1 /* 2 * QEMU KVM support 3 * 4 * Copyright (C) 2006-2008 Qumranet Technologies 5 * Copyright IBM, Corp. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or later. 11 * See the COPYING file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qapi/qapi-events-run-state.h" 17 #include "qapi/error.h" 18 #include "qapi/visitor.h" 19 #include <sys/ioctl.h> 20 #include <sys/utsname.h> 21 #include <sys/syscall.h> 22 23 #include <linux/kvm.h> 24 #include "standard-headers/asm-x86/kvm_para.h" 25 26 #include "cpu.h" 27 #include "host-cpu.h" 28 #include "sysemu/sysemu.h" 29 #include "sysemu/hw_accel.h" 30 #include "sysemu/kvm_int.h" 31 #include "sysemu/runstate.h" 32 #include "kvm_i386.h" 33 #include "sev.h" 34 #include "hyperv.h" 35 #include "hyperv-proto.h" 36 37 #include "exec/gdbstub.h" 38 #include "qemu/host-utils.h" 39 #include "qemu/main-loop.h" 40 #include "qemu/ratelimit.h" 41 #include "qemu/config-file.h" 42 #include "qemu/error-report.h" 43 #include "qemu/memalign.h" 44 #include "hw/i386/x86.h" 45 #include "hw/i386/apic.h" 46 #include "hw/i386/apic_internal.h" 47 #include "hw/i386/apic-msidef.h" 48 #include "hw/i386/intel_iommu.h" 49 #include "hw/i386/x86-iommu.h" 50 #include "hw/i386/e820_memory_layout.h" 51 52 #include "hw/pci/pci.h" 53 #include "hw/pci/msi.h" 54 #include "hw/pci/msix.h" 55 #include "migration/blocker.h" 56 #include "exec/memattrs.h" 57 #include "trace.h" 58 59 #include CONFIG_DEVICES 60 61 //#define DEBUG_KVM 62 63 #ifdef DEBUG_KVM 64 #define DPRINTF(fmt, ...) \ 65 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 66 #else 67 #define DPRINTF(fmt, ...) \ 68 do { } while (0) 69 #endif 70 71 /* From arch/x86/kvm/lapic.h */ 72 #define KVM_APIC_BUS_CYCLE_NS 1 73 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS) 74 75 #define MSR_KVM_WALL_CLOCK 0x11 76 #define MSR_KVM_SYSTEM_TIME 0x12 77 78 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus 79 * 255 kvm_msr_entry structs */ 80 #define MSR_BUF_SIZE 4096 81 82 static void kvm_init_msrs(X86CPU *cpu); 83 84 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 85 KVM_CAP_INFO(SET_TSS_ADDR), 86 KVM_CAP_INFO(EXT_CPUID), 87 KVM_CAP_INFO(MP_STATE), 88 KVM_CAP_LAST_INFO 89 }; 90 91 static bool has_msr_star; 92 static bool has_msr_hsave_pa; 93 static bool has_msr_tsc_aux; 94 static bool has_msr_tsc_adjust; 95 static bool has_msr_tsc_deadline; 96 static bool has_msr_feature_control; 97 static bool has_msr_misc_enable; 98 static bool has_msr_smbase; 99 static bool has_msr_bndcfgs; 100 static int lm_capable_kernel; 101 static bool has_msr_hv_hypercall; 102 static bool has_msr_hv_crash; 103 static bool has_msr_hv_reset; 104 static bool has_msr_hv_vpindex; 105 static bool hv_vpindex_settable; 106 static bool has_msr_hv_runtime; 107 static bool has_msr_hv_synic; 108 static bool has_msr_hv_stimer; 109 static bool has_msr_hv_frequencies; 110 static bool has_msr_hv_reenlightenment; 111 static bool has_msr_hv_syndbg_options; 112 static bool has_msr_xss; 113 static bool has_msr_umwait; 114 static bool has_msr_spec_ctrl; 115 static bool has_tsc_scale_msr; 116 static bool has_msr_tsx_ctrl; 117 static bool has_msr_virt_ssbd; 118 static bool has_msr_smi_count; 119 static bool has_msr_arch_capabs; 120 static bool has_msr_core_capabs; 121 static bool has_msr_vmx_vmfunc; 122 static bool has_msr_ucode_rev; 123 static bool has_msr_vmx_procbased_ctls2; 124 static bool has_msr_perf_capabs; 125 static bool has_msr_pkrs; 126 127 static uint32_t has_architectural_pmu_version; 128 static uint32_t num_architectural_pmu_gp_counters; 129 static uint32_t num_architectural_pmu_fixed_counters; 130 131 static int has_xsave; 132 static int has_xsave2; 133 static int has_xcrs; 134 static int has_pit_state2; 135 static int has_sregs2; 136 static int has_exception_payload; 137 static int has_triple_fault_event; 138 139 static bool has_msr_mcg_ext_ctl; 140 141 static struct kvm_cpuid2 *cpuid_cache; 142 static struct kvm_cpuid2 *hv_cpuid_cache; 143 static struct kvm_msr_list *kvm_feature_msrs; 144 145 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES]; 146 147 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */ 148 static RateLimit bus_lock_ratelimit_ctrl; 149 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value); 150 151 int kvm_has_pit_state2(void) 152 { 153 return has_pit_state2; 154 } 155 156 bool kvm_has_smm(void) 157 { 158 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM); 159 } 160 161 bool kvm_has_adjust_clock_stable(void) 162 { 163 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); 164 165 return (ret & KVM_CLOCK_TSC_STABLE); 166 } 167 168 bool kvm_has_adjust_clock(void) 169 { 170 return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); 171 } 172 173 bool kvm_has_exception_payload(void) 174 { 175 return has_exception_payload; 176 } 177 178 static bool kvm_x2apic_api_set_flags(uint64_t flags) 179 { 180 KVMState *s = KVM_STATE(current_accel()); 181 182 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); 183 } 184 185 #define MEMORIZE(fn, _result) \ 186 ({ \ 187 static bool _memorized; \ 188 \ 189 if (_memorized) { \ 190 return _result; \ 191 } \ 192 _memorized = true; \ 193 _result = fn; \ 194 }) 195 196 static bool has_x2apic_api; 197 198 bool kvm_has_x2apic_api(void) 199 { 200 return has_x2apic_api; 201 } 202 203 bool kvm_enable_x2apic(void) 204 { 205 return MEMORIZE( 206 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | 207 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), 208 has_x2apic_api); 209 } 210 211 bool kvm_hv_vpindex_settable(void) 212 { 213 return hv_vpindex_settable; 214 } 215 216 static int kvm_get_tsc(CPUState *cs) 217 { 218 X86CPU *cpu = X86_CPU(cs); 219 CPUX86State *env = &cpu->env; 220 uint64_t value; 221 int ret; 222 223 if (env->tsc_valid) { 224 return 0; 225 } 226 227 env->tsc_valid = !runstate_is_running(); 228 229 ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value); 230 if (ret < 0) { 231 return ret; 232 } 233 234 env->tsc = value; 235 return 0; 236 } 237 238 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) 239 { 240 kvm_get_tsc(cpu); 241 } 242 243 void kvm_synchronize_all_tsc(void) 244 { 245 CPUState *cpu; 246 247 if (kvm_enabled()) { 248 CPU_FOREACH(cpu) { 249 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); 250 } 251 } 252 } 253 254 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) 255 { 256 struct kvm_cpuid2 *cpuid; 257 int r, size; 258 259 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 260 cpuid = g_malloc0(size); 261 cpuid->nent = max; 262 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); 263 if (r == 0 && cpuid->nent >= max) { 264 r = -E2BIG; 265 } 266 if (r < 0) { 267 if (r == -E2BIG) { 268 g_free(cpuid); 269 return NULL; 270 } else { 271 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", 272 strerror(-r)); 273 exit(1); 274 } 275 } 276 return cpuid; 277 } 278 279 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough 280 * for all entries. 281 */ 282 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) 283 { 284 struct kvm_cpuid2 *cpuid; 285 int max = 1; 286 287 if (cpuid_cache != NULL) { 288 return cpuid_cache; 289 } 290 while ((cpuid = try_get_cpuid(s, max)) == NULL) { 291 max *= 2; 292 } 293 cpuid_cache = cpuid; 294 return cpuid; 295 } 296 297 static bool host_tsx_broken(void) 298 { 299 int family, model, stepping;\ 300 char vendor[CPUID_VENDOR_SZ + 1]; 301 302 host_cpu_vendor_fms(vendor, &family, &model, &stepping); 303 304 /* Check if we are running on a Haswell host known to have broken TSX */ 305 return !strcmp(vendor, CPUID_VENDOR_INTEL) && 306 (family == 6) && 307 ((model == 63 && stepping < 4) || 308 model == 60 || model == 69 || model == 70); 309 } 310 311 /* Returns the value for a specific register on the cpuid entry 312 */ 313 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) 314 { 315 uint32_t ret = 0; 316 switch (reg) { 317 case R_EAX: 318 ret = entry->eax; 319 break; 320 case R_EBX: 321 ret = entry->ebx; 322 break; 323 case R_ECX: 324 ret = entry->ecx; 325 break; 326 case R_EDX: 327 ret = entry->edx; 328 break; 329 } 330 return ret; 331 } 332 333 /* Find matching entry for function/index on kvm_cpuid2 struct 334 */ 335 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, 336 uint32_t function, 337 uint32_t index) 338 { 339 int i; 340 for (i = 0; i < cpuid->nent; ++i) { 341 if (cpuid->entries[i].function == function && 342 cpuid->entries[i].index == index) { 343 return &cpuid->entries[i]; 344 } 345 } 346 /* not found: */ 347 return NULL; 348 } 349 350 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, 351 uint32_t index, int reg) 352 { 353 struct kvm_cpuid2 *cpuid; 354 uint32_t ret = 0; 355 uint32_t cpuid_1_edx; 356 uint64_t bitmask; 357 358 cpuid = get_supported_cpuid(s); 359 360 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); 361 if (entry) { 362 ret = cpuid_entry_get_reg(entry, reg); 363 } 364 365 /* Fixups for the data returned by KVM, below */ 366 367 if (function == 1 && reg == R_EDX) { 368 /* KVM before 2.6.30 misreports the following features */ 369 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; 370 } else if (function == 1 && reg == R_ECX) { 371 /* We can set the hypervisor flag, even if KVM does not return it on 372 * GET_SUPPORTED_CPUID 373 */ 374 ret |= CPUID_EXT_HYPERVISOR; 375 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it 376 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, 377 * and the irqchip is in the kernel. 378 */ 379 if (kvm_irqchip_in_kernel() && 380 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { 381 ret |= CPUID_EXT_TSC_DEADLINE_TIMER; 382 } 383 384 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled 385 * without the in-kernel irqchip 386 */ 387 if (!kvm_irqchip_in_kernel()) { 388 ret &= ~CPUID_EXT_X2APIC; 389 } 390 391 if (enable_cpu_pm) { 392 int disable_exits = kvm_check_extension(s, 393 KVM_CAP_X86_DISABLE_EXITS); 394 395 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) { 396 ret |= CPUID_EXT_MONITOR; 397 } 398 } 399 } else if (function == 6 && reg == R_EAX) { 400 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ 401 } else if (function == 7 && index == 0 && reg == R_EBX) { 402 if (host_tsx_broken()) { 403 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); 404 } 405 } else if (function == 7 && index == 0 && reg == R_EDX) { 406 /* 407 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts. 408 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is 409 * returned by KVM_GET_MSR_INDEX_LIST. 410 */ 411 if (!has_msr_arch_capabs) { 412 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES; 413 } 414 } else if (function == 0xd && index == 0 && 415 (reg == R_EAX || reg == R_EDX)) { 416 /* 417 * The value returned by KVM_GET_SUPPORTED_CPUID does not include 418 * features that still have to be enabled with the arch_prctl 419 * system call. QEMU needs the full value, which is retrieved 420 * with KVM_GET_DEVICE_ATTR. 421 */ 422 struct kvm_device_attr attr = { 423 .group = 0, 424 .attr = KVM_X86_XCOMP_GUEST_SUPP, 425 .addr = (unsigned long) &bitmask 426 }; 427 428 bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES); 429 if (!sys_attr) { 430 return ret; 431 } 432 433 int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr); 434 if (rc < 0) { 435 if (rc != -ENXIO) { 436 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) " 437 "error: %d", rc); 438 } 439 return ret; 440 } 441 ret = (reg == R_EAX) ? bitmask : bitmask >> 32; 442 } else if (function == 0x80000001 && reg == R_ECX) { 443 /* 444 * It's safe to enable TOPOEXT even if it's not returned by 445 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows 446 * us to keep CPU models including TOPOEXT runnable on older kernels. 447 */ 448 ret |= CPUID_EXT3_TOPOEXT; 449 } else if (function == 0x80000001 && reg == R_EDX) { 450 /* On Intel, kvm returns cpuid according to the Intel spec, 451 * so add missing bits according to the AMD spec: 452 */ 453 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); 454 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; 455 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { 456 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't 457 * be enabled without the in-kernel irqchip 458 */ 459 if (!kvm_irqchip_in_kernel()) { 460 ret &= ~(1U << KVM_FEATURE_PV_UNHALT); 461 } 462 if (kvm_irqchip_is_split()) { 463 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID; 464 } 465 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) { 466 ret |= 1U << KVM_HINTS_REALTIME; 467 } 468 469 return ret; 470 } 471 472 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index) 473 { 474 struct { 475 struct kvm_msrs info; 476 struct kvm_msr_entry entries[1]; 477 } msr_data = {}; 478 uint64_t value; 479 uint32_t ret, can_be_one, must_be_one; 480 481 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */ 482 return 0; 483 } 484 485 /* Check if requested MSR is supported feature MSR */ 486 int i; 487 for (i = 0; i < kvm_feature_msrs->nmsrs; i++) 488 if (kvm_feature_msrs->indices[i] == index) { 489 break; 490 } 491 if (i == kvm_feature_msrs->nmsrs) { 492 return 0; /* if the feature MSR is not supported, simply return 0 */ 493 } 494 495 msr_data.info.nmsrs = 1; 496 msr_data.entries[0].index = index; 497 498 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data); 499 if (ret != 1) { 500 error_report("KVM get MSR (index=0x%x) feature failed, %s", 501 index, strerror(-ret)); 502 exit(1); 503 } 504 505 value = msr_data.entries[0].data; 506 switch (index) { 507 case MSR_IA32_VMX_PROCBASED_CTLS2: 508 if (!has_msr_vmx_procbased_ctls2) { 509 /* KVM forgot to add these bits for some time, do this ourselves. */ 510 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) & 511 CPUID_XSAVE_XSAVES) { 512 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32; 513 } 514 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) & 515 CPUID_EXT_RDRAND) { 516 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32; 517 } 518 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 519 CPUID_7_0_EBX_INVPCID) { 520 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32; 521 } 522 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 523 CPUID_7_0_EBX_RDSEED) { 524 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32; 525 } 526 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) & 527 CPUID_EXT2_RDTSCP) { 528 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32; 529 } 530 } 531 /* fall through */ 532 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 533 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 534 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 535 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 536 /* 537 * Return true for bits that can be one, but do not have to be one. 538 * The SDM tells us which bits could have a "must be one" setting, 539 * so we can do the opposite transformation in make_vmx_msr_value. 540 */ 541 must_be_one = (uint32_t)value; 542 can_be_one = (uint32_t)(value >> 32); 543 return can_be_one & ~must_be_one; 544 545 default: 546 return value; 547 } 548 } 549 550 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, 551 int *max_banks) 552 { 553 int r; 554 555 r = kvm_check_extension(s, KVM_CAP_MCE); 556 if (r > 0) { 557 *max_banks = r; 558 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); 559 } 560 return -ENOSYS; 561 } 562 563 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) 564 { 565 CPUState *cs = CPU(cpu); 566 CPUX86State *env = &cpu->env; 567 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | 568 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; 569 uint64_t mcg_status = MCG_STATUS_MCIP; 570 int flags = 0; 571 572 if (code == BUS_MCEERR_AR) { 573 status |= MCI_STATUS_AR | 0x134; 574 mcg_status |= MCG_STATUS_RIPV | MCG_STATUS_EIPV; 575 } else { 576 status |= 0xc0; 577 mcg_status |= MCG_STATUS_RIPV; 578 } 579 580 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; 581 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the 582 * guest kernel back into env->mcg_ext_ctl. 583 */ 584 cpu_synchronize_state(cs); 585 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { 586 mcg_status |= MCG_STATUS_LMCE; 587 flags = 0; 588 } 589 590 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, 591 (MCM_ADDR_PHYS << 6) | 0xc, flags); 592 } 593 594 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar) 595 { 596 MemoryFailureFlags mff = {.action_required = ar, .recursive = false}; 597 598 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action, 599 &mff); 600 } 601 602 static void hardware_memory_error(void *host_addr) 603 { 604 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true); 605 error_report("QEMU got Hardware memory error at addr %p", host_addr); 606 exit(1); 607 } 608 609 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) 610 { 611 X86CPU *cpu = X86_CPU(c); 612 CPUX86State *env = &cpu->env; 613 ram_addr_t ram_addr; 614 hwaddr paddr; 615 616 /* If we get an action required MCE, it has been injected by KVM 617 * while the VM was running. An action optional MCE instead should 618 * be coming from the main thread, which qemu_init_sigbus identifies 619 * as the "early kill" thread. 620 */ 621 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); 622 623 if ((env->mcg_cap & MCG_SER_P) && addr) { 624 ram_addr = qemu_ram_addr_from_host(addr); 625 if (ram_addr != RAM_ADDR_INVALID && 626 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { 627 kvm_hwpoison_page_add(ram_addr); 628 kvm_mce_inject(cpu, paddr, code); 629 630 /* 631 * Use different logging severity based on error type. 632 * If there is additional MCE reporting on the hypervisor, QEMU VA 633 * could be another source to identify the PA and MCE details. 634 */ 635 if (code == BUS_MCEERR_AR) { 636 error_report("Guest MCE Memory Error at QEMU addr %p and " 637 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 638 addr, paddr, "BUS_MCEERR_AR"); 639 } else { 640 warn_report("Guest MCE Memory Error at QEMU addr %p and " 641 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 642 addr, paddr, "BUS_MCEERR_AO"); 643 } 644 645 return; 646 } 647 648 if (code == BUS_MCEERR_AO) { 649 warn_report("Hardware memory error at addr %p of type %s " 650 "for memory used by QEMU itself instead of guest system!", 651 addr, "BUS_MCEERR_AO"); 652 } 653 } 654 655 if (code == BUS_MCEERR_AR) { 656 hardware_memory_error(addr); 657 } 658 659 /* Hope we are lucky for AO MCE, just notify a event */ 660 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false); 661 } 662 663 static void kvm_reset_exception(CPUX86State *env) 664 { 665 env->exception_nr = -1; 666 env->exception_pending = 0; 667 env->exception_injected = 0; 668 env->exception_has_payload = false; 669 env->exception_payload = 0; 670 } 671 672 static void kvm_queue_exception(CPUX86State *env, 673 int32_t exception_nr, 674 uint8_t exception_has_payload, 675 uint64_t exception_payload) 676 { 677 assert(env->exception_nr == -1); 678 assert(!env->exception_pending); 679 assert(!env->exception_injected); 680 assert(!env->exception_has_payload); 681 682 env->exception_nr = exception_nr; 683 684 if (has_exception_payload) { 685 env->exception_pending = 1; 686 687 env->exception_has_payload = exception_has_payload; 688 env->exception_payload = exception_payload; 689 } else { 690 env->exception_injected = 1; 691 692 if (exception_nr == EXCP01_DB) { 693 assert(exception_has_payload); 694 env->dr[6] = exception_payload; 695 } else if (exception_nr == EXCP0E_PAGE) { 696 assert(exception_has_payload); 697 env->cr[2] = exception_payload; 698 } else { 699 assert(!exception_has_payload); 700 } 701 } 702 } 703 704 static int kvm_inject_mce_oldstyle(X86CPU *cpu) 705 { 706 CPUX86State *env = &cpu->env; 707 708 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) { 709 unsigned int bank, bank_num = env->mcg_cap & 0xff; 710 struct kvm_x86_mce mce; 711 712 kvm_reset_exception(env); 713 714 /* 715 * There must be at least one bank in use if an MCE is pending. 716 * Find it and use its values for the event injection. 717 */ 718 for (bank = 0; bank < bank_num; bank++) { 719 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { 720 break; 721 } 722 } 723 assert(bank < bank_num); 724 725 mce.bank = bank; 726 mce.status = env->mce_banks[bank * 4 + 1]; 727 mce.mcg_status = env->mcg_status; 728 mce.addr = env->mce_banks[bank * 4 + 2]; 729 mce.misc = env->mce_banks[bank * 4 + 3]; 730 731 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); 732 } 733 return 0; 734 } 735 736 static void cpu_update_state(void *opaque, bool running, RunState state) 737 { 738 CPUX86State *env = opaque; 739 740 if (running) { 741 env->tsc_valid = false; 742 } 743 } 744 745 unsigned long kvm_arch_vcpu_id(CPUState *cs) 746 { 747 X86CPU *cpu = X86_CPU(cs); 748 return cpu->apic_id; 749 } 750 751 #ifndef KVM_CPUID_SIGNATURE_NEXT 752 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 753 #endif 754 755 static bool hyperv_enabled(X86CPU *cpu) 756 { 757 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 && 758 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) || 759 cpu->hyperv_features || cpu->hyperv_passthrough); 760 } 761 762 /* 763 * Check whether target_freq is within conservative 764 * ntp correctable bounds (250ppm) of freq 765 */ 766 static inline bool freq_within_bounds(int freq, int target_freq) 767 { 768 int max_freq = freq + (freq * 250 / 1000000); 769 int min_freq = freq - (freq * 250 / 1000000); 770 771 if (target_freq >= min_freq && target_freq <= max_freq) { 772 return true; 773 } 774 775 return false; 776 } 777 778 static int kvm_arch_set_tsc_khz(CPUState *cs) 779 { 780 X86CPU *cpu = X86_CPU(cs); 781 CPUX86State *env = &cpu->env; 782 int r, cur_freq; 783 bool set_ioctl = false; 784 785 if (!env->tsc_khz) { 786 return 0; 787 } 788 789 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 790 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP; 791 792 /* 793 * If TSC scaling is supported, attempt to set TSC frequency. 