msr_hv_stimer_config); i++) { 838 if (env->msr_hv_stimer_config[i] || env->msr_hv_stimer_count[i]) { 839 return true; 840 } 841 } 842 return false; 843 } 844 845 static const VMStateDescription vmstate_msr_hyperv_stimer = { 846 .name = "cpu/msr_hyperv_stimer", 847 .version_id = 1, 848 .minimum_version_id = 1, 849 .needed = hyperv_stimer_enable_needed, 850 .fields = (VMStateField[]) { 851 VMSTATE_UINT64_ARRAY(env.msr_hv_stimer_config, X86CPU, 852 HV_STIMER_COUNT), 853 VMSTATE_UINT64_ARRAY(env.msr_hv_stimer_count, X86CPU, HV_STIMER_COUNT), 854 VMSTATE_END_OF_LIST() 855 } 856 }; 857 858 static bool hyperv_reenlightenment_enable_needed(void *opaque) 859 { 860 X86CPU *cpu = opaque; 861 CPUX86State *env = &cpu->env; 862 863 return env->msr_hv_reenlightenment_control != 0 || 864 env->msr_hv_tsc_emulation_control != 0 || 865 env->msr_hv_tsc_emulation_status != 0; 866 } 867 868 static const VMStateDescription vmstate_msr_hyperv_reenlightenment = { 869 .name = "cpu/msr_hyperv_reenlightenment", 870 .version_id = 1, 871 .minimum_version_id = 1, 872 .needed = hyperv_reenlightenment_enable_needed, 873 .fields = (VMStateField[]) { 874 VMSTATE_UINT64(env.msr_hv_reenlightenment_control, X86CPU), 875 VMSTATE_UINT64(env.msr_hv_tsc_emulation_control, X86CPU), 876 VMSTATE_UINT64(env.msr_hv_tsc_emulation_status, X86CPU), 877 VMSTATE_END_OF_LIST() 878 } 879 }; 880 881 static bool avx512_needed(void *opaque) 882 { 883 X86CPU *cpu = opaque; 884 CPUX86State *env = &cpu->env; 885 unsigned int i; 886 887 for (i = 0; i < NB_OPMASK_REGS; i++) { 888 if (env->opmask_regs[i]) { 889 return true; 890 } 891 } 892 893 for (i = 0; i < CPU_NB_REGS; i++) { 894 #define ENV_XMM(reg, field) (env->xmm_regs[reg].ZMM_Q(field)) 895 if (ENV_XMM(i, 4) || ENV_XMM(i, 6) || 896 ENV_XMM(i, 5) || ENV_XMM(i, 7)) { 897 return true; 898 } 899 #ifdef TARGET_X86_64 900 if (ENV_XMM(i+16, 0) || ENV_XMM(i+16, 1) || 901 ENV_XMM(i+16, 2) || ENV_XMM(i+16, 3) || 902 ENV_XMM(i+16, 4) || ENV_XMM(i+16, 5) || 903 ENV_XMM(i+16, 6) || ENV_XMM(i+16, 7)) { 904 return true; 905 } 906 #endif 907 } 908 909 return false; 910 } 911 912 static const VMStateDescription vmstate_avx512 = { 913 .name = "cpu/avx512", 914 .version_id = 1, 915 .minimum_version_id = 1, 916 .needed = avx512_needed, 917 .fields = (VMStateField[]) { 918 VMSTATE_UINT64_ARRAY(env.opmask_regs, X86CPU, NB_OPMASK_REGS), 919 VMSTATE_ZMMH_REGS_VARS(env.xmm_regs, X86CPU, 0), 920 #ifdef TARGET_X86_64 921 VMSTATE_Hi16_ZMM_REGS_VARS(env.xmm_regs, X86CPU, 16), 922 #endif 923 VMSTATE_END_OF_LIST() 924 } 925 }; 926 927 static bool xss_needed(void *opaque) 928 { 929 X86CPU *cpu = opaque; 930 CPUX86State *env = &cpu->env; 931 932 return env->xss != 0; 933 } 934 935 static const VMStateDescription vmstate_xss = { 936 .name = "cpu/xss", 937 .version_id = 1, 938 .minimum_version_id = 1, 939 .needed = xss_needed, 940 .fields = (VMStateField[]) { 941 VMSTATE_UINT64(env.xss, X86CPU), 942 VMSTATE_END_OF_LIST() 943 } 944 }; 945 946 static bool umwait_needed(void *opaque) 947 { 948 X86CPU *cpu = opaque; 949 CPUX86State *env = &cpu->env; 950 951 return env->umwait != 0; 952 } 953 954 static const VMStateDescription vmstate_umwait = { 955 .name = "cpu/umwait", 956 .version_id = 1, 957 .minimum_version_id = 1, 958 .needed = umwait_needed, 959 .fields = (VMStateField[]) { 960 VMSTATE_UINT32(env.umwait, X86CPU), 961 VMSTATE_END_OF_LIST() 962 } 963 }; 964 965 #ifdef TARGET_X86_64 966 static bool pkru_needed(void *opaque) 967 { 968 X86CPU *cpu = opaque; 969 CPUX86State *env = &cpu->env; 970 971 return env->pkru != 0; 972 } 973 974 static const VMStateDescription vmstate_pkru = { 975 .name = "cpu/pkru", 976 .version_id = 1, 977 .minimum_version_id = 1, 978 .needed = pkru_needed, 979 .fields = (VMStateField[]){ 980 VMSTATE_UINT32(env.pkru, X86CPU), 981 VMSTATE_END_OF_LIST() 982 } 983 }; 984 #endif 985 986 static bool tsc_khz_needed(void *opaque) 987 { 988 X86CPU *cpu = opaque; 989 CPUX86State *env = &cpu->env; 990 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 991 X86MachineClass *x86mc = X86_MACHINE_CLASS(mc); 992 return env->tsc_khz && x86mc->save_tsc_khz; 993 } 994 995 static const VMStateDescription vmstate_tsc_khz = { 996 .name = "cpu/tsc_khz", 997 .version_id = 1, 998 .minimum_version_id = 1, 999 .needed = tsc_khz_needed, 1000 .fields = (VMStateField[]) { 1001 VMSTATE_INT64(env.tsc_khz, X86CPU), 1002 VMSTATE_END_OF_LIST() 1003 } 1004 }; 1005 1006 #ifdef CONFIG_KVM 1007 1008 static bool vmx_vmcs12_needed(void *opaque) 1009 { 1010 struct kvm_nested_state *nested_state = opaque; 1011 return (nested_state->size > 1012 offsetof(struct kvm_nested_state, data.vmx[0].vmcs12)); 1013 } 1014 1015 static const VMStateDescription vmstate_vmx_vmcs12 = { 1016 .name = "cpu/kvm_nested_state/vmx/vmcs12", 1017 .version_id = 1, 1018 .minimum_version_id = 1, 1019 .needed = vmx_vmcs12_needed, 1020 .fields = (VMStateField[]) { 1021 VMSTATE_UINT8_ARRAY(data.vmx[0].vmcs12, 1022 struct kvm_nested_state, 1023 KVM_STATE_NESTED_VMX_VMCS_SIZE), 1024 VMSTATE_END_OF_LIST() 1025 } 1026 }; 1027 1028 static bool vmx_shadow_vmcs12_needed(void *opaque) 1029 { 1030 struct kvm_nested_state *nested_state = opaque; 1031 return (nested_state->size > 1032 offsetof(struct kvm_nested_state, data.vmx[0].shadow_vmcs12)); 1033 } 1034 1035 static const VMStateDescription vmstate_vmx_shadow_vmcs12 = { 1036 .name = "cpu/kvm_nested_state/vmx/shadow_vmcs12", 1037 .version_id = 1, 1038 .minimum_version_id = 1, 1039 .needed = vmx_shadow_vmcs12_needed, 1040 .fields = (VMStateField[]) { 1041 VMSTATE_UINT8_ARRAY(data.vmx[0].shadow_vmcs12, 1042 struct kvm_nested_state, 1043 KVM_STATE_NESTED_VMX_VMCS_SIZE), 1044 VMSTATE_END_OF_LIST() 1045 } 1046 }; 1047 1048 static bool vmx_nested_state_needed(void *opaque) 1049 { 1050 struct kvm_nested_state *nested_state = opaque; 1051 1052 return (nested_state->format == KVM_STATE_NESTED_FORMAT_VMX && 1053 nested_state->hdr.vmx.vmxon_pa != -1ull); 1054 } 1055 1056 static const VMStateDescription vmstate_vmx_nested_state = { 1057 .name = "cpu/kvm_nested_state/vmx", 