1 /* 2 * QEMU KVM support 3 * 4 * Copyright (C) 2006-2008 Qumranet Technologies 5 * Copyright IBM, Corp. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or later. 11 * See the COPYING file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qapi/qapi-events-run-state.h" 17 #include "qapi/error.h" 18 #include <sys/ioctl.h> 19 #include <sys/utsname.h> 20 21 #include <linux/kvm.h> 22 #include "standard-headers/asm-x86/kvm_para.h" 23 24 #include "cpu.h" 25 #include "host-cpu.h" 26 #include "sysemu/sysemu.h" 27 #include "sysemu/hw_accel.h" 28 #include "sysemu/kvm_int.h" 29 #include "sysemu/runstate.h" 30 #include "kvm_i386.h" 31 #include "sev.h" 32 #include "hyperv.h" 33 #include "hyperv-proto.h" 34 35 #include "exec/gdbstub.h" 36 #include "qemu/host-utils.h" 37 #include "qemu/main-loop.h" 38 #include "qemu/config-file.h" 39 #include "qemu/error-report.h" 40 #include "hw/i386/x86.h" 41 #include "hw/i386/apic.h" 42 #include "hw/i386/apic_internal.h" 43 #include "hw/i386/apic-msidef.h" 44 #include "hw/i386/intel_iommu.h" 45 #include "hw/i386/x86-iommu.h" 46 #include "hw/i386/e820_memory_layout.h" 47 48 #include "hw/pci/pci.h" 49 #include "hw/pci/msi.h" 50 #include "hw/pci/msix.h" 51 #include "migration/blocker.h" 52 #include "exec/memattrs.h" 53 #include "trace.h" 54 55 //#define DEBUG_KVM 56 57 #ifdef DEBUG_KVM 58 #define DPRINTF(fmt, ...) \ 59 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 60 #else 61 #define DPRINTF(fmt, ...) \ 62 do { } while (0) 63 #endif 64 65 /* From arch/x86/kvm/lapic.h */ 66 #define KVM_APIC_BUS_CYCLE_NS 1 67 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS) 68 69 #define MSR_KVM_WALL_CLOCK 0x11 70 #define MSR_KVM_SYSTEM_TIME 0x12 71 72 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus 73 * 255 kvm_msr_entry structs */ 74 #define MSR_BUF_SIZE 4096 75 76 static void kvm_init_msrs(X86CPU *cpu); 77 78 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 79 KVM_CAP_INFO(SET_TSS_ADDR), 80 KVM_CAP_INFO(EXT_CPUID), 81 KVM_CAP_INFO(MP_STATE), 82 KVM_CAP_LAST_INFO 83 }; 84 85 static bool has_msr_star; 86 static bool has_msr_hsave_pa; 87 static bool has_msr_tsc_aux; 88 static bool has_msr_tsc_adjust; 89 static bool has_msr_tsc_deadline; 90 static bool has_msr_feature_control; 91 static bool has_msr_misc_enable; 92 static bool has_msr_smbase; 93 static bool has_msr_bndcfgs; 94 static int lm_capable_kernel; 95 static bool has_msr_hv_hypercall; 96 static bool has_msr_hv_crash; 97 static bool has_msr_hv_reset; 98 static bool has_msr_hv_vpindex; 99 static bool hv_vpindex_settable; 100 static bool has_msr_hv_runtime; 101 static bool has_msr_hv_synic; 102 static bool has_msr_hv_stimer; 103 static bool has_msr_hv_frequencies; 104 static bool has_msr_hv_reenlightenment; 105 static bool has_msr_xss; 106 static bool has_msr_umwait; 107 static bool has_msr_spec_ctrl; 108 static bool has_tsc_scale_msr; 109 static bool has_msr_tsx_ctrl; 110 static bool has_msr_virt_ssbd; 111 static bool has_msr_smi_count; 112 static bool has_msr_arch_capabs; 113 static bool has_msr_core_capabs; 114 static bool has_msr_vmx_vmfunc; 115 static bool has_msr_ucode_rev; 116 static bool has_msr_vmx_procbased_ctls2; 117 static bool has_msr_perf_capabs; 118 static bool has_msr_pkrs; 119 120 static uint32_t has_architectural_pmu_version; 121 static uint32_t num_architectural_pmu_gp_counters; 122 static uint32_t num_architectural_pmu_fixed_counters; 123 124 static int has_xsave; 125 static int has_xcrs; 126 static int has_pit_state2; 127 static int has_exception_payload; 128 129 static bool has_msr_mcg_ext_ctl; 130 131 static struct kvm_cpuid2 *cpuid_cache; 132 static struct kvm_cpuid2 *hv_cpuid_cache; 133 static struct kvm_msr_list *kvm_feature_msrs; 134 135 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */ 136 static RateLimit bus_lock_ratelimit_ctrl; 137 138 int kvm_has_pit_state2(void) 139 { 140 return has_pit_state2; 141 } 142 143 bool kvm_has_smm(void) 144 { 145 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM); 146 } 147 148 bool kvm_has_adjust_clock_stable(void) 149 { 150 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); 151 152 return (ret == KVM_CLOCK_TSC_STABLE); 153 } 154 155 bool kvm_has_adjust_clock(void) 156 { 157 return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); 158 } 159 160 bool kvm_has_exception_payload(void) 161 { 162 return has_exception_payload; 163 } 164 165 static bool kvm_x2apic_api_set_flags(uint64_t flags) 166 { 167 KVMState *s = KVM_STATE(current_accel()); 168 169 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); 170 } 171 172 #define MEMORIZE(fn, _result) \ 173 ({ \ 174 static bool _memorized; \ 175 \ 176 if (_memorized) { \ 177 return _result; \ 178 } \ 179 _memorized = true; \ 180 _result = fn; \ 181 }) 182 183 static bool has_x2apic_api; 184 185 bool kvm_has_x2apic_api(void) 186 { 187 return has_x2apic_api; 188 } 189 190 bool kvm_enable_x2apic(void) 191 { 192 return MEMORIZE( 193 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | 194 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), 195 has_x2apic_api); 196 } 197 198 bool kvm_hv_vpindex_settable(void) 199 { 200 return hv_vpindex_settable; 201 } 202 203 static int kvm_get_tsc(CPUState *cs) 204 { 205 X86CPU *cpu = X86_CPU(cs); 206 CPUX86State *env = &cpu->env; 207 struct { 208 struct kvm_msrs info; 209 struct kvm_msr_entry entries[1]; 210 } msr_data = {}; 211 int ret; 212 213 if (env->tsc_valid) { 214 return 0; 215 } 216 217 memset(&msr_data, 0, sizeof(msr_data)); 218 msr_data.info.nmsrs = 1; 219 msr_data.entries[0].index = MSR_IA32_TSC; 220 env->tsc_valid = !runstate_is_running(); 221 222 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); 223 if (ret < 0) { 224 return ret; 225 } 226 227 assert(ret == 1); 228 env->tsc = msr_data.entries[0].data; 229 return 0; 230 } 231 232 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) 233 { 234 kvm_get_tsc(cpu); 235 } 236 237 void kvm_synchronize_all_tsc(void) 238 { 239 CPUState *cpu; 240 241 if (kvm_enabled()) { 242 CPU_FOREACH(cpu) { 243 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); 244 } 245 } 246 } 247 248 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) 249 { 250 struct kvm_cpuid2 *cpuid; 251 int r, size; 252 253 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 254 cpuid = g_malloc0(size); 255 cpuid->nent = max; 256 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); 257 if (r == 0 && cpuid->nent >= max) { 258 r = -E2BIG; 259 } 260 if (r < 0) { 261 if (r == -E2BIG) { 262 g_free(cpuid); 263 return NULL; 264 } else { 265 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", 266 strerror(-r)); 267 exit(1); 268 } 269 } 270 return cpuid; 271 } 272 273 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough 274 * for all entries. 275 */ 276 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) 277 { 278 struct kvm_cpuid2 *cpuid; 279 int max = 1; 280 281 if (cpuid_cache != NULL) { 282 return cpuid_cache; 283 } 284 while ((cpuid = try_get_cpuid(s, max)) == NULL) { 285 max *= 2; 286 } 287 cpuid_cache = cpuid; 288 return cpuid; 289 } 290 291 static bool host_tsx_broken(void) 292 { 293 int family, model, stepping;\ 294 char vendor[CPUID_VENDOR_SZ + 1]; 295 296 host_cpu_vendor_fms(vendor, &family, &model, &stepping); 297 298 /* Check if we are running on a Haswell host known to have broken TSX */ 299 return !strcmp(vendor, CPUID_VENDOR_INTEL) && 300 (family == 6) && 301 ((model == 63 && stepping < 4) || 302 model == 60 || model == 69 || model == 70); 303 } 304 305 /* Returns the value for a specific register on the cpuid entry 306 */ 307 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) 308 { 309 uint32_t ret = 0; 310 switch (reg) { 311 case R_EAX: 312 ret = entry->eax; 313 break; 314 case R_EBX: 315 ret = entry->ebx; 316 break; 317 case R_ECX: 318 ret = entry->ecx; 319 break; 320 case R_EDX: 321 ret = entry->edx; 322 break; 323 } 324 return ret; 325 } 326 327 /* Find matching entry for function/index on kvm_cpuid2 struct 328 */ 329 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, 330 uint32_t function, 331 uint32_t index) 332 { 333 int i; 334 for (i = 0; i < cpuid->nent; ++i) { 335 if (cpuid->entries[i].function == function && 336 cpuid->entries[i].index == index) { 337 return &cpuid->entries[i]; 338 } 339 } 340 /* not found: */ 341 return NULL; 342 } 343 344 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, 345 uint32_t index, int reg) 346 { 347 struct kvm_cpuid2 *cpuid; 348 uint32_t ret = 0; 349 uint32_t cpuid_1_edx; 350 351 cpuid = get_supported_cpuid(s); 352 353 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); 354 if (entry) { 355 ret = cpuid_entry_get_reg(entry, reg); 356 } 357 358 /* Fixups for the data returned by KVM, below */ 359 360 if (function == 1 && reg == R_EDX) { 361 /* KVM before 2.6.30 misreports the following features */ 362 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; 363 } else if (function == 1 && reg == R_ECX) { 364 /* We can set the hypervisor flag, even if KVM does not return it on 365 * GET_SUPPORTED_CPUID 366 */ 367 ret |= CPUID_EXT_HYPERVISOR; 368 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it 369 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, 370 * and the irqchip is in the kernel. 371 */ 372 if (kvm_irqchip_in_kernel() && 373 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { 374 ret |= CPUID_EXT_TSC_DEADLINE_TIMER; 375 } 376 377 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled 378 * without the in-kernel irqchip 379 */ 380 if (!kvm_irqchip_in_kernel()) { 381 ret &= ~CPUID_EXT_X2APIC; 382 } 383 384 if (enable_cpu_pm) { 385 int disable_exits = kvm_check_extension(s, 386 KVM_CAP_X86_DISABLE_EXITS); 387 388 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) { 389 ret |= CPUID_EXT_MONITOR; 390 } 391 } 392 } else if (function == 6 && reg == R_EAX) { 393 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ 394 } else if (function == 7 && index == 0 && reg == R_EBX) { 395 if (host_tsx_broken()) { 396 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); 397 } 398 } else if (function == 7 && index == 0 && reg == R_EDX) { 399 /* 400 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts. 401 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is 402 * returned by KVM_GET_MSR_INDEX_LIST. 403 */ 404 if (!has_msr_arch_capabs) { 405 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES; 406 } 407 } else if (function == 0x80000001 && reg == R_ECX) { 408 /* 409 * It's safe to enable TOPOEXT even if it's not returned by 410 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows 411 * us to keep CPU models including TOPOEXT runnable on older kernels. 412 */ 413 ret |= CPUID_EXT3_TOPOEXT; 414 } else if (function == 0x80000001 && reg == R_EDX) { 415 /* On Intel, kvm returns cpuid according to the Intel spec, 416 * so add missing bits according to the AMD spec: 417 */ 418 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); 419 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; 420 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { 421 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't 422 * be enabled without the in-kernel irqchip 423 */ 424 if (!kvm_irqchip_in_kernel()) { 425 ret &= ~(1U << KVM_FEATURE_PV_UNHALT); 426 } 427 if (kvm_irqchip_is_split()) { 428 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID; 429 } 430 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) { 431 ret |= 1U << KVM_HINTS_REALTIME; 432 } 433 434 return ret; 435 } 436 437 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index) 438 { 439 struct { 440 struct kvm_msrs info; 441 struct kvm_msr_entry entries[1]; 442 } msr_data = {}; 443 uint64_t value; 444 uint32_t ret, can_be_one, must_be_one; 445 446 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */ 447 return 0; 448 } 449 450 /* Check if requested MSR is supported feature MSR */ 451 int i; 452 for (i = 0; i < kvm_feature_msrs->nmsrs; i++) 453 if (kvm_feature_msrs->indices[i] == index) { 454 break; 455 } 456 if (i == kvm_feature_msrs->nmsrs) { 457 return 0; /* if the feature MSR is not supported, simply return 0 */ 458 } 459 460 msr_data.info.nmsrs = 1; 461 msr_data.entries[0].index = index; 462 463 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data); 464 if (ret != 1) { 465 error_report("KVM get MSR (index=0x%x) feature failed, %s", 466 index, strerror(-ret)); 467 exit(1); 468 } 469 470 value = msr_data.entries[0].data; 471 switch (index) { 472 case MSR_IA32_VMX_PROCBASED_CTLS2: 473 if (!has_msr_vmx_procbased_ctls2) { 474 /* KVM forgot to add these bits for some time, do this ourselves. */ 475 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) & 476 CPUID_XSAVE_XSAVES) { 477 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32; 478 } 479 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) & 480 CPUID_EXT_RDRAND) { 481 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32; 482 } 483 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 484 CPUID_7_0_EBX_INVPCID) { 485 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32; 486 } 487 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 488 CPUID_7_0_EBX_RDSEED) { 489 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32; 490 } 491 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) & 492 CPUID_EXT2_RDTSCP) { 493 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32; 494 } 495 } 496 /* fall through */ 497 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 498 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 499 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 500 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 501 /* 502 * Return true for bits that can be one, but do not have to be one. 503 * The SDM tells us which bits could have a "must be one" setting, 504 * so we can do the opposite transformation in make_vmx_msr_value. 505 */ 506 must_be_one = (uint32_t)value; 507 can_be_one = (uint32_t)(value >> 32); 508 return can_be_one & ~must_be_one; 509 510 default: 511 return value; 512 } 513 } 514 515 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, 516 int *max_banks) 517 { 518 int r; 519 520 r = kvm_check_extension(s, KVM_CAP_MCE); 521 if (r > 0) { 522 *max_banks = r; 523 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); 524 } 525 return -ENOSYS; 526 } 527 528 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) 529 { 530 CPUState *cs = CPU(cpu); 531 CPUX86State *env = &cpu->env; 532 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | 533 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; 534 uint64_t mcg_status = MCG_STATUS_MCIP; 535 int flags = 0; 536 537 if (code == BUS_MCEERR_AR) { 538 status |= MCI_STATUS_AR | 0x134; 539 mcg_status |= MCG_STATUS_EIPV; 540 } else { 541 status |= 0xc0; 542 mcg_status |= MCG_STATUS_RIPV; 543 } 544 545 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; 546 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the 547 * guest kernel back into env->mcg_ext_ctl. 548 */ 549 cpu_synchronize_state(cs); 550 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { 551 mcg_status |= MCG_STATUS_LMCE; 552 flags = 0; 553 } 554 555 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, 556 (MCM_ADDR_PHYS << 6) | 0xc, flags); 557 } 558 559 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar) 560 { 561 MemoryFailureFlags mff = {.action_required = ar, .recursive = false}; 562 563 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action, 564 &mff); 565 } 566 567 static void hardware_memory_error(void *host_addr) 568 { 569 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true); 570 error_report("QEMU got Hardware memory error at addr %p", host_addr); 571 exit(1); 572 } 573 574 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) 575 { 576 X86CPU *cpu = X86_CPU(c); 577 CPUX86State *env = &cpu->env; 578 ram_addr_t ram_addr; 579 hwaddr paddr; 580 581 /* If we get an action required MCE, it has been injected by KVM 582 * while the VM was running. An action optional MCE instead should 583 * be coming from the main thread, which qemu_init_sigbus identifies 584 * as the "early kill" thread. 585 */ 586 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); 587 588 if ((env->mcg_cap & MCG_SER_P) && addr) { 589 ram_addr = qemu_ram_addr_from_host(addr); 590 if (ram_addr != RAM_ADDR_INVALID && 591 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { 592 kvm_hwpoison_page_add(ram_addr); 593 kvm_mce_inject(cpu, paddr, code); 594 595 /* 596 * Use different logging severity based on error type. 597 * If there is additional MCE reporting on the hypervisor, QEMU VA 598 * could be another source to identify the PA and MCE details. 599 */ 600 if (code == BUS_MCEERR_AR) { 601 error_report("Guest MCE Memory Error at QEMU addr %p and " 602 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 603 addr, paddr, "BUS_MCEERR_AR"); 604 } else { 605 warn_report("Guest MCE Memory Error at QEMU addr %p and " 606 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 607 addr, paddr, "BUS_MCEERR_AO"); 608 } 609 610 return; 611 } 612 613 if (code == BUS_MCEERR_AO) { 614 warn_report("Hardware memory error at addr %p of type %s " 615 "for memory used by QEMU itself instead of guest system!", 616 addr, "BUS_MCEERR_AO"); 617 } 618 } 619 620 if (code == BUS_MCEERR_AR) { 621 hardware_memory_error(addr); 622 } 623 624 /* Hope we are lucky for AO MCE, just notify a event */ 625 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false); 626 } 627 628 static void kvm_reset_exception(CPUX86State *env) 629 { 630 env->exception_nr = -1; 631 env->exception_pending = 0; 632 env->exception_injected = 0; 633 env->exception_has_payload = false; 634 env->exception_payload = 0; 635 } 636 637 static void kvm_queue_exception(CPUX86State *env, 638 int32_t exception_nr, 639 uint8_t exception_has_payload, 640 uint64_t exception_payload) 641 { 642 assert(env->exception_nr == -1); 643 assert(!env->exception_pending); 644 assert(!env->exception_injected); 645 assert(!env->exception_has_payload); 646 647 env->exception_nr = exception_nr; 648 649 if (has_exception_payload) { 650 env->exception_pending = 1; 651 652 env->exception_has_payload = exception_has_payload; 653 env->exception_payload = exception_payload; 654 } else { 655 env->exception_injected = 1; 656 657 if (exception_nr == EXCP01_DB) { 658 assert(exception_has_payload); 659 env->dr[6] = exception_payload; 660 } else if (exception_nr == EXCP0E_PAGE) { 661 assert(exception_has_payload); 662 env->cr[2] = exception_payload; 663 } else { 664 assert(!exception_has_payload); 665 } 666 } 667 } 668 669 static int kvm_inject_mce_oldstyle(X86CPU *cpu) 670 { 671 CPUX86State *env = &cpu->env; 672 673 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) { 674 unsigned int bank, bank_num = env->mcg_cap & 0xff; 675 struct kvm_x86_mce mce; 676 677 kvm_reset_exception(env); 678 679 /* 680 * There must be at least one bank in use if an MCE is pending. 