1 #include "qemu/osdep.h" 2 #include "cpu.h" 3 #include "exec/exec-all.h" 4 #include "hw/isa/isa.h" 5 #include "migration/cpu.h" 6 #include "kvm/hyperv.h" 7 #include "hw/i386/x86.h" 8 #include "kvm/kvm_i386.h" 9 10 #include "sysemu/kvm.h" 11 #include "sysemu/tcg.h" 12 13 #include "qemu/error-report.h" 14 15 static const VMStateDescription vmstate_segment = { 16 .name = "segment", 17 .version_id = 1, 18 .minimum_version_id = 1, 19 .fields = (VMStateField[]) { 20 VMSTATE_UINT32(selector, SegmentCache), 21 VMSTATE_UINTTL(base, SegmentCache), 22 VMSTATE_UINT32(limit, SegmentCache), 23 VMSTATE_UINT32(flags, SegmentCache), 24 VMSTATE_END_OF_LIST() 25 } 26 }; 27 28 #define VMSTATE_SEGMENT(_field, _state) { \ 29 .name = (stringify(_field)), \ 30 .size = sizeof(SegmentCache), \ 31 .vmsd = &vmstate_segment, \ 32 .flags = VMS_STRUCT, \ 33 .offset = offsetof(_state, _field) \ 34 + type_check(SegmentCache,typeof_field(_state, _field)) \ 35 } 36 37 #define VMSTATE_SEGMENT_ARRAY(_field, _state, _n) \ 38 VMSTATE_STRUCT_ARRAY(_field, _state, _n, 0, vmstate_segment, SegmentCache) 39 40 static const VMStateDescription vmstate_xmm_reg = { 41 .name = "xmm_reg", 42 .version_id = 1, 43 .minimum_version_id = 1, 44 .fields = (VMStateField[]) { 45 VMSTATE_UINT64(ZMM_Q(0), ZMMReg), 46 VMSTATE_UINT64(ZMM_Q(1), ZMMReg), 47 VMSTATE_END_OF_LIST() 48 } 49 }; 50 51 #define VMSTATE_XMM_REGS(_field, _state, _start) \ 52 VMSTATE_STRUCT_SUB_ARRAY(_field, _state, _start, CPU_NB_REGS, 0, \ 53 vmstate_xmm_reg, ZMMReg) 54 55 /* YMMH format is the same as XMM, but for bits 128-255 */ 56 static const VMStateDescription vmstate_ymmh_reg = { 57 .name = "ymmh_reg", 58 .version_id = 1, 59 .minimum_version_id = 1, 60 .fields = (VMStateField[]) { 61 VMSTATE_UINT64(ZMM_Q(2), ZMMReg), 62 VMSTATE_UINT64(ZMM_Q(3), ZMMReg), 63 VMSTATE_END_OF_LIST() 64 } 65 }; 66 67 #define VMSTATE_YMMH_REGS_VARS(_field, _state, _start, _v) \ 68 VMSTATE_STRUCT_SUB_ARRAY(_field, _state, _start, CPU_NB_REGS, _v, \ 69 vmstate_ymmh_reg, ZMMReg) 70 71 static const VMStateDescription vmstate_zmmh_reg = { 72 .name = "zmmh_reg", 73 .version_id = 1, 74 .minimum_version_id = 1, 75 .fields = (VMStateField[]) { 76 VMSTATE_UINT64(ZMM_Q(4), ZMMReg), 77 VMSTATE_UINT64(ZMM_Q(5), ZMMReg), 78 VMSTATE_UINT64(ZMM_Q(6), ZMMReg), 79 VMSTATE_UINT64(ZMM_Q(7), ZMMReg), 80 VMSTATE_END_OF_LIST() 81 } 82 }; 83 84 #define VMSTATE_ZMMH_REGS_VARS(_field, _state, _start) \ 85 VMSTATE_STRUCT_SUB_ARRAY(_field, _state, _start, CPU_NB_REGS, 0, \ 86 vmstate_zmmh_reg, ZMMReg) 87 88 #ifdef TARGET_X86_64 89 static const VMStateDescription vmstate_hi16_zmm_reg = { 90 .name = "hi16_zmm_reg", 91 .version_id = 1, 92 .minimum_version_id = 1, 93 .fields = (VMStateField[]) { 94 VMSTATE_UINT64(ZMM_Q(0), ZMMReg), 95 VMSTATE_UINT64(ZMM_Q(1), ZMMReg), 96 VMSTATE_UINT64(ZMM_Q(2), ZMMReg), 97 VMSTATE_UINT64(ZMM_Q(3), ZMMReg), 98 VMSTATE_UINT64(ZMM_Q(4), ZMMReg), 99 VMSTATE_UINT64(ZMM_Q(5), ZMMReg), 100 VMSTATE_UINT64(ZMM_Q(6), ZMMReg), 101 VMSTATE_UINT64(ZMM_Q(7), ZMMReg), 102 VMSTATE_END_OF_LIST() 103 } 104 }; 105 106 #define VMSTATE_Hi16_ZMM_REGS_VARS(_field, _state, _start) \ 107 VMSTATE_STRUCT_SUB_ARRAY(_field, _state, _start, CPU_NB_REGS, 0, \ 108 vmstate_hi16_zmm_reg, ZMMReg) 109 #endif 110 111 static const VMStateDescription vmstate_bnd_regs = { 112 .name = "bnd_regs", 113 .version_id = 1, 114 .minimum_version_id = 1, 115 .fields = (VMStateField[]) { 116 VMSTATE_UINT64(lb, BNDReg), 117 VMSTATE_UINT64(ub, BNDReg), 118 VMSTATE_END_OF_LIST() 119 } 120 }; 121 122 #define VMSTATE_BND_REGS(_field, _state, _n) \ 123 VMSTATE_STRUCT_ARRAY(_field, _state, _n, 0, vmstate_bnd_regs, BNDReg) 124 125 static const VMStateDescription vmstate_mtrr_var = { 126 .name = "mtrr_var", 127 .version_id = 1, 128 .minimum_version_id = 1, 129 .fields = (VMStateField[]) { 130 VMSTATE_UINT64(base, MTRRVar), 131 VMSTATE_UINT64(mask, MTRRVar), 132 VMSTATE_END_OF_LIST() 133 } 134 }; 135 136 #define VMSTATE_MTRR_VARS(_field, _state, _n, _v) \ 137 VMSTATE_STRUCT_ARRAY(_field, _state, _n, _v, vmstate_mtrr_var, MTRRVar) 138 139 typedef struct x86_FPReg_tmp { 140 FPReg *parent; 141 uint64_t tmp_mant; 142 uint16_t tmp_exp; 143 } x86_FPReg_tmp; 144 145 static void cpu_get_fp80(uint64_t *pmant, uint16_t *pexp, floatx80 f) 146 { 147 CPU_LDoubleU temp; 148 149 temp.d = f; 150 *pmant = temp.l.lower; 151 *pexp = temp.l.upper; 152 } 153 154 static floatx80 cpu_set_fp80(uint64_t mant, uint16_t upper) 155 { 156 CPU_LDoubleU temp; 157 158 temp.l.upper = upper; 159 temp.l.lower = mant; 160 return temp.d; 161 } 162 163 static int fpreg_pre_save(void *opaque) 164 { 165 x86_FPReg_tmp *tmp = opaque; 166 167 /* we save the real CPU data (in case of MMX usage only 'mant' 168 contains the MMX register */ 169 cpu_get_fp80(&tmp->tmp_mant, &tmp->tmp_exp, tmp->parent->d); 170 171 return 0; 172 } 173 174 static int fpreg_post_load(void *opaque, int version) 175 { 176 x86_FPReg_tmp *tmp = opaque; 177 178 tmp->parent->d = cpu_set_fp80(tmp->tmp_mant, tmp->tmp_exp); 179 return 0; 180 } 181 182 static const VMStateDescription vmstate_fpreg_tmp = { 183 .name = "fpreg_tmp", 184 .post_load = fpreg_post_load, 185 .pre_save = fpreg_pre_save, 186 .fields = (VMStateField[]) { 187 VMSTATE_UINT64(tmp_mant, x86_FPReg_tmp), 188 VMSTATE_UINT16(tmp_exp, x86_FPReg_tmp), 189 VMSTATE_END_OF_LIST() 190 } 191 }; 192 193 static const VMStateDescription vmstate_fpreg = { 194 .name = "fpreg", 195 .fields = (VMStateField[]) { 196 VMSTATE_WITH_TMP(FPReg, x86_FPReg_tmp, vmstate_fpreg_tmp), 197 VMSTATE_END_OF_LIST() 198 } 199 }; 200 201 static int cpu_pre_save(void *opaque) 202 { 203 X86CPU *cpu = opaque; 204 CPUX86State *env = &cpu->env; 205 int i; 206 env->v_tpr = env->int_ctl & V_TPR_MASK; 207 /* FPU */ 208 env->fpus_vmstate = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11; 209 env->fptag_vmstate = 0; 210 for(i = 0; i < 8; i++) { 211 env->fptag_vmstate |= ((!env->fptags[i]) << i); 212 } 213 214 env->fpregs_format_vmstate = 0; 215 216 /* 217 * Real mode guest segments register DPL should be zero. 218 * Older KVM version were setting it wrongly. 