794 */ 795 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) { 796 set_ioctl = true; 797 } 798 799 /* 800 * If desired TSC frequency is within bounds of NTP correction, 801 * attempt to set TSC frequency. 802 */ 803 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) { 804 set_ioctl = true; 805 } 806 807 r = set_ioctl ? 808 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : 809 -ENOTSUP; 810 811 if (r < 0) { 812 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current 813 * TSC frequency doesn't match the one we want. 814 */ 815 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 816 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 817 -ENOTSUP; 818 if (cur_freq <= 0 || cur_freq != env->tsc_khz) { 819 warn_report("TSC frequency mismatch between " 820 "VM (%" PRId64 " kHz) and host (%d kHz), " 821 "and TSC scaling unavailable", 822 env->tsc_khz, cur_freq); 823 return r; 824 } 825 } 826 827 return 0; 828 } 829 830 static bool tsc_is_stable_and_known(CPUX86State *env) 831 { 832 if (!env->tsc_khz) { 833 return false; 834 } 835 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) 836 || env->user_tsc_khz; 837 } 838 839 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1) 840 841 static struct { 842 const char *desc; 843 struct { 844 uint32_t func; 845 int reg; 846 uint32_t bits; 847 } flags[2]; 848 uint64_t dependencies; 849 } kvm_hyperv_properties[] = { 850 [HYPERV_FEAT_RELAXED] = { 851 .desc = "relaxed timing (hv-relaxed)", 852 .flags = { 853 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 854 .bits = HV_RELAXED_TIMING_RECOMMENDED} 855 } 856 }, 857 [HYPERV_FEAT_VAPIC] = { 858 .desc = "virtual APIC (hv-vapic)", 859 .flags = { 860 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 861 .bits = HV_APIC_ACCESS_AVAILABLE} 862 } 863 }, 864 [HYPERV_FEAT_TIME] = { 865 .desc = "clocksources (hv-time)", 866 .flags = { 867 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 868 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE} 869 } 870 }, 871 [HYPERV_FEAT_CRASH] = { 872 .desc = "crash MSRs (hv-crash)", 873 .flags = { 874 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 875 .bits = HV_GUEST_CRASH_MSR_AVAILABLE} 876 } 877 }, 878 [HYPERV_FEAT_RESET] = { 879 .desc = "reset MSR (hv-reset)", 880 .flags = { 881 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 882 .bits = HV_RESET_AVAILABLE} 883 } 884 }, 885 [HYPERV_FEAT_VPINDEX] = { 886 .desc = "VP_INDEX MSR (hv-vpindex)", 887 .flags = { 888 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 889 .bits = HV_VP_INDEX_AVAILABLE} 890 } 891 }, 892 [HYPERV_FEAT_RUNTIME] = { 893 .desc = "VP_RUNTIME MSR (hv-runtime)", 894 .flags = { 895 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 896 .bits = HV_VP_RUNTIME_AVAILABLE} 897 } 898 }, 899 [HYPERV_FEAT_SYNIC] = { 900 .desc = "synthetic interrupt controller (hv-synic)", 901 .flags = { 902 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 903 .bits = HV_SYNIC_AVAILABLE} 904 } 905 }, 906 [HYPERV_FEAT_STIMER] = { 907 .desc = "synthetic timers (hv-stimer)", 908 .flags = { 909 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 910 .bits = HV_SYNTIMERS_AVAILABLE} 911 }, 912 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME) 913 }, 914 [HYPERV_FEAT_FREQUENCIES] = { 915 .desc = "frequency MSRs (hv-frequencies)", 916 .flags = { 917 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 918 .bits = HV_ACCESS_FREQUENCY_MSRS}, 919 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 920 .bits = HV_FREQUENCY_MSRS_AVAILABLE} 921 } 922 }, 923 [HYPERV_FEAT_REENLIGHTENMENT] = { 924 .desc = "reenlightenment MSRs (hv-reenlightenment)", 925 .flags = { 926 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 927 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL} 928 } 929 }, 930 [HYPERV_FEAT_TLBFLUSH] = { 931 .desc = "paravirtualized TLB flush (hv-tlbflush)", 932 .flags = { 933 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 934 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED | 935 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 936 }, 937 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 938 }, 939 [HYPERV_FEAT_EVMCS] = { 940 .desc = "enlightened VMCS (hv-evmcs)", 941 .flags = { 942 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 943 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED} 944 }, 945 .dependencies = BIT(HYPERV_FEAT_VAPIC) 946 }, 947 [HYPERV_FEAT_IPI] = { 948 .desc = "paravirtualized IPI (hv-ipi)", 949 .flags = { 950 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 951 .bits = HV_CLUSTER_IPI_RECOMMENDED | 952 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 953 }, 954 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 955 }, 956 [HYPERV_FEAT_STIMER_DIRECT] = { 957 .desc = "direct mode synthetic timers (hv-stimer-direct)", 958 .flags = { 959 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 960 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE} 961 }, 962 .dependencies = BIT(HYPERV_FEAT_STIMER) 963 }, 964 [HYPERV_FEAT_AVIC] = { 965 .desc = "AVIC/APICv support (hv-avic/hv-apicv)", 966 .flags = { 967 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 968 .bits = HV_DEPRECATING_AEOI_RECOMMENDED} 969 } 970 }, 971 #ifdef CONFIG_SYNDBG 972 [HYPERV_FEAT_SYNDBG] = { 973 .desc = "Enable synthetic kernel debugger channel (hv-syndbg)", 974 .flags = { 975 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 976 .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE} 977 }, 978 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED) 979 }, 980 #endif 981 [HYPERV_FEAT_MSR_BITMAP] = { 982 .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)", 983 .flags = { 984 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX, 985 .bits = HV_NESTED_MSR_BITMAP} 986 } 987 }, 988 [HYPERV_FEAT_XMM_INPUT] = { 989 .desc = "XMM fast hypercall input (hv-xmm-input)", 990 .flags = { 991 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 992 .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE} 993 } 994 }, 995 [HYPERV_FEAT_TLBFLUSH_EXT] = { 996 .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)", 997 .flags = { 998 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 999 .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE} 1000 }, 1001 .dependencies = BIT(HYPERV_FEAT_TLBFLUSH) 1002 }, 1003 [HYPERV_FEAT_TLBFLUSH_DIRECT] = { 1004 .desc = "direct TLB flush (hv-tlbflush-direct)", 1005 .flags = { 1006 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX, 1007 .bits = HV_NESTED_DIRECT_FLUSH} 1008 }, 1009 .dependencies = BIT(HYPERV_FEAT_VAPIC) 1010 }, 1011 }; 1012 1013 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max, 1014 bool do_sys_ioctl) 1015 { 1016 struct kvm_cpuid2 *cpuid; 1017 int r, size; 1018 1019 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 1020 cpuid = g_malloc0(size); 1021 cpuid->nent = max; 1022 1023 if (do_sys_ioctl) { 1024 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1025 } else { 1026 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1027 } 1028 if (r == 0 && cpuid->nent >= max) { 1029 r = -E2BIG; 1030 } 1031 if (r < 0) { 1032 if (r == -E2BIG) { 1033 g_free(cpuid); 1034 return NULL; 1035 } else { 1036 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n", 1037 strerror(-r)); 1038 exit(1); 1039 } 1040 } 1041 return cpuid; 1042 } 1043 1044 /* 1045 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough 1046 * for all entries. 1047 */ 1048 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs) 1049 { 1050 struct kvm_cpuid2 *cpuid; 1051 /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */ 1052 int max = 11; 1053 int i; 1054 bool do_sys_ioctl; 1055 1056 do_sys_ioctl = 1057 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0; 1058 1059 /* 1060 * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is 1061 * unsupported, kvm_hyperv_expand_features() checks for that. 1062 */ 1063 assert(do_sys_ioctl || cs->kvm_state); 1064 1065 /* 1066 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with 1067 * -E2BIG, however, it doesn't report back the right size. Keep increasing 1068 * it and re-trying until we succeed. 1069 */ 1070 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) { 1071 max++; 1072 } 1073 1074 /* 1075 * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before 1076 * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the 1077 * information early, just check for the capability and set the bit 1078 * manually. 1079 */ 1080 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state, 1081 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1082 for (i = 0; i < cpuid->nent; i++) { 1083 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) { 1084 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1085 } 1086 } 1087 } 1088 1089 return cpuid; 1090 } 1091 1092 /* 1093 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature 1094 * leaves from KVM_CAP_HYPERV* and present MSRs data. 1095 */ 1096 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs) 1097 { 1098 X86CPU *cpu = X86_CPU(cs); 1099 struct kvm_cpuid2 *cpuid; 1100 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm; 1101 1102 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */ 1103 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries)); 1104 cpuid->nent = 2; 1105 1106 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */ 1107 entry_feat = &cpuid->entries[0]; 1108 entry_feat->function = HV_CPUID_FEATURES; 1109 1110 entry_recomm = &cpuid->entries[1]; 1111 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO; 1112 entry_recomm->ebx = cpu->hyperv_spinlock_attempts; 1113 1114 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) { 1115 entry_feat->eax |= HV_HYPERCALL_AVAILABLE; 1116 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE; 1117 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1118 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED; 1119 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED; 1120 } 1121 1122 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { 1123 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE; 1124 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE; 1125 } 1126 1127 if (has_msr_hv_frequencies) { 1128 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS; 1129 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE; 1130 } 1131 1132 if (has_msr_hv_crash) { 1133 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE; 1134 } 1135 1136 if (has_msr_hv_reenlightenment) { 1137 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL; 1138 } 1139 1140 if (has_msr_hv_reset) { 1141 entry_feat->eax |= HV_RESET_AVAILABLE; 1142 } 1143 1144 if (has_msr_hv_vpindex) { 1145 entry_feat->eax |= HV_VP_INDEX_AVAILABLE; 1146 } 1147 1148 if (has_msr_hv_runtime) { 1149 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE; 1150 } 1151 1152 if (has_msr_hv_synic) { 1153 unsigned int cap = cpu->hyperv_synic_kvm_only ? 1154 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1155 1156 if (kvm_check_extension(cs->kvm_state, cap) > 0) { 1157 entry_feat->eax |= HV_SYNIC_AVAILABLE; 1158 } 1159 } 1160 1161 if (has_msr_hv_stimer) { 1162 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE; 1163 } 1164 1165 if (has_msr_hv_syndbg_options) { 1166 entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE; 1167 entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE; 1168 entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED; 1169 } 1170 1171 if (kvm_check_extension(cs->kvm_state, 1172 KVM_CAP_HYPERV_TLBFLUSH) > 0) { 1173 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED; 1174 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1175 } 1176 1177 if (kvm_check_extension(cs->kvm_state, 1178 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1179 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1180 } 1181 1182 if (kvm_check_extension(cs->kvm_state, 1183 KVM_CAP_HYPERV_SEND_IPI) > 0) { 1184 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED; 1185 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1186 } 1187 1188 return cpuid; 1189 } 1190 1191 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg) 1192 { 1193 struct kvm_cpuid_entry2 *entry; 1194 struct kvm_cpuid2 *cpuid; 1195 1196 if (hv_cpuid_cache) { 1197 cpuid = hv_cpuid_cache; 1198 } else { 1199 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) { 1200 cpuid = get_supported_hv_cpuid(cs); 1201 } else { 1202 /* 1203 * 'cs->kvm_state' may be NULL when Hyper-V features are expanded 1204 * before KVM context is created but this is only done when 1205 * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies 1206 * KVM_CAP_HYPERV_CPUID. 1207 */ 1208 assert(cs->kvm_state); 1209 1210 cpuid = get_supported_hv_cpuid_legacy(cs); 1211 } 1212 hv_cpuid_cache = cpuid; 1213 } 1214 1215 if (!cpuid) { 1216 return 0; 1217 } 1218 1219 entry = cpuid_find_entry(cpuid, func, 0); 1220 if (!entry) { 1221 return 0; 1222 } 1223 1224 return cpuid_entry_get_reg(entry, reg); 1225 } 1226 1227 static bool hyperv_feature_supported(CPUState *cs, int feature) 1228 { 1229 uint32_t func, bits; 1230 int i, reg; 1231 1232 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) { 1233 1234 func = kvm_hyperv_properties[feature].flags[i].func; 1235 reg = kvm_hyperv_properties[feature].flags[i].reg; 1236 bits = kvm_hyperv_properties[feature].flags[i].bits; 1237 1238 if (!func) { 1239 continue; 1240 } 1241 1242 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) { 1243 return false; 1244 } 1245 } 1246 1247 return true; 1248 } 1249 1250 /* Checks that all feature dependencies are enabled */ 1251 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp) 1252 { 1253 uint64_t deps; 1254 int dep_feat; 1255 1256 deps = kvm_hyperv_properties[feature].dependencies; 1257 while (deps) { 1258 dep_feat = ctz64(deps); 1259 if (!(hyperv_feat_enabled(cpu, dep_feat))) { 1260 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1261 kvm_hyperv_properties[feature].desc, 1262 kvm_hyperv_properties[dep_feat].desc); 1263 return false; 1264 } 1265 deps &= ~(1ull << dep_feat); 1266 } 1267 1268 return true; 1269 } 1270 1271 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg) 1272 { 1273 X86CPU *cpu = X86_CPU(cs); 1274 uint32_t r = 0; 1275 int i, j; 1276 1277 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) { 1278 if (!hyperv_feat_enabled(cpu, i)) { 1279 continue; 1280 } 1281 1282 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) { 1283 if (kvm_hyperv_properties[i].flags[j].func != func) { 1284 continue; 1285 } 1286 if (kvm_hyperv_properties[i].flags[j].reg != reg) { 1287 continue; 1288 } 1289 1290 r |= kvm_hyperv_properties[i].flags[j].bits; 1291 } 1292 } 1293 1294 /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */ 1295 if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) { 1296 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1297 r |= DEFAULT_EVMCS_VERSION; 1298 } 1299 } 1300 1301 return r; 1302 } 1303 1304 /* 1305 * Expand Hyper-V CPU features. In partucular, check that all the requested 1306 * features are supported by the host and the sanity of the configuration 1307 * (that all the required dependencies are included). Also, this takes care 1308 * of 'hv_passthrough' mode and fills the environment with all supported 1309 * Hyper-V features. 1310 */ 1311 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp) 1312 { 1313 CPUState *cs = CPU(cpu); 1314 Error *local_err = NULL; 1315 int feat; 1316 1317 if (!hyperv_enabled(cpu)) 1318 return true; 1319 1320 /* 1321 * When kvm_hyperv_expand_features is called at CPU feature expansion 1322 * time per-CPU kvm_state is not available yet so we can only proceed 1323 * when KVM_CAP_SYS_HYPERV_CPUID is supported. 1324 */ 1325 if (!cs->kvm_state && 1326 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID)) 1327 return true; 1328 1329 if (cpu->hyperv_passthrough) { 1330 cpu->hyperv_vendor_id[0] = 1331 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX); 1332 cpu->hyperv_vendor_id[1] = 1333 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX); 1334 cpu->hyperv_vendor_id[2] = 1335 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX); 1336 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor, 1337 sizeof(cpu->hyperv_vendor_id) + 1); 1338 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id, 1339 sizeof(cpu->hyperv_vendor_id)); 1340 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0; 1341 1342 cpu->hyperv_interface_id[0] = 1343 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX); 1344 cpu->hyperv_interface_id[1] = 1345 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX); 1346 cpu->hyperv_interface_id[2] = 1347 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX); 1348 cpu->hyperv_interface_id[3] = 1349 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX); 1350 1351 cpu->hyperv_ver_id_build = 1352 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX); 1353 cpu->hyperv_ver_id_major = 1354 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16; 1355 cpu->hyperv_ver_id_minor = 1356 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff; 1357 cpu->hyperv_ver_id_sp = 1358 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX); 1359 cpu->hyperv_ver_id_sb = 1360 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24; 1361 cpu->hyperv_ver_id_sn = 1362 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff; 1363 1364 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, 1365 R_EAX); 1366 cpu->hyperv_limits[0] = 1367 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX); 1368 cpu->hyperv_limits[1] = 1369 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX); 1370 cpu->hyperv_limits[2] = 1371 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX); 1372 1373 cpu->hyperv_spinlock_attempts = 1374 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX); 1375 1376 /* 1377 * Mark feature as enabled in 'cpu->hyperv_features' as 1378 * hv_build_cpuid_leaf() uses this info to build guest CPUIDs. 1379 */ 1380 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1381 if (hyperv_feature_supported(cs, feat)) { 1382 cpu->hyperv_features |= BIT(feat); 1383 } 1384 } 1385 } else { 1386 /* Check features availability and dependencies */ 1387 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1388 /* If the feature was not requested skip it. */ 1389 if (!hyperv_feat_enabled(cpu, feat)) { 1390 continue; 1391 } 1392 1393 /* Check if the feature is supported by KVM */ 1394 if (!hyperv_feature_supported(cs, feat)) { 1395 error_setg(errp, "Hyper-V %s is not supported by kernel", 1396 kvm_hyperv_properties[feat].desc); 1397 return false; 1398 } 1399 1400 /* Check dependencies */ 1401 if (!hv_feature_check_deps(cpu, feat, &local_err)) { 1402 error_propagate(errp, local_err); 1403 return false; 1404 } 1405 } 1406 } 1407 1408 /* Additional dependencies not covered by kvm_hyperv_properties[] */ 1409 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1410 !cpu->hyperv_synic_kvm_only && 1411 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) { 1412 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1413 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc, 1414 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc); 1415 return false; 1416 } 1417 1418 return true; 1419 } 1420 1421 /* 1422 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent. 1423 */ 1424 static int hyperv_fill_cpuids(CPUState *cs, 1425 struct kvm_cpuid_entry2 *cpuid_ent) 1426 { 1427 X86CPU *cpu = X86_CPU(cs); 1428 struct kvm_cpuid_entry2 *c; 1429 uint32_t signature[3]; 1430 uint32_t cpuid_i = 0, max_cpuid_leaf = 0; 1431 uint32_t nested_eax = 1432 hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX); 1433 1434 max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES : 1435 HV_CPUID_IMPLEMENT_LIMITS; 1436 1437 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) { 1438 max_cpuid_leaf = 1439 MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES); 1440 } 1441 1442 c = &cpuid_ent[cpuid_i++]; 1443 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS; 1444 c->eax = max_cpuid_leaf; 1445 c->ebx = cpu->hyperv_vendor_id[0]; 1446 c->ecx = cpu->hyperv_vendor_id[1]; 1447 c->edx = cpu->hyperv_vendor_id[2]; 1448 1449 c = &cpuid_ent[cpuid_i++]; 1450 c->function = HV_CPUID_INTERFACE; 1451 c->eax = cpu->hyperv_interface_id[0]; 1452 c->ebx = cpu->hyperv_interface_id[1]; 1453 c->ecx = cpu->hyperv_interface_id[2]; 1454 c->edx = cpu->hyperv_interface_id[3]; 1455 1456 c = &cpuid_ent[cpuid_i++]; 1457 c->function = HV_CPUID_VERSION; 1458 c->eax = cpu->hyperv_ver_id_build; 1459 c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 | 1460 cpu->hyperv_ver_id_minor; 1461 c->ecx = cpu->hyperv_ver_id_sp; 1462 c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 | 1463 (cpu->hyperv_ver_id_sn & 0xffffff); 1464 1465 c = &cpuid_ent[cpuid_i++]; 1466 c->function = HV_CPUID_FEATURES; 1467 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX); 1468 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX); 1469 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX); 1470 1471 /* Unconditionally required with any Hyper-V enlightenment */ 1472 c->eax |= HV_HYPERCALL_AVAILABLE; 1473 1474 /* SynIC and Vmbus devices require messages/signals hypercalls */ 1475 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1476 !cpu->hyperv_synic_kvm_only) { 1477 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS; 1478 } 1479 1480 1481 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */ 1482 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1483 1484 c = &cpuid_ent[cpuid_i++]; 1485 c->function = HV_CPUID_ENLIGHTMENT_INFO; 1486 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX); 1487 c->ebx = cpu->hyperv_spinlock_attempts; 1488 1489 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) && 1490 !