xref: /openbmc/qemu/target/i386/kvm/kvm.c (revision dbc0e805)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright (C) 2006-2008 Qumranet Technologies
5  * Copyright IBM, Corp. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include "qapi/visitor.h"
19 #include <sys/ioctl.h>
20 #include <sys/utsname.h>
21 #include <sys/syscall.h>
22 
23 #include <linux/kvm.h>
24 #include "standard-headers/asm-x86/kvm_para.h"
25 
26 #include "cpu.h"
27 #include "host-cpu.h"
28 #include "sysemu/sysemu.h"
29 #include "sysemu/hw_accel.h"
30 #include "sysemu/kvm_int.h"
31 #include "sysemu/runstate.h"
32 #include "kvm_i386.h"
33 #include "sev.h"
34 #include "hyperv.h"
35 #include "hyperv-proto.h"
36 
37 #include "exec/gdbstub.h"
38 #include "qemu/host-utils.h"
39 #include "qemu/main-loop.h"
40 #include "qemu/config-file.h"
41 #include "qemu/error-report.h"
42 #include "qemu/memalign.h"
43 #include "hw/i386/x86.h"
44 #include "hw/i386/apic.h"
45 #include "hw/i386/apic_internal.h"
46 #include "hw/i386/apic-msidef.h"
47 #include "hw/i386/intel_iommu.h"
48 #include "hw/i386/x86-iommu.h"
49 #include "hw/i386/e820_memory_layout.h"
50 
51 #include "hw/pci/pci.h"
52 #include "hw/pci/msi.h"
53 #include "hw/pci/msix.h"
54 #include "migration/blocker.h"
55 #include "exec/memattrs.h"
56 #include "trace.h"
57 
58 #include CONFIG_DEVICES
59 
60 //#define DEBUG_KVM
61 
62 #ifdef DEBUG_KVM
63 #define DPRINTF(fmt, ...) \
64     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
65 #else
66 #define DPRINTF(fmt, ...) \
67     do { } while (0)
68 #endif
69 
70 /* From arch/x86/kvm/lapic.h */
71 #define KVM_APIC_BUS_CYCLE_NS       1
72 #define KVM_APIC_BUS_FREQUENCY      (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
73 
74 #define MSR_KVM_WALL_CLOCK  0x11
75 #define MSR_KVM_SYSTEM_TIME 0x12
76 
77 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
78  * 255 kvm_msr_entry structs */
79 #define MSR_BUF_SIZE 4096
80 
81 static void kvm_init_msrs(X86CPU *cpu);
82 
83 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
84     KVM_CAP_INFO(SET_TSS_ADDR),
85     KVM_CAP_INFO(EXT_CPUID),
86     KVM_CAP_INFO(MP_STATE),
87     KVM_CAP_LAST_INFO
88 };
89 
90 static bool has_msr_star;
91 static bool has_msr_hsave_pa;
92 static bool has_msr_tsc_aux;
93 static bool has_msr_tsc_adjust;
94 static bool has_msr_tsc_deadline;
95 static bool has_msr_feature_control;
96 static bool has_msr_misc_enable;
97 static bool has_msr_smbase;
98 static bool has_msr_bndcfgs;
99 static int lm_capable_kernel;
100 static bool has_msr_hv_hypercall;
101 static bool has_msr_hv_crash;
102 static bool has_msr_hv_reset;
103 static bool has_msr_hv_vpindex;
104 static bool hv_vpindex_settable;
105 static bool has_msr_hv_runtime;
106 static bool has_msr_hv_synic;
107 static bool has_msr_hv_stimer;
108 static bool has_msr_hv_frequencies;
109 static bool has_msr_hv_reenlightenment;
110 static bool has_msr_hv_syndbg_options;
111 static bool has_msr_xss;
112 static bool has_msr_umwait;
113 static bool has_msr_spec_ctrl;
114 static bool has_tsc_scale_msr;
115 static bool has_msr_tsx_ctrl;
116 static bool has_msr_virt_ssbd;
117 static bool has_msr_smi_count;
118 static bool has_msr_arch_capabs;
119 static bool has_msr_core_capabs;
120 static bool has_msr_vmx_vmfunc;
121 static bool has_msr_ucode_rev;
122 static bool has_msr_vmx_procbased_ctls2;
123 static bool has_msr_perf_capabs;
124 static bool has_msr_pkrs;
125 
126 static uint32_t has_architectural_pmu_version;
127 static uint32_t num_architectural_pmu_gp_counters;
128 static uint32_t num_architectural_pmu_fixed_counters;
129 
130 static int has_xsave;
131 static int has_xsave2;
132 static int has_xcrs;
133 static int has_pit_state2;
134 static int has_sregs2;
135 static int has_exception_payload;
136 static int has_triple_fault_event;
137 
138 static bool has_msr_mcg_ext_ctl;
139 
140 static struct kvm_cpuid2 *cpuid_cache;
141 static struct kvm_cpuid2 *hv_cpuid_cache;
142 static struct kvm_msr_list *kvm_feature_msrs;
143 
144 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES];
145 
146 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
147 static RateLimit bus_lock_ratelimit_ctrl;
148 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value);
149 
150 int kvm_has_pit_state2(void)
151 {
152     return has_pit_state2;
153 }
154 
155 bool kvm_has_smm(void)
156 {
157     return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
158 }
159 
160 bool kvm_has_adjust_clock_stable(void)
161 {
162     int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
163 
164     return (ret & KVM_CLOCK_TSC_STABLE);
165 }
166 
167 bool kvm_has_adjust_clock(void)
168 {
169     return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
170 }
171 
172 bool kvm_has_exception_payload(void)
173 {
174     return has_exception_payload;
175 }
176 
177 static bool kvm_x2apic_api_set_flags(uint64_t flags)
178 {
179     KVMState *s = KVM_STATE(current_accel());
180 
181     return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
182 }
183 
184 #define MEMORIZE(fn, _result) \
185     ({ \
186         static bool _memorized; \
187         \
188         if (_memorized) { \
189             return _result; \
190         } \
191         _memorized = true; \
192         _result = fn; \
193     })
194 
195 static bool has_x2apic_api;
196 
197 bool kvm_has_x2apic_api(void)
198 {
199     return has_x2apic_api;
200 }
201 
202 bool kvm_enable_x2apic(void)
203 {
204     return MEMORIZE(
205              kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
206                                       KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
207              has_x2apic_api);
208 }
209 
210 bool kvm_hv_vpindex_settable(void)
211 {
212     return hv_vpindex_settable;
213 }
214 
215 static int kvm_get_tsc(CPUState *cs)
216 {
217     X86CPU *cpu = X86_CPU(cs);
218     CPUX86State *env = &cpu->env;
219     uint64_t value;
220     int ret;
221 
222     if (env->tsc_valid) {
223         return 0;
224     }
225 
226     env->tsc_valid = !runstate_is_running();
227 
228     ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value);
229     if (ret < 0) {
230         return ret;
231     }
232 
233     env->tsc = value;
234     return 0;
235 }
236 
237 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
238 {
239     kvm_get_tsc(cpu);
240 }
241 
242 void kvm_synchronize_all_tsc(void)
243 {
244     CPUState *cpu;
245 
246     if (kvm_enabled()) {
247         CPU_FOREACH(cpu) {
248             run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
249         }
250     }
251 }
252 
253 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
254 {
255     struct kvm_cpuid2 *cpuid;
256     int r, size;
257 
258     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
259     cpuid = g_malloc0(size);
260     cpuid->nent = max;
261     r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
262     if (r == 0 && cpuid->nent >= max) {
263         r = -E2BIG;
264     }
265     if (r < 0) {
266         if (r == -E2BIG) {
267             g_free(cpuid);
268             return NULL;
269         } else {
270             fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
271                     strerror(-r));
272             exit(1);
273         }
274     }
275     return cpuid;
276 }
277 
278 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
279  * for all entries.
280  */
281 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
282 {
283     struct kvm_cpuid2 *cpuid;
284     int max = 1;
285 
286     if (cpuid_cache != NULL) {
287         return cpuid_cache;
288     }
289     while ((cpuid = try_get_cpuid(s, max)) == NULL) {
290         max *= 2;
291     }
292     cpuid_cache = cpuid;
293     return cpuid;
294 }
295 
296 static bool host_tsx_broken(void)
297 {
298     int family, model, stepping;\
299     char vendor[CPUID_VENDOR_SZ + 1];
300 
301     host_cpu_vendor_fms(vendor, &family, &model, &stepping);
302 
303     /* Check if we are running on a Haswell host known to have broken TSX */
304     return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
305            (family == 6) &&
306            ((model == 63 && stepping < 4) ||
307             model == 60 || model == 69 || model == 70);
308 }
309 
310 /* Returns the value for a specific register on the cpuid entry
311  */
312 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
313 {
314     uint32_t ret = 0;
315     switch (reg) {
316     case R_EAX:
317         ret = entry->eax;
318         break;
319     case R_EBX:
320         ret = entry->ebx;
321         break;
322     case R_ECX:
323         ret = entry->ecx;
324         break;
325     case R_EDX:
326         ret = entry->edx;
327         break;
328     }
329     return ret;
330 }
331 
332 /* Find matching entry for function/index on kvm_cpuid2 struct
333  */
334 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
335                                                  uint32_t function,
336                                                  uint32_t index)
337 {
338     int i;
339     for (i = 0; i < cpuid->nent; ++i) {
340         if (cpuid->entries[i].function == function &&
341             cpuid->entries[i].index == index) {
342             return &cpuid->entries[i];
343         }
344     }
345     /* not found: */
346     return NULL;
347 }
348 
349 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
350                                       uint32_t index, int reg)
351 {
352     struct kvm_cpuid2 *cpuid;
353     uint32_t ret = 0;
354     uint32_t cpuid_1_edx;
355     uint64_t bitmask;
356 
357     cpuid = get_supported_cpuid(s);
358 
359     struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
360     if (entry) {
361         ret = cpuid_entry_get_reg(entry, reg);
362     }
363 
364     /* Fixups for the data returned by KVM, below */
365 
366     if (function == 1 && reg == R_EDX) {
367         /* KVM before 2.6.30 misreports the following features */
368         ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
369     } else if (function == 1 && reg == R_ECX) {
370         /* We can set the hypervisor flag, even if KVM does not return it on
371          * GET_SUPPORTED_CPUID
372          */
373         ret |= CPUID_EXT_HYPERVISOR;
374         /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
375          * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
376          * and the irqchip is in the kernel.