219 * Fixing it will allow live migration to host with unrestricted guest 220 * support (otherwise the migration will fail with invalid guest state 221 * error). 222 */ 223 if (!(env->cr[0] & CR0_PE_MASK) && 224 (env->segs[R_CS].flags >> DESC_DPL_SHIFT & 3) != 0) { 225 env->segs[R_CS].flags &= ~(env->segs[R_CS].flags & DESC_DPL_MASK); 226 env->segs[R_DS].flags &= ~(env->segs[R_DS].flags & DESC_DPL_MASK); 227 env->segs[R_ES].flags &= ~(env->segs[R_ES].flags & DESC_DPL_MASK); 228 env->segs[R_FS].flags &= ~(env->segs[R_FS].flags & DESC_DPL_MASK); 229 env->segs[R_GS].flags &= ~(env->segs[R_GS].flags & DESC_DPL_MASK); 230 env->segs[R_SS].flags &= ~(env->segs[R_SS].flags & DESC_DPL_MASK); 231 } 232 233 #ifdef CONFIG_KVM 234 /* 235 * In case vCPU may have enabled VMX, we need to make sure kernel have 236 * required capabilities in order to perform migration correctly: 237 * 238 * 1) We must be able to extract vCPU nested-state from KVM. 239 * 240 * 2) In case vCPU is running in guest-mode and it has a pending exception, 241 * we must be able to determine if it's in a pending or injected state. 242 * Note that in case KVM don't have required capability to do so, 243 * a pending/injected exception will always appear as an 244 * injected exception. 245 */ 246 if (kvm_enabled() && cpu_vmx_maybe_enabled(env) && 247 (!env->nested_state || 248 (!kvm_has_exception_payload() && (env->hflags & HF_GUEST_MASK) && 249 env->exception_injected))) { 250 error_report("Guest maybe enabled nested virtualization but kernel " 251 "does not support required capabilities to save vCPU " 252 "nested state"); 253 return -EINVAL; 254 } 255 #endif 256 257 /* 258 * When vCPU is running L2 and exception is still pending, 259 * it can potentially be intercepted by L1 hypervisor. 260 * In contrast to an injected exception which cannot be 261 * intercepted anymore. 262 * 263 * Furthermore, when a L2 exception is intercepted by L1 264 * hypervisor, its exception payload (CR2/DR6 on #PF/#DB) 265 * should not be set yet in the respective vCPU register. 266 * Thus, in case an exception is pending, it is 267 * important to save the exception payload seperately. 268 * 269 * Therefore, if an exception is not in a pending state 270 * or vCPU is not in guest-mode, it is not important to 271 * distinguish between a pending and injected exception 272 * and we don't need to store seperately the exception payload. 273 * 274 * In order to preserve better backwards-compatible migration, 275 * convert a pending exception to an injected exception in 276 * case it is not important to distinguish between them 277 * as described above. 278 */ 279 if (env->exception_pending && !(env->hflags & HF_GUEST_MASK)) { 280 env->exception_pending = 0; 281 env->exception_injected = 1; 282 283 if (env->exception_has_payload) { 284 if (env->exception_nr == EXCP01_DB) { 285 env->dr[6] = env->exception_payload; 286 } else if (env->exception_nr == EXCP0E_PAGE) { 287 env->cr[2] = env->exception_payload; 288 } 289 } 290 } 291 292 return 0; 293 } 294 295 static int cpu_post_load(void *opaque, int version_id) 296 { 297 X86CPU *cpu = opaque; 298 CPUState *cs = CPU(cpu); 299 CPUX86State *env = &cpu->env; 300 int i; 301 302 if (env->tsc_khz && env->user_tsc_khz && 303 env->tsc_khz != env->user_tsc_khz) { 304 error_report("Mismatch between user-specified TSC frequency and " 305 "migrated TSC frequency"); 306 return -EINVAL; 307 } 308 309 if (env->fpregs_format_vmstate) { 310 error_report("Unsupported old non-softfloat CPU state"); 311 return -EINVAL; 312 } 313 /* 314 * Real mode guest segments register DPL should be zero. 315 * Older KVM version were setting it wrongly. 316 * Fixing it will allow live migration from such host that don't have 317 * restricted guest support to a host with unrestricted guest support 318 * (otherwise the migration will fail with invalid guest state 319 * error). 320 */ 321 if (!(env->cr[0] & CR0_PE_MASK) && 322 (env->segs[R_CS].flags >> DESC_DPL_SHIFT & 3) != 0) { 323 env->segs[R_CS].flags &= ~(env->segs[R_CS].flags & DESC_DPL_MASK); 324 env->segs[R_DS].flags &= ~(env->segs[R_DS].flags & DESC_DPL_MASK); 325 env->segs[R_ES].flags &= ~(env->segs[R_ES].flags & DESC_DPL_MASK); 326 env->segs[R_FS].flags &= ~(env->segs[R_FS].flags & DESC_DPL_MASK); 327 env->segs[R_GS].flags &= ~(env->segs[R_GS].flags & DESC_DPL_MASK); 328 env->segs[R_SS].flags &= ~(env->segs[R_SS].flags & DESC_DPL_MASK); 329 } 330 331 /* Older versions of QEMU incorrectly used CS.DPL as the CPL when 332 * running under KVM. This is wrong for conforming code segments. 333 * Luckily, in our implementation the CPL field of hflags is redundant 334 * and we can get the right value from the SS descriptor privilege level. 335 */ 336 env->hflags &= ~HF_CPL_MASK; 337 env->hflags |= (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; 338 339 #ifdef CONFIG_KVM 340 if ((env->hflags & HF_GUEST_MASK) && 341 (!env->nested_state || 342 !(env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE))) { 343 error_report("vCPU set in guest-mode inconsistent with " 344 "migrated kernel nested state"); 345 return -EINVAL; 346 } 347 #endif 348 349 /* 350 * There are cases that we can get valid exception_nr with both 351 * exception_pending and exception_injected being cleared. 352 * This can happen in one of the following scenarios: 353 * 1) Source is older QEMU without KVM_CAP_EXCEPTION_PAYLOAD support. 354 * 2) Source is running on kernel without KVM_CAP_EXCEPTION_PAYLOAD support. 