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) { 1491 c->eax |= HV_APIC_ACCESS_RECOMMENDED; 1492 } 1493 1494 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) { 1495 c->eax |= HV_NO_NONARCH_CORESHARING; 1496 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) { 1497 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) & 1498 HV_NO_NONARCH_CORESHARING; 1499 } 1500 1501 c = &cpuid_ent[cpuid_i++]; 1502 c->function = HV_CPUID_IMPLEMENT_LIMITS; 1503 c->eax = cpu->hv_max_vps; 1504 c->ebx = cpu->hyperv_limits[0]; 1505 c->ecx = cpu->hyperv_limits[1]; 1506 c->edx = cpu->hyperv_limits[2]; 1507 1508 if (nested_eax) { 1509 uint32_t function; 1510 1511 /* Create zeroed 0x40000006..0x40000009 leaves */ 1512 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1; 1513 function < HV_CPUID_NESTED_FEATURES; function++) { 1514 c = &cpuid_ent[cpuid_i++]; 1515 c->function = function; 1516 } 1517 1518 c = &cpuid_ent[cpuid_i++]; 1519 c->function = HV_CPUID_NESTED_FEATURES; 1520 c->eax = nested_eax; 1521 } 1522 1523 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) { 1524 c = &cpuid_ent[cpuid_i++]; 1525 c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS; 1526 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ? 1527 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS; 1528 memcpy(signature, "Microsoft VS", 12); 1529 c->eax = 0; 1530 c->ebx = signature[0]; 1531 c->ecx = signature[1]; 1532 c->edx = signature[2]; 1533 1534 c = &cpuid_ent[cpuid_i++]; 1535 c->function = HV_CPUID_SYNDBG_INTERFACE; 1536 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12); 1537 c->eax = signature[0]; 1538 c->ebx = 0; 1539 c->ecx = 0; 1540 c->edx = 0; 1541 1542 c = &cpuid_ent[cpuid_i++]; 1543 c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES; 1544 c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING; 1545 c->ebx = 0; 1546 c->ecx = 0; 1547 c->edx = 0; 1548 } 1549 1550 return cpuid_i; 1551 } 1552 1553 static Error *hv_passthrough_mig_blocker; 1554 static Error *hv_no_nonarch_cs_mig_blocker; 1555 1556 /* Checks that the exposed eVMCS version range is supported by KVM */ 1557 static bool evmcs_version_supported(uint16_t evmcs_version, 1558 uint16_t supported_evmcs_version) 1559 { 1560 uint8_t min_version = evmcs_version & 0xff; 1561 uint8_t max_version = evmcs_version >> 8; 1562 uint8_t min_supported_version = supported_evmcs_version & 0xff; 1563 uint8_t max_supported_version = supported_evmcs_version >> 8; 1564 1565 return (min_version >= min_supported_version) && 1566 (max_version <= max_supported_version); 1567 } 1568 1569 static int hyperv_init_vcpu(X86CPU *cpu) 1570 { 1571 CPUState *cs = CPU(cpu); 1572 Error *local_err = NULL; 1573 int ret; 1574 1575 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) { 1576 error_setg(&hv_passthrough_mig_blocker, 1577 "'hv-passthrough' CPU flag prevents migration, use explicit" 1578 " set of hv-* flags instead"); 1579 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err); 1580 if (ret < 0) { 1581 error_report_err(local_err); 1582 return ret; 1583 } 1584 } 1585 1586 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO && 1587 hv_no_nonarch_cs_mig_blocker == NULL) { 1588 error_setg(&hv_no_nonarch_cs_mig_blocker, 1589 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration" 1590 " use explicit 'hv-no-nonarch-coresharing=on' instead (but" 1591 " make sure SMT is disabled and/or that vCPUs are properly" 1592 " pinned)"); 1593 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err); 1594 if (ret < 0) { 1595 error_report_err(local_err); 1596 return ret; 1597 } 1598 } 1599 1600 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) { 1601 /* 1602 * the kernel doesn't support setting vp_index; assert that its value 1603 * is in sync 1604 */ 1605 uint64_t value; 1606 1607 ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value); 1608 if (ret < 0) { 1609 return ret; 1610 } 1611 1612 if (value != hyperv_vp_index(CPU(cpu))) { 1613 error_report("kernel's vp_index != QEMU's vp_index"); 1614 return -ENXIO; 1615 } 1616 } 1617 1618 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 1619 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ? 1620 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1621 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0); 1622 if (ret < 0) { 1623 error_report("failed to turn on HyperV SynIC in KVM: %s", 1624 strerror(-ret)); 1625 return ret; 1626 } 1627 1628 if (!cpu->hyperv_synic_kvm_only) { 1629 ret = hyperv_x86_synic_add(cpu); 1630 if (ret < 0) { 1631 error_report("failed to create HyperV SynIC: %s", 1632 strerror(-ret)); 1633 return ret; 1634 } 1635 } 1636 } 1637 1638 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1639 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION; 1640 uint16_t supported_evmcs_version; 1641 1642 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0, 1643 (uintptr_t)&supported_evmcs_version); 1644 1645 /* 1646 * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs' 1647 * option sets. Note: we hardcode the maximum supported eVMCS version 1648 * to '1' as well so 'hv-evmcs' feature is migratable even when (and if) 1649 * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have 1650 * to be added. 1651 */ 1652 if (ret < 0) { 1653 error_report("Hyper-V %s is not supported by kernel", 1654 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc); 1655 return ret; 1656 } 1657 1658 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) { 1659 error_report("eVMCS version range [%d..%d] is not supported by " 1660 "kernel (supported: [%d..%d])", evmcs_version & 0xff, 1661 evmcs_version >> 8, supported_evmcs_version & 0xff, 1662 supported_evmcs_version >> 8); 1663 return -ENOTSUP; 1664 } 1665 } 1666 1667 if (cpu->hyperv_enforce_cpuid) { 1668 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1); 1669 if (ret < 0) { 1670 error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s", 1671 strerror(-ret)); 1672 return ret; 1673 } 1674 } 1675 1676 return 0; 1677 } 1678 1679 static Error *invtsc_mig_blocker; 1680 1681 #define KVM_MAX_CPUID_ENTRIES 100 1682 1683 static void kvm_init_xsave(CPUX86State *env) 1684 { 1685 if (has_xsave2) { 1686 env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096); 1687 } else if (has_xsave) { 1688 env->xsave_buf_len = sizeof(struct kvm_xsave); 1689 } else { 1690 return; 1691 } 1692 1693 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len); 1694 memset(env->xsave_buf, 0, env->xsave_buf_len); 1695 /* 1696 * The allocated storage must be large enough for all of the 1697 * possible XSAVE state components. 1698 */ 1699 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <= 1700 env->xsave_buf_len); 1701 } 1702 1703 static void kvm_init_nested_state(CPUX86State *env) 1704 { 1705 struct kvm_vmx_nested_state_hdr *vmx_hdr; 1706 uint32_t size; 1707 1708 if (!env->nested_state) { 1709 return; 1710 } 1711 1712 size = env->nested_state->size; 1713 1714 memset(env->nested_state, 0, size); 1715 env->nested_state->size = size; 1716 1717 if (cpu_has_vmx(env)) { 1718 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX; 1719 vmx_hdr = &env->nested_state->hdr.vmx; 1720 vmx_hdr->vmxon_pa = -1ull; 1721 vmx_hdr->vmcs12_pa = -1ull; 1722 } else if (cpu_has_svm(env)) { 1723 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM; 1724 } 1725 } 1726 1727 int kvm_arch_init_vcpu(CPUState *cs) 1728 { 1729 struct { 1730 struct kvm_cpuid2 cpuid; 1731 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; 1732 } cpuid_data; 1733 /* 1734 * The kernel defines these structs with padding fields so there 1735 * should be no extra padding in our cpuid_data struct. 1736 */ 1737 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) != 1738 sizeof(struct kvm_cpuid2) + 1739 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES); 1740 1741 X86CPU *cpu = X86_CPU(cs); 1742 CPUX86State *env = &cpu->env; 1743 uint32_t limit, i, j, cpuid_i; 1744 uint32_t unused; 1745 struct kvm_cpuid_entry2 *c; 1746 uint32_t signature[3]; 1747 int kvm_base = KVM_CPUID_SIGNATURE; 1748 int max_nested_state_len; 1749 int r; 1750 Error *local_err = NULL; 1751 1752 memset(&cpuid_data, 0, sizeof(cpuid_data)); 1753 1754 cpuid_i = 0; 1755 1756 has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2); 1757 1758 r = kvm_arch_set_tsc_khz(cs); 1759 if (r < 0) { 1760 return r; 1761 } 1762 1763 /* vcpu's TSC frequency is either specified by user, or following 1764 * the value used by KVM if the former is not present. In the 1765 * latter case, we query it from KVM and record in env->tsc_khz, 1766 * so that vcpu's TSC frequency can be migrated later via this field. 1767 */ 1768 if (!env->tsc_khz) { 1769 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 1770 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 1771 -ENOTSUP; 1772 if (r > 0) { 1773 env->tsc_khz = r; 1774 } 1775 } 1776 1777 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY; 1778 1779 /* 1780 * kvm_hyperv_expand_features() is called here for the second time in case 1781 * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle 1782 * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to 1783 * check which Hyper-V enlightenments are supported and which are not, we 1784 * can still proceed and check/expand Hyper-V enlightenments here so legacy 1785 * behavior is preserved. 1786 */ 1787 if (!kvm_hyperv_expand_features(cpu, &local_err)) { 1788 error_report_err(local_err); 1789 return -ENOSYS; 1790 } 1791 1792 if (hyperv_enabled(cpu)) { 1793 r = hyperv_init_vcpu(cpu); 1794 if (r) { 1795 return r; 1796 } 1797 1798 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries); 1799 kvm_base = KVM_CPUID_SIGNATURE_NEXT; 1800 has_msr_hv_hypercall = true; 1801 } 1802 1803 if (cpu->expose_kvm) { 1804 memcpy(signature, "KVMKVMKVM\0\0\0", 12); 1805 c = &cpuid_data.entries[cpuid_i++]; 1806 c->function = KVM_CPUID_SIGNATURE | kvm_base; 1807 c->eax = KVM_CPUID_FEATURES | kvm_base; 1808 c->ebx = signature[0]; 1809 c->ecx = signature[1]; 1810 c->edx = signature[2]; 1811 1812 c = &cpuid_data.entries[cpuid_i++]; 1813 c->function = KVM_CPUID_FEATURES | kvm_base; 1814 c->eax = env->features[FEAT_KVM]; 1815 c->edx = env->features[FEAT_KVM_HINTS]; 1816 } 1817 1818 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); 1819 1820 if (cpu->kvm_pv_enforce_cpuid) { 1821 r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1); 1822 if (r < 0) { 1823 fprintf(stderr, 1824 "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s", 1825 strerror(-r)); 1826 abort(); 1827 } 1828 } 1829 1830 for (i = 0; i <= limit; i++) { 1831 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1832 fprintf(stderr, "unsupported level value: 0x%x\n", limit); 1833 abort(); 1834 } 1835 c = &cpuid_data.entries[cpuid_i++]; 1836 1837 switch (i) { 1838 case 2: { 1839 /* Keep reading function 2 till all the input is received */ 1840 int times; 1841 1842 c->function = i; 1843 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | 1844 KVM_CPUID_FLAG_STATE_READ_NEXT; 1845 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1846 times = c->eax & 0xff; 1847 1848 for (j = 1; j < times; ++j) { 1849 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1850 fprintf(stderr, "cpuid_data is full, no space for " 1851 "cpuid(eax:2):eax & 0xf = 0x%x\n", times); 1852 abort(); 1853 } 1854 c = &cpuid_data.entries[cpuid_i++]; 1855 c->function = i; 1856 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; 1857 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1858 } 1859 break; 1860 } 1861 case 0x1f: 1862 if (env->nr_dies < 2) { 1863 break; 1864 } 1865 /* fallthrough */ 1866 case 4: 1867 case 0xb: 1868 case 0xd: 1869 for (j = 0; ; j++) { 1870 if (i == 0xd && j == 64) { 1871 break; 1872 } 1873 1874 if (i == 0x1f && j == 64) { 1875 break; 1876 } 1877 1878 c->function = i; 1879 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1880 c->index = j; 1881 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1882 1883 if (i == 4 && c->eax == 0) { 1884 break; 1885 } 1886 if (i == 0xb && !(c->ecx & 0xff00)) { 1887 break; 1888 } 1889 if (i == 0x1f && !(c->ecx & 0xff00)) { 1890 break; 1891 } 1892 if (i == 0xd && c->eax == 0) { 1893 continue; 1894 } 1895 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1896 fprintf(stderr, "cpuid_data is full, no space for " 1897 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 1898 abort(); 1899 } 1900 c = &cpuid_data.entries[cpuid_i++]; 1901 } 1902 break; 1903 case 0x7: 1904 case 0x12: 1905 for (j = 0; ; j++) { 1906 c->function = i; 1907 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1908 c->index = j; 1909 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1910 1911 if (j > 1 && (c->eax & 0xf) != 1) { 1912 break; 1913 } 1914 1915 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1916 fprintf(stderr, "cpuid_data is full, no space for " 1917 "cpuid(eax:0x12,ecx:0x%x)\n", j); 1918 abort(); 1919 } 1920 c = &cpuid_data.entries[cpuid_i++]; 1921 } 1922 break; 1923 case 0x14: 1924 case 0x1d: 1925 case 0x1e: { 1926 uint32_t times; 1927 1928 c->function = i; 1929 c->index = 0; 1930 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1931 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1932 times = c->eax; 1933 1934 for (j = 1; j <= times; ++j) { 1935 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1936 fprintf(stderr, "cpuid_data is full, no space for " 1937 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 1938 abort(); 1939 } 1940 c = &cpuid_data.entries[cpuid_i++]; 1941 c->function = i; 1942 c->index = j; 1943 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1944 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1945 } 1946 break; 1947 } 1948 default: 1949 c->function = i; 1950 c->flags = 0; 1951 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1952 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 1953 /* 1954 * KVM already returns all zeroes if a CPUID entry is missing, 1955 * so we can omit it and avoid hitting KVM's 80-entry limit. 1956 */ 1957 cpuid_i--; 1958 } 1959 break; 1960 } 1961 } 1962 1963 if (limit >= 0x0a) { 1964 uint32_t eax, edx; 1965 1966 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx); 1967 1968 has_architectural_pmu_version = eax & 0xff; 1969 if (has_architectural_pmu_version > 0) { 1970 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8; 1971 1972 /* Shouldn't be more than 32, since that's the number of bits 1973 * available in EBX to tell us _which_ counters are available. 1974 * Play it safe. 1975 */ 1976 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) { 1977 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS; 1978 } 1979 1980 if (has_architectural_pmu_version > 1) { 1981 num_architectural_pmu_fixed_counters = edx & 0x1f; 1982 1983 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) { 1984 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS; 1985 } 1986 } 1987 } 1988 } 1989 1990 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); 1991 1992 for (i = 0x80000000; i <= limit; i++) { 1993 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1994 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); 1995 abort(); 1996 } 1997 c = &cpuid_data.entries[cpuid_i++]; 1998 1999 switch (i) { 2000 case 0x8000001d: 2001 /* Query for all AMD cache information leaves */ 2002 for (j = 0; ; j++) { 2003 c->function = i; 2004 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 2005 c->index = j; 2006 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 2007 2008 if (c->eax == 0) { 2009 break; 2010 } 2011 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2012 fprintf(stderr, "cpuid_data is full, no space for " 2013 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 2014 abort(); 2015 } 2016 c = &cpuid_data.entries[cpuid_i++]; 2017 } 2018 break; 2019 default: 2020 c->function = i; 2021 c->flags = 0; 2022 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 2023 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 2024 /* 2025 * KVM already returns all zeroes if a CPUID entry is missing, 2026 * so we can omit it and avoid hitting KVM's 80-entry limit. 2027 */ 2028 cpuid_i--; 2029 } 2030 break; 2031 } 2032 } 2033 2034 /* Call Centaur's CPUID instructions they are supported. */ 2035 if (env->cpuid_xlevel2 > 0) { 2036 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); 2037 2038 for (i = 0xC0000000; i <= limit; i++) { 2039 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2040 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); 2041 abort(); 2042 } 2043 c = &cpuid_data.entries[cpuid_i++]; 2044 2045 c->function = i; 2046 c->flags = 0; 2047 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 2048 } 2049 } 2050 2051 cpuid_data.cpuid.nent = cpuid_i; 2052 2053 if (((env->cpuid_version >> 8)&0xF) >= 6 2054 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == 2055 (CPUID_MCE | CPUID_MCA) 2056 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { 2057 uint64_t mcg_cap, unsupported_caps; 2058 int banks; 2059 int ret; 2060 2061 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); 2062 if (ret < 0) { 2063 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); 2064 return ret; 2065 } 2066 2067 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { 2068 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", 2069 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); 2070 return -ENOTSUP; 2071 } 2072 2073 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); 2074 if (unsupported_caps) { 2075 if (unsupported_caps & MCG_LMCE_P) { 2076 error_report("kvm: LMCE not supported"); 2077 return -ENOTSUP; 2078 } 2079 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64, 2080 unsupported_caps); 2081 } 2082 2083 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; 2084 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); 2085 if (ret < 0) { 2086 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); 2087 return ret; 2088 } 2089 } 2090 2091 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env); 2092 2093 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); 2094 if (c) { 2095 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || 2096 !!