681 * Find it and use its values for the event injection. 682 */ 683 for (bank = 0; bank < bank_num; bank++) { 684 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { 685 break; 686 } 687 } 688 assert(bank < bank_num); 689 690 mce.bank = bank; 691 mce.status = env->mce_banks[bank * 4 + 1]; 692 mce.mcg_status = env->mcg_status; 693 mce.addr = env->mce_banks[bank * 4 + 2]; 694 mce.misc = env->mce_banks[bank * 4 + 3]; 695 696 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); 697 } 698 return 0; 699 } 700 701 static void cpu_update_state(void *opaque, bool running, RunState state) 702 { 703 CPUX86State *env = opaque; 704 705 if (running) { 706 env->tsc_valid = false; 707 } 708 } 709 710 unsigned long kvm_arch_vcpu_id(CPUState *cs) 711 { 712 X86CPU *cpu = X86_CPU(cs); 713 return cpu->apic_id; 714 } 715 716 #ifndef KVM_CPUID_SIGNATURE_NEXT 717 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 718 #endif 719 720 static bool hyperv_enabled(X86CPU *cpu) 721 { 722 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 && 723 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) || 724 cpu->hyperv_features || cpu->hyperv_passthrough); 725 } 726 727 /* 728 * Check whether target_freq is within conservative 729 * ntp correctable bounds (250ppm) of freq 730 */ 731 static inline bool freq_within_bounds(int freq, int target_freq) 732 { 733 int max_freq = freq + (freq * 250 / 1000000); 734 int min_freq = freq - (freq * 250 / 1000000); 735 736 if (target_freq >= min_freq && target_freq <= max_freq) { 737 return true; 738 } 739 740 return false; 741 } 742 743 static int kvm_arch_set_tsc_khz(CPUState *cs) 744 { 745 X86CPU *cpu = X86_CPU(cs); 746 CPUX86State *env = &cpu->env; 747 int r, cur_freq; 748 bool set_ioctl = false; 749 750 if (!env->tsc_khz) { 751 return 0; 752 } 753 754 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 755 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP; 756 757 /* 758 * If TSC scaling is supported, attempt to set TSC frequency. 759 */ 760 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) { 761 set_ioctl = true; 762 } 763 764 /* 765 * If desired TSC frequency is within bounds of NTP correction, 766 * attempt to set TSC frequency. 767 */ 768 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) { 769 set_ioctl = true; 770 } 771 772 r = set_ioctl ? 773 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : 774 -ENOTSUP; 775 776 if (r < 0) { 777 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current 778 * TSC frequency doesn't match the one we want. 779 */ 780 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 781 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 782 -ENOTSUP; 783 if (cur_freq <= 0 || cur_freq != env->tsc_khz) { 784 warn_report("TSC frequency mismatch between " 785 "VM (%" PRId64 " kHz) and host (%d kHz), " 786 "and TSC scaling unavailable", 787 env->tsc_khz, cur_freq); 788 return r; 789 } 790 } 791 792 return 0; 793 } 794 795 static bool tsc_is_stable_and_known(CPUX86State *env) 796 { 797 if (!env->tsc_khz) { 798 return false; 799 } 800 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) 801 || env->user_tsc_khz; 802 } 803 804 static struct { 805 const char *desc; 806 struct { 807 uint32_t func; 808 int reg; 809 uint32_t bits; 810 } flags[2]; 811 uint64_t dependencies; 812 } kvm_hyperv_properties[] = { 813 [HYPERV_FEAT_RELAXED] = { 814 .desc = "relaxed timing (hv-relaxed)", 815 .flags = { 816 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 817 .bits = HV_RELAXED_TIMING_RECOMMENDED} 818 } 819 }, 820 [HYPERV_FEAT_VAPIC] = { 821 .desc = "virtual APIC (hv-vapic)", 822 .flags = { 823 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 824 .bits = HV_APIC_ACCESS_AVAILABLE} 825 } 826 }, 827 [HYPERV_FEAT_TIME] = { 828 .desc = "clocksources (hv-time)", 829 .flags = { 830 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 831 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE} 832 } 833 }, 834 [HYPERV_FEAT_CRASH] = { 835 .desc = "crash MSRs (hv-crash)", 836 .flags = { 837 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 838 .bits = HV_GUEST_CRASH_MSR_AVAILABLE} 839 } 840 }, 841 [HYPERV_FEAT_RESET] = { 842 .desc = "reset MSR (hv-reset)", 843 .flags = { 844 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 845 .bits = HV_RESET_AVAILABLE} 846 } 847 }, 848 [HYPERV_FEAT_VPINDEX] = { 849 .desc = "VP_INDEX MSR (hv-vpindex)", 850 .flags = { 851 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 852 .bits = HV_VP_INDEX_AVAILABLE} 853 } 854 }, 855 [HYPERV_FEAT_RUNTIME] = { 856 .desc = "VP_RUNTIME MSR (hv-runtime)", 857 .flags = { 858 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 859 .bits = HV_VP_RUNTIME_AVAILABLE} 860 } 861 }, 862 [HYPERV_FEAT_SYNIC] = { 863 .desc = "synthetic interrupt controller (hv-synic)", 864 .flags = { 865 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 866 .bits = HV_SYNIC_AVAILABLE} 867 } 868 }, 869 [HYPERV_FEAT_STIMER] = { 870 .desc = "synthetic timers (hv-stimer)", 871 .flags = { 872 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 873 .bits = HV_SYNTIMERS_AVAILABLE} 874 }, 875 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME) 876 }, 877 [HYPERV_FEAT_FREQUENCIES] = { 878 .desc = "frequency MSRs (hv-frequencies)", 879 .flags = { 880 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 881 .bits = HV_ACCESS_FREQUENCY_MSRS}, 882 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 883 .bits = HV_FREQUENCY_MSRS_AVAILABLE} 884 } 885 }, 886 [HYPERV_FEAT_REENLIGHTENMENT] = { 887 .desc = "reenlightenment MSRs (hv-reenlightenment)", 888 .flags = { 889 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 890 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL} 891 } 892 }, 893 [HYPERV_FEAT_TLBFLUSH] = { 894 .desc = "paravirtualized TLB flush (hv-tlbflush)", 895 .flags = { 896 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 897 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED | 898 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 899 }, 900 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 901 }, 902 [HYPERV_FEAT_EVMCS] = { 903 .desc = "enlightened VMCS (hv-evmcs)", 904 .flags = { 905 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 906 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED} 907 }, 908 .dependencies = BIT(HYPERV_FEAT_VAPIC) 909 }, 910 [HYPERV_FEAT_IPI] = { 911 .desc = "paravirtualized IPI (hv-ipi)", 912 .flags = { 913 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 914 .bits = HV_CLUSTER_IPI_RECOMMENDED | 915 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 916 }, 917 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 918 }, 919 [HYPERV_FEAT_STIMER_DIRECT] = { 920 .desc = "direct mode synthetic timers (hv-stimer-direct)", 921 .flags = { 922 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 923 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE} 924 }, 925 .dependencies = BIT(HYPERV_FEAT_STIMER) 926 }, 927 [HYPERV_FEAT_AVIC] = { 928 .desc = "AVIC/APICv support (hv-avic/hv-apicv)", 929 .flags = { 930 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 931 .bits = HV_DEPRECATING_AEOI_RECOMMENDED} 932 } 933 }, 934 }; 935 936 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max, 937 bool do_sys_ioctl) 938 { 939 struct kvm_cpuid2 *cpuid; 940 int r, size; 941 942 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 943 cpuid = g_malloc0(size); 944 cpuid->nent = max; 945 946 if (do_sys_ioctl) { 947 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 948 } else { 949 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 950 } 951 if (r == 0 && cpuid->nent >= max) { 952 r = -E2BIG; 953 } 954 if (r < 0) { 955 if (r == -E2BIG) { 956 g_free(cpuid); 957 return NULL; 958 } else { 959 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n", 960 strerror(-r)); 961 exit(1); 962 } 963 } 964 return cpuid; 965 } 966 967 /* 968 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough 969 * for all entries. 970 */ 971 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs) 972 { 973 struct kvm_cpuid2 *cpuid; 974 /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000080 leaves */ 975 int max = 10; 976 int i; 977 bool do_sys_ioctl; 978 979 do_sys_ioctl = 980 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0; 981 982 /* 983 * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is 984 * unsupported, kvm_hyperv_expand_features() checks for that. 985 */ 986 assert(do_sys_ioctl || cs->kvm_state); 987 988 /* 989 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with 990 * -E2BIG, however, it doesn't report back the right size. Keep increasing 991 * it and re-trying until we succeed. 992 */ 993 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) { 994 max++; 995 } 996 997 /* 998 * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before 999 * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the 1000 * information early, just check for the capability and set the bit 1001 * manually. 1002 */ 1003 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state, 1004 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1005 for (i = 0; i < cpuid->nent; i++) { 1006 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) { 1007 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1008 } 1009 } 1010 } 1011 1012 return cpuid; 1013 } 1014 1015 /* 1016 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature 1017 * leaves from KVM_CAP_HYPERV* and present MSRs data. 1018 */ 1019 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs) 1020 { 1021 X86CPU *cpu = X86_CPU(cs); 1022 struct kvm_cpuid2 *cpuid; 1023 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm; 1024 1025 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */ 1026 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries)); 1027 cpuid->nent = 2; 1028 1029 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */ 1030 entry_feat = &cpuid->entries[0]; 1031 entry_feat->function = HV_CPUID_FEATURES; 1032 1033 entry_recomm = &cpuid->entries[1]; 1034 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO; 1035 entry_recomm->ebx = cpu->hyperv_spinlock_attempts; 1036 1037 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) { 1038 entry_feat->eax |= HV_HYPERCALL_AVAILABLE; 1039 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE; 1040 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1041 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED; 1042 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED; 1043 } 1044 1045 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { 1046 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE; 1047 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE; 1048 } 1049 1050 if (has_msr_hv_frequencies) { 1051 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS; 1052 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE; 1053 } 1054 1055 if (has_msr_hv_crash) { 1056 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE; 1057 } 1058 1059 if (has_msr_hv_reenlightenment) { 1060 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL; 1061 } 1062 1063 if (has_msr_hv_reset) { 1064 entry_feat->eax |= HV_RESET_AVAILABLE; 1065 } 1066 1067 if (has_msr_hv_vpindex) { 1068 entry_feat->eax |= HV_VP_INDEX_AVAILABLE; 1069 } 1070 1071 if (has_msr_hv_runtime) { 1072 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE; 1073 } 1074 1075 if (has_msr_hv_synic) { 1076 unsigned int cap = cpu->hyperv_synic_kvm_only ? 1077 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1078 1079 if (kvm_check_extension(cs->kvm_state, cap) > 0) { 1080 entry_feat->eax |= HV_SYNIC_AVAILABLE; 1081 } 1082 } 1083 1084 if (has_msr_hv_stimer) { 1085 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE; 1086 } 1087 1088 if (kvm_check_extension(cs->kvm_state, 1089 KVM_CAP_HYPERV_TLBFLUSH) > 0) { 1090 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED; 1091 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1092 } 1093 1094 if (kvm_check_extension(cs->kvm_state, 1095 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1096 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1097 } 1098 1099 if (kvm_check_extension(cs->kvm_state, 1100 KVM_CAP_HYPERV_SEND_IPI) > 0) { 1101 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED; 1102 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1103 } 1104 1105 return cpuid; 1106 } 1107 1108 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg) 1109 { 1110 struct kvm_cpuid_entry2 *entry; 1111 struct kvm_cpuid2 *cpuid; 1112 1113 if (hv_cpuid_cache) { 1114 cpuid = hv_cpuid_cache; 1115 } else { 1116 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) { 1117 cpuid = get_supported_hv_cpuid(cs); 1118 } else { 1119 /* 1120 * 'cs->kvm_state' may be NULL when Hyper-V features are expanded 1121 * before KVM context is created but this is only done when 1122 * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies 1123 * KVM_CAP_HYPERV_CPUID. 1124 */ 1125 assert(cs->kvm_state); 1126 1127 cpuid = get_supported_hv_cpuid_legacy(cs); 1128 } 1129 hv_cpuid_cache = cpuid; 1130 } 1131 1132 if (!cpuid) { 1133 return 0; 1134 } 1135 1136 entry = cpuid_find_entry(cpuid, func, 0); 1137 if (!entry) { 1138 return 0; 1139 } 1140 1141 return cpuid_entry_get_reg(entry, reg); 1142 } 1143 1144 static bool hyperv_feature_supported(CPUState *cs, int feature) 1145 { 1146 uint32_t func, bits; 1147 int i, reg; 1148 1149 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) { 1150 1151 func = kvm_hyperv_properties[feature].flags[i].func; 1152 reg = kvm_hyperv_properties[feature].flags[i].reg; 1153 bits = kvm_hyperv_properties[feature].flags[i].bits; 1154 1155 if (!func) { 1156 continue; 1157 } 1158 1159 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) { 1160 return false; 1161 } 1162 } 1163 1164 return true; 1165 } 1166 1167 /* Checks that all feature dependencies are enabled */ 1168 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp) 1169 { 1170 uint64_t deps; 1171 int dep_feat; 1172 1173 deps = kvm_hyperv_properties[feature].dependencies; 1174 while (deps) { 1175 dep_feat = ctz64(deps); 1176 if (!(hyperv_feat_enabled(cpu, dep_feat))) { 1177 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1178 kvm_hyperv_properties[feature].desc, 1179 kvm_hyperv_properties[dep_feat].desc); 1180 return false; 1181 } 1182 deps &= ~(1ull << dep_feat); 1183 } 1184 1185 return true; 1186 } 1187 1188 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg) 1189 { 1190 X86CPU *cpu = X86_CPU(cs); 1191 uint32_t r = 0; 1192 int i, j; 1193 1194 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) { 1195 if (!hyperv_feat_enabled(cpu, i)) { 1196 continue; 1197 } 1198 1199 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) { 1200 if (kvm_hyperv_properties[i].flags[j].func != func) { 1201 continue; 1202 } 1203 if (kvm_hyperv_properties[i].flags[j].reg != reg) { 1204 continue; 1205 } 1206 1207 r |= kvm_hyperv_properties[i].flags[j].bits; 1208 } 1209 } 1210 1211 return r; 1212 } 1213 1214 /* 1215 * Expand Hyper-V CPU features. In partucular, check that all the requested 1216 * features are supported by the host and the sanity of the configuration 1217 * (that all the required dependencies are included). Also, this takes care 1218 * of 'hv_passthrough' mode and fills the environment with all supported 1219 * Hyper-V features. 1220 */ 1221 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp) 1222 { 1223 CPUState *cs = CPU(cpu); 1224 Error *local_err = NULL; 1225 int feat; 1226 1227 if (!hyperv_enabled(cpu)) 1228 return true; 1229 1230 /* 1231 * When kvm_hyperv_expand_features is called at CPU feature expansion 1232 * time per-CPU kvm_state is not available yet so we can only proceed 1233 * when KVM_CAP_SYS_HYPERV_CPUID is supported. 1234 */ 1235 if (!cs->kvm_state && 1236 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID)) 1237 return true; 1238 1239 if (cpu->hyperv_passthrough) { 1240 cpu->hyperv_vendor_id[0] = 1241 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX); 1242 cpu->hyperv_vendor_id[1] = 1243 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX); 1244 cpu->hyperv_vendor_id[2] = 1245 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX); 1246 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor, 1247 sizeof(cpu->hyperv_vendor_id) + 1); 1248 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id, 1249 sizeof(cpu->hyperv_vendor_id)); 1250 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0; 1251 1252 cpu->hyperv_interface_id[0] = 1253 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX); 1254 cpu->hyperv_interface_id[1] = 1255 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX); 1256 cpu->hyperv_interface_id[2] = 1257 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX); 1258 cpu->hyperv_interface_id[3] = 1259 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX); 1260 1261 cpu->hyperv_ver_id_build = 1262 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX); 1263 cpu->hyperv_ver_id_major = 1264 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16; 1265 cpu->hyperv_ver_id_minor = 1266 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff; 1267 cpu->hyperv_ver_id_sp = 1268 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX); 1269 cpu->hyperv_ver_id_sb = 1270 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24; 1271 cpu->hyperv_ver_id_sn = 1272 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff; 1273 1274 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, 1275 R_EAX); 1276 cpu->hyperv_limits[0] = 1277 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX); 1278 cpu->hyperv_limits[1] = 1279 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX); 1280 cpu->hyperv_limits[2] = 1281 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX); 1282 1283 cpu->hyperv_spinlock_attempts = 1284 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX); 1285 1286 /* 1287 * Mark feature as enabled in 'cpu->hyperv_features' as 1288 * hv_build_cpuid_leaf() uses this info to build guest CPUIDs. 