377          */
378         if (kvm_irqchip_in_kernel() &&
379                 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
380             ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
381         }
382 
383         /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
384          * without the in-kernel irqchip
385          */
386         if (!kvm_irqchip_in_kernel()) {
387             ret &= ~CPUID_EXT_X2APIC;
388         }
389 
390         if (enable_cpu_pm) {
391             int disable_exits = kvm_check_extension(s,
392                                                     KVM_CAP_X86_DISABLE_EXITS);
393 
394             if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
395                 ret |= CPUID_EXT_MONITOR;
396             }
397         }
398     } else if (function == 6 && reg == R_EAX) {
399         ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
400     } else if (function == 7 && index == 0 && reg == R_EBX) {
401         if (host_tsx_broken()) {
402             ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
403         }
404     } else if (function == 7 && index == 0 && reg == R_EDX) {
405         /*
406          * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
407          * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
408          * returned by KVM_GET_MSR_INDEX_LIST.
409          */
410         if (!has_msr_arch_capabs) {
411             ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
412         }
413     } else if (function == 0xd && index == 0 &&
414                (reg == R_EAX || reg == R_EDX)) {
415         /*
416          * The value returned by KVM_GET_SUPPORTED_CPUID does not include
417          * features that still have to be enabled with the arch_prctl
418          * system call.  QEMU needs the full value, which is retrieved
419          * with KVM_GET_DEVICE_ATTR.
420          */
421         struct kvm_device_attr attr = {
422             .group = 0,
423             .attr = KVM_X86_XCOMP_GUEST_SUPP,
424             .addr = (unsigned long) &bitmask
425         };
426 
427         bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
428         if (!sys_attr) {
429             return ret;
430         }
431 
432         int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
433         if (rc < 0) {
434             if (rc != -ENXIO) {
435                 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
436                             "error: %d", rc);
437             }
438             return ret;
439         }
440         ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
441     } else if (function == 0x80000001 && reg == R_ECX) {
442         /*
443          * It's safe to enable TOPOEXT even if it's not returned by
444          * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
445          * us to keep CPU models including TOPOEXT runnable on older kernels.
446          */
447         ret |= CPUID_EXT3_TOPOEXT;
448     } else if (function == 0x80000001 && reg == R_EDX) {
449         /* On Intel, kvm returns cpuid according to the Intel spec,
450          * so add missing bits according to the AMD spec:
451          */
452         cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
453         ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
454     } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
455         /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
456          * be enabled without the in-kernel irqchip
457          */
458         if (!kvm_irqchip_in_kernel()) {
459             ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
460         }
461         if (kvm_irqchip_is_split()) {
462             ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
463         }
464     } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
465         ret |= 1U << KVM_HINTS_REALTIME;
466     }
467 
468     return ret;
469 }
470 
471 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
472 {
473     struct {
474         struct kvm_msrs info;
475         struct kvm_msr_entry entries[1];
476     } msr_data = {};
477     uint64_t value;
478     uint32_t ret, can_be_one, must_be_one;
479 
480     if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
481         return 0;
482     }
483 
484     /* Check if requested MSR is supported feature MSR */
485     int i;
486     for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
487         if (kvm_feature_msrs->indices[i] == index) {
488             break;
489         }
490     if (i == kvm_feature_msrs->nmsrs) {
491         return 0; /* if the feature MSR is not supported, simply return 0 */
492     }
493 
494     msr_data.info.nmsrs = 1;
495     msr_data.entries[0].index = index;
496 
497     ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
498     if (ret != 1) {
499         error_report("KVM get MSR (index=0x%x) feature failed, %s",
500             index, strerror(-ret));
501         exit(1);
502     }
503 
504     value = msr_data.entries[0].data;
505     switch (index) {
506     case MSR_IA32_VMX_PROCBASED_CTLS2:
507         if (!has_msr_vmx_procbased_ctls2) {
508             /* KVM forgot to add these bits for some time, do this ourselves. */
509             if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
510                 CPUID_XSAVE_XSAVES) {
511                 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
512             }
513             if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
514                 CPUID_EXT_RDRAND) {
515                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
516             }
517             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
518                 CPUID_7_0_EBX_INVPCID) {
519                 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
520             }
521             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
522                 CPUID_7_0_EBX_RDSEED) {
523                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
524             }
525             if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
526                 CPUID_EXT2_RDTSCP) {
527                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
528             }
529         }
530         /* fall through */
531     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
532     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
533     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
534     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
535         /*
536          * Return true for bits that can be one, but do not have to be one.
537          * The SDM tells us which bits could have a "must be one" setting,
538          * so we can do the opposite transformation in make_vmx_msr_value.
539          */
540         must_be_one = (uint32_t)value;
541         can_be_one = (uint32_t)(value >> 32);
542         return can_be_one & ~must_be_one;
543 
544     default:
545         return value;
546     }
547 }
548 
549 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
550                                      int *max_banks)
551 {
552     int r;
553 
554     r = kvm_check_extension(s, KVM_CAP_MCE);
555     if (r > 0) {
556         *max_banks = r;
557         return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
558     }
559     return -ENOSYS;
560 }
561 
562 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
563 {
564     CPUState *cs = CPU(cpu);
565     CPUX86State *env = &cpu->env;
566     uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
567                       MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
568     uint64_t mcg_status = MCG_STATUS_MCIP;
569     int flags = 0;
570 
571     if (code == BUS_MCEERR_AR) {
572         status |= MCI_STATUS_AR | 0x134;
573         mcg_status |= MCG_STATUS_RIPV | MCG_STATUS_EIPV;
574     } else {
575         status |= 0xc0;
576         mcg_status |= MCG_STATUS_RIPV;
577     }
578 
579     flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
580     /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
581      * guest kernel back into env->mcg_ext_ctl.
582      */
583     cpu_synchronize_state(cs);
584     if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
585         mcg_status |= MCG_STATUS_LMCE;
586         flags = 0;
587     }
588 
589     cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
590                        (MCM_ADDR_PHYS << 6) | 0xc, flags);
591 }
592 
593 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
594 {
595     MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
596 
597     qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
598                                    &mff);
599 }
600 
601 static void hardware_memory_error(void *host_addr)
602 {
603     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
604     error_report("QEMU got Hardware memory error at addr %p", host_addr);
605     exit(1);
606 }
607 
608 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
609 {
610     X86CPU *cpu = X86_CPU(c);
611     CPUX86State *env = &cpu->env;
612     ram_addr_t ram_addr;
613     hwaddr paddr;
614 
615     /* If we get an action required MCE, it has been injected by KVM
616      * while the VM was running.  An action optional MCE instead should
617      * be coming from the main thread, which qemu_init_sigbus identifies
618      * as the "early kill" thread.
619      */
620     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
621 
622     if ((env->mcg_cap & MCG_SER_P) && addr) {
623         ram_addr = qemu_ram_addr_from_host(addr);
624         if (ram_addr != RAM_ADDR_INVALID &&
625             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
626             kvm_hwpoison_page_add(ram_addr);
627             kvm_mce_inject(cpu, paddr, code);
628 
629             /*
630              * Use different logging severity based on error type.
631              * If there is additional MCE reporting on the hypervisor, QEMU VA
632              * could be another source to identify the PA and MCE details.
633              */
634             if (code == BUS_MCEERR_AR) {
635                 error_report("Guest MCE Memory Error at QEMU addr %p and "
636                     "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
637                     addr, paddr, "BUS_MCEERR_AR");
638             } else {
639                  warn_report("Guest MCE Memory Error at QEMU addr %p and "
640                      "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
641                      addr, paddr, "BUS_MCEERR_AO");
642             }
643 
644             return;
645         }
646 
647         if (code == BUS_MCEERR_AO) {
648             warn_report("Hardware memory error at addr %p of type %s "
649                 "for memory used by QEMU itself instead of guest system!",
650                  addr, "BUS_MCEERR_AO");
651         }
652     }
653 
654     if (code == BUS_MCEERR_AR) {
655         hardware_memory_error(addr);
656     }
657 
658     /* Hope we are lucky for AO MCE, just notify a event */
659     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
660 }
661 
662 static void kvm_reset_exception(CPUX86State *env)
663 {
664     env->exception_nr = -1;
665     env->exception_pending = 0;
666     env->exception_injected = 0;
667     env->exception_has_payload = false;
668     env->exception_payload = 0;
669 }
670 
671 static void kvm_queue_exception(CPUX86State *env,
672                                 int32_t exception_nr,
673                                 uint8_t exception_has_payload,
674                                 uint64_t exception_payload)
675 {
676     assert(env->exception_nr == -1);
677     assert(!env->exception_pending);
678     assert(!env->exception_injected);
679     assert(!env->exception_has_payload);
680 
681     env->exception_nr = exception_nr;
682 
683     if (has_exception_payload) {
684         env->exception_pending = 1;
685 
686         env->exception_has_payload = exception_has_payload;
687         env->exception_payload = exception_payload;
688     } else {
689         env->exception_injected = 1;
690 
691         if (exception_nr == EXCP01_DB) {
692             assert(exception_has_payload);
693             env->dr[6] = exception_payload;
694         } else if (exception_nr == EXCP0E_PAGE) {
695             assert(exception_has_payload);
696             env->cr[2] = exception_payload;
697         } else {
698             assert(!exception_has_payload);
699         }
700     }
701 }
702 
703 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
704 {
705     CPUX86State *env = &cpu->env;
706 
707     if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
708         unsigned int bank, bank_num = env->mcg_cap & 0xff;
709         struct kvm_x86_mce mce;
710 
711         kvm_reset_exception(env);
712 
713         /*
714          * There must be at least one bank in use if an MCE is pending.
715          * Find it and use its values for the event injection.
716          */
717         for (bank = 0; bank < bank_num; bank++) {
718             if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
719                 break;
720             }
721         }
722         assert(bank < bank_num);
723 
724         mce.bank = bank;
725         mce.status = env->mce_banks[bank * 4 + 1];
726         mce.mcg_status = env->mcg_status;
727         mce.addr = env->mce_banks[bank * 4 + 2];
728         mce.misc = env->mce_banks[bank * 4 + 3];
729 
730         return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
731     }
732     return 0;
733 }
734 
735 static void cpu_update_state(void *opaque, bool running, RunState state)
736 {
737     CPUX86State *env = opaque;
738 
739     if (running) {
740         env->tsc_valid = false;
741     }
742 }
743 
744 unsigned long kvm_arch_vcpu_id(CPUState *cs)
745 {
746     X86CPU *cpu = X86_CPU(cs);
747     return cpu->apic_id;
748 }
749 
750 #ifndef KVM_CPUID_SIGNATURE_NEXT
751 #define KVM_CPUID_SIGNATURE_NEXT                0x40000100
752 #endif
753 
754 static bool hyperv_enabled(X86CPU *cpu)
755 {
756     return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
757         ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
758          cpu->hyperv_features || cpu->hyperv_passthrough);
759 }
760 
761 /*
762  * Check whether target_freq is within conservative
763  * ntp correctable bounds (250ppm) of freq
764  */
765 static inline bool freq_within_bounds(int freq, int target_freq)
766 {
767         int max_freq = freq + (freq * 250 / 1000000);
768         int min_freq = freq - (freq * 250 / 1000000);
769 
770         if (target_freq >= min_freq && target_freq <= max_freq) {
771                 return true;
772         }
773 
774         return false;
775 }
776 
777 static int kvm_arch_set_tsc_khz(CPUState *cs)
778 {
779     X86CPU *cpu = X86_CPU(cs);
780     CPUX86State *env = &cpu->env;
781     int r, cur_freq;
782     bool set_ioctl = false;
783 
784     if (!env->tsc_khz) {
785         return 0;
786     }
787 
788     cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
789                kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
790 
791     /*
792      * If TSC scaling is supported, attempt to set TSC frequency.