(c->ecx & CPUID_EXT_SMX); 2097 } 2098 2099 c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0); 2100 if (c && (c->ebx & CPUID_7_0_EBX_SGX)) { 2101 has_msr_feature_control = true; 2102 } 2103 2104 if (env->mcg_cap & MCG_LMCE_P) { 2105 has_msr_mcg_ext_ctl = has_msr_feature_control = true; 2106 } 2107 2108 if (!env->user_tsc_khz) { 2109 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && 2110 invtsc_mig_blocker == NULL) { 2111 error_setg(&invtsc_mig_blocker, 2112 "State blocked by non-migratable CPU device" 2113 " (invtsc flag)"); 2114 r = migrate_add_blocker(invtsc_mig_blocker, &local_err); 2115 if (r < 0) { 2116 error_report_err(local_err); 2117 return r; 2118 } 2119 } 2120 } 2121 2122 if (cpu->vmware_cpuid_freq 2123 /* Guests depend on 0x40000000 to detect this feature, so only expose 2124 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ 2125 && cpu->expose_kvm 2126 && kvm_base == KVM_CPUID_SIGNATURE 2127 /* TSC clock must be stable and known for this feature. */ 2128 && tsc_is_stable_and_known(env)) { 2129 2130 c = &cpuid_data.entries[cpuid_i++]; 2131 c->function = KVM_CPUID_SIGNATURE | 0x10; 2132 c->eax = env->tsc_khz; 2133 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */ 2134 c->ecx = c->edx = 0; 2135 2136 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); 2137 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); 2138 } 2139 2140 cpuid_data.cpuid.nent = cpuid_i; 2141 2142 cpuid_data.cpuid.padding = 0; 2143 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); 2144 if (r) { 2145 goto fail; 2146 } 2147 kvm_init_xsave(env); 2148 2149 max_nested_state_len = kvm_max_nested_state_length(); 2150 if (max_nested_state_len > 0) { 2151 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data)); 2152 2153 if (cpu_has_vmx(env) || cpu_has_svm(env)) { 2154 env->nested_state = g_malloc0(max_nested_state_len); 2155 env->nested_state->size = max_nested_state_len; 2156 2157 kvm_init_nested_state(env); 2158 } 2159 } 2160 2161 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); 2162 2163 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { 2164 has_msr_tsc_aux = false; 2165 } 2166 2167 kvm_init_msrs(cpu); 2168 2169 return 0; 2170 2171 fail: 2172 migrate_del_blocker(invtsc_mig_blocker); 2173 2174 return r; 2175 } 2176 2177 int kvm_arch_destroy_vcpu(CPUState *cs) 2178 { 2179 X86CPU *cpu = X86_CPU(cs); 2180 CPUX86State *env = &cpu->env; 2181 2182 g_free(env->xsave_buf); 2183 2184 g_free(cpu->kvm_msr_buf); 2185 cpu->kvm_msr_buf = NULL; 2186 2187 g_free(env->nested_state); 2188 env->nested_state = NULL; 2189 2190 qemu_del_vm_change_state_handler(cpu->vmsentry); 2191 2192 return 0; 2193 } 2194 2195 void kvm_arch_reset_vcpu(X86CPU *cpu) 2196 { 2197 CPUX86State *env = &cpu->env; 2198 2199 env->xcr0 = 1; 2200 if (kvm_irqchip_in_kernel()) { 2201 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : 2202 KVM_MP_STATE_UNINITIALIZED; 2203 } else { 2204 env->mp_state = KVM_MP_STATE_RUNNABLE; 2205 } 2206 2207 /* enabled by default */ 2208 env->poll_control_msr = 1; 2209 2210 kvm_init_nested_state(env); 2211 2212 sev_es_set_reset_vector(CPU(cpu)); 2213 } 2214 2215 void kvm_arch_after_reset_vcpu(X86CPU *cpu) 2216 { 2217 CPUX86State *env = &cpu->env; 2218 int i; 2219 2220 /* 2221 * Reset SynIC after all other devices have been reset to let them remove 2222 * their SINT routes first. 2223 */ 2224 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 2225 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { 2226 env->msr_hv_synic_sint[i] = HV_SINT_MASKED; 2227 } 2228 2229 hyperv_x86_synic_reset(cpu); 2230 } 2231 } 2232 2233 void kvm_arch_do_init_vcpu(X86CPU *cpu) 2234 { 2235 CPUX86State *env = &cpu->env; 2236 2237 /* APs get directly into wait-for-SIPI state. */ 2238 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { 2239 env->mp_state = KVM_MP_STATE_INIT_RECEIVED; 2240 } 2241 } 2242 2243 static int kvm_get_supported_feature_msrs(KVMState *s) 2244 { 2245 int ret = 0; 2246 2247 if (kvm_feature_msrs != NULL) { 2248 return 0; 2249 } 2250 2251 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) { 2252 return 0; 2253 } 2254 2255 struct kvm_msr_list msr_list; 2256 2257 msr_list.nmsrs = 0; 2258 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list); 2259 if (ret < 0 && ret != -E2BIG) { 2260 error_report("Fetch KVM feature MSR list failed: %s", 2261 strerror(-ret)); 2262 return ret; 2263 } 2264 2265 assert(msr_list.nmsrs > 0); 2266 kvm_feature_msrs = g_malloc0(sizeof(msr_list) + 2267 msr_list.nmsrs * sizeof(msr_list.indices[0])); 2268 2269 kvm_feature_msrs->nmsrs = msr_list.nmsrs; 2270 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs); 2271 2272 if (ret < 0) { 2273 error_report("Fetch KVM feature MSR list failed: %s", 2274 strerror(-ret)); 2275 g_free(kvm_feature_msrs); 2276 kvm_feature_msrs = NULL; 2277 return ret; 2278 } 2279 2280 return 0; 2281 } 2282 2283 static int kvm_get_supported_msrs(KVMState *s) 2284 { 2285 int ret = 0; 2286 struct kvm_msr_list msr_list, *kvm_msr_list; 2287 2288 /* 2289 * Obtain MSR list from KVM. These are the MSRs that we must 2290 * save/restore. 2291 */ 2292 msr_list.nmsrs = 0; 2293 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); 2294 if (ret < 0 && ret != -E2BIG) { 2295 return ret; 2296 } 2297 /* 2298 * Old kernel modules had a bug and could write beyond the provided 2299 * memory. Allocate at least a safe amount of 1K. 2300 */ 2301 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + 2302 msr_list.nmsrs * 2303 sizeof(msr_list.indices[0]))); 2304 2305 kvm_msr_list->nmsrs = msr_list.nmsrs; 2306 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); 2307 if (ret >= 0) { 2308 int i; 2309 2310 for (i = 0; i < kvm_msr_list->nmsrs; i++) { 2311 switch (kvm_msr_list->indices[i]) { 2312 case MSR_STAR: 2313 has_msr_star = true; 2314 break; 2315 case MSR_VM_HSAVE_PA: 2316 has_msr_hsave_pa = true; 2317 break; 2318 case MSR_TSC_AUX: 2319 has_msr_tsc_aux = true; 2320 break; 2321 case MSR_TSC_ADJUST: 2322 has_msr_tsc_adjust = true; 2323 break; 2324 case MSR_IA32_TSCDEADLINE: 2325 has_msr_tsc_deadline = true; 2326 break; 2327 case MSR_IA32_SMBASE: 2328 has_msr_smbase = true; 2329 break; 2330 case MSR_SMI_COUNT: 2331 has_msr_smi_count = true; 2332 break; 2333 case MSR_IA32_MISC_ENABLE: 2334 has_msr_misc_enable = true; 2335 break; 2336 case MSR_IA32_BNDCFGS: 2337 has_msr_bndcfgs = true; 2338 break; 2339 case MSR_IA32_XSS: 2340 has_msr_xss = true; 2341 break; 2342 case MSR_IA32_UMWAIT_CONTROL: 2343 has_msr_umwait = true; 2344 break; 2345 case HV_X64_MSR_CRASH_CTL: 2346 has_msr_hv_crash = true; 2347 break; 2348 case HV_X64_MSR_RESET: 2349 has_msr_hv_reset = true; 2350 break; 2351 case HV_X64_MSR_VP_INDEX: 2352 has_msr_hv_vpindex = true; 2353 break; 2354 case HV_X64_MSR_VP_RUNTIME: 2355 has_msr_hv_runtime = true; 2356 break; 2357 case HV_X64_MSR_SCONTROL: 2358 has_msr_hv_synic = true; 2359 break; 2360 case HV_X64_MSR_STIMER0_CONFIG: 2361 has_msr_hv_stimer = true; 2362 break; 2363 case HV_X64_MSR_TSC_FREQUENCY: 2364 has_msr_hv_frequencies = true; 2365 break; 2366 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 2367 has_msr_hv_reenlightenment = true; 2368 break; 2369 case HV_X64_MSR_SYNDBG_OPTIONS: 2370 has_msr_hv_syndbg_options = true; 2371 break; 2372 case MSR_IA32_SPEC_CTRL: 2373 has_msr_spec_ctrl = true; 2374 break; 2375 case MSR_AMD64_TSC_RATIO: 2376 has_tsc_scale_msr = true; 2377 break; 2378 case MSR_IA32_TSX_CTRL: 2379 has_msr_tsx_ctrl = true; 2380 break; 2381 case MSR_VIRT_SSBD: 2382 has_msr_virt_ssbd = true; 2383 break; 2384 case MSR_IA32_ARCH_CAPABILITIES: 2385 has_msr_arch_capabs = true; 2386 break; 2387 case MSR_IA32_CORE_CAPABILITY: 2388 has_msr_core_capabs = true; 2389 break; 2390 case MSR_IA32_PERF_CAPABILITIES: 2391 has_msr_perf_capabs = true; 2392 break; 2393 case MSR_IA32_VMX_VMFUNC: 2394 has_msr_vmx_vmfunc = true; 2395 break; 2396 case MSR_IA32_UCODE_REV: 2397 has_msr_ucode_rev = true; 2398 break; 2399 case MSR_IA32_VMX_PROCBASED_CTLS2: 2400 has_msr_vmx_procbased_ctls2 = true; 2401 break; 2402 case MSR_IA32_PKRS: 2403 has_msr_pkrs = true; 2404 break; 2405 } 2406 } 2407 } 2408 2409 g_free(kvm_msr_list); 2410 2411 return ret; 2412 } 2413 2414 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu, uint32_t msr, 2415 uint64_t *val) 2416 { 2417 CPUState *cs = CPU(cpu); 2418 2419 *val = cs->nr_threads * cs->nr_cores; /* thread count, bits 15..0 */ 2420 *val |= ((uint32_t)cs->nr_cores << 16); /* core count, bits 31..16 */ 2421 2422 return true; 2423 } 2424 2425 static Notifier smram_machine_done; 2426 static KVMMemoryListener smram_listener; 2427 static AddressSpace smram_address_space; 2428 static MemoryRegion smram_as_root; 2429 static MemoryRegion smram_as_mem; 2430 2431 static void register_smram_listener(Notifier *n, void *unused) 2432 { 2433 MemoryRegion *smram = 2434 (MemoryRegion *) object_resolve_path("/machine/smram", NULL); 2435 2436 /* Outer container... */ 2437 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); 2438 memory_region_set_enabled(&smram_as_root, true); 2439 2440 /* ... with two regions inside: normal system memory with low 2441 * priority, and... 2442 */ 2443 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", 2444 get_system_memory(), 0, ~0ull); 2445 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); 2446 memory_region_set_enabled(&smram_as_mem, true); 2447 2448 if (smram) { 2449 /* ... SMRAM with higher priority */ 2450 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); 2451 memory_region_set_enabled(smram, true); 2452 } 2453 2454 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); 2455 kvm_memory_listener_register(kvm_state, &smram_listener, 2456 &smram_address_space, 1, "kvm-smram"); 2457 } 2458 2459 int kvm_arch_init(MachineState *ms, KVMState *s) 2460 { 2461 uint64_t identity_base = 0xfffbc000; 2462 uint64_t shadow_mem; 2463 int ret; 2464 struct utsname utsname; 2465 Error *local_err = NULL; 2466 2467 /* 2468 * Initialize SEV context, if required 2469 * 2470 * If no memory encryption is requested (ms->cgs == NULL) this is 2471 * a no-op. 2472 * 2473 * It's also a no-op if a non-SEV confidential guest support 2474 * mechanism is selected. SEV is the only mechanism available to 2475 * select on x86 at present, so this doesn't arise, but if new 2476 * mechanisms are supported in future (e.g. TDX), they'll need 2477 * their own initialization either here or elsewhere. 2478 */ 2479 ret = sev_kvm_init(ms->cgs, &local_err); 2480 if (ret < 0) { 2481 error_report_err(local_err); 2482 return ret; 2483 } 2484 2485 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { 2486 error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM"); 2487 return -ENOTSUP; 2488 } 2489 2490 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE); 2491 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); 2492 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); 2493 has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0; 2494 2495 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX); 2496 2497 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD); 2498 if (has_exception_payload) { 2499 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true); 2500 if (ret < 0) { 2501 error_report("kvm: Failed to enable exception payload cap: %s", 2502 strerror(-ret)); 2503 return ret; 2504 } 2505 } 2506 2507 has_triple_fault_event = kvm_check_extension(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT); 2508 if (has_triple_fault_event) { 2509 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true); 2510 if (ret < 0) { 2511 error_report("kvm: Failed to enable triple fault event cap: %s", 2512 strerror(-ret)); 2513 return ret; 2514 } 2515 } 2516 2517 ret = kvm_get_supported_msrs(s); 2518 if (ret < 0) { 2519 return ret; 2520 } 2521 2522 kvm_get_supported_feature_msrs(s); 2523 2524 uname(&utsname); 2525 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; 2526 2527 /* 2528 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. 2529 * In order to use vm86 mode, an EPT identity map and a TSS are needed. 2530 * Since these must be part of guest physical memory, we need to allocate 2531 * them, both by setting their start addresses in the kernel and by 2532 * creating a corresponding e820 entry. We need 4 pages before the BIOS. 2533 * 2534 * Older KVM versions may not support setting the identity map base. In 2535 * that case we need to stick with the default, i.e. a 256K maximum BIOS 2536 * size. 2537 */ 2538 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { 2539 /* Allows up to 16M BIOSes. */ 2540 identity_base = 0xfeffc000; 2541 2542 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); 2543 if (ret < 0) { 2544 return ret; 2545 } 2546 } 2547 2548 /* Set TSS base one page after EPT identity map. */ 2549 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); 2550 if (ret < 0) { 2551 return ret; 2552 } 2553 2554 /* Tell fw_cfg to notify the BIOS to reserve the range. */ 2555 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); 2556 if (ret < 0) { 2557 fprintf(stderr, "e820_add_entry() table is full\n"); 2558 return ret; 2559 } 2560 2561 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort); 2562 if (shadow_mem != -1) { 2563 shadow_mem /= 4096; 2564 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); 2565 if (ret < 0) { 2566 return ret; 2567 } 2568 } 2569 2570 if (kvm_check_extension(s, KVM_CAP_X86_SMM) && 2571 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) && 2572 x86_machine_is_smm_enabled(X86_MACHINE(ms))) { 2573 smram_machine_done.notify = register_smram_listener; 2574 qemu_add_machine_init_done_notifier(&smram_machine_done); 2575 } 2576 2577 if (enable_cpu_pm) { 2578 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS); 2579 int ret; 2580 2581 /* Work around for kernel header with a typo. TODO: fix header and drop. */ 2582 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT) 2583 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL 2584 #endif 2585 if (disable_exits) { 2586 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT | 2587 KVM_X86_DISABLE_EXITS_HLT | 2588 KVM_X86_DISABLE_EXITS_PAUSE | 2589 KVM_X86_DISABLE_EXITS_CSTATE); 2590 } 2591 2592 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0, 2593 disable_exits); 2594 if (ret < 0) { 2595 error_report("kvm: guest stopping CPU not supported: %s", 2596 strerror(-ret)); 2597 } 2598 } 2599 2600 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) { 2601 X86MachineState *x86ms = X86_MACHINE(ms); 2602 2603 if (x86ms->bus_lock_ratelimit > 0) { 2604 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT); 2605 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) { 2606 error_report("kvm: bus lock detection unsupported"); 2607 return -ENOTSUP; 2608 } 2609 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0, 2610 KVM_BUS_LOCK_DETECTION_EXIT); 2611 if (ret < 0) { 2612 error_report("kvm: Failed to enable bus lock detection cap: %s", 2613 strerror(-ret)); 2614 return ret; 2615 } 2616 ratelimit_init(&bus_lock_ratelimit_ctrl); 2617 ratelimit_set_speed(&bus_lock_ratelimit_ctrl, 2618 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME); 2619 } 2620 } 2621 2622 if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE && 2623 kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) { 2624 uint64_t notify_window_flags = 2625 ((uint64_t)s->notify_window << 32) | 2626 KVM_X86_NOTIFY_VMEXIT_ENABLED | 2627 KVM_X86_NOTIFY_VMEXIT_USER; 2628 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0, 2629 notify_window_flags); 2630 if (ret < 0) { 2631 error_report("kvm: Failed to enable notify vmexit cap: %s", 2632 strerror(-ret)); 2633 return ret; 2634 } 2635 } 2636 if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) { 2637 bool r; 2638 2639 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0, 2640 KVM_MSR_EXIT_REASON_FILTER); 2641 if (ret) { 2642 error_report("Could not enable user space MSRs: %s", 2643 strerror(-ret)); 2644 exit(1); 2645 } 2646 2647 r = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT, 2648 kvm_rdmsr_core_thread_count, NULL); 2649 if (!r) { 2650 error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s", 2651 strerror(-ret)); 2652 exit(1); 2653 } 2654 } 2655 2656 return 0; 2657 } 2658 2659 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 2660 { 2661 lhs->selector = rhs->selector; 2662 lhs->base = rhs->base; 2663 lhs->limit = rhs->limit; 2664 lhs->type = 3; 2665 lhs->present = 1; 2666 lhs->dpl = 3; 2667 lhs->db = 0; 2668 lhs->s = 1; 2669 lhs->l = 0; 2670 lhs->g = 0; 2671 lhs->avl = 0; 2672 lhs->unusable = 0; 2673 } 2674 2675 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 2676 { 2677 unsigned flags = rhs->flags; 2678 lhs->selector = rhs->selector; 2679 lhs->base = rhs->base; 2680 lhs->limit = rhs->limit; 2681 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; 2682 lhs->present = (flags & DESC_P_MASK) != 0; 2683 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; 2684 lhs->db = (flags >> DESC_B_SHIFT) & 1; 2685 lhs->s = (flags & DESC_S_MASK) != 0; 2686 lhs->l = (flags >> DESC_L_SHIFT) & 1; 2687 lhs->g = (flags & DESC_G_MASK) != 0; 2688 lhs->avl = (flags & DESC_AVL_MASK) != 0; 2689 lhs->unusable = !lhs->present; 2690 lhs->padding = 0; 2691 } 2692 2693 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) 2694 { 2695 lhs->selector = rhs->selector; 2696 lhs->base = rhs->base; 2697 lhs->limit = rhs->limit; 2698 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | 2699 ((rhs->present && !rhs->unusable) * DESC_P_MASK) | 2700 (rhs->dpl << DESC_DPL_SHIFT) | 2701 (rhs->db << DESC_B_SHIFT) | 2702 (rhs->s * DESC_S_MASK) | 2703 (rhs->l << DESC_L_SHIFT) | 2704 (rhs->g * DESC_G_MASK) | 2705 (rhs->avl * DESC_AVL_MASK); 2706 } 2707 2708 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) 2709 { 2710 if (set) { 2711 *kvm_reg = *qemu_reg; 2712 } else { 2713 *qemu_reg = *kvm_reg; 2714 } 2715 } 2716 2717 static int kvm_getput_regs(X86CPU *cpu, int set) 2718 { 2719 CPUX86State *env = &cpu->env; 2720 struct kvm_regs regs; 2721 int ret = 0; 2722 2723 if (!set) { 2724 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); 2725 if (ret < 0) { 2726 return ret; 2727 } 2728 } 2729 2730 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); 2731 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); 2732 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); 2733 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); 2734 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); 2735 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); 2736 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); 2737 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); 2738 #ifdef TARGET_X86_64 2739 kvm_getput_reg(®s.r8, &env->regs[8], set); 2740 kvm_getput_reg(®s.r9, &env->regs[9], set); 2741 kvm_getput_reg(®s.r10, &env->regs[10], set); 2742 kvm_getput_reg(®s.r11, &env->regs[11], set); 2743 kvm_getput_reg(®s.r12, &env->regs[12], set); 2744 kvm_getput_reg(®s.r13, &env->regs[13], set); 2745 kvm_getput_reg(®s.r14, &env->regs[14], set); 2746 kvm_getput_reg(®s.r15, &env->regs[15], set); 2747 #endif 2748 2749 kvm_getput_reg(®s.rflags, &env->eflags, set); 2750 kvm_getput_reg(®s.rip, &env->eip, set); 2751 2752 if (set) { 2753 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); 2754 } 2755 2756 return ret; 2757 } 2758 2759 static int kvm_put_fpu(X86CPU *cpu) 2760 { 2761 CPUX86State *env = &cpu->env; 2762 struct kvm_fpu fpu; 2763 int i; 2764 2765 memset(&fpu, 0, sizeof fpu); 2766 fpu.fsw = env->fpus & ~(7 << 11); 2767 fpu.fsw |= (env->fpstt & 7) << 11; 2768 fpu.fcw = env->fpuc; 2769 fpu.last_opcode = env->fpop; 2770 fpu.last_ip = env->fpip; 2771 fpu.last_dp = env->fpdp; 2772 for (i = 0; i < 8; ++i) { 2773 fpu.ftwx |= (!env->fptags[i]) << i; 2774 } 2775 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); 2776 for (i = 0; i < CPU_NB_REGS; i++) { 2777 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0)); 2778 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1)); 2779 } 2780 fpu.mxcsr = env->mxcsr; 2781 2782 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); 2783 } 2784 2785 static int kvm_put_xsave(X86CPU *cpu) 2786 { 2787 CPUX86State *env = &cpu->env; 2788 void *xsave = env->xsave_buf; 2789 2790 if (!has_xsave) { 2791 return kvm_put_fpu(cpu); 2792 } 2793 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len); 2794 2795 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); 2796 } 2797 2798 static int kvm_put_xcrs(X86CPU *cpu) 2799 { 2800 CPUX86State *env = &cpu->env; 2801 struct kvm_xcrs xcrs = {}; 2802 2803 if (!has_xcrs) { 2804 return 0; 2805 } 2806 2807 xcrs.nr_xcrs = 1; 2808 xcrs.flags = 0; 2809 xcrs.xcrs[0].xcr = 0; 2810 xcrs.xcrs[0].value = env->xcr0; 2811 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); 2812 } 2813 2814 static int kvm_put_sregs(X86CPU *cpu) 2815 { 2816 CPUX86State *env = &cpu->env; 2817 struct kvm_sregs sregs; 2818 2819 /* 2820 * The interrupt_bitmap is ignored because KVM_SET_SREGS is 2821 * always followed by KVM_SET_VCPU_EVENTS. 