1289 */ 1290 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1291 if (hyperv_feature_supported(cs, feat)) { 1292 cpu->hyperv_features |= BIT(feat); 1293 } 1294 } 1295 } else { 1296 /* Check features availability and dependencies */ 1297 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1298 /* If the feature was not requested skip it. */ 1299 if (!hyperv_feat_enabled(cpu, feat)) { 1300 continue; 1301 } 1302 1303 /* Check if the feature is supported by KVM */ 1304 if (!hyperv_feature_supported(cs, feat)) { 1305 error_setg(errp, "Hyper-V %s is not supported by kernel", 1306 kvm_hyperv_properties[feat].desc); 1307 return false; 1308 } 1309 1310 /* Check dependencies */ 1311 if (!hv_feature_check_deps(cpu, feat, &local_err)) { 1312 error_propagate(errp, local_err); 1313 return false; 1314 } 1315 } 1316 } 1317 1318 /* Additional dependencies not covered by kvm_hyperv_properties[] */ 1319 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1320 !cpu->hyperv_synic_kvm_only && 1321 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) { 1322 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1323 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc, 1324 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc); 1325 return false; 1326 } 1327 1328 return true; 1329 } 1330 1331 /* 1332 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent. 1333 */ 1334 static int hyperv_fill_cpuids(CPUState *cs, 1335 struct kvm_cpuid_entry2 *cpuid_ent) 1336 { 1337 X86CPU *cpu = X86_CPU(cs); 1338 struct kvm_cpuid_entry2 *c; 1339 uint32_t cpuid_i = 0; 1340 1341 c = &cpuid_ent[cpuid_i++]; 1342 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS; 1343 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ? 1344 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS; 1345 c->ebx = cpu->hyperv_vendor_id[0]; 1346 c->ecx = cpu->hyperv_vendor_id[1]; 1347 c->edx = cpu->hyperv_vendor_id[2]; 1348 1349 c = &cpuid_ent[cpuid_i++]; 1350 c->function = HV_CPUID_INTERFACE; 1351 c->eax = cpu->hyperv_interface_id[0]; 1352 c->ebx = cpu->hyperv_interface_id[1]; 1353 c->ecx = cpu->hyperv_interface_id[2]; 1354 c->edx = cpu->hyperv_interface_id[3]; 1355 1356 c = &cpuid_ent[cpuid_i++]; 1357 c->function = HV_CPUID_VERSION; 1358 c->eax = cpu->hyperv_ver_id_build; 1359 c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 | 1360 cpu->hyperv_ver_id_minor; 1361 c->ecx = cpu->hyperv_ver_id_sp; 1362 c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 | 1363 (cpu->hyperv_ver_id_sn & 0xffffff); 1364 1365 c = &cpuid_ent[cpuid_i++]; 1366 c->function = HV_CPUID_FEATURES; 1367 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX); 1368 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX); 1369 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX); 1370 1371 /* Unconditionally required with any Hyper-V enlightenment */ 1372 c->eax |= HV_HYPERCALL_AVAILABLE; 1373 1374 /* SynIC and Vmbus devices require messages/signals hypercalls */ 1375 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1376 !cpu->hyperv_synic_kvm_only) { 1377 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS; 1378 } 1379 1380 1381 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */ 1382 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1383 1384 c = &cpuid_ent[cpuid_i++]; 1385 c->function = HV_CPUID_ENLIGHTMENT_INFO; 1386 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX); 1387 c->ebx = cpu->hyperv_spinlock_attempts; 1388 1389 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) && 1390 !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) { 1391 c->eax |= HV_APIC_ACCESS_RECOMMENDED; 1392 } 1393 1394 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) { 1395 c->eax |= HV_NO_NONARCH_CORESHARING; 1396 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) { 1397 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) & 1398 HV_NO_NONARCH_CORESHARING; 1399 } 1400 1401 c = &cpuid_ent[cpuid_i++]; 1402 c->function = HV_CPUID_IMPLEMENT_LIMITS; 1403 c->eax = cpu->hv_max_vps; 1404 c->ebx = cpu->hyperv_limits[0]; 1405 c->ecx = cpu->hyperv_limits[1]; 1406 c->edx = cpu->hyperv_limits[2]; 1407 1408 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1409 __u32 function; 1410 1411 /* Create zeroed 0x40000006..0x40000009 leaves */ 1412 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1; 1413 function < HV_CPUID_NESTED_FEATURES; function++) { 1414 c = &cpuid_ent[cpuid_i++]; 1415 c->function = function; 1416 } 1417 1418 c = &cpuid_ent[cpuid_i++]; 1419 c->function = HV_CPUID_NESTED_FEATURES; 1420 c->eax = cpu->hyperv_nested[0]; 1421 } 1422 1423 return cpuid_i; 1424 } 1425 1426 static Error *hv_passthrough_mig_blocker; 1427 static Error *hv_no_nonarch_cs_mig_blocker; 1428 1429 /* Checks that the exposed eVMCS version range is supported by KVM */ 1430 static bool evmcs_version_supported(uint16_t evmcs_version, 1431 uint16_t supported_evmcs_version) 1432 { 1433 uint8_t min_version = evmcs_version & 0xff; 1434 uint8_t max_version = evmcs_version >> 8; 1435 uint8_t min_supported_version = supported_evmcs_version & 0xff; 1436 uint8_t max_supported_version = supported_evmcs_version >> 8; 1437 1438 return (min_version >= min_supported_version) && 1439 (max_version <= max_supported_version); 1440 } 1441 1442 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1) 1443 1444 static int hyperv_init_vcpu(X86CPU *cpu) 1445 { 1446 CPUState *cs = CPU(cpu); 1447 Error *local_err = NULL; 1448 int ret; 1449 1450 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) { 1451 error_setg(&hv_passthrough_mig_blocker, 1452 "'hv-passthrough' CPU flag prevents migration, use explicit" 1453 " set of hv-* flags instead"); 1454 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err); 1455 if (ret < 0) { 1456 error_report_err(local_err); 1457 return ret; 1458 } 1459 } 1460 1461 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO && 1462 hv_no_nonarch_cs_mig_blocker == NULL) { 1463 error_setg(&hv_no_nonarch_cs_mig_blocker, 1464 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration" 1465 " use explicit 'hv-no-nonarch-coresharing=on' instead (but" 1466 " make sure SMT is disabled and/or that vCPUs are properly" 1467 " pinned)"); 1468 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err); 1469 if (ret < 0) { 1470 error_report_err(local_err); 1471 return ret; 1472 } 1473 } 1474 1475 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) { 1476 /* 1477 * the kernel doesn't support setting vp_index; assert that its value 1478 * is in sync 1479 */ 1480 struct { 1481 struct kvm_msrs info; 1482 struct kvm_msr_entry entries[1]; 1483 } msr_data = { 1484 .info.nmsrs = 1, 1485 .entries[0].index = HV_X64_MSR_VP_INDEX, 1486 }; 1487 1488 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data); 1489 if (ret < 0) { 1490 return ret; 1491 } 1492 assert(ret == 1); 1493 1494 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) { 1495 error_report("kernel's vp_index != QEMU's vp_index"); 1496 return -ENXIO; 1497 } 1498 } 1499 1500 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 1501 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ? 1502 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1503 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0); 1504 if (ret < 0) { 1505 error_report("failed to turn on HyperV SynIC in KVM: %s", 1506 strerror(-ret)); 1507 return ret; 1508 } 1509 1510 if (!cpu->hyperv_synic_kvm_only) { 1511 ret = hyperv_x86_synic_add(cpu); 1512 if (ret < 0) { 1513 error_report("failed to create HyperV SynIC: %s", 1514 strerror(-ret)); 1515 return ret; 1516 } 1517 } 1518 } 1519 1520 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1521 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION; 1522 uint16_t supported_evmcs_version; 1523 1524 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0, 1525 (uintptr_t)&supported_evmcs_version); 1526 1527 /* 1528 * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs' 1529 * option sets. Note: we hardcode the maximum supported eVMCS version 1530 * to '1' as well so 'hv-evmcs' feature is migratable even when (and if) 1531 * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have 1532 * to be added. 1533 */ 1534 if (ret < 0) { 1535 error_report("Hyper-V %s is not supported by kernel", 1536 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc); 1537 return ret; 1538 } 1539 1540 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) { 1541 error_report("eVMCS version range [%d..%d] is not supported by " 1542 "kernel (supported: [%d..%d])", evmcs_version & 0xff, 1543 evmcs_version >> 8, supported_evmcs_version & 0xff, 1544 supported_evmcs_version >> 8); 1545 return -ENOTSUP; 1546 } 1547 1548 cpu->hyperv_nested[0] = evmcs_version; 1549 } 1550 1551 if (cpu->hyperv_enforce_cpuid) { 1552 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1); 1553 if (ret < 0) { 1554 error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s", 1555 strerror(-ret)); 1556 return ret; 1557 } 1558 } 1559 1560 return 0; 1561 } 1562 1563 static Error *invtsc_mig_blocker; 1564 1565 #define KVM_MAX_CPUID_ENTRIES 100 1566 1567 int kvm_arch_init_vcpu(CPUState *cs) 1568 { 1569 struct { 1570 struct kvm_cpuid2 cpuid; 1571 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; 1572 } cpuid_data; 1573 /* 1574 * The kernel defines these structs with padding fields so there 1575 * should be no extra padding in our cpuid_data struct. 1576 */ 1577 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) != 1578 sizeof(struct kvm_cpuid2) + 1579 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES); 1580 1581 X86CPU *cpu = X86_CPU(cs); 1582 CPUX86State *env = &cpu->env; 1583 uint32_t limit, i, j, cpuid_i; 1584 uint32_t unused; 1585 struct kvm_cpuid_entry2 *c; 1586 uint32_t signature[3]; 1587 int kvm_base = KVM_CPUID_SIGNATURE; 1588 int max_nested_state_len; 1589 int r; 1590 Error *local_err = NULL; 1591 1592 memset(&cpuid_data, 0, sizeof(cpuid_data)); 1593 1594 cpuid_i = 0; 1595 1596 r = kvm_arch_set_tsc_khz(cs); 1597 if (r < 0) { 1598 return r; 1599 } 1600 1601 /* vcpu's TSC frequency is either specified by user, or following 1602 * the value used by KVM if the former is not present. In the 1603 * latter case, we query it from KVM and record in env->tsc_khz, 1604 * so that vcpu's TSC frequency can be migrated later via this field. 1605 */ 1606 if (!env->tsc_khz) { 1607 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 1608 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 1609 -ENOTSUP; 1610 if (r > 0) { 1611 env->tsc_khz = r; 1612 } 1613 } 1614 1615 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY; 1616 1617 /* 1618 * kvm_hyperv_expand_features() is called here for the second time in case 1619 * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle 1620 * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to 1621 * check which Hyper-V enlightenments are supported and which are not, we 1622 * can still proceed and check/expand Hyper-V enlightenments here so legacy 1623 * behavior is preserved. 1624 */ 1625 if (!kvm_hyperv_expand_features(cpu, &local_err)) { 1626 error_report_err(local_err); 1627 return -ENOSYS; 1628 } 1629 1630 if (hyperv_enabled(cpu)) { 1631 r = hyperv_init_vcpu(cpu); 1632 if (r) { 1633 return r; 1634 } 1635 1636 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries); 1637 kvm_base = KVM_CPUID_SIGNATURE_NEXT; 1638 has_msr_hv_hypercall = true; 1639 } 1640 1641 if (cpu->expose_kvm) { 1642 memcpy(signature, "KVMKVMKVM\0\0\0", 12); 1643 c = &cpuid_data.entries[cpuid_i++]; 1644 c->function = KVM_CPUID_SIGNATURE | kvm_base; 1645 c->eax = KVM_CPUID_FEATURES | kvm_base; 1646 c->ebx = signature[0]; 1647 c->ecx = signature[1]; 1648 c->edx = signature[2]; 1649 1650 c = &cpuid_data.entries[cpuid_i++]; 1651 c->function = KVM_CPUID_FEATURES | kvm_base; 1652 c->eax = env->features[FEAT_KVM]; 1653 c->edx = env->features[FEAT_KVM_HINTS]; 1654 } 1655 1656 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); 1657 1658 if (cpu->kvm_pv_enforce_cpuid) { 1659 r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1); 1660 if (r < 0) { 1661 fprintf(stderr, 1662 "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s", 1663 strerror(-r)); 1664 abort(); 1665 } 1666 } 1667 1668 for (i = 0; i <= limit; i++) { 1669 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1670 fprintf(stderr, "unsupported level value: 0x%x\n", limit); 1671 abort(); 1672 } 1673 c = &cpuid_data.entries[cpuid_i++]; 1674 1675 switch (i) { 1676 case 2: { 1677 /* Keep reading function 2 till all the input is received */ 1678 int times; 1679 1680 c->function = i; 1681 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | 1682 KVM_CPUID_FLAG_STATE_READ_NEXT; 1683 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1684 times = c->eax & 0xff; 1685 1686 for (j = 1; j < times; ++j) { 1687 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1688 fprintf(stderr, "cpuid_data is full, no space for " 1689 "cpuid(eax:2):eax & 0xf = 0x%x\n", times); 1690 abort(); 1691 } 1692 c = &cpuid_data.entries[cpuid_i++]; 1693 c->function = i; 1694 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; 1695 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1696 } 1697 break; 1698 } 1699 case 0x1f: 1700 if (env->nr_dies < 2) { 1701 break; 1702 } 1703 /* fallthrough */ 1704 case 4: 1705 case 0xb: 1706 case 0xd: 1707 for (j = 0; ; j++) { 1708 if (i == 0xd && j == 64) { 1709 break; 1710 } 1711 1712 if (i == 0x1f && j == 64) { 1713 break; 1714 } 1715 1716 c->function = i; 1717 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1718 c->index = j; 1719 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1720 1721 if (i == 4 && c->eax == 0) { 1722 break; 1723 } 1724 if (i == 0xb && !(c->ecx & 0xff00)) { 1725 break; 1726 } 1727 if (i == 0x1f && !(c->ecx & 0xff00)) { 1728 break; 1729 } 1730 if (i == 0xd && c->eax == 0) { 1731 continue; 1732 } 1733 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1734 fprintf(stderr, "cpuid_data is full, no space for " 1735 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 1736 abort(); 1737 } 1738 c = &cpuid_data.entries[cpuid_i++]; 1739 } 1740 break; 1741 case 0x7: 1742 case 0x12: 1743 for (j = 0; ; j++) { 1744 c->function = i; 1745 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1746 c->index = j; 1747 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1748 1749 if (j > 1 && (c->eax & 0xf) != 1) { 1750 break; 1751 } 1752 1753 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1754 fprintf(stderr, "cpuid_data is full, no space for " 1755 "cpuid(eax:0x12,ecx:0x%x)\n", j); 1756 abort(); 1757 } 1758 c = &cpuid_data.entries[cpuid_i++]; 1759 } 1760 break; 1761 case 0x14: { 1762 uint32_t times; 1763 1764 c->function = i; 1765 c->index = 0; 1766 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1767 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1768 times = c->eax; 1769 1770 for (j = 1; j <= times; ++j) { 1771 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1772 fprintf(stderr, "cpuid_data is full, no space for " 1773 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 1774 abort(); 1775 } 1776 c = &cpuid_data.entries[cpuid_i++]; 1777 c->function = i; 1778 c->index = j; 1779 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1780 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1781 } 1782 break; 1783 } 1784 default: 1785 c->function = i; 1786 c->flags = 0; 1787 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1788 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 1789 /* 1790 * KVM already returns all zeroes if a CPUID entry is missing, 1791 * so we can omit it and avoid hitting KVM's 80-entry limit. 1792 */ 1793 cpuid_i--; 1794 } 1795 break; 1796 } 1797 } 1798 1799 if (limit >= 0x0a) { 1800 uint32_t eax, edx; 1801 1802 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx); 1803 1804 has_architectural_pmu_version = eax & 0xff; 1805 if (has_architectural_pmu_version > 0) { 1806 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8; 1807 1808 /* Shouldn't be more than 32, since that's the number of bits 1809 * available in EBX to tell us _which_ counters are available. 1810 * Play it safe. 1811 */ 1812 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) { 1813 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS; 1814 } 1815 1816 if (has_architectural_pmu_version > 1) { 1817 num_architectural_pmu_fixed_counters = edx & 0x1f; 1818 1819 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) { 1820 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS; 1821 } 1822 } 1823 } 1824 } 1825 1826 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); 1827 1828 for (i = 0x80000000; i <= limit; i++) { 1829 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1830 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); 1831 abort(); 1832 } 1833 c = &cpuid_data.entries[cpuid_i++]; 1834 1835 switch (i) { 1836 case 0x8000001d: 1837 /* Query for all AMD cache information leaves */ 1838 for (j = 0; ; j++) { 1839 c->function = i; 1840 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1841 c->index = j; 1842 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1843 1844 if (c->eax == 0) { 1845 break; 1846 } 1847 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1848 fprintf(stderr, "cpuid_data is full, no space for " 1849 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 1850 abort(); 1851 } 1852 c = &cpuid_data.entries[cpuid_i++]; 1853 } 1854 break; 1855 default: 1856 c->function = i; 1857 c->flags = 0; 1858 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1859 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 1860 /* 1861 * KVM already returns all zeroes if a CPUID entry is missing, 1862 * so we can omit it and avoid hitting KVM's 80-entry limit. 1863 */ 1864 cpuid_i--; 1865 } 1866 break; 1867 } 1868 } 1869 1870 /* Call Centaur's CPUID instructions they are supported. */ 1871 if (env->cpuid_xlevel2 > 0) { 1872 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); 1873 1874 for (i = 0xC0000000; i <= limit; i++) { 1875 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1876 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); 1877 abort(); 1878 } 1879 c = &cpuid_data.entries[cpuid_i++]; 1880 1881 c->function = i; 1882 c->flags = 0; 1883 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1884 } 1885 } 1886 1887 cpuid_data.cpuid.nent = cpuid_i; 1888 1889 if (((env->cpuid_version >> 8)&0xF) >= 6 1890 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == 1891 (CPUID_MCE | CPUID_MCA) 1892 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { 1893 uint64_t mcg_cap, unsupported_caps; 1894 int banks; 1895 int ret; 1896 1897 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); 1898 if (ret < 0) { 1899 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); 1900 return ret; 1901 } 1902 1903 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { 1904 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", 1905 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); 1906 return -ENOTSUP; 1907 } 1908 1909 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); 1910 if (unsupported_caps) { 1911 if (unsupported_caps & MCG_LMCE_P) { 1912 error_report("kvm: LMCE not supported"); 1913 return -ENOTSUP; 1914 } 1915 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64, 1916 unsupported_caps); 1917 } 1918 1919 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; 1920 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); 1921 if (ret < 0) { 1922 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); 1923 return ret; 1924 } 1925 } 1926 1927 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env); 1928 1929 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); 1930 if (c) { 1931 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || 1932 !!