1058 .version_id = 1, 1059 .minimum_version_id = 1, 1060 .needed = vmx_nested_state_needed, 1061 .fields = (VMStateField[]) { 1062 VMSTATE_U64(hdr.vmx.vmxon_pa, struct kvm_nested_state), 1063 VMSTATE_U64(hdr.vmx.vmcs12_pa, struct kvm_nested_state), 1064 VMSTATE_U16(hdr.vmx.smm.flags, struct kvm_nested_state), 1065 VMSTATE_END_OF_LIST() 1066 }, 1067 .subsections = (const VMStateDescription*[]) { 1068 &vmstate_vmx_vmcs12, 1069 &vmstate_vmx_shadow_vmcs12, 1070 NULL, 1071 } 1072 }; 1073 1074 static bool nested_state_needed(void *opaque) 1075 { 1076 X86CPU *cpu = opaque; 1077 CPUX86State *env = &cpu->env; 1078 1079 return (env->nested_state && 1080 vmx_nested_state_needed(env->nested_state)); 1081 } 1082 1083 static int nested_state_post_load(void *opaque, int version_id) 1084 { 1085 X86CPU *cpu = opaque; 1086 CPUX86State *env = &cpu->env; 1087 struct kvm_nested_state *nested_state = env->nested_state; 1088 int min_nested_state_len = offsetof(struct kvm_nested_state, data); 1089 int max_nested_state_len = kvm_max_nested_state_length(); 1090 1091 /* 1092 * If our kernel don't support setting nested state 1093 * and we have received nested state from migration stream, 1094 * we need to fail migration 1095 */ 1096 if (max_nested_state_len <= 0) { 1097 error_report("Received nested state when kernel cannot restore it"); 1098 return -EINVAL; 1099 } 1100 1101 /* 1102 * Verify that the size of received nested_state struct 1103 * at least cover required header and is not larger 1104 * than the max size that our kernel support 1105 */ 1106 if (nested_state->size < min_nested_state_len) { 1107 error_report("Received nested state size less than min: " 1108 "len=%d, min=%d", 1109 nested_state->size, min_nested_state_len); 1110 return -EINVAL; 1111 } 1112 if (nested_state->size > max_nested_state_len) { 1113 error_report("Recieved unsupported nested state size: " 1114 "nested_state->size=%d, max=%d", 1115 nested_state->size, max_nested_state_len); 1116 return -EINVAL; 1117 } 1118 1119 /* Verify format is valid */ 1120 if ((nested_state->format != KVM_STATE_NESTED_FORMAT_VMX) && 1121 (nested_state->format != KVM_STATE_NESTED_FORMAT_SVM)) { 1122 error_report("Received invalid nested state format: %d", 1123 nested_state->format); 1124 return -EINVAL; 1125 } 1126 1127 return 0; 1128 } 1129 1130 static const VMStateDescription vmstate_kvm_nested_state = { 1131 .name = "cpu/kvm_nested_state", 1132 .version_id = 1, 1133 .minimum_version_id = 1, 1134 .fields = (VMStateField[]) { 1135 VMSTATE_U16(flags, struct kvm_nested_state), 1136 VMSTATE_U16(format, struct kvm_nested_state), 1137 VMSTATE_U32(size, struct kvm_nested_state), 1138 VMSTATE_END_OF_LIST() 1139 }, 1140 .subsections = (const VMStateDescription*[]) { 1141 &vmstate_vmx_nested_state, 1142 NULL 1143 } 1144 }; 1145 1146 static const VMStateDescription vmstate_nested_state = { 1147 .name = "cpu/nested_state", 1148 .version_id = 1, 1149 .minimum_version_id = 1, 1150 .needed = nested_state_needed, 1151 .post_load = nested_state_post_load, 