2822 */ 2823 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); 2824 2825 if ((env->eflags & VM_MASK)) { 2826 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 2827 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 2828 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 2829 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 2830 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 2831 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 2832 } else { 2833 set_seg(&sregs.cs, &env->segs[R_CS]); 2834 set_seg(&sregs.ds, &env->segs[R_DS]); 2835 set_seg(&sregs.es, &env->segs[R_ES]); 2836 set_seg(&sregs.fs, &env->segs[R_FS]); 2837 set_seg(&sregs.gs, &env->segs[R_GS]); 2838 set_seg(&sregs.ss, &env->segs[R_SS]); 2839 } 2840 2841 set_seg(&sregs.tr, &env->tr); 2842 set_seg(&sregs.ldt, &env->ldt); 2843 2844 sregs.idt.limit = env->idt.limit; 2845 sregs.idt.base = env->idt.base; 2846 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 2847 sregs.gdt.limit = env->gdt.limit; 2848 sregs.gdt.base = env->gdt.base; 2849 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 2850 2851 sregs.cr0 = env->cr[0]; 2852 sregs.cr2 = env->cr[2]; 2853 sregs.cr3 = env->cr[3]; 2854 sregs.cr4 = env->cr[4]; 2855 2856 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 2857 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 2858 2859 sregs.efer = env->efer; 2860 2861 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); 2862 } 2863 2864 static int kvm_put_sregs2(X86CPU *cpu) 2865 { 2866 CPUX86State *env = &cpu->env; 2867 struct kvm_sregs2 sregs; 2868 int i; 2869 2870 sregs.flags = 0; 2871 2872 if ((env->eflags & VM_MASK)) { 2873 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 2874 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 2875 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 2876 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 2877 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 2878 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 2879 } else { 2880 set_seg(&sregs.cs, &env->segs[R_CS]); 2881 set_seg(&sregs.ds, &env->segs[R_DS]); 2882 set_seg(&sregs.es, &env->segs[R_ES]); 2883 set_seg(&sregs.fs, &env->segs[R_FS]); 2884 set_seg(&sregs.gs, &env->segs[R_GS]); 2885 set_seg(&sregs.ss, &env->segs[R_SS]); 2886 } 2887 2888 set_seg(&sregs.tr, &env->tr); 2889 set_seg(&sregs.ldt, &env->ldt); 2890 2891 sregs.idt.limit = env->idt.limit; 2892 sregs.idt.base = env->idt.base; 2893 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 2894 sregs.gdt.limit = env->gdt.limit; 2895 sregs.gdt.base = env->gdt.base; 2896 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 2897 2898 sregs.cr0 = env->cr[0]; 2899 sregs.cr2 = env->cr[2]; 2900 sregs.cr3 = env->cr[3]; 2901 sregs.cr4 = env->cr[4]; 2902 2903 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 2904 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 2905 2906 sregs.efer = env->efer; 2907 2908 if (env->pdptrs_valid) { 2909 for (i = 0; i < 4; i++) { 2910 sregs.pdptrs[i] = env->pdptrs[i]; 2911 } 2912 sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 2913 } 2914 2915 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs); 2916 } 2917 2918 2919 static void kvm_msr_buf_reset(X86CPU *cpu) 2920 { 2921 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); 2922 } 2923 2924 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) 2925 { 2926 struct kvm_msrs *msrs = cpu->kvm_msr_buf; 2927 void *limit = ((void *)msrs) + MSR_BUF_SIZE; 2928 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; 2929 2930 assert((void *)(entry + 1) <= limit); 2931 2932 entry->index = index; 2933 entry->reserved = 0; 2934 entry->data = value; 2935 msrs->nmsrs++; 2936 } 2937 2938 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) 2939 { 2940 kvm_msr_buf_reset(cpu); 2941 kvm_msr_entry_add(cpu, index, value); 2942 2943 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 2944 } 2945 2946 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value) 2947 { 2948 int ret; 2949 struct { 2950 struct kvm_msrs info; 2951 struct kvm_msr_entry entries[1]; 2952 } msr_data = { 2953 .info.nmsrs = 1, 2954 .entries[0].index = index, 2955 }; 2956 2957 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); 2958 if (ret < 0) { 2959 return ret; 2960 } 2961 assert(ret == 1); 2962 *value = msr_data.entries[0].data; 2963 return ret; 2964 } 2965 void kvm_put_apicbase(X86CPU *cpu, uint64_t value) 2966 { 2967 int ret; 2968 2969 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); 2970 assert(ret == 1); 2971 } 2972 2973 static int kvm_put_tscdeadline_msr(X86CPU *cpu) 2974 { 2975 CPUX86State *env = &cpu->env; 2976 int ret; 2977 2978 if (!has_msr_tsc_deadline) { 2979 return 0; 2980 } 2981 2982 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); 2983 if (ret < 0) { 2984 return ret; 2985 } 2986 2987 assert(ret == 1); 2988 return 0; 2989 } 2990 2991 /* 2992 * Provide a separate write service for the feature control MSR in order to 2993 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done 2994 * before writing any other state because forcibly leaving nested mode 2995 * invalidates the VCPU state. 2996 */ 2997 static int kvm_put_msr_feature_control(X86CPU *cpu) 2998 { 2999 int ret; 3000 3001 if (!has_msr_feature_control) { 3002 return 0; 3003 } 3004 3005 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, 3006 cpu->env.msr_ia32_feature_control); 3007 if (ret < 0) { 3008 return ret; 3009 } 3010 3011 assert(ret == 1); 3012 return 0; 3013 } 3014 3015 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features) 3016 { 3017 uint32_t default1, can_be_one, can_be_zero; 3018 uint32_t must_be_one; 3019 3020 switch (index) { 3021 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 3022 default1 = 0x00000016; 3023 break; 3024 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 3025 default1 = 0x0401e172; 3026 break; 3027 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 3028 default1 = 0x000011ff; 3029 break; 3030 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 3031 default1 = 0x00036dff; 3032 break; 3033 case MSR_IA32_VMX_PROCBASED_CTLS2: 3034 default1 = 0; 3035 break; 3036 default: 3037 abort(); 3038 } 3039 3040 /* If a feature bit is set, the control can be either set or clear. 3041 * Otherwise the value is limited to either 0 or 1 by default1. 3042 */ 3043 can_be_one = features | default1; 3044 can_be_zero = features | ~default1; 3045 must_be_one = ~can_be_zero; 3046 3047 /* 3048 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one). 3049 * Bit 32:63 -> 1 if the control bit can be one. 3050 */ 3051 return must_be_one | (((uint64_t)can_be_one) << 32); 3052 } 3053 3054 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f) 3055 { 3056 uint64_t kvm_vmx_basic = 3057 kvm_arch_get_supported_msr_feature(kvm_state, 3058 MSR_IA32_VMX_BASIC); 3059 3060 if (!kvm_vmx_basic) { 3061 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0), 3062 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail. 3063 */ 3064 return; 3065 } 3066 3067 uint64_t kvm_vmx_misc = 3068 kvm_arch_get_supported_msr_feature(kvm_state, 3069 MSR_IA32_VMX_MISC); 3070 uint64_t kvm_vmx_ept_vpid = 3071 kvm_arch_get_supported_msr_feature(kvm_state, 3072 MSR_IA32_VMX_EPT_VPID_CAP); 3073 3074 /* 3075 * If the guest is 64-bit, a value of 1 is allowed for the host address 3076 * space size vmexit control. 3077 */ 3078 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM 3079 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0; 3080 3081 /* 3082 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should 3083 * not change them for backwards compatibility. 3084 */ 3085 uint64_t fixed_vmx_basic = kvm_vmx_basic & 3086 (MSR_VMX_BASIC_VMCS_REVISION_MASK | 3087 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK | 3088 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK); 3089 3090 /* 3091 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can 3092 * change in the future but are always zero for now, clear them to be 3093 * future proof. Bits 32-63 in theory could change, though KVM does 3094 * not support dual-monitor treatment and probably never will; mask 3095 * them out as well. 3096 */ 3097 uint64_t fixed_vmx_misc = kvm_vmx_misc & 3098 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK | 3099 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK); 3100 3101 /* 3102 * EPT memory types should not change either, so we do not bother 3103 * adding features for them. 3104 */ 3105 uint64_t fixed_vmx_ept_mask = 3106 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ? 3107 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0); 3108 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask; 3109 3110 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 3111 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 3112 f[FEAT_VMX_PROCBASED_CTLS])); 3113 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS, 3114 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS, 3115 f[FEAT_VMX_PINBASED_CTLS])); 3116 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS, 3117 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS, 3118 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit); 3119 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS, 3120 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS, 3121 f[FEAT_VMX_ENTRY_CTLS])); 3122 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2, 3123 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2, 3124 f[FEAT_VMX_SECONDARY_CTLS])); 3125 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP, 3126 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid); 3127 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC, 3128 f[FEAT_VMX_BASIC] | fixed_vmx_basic); 3129 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC, 3130 f[FEAT_VMX_MISC] | fixed_vmx_misc); 3131 if (has_msr_vmx_vmfunc) { 3132 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]); 3133 } 3134 3135 /* 3136 * Just to be safe, write these with constant values. The CRn_FIXED1 3137 * MSRs are generated by KVM based on the vCPU's CPUID. 3138 */ 3139 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0, 3140 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK); 3141 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0, 3142 CR4_VMXE_MASK); 3143 3144 if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) { 3145 /* TSC multiplier (0x2032). */ 3146 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32); 3147 } else { 3148 /* Preemption timer (0x482E). */ 3149 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E); 3150 } 3151 } 3152 3153 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f) 3154 { 3155 uint64_t kvm_perf_cap = 3156 kvm_arch_get_supported_msr_feature(kvm_state, 3157 MSR_IA32_PERF_CAPABILITIES); 3158 3159 if (kvm_perf_cap) { 3160 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES, 3161 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]); 3162 } 3163 } 3164 3165 static int kvm_buf_set_msrs(X86CPU *cpu) 3166 { 3167 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 3168 if (ret < 0) { 3169 return ret; 3170 } 3171 3172 if (ret < cpu->kvm_msr_buf->nmsrs) { 3173 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 3174 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, 3175 (uint32_t)e->index, (uint64_t)e->data); 3176 } 3177 3178 assert(ret == cpu->kvm_msr_buf->nmsrs); 3179 return 0; 3180 } 3181 3182 static void kvm_init_msrs(X86CPU *cpu) 3183 { 3184 CPUX86State *env = &cpu->env; 3185 3186 kvm_msr_buf_reset(cpu); 3187 if (has_msr_arch_capabs) { 3188 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES, 3189 env->features[FEAT_ARCH_CAPABILITIES]); 3190 } 3191 3192 if (has_msr_core_capabs) { 3193 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY, 3194 env->features[FEAT_CORE_CAPABILITY]); 3195 } 3196 3197 if (has_msr_perf_capabs && cpu->enable_pmu) { 3198 kvm_msr_entry_add_perf(cpu, env->features); 3199 } 3200 3201 if (has_msr_ucode_rev) { 3202 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev); 3203 } 3204 3205 /* 3206 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but 3207 * all kernels with MSR features should have them. 3208 */ 3209 if (kvm_feature_msrs && cpu_has_vmx(env)) { 3210 kvm_msr_entry_add_vmx(cpu, env->features); 3211 } 3212 3213 assert(kvm_buf_set_msrs(cpu) == 0); 3214 } 3215 3216 static int kvm_put_msrs(X86CPU *cpu, int level) 3217 { 3218 CPUX86State *env = &cpu->env; 3219 int i; 3220 3221 kvm_msr_buf_reset(cpu); 3222 3223 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); 3224 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); 3225 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); 3226 kvm_msr_entry_add(cpu, MSR_PAT, env->pat); 3227 if (has_msr_star) { 3228 kvm_msr_entry_add(cpu, MSR_STAR, env->star); 3229 } 3230 if (has_msr_hsave_pa) { 3231 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); 3232 } 3233 if (has_msr_tsc_aux) { 3234 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); 3235 } 3236 if (has_msr_tsc_adjust) { 3237 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); 3238 } 3239 if (has_msr_misc_enable) { 3240 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 3241 env->msr_ia32_misc_enable); 3242 } 3243 if (has_msr_smbase) { 3244 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); 3245 } 3246 if (has_msr_smi_count) { 3247 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count); 3248 } 3249 if (has_msr_pkrs) { 3250 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs); 3251 } 3252 if (has_msr_bndcfgs) { 3253 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); 3254 } 3255 if (has_msr_xss) { 3256 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); 3257 } 3258 if (has_msr_umwait) { 3259 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait); 3260 } 3261 if (has_msr_spec_ctrl) { 3262 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl); 3263 } 3264 if (has_tsc_scale_msr) { 3265 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr); 3266 } 3267 3268 if (has_msr_tsx_ctrl) { 3269 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl); 3270 } 3271 if (has_msr_virt_ssbd) { 3272 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd); 3273 } 3274 3275 #ifdef TARGET_X86_64 3276 if (lm_capable_kernel) { 3277 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); 3278 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); 3279 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); 3280 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); 3281 } 3282 #endif 3283 3284 /* 3285 * The following MSRs have side effects on the guest or are too heavy 3286 * for normal writeback. Limit them to reset or full state updates. 3287 */ 3288 if (level >= KVM_PUT_RESET_STATE) { 3289 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); 3290 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); 3291 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); 3292 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { 3293 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr); 3294 } 3295 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { 3296 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); 3297 } 3298 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { 3299 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); 3300 } 3301 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { 3302 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); 3303 } 3304 3305 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { 3306 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr); 3307 } 3308 3309 if (has_architectural_pmu_version > 0) { 3310 if (has_architectural_pmu_version > 1) { 3311 /* Stop the counter. */ 3312 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 3313 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 3314 } 3315 3316 /* Set the counter values. */ 3317 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 3318 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 3319 env->msr_fixed_counters[i]); 3320 } 3321 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 3322 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 3323 env->msr_gp_counters[i]); 3324 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 3325 env->msr_gp_evtsel[i]); 3326 } 3327 if (has_architectural_pmu_version > 1) { 3328 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 3329 env->msr_global_status); 3330 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 3331 env->msr_global_ovf_ctrl); 3332 3333 /* Now start the PMU. */ 3334 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 3335 env->msr_fixed_ctr_ctrl); 3336 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 3337 env->msr_global_ctrl); 3338 } 3339 } 3340 /* 3341 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add, 3342 * only sync them to KVM on the first cpu 3343 */ 3344 if (current_cpu == first_cpu) { 3345 if (has_msr_hv_hypercall) { 3346 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 3347 env->msr_hv_guest_os_id); 3348 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 3349 env->msr_hv_hypercall); 3350 } 3351 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 3352 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 3353 env->msr_hv_tsc); 3354 } 3355 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 3356 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 3357 env->msr_hv_reenlightenment_control); 3358 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 3359 env->msr_hv_tsc_emulation_control); 3360 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 3361 env->msr_hv_tsc_emulation_status); 3362 } 3363 #ifdef CONFIG_SYNDBG 3364 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) && 3365 has_msr_hv_syndbg_options) { 3366 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 3367 hyperv_syndbg_query_options()); 3368 } 3369 #endif 3370 } 3371 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 3372 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 3373 env->msr_hv_vapic); 3374 } 3375 if (has_msr_hv_crash) { 3376 int j; 3377 3378 for (j = 0; j < HV_CRASH_PARAMS; j++) 3379 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 3380 env->msr_hv_crash_params[j]); 3381 3382 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY); 3383 } 3384 if (has_msr_hv_runtime) { 3385 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); 3386 } 3387 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) 3388 && hv_vpindex_settable) { 3389 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX, 3390 hyperv_vp_index(CPU(cpu))); 3391 } 3392 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 3393 int j; 3394 3395 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION); 3396 3397 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 3398 env->msr_hv_synic_control); 3399 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 3400 env->msr_hv_synic_evt_page); 3401 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 3402 env->msr_hv_synic_msg_page); 3403 3404 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { 3405 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, 3406 env->msr_hv_synic_sint[j]); 3407 } 3408 } 3409 if (has_msr_hv_stimer) { 3410 int j; 3411 3412 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { 3413 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, 3414 env->msr_hv_stimer_config[j]); 3415 } 3416 3417 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { 3418 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, 3419 env->msr_hv_stimer_count[j]); 3420 } 3421 } 3422 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 3423 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); 3424 3425 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); 3426 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); 3427 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); 3428 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); 3429 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); 3430 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); 3431 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); 3432 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); 3433 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); 3434 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); 3435 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); 3436 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); 3437 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 3438 /* The CPU GPs if we write to a bit above the physical limit of 3439 * the host CPU (and KVM emulates that) 3440 */ 3441 uint64_t mask = env->mtrr_var[i].mask; 3442 mask &= phys_mask; 3443 3444 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 3445 env->mtrr_var[i].base); 3446 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); 3447 } 3448 } 3449 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 3450 int addr_num = kvm_arch_get_supported_cpuid(kvm_state, 3451 0x14, 1, R_EAX) & 0x7; 3452 3453 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 3454 env->msr_rtit_ctrl); 3455 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 3456 env->msr_rtit_status); 3457 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 3458 env->msr_rtit_output_base); 3459 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 3460 env->msr_rtit_output_mask); 3461 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 3462 env->msr_rtit_cr3_match); 3463 for (i = 0; i < addr_num; i++) { 3464 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 3465 env->msr_rtit_addrs[i]); 3466 } 3467 } 3468 3469 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 3470 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 3471 env->msr_ia32_sgxlepubkeyhash[0]); 3472 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 3473 env->msr_ia32_sgxlepubkeyhash[1]); 3474 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 3475 env->msr_ia32_sgxlepubkeyhash[2]); 3476 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 3477 env->msr_ia32_sgxlepubkeyhash[3]); 3478 } 3479 3480 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) { 3481 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 3482 env->msr_xfd); 3483 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 3484 env->msr_xfd_err); 3485 } 3486 3487 if (kvm_enabled() && cpu->enable_pmu && 3488 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) { 3489 uint64_t depth; 3490 int i, ret; 3491 3492 /* 3493 * Only migrate Arch LBR states when the host Arch LBR depth 3494 * equals that of source guest's, this is to avoid mismatch 3495 * of guest/host config for the msr hence avoid unexpected 3496 * misbehavior. 