(c->ecx & CPUID_EXT_SMX); 1933 } 1934 1935 c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0); 1936 if (c && (c->ebx & CPUID_7_0_EBX_SGX)) { 1937 has_msr_feature_control = true; 1938 } 1939 1940 if (env->mcg_cap & MCG_LMCE_P) { 1941 has_msr_mcg_ext_ctl = has_msr_feature_control = true; 1942 } 1943 1944 if (!env->user_tsc_khz) { 1945 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && 1946 invtsc_mig_blocker == NULL) { 1947 error_setg(&invtsc_mig_blocker, 1948 "State blocked by non-migratable CPU device" 1949 " (invtsc flag)"); 1950 r = migrate_add_blocker(invtsc_mig_blocker, &local_err); 1951 if (r < 0) { 1952 error_report_err(local_err); 1953 return r; 1954 } 1955 } 1956 } 1957 1958 if (cpu->vmware_cpuid_freq 1959 /* Guests depend on 0x40000000 to detect this feature, so only expose 1960 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ 1961 && cpu->expose_kvm 1962 && kvm_base == KVM_CPUID_SIGNATURE 1963 /* TSC clock must be stable and known for this feature. */ 1964 && tsc_is_stable_and_known(env)) { 1965 1966 c = &cpuid_data.entries[cpuid_i++]; 1967 c->function = KVM_CPUID_SIGNATURE | 0x10; 1968 c->eax = env->tsc_khz; 1969 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */ 1970 c->ecx = c->edx = 0; 1971 1972 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); 1973 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); 1974 } 1975 1976 cpuid_data.cpuid.nent = cpuid_i; 1977 1978 cpuid_data.cpuid.padding = 0; 1979 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); 1980 if (r) { 1981 goto fail; 1982 } 1983 1984 if (has_xsave) { 1985 env->xsave_buf_len = sizeof(struct kvm_xsave); 1986 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len); 1987 memset(env->xsave_buf, 0, env->xsave_buf_len); 1988 1989 /* 1990 * The allocated storage must be large enough for all of the 1991 * possible XSAVE state components. 1992 */ 1993 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) 1994 <= env->xsave_buf_len); 1995 } 1996 1997 max_nested_state_len = kvm_max_nested_state_length(); 1998 if (max_nested_state_len > 0) { 1999 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data)); 2000 2001 if (cpu_has_vmx(env) || cpu_has_svm(env)) { 2002 struct kvm_vmx_nested_state_hdr *vmx_hdr; 2003 2004 env->nested_state = g_malloc0(max_nested_state_len); 2005 env->nested_state->size = max_nested_state_len; 2006 2007 if (cpu_has_vmx(env)) { 2008 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX; 2009 vmx_hdr = &env->nested_state->hdr.vmx; 2010 vmx_hdr->vmxon_pa = -1ull; 2011 vmx_hdr->vmcs12_pa = -1ull; 2012 } else { 2013 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM; 2014 } 2015 } 2016 } 2017 2018 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); 2019 2020 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { 2021 has_msr_tsc_aux = false; 2022 } 2023 2024 kvm_init_msrs(cpu); 2025 2026 return 0; 2027 2028 fail: 2029 migrate_del_blocker(invtsc_mig_blocker); 2030 2031 return r; 2032 } 2033 2034 int kvm_arch_destroy_vcpu(CPUState *cs) 2035 { 2036 X86CPU *cpu = X86_CPU(cs); 2037 CPUX86State *env = &cpu->env; 2038 2039 if (cpu->kvm_msr_buf) { 2040 g_free(cpu->kvm_msr_buf); 2041 cpu->kvm_msr_buf = NULL; 2042 } 2043 2044 if (env->nested_state) { 2045 g_free(env->nested_state); 2046 env->nested_state = NULL; 2047 } 2048 2049 qemu_del_vm_change_state_handler(cpu->vmsentry); 2050 2051 return 0; 2052 } 2053 2054 void kvm_arch_reset_vcpu(X86CPU *cpu) 2055 { 2056 CPUX86State *env = &cpu->env; 2057 2058 env->xcr0 = 1; 2059 if (kvm_irqchip_in_kernel()) { 2060 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : 2061 KVM_MP_STATE_UNINITIALIZED; 2062 } else { 2063 env->mp_state = KVM_MP_STATE_RUNNABLE; 2064 } 2065 2066 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 2067 int i; 2068 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { 2069 env->msr_hv_synic_sint[i] = HV_SINT_MASKED; 2070 } 2071 2072 hyperv_x86_synic_reset(cpu); 2073 } 2074 /* enabled by default */ 2075 env->poll_control_msr = 1; 2076 2077 sev_es_set_reset_vector(CPU(cpu)); 2078 } 2079 2080 void kvm_arch_do_init_vcpu(X86CPU *cpu) 2081 { 2082 CPUX86State *env = &cpu->env; 2083 2084 /* APs get directly into wait-for-SIPI state. */ 2085 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { 2086 env->mp_state = KVM_MP_STATE_INIT_RECEIVED; 2087 } 2088 } 2089 2090 static int kvm_get_supported_feature_msrs(KVMState *s) 2091 { 2092 int ret = 0; 2093 2094 if (kvm_feature_msrs != NULL) { 2095 return 0; 2096 } 2097 2098 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) { 2099 return 0; 2100 } 2101 2102 struct kvm_msr_list msr_list; 2103 2104 msr_list.nmsrs = 0; 2105 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list); 2106 if (ret < 0 && ret != -E2BIG) { 2107 error_report("Fetch KVM feature MSR list failed: %s", 2108 strerror(-ret)); 2109 return ret; 2110 } 2111 2112 assert(msr_list.nmsrs > 0); 2113 kvm_feature_msrs = (struct kvm_msr_list *) \ 2114 g_malloc0(sizeof(msr_list) + 2115 msr_list.nmsrs * sizeof(msr_list.indices[0])); 2116 2117 kvm_feature_msrs->nmsrs = msr_list.nmsrs; 2118 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs); 2119 2120 if (ret < 0) { 2121 error_report("Fetch KVM feature MSR list failed: %s", 2122 strerror(-ret)); 2123 g_free(kvm_feature_msrs); 2124 kvm_feature_msrs = NULL; 2125 return ret; 2126 } 2127 2128 return 0; 2129 } 2130 2131 static int kvm_get_supported_msrs(KVMState *s) 2132 { 2133 int ret = 0; 2134 struct kvm_msr_list msr_list, *kvm_msr_list; 2135 2136 /* 2137 * Obtain MSR list from KVM. These are the MSRs that we must 2138 * save/restore. 2139 */ 2140 msr_list.nmsrs = 0; 2141 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); 2142 if (ret < 0 && ret != -E2BIG) { 2143 return ret; 2144 } 2145 /* 2146 * Old kernel modules had a bug and could write beyond the provided 2147 * memory. Allocate at least a safe amount of 1K. 2148 */ 2149 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + 2150 msr_list.nmsrs * 2151 sizeof(msr_list.indices[0]))); 2152 2153 kvm_msr_list->nmsrs = msr_list.nmsrs; 2154 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); 2155 if (ret >= 0) { 2156 int i; 2157 2158 for (i = 0; i < kvm_msr_list->nmsrs; i++) { 2159 switch (kvm_msr_list->indices[i]) { 2160 case MSR_STAR: 2161 has_msr_star = true; 2162 break; 2163 case MSR_VM_HSAVE_PA: 2164 has_msr_hsave_pa = true; 2165 break; 2166 case MSR_TSC_AUX: 2167 has_msr_tsc_aux = true; 2168 break; 2169 case MSR_TSC_ADJUST: 2170 has_msr_tsc_adjust = true; 2171 break; 2172 case MSR_IA32_TSCDEADLINE: 2173 has_msr_tsc_deadline = true; 2174 break; 2175 case MSR_IA32_SMBASE: 2176 has_msr_smbase = true; 2177 break; 2178 case MSR_SMI_COUNT: 2179 has_msr_smi_count = true; 2180 break; 2181 case MSR_IA32_MISC_ENABLE: 2182 has_msr_misc_enable = true; 2183 break; 2184 case MSR_IA32_BNDCFGS: 2185 has_msr_bndcfgs = true; 2186 break; 2187 case MSR_IA32_XSS: 2188 has_msr_xss = true; 2189 break; 2190 case MSR_IA32_UMWAIT_CONTROL: 2191 has_msr_umwait = true; 2192 break; 2193 case HV_X64_MSR_CRASH_CTL: 2194 has_msr_hv_crash = true; 2195 break; 2196 case HV_X64_MSR_RESET: 2197 has_msr_hv_reset = true; 2198 break; 2199 case HV_X64_MSR_VP_INDEX: 2200 has_msr_hv_vpindex = true; 2201 break; 2202 case HV_X64_MSR_VP_RUNTIME: 2203 has_msr_hv_runtime = true; 2204 break; 2205 case HV_X64_MSR_SCONTROL: 2206 has_msr_hv_synic = true; 2207 break; 2208 case HV_X64_MSR_STIMER0_CONFIG: 2209 has_msr_hv_stimer = true; 2210 break; 2211 case HV_X64_MSR_TSC_FREQUENCY: 2212 has_msr_hv_frequencies = true; 2213 break; 2214 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 2215 has_msr_hv_reenlightenment = true; 2216 break; 2217 case MSR_IA32_SPEC_CTRL: 2218 has_msr_spec_ctrl = true; 2219 break; 2220 case MSR_AMD64_TSC_RATIO: 2221 has_tsc_scale_msr = true; 2222 break; 2223 case MSR_IA32_TSX_CTRL: 2224 has_msr_tsx_ctrl = true; 2225 break; 2226 case MSR_VIRT_SSBD: 2227 has_msr_virt_ssbd = true; 2228 break; 2229 case MSR_IA32_ARCH_CAPABILITIES: 2230 has_msr_arch_capabs = true; 2231 break; 2232 case MSR_IA32_CORE_CAPABILITY: 2233 has_msr_core_capabs = true; 2234 break; 2235 case MSR_IA32_PERF_CAPABILITIES: 2236 has_msr_perf_capabs = true; 2237 break; 2238 case MSR_IA32_VMX_VMFUNC: 2239 has_msr_vmx_vmfunc = true; 2240 break; 2241 case MSR_IA32_UCODE_REV: 2242 has_msr_ucode_rev = true; 2243 break; 2244 case MSR_IA32_VMX_PROCBASED_CTLS2: 2245 has_msr_vmx_procbased_ctls2 = true; 2246 break; 2247 case MSR_IA32_PKRS: 2248 has_msr_pkrs = true; 2249 break; 2250 } 2251 } 2252 } 2253 2254 g_free(kvm_msr_list); 2255 2256 return ret; 2257 } 2258 2259 static Notifier smram_machine_done; 2260 static KVMMemoryListener smram_listener; 2261 static AddressSpace smram_address_space; 2262 static MemoryRegion smram_as_root; 2263 static MemoryRegion smram_as_mem; 2264 2265 static void register_smram_listener(Notifier *n, void *unused) 2266 { 2267 MemoryRegion *smram = 2268 (MemoryRegion *) object_resolve_path("/machine/smram", NULL); 2269 2270 /* Outer container... */ 2271 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); 2272 memory_region_set_enabled(&smram_as_root, true); 2273 2274 /* ... with two regions inside: normal system memory with low 2275 * priority, and... 2276 */ 2277 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", 2278 get_system_memory(), 0, ~0ull); 2279 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); 2280 memory_region_set_enabled(&smram_as_mem, true); 2281 2282 if (smram) { 2283 /* ... SMRAM with higher priority */ 2284 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); 2285 memory_region_set_enabled(smram, true); 2286 } 2287 2288 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); 2289 kvm_memory_listener_register(kvm_state, &smram_listener, 2290 &smram_address_space, 1, "kvm-smram"); 2291 } 2292 2293 int kvm_arch_init(MachineState *ms, KVMState *s) 2294 { 2295 uint64_t identity_base = 0xfffbc000; 2296 uint64_t shadow_mem; 2297 int ret; 2298 struct utsname utsname; 2299 Error *local_err = NULL; 2300 2301 /* 2302 * Initialize SEV context, if required 2303 * 2304 * If no memory encryption is requested (ms->cgs == NULL) this is 2305 * a no-op. 2306 * 2307 * It's also a no-op if a non-SEV confidential guest support 2308 * mechanism is selected. SEV is the only mechanism available to 2309 * select on x86 at present, so this doesn't arise, but if new 2310 * mechanisms are supported in future (e.g. TDX), they'll need 2311 * their own initialization either here or elsewhere. 2312 */ 2313 ret = sev_kvm_init(ms->cgs, &local_err); 2314 if (ret < 0) { 2315 error_report_err(local_err); 2316 return ret; 2317 } 2318 2319 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { 2320 error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM"); 2321 return -ENOTSUP; 2322 } 2323 2324 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE); 2325 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); 2326 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); 2327 2328 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX); 2329 2330 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD); 2331 if (has_exception_payload) { 2332 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true); 2333 if (ret < 0) { 2334 error_report("kvm: Failed to enable exception payload cap: %s", 2335 strerror(-ret)); 2336 return ret; 2337 } 2338 } 2339 2340 ret = kvm_get_supported_msrs(s); 2341 if (ret < 0) { 2342 return ret; 2343 } 2344 2345 kvm_get_supported_feature_msrs(s); 2346 2347 uname(&utsname); 2348 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; 2349 2350 /* 2351 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. 2352 * In order to use vm86 mode, an EPT identity map and a TSS are needed. 2353 * Since these must be part of guest physical memory, we need to allocate 2354 * them, both by setting their start addresses in the kernel and by 2355 * creating a corresponding e820 entry. We need 4 pages before the BIOS. 2356 * 2357 * Older KVM versions may not support setting the identity map base. In 2358 * that case we need to stick with the default, i.e. a 256K maximum BIOS 2359 * size. 2360 */ 2361 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { 2362 /* Allows up to 16M BIOSes. */ 2363 identity_base = 0xfeffc000; 2364 2365 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); 2366 if (ret < 0) { 2367 return ret; 2368 } 2369 } 2370 2371 /* Set TSS base one page after EPT identity map. */ 2372 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); 2373 if (ret < 0) { 2374 return ret; 2375 } 2376 2377 /* Tell fw_cfg to notify the BIOS to reserve the range. */ 2378 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); 2379 if (ret < 0) { 2380 fprintf(stderr, "e820_add_entry() table is full\n"); 2381 return ret; 2382 } 2383 2384 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort); 2385 if (shadow_mem != -1) { 2386 shadow_mem /= 4096; 2387 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); 2388 if (ret < 0) { 2389 return ret; 2390 } 2391 } 2392 2393 if (kvm_check_extension(s, KVM_CAP_X86_SMM) && 2394 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) && 2395 x86_machine_is_smm_enabled(X86_MACHINE(ms))) { 2396 smram_machine_done.notify = register_smram_listener; 2397 qemu_add_machine_init_done_notifier(&smram_machine_done); 2398 } 2399 2400 if (enable_cpu_pm) { 2401 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS); 2402 int ret; 2403 2404 /* Work around for kernel header with a typo. TODO: fix header and drop. */ 2405 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT) 2406 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL 2407 #endif 2408 if (disable_exits) { 2409 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT | 2410 KVM_X86_DISABLE_EXITS_HLT | 2411 KVM_X86_DISABLE_EXITS_PAUSE | 2412 KVM_X86_DISABLE_EXITS_CSTATE); 2413 } 2414 2415 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0, 2416 disable_exits); 2417 if (ret < 0) { 2418 error_report("kvm: guest stopping CPU not supported: %s", 2419 strerror(-ret)); 2420 } 2421 } 2422 2423 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) { 2424 X86MachineState *x86ms = X86_MACHINE(ms); 2425 2426 if (x86ms->bus_lock_ratelimit > 0) { 2427 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT); 2428 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) { 2429 error_report("kvm: bus lock detection unsupported"); 2430 return -ENOTSUP; 2431 } 2432 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0, 2433 KVM_BUS_LOCK_DETECTION_EXIT); 2434 if (ret < 0) { 2435 error_report("kvm: Failed to enable bus lock detection cap: %s", 2436 strerror(-ret)); 2437 return ret; 2438 } 2439 ratelimit_init(&bus_lock_ratelimit_ctrl); 2440 ratelimit_set_speed(&bus_lock_ratelimit_ctrl, 2441 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME); 2442 } 2443 } 2444 2445 return 0; 2446 } 2447 2448 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 2449 { 2450 lhs->selector = rhs->selector; 2451 lhs->base = rhs->base; 2452 lhs->limit = rhs->limit; 2453 lhs->type = 3; 2454 lhs->present = 1; 2455 lhs->dpl = 3; 2456 lhs->db = 0; 2457 lhs->s = 1; 2458 lhs->l = 0; 2459 lhs->g = 0; 2460 lhs->avl = 0; 2461 lhs->unusable = 0; 2462 } 2463 2464 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 2465 { 2466 unsigned flags = rhs->flags; 2467 lhs->selector = rhs->selector; 2468 lhs->base = rhs->base; 2469 lhs->limit = rhs->limit; 2470 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; 2471 lhs->present = (flags & DESC_P_MASK) != 0; 2472 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; 2473 lhs->db = (flags >> DESC_B_SHIFT) & 1; 2474 lhs->s = (flags & DESC_S_MASK) != 0; 2475 lhs->l = (flags >> DESC_L_SHIFT) & 1; 2476 lhs->g = (flags & DESC_G_MASK) != 0; 2477 lhs->avl = (flags & DESC_AVL_MASK) != 0; 2478 lhs->unusable = !lhs->present; 2479 lhs->padding = 0; 2480 } 2481 2482 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) 2483 { 2484 lhs->selector = rhs->selector; 2485 lhs->base = rhs->base; 2486 lhs->limit = rhs->limit; 2487 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | 2488 ((rhs->present && !rhs->unusable) * DESC_P_MASK) | 2489 (rhs->dpl << DESC_DPL_SHIFT) | 2490 (rhs->db << DESC_B_SHIFT) | 2491 (rhs->s * DESC_S_MASK) | 2492 (rhs->l << DESC_L_SHIFT) | 2493 (rhs->g * DESC_G_MASK) | 2494 (rhs->avl * DESC_AVL_MASK); 2495 } 2496 2497 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) 2498 { 2499 if (set) { 2500 *kvm_reg = *qemu_reg; 2501 } else { 2502 *qemu_reg = *kvm_reg; 2503 } 2504 } 2505 2506 static int kvm_getput_regs(X86CPU *cpu, int set) 2507 { 2508 CPUX86State *env = &cpu->env; 2509 struct kvm_regs regs; 2510 int ret = 0; 2511 2512 if (!set) { 2513 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); 2514 if (ret < 0) { 2515 return ret; 2516 } 2517 } 2518 2519 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); 2520 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); 2521 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); 2522 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); 2523 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); 2524 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); 2525 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); 2526 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); 2527 #ifdef TARGET_X86_64 2528 kvm_getput_reg(®s.r8, &env->regs[8], set); 2529 kvm_getput_reg(®s.r9, &env->regs[9], set); 2530 kvm_getput_reg(®s.r10, &env->regs[10], set); 2531 kvm_getput_reg(®s.r11, &env->regs[11], set); 2532 kvm_getput_reg(®s.r12, &env->regs[12], set); 2533 kvm_getput_reg(®s.r13, &env->regs[13], set); 2534 kvm_getput_reg(®s.r14, &env->regs[14], set); 2535 kvm_getput_reg(®s.r15, &env->regs[15], set); 2536 #endif 2537 2538 kvm_getput_reg(®s.rflags, &env->eflags, set); 2539 kvm_getput_reg(®s.rip, &env->eip, set); 2540 2541 if (set) { 2542 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); 2543 } 2544 2545 return ret; 2546 } 2547 2548 static int kvm_put_fpu(X86CPU *cpu) 2549 { 2550 