793      */
794     if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
795         set_ioctl = true;
796     }
797 
798     /*
799      * If desired TSC frequency is within bounds of NTP correction,
800      * attempt to set TSC frequency.
801      */
802     if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
803         set_ioctl = true;
804     }
805 
806     r = set_ioctl ?
807         kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
808         -ENOTSUP;
809 
810     if (r < 0) {
811         /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
812          * TSC frequency doesn't match the one we want.
813          */
814         cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
815                    kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
816                    -ENOTSUP;
817         if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
818             warn_report("TSC frequency mismatch between "
819                         "VM (%" PRId64 " kHz) and host (%d kHz), "
820                         "and TSC scaling unavailable",
821                         env->tsc_khz, cur_freq);
822             return r;
823         }
824     }
825 
826     return 0;
827 }
828 
829 static bool tsc_is_stable_and_known(CPUX86State *env)
830 {
831     if (!env->tsc_khz) {
832         return false;
833     }
834     return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
835         || env->user_tsc_khz;
836 }
837 
838 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
839 
840 static struct {
841     const char *desc;
842     struct {
843         uint32_t func;
844         int reg;
845         uint32_t bits;
846     } flags[2];
847     uint64_t dependencies;
848 } kvm_hyperv_properties[] = {
849     [HYPERV_FEAT_RELAXED] = {
850         .desc = "relaxed timing (hv-relaxed)",
851         .flags = {
852             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
853              .bits = HV_RELAXED_TIMING_RECOMMENDED}
854         }
855     },
856     [HYPERV_FEAT_VAPIC] = {
857         .desc = "virtual APIC (hv-vapic)",
858         .flags = {
859             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
860              .bits = HV_APIC_ACCESS_AVAILABLE}
861         }
862     },
863     [HYPERV_FEAT_TIME] = {
864         .desc = "clocksources (hv-time)",
865         .flags = {
866             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
867              .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
868         }
869     },
870     [HYPERV_FEAT_CRASH] = {
871         .desc = "crash MSRs (hv-crash)",
872         .flags = {
873             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
874              .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
875         }
876     },
877     [HYPERV_FEAT_RESET] = {
878         .desc = "reset MSR (hv-reset)",
879         .flags = {
880             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
881              .bits = HV_RESET_AVAILABLE}
882         }
883     },
884     [HYPERV_FEAT_VPINDEX] = {
885         .desc = "VP_INDEX MSR (hv-vpindex)",
886         .flags = {
887             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
888              .bits = HV_VP_INDEX_AVAILABLE}
889         }
890     },
891     [HYPERV_FEAT_RUNTIME] = {
892         .desc = "VP_RUNTIME MSR (hv-runtime)",
893         .flags = {
894             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
895              .bits = HV_VP_RUNTIME_AVAILABLE}
896         }
897     },
898     [HYPERV_FEAT_SYNIC] = {
899         .desc = "synthetic interrupt controller (hv-synic)",
900         .flags = {
901             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
902              .bits = HV_SYNIC_AVAILABLE}
903         }
904     },
905     [HYPERV_FEAT_STIMER] = {
906         .desc = "synthetic timers (hv-stimer)",
907         .flags = {
908             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
909              .bits = HV_SYNTIMERS_AVAILABLE}
910         },
911         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
912     },
913     [HYPERV_FEAT_FREQUENCIES] = {
914         .desc = "frequency MSRs (hv-frequencies)",
915         .flags = {
916             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
917              .bits = HV_ACCESS_FREQUENCY_MSRS},
918             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
919              .bits = HV_FREQUENCY_MSRS_AVAILABLE}
920         }
921     },
922     [HYPERV_FEAT_REENLIGHTENMENT] = {
923         .desc = "reenlightenment MSRs (hv-reenlightenment)",
924         .flags = {
925             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
926              .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
927         }
928     },
929     [HYPERV_FEAT_TLBFLUSH] = {
930         .desc = "paravirtualized TLB flush (hv-tlbflush)",
931         .flags = {
932             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
933              .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
934              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
935         },
936         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
937     },
938     [HYPERV_FEAT_EVMCS] = {
939         .desc = "enlightened VMCS (hv-evmcs)",
940         .flags = {
941             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
942              .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
943         },
944         .dependencies = BIT(HYPERV_FEAT_VAPIC)
945     },
946     [HYPERV_FEAT_IPI] = {
947         .desc = "paravirtualized IPI (hv-ipi)",
948         .flags = {
949             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
950              .bits = HV_CLUSTER_IPI_RECOMMENDED |
951              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
952         },
953         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
954     },
955     [HYPERV_FEAT_STIMER_DIRECT] = {
956         .desc = "direct mode synthetic timers (hv-stimer-direct)",
957         .flags = {
958             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
959              .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
960         },
961         .dependencies = BIT(HYPERV_FEAT_STIMER)
962     },
963     [HYPERV_FEAT_AVIC] = {
964         .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
965         .flags = {
966             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
967              .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
968         }
969     },
970 #ifdef CONFIG_SYNDBG
971     [HYPERV_FEAT_SYNDBG] = {
972         .desc = "Enable synthetic kernel debugger channel (hv-syndbg)",
973         .flags = {
974             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
975              .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE}
976         },
977         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED)
978     },
979 #endif
980     [HYPERV_FEAT_MSR_BITMAP] = {
981         .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)",
982         .flags = {
983             {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
984              .bits = HV_NESTED_MSR_BITMAP}
985         }
986     },
987     [HYPERV_FEAT_XMM_INPUT] = {
988         .desc = "XMM fast hypercall input (hv-xmm-input)",
989         .flags = {
990             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
991              .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE}
992         }
993     },
994     [HYPERV_FEAT_TLBFLUSH_EXT] = {
995         .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)",
996         .flags = {
997             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
998              .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE}
999         },
1000         .dependencies = BIT(HYPERV_FEAT_TLBFLUSH)
1001     },
1002     [HYPERV_FEAT_TLBFLUSH_DIRECT] = {
1003         .desc = "direct TLB flush (hv-tlbflush-direct)",
1004         .flags = {
1005             {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1006              .bits = HV_NESTED_DIRECT_FLUSH}
1007         },
1008         .dependencies = BIT(HYPERV_FEAT_VAPIC)
1009     },
1010 };
1011 
1012 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
1013                                            bool do_sys_ioctl)
1014 {
1015     struct kvm_cpuid2 *cpuid;
1016     int r, size;
1017 
1018     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
1019     cpuid = g_malloc0(size);
1020     cpuid->nent = max;
1021 
1022     if (do_sys_ioctl) {
1023         r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1024     } else {
1025         r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1026     }
1027     if (r == 0 && cpuid->nent >= max) {
1028         r = -E2BIG;
1029     }
1030     if (r < 0) {
1031         if (r == -E2BIG) {
1032             g_free(cpuid);
1033             return NULL;
1034         } else {
1035             fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
1036                     strerror(-r));
1037             exit(1);
1038         }
1039     }
1040     return cpuid;
1041 }
1042 
1043 /*
1044  * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1045  * for all entries.
1046  */
1047 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1048 {
1049     struct kvm_cpuid2 *cpuid;
1050     /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */
1051     int max = 11;
1052     int i;
1053     bool do_sys_ioctl;
1054 
1055     do_sys_ioctl =
1056         kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1057 
1058     /*
1059      * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1060      * unsupported, kvm_hyperv_expand_features() checks for that.
1061      */
1062     assert(do_sys_ioctl || cs->kvm_state);
1063 
1064     /*
1065      * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1066      * -E2BIG, however, it doesn't report back the right size. Keep increasing
1067      * it and re-trying until we succeed.
1068      */
1069     while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1070         max++;
1071     }
1072 
1073     /*
1074      * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1075      * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1076      * information early, just check for the capability and set the bit
1077      * manually.
1078      */
1079     if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1080                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1081         for (i = 0; i < cpuid->nent; i++) {
1082             if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1083                 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1084             }
1085         }
1086     }
1087 
1088     return cpuid;
1089 }
1090 
1091 /*
1092  * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1093  * leaves from KVM_CAP_HYPERV* and present MSRs data.
1094  */
1095 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1096 {
1097     X86CPU *cpu = X86_CPU(cs);
1098     struct kvm_cpuid2 *cpuid;
1099     struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1100 
1101     /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1102     cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1103     cpuid->nent = 2;
1104 
1105     /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1106     entry_feat = &cpuid->entries[0];
1107     entry_feat->function = HV_CPUID_FEATURES;
1108 
1109     entry_recomm = &cpuid->entries[1];
1110     entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1111     entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1112 
1113     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1114         entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1115         entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1116         entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1117         entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1118         entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1119     }
1120 
1121     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1122         entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1123         entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1124     }
1125 
1126     if (has_msr_hv_frequencies) {
1127         entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1128         entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1129     }
1130 
1131     if (has_msr_hv_crash) {
1132         entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1133     }
1134 
1135     if (has_msr_hv_reenlightenment) {
1136         entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1137     }
1138 
1139     if (has_msr_hv_reset) {
1140         entry_feat->eax |= HV_RESET_AVAILABLE;
1141     }
1142 
1143     if (has_msr_hv_vpindex) {
1144         entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1145     }
1146 
1147     if (has_msr_hv_runtime) {
1148         entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1149     }
1150 
1151     if (has_msr_hv_synic) {
1152         unsigned int cap = cpu->hyperv_synic_kvm_only ?