355 * 3) "cpu/exception_info" subsection not sent because there is no exception 356 * pending or guest wasn't running L2 (See comment in cpu_pre_save()). 357 * 358 * In those cases, we can just deduce that a valid exception_nr means 359 * we can treat the exception as already injected. 360 */ 361 if ((env->exception_nr != -1) && 362 !env->exception_pending && !env->exception_injected) { 363 env->exception_injected = 1; 364 } 365 366 env->fpstt = (env->fpus_vmstate >> 11) & 7; 367 env->fpus = env->fpus_vmstate & ~0x3800; 368 env->fptag_vmstate ^= 0xff; 369 for(i = 0; i < 8; i++) { 370 env->fptags[i] = (env->fptag_vmstate >> i) & 1; 371 } 372 if (tcg_enabled()) { 373 target_ulong dr7; 374 update_fp_status(env); 375 update_mxcsr_status(env); 376 377 cpu_breakpoint_remove_all(cs, BP_CPU); 378 cpu_watchpoint_remove_all(cs, BP_CPU); 379 380 /* Indicate all breakpoints disabled, as they are, then 381 let the helper re-enable them. */ 382 dr7 = env->dr[7]; 383 env->dr[7] = dr7 & ~(DR7_GLOBAL_BP_MASK | DR7_LOCAL_BP_MASK); 384 cpu_x86_update_dr7(env, dr7); 385 } 386 tlb_flush(cs); 387 return 0; 388 } 389 390 static bool async_pf_msr_needed(void *opaque) 391 { 392 X86CPU *cpu = opaque; 393 394 return cpu->env.async_pf_en_msr != 0; 395 } 396 397 static bool async_pf_int_msr_needed(void *opaque) 398 { 399 X86CPU *cpu = opaque; 400 401 return cpu->env.async_pf_int_msr != 0; 402 } 403 404 static bool pv_eoi_msr_needed(void *opaque) 405 { 406 X86CPU *cpu = opaque; 407 408 return cpu->env.pv_eoi_en_msr != 0; 409 } 410 411 static bool steal_time_msr_needed(void *opaque) 412 { 413 X86CPU *cpu = opaque; 414 415 return cpu->env.steal_time_msr != 0; 416 } 417 418 static bool exception_info_needed(void *opaque) 419 { 420 X86CPU *cpu = opaque; 421 CPUX86State *env = &cpu->env; 422 423 /* 424 * It is important to save exception-info only in case 425 * we need to distinguish between a pending and injected 426 * exception. Which is only required in case there is a 427 * pending exception and vCPU is running L2. 428 * For more info, refer to comment in cpu_pre_save(). 429 */ 430 return env->exception_pending && (env->hflags & HF_GUEST_MASK); 431 } 432 433 static const VMStateDescription vmstate_exception_info = { 434 .name = "cpu/exception_info", 435 .version_id = 1, 436 .minimum_version_id = 1, 437 .needed = exception_info_needed, 438 .fields = (VMStateField[]) { 439 VMSTATE_UINT8(env.exception_pending, X86CPU), 440 VMSTATE_UINT8(env.exception_injected, X86CPU), 441 VMSTATE_UINT8(env.exception_has_payload, X86CPU), 442 VMSTATE_UINT64(env.exception_payload, X86CPU), 443 VMSTATE_END_OF_LIST() 444 } 445 }; 446 447 /* Poll control MSR enabled by default */ 448 static bool poll_control_msr_needed(void *opaque) 449 { 450 X86CPU *cpu = opaque; 451 452 return cpu->env.poll_control_msr != 1; 453 } 454 455 static const VMStateDescription vmstate_steal_time_msr = { 456 .name = "cpu/steal_time_msr", 457 .version_id = 1, 458 .minimum_version_id = 1, 459 .needed = steal_time_msr_needed, 460 .fields = (VMStateField[]) { 461 VMSTATE_UINT64(env.steal_time_msr, X86CPU), 462 VMSTATE_END_OF_LIST() 463 } 464 }; 465 466 static const VMStateDescription vmstate_async_pf_msr = { 467 .name = "cpu/async_pf_msr", 468 .version_id = 1, 469 .minimum_version_id = 1, 470 .needed = async_pf_msr_needed, 471 .fields = (VMStateField[]) { 472 VMSTATE_UINT64(env.async_pf_en_msr, X86CPU), 473 VMSTATE_END_OF_LIST() 474 } 475 }; 476 477 static const VMStateDescription vmstate_async_pf_int_msr = { 478 .name = "cpu/async_pf_int_msr", 479 .version_id = 1, 480 .minimum_version_id = 1, 481 .needed = async_pf_int_msr_needed, 482 .fields = (VMStateField[]) { 483 VMSTATE_UINT64(env.async_pf_int_msr, X86CPU), 484 VMSTATE_END_OF_LIST() 485 } 486 }; 487 488 static const VMStateDescription vmstate_pv_eoi_msr = { 489 .name = "cpu/async_pv_eoi_msr", 490 .version_id = 1, 491 .minimum_version_id = 1, 492 .needed = pv_eoi_msr_needed, 493 .fields = (VMStateField[]) { 494 VMSTATE_UINT64(env.pv_eoi_en_msr, X86CPU), 495 VMSTATE_END_OF_LIST() 496 } 497 }; 498 499 static const VMStateDescription vmstate_poll_control_msr = { 500 .name = "cpu/poll_control_msr", 501 .version_id = 1, 502 .minimum_version_id = 1, 503 .needed = poll_control_msr_needed, 504 .fields = (VMStateField[]) { 505 VMSTATE_UINT64(env.poll_control_msr, X86CPU), 506 VMSTATE_END_OF_LIST() 507 } 508 }; 509 510 static bool fpop_ip_dp_needed(void *opaque) 511 { 512 X86CPU *cpu = opaque; 513 CPUX86State *env = &cpu->env; 514 515 return env->fpop != 0 || env->fpip != 0 || env->fpdp != 0; 516 } 517 518 static const VMStateDescription vmstate_fpop_ip_dp = { 519 .name = "cpu/fpop_ip_dp", 520 .version_id = 1, 521 .minimum_version_id = 1, 522 .needed = fpop_ip_dp_needed, 523 .fields = (VMStateField[]) { 524 VMSTATE_UINT16(env.fpop, X86CPU), 525 VMSTATE_UINT64(env.fpip, X86CPU), 526 VMSTATE_UINT64(env.fpdp, X86CPU), 527 VMSTATE_END_OF_LIST() 528 } 529 }; 530 531 static bool tsc_adjust_needed(void *opaque) 532 { 533 X86CPU *cpu = opaque; 534 CPUX86State *env = &cpu->env; 535 536 return env->tsc_adjust != 0; 537 } 538 539 static const VMStateDescription vmstate_msr_tsc_adjust = { 540 .name = "cpu/msr_tsc_adjust", 541 .version_id = 1, 542 .minimum_version_id = 1, 543 .needed = tsc_adjust_needed, 544 .fields = (VMStateField[]) { 545 VMSTATE_UINT64(env.tsc_adjust, X86CPU), 546 VMSTATE_END_OF_LIST() 547 } 548 }; 549 550 static bool msr_smi_count_needed(void *opaque) 551 { 552 X86CPU *cpu = opaque; 553 CPUX86State *env = &cpu->env; 554 555 return cpu->migrate_smi_count && env->msr_smi_count != 0; 556 } 557 558 static const VMStateDescription vmstate_msr_smi_count = { 559 .name = "cpu/msr_smi_count", 560 .version_id = 1, 561 .minimum_version_id = 1, 562 .needed = msr_smi_count_needed, 563 .fields = (VMStateField[]) { 564 