CPUX86State *env = &cpu->env; 2551 struct kvm_fpu fpu; 2552 int i; 2553 2554 memset(&fpu, 0, sizeof fpu); 2555 fpu.fsw = env->fpus & ~(7 << 11); 2556 fpu.fsw |= (env->fpstt & 7) << 11; 2557 fpu.fcw = env->fpuc; 2558 fpu.last_opcode = env->fpop; 2559 fpu.last_ip = env->fpip; 2560 fpu.last_dp = env->fpdp; 2561 for (i = 0; i < 8; ++i) { 2562 fpu.ftwx |= (!env->fptags[i]) << i; 2563 } 2564 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); 2565 for (i = 0; i < CPU_NB_REGS; i++) { 2566 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0)); 2567 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1)); 2568 } 2569 fpu.mxcsr = env->mxcsr; 2570 2571 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); 2572 } 2573 2574 static int kvm_put_xsave(X86CPU *cpu) 2575 { 2576 CPUX86State *env = &cpu->env; 2577 void *xsave = env->xsave_buf; 2578 2579 if (!has_xsave) { 2580 return kvm_put_fpu(cpu); 2581 } 2582 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len); 2583 2584 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); 2585 } 2586 2587 static int kvm_put_xcrs(X86CPU *cpu) 2588 { 2589 CPUX86State *env = &cpu->env; 2590 struct kvm_xcrs xcrs = {}; 2591 2592 if (!has_xcrs) { 2593 return 0; 2594 } 2595 2596 xcrs.nr_xcrs = 1; 2597 xcrs.flags = 0; 2598 xcrs.xcrs[0].xcr = 0; 2599 xcrs.xcrs[0].value = env->xcr0; 2600 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); 2601 } 2602 2603 static int kvm_put_sregs(X86CPU *cpu) 2604 { 2605 CPUX86State *env = &cpu->env; 2606 struct kvm_sregs sregs; 2607 2608 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); 2609 if (env->interrupt_injected >= 0) { 2610 sregs.interrupt_bitmap[env->interrupt_injected / 64] |= 2611 (uint64_t)1 << (env->interrupt_injected % 64); 2612 } 2613 2614 if ((env->eflags & VM_MASK)) { 2615 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 2616 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 2617 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 2618 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 2619 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 2620 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 2621 } else { 2622 set_seg(&sregs.cs, &env->segs[R_CS]); 2623 set_seg(&sregs.ds, &env->segs[R_DS]); 2624 set_seg(&sregs.es, &env->segs[R_ES]); 2625 set_seg(&sregs.fs, &env->segs[R_FS]); 2626 set_seg(&sregs.gs, &env->segs[R_GS]); 2627 set_seg(&sregs.ss, &env->segs[R_SS]); 2628 } 2629 2630 set_seg(&sregs.tr, &env->tr); 2631 set_seg(&sregs.ldt, &env->ldt); 2632 2633 sregs.idt.limit = env->idt.limit; 2634 sregs.idt.base = env->idt.base; 2635 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 2636 sregs.gdt.limit = env->gdt.limit; 2637 sregs.gdt.base = env->gdt.base; 2638 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 2639 2640 sregs.cr0 = env->cr[0]; 2641 sregs.cr2 = env->cr[2]; 2642 sregs.cr3 = env->cr[3]; 2643 sregs.cr4 = env->cr[4]; 2644 2645 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 2646 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 2647 2648 sregs.efer = env->efer; 2649 2650 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); 2651 } 2652 2653 static void kvm_msr_buf_reset(X86CPU *cpu) 2654 { 2655 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); 2656 } 2657 2658 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) 2659 { 2660 struct kvm_msrs *msrs = cpu->kvm_msr_buf; 2661 void *limit = ((void *)msrs) + MSR_BUF_SIZE; 2662 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; 2663 2664 assert((void *)(entry + 1) <= limit); 2665 2666 entry->index = index; 2667 entry->reserved = 0; 2668 entry->data = value; 2669 msrs->nmsrs++; 2670 } 2671 2672 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) 2673 { 2674 kvm_msr_buf_reset(cpu); 2675 kvm_msr_entry_add(cpu, index, value); 2676 2677 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 2678 } 2679 2680 void kvm_put_apicbase(X86CPU *cpu, uint64_t value) 2681 { 2682 int ret; 2683 2684 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); 2685 assert(ret == 1); 2686 } 2687 2688 static int kvm_put_tscdeadline_msr(X86CPU *cpu) 2689 { 2690 CPUX86State *env = &cpu->env; 2691 int ret; 2692 2693 if (!has_msr_tsc_deadline) { 2694 return 0; 2695 } 2696 2697 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); 2698 if (ret < 0) { 2699 return ret; 2700 } 2701 2702 assert(ret == 1); 2703 return 0; 2704 } 2705 2706 /* 2707 * Provide a separate write service for the feature control MSR in order to 2708 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done 2709 * before writing any other state because forcibly leaving nested mode 2710 * invalidates the VCPU state. 2711 */ 2712 static int kvm_put_msr_feature_control(X86CPU *cpu) 2713 { 2714 int ret; 2715 2716 if (!has_msr_feature_control) { 2717 return 0; 2718 } 2719 2720 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, 2721 cpu->env.msr_ia32_feature_control); 2722 if (ret < 0) { 2723 return ret; 2724 } 2725 2726 assert(ret == 1); 2727 return 0; 2728 } 2729 2730 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features) 2731 { 2732 uint32_t default1, can_be_one, can_be_zero; 2733 uint32_t must_be_one; 2734 2735 switch (index) { 2736 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 2737 default1 = 0x00000016; 2738 break; 2739 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 2740 default1 = 0x0401e172; 2741 break; 2742 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 2743 default1 = 0x000011ff; 2744 break; 2745 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 2746 default1 = 0x00036dff; 2747 break; 2748 case MSR_IA32_VMX_PROCBASED_CTLS2: 2749 default1 = 0; 2750 break; 2751 default: 2752 abort(); 2753 } 2754 2755 /* If a feature bit is set, the control can be either set or clear. 2756 * Otherwise the value is limited to either 0 or 1 by default1. 2757 */ 2758 can_be_one = features | default1; 2759 can_be_zero = features | ~default1; 2760 must_be_one = ~can_be_zero; 2761 2762 /* 2763 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one). 2764 * Bit 32:63 -> 1 if the control bit can be one. 2765 */ 2766 return must_be_one | (((uint64_t)can_be_one) << 32); 2767 } 2768 2769 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f) 2770 { 2771 uint64_t kvm_vmx_basic = 2772 kvm_arch_get_supported_msr_feature(kvm_state, 2773 MSR_IA32_VMX_BASIC); 2774 2775 if (!kvm_vmx_basic) { 2776 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0), 2777 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail. 2778 */ 2779 return; 2780 } 2781 2782 uint64_t kvm_vmx_misc = 2783 kvm_arch_get_supported_msr_feature(kvm_state, 2784 MSR_IA32_VMX_MISC); 2785 uint64_t kvm_vmx_ept_vpid = 2786 kvm_arch_get_supported_msr_feature(kvm_state, 2787 MSR_IA32_VMX_EPT_VPID_CAP); 2788 2789 /* 2790 * If the guest is 64-bit, a value of 1 is allowed for the host address 2791 * space size vmexit control. 2792 */ 2793 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM 2794 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0; 2795 2796 /* 2797 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should 2798 * not change them for backwards compatibility. 2799 */ 2800 uint64_t fixed_vmx_basic = kvm_vmx_basic & 2801 (MSR_VMX_BASIC_VMCS_REVISION_MASK | 2802 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK | 2803 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK); 2804 2805 /* 2806 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can 2807 * change in the future but are always zero for now, clear them to be 2808 * future proof. Bits 32-63 in theory could change, though KVM does 2809 * not support dual-monitor treatment and probably never will; mask 2810 * them out as well. 2811 */ 2812 uint64_t fixed_vmx_misc = kvm_vmx_misc & 2813 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK | 2814 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK); 2815 2816 /* 2817 * EPT memory types should not change either, so we do not bother 2818 * adding features for them. 2819 */ 2820 uint64_t fixed_vmx_ept_mask = 2821 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ? 2822 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0); 2823 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask; 2824 2825 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 2826 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 2827 f[FEAT_VMX_PROCBASED_CTLS])); 2828 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS, 2829 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS, 2830 f[FEAT_VMX_PINBASED_CTLS])); 2831 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS, 2832 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS, 2833 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit); 2834 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS, 2835 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS, 2836 f[FEAT_VMX_ENTRY_CTLS])); 2837 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2, 2838 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2, 2839 f[FEAT_VMX_SECONDARY_CTLS])); 2840 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP, 2841 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid); 2842 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC, 2843 f[FEAT_VMX_BASIC] | fixed_vmx_basic); 2844 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC, 2845 f[FEAT_VMX_MISC] | fixed_vmx_misc); 2846 if (has_msr_vmx_vmfunc) { 2847 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]); 2848 } 2849 2850 /* 2851 * Just to be safe, write these with constant values. The CRn_FIXED1 2852 * MSRs are generated by KVM based on the vCPU's CPUID. 2853 */ 2854 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0, 2855 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK); 2856 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0, 2857 CR4_VMXE_MASK); 2858 2859 if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) { 2860 /* TSC multiplier (0x2032). */ 2861 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32); 2862 } else { 2863 /* Preemption timer (0x482E). */ 2864 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E); 2865 } 2866 } 2867 2868 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f) 2869 { 2870 uint64_t kvm_perf_cap = 2871 kvm_arch_get_supported_msr_feature(kvm_state, 2872 MSR_IA32_PERF_CAPABILITIES); 2873 2874 if (kvm_perf_cap) { 2875 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES, 2876 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]); 2877 } 2878 } 2879 2880 static int kvm_buf_set_msrs(X86CPU *cpu) 2881 { 2882 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 2883 if (ret < 0) { 2884 return ret; 2885 } 2886 2887 if (ret < cpu->kvm_msr_buf->nmsrs) { 2888 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 2889 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, 2890 (uint32_t)e->index, (uint64_t)e->data); 2891 } 2892 2893 assert(ret == cpu->kvm_msr_buf->nmsrs); 2894 return 0; 2895 } 2896 2897 static void kvm_init_msrs(X86CPU *cpu) 2898 { 2899 CPUX86State *env = &cpu->env; 2900 2901 kvm_msr_buf_reset(cpu); 2902 if (has_msr_arch_capabs) { 2903 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES, 2904 env->features[FEAT_ARCH_CAPABILITIES]); 2905 } 2906 2907 if (has_msr_core_capabs) { 2908 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY, 2909 env->features[FEAT_CORE_CAPABILITY]); 2910 } 2911 2912 if (has_msr_perf_capabs && cpu->enable_pmu) { 2913 kvm_msr_entry_add_perf(cpu, env->features); 2914 } 2915 2916 if (has_msr_ucode_rev) { 2917 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev); 2918 } 2919 2920 /* 2921 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but 2922 * all kernels with MSR features should have them. 2923 */ 2924 if (kvm_feature_msrs && cpu_has_vmx(env)) { 2925 kvm_msr_entry_add_vmx(cpu, env->features); 2926 } 2927 2928 assert(kvm_buf_set_msrs(cpu) == 0); 2929 } 2930 2931 static int kvm_put_msrs(X86CPU *cpu, int level) 2932 { 2933 CPUX86State *env = &cpu->env; 2934 int i; 2935 2936 kvm_msr_buf_reset(cpu); 2937 2938 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); 2939 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); 2940 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); 2941 kvm_msr_entry_add(cpu, MSR_PAT, env->pat); 2942 if (has_msr_star) { 2943 kvm_msr_entry_add(cpu, MSR_STAR, env->star); 2944 } 2945 if (has_msr_hsave_pa) { 2946 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); 2947 } 2948 if (has_msr_tsc_aux) { 2949 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); 2950 } 2951 if (has_msr_tsc_adjust) { 2952 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); 2953 } 2954 if (has_msr_misc_enable) { 2955 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 2956 env->msr_ia32_misc_enable); 2957 } 2958 if (has_msr_smbase) { 2959 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); 2960 } 2961 if (has_msr_smi_count) { 2962 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count); 2963 } 2964 if (has_msr_pkrs) { 2965 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs); 2966 } 2967 if (has_msr_bndcfgs) { 2968 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); 2969 } 2970 if (has_msr_xss) { 2971 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); 2972 } 2973 if (has_msr_umwait) { 2974 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait); 2975 } 2976 if (has_msr_spec_ctrl) { 2977 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl); 2978 } 2979 if (has_tsc_scale_msr) { 2980 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr); 2981 } 2982 2983 if (has_msr_tsx_ctrl) { 2984 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl); 2985 } 2986 if (has_msr_virt_ssbd) { 2987 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd); 2988 } 2989 2990 #ifdef TARGET_X86_64 2991 if (lm_capable_kernel) { 2992 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); 2993 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); 2994 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); 2995 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); 2996 } 2997 #endif 2998 2999 /* 3000 * The following MSRs have side effects on the guest or are too heavy 3001 * for normal writeback. Limit them to reset or full state updates. 3002 */ 3003 if (level >= KVM_PUT_RESET_STATE) { 3004 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); 3005 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); 3006 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); 3007 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { 3008 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr); 3009 } 3010 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { 3011 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); 3012 } 3013 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { 3014 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); 3015 } 3016 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { 3017 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); 3018 } 3019 3020 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { 3021 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr); 3022 } 3023 3024 if (has_architectural_pmu_version > 0) { 3025 if (has_architectural_pmu_version > 1) { 3026 /* Stop the counter. */ 3027 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 3028 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 3029 } 3030 3031 /* Set the counter values. */ 3032 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 3033 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 3034 env->msr_fixed_counters[i]); 3035 } 3036 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 3037 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 3038 env->msr_gp_counters[i]); 3039 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 3040 env->msr_gp_evtsel[i]); 3041 } 3042 if (has_architectural_pmu_version > 1) { 3043 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 3044 env->msr_global_status); 3045 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 3046 env->msr_global_ovf_ctrl); 3047 3048 /* Now start the PMU. */ 3049 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 3050 env->msr_fixed_ctr_ctrl); 3051 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 3052 env->msr_global_ctrl); 3053 } 3054 } 3055 /* 3056 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add, 3057 * only sync them to KVM on the first cpu 3058 */ 3059 if (current_cpu == first_cpu) { 3060 if (has_msr_hv_hypercall) { 3061 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 3062 env->msr_hv_guest_os_id); 3063 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 3064 env->msr_hv_hypercall); 3065 } 3066 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 3067 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 3068 env->msr_hv_tsc); 3069 } 3070 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 3071 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 3072 env->msr_hv_reenlightenment_control); 3073 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 3074 env->msr_hv_tsc_emulation_control); 3075 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 3076 env->msr_hv_tsc_emulation_status); 3077 } 3078 } 3079 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 3080 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 3081 env->msr_hv_vapic); 3082 } 3083 if (has_msr_hv_crash) { 3084 int j; 3085 3086 for (j = 0; j < HV_CRASH_PARAMS; j++) 3087 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 3088 env->msr_hv_crash_params[j]); 3089 3090 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY); 3091 } 3092 if (has_msr_hv_runtime) { 3093 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); 3094 } 3095 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) 3096 && hv_vpindex_settable) { 3097 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX, 3098 hyperv_vp_index(CPU(cpu))); 3099 } 3100 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 3101 int j; 3102 3103 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION); 3104 3105 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 3106 env->msr_hv_synic_control); 3107 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 3108 env->msr_hv_synic_evt_page); 3109 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 3110 env->msr_hv_synic_msg_page); 3111 3112 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { 3113 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, 3114 env->msr_hv_synic_sint[j]); 3115 } 3116 } 3117 if (has_msr_hv_stimer) { 3118 int j; 3119 3120 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { 3121 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, 3122 env->msr_hv_stimer_config[j]); 3123 } 3124 3125 