1153             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1154 
1155         if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1156             entry_feat->eax |= HV_SYNIC_AVAILABLE;
1157         }
1158     }
1159 
1160     if (has_msr_hv_stimer) {
1161         entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1162     }
1163 
1164     if (has_msr_hv_syndbg_options) {
1165         entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE;
1166         entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1167         entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED;
1168     }
1169 
1170     if (kvm_check_extension(cs->kvm_state,
1171                             KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1172         entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1173         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1174     }
1175 
1176     if (kvm_check_extension(cs->kvm_state,
1177                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1178         entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1179     }
1180 
1181     if (kvm_check_extension(cs->kvm_state,
1182                             KVM_CAP_HYPERV_SEND_IPI) > 0) {
1183         entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1184         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1185     }
1186 
1187     return cpuid;
1188 }
1189 
1190 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1191 {
1192     struct kvm_cpuid_entry2 *entry;
1193     struct kvm_cpuid2 *cpuid;
1194 
1195     if (hv_cpuid_cache) {
1196         cpuid = hv_cpuid_cache;
1197     } else {
1198         if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1199             cpuid = get_supported_hv_cpuid(cs);
1200         } else {
1201             /*
1202              * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1203              * before KVM context is created but this is only done when
1204              * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1205              * KVM_CAP_HYPERV_CPUID.
1206              */
1207             assert(cs->kvm_state);
1208 
1209             cpuid = get_supported_hv_cpuid_legacy(cs);
1210         }
1211         hv_cpuid_cache = cpuid;
1212     }
1213 
1214     if (!cpuid) {
1215         return 0;
1216     }
1217 
1218     entry = cpuid_find_entry(cpuid, func, 0);
1219     if (!entry) {
1220         return 0;
1221     }
1222 
1223     return cpuid_entry_get_reg(entry, reg);
1224 }
1225 
1226 static bool hyperv_feature_supported(CPUState *cs, int feature)
1227 {
1228     uint32_t func, bits;
1229     int i, reg;
1230 
1231     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1232 
1233         func = kvm_hyperv_properties[feature].flags[i].func;
1234         reg = kvm_hyperv_properties[feature].flags[i].reg;
1235         bits = kvm_hyperv_properties[feature].flags[i].bits;
1236 
1237         if (!func) {
1238             continue;
1239         }
1240 
1241         if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1242             return false;
1243         }
1244     }
1245 
1246     return true;
1247 }
1248 
1249 /* Checks that all feature dependencies are enabled */
1250 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1251 {
1252     uint64_t deps;
1253     int dep_feat;
1254 
1255     deps = kvm_hyperv_properties[feature].dependencies;
1256     while (deps) {
1257         dep_feat = ctz64(deps);
1258         if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1259             error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1260                        kvm_hyperv_properties[feature].desc,
1261                        kvm_hyperv_properties[dep_feat].desc);
1262             return false;
1263         }
1264         deps &= ~(1ull << dep_feat);
1265     }
1266 
1267     return true;
1268 }
1269 
1270 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1271 {
1272     X86CPU *cpu = X86_CPU(cs);
1273     uint32_t r = 0;
1274     int i, j;
1275 
1276     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1277         if (!hyperv_feat_enabled(cpu, i)) {
1278             continue;
1279         }
1280 
1281         for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1282             if (kvm_hyperv_properties[i].flags[j].func != func) {
1283                 continue;
1284             }
1285             if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1286                 continue;
1287             }
1288 
1289             r |= kvm_hyperv_properties[i].flags[j].bits;
1290         }
1291     }
1292 
1293     /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */
1294     if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) {
1295         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1296             r |= DEFAULT_EVMCS_VERSION;
1297         }
1298     }
1299 
1300     return r;
1301 }
1302 
1303 /*
1304  * Expand Hyper-V CPU features. In partucular, check that all the requested
1305  * features are supported by the host and the sanity of the configuration
1306  * (that all the required dependencies are included). Also, this takes care
1307  * of 'hv_passthrough' mode and fills the environment with all supported
1308  * Hyper-V features.
1309  */
1310 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1311 {
1312     CPUState *cs = CPU(cpu);
1313     Error *local_err = NULL;
1314     int feat;
1315 
1316     if (!hyperv_enabled(cpu))
1317         return true;
1318 
1319     /*
1320      * When kvm_hyperv_expand_features is called at CPU feature expansion
1321      * time per-CPU kvm_state is not available yet so we can only proceed
1322      * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1323      */
1324     if (!cs->kvm_state &&
1325         !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1326         return true;
1327 
1328     if (cpu->hyperv_passthrough) {
1329         cpu->hyperv_vendor_id[0] =
1330             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1331         cpu->hyperv_vendor_id[1] =
1332             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1333         cpu->hyperv_vendor_id[2] =
1334             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1335         cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1336                                        sizeof(cpu->hyperv_vendor_id) + 1);
1337         memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1338                sizeof(cpu->hyperv_vendor_id));
1339         cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1340 
1341         cpu->hyperv_interface_id[0] =
1342             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1343         cpu->hyperv_interface_id[1] =
1344             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1345         cpu->hyperv_interface_id[2] =
1346             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1347         cpu->hyperv_interface_id[3] =
1348             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1349 
1350         cpu->hyperv_ver_id_build =
1351             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1352         cpu->hyperv_ver_id_major =
1353             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1354         cpu->hyperv_ver_id_minor =
1355             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1356         cpu->hyperv_ver_id_sp =
1357             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1358         cpu->hyperv_ver_id_sb =
1359             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1360         cpu->hyperv_ver_id_sn =
1361             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1362 
1363         cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1364                                             R_EAX);
1365         cpu->hyperv_limits[0] =
1366             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1367         cpu->hyperv_limits[1] =
1368             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1369         cpu->hyperv_limits[2] =
1370             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1371 
1372         cpu->hyperv_spinlock_attempts =
1373             hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1374 
1375         /*
1376          * Mark feature as enabled in 'cpu->hyperv_features' as
1377          * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1378          */
1379         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1380             if (hyperv_feature_supported(cs, feat)) {
1381                 cpu->hyperv_features |= BIT(feat);
1382             }
1383         }
1384     } else {
1385         /* Check features availability and dependencies */
1386         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1387             /* If the feature was not requested skip it. */
1388             if (!hyperv_feat_enabled(cpu, feat)) {
1389                 continue;
1390             }
1391 
1392             /* Check if the feature is supported by KVM */
1393             if (!hyperv_feature_supported(cs, feat)) {
1394                 error_setg(errp, "Hyper-V %s is not supported by kernel",
1395                            kvm_hyperv_properties[feat].desc);
1396                 return false;
1397             }
1398 
1399             /* Check dependencies */
1400             if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1401                 error_propagate(errp, local_err);
1402                 return false;
1403             }
1404         }
1405     }
1406 
1407     /* Additional dependencies not covered by kvm_hyperv_properties[] */
1408     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1409         !cpu->hyperv_synic_kvm_only &&
1410         !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1411         error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1412                    kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1413                    kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1414         return false;
1415     }
1416 
1417     return true;
1418 }
1419 
1420 /*
1421  * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1422  */
1423 static int hyperv_fill_cpuids(CPUState *cs,
1424                               struct kvm_cpuid_entry2 *cpuid_ent)
1425 {
1426     X86CPU *cpu = X86_CPU(cs);
1427     struct kvm_cpuid_entry2 *c;
1428     uint32_t signature[3];
1429     uint32_t cpuid_i = 0, max_cpuid_leaf = 0;
1430     uint32_t nested_eax =
1431         hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX);
1432 
1433     max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES :
1434         HV_CPUID_IMPLEMENT_LIMITS;
1435 
1436     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1437         max_cpuid_leaf =
1438             MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
1439     }
1440 
1441     c = &cpuid_ent[cpuid_i++];
1442     c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1443     c->eax = max_cpuid_leaf;
1444     c->ebx = cpu->hyperv_vendor_id[0];
1445     c->ecx = cpu->hyperv_vendor_id[1];
1446     c->edx = cpu->hyperv_vendor_id[2];
1447 
1448     c = &cpuid_ent[cpuid_i++];
1449     c->function = HV_CPUID_INTERFACE;
1450     c->eax = cpu->hyperv_interface_id[0];
1451     c->ebx = cpu->hyperv_interface_id[1];
1452     c->ecx = cpu->hyperv_interface_id[2];
1453     c->edx = cpu->hyperv_interface_id[3];
1454 
1455     c = &cpuid_ent[cpuid_i++];
1456     c->function = HV_CPUID_VERSION;
1457     c->eax = cpu->hyperv_ver_id_build;
1458     c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1459         cpu->hyperv_ver_id_minor;
1460     c->ecx = cpu->hyperv_ver_id_sp;
1461     c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1462         (cpu->hyperv_ver_id_sn & 0xffffff);
1463 
1464     c = &cpuid_ent[cpuid_i++];
1465     c->function = HV_CPUID_FEATURES;
1466     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1467     c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1468     c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1469 
1470     /* Unconditionally required with any Hyper-V enlightenment */
1471     c->eax |= HV_HYPERCALL_AVAILABLE;
1472 
1473     /* SynIC and Vmbus devices require messages/signals hypercalls */
1474     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1475         !cpu->hyperv_synic_kvm_only) {
1476         c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1477     }
1478 
1479 
1480     /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1481     c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1482 
1483     c = &cpuid_ent[cpuid_i++];
1484     c->function = HV_CPUID_ENLIGHTMENT_INFO;
1485     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1486     c->ebx = cpu->hyperv_spinlock_attempts;
1487 
1488     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1489         !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1490         c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1491     }
1492 
1493     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1494         c->eax |= HV_NO_NONARCH_CORESHARING;
1495     } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1496         c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1497             HV_NO_NONARCH_CORESHARING;
1498     }
1499 
1500     c = &cpuid_ent[cpuid_i++];
1501     c->function = HV_CPUID_IMPLEMENT_LIMITS;
1502     c->eax = cpu->hv_max_vps;
1503     c->ebx = cpu->hyperv_limits[0];
1504     c->ecx = cpu->hyperv_limits[1];
1505     c->edx = cpu->hyperv_limits[2];
1506 
1507     if (nested_eax) {
1508         uint32_t function;
1509 
1510         /* Create zeroed 0x40000006..0x40000009 leaves */
1511         for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1512              function < HV_CPUID_NESTED_FEATURES; function++) {
1513             c = &cpuid_ent[cpuid_i++];
1514             c->function = function;
1515         }
1516 
1517         c = &cpuid_ent[cpuid_i++];
1518         c->function = HV_CPUID_NESTED_FEATURES;
1519         c->eax = nested_eax;
1520     }
1521 
1522     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1523         c = &cpuid_ent[cpuid_i++];
1524         c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS;
1525         c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1526             HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1527         memcpy(signature, "Microsoft VS", 12);
1528         c->eax = 0;
1529         c->ebx = signature[0];
1530         c->ecx = signature[1];
1531         c->edx = signature[2];
1532 
1533         c = &cpuid_ent[cpuid_i++];
1534         c->function = HV_CPUID_SYNDBG_INTERFACE;
1535         memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
1536         c->eax = signature[0];
1537         c->ebx = 0;
1538         c->ecx = 0;
1539         c->edx = 0;
1540 
1541         c = &cpuid_ent[cpuid_i++];
1542         c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1543         c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
1544         c->ebx = 0;
1545         c->ecx = 0;
1546         c->edx = 0;
1547     }
1548 
1549     return cpuid_i;
1550 }
1551 
1552 static Error *hv_passthrough_mig_blocker;
1553 static Error *hv_no_nonarch_cs_mig_blocker;
1554 
1555 /* Checks that the exposed eVMCS version range is supported by KVM */
1556 static bool evmcs_version_supported(uint16_t evmcs_version,
1557                                     uint16_t supported_evmcs_version)
1558 {
1559     uint8_t min_version = evmcs_version & 0xff;
1560     uint8_t max_version = evmcs_version >> 8;
1561     uint8_t min_supported_version = supported_evmcs_version & 0xff;
1562     uint8_t max_supported_version = supported_evmcs_version >> 8;
1563 
1564     return (min_version >= min_supported_version) &&
1565         (max_version <= max_supported_version);
1566 }
1567 
1568 static int hyperv_init_vcpu(X86CPU *cpu)
1569 {
1570     CPUState *cs = CPU(cpu);
1571     Error *local_err = NULL;
1572     int ret;
1573 
1574     if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1575         error_setg(&hv_passthrough_mig_blocker,
1576                    "'hv-passthrough' CPU flag prevents migration, use explicit"
1577                    " set of hv-* flags instead");
1578         ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1579         if (ret < 0) {
1580             error_report_err(local_err);
1581             return ret;
1582         }
1583     }
1584 
1585     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1586         hv_no_nonarch_cs_mig_blocker == NULL) {
1587         error_setg(&hv_no_nonarch_cs_mig_blocker,
1588                    "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1589                    " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1590                    " make sure SMT is disabled and/or that vCPUs are properly"
1591                    " pinned)");
1592         ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1593         if (ret < 0) {
1594             error_report_err(local_err);
1595             return ret;
1596         }
1597     }
1598 
1599     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1600         /*
1601          * the kernel doesn't support setting vp_index; assert that its value
1602          * is in sync
1603          */
1604         uint64_t value;
1605 
1606         ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value);
1607         if (ret < 0) {
1608             return ret;
1609         }
1610 
1611         if (value != hyperv_vp_index(CPU(cpu))) {
1612             error_report("kernel's vp_index != QEMU's vp_index");
1613             return -ENXIO;
1614         }
1615     }
1616 
1617     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1618         uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1619             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1620         ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1621         if (ret < 0) {
1622             error_report("failed to turn on HyperV SynIC in KVM: %s",
1623                          strerror(-ret));
1624             return ret;
1625         }
1626 
1627         if (!cpu->hyperv_synic_kvm_only) {
1628             ret = hyperv_x86_synic_add(cpu);
1629             if (ret < 0) {
1630                 error_report("failed to create HyperV SynIC: %s",
1631                              strerror(-ret));
1632                 return ret;
1633             }
1634         }
1635     }
1636 
1637     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1638         uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1639         uint16_t supported_evmcs_version;
1640 
1641         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1642                                   (uintptr_t)&supported_evmcs_version);
1643 
1644         /*
1645          * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1646          * option sets. Note: we hardcode the maximum supported eVMCS version
1647          * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1648          * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1649          * to be added.