1152 .fields = (VMStateField[]) { 1153 VMSTATE_STRUCT_POINTER(env.nested_state, X86CPU, 1154 vmstate_kvm_nested_state, 1155 struct kvm_nested_state), 1156 VMSTATE_END_OF_LIST() 1157 } 1158 }; 1159 1160 #endif 1161 1162 static bool mcg_ext_ctl_needed(void *opaque) 1163 { 1164 X86CPU *cpu = opaque; 1165 CPUX86State *env = &cpu->env; 1166 return cpu->enable_lmce && env->mcg_ext_ctl; 1167 } 1168 1169 static const VMStateDescription vmstate_mcg_ext_ctl = { 1170 .name = "cpu/mcg_ext_ctl", 1171 .version_id = 1, 1172 .minimum_version_id = 1, 1173 .needed = mcg_ext_ctl_needed, 1174 .fields = (VMStateField[]) { 1175 VMSTATE_UINT64(env.mcg_ext_ctl, X86CPU), 1176 VMSTATE_END_OF_LIST() 1177 } 1178 }; 1179 1180 static bool spec_ctrl_needed(void *opaque) 1181 { 1182 X86CPU *cpu = opaque; 1183 CPUX86State *env = &cpu->env; 1184 1185 return env->spec_ctrl != 0; 1186 } 1187 1188 static const VMStateDescription vmstate_spec_ctrl = { 1189 .name = "cpu/spec_ctrl", 1190 .version_id = 1, 1191 .minimum_version_id = 1, 1192 .needed = spec_ctrl_needed, 1193 .fields = (VMStateField[]){ 1194 VMSTATE_UINT64(env.spec_ctrl, X86CPU), 1195 VMSTATE_END_OF_LIST() 1196 } 1197 }; 1198 1199 static bool intel_pt_enable_needed(void *opaque) 1200 { 1201 X86CPU *cpu = opaque; 1202 CPUX86State *env = &cpu->env; 1203 int i; 1204 1205 if (env->msr_rtit_ctrl || env->msr_rtit_status || 1206 env->msr_rtit_output_base || env->msr_rtit_output_mask || 1207 env->msr_rtit_cr3_match) { 1208 return true; 1209 } 1210 1211 for (i = 0; i < MAX_RTIT_ADDRS; i++) { 1212 if (env->msr_rtit_addrs[i]) { 1213 return true; 1214 } 1215 } 1216 1217 return false; 1218 } 1219 1220 static const VMStateDescription vmstate_msr_intel_pt = { 1221 .name = "cpu/intel_pt", 1222 .version_id = 1, 1223 .minimum_version_id = 1, 1224 .needed = intel_pt_enable_needed, 1225 .fields = (VMStateField[]) { 1226 VMSTATE_UINT64(env.msr_rtit_ctrl, X86CPU), 1227 VMSTATE_UINT64(env.msr_rtit_status, X86CPU), 1228 VMSTATE_UINT64(env.msr_rtit_output_base, X86CPU), 1229 VMSTATE_UINT64(env.msr_rtit_output_mask, X86CPU), 1230 VMSTATE_UINT64(env.msr_rtit_cr3_match, X86CPU), 1231 VMSTATE_UINT64_ARRAY(env.msr_rtit_addrs, X86CPU, MAX_RTIT_ADDRS), 1232 VMSTATE_END_OF_LIST() 1233 } 1234 }; 1235 1236 static bool virt_ssbd_needed(void *opaque) 1237 { 1238 X86CPU *cpu = opaque; 1239 CPUX86State *env = &cpu->env; 1240 1241 return env->virt_ssbd != 0; 1242 } 1243 1244 static const VMStateDescription vmstate_msr_virt_ssbd = { 1245 .name = "cpu/virt_ssbd", 1246 .version_id = 1, 1247 .minimum_version_id = 1, 1248 .needed = virt_ssbd_needed, 1249 .fields = (VMStateField[]){ 1250 VMSTATE_UINT64(env.virt_ssbd, X86CPU), 1251 VMSTATE_END_OF_LIST() 1252 } 1253 }; 1254 1255 static bool svm_npt_needed(void *opaque) 1256 { 1257 X86CPU *cpu = opaque; 1258 CPUX86State *env = &cpu->env; 1259 1260 return !!