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { 3126 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, 3127 env->msr_hv_stimer_count[j]); 3128 } 3129 } 3130 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 3131 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); 3132 3133 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); 3134 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); 3135 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); 3136 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); 3137 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); 3138 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); 3139 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); 3140 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); 3141 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); 3142 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); 3143 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); 3144 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); 3145 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 3146 /* The CPU GPs if we write to a bit above the physical limit of 3147 * the host CPU (and KVM emulates that) 3148 */ 3149 uint64_t mask = env->mtrr_var[i].mask; 3150 mask &= phys_mask; 3151 3152 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 3153 env->mtrr_var[i].base); 3154 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); 3155 } 3156 } 3157 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 3158 int addr_num = kvm_arch_get_supported_cpuid(kvm_state, 3159 0x14, 1, R_EAX) & 0x7; 3160 3161 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 3162 env->msr_rtit_ctrl); 3163 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 3164 env->msr_rtit_status); 3165 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 3166 env->msr_rtit_output_base); 3167 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 3168 env->msr_rtit_output_mask); 3169 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 3170 env->msr_rtit_cr3_match); 3171 for (i = 0; i < addr_num; i++) { 3172 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 3173 env->msr_rtit_addrs[i]); 3174 } 3175 } 3176 3177 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 3178 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 3179 env->msr_ia32_sgxlepubkeyhash[0]); 3180 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 3181 env->msr_ia32_sgxlepubkeyhash[1]); 3182 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 3183 env->msr_ia32_sgxlepubkeyhash[2]); 3184 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 3185 env->msr_ia32_sgxlepubkeyhash[3]); 3186 } 3187 3188 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see 3189 * kvm_put_msr_feature_control. */ 3190 } 3191 3192 if (env->mcg_cap) { 3193 int i; 3194 3195 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); 3196 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); 3197 if (has_msr_mcg_ext_ctl) { 3198 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); 3199 } 3200 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 3201 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); 3202 } 3203 } 3204 3205 return kvm_buf_set_msrs(cpu); 3206 } 3207 3208 3209 static int kvm_get_fpu(X86CPU *cpu) 3210 { 3211 CPUX86State *env = &cpu->env; 3212 struct kvm_fpu fpu; 3213 int i, ret; 3214 3215 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); 3216 if (ret < 0) { 3217 return ret; 3218 } 3219 3220 env->fpstt = (fpu.fsw >> 11) & 7; 3221 env->fpus = fpu.fsw; 3222 env->fpuc = fpu.fcw; 3223 env->fpop = fpu.last_opcode; 3224 env->fpip = fpu.last_ip; 3225 env->fpdp = fpu.last_dp; 3226 for (i = 0; i < 8; ++i) { 3227 env->fptags[i] = !((fpu.ftwx >> i) & 1); 3228 } 3229 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); 3230 for (i = 0; i < CPU_NB_REGS; i++) { 3231 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]); 3232 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]); 3233 } 3234 env->mxcsr = fpu.mxcsr; 3235 3236 return 0; 3237 } 3238 3239 static int kvm_get_xsave(X86CPU *cpu) 3240 { 3241 CPUX86State *env = &cpu->env; 3242 void *xsave = env->xsave_buf; 3243 int ret; 3244 3245 if (!has_xsave) { 3246 return kvm_get_fpu(cpu); 3247 } 3248 3249 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave); 3250 if (ret < 0) { 3251 return ret; 3252 } 3253 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len); 3254 3255 return 0; 3256 } 3257 3258 static int kvm_get_xcrs(X86CPU *cpu) 3259 { 3260 CPUX86State *env = &cpu->env; 3261 int i, ret; 3262 struct kvm_xcrs xcrs; 3263 3264 if (!has_xcrs) { 3265 return 0; 3266 } 3267 3268 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); 3269 if (ret < 0) { 3270 return ret; 3271 } 3272 3273 for (i = 0; i < xcrs.nr_xcrs; i++) { 3274 /* Only support xcr0 now */ 3275 if (xcrs.xcrs[i].xcr == 0) { 3276 env->xcr0 = xcrs.xcrs[i].value; 3277 break; 3278 } 3279 } 3280 return 0; 3281 } 3282 3283 static int kvm_get_sregs(X86CPU *cpu) 3284 { 3285 CPUX86State *env = &cpu->env; 3286 struct kvm_sregs sregs; 3287 int bit, i, ret; 3288 3289 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); 3290 if (ret < 0) { 3291 return ret; 3292 } 3293 3294 /* There can only be one pending IRQ set in the bitmap at a time, so try 3295 to find it and save its number instead (-1 for none). */ 3296 env->interrupt_injected = -1; 3297 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { 3298 if (sregs.interrupt_bitmap[i]) { 3299 bit = ctz64(sregs.interrupt_bitmap[i]); 3300 env->interrupt_injected = i * 64 + bit; 3301 break; 3302 } 3303 } 3304 3305 get_seg(&env->segs[R_CS], &sregs.cs); 3306 get_seg(&env->segs[R_DS], &sregs.ds); 3307 get_seg(&env->segs[R_ES], &sregs.es); 3308 get_seg(&env->segs[R_FS], &sregs.fs); 3309 get_seg(&env->segs[R_GS], &sregs.gs); 3310 get_seg(&env->segs[R_SS], &sregs.ss); 3311 3312 get_seg(&env->tr, &sregs.tr); 3313 get_seg(&env->ldt, &sregs.ldt); 3314 3315 env->idt.limit = sregs.idt.limit; 3316 env->idt.base = sregs.idt.base; 3317 env->gdt.limit = sregs.gdt.limit; 3318 env->gdt.base = sregs.gdt.base; 3319 3320 env->cr[0] = sregs.cr0; 3321 env->cr[2] = sregs.cr2; 3322 env->cr[3] = sregs.cr3; 3323 env->cr[4] = sregs.cr4; 3324 3325 env->efer = sregs.efer; 3326 3327 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 3328 x86_update_hflags(env); 3329 3330 return 0; 3331 } 3332 3333 static int kvm_get_msrs(X86CPU *cpu) 3334 { 3335 CPUX86State *env = &cpu->env; 3336 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; 3337 int ret, i; 3338 uint64_t mtrr_top_bits; 3339 3340 kvm_msr_buf_reset(cpu); 3341 3342 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); 3343 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); 3344 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); 3345 kvm_msr_entry_add(cpu, MSR_PAT, 0); 3346 if (has_msr_star) { 3347 kvm_msr_entry_add(cpu, MSR_STAR, 0); 3348 } 3349 if (has_msr_hsave_pa) { 3350 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); 3351 } 3352 if (has_msr_tsc_aux) { 3353 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); 3354 } 3355 if (has_msr_tsc_adjust) { 3356 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); 3357 } 3358 if (has_msr_tsc_deadline) { 3359 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); 3360 } 3361 if (has_msr_misc_enable) { 3362 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); 3363 } 3364 if (has_msr_smbase) { 3365 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); 3366 } 3367 if (has_msr_smi_count) { 3368 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0); 3369 } 3370 if (has_msr_feature_control) { 3371 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); 3372 } 3373 if (has_msr_pkrs) { 3374 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0); 3375 } 3376 if (has_msr_bndcfgs) { 3377 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); 3378 } 3379 if (has_msr_xss) { 3380 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); 3381 } 3382 if (has_msr_umwait) { 3383 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0); 3384 } 3385 if (has_msr_spec_ctrl) { 3386 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0); 3387 } 3388 if (has_tsc_scale_msr) { 3389 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0); 3390 } 3391 3392 if (has_msr_tsx_ctrl) { 3393 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0); 3394 } 3395 if (has_msr_virt_ssbd) { 3396 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0); 3397 } 3398 if (!env->tsc_valid) { 3399 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); 3400 env->tsc_valid = !runstate_is_running(); 3401 } 3402 3403 #ifdef TARGET_X86_64 3404 if (lm_capable_kernel) { 3405 kvm_msr_entry_add(cpu, MSR_CSTAR, 0); 3406 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); 3407 kvm_msr_entry_add(cpu, MSR_FMASK, 0); 3408 kvm_msr_entry_add(cpu, MSR_LSTAR, 0); 3409 } 3410 #endif 3411 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); 3412 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); 3413 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { 3414 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0); 3415 } 3416 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { 3417 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); 3418 } 3419 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { 3420 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); 3421 } 3422 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { 3423 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); 3424 } 3425 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { 3426 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1); 3427 } 3428 if (has_architectural_pmu_version > 0) { 3429 if (has_architectural_pmu_version > 1) { 3430 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 3431 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 3432 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); 3433 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); 3434 } 3435 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 3436 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); 3437 } 3438 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 3439 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); 3440 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); 3441 } 3442 } 3443 3444 if (env->mcg_cap) { 3445 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); 3446 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); 3447 if (has_msr_mcg_ext_ctl) { 3448 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); 3449 } 3450 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 3451 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); 3452 } 3453 } 3454 3455 if (has_msr_hv_hypercall) { 3456 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); 3457 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); 3458 } 3459 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 3460 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); 3461 } 3462 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 3463 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); 3464 } 3465 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 3466 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0); 3467 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0); 3468 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0); 3469 } 3470 if (has_msr_hv_crash) { 3471 int j; 3472 3473 for (j = 0; j < HV_CRASH_PARAMS; j++) { 3474 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); 3475 } 3476 } 3477 if (has_msr_hv_runtime) { 3478 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); 3479 } 3480 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 3481 uint32_t msr; 3482 3483 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); 3484 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); 3485 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); 3486 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { 3487 kvm_msr_entry_add(cpu, msr, 0); 3488 } 3489 } 3490 if (has_msr_hv_stimer) { 3491 uint32_t msr; 3492 3493 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; 3494 msr++) { 3495 kvm_msr_entry_add(cpu, msr, 0); 3496 } 3497 } 3498 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 3499 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); 3500 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); 3501 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); 3502 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); 3503 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); 3504 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); 3505 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); 3506 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); 3507 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); 3508 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); 3509 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); 3510 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); 3511 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 3512 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); 3513 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); 3514 } 3515 } 3516 3517 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 3518 int addr_num = 3519 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7; 3520 3521 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0); 3522 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0); 3523 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0); 3524 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0); 3525 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0); 3526 for (i = 0; i < addr_num; i++) { 3527 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0); 3528 } 3529 } 3530 3531 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 3532 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0); 3533 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0); 3534 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0); 3535 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0); 3536 } 3537 3538 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); 3539 if (ret < 0) { 3540 return ret; 3541 } 3542 3543 if (ret < cpu->kvm_msr_buf->nmsrs) { 3544 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 3545 error_report("error: failed to get MSR 0x%" PRIx32, 3546 (uint32_t)e->index); 3547 } 3548 3549 assert(ret == cpu->kvm_msr_buf->nmsrs); 3550 /* 3551 * MTRR masks: Each mask consists of 5 parts 3552 * a 10..0: must be zero 3553 * b 11 : valid bit 3554 * c n-1.12: actual mask bits 3555 * d 51..n: reserved must be zero 3556 * e 63.52: reserved must be zero 3557 * 3558 * 'n' is the number of physical bits supported by the CPU and is 3559 * apparently always <= 52. We know our 'n' but don't know what 3560 * the destinations 'n' is; it might be smaller, in which case 3561 * it masks (c) on loading. It might be larger, in which case 3562 * we fill 'd' so that d..c is consistent irrespetive of the 'n' 3563 * we're migrating to. 3564 */ 3565 3566 if (cpu->fill_mtrr_mask) { 3567 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); 3568 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); 3569 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); 3570 } else { 3571 mtrr_top_bits = 0; 3572 } 3573 3574 for (i = 0; i < ret; i++) { 3575 uint32_t index = msrs[i].index; 3576 switch (index) { 3577 case MSR_IA32_SYSENTER_CS: 3578 env->sysenter_cs = msrs[i].data; 3579 break; 3580 case MSR_IA32_SYSENTER_ESP: 3581 env->sysenter_esp = msrs[i].data; 3582 break; 3583 case MSR_IA32_SYSENTER_EIP: 3584 env->sysenter_eip = msrs[i].data; 3585 break; 3586 case MSR_PAT: 3587 env->pat = msrs[i].data; 3588 break; 3589 case MSR_STAR: 3590 env->star = msrs[i].data; 3591 break; 3592 #ifdef TARGET_X86_64 3593 case MSR_CSTAR: 3594 env->cstar = msrs[i].data; 3595 break; 3596 case MSR_KERNELGSBASE: 3597 env->kernelgsbase = msrs[i].data; 3598 break; 3599 case MSR_FMASK: 3600 env->fmask = msrs[i].data; 3601 break; 3602 case MSR_LSTAR: 3603 env->lstar = msrs[i].data; 3604 break; 3605 #endif 3606 case MSR_IA32_TSC: 3607 env->tsc = msrs[i].data; 3608 break; 3609 case MSR_TSC_AUX: 3610 env->tsc_aux = msrs[i].data; 3611 break; 3612 case MSR_TSC_ADJUST: 3613 env->tsc_adjust = msrs[i].data; 3614 break; 3615 case MSR_IA32_TSCDEADLINE: 3616 env->tsc_deadline = msrs[i].data; 3617 break; 3618 case MSR_VM_HSAVE_PA: 3619 env->vm_hsave = msrs[i].data; 3620 break; 3621 case MSR_KVM_SYSTEM_TIME: 3622 env->system_time_msr = msrs[i].data; 3623 break; 3624 case MSR_KVM_WALL_CLOCK: 3625 env->wall_clock_msr = msrs[i].data; 3626 break; 3627 case MSR_MCG_STATUS: 3628 env->mcg_status = msrs[i].data; 3629 break; 3630 case MSR_MCG_CTL: 3631 env->mcg_ctl = msrs[i].data; 3632 break; 3633 case MSR_MCG_EXT_CTL: 3634 env->mcg_ext_ctl = msrs[i].data; 3635 break; 3636 case MSR_IA32_MISC_ENABLE: 3637 env->msr_ia32_misc_enable = msrs[i].data; 3638 break; 3639 case MSR_IA32_SMBASE: 3640 env->smbase = msrs[i].data; 3641 break; 3642 case MSR_SMI_COUNT: 3643 env->msr_smi_count = msrs[i].data; 3644 break; 3645 case MSR_IA32_FEATURE_CONTROL: 3646 env->msr_ia32_feature_control = msrs[i].data; 3647 break; 3648 case MSR_IA32_BNDCFGS: 3649 env->msr_bndcfgs = msrs[i].data; 3650 break; 3651 case MSR_IA32_XSS: 3652 env->xss = msrs[i].data; 3653 break; 3654 case MSR_IA32_UMWAIT_CONTROL: 3655 env->umwait = msrs[i].data; 3656 break; 3657 case MSR_IA32_PKRS: 3658 env->pkrs = msrs[i].data; 3659 break; 3660 default: 3661 if (msrs[i].index >= MSR_MC0_CTL && 3662 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { 3663 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; 3664 } 3665 break; 3666 case MSR_KVM_ASYNC_PF_EN: 3667 env->async_pf_en_msr = msrs[i].data; 3668 break; 3669 case MSR_KVM_ASYNC_PF_INT: 3670 env->async_pf_int_msr = msrs[i].data; 3671 break; 3672 case MSR_KVM_PV_EOI_EN: 3673 env->pv_eoi_en_msr = msrs[i].data; 3674 break; 3675 case MSR_KVM_STEAL_TIME: 3676 env->steal_time_msr = msrs[i].data; 3677 break; 3678 case MSR_KVM_POLL_CONTROL: { 3679 env->poll_control_msr = msrs[i].data; 3680 break; 3681 } 3682 case MSR_CORE_PERF_FIXED_CTR_CTRL: 3683 env->msr_fixed_ctr_ctrl = msrs[i].data; 3684 break; 3685 case MSR_CORE_PERF_GLOBAL_CTRL: 3686 env->msr_global_ctrl = msrs[i].data; 3687 break; 3688 case MSR_CORE_PERF_GLOBAL_STATUS: 3689 env->msr_global_status = msrs[i].data; 3690 break; 3691 case MSR_CORE_PERF_GLOBAL_OVF_CTRL: 3692 env->msr_global_ovf_ctrl = msrs[i].data; 3693 break; 3694 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: 3695 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; 3696 break; 3697 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: 3698 