1650          */
1651         if (ret < 0) {
1652             error_report("Hyper-V %s is not supported by kernel",
1653                          kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1654             return ret;
1655         }
1656 
1657         if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1658             error_report("eVMCS version range [%d..%d] is not supported by "
1659                          "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1660                          evmcs_version >> 8, supported_evmcs_version & 0xff,
1661                          supported_evmcs_version >> 8);
1662             return -ENOTSUP;
1663         }
1664     }
1665 
1666     if (cpu->hyperv_enforce_cpuid) {
1667         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1668         if (ret < 0) {
1669             error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1670                          strerror(-ret));
1671             return ret;
1672         }
1673     }
1674 
1675     return 0;
1676 }
1677 
1678 static Error *invtsc_mig_blocker;
1679 
1680 #define KVM_MAX_CPUID_ENTRIES  100
1681 
1682 static void kvm_init_xsave(CPUX86State *env)
1683 {
1684     if (has_xsave2) {
1685         env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1686     } else if (has_xsave) {
1687         env->xsave_buf_len = sizeof(struct kvm_xsave);
1688     } else {
1689         return;
1690     }
1691 
1692     env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1693     memset(env->xsave_buf, 0, env->xsave_buf_len);
1694     /*
1695      * The allocated storage must be large enough for all of the
1696      * possible XSAVE state components.
1697      */
1698     assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1699            env->xsave_buf_len);
1700 }
1701 
1702 static void kvm_init_nested_state(CPUX86State *env)
1703 {
1704     struct kvm_vmx_nested_state_hdr *vmx_hdr;
1705     uint32_t size;
1706 
1707     if (!env->nested_state) {
1708         return;
1709     }
1710 
1711     size = env->nested_state->size;
1712 
1713     memset(env->nested_state, 0, size);
1714     env->nested_state->size = size;
1715 
1716     if (cpu_has_vmx(env)) {
1717         env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1718         vmx_hdr = &env->nested_state->hdr.vmx;
1719         vmx_hdr->vmxon_pa = -1ull;
1720         vmx_hdr->vmcs12_pa = -1ull;
1721     } else if (cpu_has_svm(env)) {
1722         env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1723     }
1724 }
1725 
1726 int kvm_arch_init_vcpu(CPUState *cs)
1727 {
1728     struct {
1729         struct kvm_cpuid2 cpuid;
1730         struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1731     } cpuid_data;
1732     /*
1733      * The kernel defines these structs with padding fields so there
1734      * should be no extra padding in our cpuid_data struct.
1735      */
1736     QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1737                       sizeof(struct kvm_cpuid2) +
1738                       sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1739 
1740     X86CPU *cpu = X86_CPU(cs);
1741     CPUX86State *env = &cpu->env;
1742     uint32_t limit, i, j, cpuid_i;
1743     uint32_t unused;
1744     struct kvm_cpuid_entry2 *c;
1745     uint32_t signature[3];
1746     int kvm_base = KVM_CPUID_SIGNATURE;
1747     int max_nested_state_len;
1748     int r;
1749     Error *local_err = NULL;
1750 
1751     memset(&cpuid_data, 0, sizeof(cpuid_data));
1752 
1753     cpuid_i = 0;
1754 
1755     has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
1756 
1757     r = kvm_arch_set_tsc_khz(cs);
1758     if (r < 0) {
1759         return r;
1760     }
1761 
1762     /* vcpu's TSC frequency is either specified by user, or following
1763      * the value used by KVM if the former is not present. In the
1764      * latter case, we query it from KVM and record in env->tsc_khz,
1765      * so that vcpu's TSC frequency can be migrated later via this field.
1766      */
1767     if (!env->tsc_khz) {
1768         r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1769             kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1770             -ENOTSUP;
1771         if (r > 0) {
1772             env->tsc_khz = r;
1773         }
1774     }
1775 
1776     env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1777 
1778     /*
1779      * kvm_hyperv_expand_features() is called here for the second time in case
1780      * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
1781      * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
1782      * check which Hyper-V enlightenments are supported and which are not, we
1783      * can still proceed and check/expand Hyper-V enlightenments here so legacy
1784      * behavior is preserved.
1785      */
1786     if (!kvm_hyperv_expand_features(cpu, &local_err)) {
1787         error_report_err(local_err);
1788         return -ENOSYS;
1789     }
1790 
1791     if (hyperv_enabled(cpu)) {
1792         r = hyperv_init_vcpu(cpu);
1793         if (r) {
1794             return r;
1795         }
1796 
1797         cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
1798         kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1799         has_msr_hv_hypercall = true;
1800     }
1801 
1802     if (cpu->expose_kvm) {
1803         memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1804         c = &cpuid_data.entries[cpuid_i++];
1805         c->function = KVM_CPUID_SIGNATURE | kvm_base;
1806         c->eax = KVM_CPUID_FEATURES | kvm_base;
1807         c->ebx = signature[0];
1808         c->ecx = signature[1];
1809         c->edx = signature[2];
1810 
1811         c = &cpuid_data.entries[cpuid_i++];
1812         c->function = KVM_CPUID_FEATURES | kvm_base;
1813         c->eax = env->features[FEAT_KVM];
1814         c->edx = env->features[FEAT_KVM_HINTS];
1815     }
1816 
1817     cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1818 
1819     if (cpu->kvm_pv_enforce_cpuid) {
1820         r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
1821         if (r < 0) {
1822             fprintf(stderr,
1823                     "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
1824                     strerror(-r));
1825             abort();
1826         }
1827     }
1828 
1829     for (i = 0; i <= limit; i++) {
1830         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1831             fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1832             abort();
1833         }
1834         c = &cpuid_data.entries[cpuid_i++];
1835 
1836         switch (i) {
1837         case 2: {
1838             /* Keep reading function 2 till all the input is received */
1839             int times;
1840 
1841             c->function = i;
1842             c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1843                        KVM_CPUID_FLAG_STATE_READ_NEXT;
1844             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1845             times = c->eax & 0xff;
1846 
1847             for (j = 1; j < times; ++j) {
1848                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1849                     fprintf(stderr, "cpuid_data is full, no space for "
1850                             "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1851                     abort();
1852                 }
1853                 c = &cpuid_data.entries[cpuid_i++];
1854                 c->function = i;
1855                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1856                 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1857             }
1858             break;
1859         }
1860         case 0x1f:
1861             if (env->nr_dies < 2) {
1862                 break;
1863             }
1864             /* fallthrough */
1865         case 4:
1866         case 0xb:
1867         case 0xd:
1868             for (j = 0; ; j++) {
1869                 if (i == 0xd && j == 64) {
1870                     break;
1871                 }
1872 
1873                 if (i == 0x1f && j == 64) {
1874                     break;
1875                 }
1876 
1877                 c->function = i;
1878                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1879                 c->index = j;
1880                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1881 
1882                 if (i == 4 && c->eax == 0) {
1883                     break;
1884                 }
1885                 if (i == 0xb && !(c->ecx & 0xff00)) {
1886                     break;
1887                 }
1888                 if (i == 0x1f && !(c->ecx & 0xff00)) {
1889                     break;
1890                 }
1891                 if (i == 0xd && c->eax == 0) {
1892                     continue;
1893                 }
1894                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1895                     fprintf(stderr, "cpuid_data is full, no space for "
1896                             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1897                     abort();
1898                 }
1899                 c = &cpuid_data.entries[cpuid_i++];
1900             }
1901             break;
1902         case 0x7:
1903         case 0x12:
1904             for (j = 0; ; j++) {
1905                 c->function = i;
1906                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1907                 c->index = j;
1908                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1909 
1910                 if (j > 1 && (c->eax & 0xf) != 1) {
1911                     break;
1912                 }
1913 
1914                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1915                     fprintf(stderr, "cpuid_data is full, no space for "
1916                                 "cpuid(eax:0x12,ecx:0x%x)\n", j);
1917                     abort();
1918                 }
1919                 c = &cpuid_data.entries[cpuid_i++];
1920             }
1921             break;
1922         case 0x14:
1923         case 0x1d:
1924         case 0x1e: {
1925             uint32_t times;
1926 
1927             c->function = i;
1928             c->index = 0;
1929             c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1930             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1931             times = c->eax;
1932 
1933             for (j = 1; j <= times; ++j) {
1934                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1935                     fprintf(stderr, "cpuid_data is full, no space for "
1936                                 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1937                     abort();
1938                 }
1939                 c = &cpuid_data.entries[cpuid_i++];
1940                 c->function = i;
1941                 c->index = j;
1942                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1943                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1944             }
1945             break;
1946         }
1947         default:
1948             c->function = i;
1949             c->flags = 0;
1950             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1951             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1952                 /*
1953                  * KVM already returns all zeroes if a CPUID entry is missing,
1954                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1955                  */
1956                 cpuid_i--;
1957             }
1958             break;
1959         }
1960     }
1961 
1962     if (limit >= 0x0a) {
1963         uint32_t eax, edx;
1964 
1965         cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1966 
1967         has_architectural_pmu_version = eax & 0xff;
1968         if (has_architectural_pmu_version > 0) {
1969             num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1970 
1971             /* Shouldn't be more than 32, since that's the number of bits
1972              * available in EBX to tell us _which_ counters are available.