VMSTATE_UINT64(env.msr_smi_count, X86CPU), 565 VMSTATE_END_OF_LIST() 566 } 567 }; 568 569 static bool tscdeadline_needed(void *opaque) 570 { 571 X86CPU *cpu = opaque; 572 CPUX86State *env = &cpu->env; 573 574 return env->tsc_deadline != 0; 575 } 576 577 static const VMStateDescription vmstate_msr_tscdeadline = { 578 .name = "cpu/msr_tscdeadline", 579 .version_id = 1, 580 .minimum_version_id = 1, 581 .needed = tscdeadline_needed, 582 .fields = (VMStateField[]) { 583 VMSTATE_UINT64(env.tsc_deadline, X86CPU), 584 VMSTATE_END_OF_LIST() 585 } 586 }; 587 588 static bool misc_enable_needed(void *opaque) 589 { 590 X86CPU *cpu = opaque; 591 CPUX86State *env = &cpu->env; 592 593 return env->msr_ia32_misc_enable != MSR_IA32_MISC_ENABLE_DEFAULT; 594 } 595 596 static bool feature_control_needed(void *opaque) 597 { 598 X86CPU *cpu = opaque; 599 CPUX86State *env = &cpu->env; 600 601 return env->msr_ia32_feature_control != 0; 602 } 603 604 static const VMStateDescription vmstate_msr_ia32_misc_enable = { 605 .name = "cpu/msr_ia32_misc_enable", 606 .version_id = 1, 607 .minimum_version_id = 1, 608 .needed = misc_enable_needed, 609 .fields = (VMStateField[]) { 610 VMSTATE_UINT64(env.msr_ia32_misc_enable, X86CPU), 611 VMSTATE_END_OF_LIST() 612 } 613 }; 614 615 static const VMStateDescription vmstate_msr_ia32_feature_control = { 616 .name = "cpu/msr_ia32_feature_control", 617 .version_id = 1, 618 .minimum_version_id = 1, 619 .needed = feature_control_needed, 620 .fields = (VMStateField[]) { 621 VMSTATE_UINT64(env.msr_ia32_feature_control, X86CPU), 622 VMSTATE_END_OF_LIST() 623 } 624 }; 625 626 static bool pmu_enable_needed(void *opaque) 627 { 628 X86CPU *cpu = opaque; 629 CPUX86State *env = &cpu->env; 630 int i; 631 632 if (env->msr_fixed_ctr_ctrl || env->msr_global_ctrl || 633 env->msr_global_status || env->msr_global_ovf_ctrl) { 634 return true; 635 } 636 for (i = 0; i < MAX_FIXED_COUNTERS; i++) { 637 if (env->msr_fixed_counters[i]) { 638 return true; 639 } 640 } 641 for (i = 0; i < MAX_GP_COUNTERS; i++) { 642 if (env->msr_gp_counters[i] || env->msr_gp_evtsel[i]) { 643 return true; 644 } 645 } 646 647 return false; 648 } 649 650 static const VMStateDescription vmstate_msr_architectural_pmu = { 651 .name = "cpu/msr_architectural_pmu", 652 .version_id = 1, 653 .minimum_version_id = 1, 654 .needed = pmu_enable_needed, 655 .fields = (VMStateField[]) { 656 VMSTATE_UINT64(env.msr_fixed_ctr_ctrl, X86CPU), 657 VMSTATE_UINT64(env.msr_global_ctrl, X86CPU), 658 VMSTATE_UINT64(env.msr_global_status, X86CPU), 659 VMSTATE_UINT64(env.msr_global_ovf_ctrl, X86CPU), 660 VMSTATE_UINT64_ARRAY(env.msr_fixed_counters, X86CPU, MAX_FIXED_COUNTERS), 661 VMSTATE_UINT64_ARRAY(env.msr_gp_counters, X86CPU, MAX_GP_COUNTERS), 662 VMSTATE_UINT64_ARRAY(env.msr_gp_evtsel, X86CPU, MAX_GP_COUNTERS), 663 VMSTATE_END_OF_LIST() 664 } 665 }; 666 667 static bool mpx_needed(void *opaque) 668 { 669 X86CPU *cpu = opaque; 670 CPUX86State *env = &cpu->env; 671 unsigned int i; 672 673 for (i = 0; i < 4; i++) { 674 if (env->bnd_regs[i].lb || env->bnd_regs[i].ub) { 675 return true; 676 } 677 } 678 679 if (env->bndcs_regs.cfgu || env->bndcs_regs.sts) { 680 return true; 681 } 682 683 return !!env->msr_bndcfgs; 684 } 685 686 static const VMStateDescription vmstate_mpx = { 687 .name = "cpu/mpx", 688 .version_id = 1, 689 .minimum_version_id = 1, 690 .needed = mpx_needed, 691 .fields = (VMStateField[]) { 692 VMSTATE_BND_REGS(env.bnd_regs, X86CPU, 4), 693 VMSTATE_UINT64(env.bndcs_regs.cfgu, X86CPU), 694 VMSTATE_UINT64(env.bndcs_regs.sts, X86CPU), 695 VMSTATE_UINT64(env.msr_bndcfgs, X86CPU), 696 VMSTATE_END_OF_LIST() 697 } 698 }; 699 700 static bool hyperv_hypercall_enable_needed(void *opaque) 701 { 702 X86CPU *cpu = opaque; 703 CPUX86State *env = &cpu->env; 704 705 return env->msr_hv_hypercall != 0 || env->msr_hv_guest_os_id != 0; 706 } 707 708 static const VMStateDescription vmstate_msr_hyperv_hypercall = { 709 .name = "cpu/msr_hyperv_hypercall", 710 .version_id = 1, 711 .minimum_version_id = 1, 712 .needed = hyperv_hypercall_enable_needed, 713 .fields = (VMStateField[]) { 714 VMSTATE_UINT64(env.msr_hv_guest_os_id, X86CPU), 715 VMSTATE_UINT64(env.msr_hv_hypercall, X86CPU), 716 VMSTATE_END_OF_LIST() 717 } 718 }; 719 720 static bool hyperv_vapic_enable_needed(void *opaque) 721 { 722 X86CPU *cpu = opaque; 723 CPUX86State *env = &cpu->env; 724 725 return env->msr_hv_vapic != 0; 726 } 727 728 static const VMStateDescription vmstate_msr_hyperv_vapic = { 729 .name = "cpu/msr_hyperv_vapic", 730 .version_id = 1, 731 .minimum_version_id = 1, 732 .needed = hyperv_vapic_enable_needed, 733 .fields = (VMStateField[]) { 734 VMSTATE_UINT64(env.msr_hv_vapic, X86CPU), 735 VMSTATE_END_OF_LIST() 736 } 737 }; 738 739 static bool hyperv_time_enable_needed(void *opaque) 740 { 741 X86CPU *cpu = opaque; 742 CPUX86State *env = &cpu->env; 743 744 return env->msr_hv_tsc != 0; 745 } 746 747 static const VMStateDescription vmstate_msr_hyperv_time = { 748 .name = "cpu/msr_hyperv_time", 749 .version_id = 1, 750 .minimum_version_id = 1, 751 .needed = hyperv_time_enable_needed, 752 .fields = (VMStateField[]) { 753 VMSTATE_UINT64(env.msr_hv_tsc, X86CPU), 754 VMSTATE_END_OF_LIST() 755 } 756 }; 757 758 static bool hyperv_crash_enable_needed(void *opaque) 759 { 760 X86CPU *cpu = opaque; 761 CPUX86State *env = &cpu->env; 762 int i; 763 764 for (i = 0; i < HV_CRASH_PARAMS; i++) { 765 if (env->msr_hv_crash_params[i]) { 766 return true; 767 } 768 } 769 return false; 770 } 771 772 static const VMStateDescription vmstate_msr_hyperv_crash = { 773 .name = "cpu/msr_hyperv_crash", 774 .version_id = 1, 775 .minimum_version_id = 1, 776 .needed = hyperv_crash_enable_needed, 777 .fields = (VMStateField[]) { 778 VMSTATE_UINT64_ARRAY(env.msr_hv_crash_params, X86CPU, HV_CRASH_PARAMS), 779 VMSTATE_END_OF_LIST() 780 } 781 }; 782 783 static bool hyperv_runtime_enable_needed(void *opaque) 784 { 785 X86CPU *cpu = opaque; 786 CPUX86State *env = &cpu->env; 787 788 if (!hyperv_feat_enabled(cpu, HYPERV_FEAT_RUNTIME)) { 789 return false; 790 } 791 792 return env->msr_hv_runtime != 0; 793 } 794 795 static const VMStateDescription vmstate_msr_hyperv_runtime = { 796 .name = "cpu/msr_hyperv_runtime", 797 .version_id = 1, 798 .minimum_version_id = 1, 799 .needed = hyperv_runtime_enable_needed, 800 .fields = (VMStateField[]) { 801 VMSTATE_UINT64(env.msr_hv_runtime, X86CPU), 802 VMSTATE_END_OF_LIST() 803 } 804 }; 805 806 static bool hyperv_synic_enable_needed(void *opaque) 807 { 808 X86CPU *cpu = opaque; 809 CPUX86State *env = &cpu->env; 810 int i; 811 812 if (env->msr_hv_synic_control != 0 || 813 env->msr_hv_synic_evt_page != 0 || 814 env->msr_hv_synic_msg_page != 0) { 815 return true; 816 } 817 818 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { 819 if (env->msr_hv_synic_sint[i] != 0) { 820 return true; 821 } 822 } 823 824 return false; 825 } 826 827 static int hyperv_synic_post_load(void *opaque, int version_id) 828 { 829 X86CPU *cpu = opaque; 830 hyperv_x86_synic_update(cpu); 831 return 0; 832 } 833 834 static const VMStateDescription vmstate_msr_hyperv_synic = { 835 .name = "cpu/msr_hyperv_synic", 836 .version_id = 1, 837 .minimum_version_id = 1, 838 .needed = hyperv_synic_enable_needed, 839 .post_load = hyperv_synic_post_load, 840 .fields = (VMStateField[]) { 841 VMSTATE_UINT64(env.msr_hv_synic_control, X86CPU), 842 VMSTATE_UINT64(env.msr_hv_synic_evt_page, X86CPU), 843 VMSTATE_UINT64(env.msr_hv_synic_msg_page, X86CPU), 844 VMSTATE_UINT64_ARRAY(env.msr_hv_synic_sint, X86CPU, HV_SINT_COUNT), 845 VMSTATE_END_OF_LIST() 846 } 847 }; 848 849 static bool hyperv_stimer_enable_needed(void *opaque) 850 { 851 X86CPU *cpu = opaque; 852 CPUX86State *env = &cpu->env; 853 int i; 854 855 for (i = 0; i < ARRAY_SIZE(env->msr_hv_stimer_config); i++) { 856 if (env->msr_hv_stimer_config[i] || env->msr_hv_stimer_count[i]) { 857 return true; 858 } 859 } 860 return false; 861 } 862 863 static const VMStateDescription vmstate_msr_hyperv_stimer = { 864 .name = "cpu/msr_hyperv_stimer", 865 .version_id = 1, 866 .minimum_version_id = 1, 867 .needed = hyperv_stimer_enable_needed, 868 .fields = (VMStateField[]) { 869 VMSTATE_UINT64_ARRAY(env.msr_hv_stimer_config, X86CPU, 870 HV_STIMER_COUNT), 871 VMSTATE_UINT64_ARRAY(env.msr_hv_stimer_count, X86CPU, HV_STIMER_COUNT), 872 VMSTATE_END_OF_LIST() 873 } 874 }; 875 876 static bool hyperv_reenlightenment_enable_needed(void *opaque) 877 { 878 X86CPU *cpu = opaque; 879 CPUX86State *env = &cpu->env; 880 881 return env->msr_hv_reenlightenment_control != 0 || 882 env->msr_hv_tsc_emulation_control != 0 || 883 env->msr_hv_tsc_emulation_status != 0; 884 } 885 886 static int hyperv_reenlightenment_post_load(void *opaque, int version_id) 887 { 888 X86CPU *cpu = opaque; 889 CPUX86State *env = &cpu->env; 890 891 /* 892 * KVM doesn't fully support re-enlightenment notifications so we need to 893 * make sure TSC frequency doesn't change upon migration. 894 */ 895 if ((env->msr_hv_reenlightenment_control & HV_REENLIGHTENMENT_ENABLE_BIT) && 896 !env->user_tsc_khz) { 897 error_report("Guest enabled re-enlightenment notifications, " 898 "'tsc-frequency=' has to be specified"); 899 return -EINVAL; 900 } 901 902 return 0; 903 } 904 905 static const VMStateDescription vmstate_msr_hyperv_reenlightenment = { 906 .name = "cpu/msr_hyperv_reenlightenment", 907 .version_id = 1, 908 .minimum_version_id = 1, 909 .needed = hyperv_reenlightenment_enable_needed, 910 .post_load = hyperv_reenlightenment_post_load, 911 .fields = (VMStateField[]) { 912 VMSTATE_UINT64(env.msr_hv_reenlightenment_control, X86CPU), 913 VMSTATE_UINT64(env.msr_hv_tsc_emulation_control, X86CPU), 914 VMSTATE_UINT64(env.msr_hv_tsc_emulation_status, X86CPU), 915 VMSTATE_END_OF_LIST() 916 } 917 }; 918 919 static bool avx512_needed(void *opaque) 920 { 921 X86CPU *cpu = opaque; 922 CPUX86State *env = &cpu->env; 923 unsigned int i; 924 925 for (i = 0; i < NB_OPMASK_REGS; i++) { 926 if (env->opmask_regs[i]) { 927 return true; 928 } 929 } 930 931 for (i = 0; i < CPU_NB_REGS; i++) { 932 #define ENV_XMM(reg, field) (env->xmm_regs[reg].ZMM_Q(field)) 933 if (ENV_XMM(i, 4) || ENV_XMM(i, 6) || 934 ENV_XMM(i, 5) || ENV_XMM(i, 7)) { 935 return true; 936 } 937 #ifdef TARGET_X86_64 938 if (ENV_XMM(i+16, 0) || ENV_XMM(i+16, 1) || 939 ENV_XMM(i+16, 2) || ENV_XMM(i+16, 3) || 940 ENV_XMM(i+16, 4) || ENV_XMM(i+16, 5) || 941 ENV_XMM(i+16, 6) || ENV_XMM(i+16, 7)) { 942 return true; 943 } 944 #endif 945 } 946 947 return false; 948 } 949 950 static const VMStateDescription vmstate_avx512 = { 951 .name = "cpu/avx512", 952 .version_id = 1, 953 .minimum_version_id = 1, 954 .needed = avx512_needed, 955 .fields = (VMStateField[]) { 956 VMSTATE_UINT64_ARRAY(env.opmask_regs, X86CPU, NB_OPMASK_REGS), 957 VMSTATE_ZMMH_REGS_VARS(env.xmm_regs, X86CPU, 0), 958 #ifdef TARGET_X86_64 959 VMSTATE_Hi16_ZMM_REGS_VARS(env.xmm_regs, X86CPU, 16), 960 #endif 961 VMSTATE_END_OF_LIST() 962 } 963 }; 964 965 static bool xss_needed(void *opaque) 966 { 967 X86CPU *cpu = opaque; 968 CPUX86State *env = &cpu->env; 969 970 return env->xss != 0; 971 } 972 973 static const VMStateDescription vmstate_xss = { 974 .name = "cpu/xss", 975 .version_id = 1, 976 .minimum_version_id = 1, 977 .needed = xss_needed, 978 .fields = (VMStateField[]) { 979 VMSTATE_UINT64(env.xss, X86CPU), 980 VMSTATE_END_OF_LIST() 981 } 982 }; 983 984 static bool umwait_needed(void *opaque) 985 { 986 X86CPU *cpu = opaque; 987 CPUX86State *env = &cpu->env; 988 989 return env->umwait != 0; 990 } 991 992 static const VMStateDescription vmstate_umwait = { 993 .name = "cpu/umwait", 994 .version_id = 1, 995 .minimum_version_id = 