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; 3699 break; 3700 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: 3701 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; 3702 break; 3703 case HV_X64_MSR_HYPERCALL: 3704 env->msr_hv_hypercall = msrs[i].data; 3705 break; 3706 case HV_X64_MSR_GUEST_OS_ID: 3707 env->msr_hv_guest_os_id = msrs[i].data; 3708 break; 3709 case HV_X64_MSR_APIC_ASSIST_PAGE: 3710 env->msr_hv_vapic = msrs[i].data; 3711 break; 3712 case HV_X64_MSR_REFERENCE_TSC: 3713 env->msr_hv_tsc = msrs[i].data; 3714 break; 3715 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3716 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; 3717 break; 3718 case HV_X64_MSR_VP_RUNTIME: 3719 env->msr_hv_runtime = msrs[i].data; 3720 break; 3721 case HV_X64_MSR_SCONTROL: 3722 env->msr_hv_synic_control = msrs[i].data; 3723 break; 3724 case HV_X64_MSR_SIEFP: 3725 env->msr_hv_synic_evt_page = msrs[i].data; 3726 break; 3727 case HV_X64_MSR_SIMP: 3728 env->msr_hv_synic_msg_page = msrs[i].data; 3729 break; 3730 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 3731 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; 3732 break; 3733 case HV_X64_MSR_STIMER0_CONFIG: 3734 case HV_X64_MSR_STIMER1_CONFIG: 3735 case HV_X64_MSR_STIMER2_CONFIG: 3736 case HV_X64_MSR_STIMER3_CONFIG: 3737 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = 3738 msrs[i].data; 3739 break; 3740 case HV_X64_MSR_STIMER0_COUNT: 3741 case HV_X64_MSR_STIMER1_COUNT: 3742 case HV_X64_MSR_STIMER2_COUNT: 3743 case HV_X64_MSR_STIMER3_COUNT: 3744 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = 3745 msrs[i].data; 3746 break; 3747 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3748 env->msr_hv_reenlightenment_control = msrs[i].data; 3749 break; 3750 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3751 env->msr_hv_tsc_emulation_control = msrs[i].data; 3752 break; 3753 case HV_X64_MSR_TSC_EMULATION_STATUS: 3754 env->msr_hv_tsc_emulation_status = msrs[i].data; 3755 break; 3756 case MSR_MTRRdefType: 3757 env->mtrr_deftype = msrs[i].data; 3758 break; 3759 case MSR_MTRRfix64K_00000: 3760 env->mtrr_fixed[0] = msrs[i].data; 3761 break; 3762 case MSR_MTRRfix16K_80000: 3763 env->mtrr_fixed[1] = msrs[i].data; 3764 break; 3765 case MSR_MTRRfix16K_A0000: 3766 env->mtrr_fixed[2] = msrs[i].data; 3767 break; 3768 case MSR_MTRRfix4K_C0000: 3769 env->mtrr_fixed[3] = msrs[i].data; 3770 break; 3771 case MSR_MTRRfix4K_C8000: 3772 env->mtrr_fixed[4] = msrs[i].data; 3773 break; 3774 case MSR_MTRRfix4K_D0000: 3775 env->mtrr_fixed[5] = msrs[i].data; 3776 break; 3777 case MSR_MTRRfix4K_D8000: 3778 env->mtrr_fixed[6] = msrs[i].data; 3779 break; 3780 case MSR_MTRRfix4K_E0000: 3781 env->mtrr_fixed[7] = msrs[i].data; 3782 break; 3783 case MSR_MTRRfix4K_E8000: 3784 env->mtrr_fixed[8] = msrs[i].data; 3785 break; 3786 case MSR_MTRRfix4K_F0000: 3787 env->mtrr_fixed[9] = msrs[i].data; 3788 break; 3789 case MSR_MTRRfix4K_F8000: 3790 env->mtrr_fixed[10] = msrs[i].data; 3791 break; 3792 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): 3793 if (index & 1) { 3794 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | 3795 mtrr_top_bits; 3796 } else { 3797 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; 3798 } 3799 break; 3800 case MSR_IA32_SPEC_CTRL: 3801 env->spec_ctrl = msrs[i].data; 3802 break; 3803 case MSR_AMD64_TSC_RATIO: 3804 env->amd_tsc_scale_msr = msrs[i].data; 3805 break; 3806 case MSR_IA32_TSX_CTRL: 3807 env->tsx_ctrl = msrs[i].data; 3808 break; 3809 case MSR_VIRT_SSBD: 3810 env->virt_ssbd = msrs[i].data; 3811 break; 3812 case MSR_IA32_RTIT_CTL: 3813 env->msr_rtit_ctrl = msrs[i].data; 3814 break; 3815 case MSR_IA32_RTIT_STATUS: 3816 env->msr_rtit_status = msrs[i].data; 3817 break; 3818 case MSR_IA32_RTIT_OUTPUT_BASE: 3819 env->msr_rtit_output_base = msrs[i].data; 3820 break; 3821 case MSR_IA32_RTIT_OUTPUT_MASK: 3822 env->msr_rtit_output_mask = msrs[i].data; 3823 break; 3824 case MSR_IA32_RTIT_CR3_MATCH: 3825 env->msr_rtit_cr3_match = msrs[i].data; 3826 break; 3827 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 3828 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data; 3829 break; 3830 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 3831 env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] = 3832 msrs[i].data; 3833 break; 3834 } 3835 } 3836 3837 return 0; 3838 } 3839 3840 static int kvm_put_mp_state(X86CPU *cpu) 3841 { 3842 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; 3843 3844 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 3845 } 3846 3847 static int kvm_get_mp_state(X86CPU *cpu) 3848 { 3849 CPUState *cs = CPU(cpu); 3850 CPUX86State *env = &cpu->env; 3851 struct kvm_mp_state mp_state; 3852 int ret; 3853 3854 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); 3855 if (ret < 0) { 3856 return ret; 3857 } 3858 env->mp_state = mp_state.mp_state; 3859 if (kvm_irqchip_in_kernel()) { 3860 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); 3861 } 3862 return 0; 3863 } 3864 3865 static int kvm_get_apic(X86CPU *cpu) 3866 { 3867 DeviceState *apic = cpu->apic_state; 3868 struct kvm_lapic_state kapic; 3869 int ret; 3870 3871 if (apic && kvm_irqchip_in_kernel()) { 3872 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); 3873 if (ret < 0) { 3874 return ret; 3875 } 3876 3877 kvm_get_apic_state(apic, &kapic); 3878 } 3879 return 0; 3880 } 3881 3882 static int kvm_put_vcpu_events(X86CPU *cpu, int level) 3883 { 3884 CPUState *cs = CPU(cpu); 3885 CPUX86State *env = &cpu->env; 3886 struct kvm_vcpu_events events = {}; 3887 3888 if (!kvm_has_vcpu_events()) { 3889 return 0; 3890 } 3891 3892 events.flags = 0; 3893 3894 if (has_exception_payload) { 3895 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 3896 events.exception.pending = env->exception_pending; 3897 events.exception_has_payload = env->exception_has_payload; 3898 events.exception_payload = env->exception_payload; 3899 } 3900 events.exception.nr = env->exception_nr; 3901 events.exception.injected = env->exception_injected; 3902 events.exception.has_error_code = env->has_error_code; 3903 events.exception.error_code = env->error_code; 3904 3905 events.interrupt.injected = (env->interrupt_injected >= 0); 3906 events.interrupt.nr = env->interrupt_injected; 3907 events.interrupt.soft = env->soft_interrupt; 3908 3909 events.nmi.injected = env->nmi_injected; 3910 events.nmi.pending = env->nmi_pending; 3911 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); 3912 3913 events.sipi_vector = env->sipi_vector; 3914 3915 if (has_msr_smbase) { 3916 events.smi.smm = !!(env->hflags & HF_SMM_MASK); 3917 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); 3918 if (kvm_irqchip_in_kernel()) { 3919 /* As soon as these are moved to the kernel, remove them 3920 * from cs->interrupt_request. 3921 */ 3922 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; 3923 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; 3924 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); 3925 } else { 3926 /* Keep these in cs->interrupt_request. */ 3927 events.smi.pending = 0; 3928 events.smi.latched_init = 0; 3929 } 3930 /* Stop SMI delivery on old machine types to avoid a reboot 3931 * on an inward migration of an old VM. 3932 */ 3933 if (!cpu->kvm_no_smi_migration) { 3934 events.flags |= KVM_VCPUEVENT_VALID_SMM; 3935 } 3936 } 3937 3938 if (level >= KVM_PUT_RESET_STATE) { 3939 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; 3940 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 3941 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR; 3942 } 3943 } 3944 3945 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 3946 } 3947 3948 static int kvm_get_vcpu_events(X86CPU *cpu) 3949 { 3950 CPUX86State *env = &cpu->env; 3951 struct kvm_vcpu_events events; 3952 int ret; 3953 3954 if (!kvm_has_vcpu_events()) { 3955 return 0; 3956 } 3957 3958 memset(&events, 0, sizeof(events)); 3959 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 3960 if (ret < 0) { 3961 return ret; 3962 } 3963 3964 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 3965 env->exception_pending = events.exception.pending; 3966 env->exception_has_payload = events.exception_has_payload; 3967 env->exception_payload = events.exception_payload; 3968 } else { 3969 env->exception_pending = 0; 3970 env->exception_has_payload = false; 3971 } 3972 env->exception_injected = events.exception.injected; 3973 env->exception_nr = 3974 (env->exception_pending || env->exception_injected) ? 3975 events.exception.nr : -1; 3976 env->has_error_code = events.exception.has_error_code; 3977 env->error_code = events.exception.error_code; 3978 3979 env->interrupt_injected = 3980 events.interrupt.injected ? events.interrupt.nr : -1; 3981 env->soft_interrupt = events.interrupt.soft; 3982 3983 env->nmi_injected = events.nmi.injected; 3984 env->nmi_pending = events.nmi.pending; 3985 if (events.nmi.masked) { 3986 env->hflags2 |= HF2_NMI_MASK; 3987 } else { 3988 env->hflags2 &= ~HF2_NMI_MASK; 3989 } 3990 3991 if (events.flags & KVM_VCPUEVENT_VALID_SMM) { 3992 if (events.smi.smm) { 3993 env->hflags |= HF_SMM_MASK; 3994 } else { 3995 env->hflags &= ~HF_SMM_MASK; 3996 } 3997 if (events.smi.pending) { 3998 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 3999 } else { 4000 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 4001 } 4002 if (events.smi.smm_inside_nmi) { 4003 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; 4004 } else { 4005 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; 4006 } 4007 if (events.smi.latched_init) { 4008 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 4009 } else { 4010 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 4011 } 4012 } 4013 4014 env->sipi_vector = events.sipi_vector; 4015 4016 return 0; 4017 } 4018 4019 static int kvm_guest_debug_workarounds(X86CPU *cpu) 4020 { 4021 CPUState *cs = CPU(cpu); 4022 CPUX86State *env = &cpu->env; 4023 int ret = 0; 4024 unsigned long reinject_trap = 0; 4025 4026 if (!kvm_has_vcpu_events()) { 4027 if (env->exception_nr == EXCP01_DB) { 4028 reinject_trap = KVM_GUESTDBG_INJECT_DB; 4029 } else if (env->exception_injected == EXCP03_INT3) { 4030 reinject_trap = KVM_GUESTDBG_INJECT_BP; 4031 } 4032 kvm_reset_exception(env); 4033 } 4034 4035 /* 4036 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF 4037 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this 4038 * by updating the debug state once again if single-stepping is on. 4039 * Another reason to call kvm_update_guest_debug here is a pending debug 4040 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to 4041 * reinject them via SET_GUEST_DEBUG. 4042 */ 4043 if (reinject_trap || 4044 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { 4045 ret = kvm_update_guest_debug(cs, reinject_trap); 4046 } 4047 return ret; 4048 } 4049 4050 static int kvm_put_debugregs(X86CPU *cpu) 4051 { 4052 CPUX86State *env = &cpu->env; 4053 struct kvm_debugregs dbgregs; 4054 int i; 4055 4056 if (!kvm_has_debugregs()) { 4057 return 0; 4058 } 4059 4060 memset(&dbgregs, 0, sizeof(dbgregs)); 4061 for (i = 0; i < 4; i++) { 4062 dbgregs.db[i] = env->dr[i]; 4063 } 4064 dbgregs.dr6 = env->dr[6]; 4065 dbgregs.dr7 = env->dr[7]; 4066 dbgregs.flags = 0; 4067 4068 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); 4069 } 4070 4071 static int kvm_get_debugregs(X86CPU *cpu) 4072 { 4073 CPUX86State *env = &cpu->env; 4074 struct kvm_debugregs dbgregs; 4075 int i, ret; 4076 4077 if (!kvm_has_debugregs()) { 4078 return 0; 4079 } 4080 4081 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); 4082 if (ret < 0) { 4083 return ret; 4084 } 4085 for (i = 0; i < 4; i++) { 4086 env->dr[i] = dbgregs.db[i]; 4087 } 4088 env->dr[4] = env->dr[6] = dbgregs.dr6; 4089 env->dr[5] = env->dr[7] = dbgregs.dr7; 4090 4091 return 0; 4092 } 4093 4094 static int kvm_put_nested_state(X86CPU *cpu) 4095 { 4096 CPUX86State *env = &cpu->env; 4097 int max_nested_state_len = kvm_max_nested_state_length(); 4098 4099 if (!env->nested_state) { 4100 return 0; 4101 } 4102 4103 /* 4104 * Copy flags that are affected by reset from env->hflags and env->hflags2. 4105 */ 4106 if (env->hflags & HF_GUEST_MASK) { 4107 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE; 4108 } else { 4109 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE; 4110 } 4111 4112 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */ 4113 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) { 4114 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET; 4115 } else { 4116 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET; 4117 } 4118 4119 assert(env->nested_state->size <= max_nested_state_len); 4120 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state); 4121 } 4122 4123 static int kvm_get_nested_state(X86CPU *cpu) 4124 { 4125 CPUX86State *env = &cpu->env; 4126 int max_nested_state_len = kvm_max_nested_state_length(); 4127 int ret; 4128 4129 if (!env->nested_state) { 4130 return 0; 4131 } 4132 4133 /* 4134 * It is possible that migration restored a smaller size into 4135 * nested_state->hdr.size than what our kernel support. 4136 * We preserve migration origin nested_state->hdr.size for 4137 * call to KVM_SET_NESTED_STATE but wish that our next call 4138 * to KVM_GET_NESTED_STATE will use max size our kernel support. 4139 */ 4140 env->nested_state->size = max_nested_state_len; 4141 4142 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state); 4143 if (ret < 0) { 4144 return ret; 4145 } 4146 4147 /* 4148 * Copy flags that are affected by reset to env->hflags and env->hflags2. 4149 */ 4150 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) { 4151 env->hflags |= HF_GUEST_MASK; 4152 } else { 4153 env->hflags &= ~HF_GUEST_MASK; 4154 } 4155 4156 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */ 4157 if (cpu_has_svm(env)) { 4158 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) { 4159 env->hflags2 |= HF2_GIF_MASK; 4160 } else { 4161 env->hflags2 &= ~HF2_GIF_MASK; 4162 } 4163 } 4164 4165 return ret; 4166 } 4167 4168 int kvm_arch_put_registers(CPUState *cpu, int level) 4169 { 4170 X86CPU *x86_cpu = X86_CPU(cpu); 4171 int ret; 4172 4173 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); 4174 4175 /* must be before kvm_put_nested_state so that EFER.SVME is set */ 4176 ret = kvm_put_sregs(x86_cpu); 4177 if (ret < 0) { 4178 return ret; 4179 } 4180 4181 if (level >= KVM_PUT_RESET_STATE) { 4182 ret = kvm_put_nested_state(x86_cpu); 4183 if (ret < 0) { 4184 return ret; 4185 } 4186 4187 ret = kvm_put_msr_feature_control(x86_cpu); 4188 if (ret < 0) { 4189 return ret; 4190 } 4191 } 4192 4193 if (level == KVM_PUT_FULL_STATE) { 4194 /* We don't check for kvm_arch_set_tsc_khz() errors here, 4195 * because TSC frequency mismatch shouldn't abort migration, 4196 * unless the user explicitly asked for a more strict TSC 4197 * setting (e.g. using an explicit "tsc-freq" option). 4198 */ 4199 kvm_arch_set_tsc_khz(cpu); 4200 } 4201 4202 ret = kvm_getput_regs(x86_cpu, 1); 4203 if (ret < 0) { 4204 return ret; 4205 } 4206 ret = kvm_put_xsave(x86_cpu); 4207 if (ret < 0) { 4208 return ret; 4209 } 4210 ret = kvm_put_xcrs(x86_cpu); 4211 if (ret < 0) { 4212 return ret; 4213 } 4214 /* must be before kvm_put_msrs */ 4215 ret = kvm_inject_mce_oldstyle(x86_cpu); 4216 if (ret < 0) { 4217 return ret; 4218 } 4219 ret = kvm_put_msrs(x86_cpu, level); 4220 if (ret < 0) { 4221 return ret; 4222 } 4223 ret = kvm_put_vcpu_events(x86_cpu, level); 4224 if (ret < 0) { 4225 return ret; 4226 } 4227 if (level >= KVM_PUT_RESET_STATE) { 4228 ret = kvm_put_mp_state(x86_cpu); 4229 if (ret < 0) { 4230 return ret; 4231 } 4232 } 4233 4234 ret = kvm_put_tscdeadline_msr(x86_cpu); 4235 if (ret < 0) { 4236 return ret; 4237 } 4238 ret = kvm_put_debugregs(x86_cpu); 4239 if (ret < 0) { 4240 return ret; 4241 } 4242 /* must be last */ 4243 ret = kvm_guest_debug_workarounds(x86_cpu); 4244 if (ret < 0) { 4245 return ret; 4246 } 4247 return 0; 4248 } 4249 4250 int kvm_arch_get_registers(CPUState *cs) 4251 { 4252 X86CPU *cpu = X86_CPU(cs); 4253 int ret; 4254 4255 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); 4256 4257 ret = kvm_get_vcpu_events(cpu); 4258 if (ret < 0) { 4259 goto out; 4260 } 4261 /* 4262 * KVM_GET_MPSTATE can modify CS and RIP, call it before 4263 * KVM_GET_REGS and KVM_GET_SREGS. 4264 */ 4265 ret = kvm_get_mp_state(cpu); 4266 if (ret < 0) { 4267 goto out; 4268 } 4269 ret = kvm_getput_regs(cpu, 0); 4270 if (ret < 0) { 4271 goto out; 4272 } 4273 ret = kvm_get_xsave(cpu); 4274 if (ret < 0) { 4275 goto out; 4276 } 4277 ret = kvm_get_xcrs(cpu); 4278 if (ret < 0) { 4279 goto out; 4280 } 4281 ret = kvm_get_sregs(cpu); 4282 if (ret < 0) { 4283 goto out; 4284 } 4285 ret = kvm_get_msrs(cpu); 4286 if (ret < 0) { 4287 goto out; 4288 } 4289 ret = kvm_get_apic(cpu); 4290 if (ret < 0) { 4291 goto out; 4292 } 4293 ret = kvm_get_debugregs(cpu); 4294 if (ret < 0) { 4295 goto out; 4296 } 4297 ret = kvm_get_nested_state(cpu); 4298 if (ret < 0) { 4299 goto out; 4300 } 4301 ret = 0; 4302 out: 4303 cpu_sync_bndcs_hflags(&cpu->env); 4304 return ret; 4305 } 4306 4307 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 4308 { 4309 X86CPU *x86_cpu = X86_CPU(cpu); 4310 CPUX86State *env = &x86_cpu->env; 4311 int ret; 4312 4313 /* Inject NMI */ 4314 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { 4315 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { 4316 qemu_mutex_lock_iothread(); 4317 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; 4318 qemu_mutex_unlock_iothread(); 4319 DPRINTF("injected NMI\n"); 4320 ret = kvm_vcpu_ioctl(cpu, KVM_NMI); 4321 if (ret < 0) { 4322 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", 4323 strerror(-ret)); 4324 } 4325 } 4326 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { 4327 qemu_mutex_lock_iothread(); 4328 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; 4329 qemu_mutex_unlock_iothread(); 4330 DPRINTF("injected SMI\n"); 4331 ret = kvm_vcpu_ioctl(cpu, KVM_SMI); 4332 if (ret < 0) { 4333 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", 4334 strerror(-ret)); 4335 } 4336 } 4337 } 4338 4339 if (!kvm_pic_in_kernel()) { 4340 qemu_mutex_lock_iothread(); 4341 } 4342 4343 /* Force the VCPU out of its inner loop to process any INIT requests 4344 * or (for userspace APIC, but it is cheap to combine the checks here) 4345 * pending TPR access reports. 4346 */ 4347 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { 4348 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && 4349 !