1973              * Play it safe.
1974              */
1975             if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1976                 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1977             }
1978 
1979             if (has_architectural_pmu_version > 1) {
1980                 num_architectural_pmu_fixed_counters = edx & 0x1f;
1981 
1982                 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1983                     num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1984                 }
1985             }
1986         }
1987     }
1988 
1989     cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1990 
1991     for (i = 0x80000000; i <= limit; i++) {
1992         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1993             fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1994             abort();
1995         }
1996         c = &cpuid_data.entries[cpuid_i++];
1997 
1998         switch (i) {
1999         case 0x8000001d:
2000             /* Query for all AMD cache information leaves */
2001             for (j = 0; ; j++) {
2002                 c->function = i;
2003                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2004                 c->index = j;
2005                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2006 
2007                 if (c->eax == 0) {
2008                     break;
2009                 }
2010                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2011                     fprintf(stderr, "cpuid_data is full, no space for "
2012                             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2013                     abort();
2014                 }
2015                 c = &cpuid_data.entries[cpuid_i++];
2016             }
2017             break;
2018         default:
2019             c->function = i;
2020             c->flags = 0;
2021             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2022             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2023                 /*
2024                  * KVM already returns all zeroes if a CPUID entry is missing,
2025                  * so we can omit it and avoid hitting KVM's 80-entry limit.
2026                  */
2027                 cpuid_i--;
2028             }
2029             break;
2030         }
2031     }
2032 
2033     /* Call Centaur's CPUID instructions they are supported. */
2034     if (env->cpuid_xlevel2 > 0) {
2035         cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
2036 
2037         for (i = 0xC0000000; i <= limit; i++) {
2038             if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2039                 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
2040                 abort();
2041             }
2042             c = &cpuid_data.entries[cpuid_i++];
2043 
2044             c->function = i;
2045             c->flags = 0;
2046             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2047         }
2048     }
2049 
2050     cpuid_data.cpuid.nent = cpuid_i;
2051 
2052     if (((env->cpuid_version >> 8)&0xF) >= 6
2053         && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
2054            (CPUID_MCE | CPUID_MCA)
2055         && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
2056         uint64_t mcg_cap, unsupported_caps;
2057         int banks;
2058         int ret;
2059 
2060         ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
2061         if (ret < 0) {
2062             fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
2063             return ret;
2064         }
2065 
2066         if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
2067             error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2068                          (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
2069             return -ENOTSUP;
2070         }
2071 
2072         unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
2073         if (unsupported_caps) {
2074             if (unsupported_caps & MCG_LMCE_P) {
2075                 error_report("kvm: LMCE not supported");
2076                 return -ENOTSUP;
2077             }
2078             warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
2079                         unsupported_caps);
2080         }
2081 
2082         env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
2083         ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
2084         if (ret < 0) {
2085             fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
2086             return ret;
2087         }
2088     }
2089 
2090     cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
2091 
2092     c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
2093     if (c) {
2094         has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
2095                                   !!(c->ecx & CPUID_EXT_SMX);
2096     }
2097 
2098     c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
2099     if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
2100         has_msr_feature_control = true;
2101     }
2102 
2103     if (env->mcg_cap & MCG_LMCE_P) {
2104         has_msr_mcg_ext_ctl = has_msr_feature_control = true;
2105     }
2106 
2107     if (!env->user_tsc_khz) {
2108         if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2109             invtsc_mig_blocker == NULL) {
2110             error_setg(&invtsc_mig_blocker,
2111                        "State blocked by non-migratable CPU device"
2112                        " (invtsc flag)");
2113             r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
2114             if (r < 0) {
2115                 error_report_err(local_err);
2116                 return r;
2117             }
2118         }
2119     }
2120 
2121     if (cpu->vmware_cpuid_freq
2122         /* Guests depend on 0x40000000 to detect this feature, so only expose
2123          * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2124         && cpu->expose_kvm
2125         && kvm_base == KVM_CPUID_SIGNATURE
2126         /* TSC clock must be stable and known for this feature. */
2127         && tsc_is_stable_and_known(env)) {
2128 
2129         c = &cpuid_data.entries[cpuid_i++];
2130         c->function = KVM_CPUID_SIGNATURE | 0x10;
2131         c->eax = env->tsc_khz;
2132         c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2133         c->ecx = c->edx = 0;
2134 
2135         c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2136         c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2137     }
2138 
2139     cpuid_data.cpuid.nent = cpuid_i;
2140 
2141     cpuid_data.cpuid.padding = 0;
2142     r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2143     if (r) {
2144         goto fail;
2145     }
2146     kvm_init_xsave(env);
2147 
2148     max_nested_state_len = kvm_max_nested_state_length();
2149     if (max_nested_state_len > 0) {
2150         assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2151 
2152         if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2153             env->nested_state = g_malloc0(max_nested_state_len);
2154             env->nested_state->size = max_nested_state_len;
2155 
2156             kvm_init_nested_state(env);
2157         }
2158     }
2159 
2160     cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2161 
2162     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2163         has_msr_tsc_aux = false;
2164     }
2165 
2166     kvm_init_msrs(cpu);
2167 
2168     return 0;
2169 
2170  fail:
2171     migrate_del_blocker(invtsc_mig_blocker);
2172 
2173     return r;
2174 }
2175 
2176 int kvm_arch_destroy_vcpu(CPUState *cs)
2177 {
2178     X86CPU *cpu = X86_CPU(cs);
2179     CPUX86State *env = &cpu->env;
2180 
2181     g_free(env->xsave_buf);
2182 
2183     g_free(cpu->kvm_msr_buf);
2184     cpu->kvm_msr_buf = NULL;
2185 
2186     g_free(env->nested_state);
2187     env->nested_state = NULL;
2188 
2189     qemu_del_vm_change_state_handler(cpu->vmsentry);
2190 
2191     return 0;
2192 }
2193 
2194 void kvm_arch_reset_vcpu(X86CPU *cpu)
2195 {
2196     CPUX86State *env = &cpu->env;
2197 
2198     env->xcr0 = 1;
2199     if (kvm_irqchip_in_kernel()) {
2200         env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2201                                           KVM_MP_STATE_UNINITIALIZED;
2202     } else {
2203         env->mp_state = KVM_MP_STATE_RUNNABLE;
2204     }
2205 
2206     /* enabled by default */
2207     env->poll_control_msr = 1;
2208 
2209     kvm_init_nested_state(env);
2210 
2211     sev_es_set_reset_vector(CPU(cpu));
2212 }
2213 
2214 void kvm_arch_after_reset_vcpu(X86CPU *cpu)
2215 {
2216     CPUX86State *env = &cpu->env;
2217     int i;
2218 
2219     /*
2220      * Reset SynIC after all other devices have been reset to let them remove
2221      * their SINT routes first.
2222      */
2223     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2224         for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2225             env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2226         }
2227 
2228         hyperv_x86_synic_reset(cpu);
2229     }
2230 }
2231 
2232 void kvm_arch_do_init_vcpu(X86CPU *cpu)
2233 {
2234     CPUX86State *env = &cpu->env;
2235 
2236     /* APs get directly into wait-for-SIPI state.  */
2237     if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2238         env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2239     }
2240 }
2241 
2242 static int kvm_get_supported_feature_msrs(KVMState *s)
2243 {
2244     int ret = 0;
2245 
2246     if (kvm_feature_msrs != NULL) {
2247         return 0;
2248     }
2249 
2250     if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2251         return 0;
2252     }
2253 
2254     struct kvm_msr_list msr_list;
2255 
2256     msr_list.nmsrs = 0;
2257     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2258     if (ret < 0 && ret != -E2BIG) {
2259         error_report("Fetch KVM feature MSR list failed: %s",
2260             strerror(-ret));
2261         return ret;
2262     }
2263 
2264     assert(msr_list.nmsrs > 0);
2265     kvm_feature_msrs = g_malloc0(sizeof(msr_list) +
2266                  msr_list.nmsrs * sizeof(msr_list.indices[0]));
2267 
2268     kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2269     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2270 
2271     if (ret < 0) {
2272         error_report("Fetch KVM feature MSR list failed: %s",
2273             strerror(-ret));
2274         g_free(kvm_feature_msrs);
2275         kvm_feature_msrs = NULL;
2276         return ret;
2277     }
2278 
2279     return 0;
2280 }
2281 
2282 static int kvm_get_supported_msrs(KVMState *s)
2283 {
2284     int ret = 0;
2285     struct kvm_msr_list msr_list, *kvm_msr_list;
2286 
2287     /*
2288      *  Obtain MSR list from KVM.  These are the MSRs that we must
2289      *  save/restore.
2290      */
2291     msr_list.nmsrs = 0;
2292     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2293     if (ret < 0 && ret != -E2BIG) {
2294         return ret;
2295     }
2296     /*
2297      * Old kernel modules had a bug and could write beyond the provided
2298      * memory. Allocate at least a safe amount of 1K.