3497 */ 3498 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth); 3499 3500 if (ret == 1 && !!depth && depth == env->msr_lbr_depth) { 3501 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl); 3502 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth); 3503 3504 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) { 3505 if (!env->lbr_records[i].from) { 3506 continue; 3507 } 3508 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 3509 env->lbr_records[i].from); 3510 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 3511 env->lbr_records[i].to); 3512 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 3513 env->lbr_records[i].info); 3514 } 3515 } 3516 } 3517 3518 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see 3519 * kvm_put_msr_feature_control. */ 3520 } 3521 3522 if (env->mcg_cap) { 3523 int i; 3524 3525 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); 3526 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); 3527 if (has_msr_mcg_ext_ctl) { 3528 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); 3529 } 3530 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 3531 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); 3532 } 3533 } 3534 3535 return kvm_buf_set_msrs(cpu); 3536 } 3537 3538 3539 static int kvm_get_fpu(X86CPU *cpu) 3540 { 3541 CPUX86State *env = &cpu->env; 3542 struct kvm_fpu fpu; 3543 int i, ret; 3544 3545 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); 3546 if (ret < 0) { 3547 return ret; 3548 } 3549 3550 env->fpstt = (fpu.fsw >> 11) & 7; 3551 env->fpus = fpu.fsw; 3552 env->fpuc = fpu.fcw; 3553 env->fpop = fpu.last_opcode; 3554 env->fpip = fpu.last_ip; 3555 env->fpdp = fpu.last_dp; 3556 for (i = 0; i < 8; ++i) { 3557 env->fptags[i] = !((fpu.ftwx >> i) & 1); 3558 } 3559 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); 3560 for (i = 0; i < CPU_NB_REGS; i++) { 3561 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]); 3562 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]); 3563 } 3564 env->mxcsr = fpu.mxcsr; 3565 3566 return 0; 3567 } 3568 3569 static int kvm_get_xsave(X86CPU *cpu) 3570 { 3571 CPUX86State *env = &cpu->env; 3572 void *xsave = env->xsave_buf; 3573 int type, ret; 3574 3575 if (!has_xsave) { 3576 return kvm_get_fpu(cpu); 3577 } 3578 3579 type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE; 3580 ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave); 3581 if (ret < 0) { 3582 return ret; 3583 } 3584 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len); 3585 3586 return 0; 3587 } 3588 3589 static int kvm_get_xcrs(X86CPU *cpu) 3590 { 3591 CPUX86State *env = &cpu->env; 3592 int i, ret; 3593 struct kvm_xcrs xcrs; 3594 3595 if (!has_xcrs) { 3596 return 0; 3597 } 3598 3599 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); 3600 if (ret < 0) { 3601 return ret; 3602 } 3603 3604 for (i = 0; i < xcrs.nr_xcrs; i++) { 3605 /* Only support xcr0 now */ 3606 if (xcrs.xcrs[i].xcr == 0) { 3607 env->xcr0 = xcrs.xcrs[i].value; 3608 break; 3609 } 3610 } 3611 return 0; 3612 } 3613 3614 static int kvm_get_sregs(X86CPU *cpu) 3615 { 3616 CPUX86State *env = &cpu->env; 3617 struct kvm_sregs sregs; 3618 int ret; 3619 3620 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); 3621 if (ret < 0) { 3622 return ret; 3623 } 3624 3625 /* 3626 * The interrupt_bitmap is ignored because KVM_GET_SREGS is 3627 * always preceded by KVM_GET_VCPU_EVENTS. 3628 */ 3629 3630 get_seg(&env->segs[R_CS], &sregs.cs); 3631 get_seg(&env->segs[R_DS], &sregs.ds); 3632 get_seg(&env->segs[R_ES], &sregs.es); 3633 get_seg(&env->segs[R_FS], &sregs.fs); 3634 get_seg(&env->segs[R_GS], &sregs.gs); 3635 get_seg(&env->segs[R_SS], &sregs.ss); 3636 3637 get_seg(&env->tr, &sregs.tr); 3638 get_seg(&env->ldt, &sregs.ldt); 3639 3640 env->idt.limit = sregs.idt.limit; 3641 env->idt.base = sregs.idt.base; 3642 env->gdt.limit = sregs.gdt.limit; 3643 env->gdt.base = sregs.gdt.base; 3644 3645 env->cr[0] = sregs.cr0; 3646 env->cr[2] = sregs.cr2; 3647 env->cr[3] = sregs.cr3; 3648 env->cr[4] = sregs.cr4; 3649 3650 env->efer = sregs.efer; 3651 3652 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 3653 x86_update_hflags(env); 3654 3655 return 0; 3656 } 3657 3658 static int kvm_get_sregs2(X86CPU *cpu) 3659 { 3660 CPUX86State *env = &cpu->env; 3661 struct kvm_sregs2 sregs; 3662 int i, ret; 3663 3664 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs); 3665 if (ret < 0) { 3666 return ret; 3667 } 3668 3669 get_seg(&env->segs[R_CS], &sregs.cs); 3670 get_seg(&env->segs[R_DS], &sregs.ds); 3671 get_seg(&env->segs[R_ES], &sregs.es); 3672 get_seg(&env->segs[R_FS], &sregs.fs); 3673 get_seg(&env->segs[R_GS], &sregs.gs); 3674 get_seg(&env->segs[R_SS], &sregs.ss); 3675 3676 get_seg(&env->tr, &sregs.tr); 3677 get_seg(&env->ldt, &sregs.ldt); 3678 3679 env->idt.limit = sregs.idt.limit; 3680 env->idt.base = sregs.idt.base; 3681 env->gdt.limit = sregs.gdt.limit; 3682 env->gdt.base = sregs.gdt.base; 3683 3684 env->cr[0] = sregs.cr0; 3685 env->cr[2] = sregs.cr2; 3686 env->cr[3] = sregs.cr3; 3687 env->cr[4] = sregs.cr4; 3688 3689 env->efer = sregs.efer; 3690 3691 env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 3692 3693 if (env->pdptrs_valid) { 3694 for (i = 0; i < 4; i++) { 3695 env->pdptrs[i] = sregs.pdptrs[i]; 3696 } 3697 } 3698 3699 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 3700 x86_update_hflags(env); 3701 3702 return 0; 3703 } 3704 3705 static int kvm_get_msrs(X86CPU *cpu) 3706 { 3707 CPUX86State *env = &cpu->env; 3708 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; 3709 int ret, i; 3710 uint64_t mtrr_top_bits; 3711 3712 kvm_msr_buf_reset(cpu); 3713 3714 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); 3715 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); 3716 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); 3717 kvm_msr_entry_add(cpu, MSR_PAT, 0); 3718 if (has_msr_star) { 3719 kvm_msr_entry_add(cpu, MSR_STAR, 0); 3720 } 3721 if (has_msr_hsave_pa) { 3722 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); 3723 } 3724 if (has_msr_tsc_aux) { 3725 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); 3726 } 3727 if (has_msr_tsc_adjust) { 3728 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); 3729 } 3730 if (has_msr_tsc_deadline) { 3731 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); 3732 } 3733 if (has_msr_misc_enable) { 3734 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); 3735 } 3736 if (has_msr_smbase) { 3737 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); 3738 } 3739 if (has_msr_smi_count) { 3740 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0); 3741 } 3742 if (has_msr_feature_control) { 3743 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); 3744 } 3745 if (has_msr_pkrs) { 3746 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0); 3747 } 3748 if (has_msr_bndcfgs) { 3749 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); 3750 } 3751 if (has_msr_xss) { 3752 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); 3753 } 3754 if (has_msr_umwait) { 3755 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0); 3756 } 3757 if (has_msr_spec_ctrl) { 3758 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0); 3759 } 3760 if (has_tsc_scale_msr) { 3761 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0); 3762 } 3763 3764 if (has_msr_tsx_ctrl) { 3765 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0); 3766 } 3767 if (has_msr_virt_ssbd) { 3768 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0); 3769 } 3770 if (!env->tsc_valid) { 3771 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); 3772 env->tsc_valid = !runstate_is_running(); 3773 } 3774 3775 #ifdef TARGET_X86_64 3776 if (lm_capable_kernel) { 3777 kvm_msr_entry_add(cpu, MSR_CSTAR, 0); 3778 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); 3779 kvm_msr_entry_add(cpu, MSR_FMASK, 0); 3780 kvm_msr_entry_add(cpu, MSR_LSTAR, 0); 3781 } 3782 #endif 3783 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); 3784 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); 3785 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { 3786 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0); 3787 } 3788 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { 3789 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); 3790 } 3791 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { 3792 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); 3793 } 3794 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { 3795 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); 3796 } 3797 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { 3798 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1); 3799 } 3800 if (has_architectural_pmu_version > 0) { 3801 if (has_architectural_pmu_version > 1) { 3802 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 3803 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 3804 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); 3805 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); 3806 } 3807 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 3808 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); 3809 } 3810 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 3811 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); 3812 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); 3813 } 3814 } 3815 3816 if (env->mcg_cap) { 3817 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); 3818 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); 3819 if (has_msr_mcg_ext_ctl) { 3820 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); 3821 } 3822 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 3823 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); 3824 } 3825 } 3826 3827 if (has_msr_hv_hypercall) { 3828 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); 3829 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); 3830 } 3831 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 3832 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); 3833 } 3834 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 3835 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); 3836 } 3837 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 3838 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0); 3839 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0); 3840 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0); 3841 } 3842 if (has_msr_hv_syndbg_options) { 3843 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0); 3844 } 3845 if (has_msr_hv_crash) { 3846 int j; 3847 3848 for (j = 0; j < HV_CRASH_PARAMS; j++) { 3849 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); 3850 } 3851 } 3852 if (has_msr_hv_runtime) { 3853 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); 3854 } 3855 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 3856 uint32_t msr; 3857 3858 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); 3859 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); 3860 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); 3861 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { 3862 kvm_msr_entry_add(cpu, msr, 0); 3863 } 3864 } 3865 if (has_msr_hv_stimer) { 3866 uint32_t msr; 3867 3868 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; 3869 msr++) { 3870 kvm_msr_entry_add(cpu, msr, 0); 3871 } 3872 } 3873 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 3874 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); 3875 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); 3876 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); 3877 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); 3878 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); 3879 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); 3880 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); 3881 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); 3882 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); 3883 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); 3884 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); 3885 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); 3886 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 3887 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); 3888 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); 3889 } 3890 } 3891 3892 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 3893 int addr_num = 3894 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7; 3895 3896 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0); 3897 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0); 3898 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0); 3899 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0); 3900 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0); 3901 for (i = 0; i < addr_num; i++) { 3902 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0); 3903 } 3904 } 3905 3906 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 3907 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0); 3908 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0); 3909 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0); 3910 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0); 3911 } 3912 3913 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) { 3914 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0); 3915 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0); 3916 } 3917 3918 if (kvm_enabled() && cpu->enable_pmu && 3919 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) { 3920 uint64_t depth; 3921 int i, ret; 3922 3923 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth); 3924 if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) { 3925 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0); 3926 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0); 3927 3928 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) { 3929 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0); 3930 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0); 3931 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0); 3932 } 3933 } 3934 } 3935 3936 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); 3937 if (ret < 0) { 3938 return ret; 3939 } 3940 3941 if (ret < cpu->kvm_msr_buf->nmsrs) { 3942 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 3943 error_report("error: failed to get MSR 0x%" PRIx32, 3944 (uint32_t)e->index); 3945 } 3946 3947 assert(ret == cpu->kvm_msr_buf->nmsrs); 3948 /* 3949 * MTRR masks: Each mask consists of 5 parts 3950 * a 10..0: must be zero 3951 * b 11 : valid bit 3952 * c n-1.12: actual mask bits 3953 * d 51..n: reserved must be zero 3954 * e 63.52: reserved must be zero 3955 * 3956 * 'n' is the number of physical bits supported by the CPU and is 3957 * apparently always <= 52. We know our 'n' but don't know what 3958 * the destinations 'n' is; it might be smaller, in which case 3959 * it masks (c) on loading. It might be larger, in which case 3960 * we fill 'd' so that d..c is consistent irrespetive of the 'n' 3961 * we're migrating to. 3962 */ 3963 3964 if (cpu->fill_mtrr_mask) { 3965 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); 3966 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); 3967 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); 3968 } else { 3969 mtrr_top_bits = 0; 3970 } 3971 3972 for (i = 0; i < ret; i++) { 3973 uint32_t index = msrs[i].index; 3974 switch (index) { 3975 case MSR_IA32_SYSENTER_CS: 3976 env->sysenter_cs = msrs[i].data; 3977 break; 3978 case MSR_IA32_SYSENTER_ESP: 3979 env->sysenter_esp = msrs[i].data; 3980 break; 3981 case MSR_IA32_SYSENTER_EIP: 3982 env->sysenter_eip = msrs[i].data; 3983 break; 3984 case MSR_PAT: 3985 env->pat = msrs[i].data; 3986 break; 3987 case MSR_STAR: 3988 env->star = msrs[i].data; 3989 break; 3990 #ifdef TARGET_X86_64 3991 case MSR_CSTAR: 3992 env->cstar = msrs[i].data; 3993 break; 3994 case MSR_KERNELGSBASE: 3995 env->kernelgsbase = msrs[i].data; 3996 break; 3997 case MSR_FMASK: 3998 env->fmask = msrs[i].data; 3999 break; 4000 case MSR_LSTAR: 4001 env->lstar = msrs[i].data; 4002 break; 4003 #endif 4004 case MSR_IA32_TSC: 4005 env->tsc = msrs[i].data; 4006 break; 4007 case MSR_TSC_AUX: 4008 env->tsc_aux = msrs[i].data; 4009 break; 4010 case MSR_TSC_ADJUST: 4011 env->tsc_adjust = msrs[i].data; 4012 break; 4013 case MSR_IA32_TSCDEADLINE: 4014 env->tsc_deadline = msrs[i].data; 4015 break; 4016 case MSR_VM_HSAVE_PA: 4017 env->vm_hsave = msrs[i].data; 4018 break; 4019 case MSR_KVM_SYSTEM_TIME: 4020 env->system_time_msr = msrs[i].data; 4021 break; 4022 case MSR_KVM_WALL_CLOCK: 4023 env->wall_clock_msr = msrs[i].data; 4024 break; 4025 case MSR_MCG_STATUS: 4026 env->mcg_status = msrs[i].data; 4027 break; 4028 case MSR_MCG_CTL: 4029 env->mcg_ctl = msrs[i].data; 4030 break; 4031 case MSR_MCG_EXT_CTL: 4032 env->mcg_ext_ctl = msrs[i].data; 4033 break; 4034 case MSR_IA32_MISC_ENABLE: 4035 env->msr_ia32_misc_enable = msrs[i].data; 4036 break; 4037 case MSR_IA32_SMBASE: 4038 env->smbase = msrs[i].data; 4039 break; 4040 case MSR_SMI_COUNT: 4041 env->msr_smi_count = msrs[i].data; 4042 break; 4043 case MSR_IA32_FEATURE_CONTROL: 4044 env->msr_ia32_feature_control = msrs[i].data; 4045 break; 4046 case MSR_IA32_BNDCFGS: 4047 env->msr_bndcfgs = msrs[i].data; 4048 break; 4049 case MSR_IA32_XSS: 4050 env->xss = msrs[i].data; 4051 break; 4052 case MSR_IA32_UMWAIT_CONTROL: 4053 env->umwait = msrs[i].data; 4054 break; 4055 case MSR_IA32_PKRS: 4056 env->pkrs = msrs[i].data; 4057 break; 4058 default: 4059 if (msrs[i].index >= MSR_MC0_CTL && 4060 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { 4061 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; 4062 } 4063 break; 4064 case MSR_KVM_ASYNC_PF_EN: 4065 env->async_pf_en_msr = msrs[i].data; 4066 break; 4067 case MSR_KVM_ASYNC_PF_INT: 4068 env->async_pf_int_msr = msrs[i].data; 4069 break; 4070 case MSR_KVM_PV_EOI_EN: 4071 env->pv_eoi_en_msr = msrs[i].data; 4072 break; 4073 case MSR_KVM_STEAL_TIME: 4074 env->steal_time_msr = msrs[i].data; 4075 break; 4076 case MSR_KVM_POLL_CONTROL: { 4077 env->poll_control_msr = msrs[i].data; 4078 break; 4079 } 4080 case MSR_CORE_PERF_FIXED_CTR_CTRL: 4081 env->msr_fixed_ctr_ctrl = msrs[i].data; 4082 break; 4083 case MSR_CORE_PERF_GLOBAL_CTRL: 4084 env->msr_global_ctrl = msrs[i].data; 4085 break; 4086 case MSR_CORE_PERF_GLOBAL_STATUS: 4087 env->msr_global_status = msrs[i].data; 4088 break; 4089 case MSR_CORE_PERF_GLOBAL_OVF_CTRL: 4090 env->msr_global_ovf_ctrl = msrs[i].data; 4091 break; 4092 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: 4093 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; 4094 break; 4095 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: 4096 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; 4097 break; 4098 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: 4099 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; 4100 break; 4101 case HV_X64_MSR_HYPERCALL: 4102 env->msr_hv_hypercall = msrs[i].data; 4103 break; 4104 case HV_X64_MSR_GUEST_OS_ID: 4105 env->msr_hv_guest_os_id = msrs[i].data; 4106 break; 4107 case HV_X64_MSR_APIC_ASSIST_PAGE: 4108 env->msr_hv_vapic = msrs[i].data; 4109 break; 4110 case HV_X64_MSR_REFERENCE_TSC: 4111 env->msr_hv_tsc = msrs[i].data; 4112 break; 4113 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4114 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; 4115 break; 4116 case HV_X64_MSR_VP_RUNTIME: 4117 env->msr_hv_runtime = msrs[i].data; 4118 break; 4119 case HV_X64_MSR_SCONTROL: 4120 env->msr_hv_synic_control = msrs[i].data; 4121 break; 4122 case HV_X64_MSR_SIEFP: 4123 env->msr_hv_synic_evt_page = msrs[i].data; 4124 break; 4125 case HV_X64_MSR_SIMP: 4126 env->msr_hv_synic_msg_page = msrs[i].data; 4127 break; 4128 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 4129 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; 4130 break; 4131 case HV_X64_MSR_STIMER0_CONFIG: 4132 case HV_X64_MSR_STIMER1_CONFIG: 4133 case HV_X64_MSR_STIMER2_CONFIG: 4134 case HV_X64_MSR_STIMER3_CONFIG: 4135 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = 4136 msrs[i].data; 4137 break; 4138 case HV_X64_MSR_STIMER0_COUNT: 4139 case HV_X64_MSR_STIMER1_COUNT: 4140 case HV_X64_MSR_STIMER2_COUNT: 4141 case HV_X64_MSR_STIMER3_COUNT: 4142 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = 4143 msrs[i].data; 4144 break; 4145 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4146 env->msr_hv_reenlightenment_control = msrs[i].data; 4147 break; 4148 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4149 env->msr_hv_tsc_emulation_control = msrs[i].data; 4150 break; 4151 case HV_X64_MSR_TSC_EMULATION_STATUS: 4152 env->msr_hv_tsc_emulation_status = msrs[i].data; 4153 break; 4154 case HV_X64_MSR_SYNDBG_OPTIONS: 4155 env->msr_hv_syndbg_options = msrs[i].data; 4156 break; 4157 case MSR_MTRRdefType: 4158 env->mtrr_deftype = msrs[i].data; 4159 break; 4160 case MSR_MTRRfix64K_00000: 4161 env->mtrr_fixed[0] = msrs[i].data; 4162 break; 4163 case MSR_MTRRfix16K_80000: 4164 env->mtrr_fixed[1] = msrs[i].data; 4165 break; 4166 case MSR_MTRRfix16K_A0000: 4167 env->mtrr_fixed[2] = msrs[i].data; 4168 break; 4169 case MSR_MTRRfix4K_C0000: 4170 env->mtrr_fixed[3] = msrs[i].data; 4171 break; 4172 case MSR_MTRRfix4K_C8000: 4173 env->mtrr_fixed[4] = msrs[i].data; 4174 break; 4175 case MSR_MTRRfix4K_D0000: 4176 env->mtrr_fixed[5] = msrs[i].data; 4177 break; 4178 case MSR_MTRRfix4K_D8000: 4179 env->mtrr_fixed[6] = msrs[i].data; 4180 break; 4181 case MSR_MTRRfix4K_E0000: 4182 env->mtrr_fixed[7] = msrs[i].data; 4183 break; 4184 case