1, 996 .needed = umwait_needed, 997 .fields = (VMStateField[]) { 998 VMSTATE_UINT32(env.umwait, X86CPU), 999 VMSTATE_END_OF_LIST() 1000 } 1001 }; 1002 1003 static bool pkru_needed(void *opaque) 1004 { 1005 X86CPU *cpu = opaque; 1006 CPUX86State *env = &cpu->env; 1007 1008 return env->pkru != 0; 1009 } 1010 1011 static const VMStateDescription vmstate_pkru = { 1012 .name = "cpu/pkru", 1013 .version_id = 1, 1014 .minimum_version_id = 1, 1015 .needed = pkru_needed, 1016 .fields = (VMStateField[]){ 1017 VMSTATE_UINT32(env.pkru, X86CPU), 1018 VMSTATE_END_OF_LIST() 1019 } 1020 }; 1021 1022 static bool pkrs_needed(void *opaque) 1023 { 1024 X86CPU *cpu = opaque; 1025 CPUX86State *env = &cpu->env; 1026 1027 return env->pkrs != 0; 1028 } 1029 1030 static const VMStateDescription vmstate_pkrs = { 1031 .name = "cpu/pkrs", 1032 .version_id = 1, 1033 .minimum_version_id = 1, 1034 .needed = pkrs_needed, 1035 .fields = (VMStateField[]){ 1036 VMSTATE_UINT32(env.pkrs, X86CPU), 1037 VMSTATE_END_OF_LIST() 1038 } 1039 }; 1040 1041 static bool tsc_khz_needed(void *opaque) 1042 { 1043 X86CPU *cpu = opaque; 1044 CPUX86State *env = &cpu->env; 1045 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1046 X86MachineClass *x86mc = X86_MACHINE_CLASS(mc); 1047 return env->tsc_khz && x86mc->save_tsc_khz; 1048 } 1049 1050 static const VMStateDescription vmstate_tsc_khz = { 1051 .name = "cpu/tsc_khz", 1052 .version_id = 1, 1053 .minimum_version_id = 1, 1054 .needed = tsc_khz_needed, 1055 .fields = (VMStateField[]) { 1056 VMSTATE_INT64(env.tsc_khz, X86CPU), 1057 VMSTATE_END_OF_LIST() 1058 } 1059 }; 1060 1061 #ifdef CONFIG_KVM 1062 1063 static bool vmx_vmcs12_needed(void *opaque) 1064 { 1065 struct kvm_nested_state *nested_state = opaque; 1066 return (nested_state->size > 1067 offsetof(struct kvm_nested_state, data.vmx[0].vmcs12)); 1068 } 1069 1070 static const VMStateDescription vmstate_vmx_vmcs12 = { 1071 .name = "cpu/kvm_nested_state/vmx/vmcs12", 1072 .version_id = 1, 1073 .minimum_version_id = 1, 1074 .needed = vmx_vmcs12_needed, 1075 .fields = (VMStateField[]) { 1076 VMSTATE_UINT8_ARRAY(data.vmx[0].vmcs12, 1077 struct kvm_nested_state, 1078 KVM_STATE_NESTED_VMX_VMCS_SIZE), 1079 VMSTATE_END_OF_LIST() 1080 } 1081 }; 1082 1083 static bool vmx_shadow_vmcs12_needed(void *opaque) 1084 { 1085 struct kvm_nested_state *nested_state = opaque; 1086 return (nested_state->size > 1087 offsetof(struct kvm_nested_state, data.vmx[0].shadow_vmcs12)); 1088 } 1089 1090 static const VMStateDescription vmstate_vmx_shadow_vmcs12 = { 1091 .name = "cpu/kvm_nested_state/vmx/shadow_vmcs12", 1092 .version_id = 1, 1093 .minimum_version_id = 1, 1094 .needed = vmx_shadow_vmcs12_needed, 1095 .fields = (VMStateField[]) { 1096 VMSTATE_UINT8_ARRAY(data.vmx[0].shadow_vmcs12, 1097 struct kvm_nested_state, 1098 KVM_STATE_NESTED_VMX_VMCS_SIZE), 1099 VMSTATE_END_OF_LIST() 1100 } 1101 }; 1102 1103 static bool vmx_nested_state_needed(void *opaque) 1104 { 1105 struct kvm_nested_state *nested_state = opaque; 1106 1107 return (nested_state->format == KVM_STATE_NESTED_FORMAT_VMX && 1108 nested_state->hdr.vmx.vmxon_pa != -1ull); 1109 } 1110 1111 static const VMStateDescription vmstate_vmx_nested_state = { 1112 .name = "cpu/kvm_nested_state/vmx", 1113 .version_id = 1, 1114 .minimum_version_id = 1, 1115 .needed = vmx_nested_state_needed, 1116 .fields = (VMStateField[]) { 1117 VMSTATE_U64(hdr.vmx.vmxon_pa, struct kvm_nested_state), 1118 VMSTATE_U64(hdr.vmx.vmcs12_pa, struct kvm_nested_state), 1119 VMSTATE_U16(hdr.vmx.smm.flags, struct kvm_nested_state), 1120 VMSTATE_END_OF_LIST() 1121 }, 1122 .subsections = (const VMStateDescription*[]) { 1123 &vmstate_vmx_vmcs12, 1124 &vmstate_vmx_shadow_vmcs12, 1125 NULL, 1126 } 1127 }; 1128 1129 static bool svm_nested_state_needed(void *opaque) 1130 { 1131 struct kvm_nested_state *nested_state = opaque; 1132 1133 /* 1134 * HF_GUEST_MASK and HF2_GIF_MASK are already serialized 1135 * via hflags and hflags2, all that's left is the opaque 1136 * nested state blob. 1137 */ 1138 return (nested_state->format == KVM_STATE_NESTED_FORMAT_SVM && 1139 nested_state->size > offsetof(struct kvm_nested_state, data)); 1140 } 1141 1142 static const VMStateDescription vmstate_svm_nested_state = { 1143 .name = "cpu/kvm_nested_state/svm", 1144 .version_id = 1, 1145 .minimum_version_id = 1, 1146 .needed = svm_nested_state_needed, 1147 .fields = (VMStateField[]) { 1148 VMSTATE_U64(hdr.svm.vmcb_pa, struct kvm_nested_state), 1149 VMSTATE_UINT8_ARRAY(data.svm[0].vmcb12, 1150 struct kvm_nested_state, 1151 KVM_STATE_NESTED_SVM_VMCB_SIZE), 1152 VMSTATE_END_OF_LIST() 1153 } 1154 }; 1155 1156 static bool nested_state_needed(void *opaque) 1157 { 1158 X86CPU *cpu = opaque; 1159 CPUX86State *env = &cpu->env; 1160 1161 return (env->nested_state && 1162 (vmx_nested_state_needed(env->nested_state) || 1163 svm_nested_state_needed(env->nested_state))); 1164 } 1165 1166 static int nested_state_post_load(void *opaque, int version_id) 1167 { 1168 X86CPU *cpu = opaque; 1169 CPUX86State *env = &cpu->env; 1170 struct kvm_nested_state *nested_state = env->nested_state; 1171 int min_nested_state_len = offsetof(struct kvm_nested_state, data); 1172 int max_nested_state_len = kvm_max_nested_state_length(); 1173 1174 /* 1175 * If our kernel don't support setting nested state 1176 * and we have received nested state from migration stream, 1177 * we need to fail migration 1178 */ 1179 if (max_nested_state_len <= 0) { 1180 error_report("Received nested state when kernel cannot restore it"); 1181 return -EINVAL; 1182 } 1183 1184 /* 1185 * Verify that the size of received nested_state struct 1186 * at least cover required header and is not larger 1187 * than the max size that our kernel support 1188 */ 1189 if (nested_state->size < min_nested_state_len) { 1190 