(env->hflags & HF_SMM_MASK)) { 4350 cpu->exit_request = 1; 4351 } 4352 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { 4353 cpu->exit_request = 1; 4354 } 4355 } 4356 4357 if (!kvm_pic_in_kernel()) { 4358 /* Try to inject an interrupt if the guest can accept it */ 4359 if (run->ready_for_interrupt_injection && 4360 (cpu->interrupt_request & CPU_INTERRUPT_HARD) && 4361 (env->eflags & IF_MASK)) { 4362 int irq; 4363 4364 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; 4365 irq = cpu_get_pic_interrupt(env); 4366 if (irq >= 0) { 4367 struct kvm_interrupt intr; 4368 4369 intr.irq = irq; 4370 DPRINTF("injected interrupt %d\n", irq); 4371 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); 4372 if (ret < 0) { 4373 fprintf(stderr, 4374 "KVM: injection failed, interrupt lost (%s)\n", 4375 strerror(-ret)); 4376 } 4377 } 4378 } 4379 4380 /* If we have an interrupt but the guest is not ready to receive an 4381 * interrupt, request an interrupt window exit. This will 4382 * cause a return to userspace as soon as the guest is ready to 4383 * receive interrupts. */ 4384 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { 4385 run->request_interrupt_window = 1; 4386 } else { 4387 run->request_interrupt_window = 0; 4388 } 4389 4390 DPRINTF("setting tpr\n"); 4391 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); 4392 4393 qemu_mutex_unlock_iothread(); 4394 } 4395 } 4396 4397 static void kvm_rate_limit_on_bus_lock(void) 4398 { 4399 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1); 4400 4401 if (delay_ns) { 4402 g_usleep(delay_ns / SCALE_US); 4403 } 4404 } 4405 4406 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) 4407 { 4408 X86CPU *x86_cpu = X86_CPU(cpu); 4409 CPUX86State *env = &x86_cpu->env; 4410 4411 if (run->flags & KVM_RUN_X86_SMM) { 4412 env->hflags |= HF_SMM_MASK; 4413 } else { 4414 env->hflags &= ~HF_SMM_MASK; 4415 } 4416 if (run->if_flag) { 4417 env->eflags |= IF_MASK; 4418 } else { 4419 env->eflags &= ~IF_MASK; 4420 } 4421 if (run->flags & KVM_RUN_X86_BUS_LOCK) { 4422 kvm_rate_limit_on_bus_lock(); 4423 } 4424 4425 /* We need to protect the apic state against concurrent accesses from 4426 * different threads in case the userspace irqchip is used. */ 4427 if (!kvm_irqchip_in_kernel()) { 4428 qemu_mutex_lock_iothread(); 4429 } 4430 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); 4431 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); 4432 if (!kvm_irqchip_in_kernel()) { 4433 qemu_mutex_unlock_iothread(); 4434 } 4435 return cpu_get_mem_attrs(env); 4436 } 4437 4438 int kvm_arch_process_async_events(CPUState *cs) 4439 { 4440 X86CPU *cpu = X86_CPU(cs); 4441 CPUX86State *env = &cpu->env; 4442 4443 if (cs->interrupt_request & CPU_INTERRUPT_MCE) { 4444 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ 4445 assert(env->mcg_cap); 4446 4447 cs->interrupt_request &= ~CPU_INTERRUPT_MCE; 4448 4449 kvm_cpu_synchronize_state(cs); 4450 4451 if (env->exception_nr == EXCP08_DBLE) { 4452 /* this means triple fault */ 4453 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 4454 cs->exit_request = 1; 4455 return 0; 4456 } 4457 kvm_queue_exception(env, EXCP12_MCHK, 0, 0); 4458 env->has_error_code = 0; 4459 4460 cs->halted = 0; 4461 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { 4462 env->mp_state = KVM_MP_STATE_RUNNABLE; 4463 } 4464 } 4465 4466 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && 4467 !(env->hflags & HF_SMM_MASK)) { 4468 kvm_cpu_synchronize_state(cs); 4469 do_cpu_init(cpu); 4470 } 4471 4472 if (kvm_irqchip_in_kernel()) { 4473 return 0; 4474 } 4475 4476 if (cs->interrupt_request & CPU_INTERRUPT_POLL) { 4477 cs->interrupt_request &= ~CPU_INTERRUPT_POLL; 4478 apic_poll_irq(cpu->apic_state); 4479 } 4480 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && 4481 (env->eflags & IF_MASK)) || 4482 (cs->interrupt_request & CPU_INTERRUPT_NMI)) { 4483 cs->halted = 0; 4484 } 4485 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { 4486 kvm_cpu_synchronize_state(cs); 4487 do_cpu_sipi(cpu); 4488 } 4489 if (cs->interrupt_request & CPU_INTERRUPT_TPR) { 4490 cs->interrupt_request &= ~CPU_INTERRUPT_TPR; 4491 kvm_cpu_synchronize_state(cs); 4492 apic_handle_tpr_access_report(cpu->apic_state, env->eip, 4493 env->tpr_access_type); 4494 } 4495 4496 return cs->halted; 4497 } 4498 4499 static int kvm_handle_halt(X86CPU *cpu) 4500 { 4501 CPUState *cs = CPU(cpu); 4502 CPUX86State *env = &cpu->env; 4503 4504 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && 4505 (env->eflags & IF_MASK)) && 4506 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { 4507 cs->halted = 1; 4508 return EXCP_HLT; 4509 } 4510 4511 return 0; 4512 } 4513 4514 static int kvm_handle_tpr_access(X86CPU *cpu) 4515 { 4516 CPUState *cs = CPU(cpu); 4517 struct kvm_run *run = cs->kvm_run; 4518 4519 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, 4520 run->tpr_access.is_write ? TPR_ACCESS_WRITE 4521 : TPR_ACCESS_READ); 4522 return 1; 4523 } 4524 4525 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 4526 { 4527 static const uint8_t int3 = 0xcc; 4528 4529 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || 4530 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { 4531 return -EINVAL; 4532 } 4533 return 0; 4534 } 4535 4536 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 4537 { 4538 uint8_t int3; 4539 4540 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) { 4541 return -EINVAL; 4542 } 4543 if (int3 != 0xcc) { 4544 return 0; 4545 } 4546 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { 4547 return -EINVAL; 4548 } 4549 return 0; 4550 } 4551 4552 static struct { 4553 target_ulong addr; 4554 int len; 4555 int type; 4556 } hw_breakpoint[4]; 4557 4558 static int nb_hw_breakpoint; 4559 4560 static int find_hw_breakpoint(target_ulong addr, int len, int type) 4561 { 4562 int n; 4563 4564 for (n = 0; n < nb_hw_breakpoint; n++) { 4565 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && 4566 (hw_breakpoint[n].len == len || len == -1)) { 4567 return n; 4568 } 4569 } 4570 return -1; 4571 } 4572 4573 int kvm_arch_insert_hw_breakpoint(target_ulong addr, 4574 target_ulong len, int type) 4575 { 4576 switch (type) { 4577 case GDB_BREAKPOINT_HW: 4578 len = 1; 4579 break; 4580 case GDB_WATCHPOINT_WRITE: 4581 case GDB_WATCHPOINT_ACCESS: 4582 switch (len) { 4583 case 1: 4584 break; 4585 case 2: 4586 case 4: 4587 case 8: 4588 if (addr & (len - 1)) { 4589 return -EINVAL; 4590 } 4591 break; 4592 default: 4593 return -EINVAL; 4594 } 4595 break; 4596 default: 4597 return -ENOSYS; 4598 } 4599 4600 if (nb_hw_breakpoint == 4) { 4601 return -ENOBUFS; 4602 } 4603 if (find_hw_breakpoint(addr, len, type) >= 0) { 4604 return -EEXIST; 4605 } 4606 hw_breakpoint[nb_hw_breakpoint].addr = addr; 4607 hw_breakpoint[nb_hw_breakpoint].len = len; 4608 hw_breakpoint[nb_hw_breakpoint].type = type; 4609 nb_hw_breakpoint++; 4610 4611 return 0; 4612 } 4613 4614 int kvm_arch_remove_hw_breakpoint(target_ulong addr, 4615 target_ulong len, int type) 4616 { 4617 int n; 4618 4619 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); 4620 if (n < 0) { 4621 return -ENOENT; 4622 } 4623 nb_hw_breakpoint--; 4624 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; 4625 4626 return 0; 4627 } 4628 4629 void kvm_arch_remove_all_hw_breakpoints(void) 4630 { 4631 nb_hw_breakpoint = 0; 4632 } 4633 4634 static CPUWatchpoint hw_watchpoint; 4635 4636 static int kvm_handle_debug(X86CPU *cpu, 4637 struct kvm_debug_exit_arch *arch_info) 4638 { 4639 CPUState *cs = CPU(cpu); 4640 CPUX86State *env = &cpu->env; 4641 int ret = 0; 4642 int n; 4643 4644 if (arch_info->exception == EXCP01_DB) { 4645 if (arch_info->dr6 & DR6_BS) { 4646 if (cs->singlestep_enabled) { 4647 ret = EXCP_DEBUG; 4648 } 4649 } else { 4650 for (n = 0; n < 4; n++) { 4651 if (arch_info->dr6 & (1 << n)) { 4652 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { 4653 case 0x0: 4654 ret = EXCP_DEBUG; 4655 break; 4656 case 0x1: 4657 ret = EXCP_DEBUG; 4658 cs->watchpoint_hit = &hw_watchpoint; 4659 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 4660 hw_watchpoint.flags = BP_MEM_WRITE; 4661 break; 4662 case 0x3: 4663 ret = EXCP_DEBUG; 4664 cs->watchpoint_hit = &hw_watchpoint; 4665 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 4666 hw_watchpoint.flags = BP_MEM_ACCESS; 4667 break; 4668 } 4669 } 4670 } 4671 } 4672 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { 4673 ret = EXCP_DEBUG; 4674 } 4675 if (ret == 0) { 4676 cpu_synchronize_state(cs); 4677 assert(env->exception_nr == -1); 4678 4679 /* pass to guest */ 4680 kvm_queue_exception(env, arch_info->exception, 4681 arch_info->exception == EXCP01_DB, 4682 arch_info->dr6); 4683 env->has_error_code = 0; 4684 } 4685 4686 return ret; 4687 } 4688 4689 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 4690 { 4691 const uint8_t type_code[] = { 4692 [GDB_BREAKPOINT_HW] = 0x0, 4693 [GDB_WATCHPOINT_WRITE] = 0x1, 4694 [GDB_WATCHPOINT_ACCESS] = 0x3 4695 }; 4696 const uint8_t len_code[] = { 4697 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 4698 }; 4699 int n; 4700 4701 if (kvm_sw_breakpoints_active(cpu)) { 4702 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 4703 } 4704 if (nb_hw_breakpoint > 0) { 4705 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 4706 dbg->arch.debugreg[7] = 0x0600; 4707 for (n = 0; n < nb_hw_breakpoint; n++) { 4708 dbg->arch.debugreg[n] = hw_breakpoint[n].addr; 4709 dbg->arch.debugreg[7] |= (2 << (n * 2)) | 4710 (type_code[hw_breakpoint[n].type] << (16 + n*4)) | 4711 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); 4712 } 4713 } 4714 } 4715 4716 static bool has_sgx_provisioning; 4717 4718 static bool __kvm_enable_sgx_provisioning(KVMState *s) 4719 { 4720 int fd, ret; 4721 4722 if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) { 4723 return false; 4724 } 4725 4726 fd = qemu_open_old("/dev/sgx_provision", O_RDONLY); 4727 if (fd < 0) { 4728 return false; 4729 } 4730 4731 ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd); 4732 if (ret) { 4733 error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret)); 4734 exit(1); 4735 } 4736 close(fd); 4737 return true; 4738 } 4739 4740 bool kvm_enable_sgx_provisioning(KVMState *s) 4741 { 4742 return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning); 4743 } 4744 4745 static bool host_supports_vmx(void) 4746 { 4747 uint32_t ecx, unused; 4748 4749 host_cpuid(1, 0, &unused, &unused, &ecx, &unused); 4750 return ecx & CPUID_EXT_VMX; 4751 } 4752 4753 #define VMX_INVALID_GUEST_STATE 0x80000021 4754 4755 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 4756 { 4757 X86CPU *cpu = X86_CPU(cs); 4758 uint64_t code; 4759 int ret; 4760 4761 switch (run->exit_reason) { 4762 case KVM_EXIT_HLT: 4763 DPRINTF("handle_hlt\n"); 4764 qemu_mutex_lock_iothread(); 4765 ret = kvm_handle_halt(cpu); 4766 qemu_mutex_unlock_iothread(); 4767 break; 4768 case KVM_EXIT_SET_TPR: 4769 ret = 0; 4770 break; 4771 case KVM_EXIT_TPR_ACCESS: 4772 qemu_mutex_lock_iothread(); 4773 ret = kvm_handle_tpr_access(cpu); 4774 qemu_mutex_unlock_iothread(); 4775 break; 4776 case KVM_EXIT_FAIL_ENTRY: 4777 code = run->fail_entry.hardware_entry_failure_reason; 4778 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", 4779 code); 4780 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { 4781 fprintf(stderr, 4782 "\nIf you're running a guest on an Intel machine without " 4783 "unrestricted mode\n" 4784 "support, the failure can be most likely due to the guest " 4785 "entering an invalid\n" 4786 "state for Intel VT. For example, the guest maybe running " 4787 "in big real mode\n" 4788 "which is not supported on less recent Intel processors." 4789 "\n\n"); 4790 } 4791 ret = -1; 4792 break; 4793 case KVM_EXIT_EXCEPTION: 4794 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", 4795 run->ex.exception, run->ex.error_code); 4796 ret = -1; 4797 break; 4798 case KVM_EXIT_DEBUG: 4799 DPRINTF("kvm_exit_debug\n"); 4800 qemu_mutex_lock_iothread(); 4801 ret = kvm_handle_debug(cpu, &run->debug.arch); 4802 qemu_mutex_unlock_iothread(); 4803 break; 4804 case KVM_EXIT_HYPERV: 4805 ret = kvm_hv_handle_exit(cpu, &run->hyperv); 4806 break; 4807 case KVM_EXIT_IOAPIC_EOI: 4808 ioapic_eoi_broadcast(run->eoi.vector); 4809 ret = 0; 4810 break; 4811 case KVM_EXIT_X86_BUS_LOCK: 4812 /* already handled in kvm_arch_post_run */ 4813 ret = 0; 4814 break; 4815 default: 4816 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); 4817 ret = -1; 4818 break; 4819 } 4820 4821 return ret; 4822 } 4823 4824 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 4825 { 4826 X86CPU *cpu = X86_CPU(cs); 4827 CPUX86State *env = &cpu->env; 4828 4829 kvm_cpu_synchronize_state(cs); 4830 return !(env->cr[0] & CR0_PE_MASK) || 4831 ((env->segs[R_CS].selector & 3) != 3); 4832 } 4833 4834 void kvm_arch_init_irq_routing(KVMState *s) 4835 { 4836 /* We know at this point that we're using the in-kernel 4837 * irqchip, so we can use irqfds, and on x86 we know 4838 * we can use msi via irqfd and GSI routing. 4839 */ 4840 kvm_msi_via_irqfd_allowed = true; 4841 kvm_gsi_routing_allowed = true; 4842 4843 if (kvm_irqchip_is_split()) { 4844 int i; 4845 4846 /* If the ioapic is in QEMU and the lapics are in KVM, reserve 4847 MSI routes for signaling interrupts to the local apics. */ 4848 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 4849 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) { 4850 error_report("Could not enable split IRQ mode."); 4851 exit(1); 4852 } 4853 } 4854 } 4855 } 4856 4857 int kvm_arch_irqchip_create(KVMState *s) 4858 { 4859 int ret; 4860 if (kvm_kernel_irqchip_split()) { 4861 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); 4862 if (ret) { 4863 error_report("Could not enable split irqchip mode: %s", 4864 strerror(-ret)); 4865 exit(1); 4866 } else { 4867 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); 4868 kvm_split_irqchip = true; 4869 return 1; 4870 } 4871 } else { 4872 return 0; 4873 } 4874 } 4875 4876 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address) 4877 { 4878 CPUX86State *env; 4879 uint64_t ext_id; 4880 4881 if (!first_cpu) { 4882 return address; 4883 } 4884 env = &X86_CPU(first_cpu)->env; 4885 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) { 4886 return address; 4887 } 4888 4889 /* 4890 * If the remappable format bit is set, or the upper bits are 4891 * already set in address_hi, or the low extended bits aren't 4892 * there anyway, do nothing. 4893 */ 4894 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT); 4895 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) { 4896 return address; 4897 } 4898 4899 address &= ~ext_id; 4900 address |= ext_id << 35; 4901 return address; 4902 } 4903 4904 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 4905 uint64_t address, uint32_t data, PCIDevice *dev) 4906 { 4907 X86IOMMUState *iommu = x86_iommu_get_default(); 4908 4909 if (iommu) { 4910 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu); 4911 4912 if (class->int_remap) { 4913 int ret; 4914 MSIMessage src, dst; 4915 4916 src.address = route->u.msi.address_hi; 4917 src.address <<= VTD_MSI_ADDR_HI_SHIFT; 4918 src.address |= route->u.msi.address_lo; 4919 src.data = route->u.msi.data; 4920 4921 ret = class->int_remap(iommu, &src, &dst, dev ? \ 4922 pci_requester_id(dev) : \ 4923 X86_IOMMU_SID_INVALID); 4924 if (ret) { 4925 trace_kvm_x86_fixup_msi_error(route->gsi); 4926 return 1; 4927 } 4928 4929 /* 4930 * Handled untranslated compatibilty format interrupt with 4931 * extended destination ID in the low bits 11-5. */ 4932 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address); 4933 4934 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; 4935 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; 4936 route->u.msi.data = dst.data; 4937 return 0; 4938 } 4939 } 4940 4941 address = kvm_swizzle_msi_ext_dest_id(address); 4942 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT; 4943 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK; 4944 return 0; 4945 } 4946 4947 typedef struct MSIRouteEntry MSIRouteEntry; 4948 4949 struct MSIRouteEntry { 4950 PCIDevice *dev; /* Device pointer */ 4951 int vector; /* MSI/MSIX vector index */ 4952 int virq; /* Virtual IRQ index */ 4953 QLIST_ENTRY(MSIRouteEntry) list; 4954 }; 4955 4956 /* List of used GSI routes */ 4957 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ 4958 QLIST_HEAD_INITIALIZER(msi_route_list); 4959 4960 static void kvm_update_msi_routes_all(void *private, bool global, 4961 uint32_t index, uint32_t mask) 4962 { 4963 int cnt = 0, vector; 4964 MSIRouteEntry *entry; 4965 MSIMessage msg; 4966 PCIDevice *dev; 4967 4968 /* TODO: explicit route update */ 4969 QLIST_FOREACH(entry, &msi_route_list, list) { 4970 cnt++; 4971 vector = entry->vector; 4972 dev = entry->dev; 4973 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) { 4974 msg = msix_get_message(dev, vector); 4975 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) { 4976 msg = msi_get_message(dev, vector); 4977 } else { 4978 /* 4979 * Either MSI/MSIX is disabled for the device, or the 4980 * specific message was masked out. Skip this one. 4981 */ 4982 continue; 4983 } 4984 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); 4985 } 4986 kvm_irqchip_commit_routes(kvm_state); 4987 trace_kvm_x86_update_msi_routes(cnt); 4988 } 4989 4990 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 4991 int vector, PCIDevice *dev) 4992 { 4993 static bool notify_list_inited = false; 4994 MSIRouteEntry *entry; 4995 4996 if (!dev) { 4997 /* These are (possibly) IOAPIC routes only used for split 4998 * kernel irqchip mode, while what we are housekeeping are 4999 * PCI devices only. */ 5000 return 0; 5001 } 5002 5003 entry = g_new0(MSIRouteEntry, 1); 5004 entry->dev = dev; 5005 entry->vector = vector; 5006 entry->virq = route->gsi; 5007 QLIST_INSERT_HEAD(&msi_route_list, entry, list); 5008 5009 trace_kvm_x86_add_msi_route(route->gsi); 5010 5011 if (!notify_list_inited) { 5012 /* For the first time we do add route, add ourselves into 5013 * IOMMU's IEC notify list if needed. */ 5014 X86IOMMUState *iommu = x86_iommu_get_default(); 5015 if (iommu) { 5016 x86_iommu_iec_register_notifier(iommu, 5017 kvm_update_msi_routes_all, 5018 NULL); 5019 } 5020 notify_list_inited = true; 5021 } 5022 return 0; 5023 } 5024 5025 int kvm_arch_release_virq_post(int virq) 5026 { 5027 MSIRouteEntry *entry, *next; 5028 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { 5029 if (entry->virq == virq) { 5030 trace_kvm_x86_remove_msi_route(virq); 5031 QLIST_REMOVE(entry, list); 5032 g_free(entry); 5033 break; 5034 } 5035 } 5036 return 0; 5037 } 5038 5039 int kvm_arch_msi_data_to_gsi(uint32_t data) 5040 { 5041 abort(); 5042 } 5043 5044 bool kvm_has_waitpkg(void) 5045 { 5046 return has_msr_umwait; 5047 } 5048 5049 bool kvm_arch_cpu_check_are_resettable(void) 5050 { 5051 return !sev_es_enabled(); 5052 } 5053