2299      */
2300     kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2301                                           msr_list.nmsrs *
2302                                           sizeof(msr_list.indices[0])));
2303 
2304     kvm_msr_list->nmsrs = msr_list.nmsrs;
2305     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2306     if (ret >= 0) {
2307         int i;
2308 
2309         for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2310             switch (kvm_msr_list->indices[i]) {
2311             case MSR_STAR:
2312                 has_msr_star = true;
2313                 break;
2314             case MSR_VM_HSAVE_PA:
2315                 has_msr_hsave_pa = true;
2316                 break;
2317             case MSR_TSC_AUX:
2318                 has_msr_tsc_aux = true;
2319                 break;
2320             case MSR_TSC_ADJUST:
2321                 has_msr_tsc_adjust = true;
2322                 break;
2323             case MSR_IA32_TSCDEADLINE:
2324                 has_msr_tsc_deadline = true;
2325                 break;
2326             case MSR_IA32_SMBASE:
2327                 has_msr_smbase = true;
2328                 break;
2329             case MSR_SMI_COUNT:
2330                 has_msr_smi_count = true;
2331                 break;
2332             case MSR_IA32_MISC_ENABLE:
2333                 has_msr_misc_enable = true;
2334                 break;
2335             case MSR_IA32_BNDCFGS:
2336                 has_msr_bndcfgs = true;
2337                 break;
2338             case MSR_IA32_XSS:
2339                 has_msr_xss = true;
2340                 break;
2341             case MSR_IA32_UMWAIT_CONTROL:
2342                 has_msr_umwait = true;
2343                 break;
2344             case HV_X64_MSR_CRASH_CTL:
2345                 has_msr_hv_crash = true;
2346                 break;
2347             case HV_X64_MSR_RESET:
2348                 has_msr_hv_reset = true;
2349                 break;
2350             case HV_X64_MSR_VP_INDEX:
2351                 has_msr_hv_vpindex = true;
2352                 break;
2353             case HV_X64_MSR_VP_RUNTIME:
2354                 has_msr_hv_runtime = true;
2355                 break;
2356             case HV_X64_MSR_SCONTROL:
2357                 has_msr_hv_synic = true;
2358                 break;
2359             case HV_X64_MSR_STIMER0_CONFIG:
2360                 has_msr_hv_stimer = true;
2361                 break;
2362             case HV_X64_MSR_TSC_FREQUENCY:
2363                 has_msr_hv_frequencies = true;
2364                 break;
2365             case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2366                 has_msr_hv_reenlightenment = true;
2367                 break;
2368             case HV_X64_MSR_SYNDBG_OPTIONS:
2369                 has_msr_hv_syndbg_options = true;
2370                 break;
2371             case MSR_IA32_SPEC_CTRL:
2372                 has_msr_spec_ctrl = true;
2373                 break;
2374             case MSR_AMD64_TSC_RATIO:
2375                 has_tsc_scale_msr = true;
2376                 break;
2377             case MSR_IA32_TSX_CTRL:
2378                 has_msr_tsx_ctrl = true;
2379                 break;
2380             case MSR_VIRT_SSBD:
2381                 has_msr_virt_ssbd = true;
2382                 break;
2383             case MSR_IA32_ARCH_CAPABILITIES:
2384                 has_msr_arch_capabs = true;
2385                 break;
2386             case MSR_IA32_CORE_CAPABILITY:
2387                 has_msr_core_capabs = true;
2388                 break;
2389             case MSR_IA32_PERF_CAPABILITIES:
2390                 has_msr_perf_capabs = true;
2391                 break;
2392             case MSR_IA32_VMX_VMFUNC:
2393                 has_msr_vmx_vmfunc = true;
2394                 break;
2395             case MSR_IA32_UCODE_REV:
2396                 has_msr_ucode_rev = true;
2397                 break;
2398             case MSR_IA32_VMX_PROCBASED_CTLS2:
2399                 has_msr_vmx_procbased_ctls2 = true;
2400                 break;
2401             case MSR_IA32_PKRS:
2402                 has_msr_pkrs = true;
2403                 break;
2404             }
2405         }
2406     }
2407 
2408     g_free(kvm_msr_list);
2409 
2410     return ret;
2411 }
2412 
2413 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu, uint32_t msr,
2414                                         uint64_t *val)
2415 {
2416     CPUState *cs = CPU(cpu);
2417 
2418     *val = cs->nr_threads * cs->nr_cores; /* thread count, bits 15..0 */
2419     *val |= ((uint32_t)cs->nr_cores << 16); /* core count, bits 31..16 */
2420 
2421     return true;
2422 }
2423 
2424 static Notifier smram_machine_done;
2425 static KVMMemoryListener smram_listener;
2426 static AddressSpace smram_address_space;
2427 static MemoryRegion smram_as_root;
2428 static MemoryRegion smram_as_mem;
2429 
2430 static void register_smram_listener(Notifier *n, void *unused)
2431 {
2432     MemoryRegion *smram =
2433         (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2434 
2435     /* Outer container... */
2436     memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2437     memory_region_set_enabled(&smram_as_root, true);
2438 
2439     /* ... with two regions inside: normal system memory with low
2440      * priority, and...
2441      */
2442     memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2443                              get_system_memory(), 0, ~0ull);
2444     memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2445     memory_region_set_enabled(&smram_as_mem, true);
2446 
2447     if (smram) {
2448         /* ... SMRAM with higher priority */
2449         memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2450         memory_region_set_enabled(smram, true);
2451     }
2452 
2453     address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2454     kvm_memory_listener_register(kvm_state, &smram_listener,
2455                                  &smram_address_space, 1, "kvm-smram");
2456 }
2457 
2458 int kvm_arch_init(MachineState *ms, KVMState *s)
2459 {
2460     uint64_t identity_base = 0xfffbc000;
2461     uint64_t shadow_mem;
2462     int ret;
2463     struct utsname utsname;
2464     Error *local_err = NULL;
2465 
2466     /*
2467      * Initialize SEV context, if required
2468      *
2469      * If no memory encryption is requested (ms->cgs == NULL) this is
2470      * a no-op.
2471      *
2472      * It's also a no-op if a non-SEV confidential guest support
2473      * mechanism is selected.  SEV is the only mechanism available to
2474      * select on x86 at present, so this doesn't arise, but if new
2475      * mechanisms are supported in future (e.g. TDX), they'll need
2476      * their own initialization either here or elsewhere.
2477      */
2478     ret = sev_kvm_init(ms->cgs, &local_err);
2479     if (ret < 0) {
2480         error_report_err(local_err);
2481         return ret;
2482     }
2483 
2484     if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2485         error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2486         return -ENOTSUP;
2487     }
2488 
2489     has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2490     has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2491     has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2492     has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
2493 
2494     hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2495 
2496     has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2497     if (has_exception_payload) {
2498         ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2499         if (ret < 0) {
2500             error_report("kvm: Failed to enable exception payload cap: %s",
2501                          strerror(-ret));
2502             return ret;
2503         }
2504     }
2505 
2506     has_triple_fault_event = kvm_check_extension(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT);
2507     if (has_triple_fault_event) {
2508         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true);
2509         if (ret < 0) {
2510             error_report("kvm: Failed to enable triple fault event cap: %s",
2511                          strerror(-ret));
2512             return ret;
2513         }
2514     }
2515 
2516     ret = kvm_get_supported_msrs(s);
2517     if (ret < 0) {
2518         return ret;
2519     }
2520 
2521     kvm_get_supported_feature_msrs(s);
2522 
2523     uname(&utsname);
2524     lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2525 
2526     /*
2527      * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2528      * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
2529      * Since these must be part of guest physical memory, we need to allocate
2530      * them, both by setting their start addresses in the kernel and by
2531      * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2532      *
2533      * Older KVM versions may not support setting the identity map base. In
2534      * that case we need to stick with the default, i.e. a 256K maximum BIOS
2535      * size.