error_report("Received nested state size less than min: " 1191 "len=%d, min=%d", 1192 nested_state->size, min_nested_state_len); 1193 return -EINVAL; 1194 } 1195 if (nested_state->size > max_nested_state_len) { 1196 error_report("Received unsupported nested state size: " 1197 "nested_state->size=%d, max=%d", 1198 nested_state->size, max_nested_state_len); 1199 return -EINVAL; 1200 } 1201 1202 /* Verify format is valid */ 1203 if ((nested_state->format != KVM_STATE_NESTED_FORMAT_VMX) && 1204 (nested_state->format != KVM_STATE_NESTED_FORMAT_SVM)) { 1205 error_report("Received invalid nested state format: %d", 1206 nested_state->format); 1207 return -EINVAL; 1208 } 1209 1210 return 0; 1211 } 1212 1213 static const VMStateDescription vmstate_kvm_nested_state = { 1214 .name = "cpu/kvm_nested_state", 1215 .version_id = 1, 1216 .minimum_version_id = 1, 1217 .fields = (VMStateField[]) { 1218 VMSTATE_U16(flags, struct kvm_nested_state), 1219 VMSTATE_U16(format, struct kvm_nested_state), 1220 VMSTATE_U32(size, struct kvm_nested_state), 1221 VMSTATE_END_OF_LIST() 1222 }, 1223 .subsections = (const VMStateDescription*[]) { 1224 &vmstate_vmx_nested_state, 1225 &vmstate_svm_nested_state, 1226 NULL 1227 } 1228 }; 1229 1230 static const VMStateDescription vmstate_nested_state = { 1231 .name = "cpu/nested_state", 1232 .version_id = 1, 1233 .minimum_version_id = 1, 1234 .needed = nested_state_needed, 1235 .post_load = nested_state_post_load, 1236 .fields = (VMStateField[]) { 1237 VMSTATE_STRUCT_POINTER(env.nested_state, X86CPU, 1238 vmstate_kvm_nested_state, 1239 struct kvm_nested_state), 1240 VMSTATE_END_OF_LIST() 1241 } 1242 }; 1243 1244 #endif 1245 1246 static bool mcg_ext_ctl_needed(void *opaque) 1247 { 1248 X86CPU *cpu = opaque; 1249 CPUX86State *env = &cpu->env; 1250 return cpu->enable_lmce && env->mcg_ext_ctl; 1251 } 1252 1253 static const VMStateDescription vmstate_mcg_ext_ctl = { 1254 .name = "cpu/mcg_ext_ctl", 1255 .version_id = 1, 1256 .minimum_version_id = 1, 1257 .needed = mcg_ext_ctl_needed, 1258 .fields = (VMStateField[]) { 1259 VMSTATE_UINT64(env.mcg_ext_ctl, X86CPU), 1260 VMSTATE_END_OF_LIST() 1261 } 1262 }; 1263 1264 static bool spec_ctrl_needed(void *opaque) 1265 { 1266 X86CPU *cpu = opaque; 1267 CPUX86State *env = &cpu->env; 1268 1269 return env->spec_ctrl != 0; 1270 } 1271 1272 static const VMStateDescription vmstate_spec_ctrl = { 1273 .name = "cpu/spec_ctrl", 1274 .version_id = 1, 1275 .minimum_version_id = 1, 1276 .needed = spec_ctrl_needed, 1277 .fields = (VMStateField[]){ 1278 VMSTATE_UINT64(env.spec_ctrl, X86CPU), 1279 VMSTATE_END_OF_LIST() 1280 } 1281 }; 1282 1283 static bool intel_pt_enable_needed(void *opaque) 1284 { 1285 X86CPU *cpu = opaque; 1286 CPUX86State *env = &cpu->env; 1287 int i; 1288 1289 if (env->msr_rtit_ctrl || env->msr_rtit_status || 1290 env->msr_rtit_output_base || env->msr_rtit_output_mask || 1291 env->msr_rtit_cr3_match) { 1292 return true; 1293 } 1294 1295 for (i = 0; i < MAX_RTIT_ADDRS; i++) { 1296 if (env->msr_rtit_addrs[i]) { 1297 return true; 1298 } 1299 } 1300 1301 return false; 1302 } 1303 1304 static const VMStateDescription vmstate_msr_intel_pt = { 1305 .name = "cpu/intel_pt", 1306 .version_id = 1, 1307 .minimum_version_id = 1, 1308 .needed = intel_pt_enable_needed, 1309 .fields = (VMStateField[]) { 1310 VMSTATE_UINT64(env.msr_rtit_ctrl, X86CPU), 1311 VMSTATE_UINT64(env.msr_rtit_status, X86CPU), 1312 VMSTATE_UINT64(env.msr_rtit_output_base, X86CPU), 1313 VMSTATE_UINT64(env.msr_rtit_output_mask, X86CPU), 1314 VMSTATE_UINT64(env.msr_rtit_cr3_match, X86CPU), 1315 VMSTATE_UINT64_ARRAY(env.msr_rtit_addrs, X86CPU, MAX_RTIT_ADDRS), 1316 VMSTATE_END_OF_LIST() 1317 } 1318 }; 1319 1320 static bool virt_ssbd_needed(void *opaque) 1321 { 1322 X86CPU *cpu = opaque; 1323 CPUX86State *env = &cpu->env; 1324 1325 return env->virt_ssbd != 0; 1326 } 1327 1328 static const VMStateDescription vmstate_msr_virt_ssbd = { 1329 .name = "cpu/virt_ssbd", 1330 .version_id = 1, 1331 .minimum_version_id = 1, 1332 .needed = virt_ssbd_needed, 1333 .fields = (VMStateField[]){ 1334 VMSTATE_UINT64(env.virt_ssbd, X86CPU), 1335 VMSTATE_END_OF_LIST() 1336 } 1337 }; 1338 1339 static bool svm_npt_needed(void *opaque) 1340 { 1341 X86CPU *cpu = opaque; 1342 CPUX86State *env = &cpu->env; 1343 1344 return !!(env->hflags2 & HF2_NPT_MASK); 1345 } 1346 1347 static const VMStateDescription vmstate_svm_npt = { 1348 .name = "cpu/svn_npt", 1349 .version_id = 1, 1350 .minimum_version_id = 1, 1351 .needed = svm_npt_needed, 1352 .fields = (VMStateField[]){ 1353 VMSTATE_UINT64(env.nested_cr3, X86CPU), 1354 VMSTATE_UINT32(env.nested_pg_mode, X86CPU), 1355 VMSTATE_END_OF_LIST() 1356 } 1357 }; 1358 1359 static bool svm_guest_needed(void *opaque) 1360 { 1361 X86CPU *cpu = opaque; 1362 CPUX86State *env = &cpu->env; 1363 1364 return tcg_enabled() && env->int_ctl; 1365 } 1366 1367 static const VMStateDescription vmstate_svm_guest = { 1368 .name = "cpu/svm_guest", 1369 .version_id = 1, 1370 .minimum_version_id = 1, 1371 .needed = svm_guest_needed, 1372 .fields = (VMStateField[]){ 1373 VMSTATE_UINT32(env.int_ctl, X86CPU), 1374 VMSTATE_END_OF_LIST() 1375 } 1376 }; 1377 1378 #ifndef TARGET_X86_64 1379 static bool intel_efer32_needed(void *opaque) 1380 { 1381 X86CPU *cpu = opaque; 1382 CPUX86State *env = &cpu->env; 1383 1384 return env->efer != 0; 1385 } 1386 1387 static const VMStateDescription vmstate_efer32 = { 1388 .name = "cpu/efer32", 1389 .version_id = 1, 1390 .minimum_version_id = 1, 1391 .needed = intel_efer32_needed, 1392 .fields = (VMStateField[]) { 1393 VMSTATE_UINT64(env.efer, X86CPU), 1394 VMSTATE_END_OF_LIST() 1395 } 1396 }; 1397 #endif 1398 1399 static bool msr_tsx_ctrl_needed(void *opaque) 1400 { 1401 X86CPU *cpu = opaque; 1402 CPUX86State *env = &cpu->env; 1403 1404 return env->features[FEAT_ARCH_CAPABILITIES] & ARCH_CAP_TSX_CTRL_MSR; 1405 } 1406 1407 static const VMStateDescription vmstate_msr_tsx_ctrl = { 1408 .name = "cpu/msr_tsx_ctrl", 1409 .version_id = 1, 1410 .minimum_version_id = 1, 1411 .needed = msr_tsx_ctrl_needed, 1412 .fields = (VMStateField[]) { 1413 VMSTATE_UINT32(env.tsx_ctrl, X86CPU), 1414 VMSTATE_END_OF_LIST() 1415 } 1416 }; 1417 1418 static bool intel_sgx_msrs_needed(void *opaque) 1419 { 1420 X86CPU *cpu = opaque; 1421 CPUX86State *env = &cpu->env; 1422 1423 return !!