MSR_MTRRfix4K_E8000: 4185 env->mtrr_fixed[8] = msrs[i].data; 4186 break; 4187 case MSR_MTRRfix4K_F0000: 4188 env->mtrr_fixed[9] = msrs[i].data; 4189 break; 4190 case MSR_MTRRfix4K_F8000: 4191 env->mtrr_fixed[10] = msrs[i].data; 4192 break; 4193 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): 4194 if (index & 1) { 4195 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | 4196 mtrr_top_bits; 4197 } else { 4198 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; 4199 } 4200 break; 4201 case MSR_IA32_SPEC_CTRL: 4202 env->spec_ctrl = msrs[i].data; 4203 break; 4204 case MSR_AMD64_TSC_RATIO: 4205 env->amd_tsc_scale_msr = msrs[i].data; 4206 break; 4207 case MSR_IA32_TSX_CTRL: 4208 env->tsx_ctrl = msrs[i].data; 4209 break; 4210 case MSR_VIRT_SSBD: 4211 env->virt_ssbd = msrs[i].data; 4212 break; 4213 case MSR_IA32_RTIT_CTL: 4214 env->msr_rtit_ctrl = msrs[i].data; 4215 break; 4216 case MSR_IA32_RTIT_STATUS: 4217 env->msr_rtit_status = msrs[i].data; 4218 break; 4219 case MSR_IA32_RTIT_OUTPUT_BASE: 4220 env->msr_rtit_output_base = msrs[i].data; 4221 break; 4222 case MSR_IA32_RTIT_OUTPUT_MASK: 4223 env->msr_rtit_output_mask = msrs[i].data; 4224 break; 4225 case MSR_IA32_RTIT_CR3_MATCH: 4226 env->msr_rtit_cr3_match = msrs[i].data; 4227 break; 4228 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 4229 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data; 4230 break; 4231 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 4232 env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] = 4233 msrs[i].data; 4234 break; 4235 case MSR_IA32_XFD: 4236 env->msr_xfd = msrs[i].data; 4237 break; 4238 case MSR_IA32_XFD_ERR: 4239 env->msr_xfd_err = msrs[i].data; 4240 break; 4241 case MSR_ARCH_LBR_CTL: 4242 env->msr_lbr_ctl = msrs[i].data; 4243 break; 4244 case MSR_ARCH_LBR_DEPTH: 4245 env->msr_lbr_depth = msrs[i].data; 4246 break; 4247 case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31: 4248 env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data; 4249 break; 4250 case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31: 4251 env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data; 4252 break; 4253 case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31: 4254 env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data; 4255 break; 4256 } 4257 } 4258 4259 return 0; 4260 } 4261 4262 static int kvm_put_mp_state(X86CPU *cpu) 4263 { 4264 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; 4265 4266 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 4267 } 4268 4269 static int kvm_get_mp_state(X86CPU *cpu) 4270 { 4271 CPUState *cs = CPU(cpu); 4272 CPUX86State *env = &cpu->env; 4273 struct kvm_mp_state mp_state; 4274 int ret; 4275 4276 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); 4277 if (ret < 0) { 4278 return ret; 4279 } 4280 env->mp_state = mp_state.mp_state; 4281 if (kvm_irqchip_in_kernel()) { 4282 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); 4283 } 4284 return 0; 4285 } 4286 4287 static int kvm_get_apic(X86CPU *cpu) 4288 { 4289 DeviceState *apic = cpu->apic_state; 4290 struct kvm_lapic_state kapic; 4291 int ret; 4292 4293 if (apic && kvm_irqchip_in_kernel()) { 4294 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); 4295 if (ret < 0) { 4296 return ret; 4297 } 4298 4299 kvm_get_apic_state(apic, &kapic); 4300 } 4301 return 0; 4302 } 4303 4304 static int kvm_put_vcpu_events(X86CPU *cpu, int level) 4305 { 4306 CPUState *cs = CPU(cpu); 4307 CPUX86State *env = &cpu->env; 4308 struct kvm_vcpu_events events = {}; 4309 4310 if (!kvm_has_vcpu_events()) { 4311 return 0; 4312 } 4313 4314 events.flags = 0; 4315 4316 if (has_exception_payload) { 4317 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 4318 events.exception.pending = env->exception_pending; 4319 events.exception_has_payload = env->exception_has_payload; 4320 events.exception_payload = env->exception_payload; 4321 } 4322 events.exception.nr = env->exception_nr; 4323 events.exception.injected = env->exception_injected; 4324 events.exception.has_error_code = env->has_error_code; 4325 events.exception.error_code = env->error_code; 4326 4327 events.interrupt.injected = (env->interrupt_injected >= 0); 4328 events.interrupt.nr = env->interrupt_injected; 4329 events.interrupt.soft = env->soft_interrupt; 4330 4331 events.nmi.injected = env->nmi_injected; 4332 events.nmi.pending = env->nmi_pending; 4333 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); 4334 4335 events.sipi_vector = env->sipi_vector; 4336 4337 if (has_msr_smbase) { 4338 events.smi.smm = !!(env->hflags & HF_SMM_MASK); 4339 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); 4340 if (kvm_irqchip_in_kernel()) { 4341 /* As soon as these are moved to the kernel, remove them 4342 * from cs->interrupt_request. 4343 */ 4344 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; 4345 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; 4346 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); 4347 } else { 4348 /* Keep these in cs->interrupt_request. */ 4349 events.smi.pending = 0; 4350 events.smi.latched_init = 0; 4351 } 4352 /* Stop SMI delivery on old machine types to avoid a reboot 4353 * on an inward migration of an old VM. 4354 */ 4355 if (!cpu->kvm_no_smi_migration) { 4356 events.flags |= KVM_VCPUEVENT_VALID_SMM; 4357 } 4358 } 4359 4360 if (level >= KVM_PUT_RESET_STATE) { 4361 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; 4362 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 4363 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR; 4364 } 4365 } 4366 4367 if (has_triple_fault_event) { 4368 events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 4369 events.triple_fault.pending = env->triple_fault_pending; 4370 } 4371 4372 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 4373 } 4374 4375 static int kvm_get_vcpu_events(X86CPU *cpu) 4376 { 4377 CPUX86State *env = &cpu->env; 4378 struct kvm_vcpu_events events; 4379 int ret; 4380 4381 if (!kvm_has_vcpu_events()) { 4382 return 0; 4383 } 4384 4385 memset(&events, 0, sizeof(events)); 4386 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 4387 if (ret < 0) { 4388 return ret; 4389 } 4390 4391 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 4392 env->exception_pending = events.exception.pending; 4393 env->exception_has_payload = events.exception_has_payload; 4394 env->exception_payload = events.exception_payload; 4395 } else { 4396 env->exception_pending = 0; 4397 env->exception_has_payload = false; 4398 } 4399 env->exception_injected = events.exception.injected; 4400 env->exception_nr = 4401 (env->exception_pending || env->exception_injected) ? 4402 events.exception.nr : -1; 4403 env->has_error_code = events.exception.has_error_code; 4404 env->error_code = events.exception.error_code; 4405 4406 env->interrupt_injected = 4407 events.interrupt.injected ? events.interrupt.nr : -1; 4408 env->soft_interrupt = events.interrupt.soft; 4409 4410 env->nmi_injected = events.nmi.injected; 4411 env->nmi_pending = events.nmi.pending; 4412 if (events.nmi.masked) { 4413 env->hflags2 |= HF2_NMI_MASK; 4414 } else { 4415 env->hflags2 &= ~HF2_NMI_MASK; 4416 } 4417 4418 if (events.flags & KVM_VCPUEVENT_VALID_SMM) { 4419 if (events.smi.smm) { 4420 env->hflags |= HF_SMM_MASK; 4421 } else { 4422 env->hflags &= ~HF_SMM_MASK; 4423 } 4424 if (events.smi.pending) { 4425 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 4426 } else { 4427 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 4428 } 4429 if (events.smi.smm_inside_nmi) { 4430 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; 4431 } else { 4432 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; 4433 } 4434 if (events.smi.latched_init) { 4435 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 4436 } else { 4437 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 4438 } 4439 } 4440 4441 if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 4442 env->triple_fault_pending = events.triple_fault.pending; 4443 } 4444 4445 env->sipi_vector = events.sipi_vector; 4446 4447 return 0; 4448 } 4449 4450 static int kvm_guest_debug_workarounds(X86CPU *cpu) 4451 { 4452 CPUState *cs = CPU(cpu); 4453 CPUX86State *env = &cpu->env; 4454 int ret = 0; 4455 unsigned long reinject_trap = 0; 4456 4457 if (!kvm_has_vcpu_events()) { 4458 if (env->exception_nr == EXCP01_DB) { 4459 reinject_trap = KVM_GUESTDBG_INJECT_DB; 4460 } else if (env->exception_injected == EXCP03_INT3) { 4461 reinject_trap = KVM_GUESTDBG_INJECT_BP; 4462 } 4463 kvm_reset_exception(env); 4464 } 4465 4466 /* 4467 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF 4468 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this 4469 * by updating the debug state once again if single-stepping is on. 4470 * Another reason to call kvm_update_guest_debug here is a pending debug 4471 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to 4472 * reinject them via SET_GUEST_DEBUG. 4473 */ 4474 if (reinject_trap || 4475 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { 4476 ret = kvm_update_guest_debug(cs, reinject_trap); 4477 } 4478 return ret; 4479 } 4480 4481 static int kvm_put_debugregs(X86CPU *cpu) 4482 { 4483 CPUX86State *env = &cpu->env; 4484 struct kvm_debugregs dbgregs; 4485 int i; 4486 4487 if (!kvm_has_debugregs()) { 4488 return 0; 4489 } 4490 4491 memset(&dbgregs, 0, sizeof(dbgregs)); 4492 for (i = 0; i < 4; i++) { 4493 dbgregs.db[i] = env->dr[i]; 4494 } 4495 dbgregs.dr6 = env->dr[6]; 4496 dbgregs.dr7 = env->dr[7]; 4497 dbgregs.flags = 0; 4498 4499 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); 4500 } 4501 4502 static int kvm_get_debugregs(X86CPU *cpu) 4503 { 4504 CPUX86State *env = &cpu->env; 4505 struct kvm_debugregs dbgregs; 4506 int i, ret; 4507 4508 if (!kvm_has_debugregs()) { 4509 return 0; 4510 } 4511 4512 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); 4513 if (ret < 0) { 4514 return ret; 4515 } 4516 for (i = 0; i < 4; i++) { 4517 env->dr[i] = dbgregs.db[i]; 4518 } 4519 env->dr[4] = env->dr[6] = dbgregs.dr6; 4520 env->dr[5] = env->dr[7] = dbgregs.dr7; 4521 4522 return 0; 4523 } 4524 4525 static int kvm_put_nested_state(X86CPU *cpu) 4526 { 4527 CPUX86State *env = &cpu->env; 4528 int max_nested_state_len = kvm_max_nested_state_length(); 4529 4530 if (!env->nested_state) { 4531 return 0; 4532 } 4533 4534 /* 4535 * Copy flags that are affected by reset from env->hflags and env->hflags2. 4536 */ 4537 if (env->hflags & HF_GUEST_MASK) { 4538 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE; 4539 } else { 4540 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE; 4541 } 4542 4543 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */ 4544 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) { 4545 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET; 4546 } else { 4547 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET; 4548 } 4549 4550 assert(env->nested_state->size <= max_nested_state_len); 4551 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state); 4552 } 4553 4554 static int kvm_get_nested_state(X86CPU *cpu) 4555 { 4556 CPUX86State *env = &cpu->env; 4557 int max_nested_state_len = kvm_max_nested_state_length(); 4558 int ret; 4559 4560 if (!env->nested_state) { 4561 return 0; 4562 } 4563 4564 /* 4565 * It is possible that migration restored a smaller size into 4566 * nested_state->hdr.size than what our kernel support. 4567 * We preserve migration origin nested_state->hdr.size for 4568 * call to KVM_SET_NESTED_STATE but wish that our next call 4569 * to KVM_GET_NESTED_STATE will use max size our kernel support. 4570 */ 4571 env->nested_state->size = max_nested_state_len; 4572 4573 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state); 4574 if (ret < 0) { 4575 return ret; 4576 } 4577 4578 /* 4579 * Copy flags that are affected by reset to env->hflags and env->hflags2. 4580 */ 4581 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) { 4582 env->hflags |= HF_GUEST_MASK; 4583 } else { 4584 env->hflags &= ~HF_GUEST_MASK; 4585 } 4586 4587 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */ 4588 if (cpu_has_svm(env)) { 4589 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) { 4590 env->hflags2 |= HF2_GIF_MASK; 4591 } else { 4592 env->hflags2 &= ~HF2_GIF_MASK; 4593 } 4594 } 4595 4596 return ret; 4597 } 4598 4599 int kvm_arch_put_registers(CPUState *cpu, int level) 4600 { 4601 X86CPU *x86_cpu = X86_CPU(cpu); 4602 int ret; 4603 4604 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); 4605 4606 /* 4607 * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX 4608 * root operation upon vCPU reset. kvm_put_msr_feature_control() should also 4609 * preceed kvm_put_nested_state() when 'real' nested state is set. 4610 */ 4611 if (level >= KVM_PUT_RESET_STATE) { 4612 ret = kvm_put_msr_feature_control(x86_cpu); 4613 if (ret < 0) { 4614 return ret; 4615 } 4616 } 4617 4618 /* must be before kvm_put_nested_state so that EFER.SVME is set */ 4619 ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu); 4620 if (ret < 0) { 4621 return ret; 4622 } 4623 4624 if (level >= KVM_PUT_RESET_STATE) { 4625 ret = kvm_put_nested_state(x86_cpu); 4626 if (ret < 0) { 4627 return ret; 4628 } 4629 } 4630 4631 if (level == KVM_PUT_FULL_STATE) { 4632 /* We don't check for kvm_arch_set_tsc_khz() errors here, 4633 * because TSC frequency mismatch shouldn't abort migration, 4634 * unless the user explicitly asked for a more strict TSC 4635 * setting (e.g. using an explicit "tsc-freq" option). 4636 */ 4637 kvm_arch_set_tsc_khz(cpu); 4638 } 4639 4640 ret = kvm_getput_regs(x86_cpu, 1); 4641 if (ret < 0) { 4642 return ret; 4643 } 4644 ret = kvm_put_xsave(x86_cpu); 4645 if (ret < 0) { 4646 return ret; 4647 } 4648 ret = kvm_put_xcrs(x86_cpu); 4649 if (ret < 0) { 4650 return ret; 4651 } 4652 /* must be before kvm_put_msrs */ 4653 ret = kvm_inject_mce_oldstyle(x86_cpu); 4654 if (ret < 0) { 4655 return ret; 4656 } 4657 ret = kvm_put_msrs(x86_cpu, level); 4658 if (ret < 0) { 4659 return ret; 4660 } 4661 ret = kvm_put_vcpu_events(x86_cpu, level); 4662 if (ret < 0) { 4663 return ret; 4664 } 4665 if (level >= KVM_PUT_RESET_STATE) { 4666 ret = kvm_put_mp_state(x86_cpu); 4667 if (ret < 0) { 4668 return ret; 4669 } 4670 } 4671 4672 ret = kvm_put_tscdeadline_msr(x86_cpu); 4673 if (ret < 0) { 4674 return ret; 4675 } 4676 ret = kvm_put_debugregs(x86_cpu); 4677 if (ret < 0) { 4678 return ret; 4679 } 4680 /* must be last */ 4681 ret = kvm_guest_debug_workarounds(x86_cpu); 4682 if (ret < 0) { 4683 return ret; 4684 } 4685 return 0; 4686 } 4687 4688 int kvm_arch_get_registers(CPUState *cs) 4689 { 4690 X86CPU *cpu = X86_CPU(cs); 4691 int ret; 4692 4693 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); 4694 4695 ret = kvm_get_vcpu_events(cpu); 4696 if (ret < 0) { 4697 goto out; 4698 } 4699 /* 4700 * KVM_GET_MPSTATE can modify CS and RIP, call it before 4701 * KVM_GET_REGS and KVM_GET_SREGS. 4702 */ 4703 ret = kvm_get_mp_state(cpu); 4704 if (ret < 0) { 4705 goto out; 4706 } 4707 ret = kvm_getput_regs(cpu, 0); 4708 if (ret < 0) { 4709 goto out; 4710 } 4711 ret = kvm_get_xsave(cpu); 4712 if (ret < 0) { 4713 goto out; 4714 } 4715 ret = kvm_get_xcrs(cpu); 4716 if (ret < 0) { 4717 goto out; 4718 } 4719 ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu); 4720 if (ret < 0) { 4721 goto out; 4722 } 4723 ret = kvm_get_msrs(cpu); 4724 if (ret < 0) { 4725 goto out; 4726 } 4727 ret = kvm_get_apic(cpu); 4728 if (ret < 0) { 4729 goto out; 4730 } 4731 ret = kvm_get_debugregs(cpu); 4732 if (ret < 0) { 4733 goto out; 4734 } 4735 ret = kvm_get_nested_state(cpu); 4736 if (ret < 0) { 4737 goto out; 4738 } 4739 ret = 0; 4740 out: 4741 cpu_sync_bndcs_hflags(&cpu->env); 4742 return ret; 4743 } 4744 4745 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 4746 { 4747 X86CPU *x86_cpu = X86_CPU(cpu); 4748 CPUX86State *env = &x86_cpu->env; 4749 int ret; 4750 4751 /* Inject NMI */ 4752 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { 4753 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { 4754 qemu_mutex_lock_iothread(); 4755 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; 4756 qemu_mutex_unlock_iothread(); 4757 DPRINTF("injected NMI\n"); 4758 ret = kvm_vcpu_ioctl(cpu, KVM_NMI); 4759 if (ret < 0) { 4760 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", 4761 strerror(-ret)); 4762 } 4763 } 4764 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { 4765 qemu_mutex_lock_iothread(); 4766 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; 4767 qemu_mutex_unlock_iothread(); 4768 DPRINTF("injected SMI\n"); 4769 ret = kvm_vcpu_ioctl(cpu, KVM_SMI); 4770 if (ret < 0) { 4771 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", 4772 strerror(-ret)); 4773 } 4774 } 4775 } 4776 4777 if (!kvm_pic_in_kernel()) { 4778 qemu_mutex_lock_iothread(); 4779 } 4780 4781 /* Force the VCPU out of its inner loop to process any INIT requests 4782 * or (for userspace APIC, but it is cheap to combine the checks here) 4783 * pending TPR access reports. 4784 */ 4785 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { 4786 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && 4787 !(env->hflags & HF_SMM_MASK)) { 4788 cpu->exit_request = 1; 4789 } 4790 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { 4791 cpu->exit_request = 1; 4792 } 4793 } 4794 4795 if (!kvm_pic_in_kernel()) { 4796 /* Try to inject an interrupt if the guest can accept it */ 4797 if (run->ready_for_interrupt_injection && 4798 (cpu->interrupt_request & CPU_INTERRUPT_HARD) && 4799 (env->eflags & IF_MASK)) { 4800 int irq; 4801 4802 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; 4803 irq = cpu_get_pic_interrupt(env); 4804 if (irq >= 0) { 4805 struct kvm_interrupt intr; 4806 4807 intr.irq = irq; 4808 DPRINTF("injected interrupt %d\n", irq); 4809 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); 4810 if (ret < 0) { 4811 fprintf(stderr, 4812 "KVM: injection failed, interrupt lost (%s)\n", 4813 strerror(-ret)); 4814 } 4815 } 4816 } 4817 4818 /* If we have an interrupt but the guest is not ready to receive an 4819 * interrupt, request an interrupt window exit. This will 4820 * cause a return to userspace as soon as the guest is ready to 4821 * receive interrupts. */ 4822 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { 4823 run->request_interrupt_window = 1; 4824 } else { 4825 run->request_interrupt_window = 0; 4826 } 4827 4828 DPRINTF("setting tpr\n"); 4829 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); 4830 4831 qemu_mutex_unlock_iothread(); 4832 } 4833 } 4834 4835 static void kvm_rate_limit_on_bus_lock(void) 4836 { 4837 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1); 4838 4839 if (delay_ns) { 4840 g_usleep(delay_ns / SCALE_US); 4841 } 4842 } 4843 4844 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) 4845 { 4846 X86CPU *x86_cpu = X86_CPU(cpu); 4847 CPUX86State *env = &x86_cpu->env; 4848 4849 if (run->flags & KVM_RUN_X86_SMM) { 4850 env->hflags |= HF_SMM_MASK; 4851 } else { 4852 env->hflags &= ~HF_SMM_MASK; 4853 } 4854 if (run->if_flag) { 4855 env->eflags |= IF_MASK; 4856 } else { 4857 env->eflags &= ~IF_MASK; 4858 } 4859 if (run->flags & KVM_RUN_X86_BUS_LOCK) { 4860 kvm_rate_limit_on_bus_lock(); 4861 } 4862 4863 /* We need to protect the apic state against concurrent accesses from 4864 * different threads in case the userspace irqchip is used. */ 4865 if (!kvm_irqchip_in_kernel()) { 4866 qemu_mutex_lock_iothread(); 4867 } 4868 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); 4869 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); 4870 if (!kvm_irqchip_in_kernel()) { 4871 qemu_mutex_unlock_iothread(); 4872 } 4873 return cpu_get_mem_attrs(env); 4874 } 4875 4876 int kvm_arch_process_async_events(CPUState *cs) 4877 { 4878 X86CPU *cpu = X86_CPU(cs); 4879 CPUX86State *env = &cpu->env; 4880 4881 if (cs->interrupt_request & CPU_INTERRUPT_MCE) { 4882 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ 4883 assert(env->mcg_cap); 4884 4885 cs->interrupt_request &= ~CPU_INTERRUPT_MCE; 4886 4887 kvm_cpu_synchronize_state(cs); 4888 4889 if (env->exception_nr == EXCP08_DBLE) { 4890 /* this means triple fault */ 4891 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 4892 cs->exit_request = 1; 4893 return 0; 4894 } 4895 kvm_queue_exception(env, EXCP12_MCHK, 0, 0); 4896 env->has_error_code = 0; 4897 4898 cs->halted = 0; 4899 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { 4900 env->mp_state = KVM_MP_STATE_RUNNABLE; 4901 } 4902 } 4903 4904 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && 4905 !