(env->hflags2 & HF2_NPT_MASK); 1261 } 1262 1263 static const VMStateDescription vmstate_svm_npt = { 1264 .name = "cpu/svn_npt", 1265 .version_id = 1, 1266 .minimum_version_id = 1, 1267 .needed = svm_npt_needed, 1268 .fields = (VMStateField[]){ 1269 VMSTATE_UINT64(env.nested_cr3, X86CPU), 1270 VMSTATE_UINT32(env.nested_pg_mode, X86CPU), 1271 VMSTATE_END_OF_LIST() 1272 } 1273 }; 1274 1275 #ifndef TARGET_X86_64 1276 static bool intel_efer32_needed(void *opaque) 1277 { 1278 X86CPU *cpu = opaque; 1279 CPUX86State *env = &cpu->env; 1280 1281 return env->efer != 0; 1282 } 1283 1284 static const VMStateDescription vmstate_efer32 = { 1285 .name = "cpu/efer32", 1286 .version_id = 1, 1287 .minimum_version_id = 1, 1288 .needed = intel_efer32_needed, 1289 .fields = (VMStateField[]) { 1290 VMSTATE_UINT64(env.efer, X86CPU), 1291 VMSTATE_END_OF_LIST() 1292 } 1293 }; 1294 #endif 1295 1296 static bool msr_tsx_ctrl_needed(void *opaque) 1297 { 1298 X86CPU *cpu = opaque; 1299 CPUX86State *env = &cpu->env; 1300 1301 return env->features[FEAT_ARCH_CAPABILITIES] & ARCH_CAP_TSX_CTRL_MSR; 1302 } 1303 1304 static const VMStateDescription vmstate_msr_tsx_ctrl = { 1305 .name = "cpu/msr_tsx_ctrl", 1306 .version_id = 1, 1307 .minimum_version_id = 1, 1308 .needed = msr_tsx_ctrl_needed, 1309 .fields = (VMStateField[]) { 1310 VMSTATE_UINT32(env.tsx_ctrl, X86CPU), 1311 VMSTATE_END_OF_LIST() 1312 } 1313 }; 1314 1315 VMStateDescription vmstate_x86_cpu = { 1316 .name = "cpu", 1317 .version_id = 12, 1318 .minimum_version_id = 11, 1319 .pre_save = cpu_pre_save, 1320 .post_load = cpu_post_load, 1321 .fields = (VMStateField[]) { 1322 VMSTATE_UINTTL_ARRAY(env.regs, X86CPU, CPU_NB_REGS), 1323 VMSTATE_UINTTL(env.eip, X86CPU), 1324 VMSTATE_UINTTL(env.eflags, X86CPU), 1325 VMSTATE_UINT32(env.hflags, X86CPU), 1326 /* FPU */ 1327 VMSTATE_UINT16(env.fpuc, X86CPU), 1328 VMSTATE_UINT16(env.fpus_vmstate, X86CPU), 1329 VMSTATE_UINT16(env.fptag_vmstate, X86CPU), 1330 VMSTATE_UINT16(env.fpregs_format_vmstate, X86CPU), 1331 1332 VMSTATE_STRUCT_ARRAY(env.fpregs, X86CPU, 8, 0, vmstate_fpreg, FPReg), 1333 1334 VMSTATE_SEGMENT_ARRAY(env.segs, X86CPU, 6), 1335 VMSTATE_SEGMENT(env.ldt, X86CPU), 1336 VMSTATE_SEGMENT(env.tr, X86CPU), 1337 VMSTATE_SEGMENT(env.gdt, X86CPU), 1338 VMSTATE_SEGMENT(env.idt, X86CPU), 1339 1340 VMSTATE_UINT32(env.sysenter_cs, X86CPU), 1341 VMSTATE_UINTTL(env.sysenter_esp, X86CPU), 1342 VMSTATE_UINTTL(env.sysenter_eip, X86CPU), 1343 1344 VMSTATE_UINTTL(env.cr[0], X86CPU), 1345 VMSTATE_UINTTL(env.cr[2], X86CPU), 1346 VMSTATE_UINTTL(env.cr[3], X86CPU), 1347 VMSTATE_UINTTL(env.cr[4], X86CPU), 1348 VMSTATE_UINTTL_ARRAY(env.dr, X86CPU, 8), 1349 /* MMU */ 1350 VMSTATE_INT32(env.a20_mask, X86CPU), 1351 /* XMM */ 1352 VMSTATE_UINT32(env.mxcsr, X86CPU), 1353 VMSTATE_XMM_REGS(env.xmm_regs, X86CPU, 0), 1354 1355 #ifdef TARGET_X86_64 1356 VMSTATE_UINT64(env.efer, X86CPU), 1357 VMSTATE_UINT64(env.star, X86CPU), 1358 VMSTATE_UINT64(env.lstar, X86CPU), 1359 VMSTATE_UINT64(env.cstar, X86CPU), 1360 VMSTATE_UINT64(env.fmask, X86CPU), 1361 VMSTATE_UINT64(env.kernelgsbase, X86CPU), 1362 #endif 1363 VMSTATE_UINT32(env.smbase, X86CPU), 1364 1365 VMSTATE_UINT64(env.pat, X86CPU), 1366 