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC); 1424 } 1425 1426 static const VMStateDescription vmstate_msr_intel_sgx = { 1427 .name = "cpu/intel_sgx", 1428 .version_id = 1, 1429 .minimum_version_id = 1, 1430 .needed = intel_sgx_msrs_needed, 1431 .fields = (VMStateField[]) { 1432 VMSTATE_UINT64_ARRAY(env.msr_ia32_sgxlepubkeyhash, X86CPU, 4), 1433 VMSTATE_END_OF_LIST() 1434 } 1435 }; 1436 1437 const VMStateDescription vmstate_x86_cpu = { 1438 .name = "cpu", 1439 .version_id = 12, 1440 .minimum_version_id = 11, 1441 .pre_save = cpu_pre_save, 1442 .post_load = cpu_post_load, 1443 .fields = (VMStateField[]) { 1444 VMSTATE_UINTTL_ARRAY(env.regs, X86CPU, CPU_NB_REGS), 1445 VMSTATE_UINTTL(env.eip, X86CPU), 1446 VMSTATE_UINTTL(env.eflags, X86CPU), 1447 VMSTATE_UINT32(env.hflags, X86CPU), 1448 /* FPU */ 1449 VMSTATE_UINT16(env.fpuc, X86CPU), 1450 VMSTATE_UINT16(env.fpus_vmstate, X86CPU), 1451 VMSTATE_UINT16(env.fptag_vmstate, X86CPU), 1452 VMSTATE_UINT16(env.fpregs_format_vmstate, X86CPU), 1453 1454 VMSTATE_STRUCT_ARRAY(env.fpregs, X86CPU, 8, 0, vmstate_fpreg, FPReg), 1455 1456 VMSTATE_SEGMENT_ARRAY(env.segs, X86CPU, 6), 1457 VMSTATE_SEGMENT(env.ldt, X86CPU), 1458 VMSTATE_SEGMENT(env.tr, X86CPU), 1459 VMSTATE_SEGMENT(env.gdt, X86CPU), 1460 VMSTATE_SEGMENT(env.idt, X86CPU), 1461 1462 VMSTATE_UINT32(env.sysenter_cs, X86CPU), 1463 VMSTATE_UINTTL(env.sysenter_esp, X86CPU), 1464 VMSTATE_UINTTL(env.sysenter_eip, X86CPU), 1465 1466 VMSTATE_UINTTL(env.cr[0], X86CPU), 1467 VMSTATE_UINTTL(env.cr[2], X86CPU), 1468 VMSTATE_UINTTL(env.cr[3], X86CPU), 1469 VMSTATE_UINTTL(env.cr[4], X86CPU), 1470 VMSTATE_UINTTL_ARRAY(env.dr, X86CPU, 8), 1471 /* MMU */ 1472 VMSTATE_INT32(env.a20_mask, X86CPU), 1473 /* XMM */ 1474 VMSTATE_UINT32(env.mxcsr, X86CPU), 1475 VMSTATE_XMM_REGS(env.xmm_regs, X86CPU, 0), 1476 1477 #ifdef TARGET_X86_64 1478 VMSTATE_UINT64(env.efer, X86CPU), 1479 VMSTATE_UINT64(env.star, X86CPU), 1480 VMSTATE_UINT64(env.lstar, X86CPU), 1481 VMSTATE_UINT64(env.cstar, X86CPU), 1482 VMSTATE_UINT64(env.fmask, X86CPU), 1483 VMSTATE_UINT64(env.kernelgsbase, X86CPU), 1484 #endif 1485 VMSTATE_UINT32(env.smbase, X86CPU), 1486 1487 VMSTATE_UINT64(env.pat, X86CPU), 1488 VMSTATE_UINT32(env.hflags2, X86CPU), 1489 1490 VMSTATE_UINT64(env.vm_hsave, X86CPU), 1491 VMSTATE_UINT64(env.vm_vmcb, X86CPU), 1492 VMSTATE_UINT64(env.tsc_offset, X86CPU), 1493 VMSTATE_UINT64(env.intercept, X86CPU), 1494 VMSTATE_UINT16(env.intercept_cr_read, X86CPU), 1495 VMSTATE_UINT16(env.intercept_cr_write, X86CPU), 1496 VMSTATE_UINT16(env.intercept_dr_read, X86CPU), 1497 VMSTATE_UINT16(env.intercept_dr_write, X86CPU), 1498 VMSTATE_UINT32(env.intercept_exceptions, X86CPU), 1499 VMSTATE_UINT8(env.v_tpr, X86CPU), 1500 /* MTRRs */ 1501 VMSTATE_UINT64_ARRAY(env.mtrr_fixed, X86CPU, 11), 1502 VMSTATE_UINT64(env.mtrr_deftype, X86CPU), 1503 VMSTATE_MTRR_VARS(env.mtrr_var, X86CPU, MSR_MTRRcap_VCNT, 8), 1504 /* KVM-related states */ 1505 VMSTATE_INT32(env.interrupt_injected, X86CPU), 1506 VMSTATE_UINT32(env.mp_state, X86CPU), 1507 VMSTATE_UINT64(env.tsc, X86CPU), 1508 VMSTATE_INT32(env.exception_nr, X86CPU), 1509 VMSTATE_UINT8(env.soft_interrupt, X86CPU), 1510 VMSTATE_UINT8(env.nmi_injected, X86CPU), 1511 VMSTATE_UINT8(env.nmi_pending, X86CPU), 1512 VMSTATE_UINT8(env.has_error_code, X86CPU), 1513 VMSTATE_UINT32(env.sipi_vector, X86CPU), 1514 /* MCE */ 1515 VMSTATE_UINT64(env.mcg_cap, X86CPU), 1516 VMSTATE_UINT64(env.mcg_status, X86CPU), 1517 VMSTATE_UINT64(env.mcg_ctl, X86CPU), 1518 VMSTATE_UINT64_ARRAY(env.mce_banks, X86CPU, MCE_BANKS_DEF * 4), 1519 /* rdtscp */ 1520 VMSTATE_UINT64(env.tsc_aux, X86CPU), 1521 /* KVM pvclock msr */ 1522 VMSTATE_UINT64(env.system_time_msr, X86CPU), 1523 VMSTATE_UINT64(env.wall_clock_msr, X86CPU), 1524 /* XSAVE related fields */ 1525 VMSTATE_UINT64_V(env.xcr0, X86CPU, 12), 1526 VMSTATE_UINT64_V(env.xstate_bv, X86CPU, 12), 1527 VMSTATE_YMMH_REGS_VARS(env.xmm_regs, X86CPU, 0, 12), 1528 VMSTATE_END_OF_LIST() 1529 /* The above list is not sorted /wrt version numbers, watch out! */ 1530 }, 1531 .subsections = (const VMStateDescription*[]) { 1532 &vmstate_exception_info, 1533 &vmstate_async_pf_msr, 1534 &vmstate_async_pf_int_msr, 1535 &vmstate_pv_eoi_msr, 1536 &vmstate_steal_time_msr, 1537 &vmstate_poll_control_msr, 1538 &vmstate_fpop_ip_dp, 1539 &vmstate_msr_tsc_adjust, 1540 &vmstate_msr_tscdeadline, 1541 &vmstate_msr_ia32_misc_enable, 1542 &vmstate_msr_ia32_feature_control, 1543 &vmstate_msr_architectural_pmu, 1544 &vmstate_mpx, 1545 &vmstate_msr_hyperv_hypercall, 1546 &vmstate_msr_hyperv_vapic, 1547 &vmstate_msr_hyperv_time, 1548 &vmstate_msr_hyperv_crash, 1549 &vmstate_msr_hyperv_runtime, 1550 &vmstate_msr_hyperv_synic, 1551 &vmstate_msr_hyperv_stimer, 1552 &vmstate_msr_hyperv_reenlightenment, 1553 &vmstate_avx512, 1554 &vmstate_xss, 1555 &vmstate_umwait, 1556 &vmstate_tsc_khz, 1557 &vmstate_msr_smi_count, 1558 &vmstate_pkru, 1559 &vmstate_pkrs, 1560 &vmstate_spec_ctrl, 1561 &vmstate_mcg_ext_ctl, 1562 &vmstate_msr_intel_pt, 1563 &vmstate_msr_virt_ssbd, 1564 &vmstate_svm_npt, 1565 &vmstate_svm_guest, 1566 #ifndef TARGET_X86_64 1567 &vmstate_efer32, 1568 #endif 1569 #ifdef CONFIG_KVM 1570 &vmstate_nested_state, 1571 #endif 1572 &vmstate_msr_tsx_ctrl, 1573 &vmstate_msr_intel_sgx, 1574 NULL 1575 } 1576 }; 1577