(env->hflags & HF_SMM_MASK)) { 4906 kvm_cpu_synchronize_state(cs); 4907 do_cpu_init(cpu); 4908 } 4909 4910 if (kvm_irqchip_in_kernel()) { 4911 return 0; 4912 } 4913 4914 if (cs->interrupt_request & CPU_INTERRUPT_POLL) { 4915 cs->interrupt_request &= ~CPU_INTERRUPT_POLL; 4916 apic_poll_irq(cpu->apic_state); 4917 } 4918 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && 4919 (env->eflags & IF_MASK)) || 4920 (cs->interrupt_request & CPU_INTERRUPT_NMI)) { 4921 cs->halted = 0; 4922 } 4923 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { 4924 kvm_cpu_synchronize_state(cs); 4925 do_cpu_sipi(cpu); 4926 } 4927 if (cs->interrupt_request & CPU_INTERRUPT_TPR) { 4928 cs->interrupt_request &= ~CPU_INTERRUPT_TPR; 4929 kvm_cpu_synchronize_state(cs); 4930 apic_handle_tpr_access_report(cpu->apic_state, env->eip, 4931 env->tpr_access_type); 4932 } 4933 4934 return cs->halted; 4935 } 4936 4937 static int kvm_handle_halt(X86CPU *cpu) 4938 { 4939 CPUState *cs = CPU(cpu); 4940 CPUX86State *env = &cpu->env; 4941 4942 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && 4943 (env->eflags & IF_MASK)) && 4944 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { 4945 cs->halted = 1; 4946 return EXCP_HLT; 4947 } 4948 4949 return 0; 4950 } 4951 4952 static int kvm_handle_tpr_access(X86CPU *cpu) 4953 { 4954 CPUState *cs = CPU(cpu); 4955 struct kvm_run *run = cs->kvm_run; 4956 4957 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, 4958 run->tpr_access.is_write ? TPR_ACCESS_WRITE 4959 : TPR_ACCESS_READ); 4960 return 1; 4961 } 4962 4963 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 4964 { 4965 static const uint8_t int3 = 0xcc; 4966 4967 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || 4968 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { 4969 return -EINVAL; 4970 } 4971 return 0; 4972 } 4973 4974 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 4975 { 4976 uint8_t int3; 4977 4978 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) { 4979 return -EINVAL; 4980 } 4981 if (int3 != 0xcc) { 4982 return 0; 4983 } 4984 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { 4985 return -EINVAL; 4986 } 4987 return 0; 4988 } 4989 4990 static struct { 4991 target_ulong addr; 4992 int len; 4993 int type; 4994 } hw_breakpoint[4]; 4995 4996 static int nb_hw_breakpoint; 4997 4998 static int find_hw_breakpoint(target_ulong addr, int len, int type) 4999 { 5000 int n; 5001 5002 for (n = 0; n < nb_hw_breakpoint; n++) { 5003 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && 5004 (hw_breakpoint[n].len == len || len == -1)) { 5005 return n; 5006 } 5007 } 5008 return -1; 5009 } 5010 5011 int kvm_arch_insert_hw_breakpoint(target_ulong addr, 5012 target_ulong len, int type) 5013 { 5014 switch (type) { 5015 case GDB_BREAKPOINT_HW: 5016 len = 1; 5017 break; 5018 case GDB_WATCHPOINT_WRITE: 5019 case GDB_WATCHPOINT_ACCESS: 5020 switch (len) { 5021 case 1: 5022 break; 5023 case 2: 5024 case 4: 5025 case 8: 5026 if (addr & (len - 1)) { 5027 return -EINVAL; 5028 } 5029 break; 5030 default: 5031 return -EINVAL; 5032 } 5033 break; 5034 default: 5035 return -ENOSYS; 5036 } 5037 5038 if (nb_hw_breakpoint == 4) { 5039 return -ENOBUFS; 5040 } 5041 if (find_hw_breakpoint(addr, len, type) >= 0) { 5042 return -EEXIST; 5043 } 5044 hw_breakpoint[nb_hw_breakpoint].addr = addr; 5045 hw_breakpoint[nb_hw_breakpoint].len = len; 5046 hw_breakpoint[nb_hw_breakpoint].type = type; 5047 nb_hw_breakpoint++; 5048 5049 return 0; 5050 } 5051 5052 int kvm_arch_remove_hw_breakpoint(target_ulong addr, 5053 target_ulong len, int type) 5054 { 5055 int n; 5056 5057 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); 5058 if (n < 0) { 5059 return -ENOENT; 5060 } 5061 nb_hw_breakpoint--; 5062 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; 5063 5064 return 0; 5065 } 5066 5067 void kvm_arch_remove_all_hw_breakpoints(void) 5068 { 5069 nb_hw_breakpoint = 0; 5070 } 5071 5072 static CPUWatchpoint hw_watchpoint; 5073 5074 static int kvm_handle_debug(X86CPU *cpu, 5075 struct kvm_debug_exit_arch *arch_info) 5076 { 5077 CPUState *cs = CPU(cpu); 5078 CPUX86State *env = &cpu->env; 5079 int ret = 0; 5080 int n; 5081 5082 if (arch_info->exception == EXCP01_DB) { 5083 if (arch_info->dr6 & DR6_BS) { 5084 if (cs->singlestep_enabled) { 5085 ret = EXCP_DEBUG; 5086 } 5087 } else { 5088 for (n = 0; n < 4; n++) { 5089 if (arch_info->dr6 & (1 << n)) { 5090 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { 5091 case 0x0: 5092 ret = EXCP_DEBUG; 5093 break; 5094 case 0x1: 5095 ret = EXCP_DEBUG; 5096 cs->watchpoint_hit = &hw_watchpoint; 5097 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 5098 hw_watchpoint.flags = BP_MEM_WRITE; 5099 break; 5100 case 0x3: 5101 ret = EXCP_DEBUG; 5102 cs->watchpoint_hit = &hw_watchpoint; 5103 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 5104 hw_watchpoint.flags = BP_MEM_ACCESS; 5105 break; 5106 } 5107 } 5108 } 5109 } 5110 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { 5111 ret = EXCP_DEBUG; 5112 } 5113 if (ret == 0) { 5114 cpu_synchronize_state(cs); 5115 assert(env->exception_nr == -1); 5116 5117 /* pass to guest */ 5118 kvm_queue_exception(env, arch_info->exception, 5119 arch_info->exception == EXCP01_DB, 5120 arch_info->dr6); 5121 env->has_error_code = 0; 5122 } 5123 5124 return ret; 5125 } 5126 5127 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 5128 { 5129 const uint8_t type_code[] = { 5130 [GDB_BREAKPOINT_HW] = 0x0, 5131 [GDB_WATCHPOINT_WRITE] = 0x1, 5132 [GDB_WATCHPOINT_ACCESS] = 0x3 5133 }; 5134 const uint8_t len_code[] = { 5135 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 5136 }; 5137 int n; 5138 5139 if (kvm_sw_breakpoints_active(cpu)) { 5140 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 5141 } 5142 if (nb_hw_breakpoint > 0) { 5143 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 5144 dbg->arch.debugreg[7] = 0x0600; 5145 for (n = 0; n < nb_hw_breakpoint; n++) { 5146 dbg->arch.debugreg[n] = hw_breakpoint[n].addr; 5147 dbg->arch.debugreg[7] |= (2 << (n * 2)) | 5148 (type_code[hw_breakpoint[n].type] << (16 + n*4)) | 5149 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); 5150 } 5151 } 5152 } 5153 5154 static bool kvm_install_msr_filters(KVMState *s) 5155 { 5156 uint64_t zero = 0; 5157 struct kvm_msr_filter filter = { 5158 .flags = KVM_MSR_FILTER_DEFAULT_ALLOW, 5159 }; 5160 int r, i, j = 0; 5161 5162 for (i = 0; i < KVM_MSR_FILTER_MAX_RANGES; i++) { 5163 KVMMSRHandlers *handler = &msr_handlers[i]; 5164 if (handler->msr) { 5165 struct kvm_msr_filter_range *range = &filter.ranges[j++]; 5166 5167 *range = (struct kvm_msr_filter_range) { 5168 .flags = 0, 5169 .nmsrs = 1, 5170 .base = handler->msr, 5171 .bitmap = (__u8 *)&zero, 5172 }; 5173 5174 if (handler->rdmsr) { 5175 range->flags |= KVM_MSR_FILTER_READ; 5176 } 5177 5178 if (handler->wrmsr) { 5179 range->flags |= KVM_MSR_FILTER_WRITE; 5180 } 5181 } 5182 } 5183 5184 r = kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter); 5185 if (r) { 5186 return false; 5187 } 5188 5189 return true; 5190 } 5191 5192 bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr, 5193 QEMUWRMSRHandler *wrmsr) 5194 { 5195 int i; 5196 5197 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5198 if (!msr_handlers[i].msr) { 5199 msr_handlers[i] = (KVMMSRHandlers) { 5200 .msr = msr, 5201 .rdmsr = rdmsr, 5202 .wrmsr = wrmsr, 5203 }; 5204 5205 if (!kvm_install_msr_filters(s)) { 5206 msr_handlers[i] = (KVMMSRHandlers) { }; 5207 return false; 5208 } 5209 5210 return true; 5211 } 5212 } 5213 5214 return false; 5215 } 5216 5217 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run) 5218 { 5219 int i; 5220 bool r; 5221 5222 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5223 KVMMSRHandlers *handler = &msr_handlers[i]; 5224 if (run->msr.index == handler->msr) { 5225 if (handler->rdmsr) { 5226 r = handler->rdmsr(cpu, handler->msr, 5227 (uint64_t *)&run->msr.data); 5228 run->msr.error = r ? 0 : 1; 5229 return 0; 5230 } 5231 } 5232 } 5233 5234 assert(false); 5235 } 5236 5237 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run) 5238 { 5239 int i; 5240 bool r; 5241 5242 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5243 KVMMSRHandlers *handler = &msr_handlers[i]; 5244 if (run->msr.index == handler->msr) { 5245 if (handler->wrmsr) { 5246 r = handler->wrmsr(cpu, handler->msr, run->msr.data); 5247 run->msr.error = r ? 0 : 1; 5248 return 0; 5249 } 5250 } 5251 } 5252 5253 assert(false); 5254 } 5255 5256 static bool has_sgx_provisioning; 5257 5258 static bool __kvm_enable_sgx_provisioning(KVMState *s) 5259 { 5260 int fd, ret; 5261 5262 if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) { 5263 return false; 5264 } 5265 5266 fd = qemu_open_old("/dev/sgx_provision", O_RDONLY); 5267 if (fd < 0) { 5268 return false; 5269 } 5270 5271 ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd); 5272 if (ret) { 5273 error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret)); 5274 exit(1); 5275 } 5276 close(fd); 5277 return true; 5278 } 5279 5280 bool kvm_enable_sgx_provisioning(KVMState *s) 5281 { 5282 return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning); 5283 } 5284 5285 static bool host_supports_vmx(void) 5286 { 5287 uint32_t ecx, unused; 5288 5289 host_cpuid(1, 0, &unused, &unused, &ecx, &unused); 5290 return ecx & CPUID_EXT_VMX; 5291 } 5292 5293 #define VMX_INVALID_GUEST_STATE 0x80000021 5294 5295 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 5296 { 5297 X86CPU *cpu = X86_CPU(cs); 5298 uint64_t code; 5299 int ret; 5300 bool ctx_invalid; 5301 char str[256]; 5302 KVMState *state; 5303 5304 switch (run->exit_reason) { 5305 case KVM_EXIT_HLT: 5306 DPRINTF("handle_hlt\n"); 5307 qemu_mutex_lock_iothread(); 5308 ret = kvm_handle_halt(cpu); 5309 qemu_mutex_unlock_iothread(); 5310 break; 5311 case KVM_EXIT_SET_TPR: 5312 ret = 0; 5313 break; 5314 case KVM_EXIT_TPR_ACCESS: 5315 qemu_mutex_lock_iothread(); 5316 ret = kvm_handle_tpr_access(cpu); 5317 qemu_mutex_unlock_iothread(); 5318 break; 5319 case KVM_EXIT_FAIL_ENTRY: 5320 code = run->fail_entry.hardware_entry_failure_reason; 5321 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", 5322 code); 5323 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { 5324 fprintf(stderr, 5325 "\nIf you're running a guest on an Intel machine without " 5326 "unrestricted mode\n" 5327 "support, the failure can be most likely due to the guest " 5328 "entering an invalid\n" 5329 "state for Intel VT. For example, the guest maybe running " 5330 "in big real mode\n" 5331 "which is not supported on less recent Intel processors." 5332 "\n\n"); 5333 } 5334 ret = -1; 5335 break; 5336 case KVM_EXIT_EXCEPTION: 5337 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", 5338 run->ex.exception, run->ex.error_code); 5339 ret = -1; 5340 break; 5341 case KVM_EXIT_DEBUG: 5342 DPRINTF("kvm_exit_debug\n"); 5343 qemu_mutex_lock_iothread(); 5344 ret = kvm_handle_debug(cpu, &run->debug.arch); 5345 qemu_mutex_unlock_iothread(); 5346 break; 5347 case KVM_EXIT_HYPERV: 5348 ret = kvm_hv_handle_exit(cpu, &run->hyperv); 5349 break; 5350 case KVM_EXIT_IOAPIC_EOI: 5351 ioapic_eoi_broadcast(run->eoi.vector); 5352 ret = 0; 5353 break; 5354 case KVM_EXIT_X86_BUS_LOCK: 5355 /* already handled in kvm_arch_post_run */ 5356 ret = 0; 5357 break; 5358 case KVM_EXIT_NOTIFY: 5359 ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID); 5360 state = KVM_STATE(current_accel()); 5361 sprintf(str, "Encounter a notify exit with %svalid context in" 5362 " guest. There can be possible misbehaves in guest." 5363 " Please have a look.", ctx_invalid ? "in" : ""); 5364 if (ctx_invalid || 5365 state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) { 5366 warn_report("KVM internal error: %s", str); 5367 ret = -1; 5368 } else { 5369 warn_report_once("KVM: %s", str); 5370 ret = 0; 5371 } 5372 break; 5373 case KVM_EXIT_X86_RDMSR: 5374 /* We only enable MSR filtering, any other exit is bogus */ 5375 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER); 5376 ret = kvm_handle_rdmsr(cpu, run); 5377 break; 5378 case KVM_EXIT_X86_WRMSR: 5379 /* We only enable MSR filtering, any other exit is bogus */ 5380 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER); 5381 ret = kvm_handle_wrmsr(cpu, run); 5382 break; 5383 default: 5384 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); 5385 ret = -1; 5386 break; 5387 } 5388 5389 return ret; 5390 } 5391 5392 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 5393 { 5394 X86CPU *cpu = X86_CPU(cs); 5395 CPUX86State *env = &cpu->env; 5396 5397 kvm_cpu_synchronize_state(cs); 5398 return !(env->cr[0] & CR0_PE_MASK) || 5399 ((env->segs[R_CS].selector & 3) != 3); 5400 } 5401 5402 void kvm_arch_init_irq_routing(KVMState *s) 5403 { 5404 /* We know at this point that we're using the in-kernel 5405 * irqchip, so we can use irqfds, and on x86 we know 5406 * we can use msi via irqfd and GSI routing. 5407 */ 5408 kvm_msi_via_irqfd_allowed = true; 5409 kvm_gsi_routing_allowed = true; 5410 5411 if (kvm_irqchip_is_split()) { 5412 KVMRouteChange c = kvm_irqchip_begin_route_changes(s); 5413 int i; 5414 5415 /* If the ioapic is in QEMU and the lapics are in KVM, reserve 5416 MSI routes for signaling interrupts to the local apics. */ 5417 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 5418 if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) { 5419 error_report("Could not enable split IRQ mode."); 5420 exit(1); 5421 } 5422 } 5423 kvm_irqchip_commit_route_changes(&c); 5424 } 5425 } 5426 5427 int kvm_arch_irqchip_create(KVMState *s) 5428 { 5429 int ret; 5430 if (kvm_kernel_irqchip_split()) { 5431 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); 5432 if (ret) { 5433 error_report("Could not enable split irqchip mode: %s", 5434 strerror(-ret)); 5435 exit(1); 5436 } else { 5437 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); 5438 kvm_split_irqchip = true; 5439 return 1; 5440 } 5441 } else { 5442 return 0; 5443 } 5444 } 5445 5446 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address) 5447 { 5448 CPUX86State *env; 5449 uint64_t ext_id; 5450 5451 if (!first_cpu) { 5452 return address; 5453 } 5454 env = &X86_CPU(first_cpu)->env; 5455 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) { 5456 return address; 5457 } 5458 5459 /* 5460 * If the remappable format bit is set, or the upper bits are 5461 * already set in address_hi, or the low extended bits aren't 5462 * there anyway, do nothing. 5463 */ 5464 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT); 5465 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) { 5466 return address; 5467 } 5468 5469 address &= ~ext_id; 5470 address |= ext_id << 35; 5471 return address; 5472 } 5473 5474 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 5475 uint64_t address, uint32_t data, PCIDevice *dev) 5476 { 5477 X86IOMMUState *iommu = x86_iommu_get_default(); 5478 5479 if (iommu) { 5480 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu); 5481 5482 if (class->int_remap) { 5483 int ret; 5484 MSIMessage src, dst; 5485 5486 src.address = route->u.msi.address_hi; 5487 src.address <<= VTD_MSI_ADDR_HI_SHIFT; 5488 src.address |= route->u.msi.address_lo; 5489 src.data = route->u.msi.data; 5490 5491 ret = class->int_remap(iommu, &src, &dst, dev ? \ 5492 pci_requester_id(dev) : \ 5493 X86_IOMMU_SID_INVALID); 5494 if (ret) { 5495 trace_kvm_x86_fixup_msi_error(route->gsi); 5496 return 1; 5497 } 5498 5499 /* 5500 * Handled untranslated compatibilty format interrupt with 5501 * extended destination ID in the low bits 11-5. */ 5502 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address); 5503 5504 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; 5505 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; 5506 route->u.msi.data = dst.data; 5507 return 0; 5508 } 5509 } 5510 5511 address = kvm_swizzle_msi_ext_dest_id(address); 5512 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT; 5513 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK; 5514 return 0; 5515 } 5516 5517 typedef struct MSIRouteEntry MSIRouteEntry; 5518 5519 struct MSIRouteEntry { 5520 PCIDevice *dev; /* Device pointer */ 5521 int vector; /* MSI/MSIX vector index */ 5522 int virq; /* Virtual IRQ index */ 5523 QLIST_ENTRY(MSIRouteEntry) list; 5524 }; 5525 5526 /* List of used GSI routes */ 5527 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ 5528 QLIST_HEAD_INITIALIZER(msi_route_list); 5529 5530 static void kvm_update_msi_routes_all(void *private, bool global, 5531 uint32_t index, uint32_t mask) 5532 { 5533 int cnt = 0, vector; 5534 MSIRouteEntry *entry; 5535 MSIMessage msg; 5536 PCIDevice *dev; 5537 5538 /* TODO: explicit route update */ 5539 QLIST_FOREACH(entry, &msi_route_list, list) { 5540 cnt++; 5541 vector = entry->vector; 5542 dev = entry->dev; 5543 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) { 5544 msg = msix_get_message(dev, vector); 5545 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) { 5546 msg = msi_get_message(dev, vector); 5547 } else { 5548 /* 5549 * Either MSI/MSIX is disabled for the device, or the 5550 * specific message was masked out. Skip this one. 5551 */ 5552 continue; 5553 } 5554 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); 5555 } 5556 kvm_irqchip_commit_routes(kvm_state); 5557 trace_kvm_x86_update_msi_routes(cnt); 5558 } 5559 5560 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 5561 int vector, PCIDevice *dev) 5562 { 5563 static bool notify_list_inited = false; 5564 MSIRouteEntry *entry; 5565 5566 if (!dev) { 5567 /* These are (possibly) IOAPIC routes only used for split 5568 * kernel irqchip mode, while what we are housekeeping are 5569 * PCI devices only. */ 5570 return 0; 5571 } 5572 5573 entry = g_new0(MSIRouteEntry, 1); 5574 entry->dev = dev; 5575 entry->vector = vector; 5576 entry->virq = route->gsi; 5577 QLIST_INSERT_HEAD(&msi_route_list, entry, list); 5578 5579 trace_kvm_x86_add_msi_route(route->gsi); 5580 5581 if (!notify_list_inited) { 5582 /* For the first time we do add route, add ourselves into 5583 * IOMMU's IEC notify list if needed. */ 5584 X86IOMMUState *iommu = x86_iommu_get_default(); 5585 if (iommu) { 5586 x86_iommu_iec_register_notifier(iommu, 5587 kvm_update_msi_routes_all, 5588 NULL); 5589 } 5590 notify_list_inited = true; 5591 } 5592 return 0; 5593 } 5594 5595 int kvm_arch_release_virq_post(int virq) 5596 { 5597 MSIRouteEntry *entry, *next; 5598 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { 5599 if (entry->virq == virq) { 5600 trace_kvm_x86_remove_msi_route(virq); 5601 QLIST_REMOVE(entry, list); 5602 g_free(entry); 5603 break; 5604 } 5605 } 5606 return 0; 5607 } 5608 5609 int kvm_arch_msi_data_to_gsi(uint32_t data) 5610 { 5611 abort(); 5612 } 5613 5614 bool kvm_has_waitpkg(void) 5615 { 5616 return has_msr_umwait; 5617 } 5618 5619 bool kvm_arch_cpu_check_are_resettable(void) 5620 { 5621 return !sev_es_enabled(); 5622 } 5623 5624 #define ARCH_REQ_XCOMP_GUEST_PERM 0x1025 5625 5626 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask) 5627 { 5628 KVMState *s = kvm_state; 5629 uint64_t supported; 5630 5631 mask &= XSTATE_DYNAMIC_MASK; 5632 if (!mask) { 5633 return; 5634 } 5635 /* 5636 * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0]. 5637 * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned 5638 * about them already because they are not supported features. 5639 */ 5640 supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX); 5641 supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32; 5642 mask &= supported; 5643 5644 while (mask) { 5645 int bit = ctz64(mask); 5646 int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit); 5647 if (rc) { 5648 /* 5649 * Older kernel version (<5.17) do not support 5650 * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return 5651 * any dynamic feature from kvm_arch_get_supported_cpuid. 5652 */ 5653 warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure " 5654 "for feature bit %d", bit); 5655 } 5656 mask &= ~BIT_ULL(bit); 5657 } 5658 } 5659 5660 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp) 5661 { 5662 KVMState *s = KVM_STATE(obj); 5663 return s->notify_vmexit; 5664 } 5665 5666 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp) 5667 { 5668 KVMState *s = KVM_STATE(obj); 5669 5670 if (s->fd != -1) { 5671 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 5672 return; 5673 } 5674 5675 s->notify_vmexit = value; 5676 } 5677 5678 static void kvm_arch_get_notify_window(Object *obj, Visitor *v, 5679 const char *name, void *opaque, 5680 Error **errp) 5681 { 5682 KVMState *s = KVM_STATE(obj); 5683 uint32_t value = s->notify_window; 5684 5685 visit_type_uint32(v, name, &value, errp); 5686 } 5687 5688 static void kvm_arch_set_notify_window(Object *obj, Visitor *v, 5689 const char *name, void *opaque, 5690 Error **errp) 5691 { 5692 KVMState *s = KVM_STATE(obj); 5693 uint32_t value; 5694 5695 if (s->fd != -1) { 5696 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 5697 return; 5698 } 5699 5700 if (!visit_type_uint32(v, name, &value, errp)) { 5701 return; 5702 } 5703 5704 s->notify_window = value; 5705 } 5706 5707 void kvm_arch_accel_class_init(ObjectClass *oc) 5708 { 5709 object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption", 5710 &NotifyVmexitOption_lookup, 5711 kvm_arch_get_notify_vmexit, 5712 kvm_arch_set_notify_vmexit); 5713 object_class_property_set_description(oc, "notify-vmexit", 5714 "Enable notify VM exit"); 5715 5716 object_class_property_add(oc, "notify-window", "uint32", 5717 kvm_arch_get_notify_window, 5718 kvm_arch_set_notify_window, 5719 NULL, NULL); 5720 object_class_property_set_description(oc, "notify-window", 5721 "Clock cycles without an event window " 5722 "after which a notification VM exit occurs"); 5723 } 5724 5725 void kvm_set_max_apic_id(uint32_t max_apic_id) 5726 { 5727 kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id); 5728 } 5729