VMSTATE_UINT32(env.hflags2, X86CPU), 1367 1368 VMSTATE_UINT64(env.vm_hsave, X86CPU), 1369 VMSTATE_UINT64(env.vm_vmcb, X86CPU), 1370 VMSTATE_UINT64(env.tsc_offset, X86CPU), 1371 VMSTATE_UINT64(env.intercept, X86CPU), 1372 VMSTATE_UINT16(env.intercept_cr_read, X86CPU), 1373 VMSTATE_UINT16(env.intercept_cr_write, X86CPU), 1374 VMSTATE_UINT16(env.intercept_dr_read, X86CPU), 1375 VMSTATE_UINT16(env.intercept_dr_write, X86CPU), 1376 VMSTATE_UINT32(env.intercept_exceptions, X86CPU), 1377 VMSTATE_UINT8(env.v_tpr, X86CPU), 1378 /* MTRRs */ 1379 VMSTATE_UINT64_ARRAY(env.mtrr_fixed, X86CPU, 11), 1380 VMSTATE_UINT64(env.mtrr_deftype, X86CPU), 1381 VMSTATE_MTRR_VARS(env.mtrr_var, X86CPU, MSR_MTRRcap_VCNT, 8), 1382 /* KVM-related states */ 1383 VMSTATE_INT32(env.interrupt_injected, X86CPU), 1384 VMSTATE_UINT32(env.mp_state, X86CPU), 1385 VMSTATE_UINT64(env.tsc, X86CPU), 1386 VMSTATE_INT32(env.exception_nr, X86CPU), 1387 VMSTATE_UINT8(env.soft_interrupt, X86CPU), 1388 VMSTATE_UINT8(env.nmi_injected, X86CPU), 1389 VMSTATE_UINT8(env.nmi_pending, X86CPU), 1390 VMSTATE_UINT8(env.has_error_code, X86CPU), 1391 VMSTATE_UINT32(env.sipi_vector, X86CPU), 1392 /* MCE */ 1393 VMSTATE_UINT64(env.mcg_cap, X86CPU), 1394 VMSTATE_UINT64(env.mcg_status, X86CPU), 1395 VMSTATE_UINT64(env.mcg_ctl, X86CPU), 1396 VMSTATE_UINT64_ARRAY(env.mce_banks, X86CPU, MCE_BANKS_DEF * 4), 1397 /* rdtscp */ 1398 VMSTATE_UINT64(env.tsc_aux, X86CPU), 1399 /* KVM pvclock msr */ 1400 VMSTATE_UINT64(env.system_time_msr, X86CPU), 1401 VMSTATE_UINT64(env.wall_clock_msr, X86CPU), 1402 /* XSAVE related fields */ 1403 VMSTATE_UINT64_V(env.xcr0, X86CPU, 12), 1404 VMSTATE_UINT64_V(env.xstate_bv, X86CPU, 12), 1405 VMSTATE_YMMH_REGS_VARS(env.xmm_regs, X86CPU, 0, 12), 1406 VMSTATE_END_OF_LIST() 1407 /* The above list is not sorted /wrt version numbers, watch out! */ 1408 }, 1409 .subsections = (const VMStateDescription*[]) { 1410 &vmstate_exception_info, 1411 &vmstate_async_pf_msr, 1412 &vmstate_pv_eoi_msr, 1413 &vmstate_steal_time_msr, 1414 &vmstate_poll_control_msr, 1415 &vmstate_fpop_ip_dp, 1416 &vmstate_msr_tsc_adjust, 1417 &vmstate_msr_tscdeadline, 1418 &vmstate_msr_ia32_misc_enable, 1419 &vmstate_msr_ia32_feature_control, 1420 &vmstate_msr_architectural_pmu, 1421 &vmstate_mpx, 1422 &vmstate_msr_hypercall_hypercall, 1423 &vmstate_msr_hyperv_vapic, 1424 &vmstate_msr_hyperv_time, 1425 &vmstate_msr_hyperv_crash, 1426 &vmstate_msr_hyperv_runtime, 1427 &vmstate_msr_hyperv_synic, 1428 &vmstate_msr_hyperv_stimer, 1429 &vmstate_msr_hyperv_reenlightenment, 1430 &vmstate_avx512, 1431 &vmstate_xss, 1432 &vmstate_umwait, 1433 &vmstate_tsc_khz, 1434 &vmstate_msr_smi_count, 1435 #ifdef TARGET_X86_64 1436 &vmstate_pkru, 1437 #endif 1438 &vmstate_spec_ctrl, 1439 &vmstate_mcg_ext_ctl, 1440 &vmstate_msr_intel_pt, 1441 &vmstate_msr_virt_ssbd, 1442 &vmstate_svm_npt, 1443 #ifndef TARGET_X86_64 1444 &vmstate_efer32, 1445 #endif 1446 #ifdef CONFIG_KVM 1447 &vmstate_nested_state, 1448 #endif 1449 &vmstate_msr_tsx_ctrl, 1450 NULL 1451 } 1452 }; 1453