2536      */
2537     if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2538         /* Allows up to 16M BIOSes. */
2539         identity_base = 0xfeffc000;
2540 
2541         ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2542         if (ret < 0) {
2543             return ret;
2544         }
2545     }
2546 
2547     /* Set TSS base one page after EPT identity map. */
2548     ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2549     if (ret < 0) {
2550         return ret;
2551     }
2552 
2553     /* Tell fw_cfg to notify the BIOS to reserve the range. */
2554     ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2555     if (ret < 0) {
2556         fprintf(stderr, "e820_add_entry() table is full\n");
2557         return ret;
2558     }
2559 
2560     shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2561     if (shadow_mem != -1) {
2562         shadow_mem /= 4096;
2563         ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2564         if (ret < 0) {
2565             return ret;
2566         }
2567     }
2568 
2569     if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2570         object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2571         x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2572         smram_machine_done.notify = register_smram_listener;
2573         qemu_add_machine_init_done_notifier(&smram_machine_done);
2574     }
2575 
2576     if (enable_cpu_pm) {
2577         int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2578         int ret;
2579 
2580 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2581 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2582 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2583 #endif
2584         if (disable_exits) {
2585             disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2586                               KVM_X86_DISABLE_EXITS_HLT |
2587                               KVM_X86_DISABLE_EXITS_PAUSE |
2588                               KVM_X86_DISABLE_EXITS_CSTATE);
2589         }
2590 
2591         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2592                                 disable_exits);
2593         if (ret < 0) {
2594             error_report("kvm: guest stopping CPU not supported: %s",
2595                          strerror(-ret));
2596         }
2597     }
2598 
2599     if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
2600         X86MachineState *x86ms = X86_MACHINE(ms);
2601 
2602         if (x86ms->bus_lock_ratelimit > 0) {
2603             ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
2604             if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
2605                 error_report("kvm: bus lock detection unsupported");
2606                 return -ENOTSUP;
2607             }
2608             ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
2609                                     KVM_BUS_LOCK_DETECTION_EXIT);
2610             if (ret < 0) {
2611                 error_report("kvm: Failed to enable bus lock detection cap: %s",
2612                              strerror(-ret));
2613                 return ret;
2614             }
2615             ratelimit_init(&bus_lock_ratelimit_ctrl);
2616             ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
2617                                 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
2618         }
2619     }
2620 
2621     if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE &&
2622         kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) {
2623             uint64_t notify_window_flags =
2624                 ((uint64_t)s->notify_window << 32) |
2625                 KVM_X86_NOTIFY_VMEXIT_ENABLED |
2626                 KVM_X86_NOTIFY_VMEXIT_USER;
2627             ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0,
2628                                     notify_window_flags);
2629             if (ret < 0) {
2630                 error_report("kvm: Failed to enable notify vmexit cap: %s",
2631                              strerror(-ret));
2632                 return ret;
2633             }
2634     }
2635     if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) {
2636         bool r;
2637 
2638         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0,
2639                                 KVM_MSR_EXIT_REASON_FILTER);
2640         if (ret) {
2641             error_report("Could not enable user space MSRs: %s",
2642                          strerror(-ret));
2643             exit(1);
2644         }
2645 
2646         r = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT,
2647                            kvm_rdmsr_core_thread_count, NULL);
2648         if (!r) {
2649             error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s",
2650                          strerror(-ret));
2651             exit(1);
2652         }
2653     }
2654 
2655     return 0;
2656 }
2657 
2658 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2659 {
2660     lhs->selector = rhs->selector;
2661     lhs->base = rhs->base;
2662     lhs->limit = rhs->limit;
2663     lhs->type = 3;
2664     lhs->present = 1;
2665     lhs->dpl = 3;
2666     lhs->db = 0;
2667     lhs->s = 1;
2668     lhs->l = 0;
2669     lhs->g = 0;
2670     lhs->avl = 0;
2671     lhs->unusable = 0;
2672 }
2673 
2674 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2675 {
2676     unsigned flags = rhs->flags;
2677     lhs->selector = rhs->selector;
2678     lhs->base = rhs->base;
2679     lhs->limit = rhs->limit;
2680     lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2681     lhs->present = (flags & DESC_P_MASK) != 0;
2682     lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2683     lhs->db = (flags >> DESC_B_SHIFT) & 1;
2684     lhs->s = (flags & DESC_S_MASK) != 0;
2685     lhs->l = (flags >> DESC_L_SHIFT) & 1;
2686     lhs->g = (flags & DESC_G_MASK) != 0;
2687     lhs->avl = (flags & DESC_AVL_MASK) != 0;
2688     lhs->unusable = !lhs->present;
2689     lhs->padding = 0;
2690 }
2691 
2692 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2693 {
2694     lhs->selector = rhs->selector;
2695     lhs->base = rhs->base;
2696     lhs->limit = rhs->limit;
2697     lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2698                  ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2699                  (rhs->dpl << DESC_DPL_SHIFT) |
2700                  (rhs->db << DESC_B_SHIFT) |
2701                  (rhs->s * DESC_S_MASK) |
2702                  (rhs->l << DESC_L_SHIFT) |
2703                  (rhs->g * DESC_G_MASK) |
2704                  (rhs->avl * DESC_AVL_MASK);
2705 }
2706 
2707 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2708 {
2709     if (set) {
2710         *kvm_reg = *qemu_reg;
2711     } else {
2712         *qemu_reg = *kvm_reg;
2713     }
2714 }
2715 
2716 static int kvm_getput_regs(X86CPU *cpu, int set)
2717 {
2718     CPUX86State *env = &cpu->env;
2719     struct kvm_regs regs;
2720     int ret = 0;
2721 
2722     if (!set) {
2723         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2724         if (ret < 0) {
2725             return ret;
2726         }
2727     }
2728 
2729     kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2730     kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2731     kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2732     kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2733     kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2734     kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2735     kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2736     kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2737 #ifdef TARGET_X86_64
2738     kvm_getput_reg(&regs.r8, &env->regs[8], set);
2739     kvm_getput_reg(&regs.r9, &env->regs[9], set);
2740     kvm_getput_reg(&regs.r10, &env->regs[10], set);
2741     kvm_getput_reg(&regs.r11, &env->regs[11], set);
2742     kvm_getput_reg(&regs.r12, &env->regs[12], set);
2743     kvm_getput_reg(&regs.r13, &env->regs[13], set);
2744     kvm_getput_reg(&regs.r14, &env->regs[14], set);
2745     kvm_getput_reg(&regs.r15, &env->regs[15], set);
2746 #endif
2747 
2748     kvm_getput_reg(&regs.rflags, &env->eflags, set);
2749     kvm_getput_reg(&regs.rip, &env->eip, set);
2750 
2751     if (set) {
2752         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2753     }
2754 
2755     return ret;
2756 }
2757 
2758 static int kvm_put_fpu(X86CPU *cpu)
2759 {
2760     CPUX86State *env = &cpu->env;
2761     struct kvm_fpu fpu;
2762     int i;
2763 
2764     memset(&fpu, 0, sizeof fpu);
2765     fpu.fsw = env->fpus & ~(7 << 11);
2766     fpu.fsw |= (env->fpstt & 7) << 11;
2767     fpu.fcw = env->fpuc;
2768     fpu.last_opcode = env->fpop;
2769     fpu.last_ip = env->fpip;
2770     fpu.last_dp = env->fpdp;
2771     for (i = 0; i < 8; ++i) {
2772         fpu.ftwx |= (!env->fptags[i]) << i;
2773     }
2774     memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2775     for (i = 0; i < CPU_NB_REGS; i++) {
2776         stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2777         stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2778     }
2779     fpu.mxcsr = env->mxcsr;
2780 
2781     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2782 }
2783 
2784 static int kvm_put_xsave(X86CPU *cpu)
2785 {
2786     CPUX86State *env = &cpu->env;
2787     void *xsave = env->xsave_buf;
2788 
2789     if (!has_xsave) {
2790         return kvm_put_fpu(cpu);
2791     }
2792     x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
2793 
2794     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2795 }
2796 
2797 static int kvm_put_xcrs(X86CPU *cpu)
2798 {
2799     CPUX86State *env = &cpu->env;
2800     struct kvm_xcrs xcrs = {};
2801 
2802     if (!has_xcrs) {
2803         return 0;
2804     }
2805 
2806     xcrs.nr_xcrs = 1;
2807     xcrs.flags = 0;
2808     xcrs.xcrs[0].xcr = 0;
2809     xcrs.xcrs[0].value = env->xcr0;
2810     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2811 }
2812 
2813 static int kvm_put_sregs(X86CPU *cpu)
2814 {
2815     CPUX86State *env = &cpu->env;
2816     struct kvm_sregs sregs;
2817 
2818     /*
2819      * The interrupt_bitmap is ignored because KVM_SET_SREGS is
2820      * always followed by KVM_SET_VCPU_EVENTS.
2821      */
2822     memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2823 
2824     if ((env->eflags & VM_MASK)) {
2825         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2826         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2827         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2828         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2829         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2830         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2831     } else {
2832         set_seg(&sregs.cs, &env->segs[R_CS]);
2833         set_seg(&sregs.ds, &env->segs[R_DS]);
2834         set_seg(&sregs.es, &env->segs[R_ES]);
2835         set_seg(&sregs.fs, &env->segs[R_FS]);
2836         set_seg(&sregs.gs, &env->segs[R_GS]);
2837         set_seg(&sregs.ss, &env->segs[R_SS]);
2838     }
2839 
2840     set_seg(&sregs.tr, &env->tr);
2841     set_seg(&sregs.ldt, &env->ldt);
2842 
2843     sregs.idt.limit = env->idt.limit;
2844     sregs.idt.base = env->idt.base;
2845     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2846     sregs.gdt.limit = env->gdt.limit;
2847     sregs.gdt.base = env->gdt.base;
2848     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2849 
2850     sregs.cr0 = env->cr[0];
2851     sregs.cr2 = env->cr[2];
2852     sregs.cr3 = env->cr[3];
2853     sregs.cr4 = env->cr[4];
2854 
2855     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2856     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2857 
2858     sregs.efer = env->efer;
2859 
2860     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2861 }
2862 
2863 static int kvm_put_sregs2(X86CPU *cpu)
2864 {
2865     CPUX86State *env = &cpu->env;
2866     struct kvm_sregs2 sregs;
2867     int i;
2868 
2869     sregs.flags = 0;
2870 
2871     if ((env->eflags & VM_MASK)) {
2872         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2873         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2874         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2875         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2876         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2877         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2878     } else {
2879         set_seg(&sregs.cs, &env->segs[R_CS]);
2880         set_seg(&sregs.ds, &env->segs[R_DS]);
2881         set_seg(&sregs.es, &env->segs[R_ES]);
2882         set_seg(&sregs.fs, &env->segs[R_FS]);
2883         set_seg(&sregs.gs, &env->segs[R_GS]);
2884         set_seg(&sregs.ss, &env->segs[R_SS]);
2885     }
2886 
2887     set_seg(&sregs.tr, &env->tr);
2888     set_seg(&sregs.ldt, &env->ldt);
2889 
2890     sregs.idt.limit = env->idt.limit;
2891     sregs.idt.base = env->idt.base;
2892     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2893     sregs.gdt.limit = env->gdt.limit;
2894     sregs.gdt.base = env->gdt.base;
2895     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2896 
2897     sregs.cr0 = env->cr[0];
2898     sregs.cr2 = env->cr[2];
2899     sregs.cr3 = env->cr[3];
2900     sregs.cr4 = env->cr[4];
2901 
2902     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2903     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2904 
2905     sregs.efer = env->efer;
2906 
2907     if (env->pdptrs_valid) {
2908         for (i = 0; i < 4; i++) {
2909             sregs.pdptrs[i] = env->pdptrs[i];
2910         }
2911         sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
2912     }
2913 
2914     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
2915 }
2916 
2917 
2918 static void kvm_msr_buf_reset(X86CPU *cpu)
2919 {
2920     memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2921 }
2922 
2923 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2924 {
2925     struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2926     void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2927     struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2928 
2929     assert((void *)(entry + 1) <= limit);
2930 
2931     entry->index = index;
2932     entry->reserved = 0;
2933     entry->data = value;
2934     msrs->nmsrs++;
2935 }
2936 
2937 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2938 {
2939     kvm_msr_buf_reset(cpu);
2940     kvm_msr_entry_add(cpu, index, value);
2941 
2942     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2943 }
2944 
2945 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value)
2946 {
2947     int ret;
2948     struct {
2949         struct kvm_msrs info;
2950         struct kvm_msr_entry entries[1];
2951     } msr_data = {
2952         .info.nmsrs = 1,
2953         .entries[0].index = index,
2954     };
2955 
2956     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
2957     if (ret < 0) {
2958         return ret;
2959     }
2960     assert(ret == 1);
2961     *value = msr_data.entries[0].data;
2962     return ret;
2963 }
2964 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2965 {
2966     int ret;
2967 
2968     ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2969     assert(ret == 1);
2970 }
2971 
2972 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2973 {
2974     CPUX86State *env = &cpu->env;
2975     int ret;
2976 
2977     if (!has_msr_tsc_deadline) {
2978         return 0;
2979     }
2980 
2981     ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
2982     if (ret < 0) {
2983         return ret;
2984     }
2985 
2986     assert(ret == 1);
2987     return 0;
2988 }
2989 
2990 /*
2991  * Provide a separate write service for the feature control MSR in order to
2992  * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2993  * before writing any other state because forcibly leaving nested mode
2994  * invalidates the VCPU state.
2995  */
2996 static int kvm_put_msr_feature_control(X86CPU *cpu)
2997 {
2998     int ret;
2999 
3000     if (!has_msr_feature_control) {
3001         return 0;
3002     }
3003 
3004     ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
3005                           cpu->env.msr_ia32_feature_control);
3006     if (ret < 0) {
3007         return ret;
3008     }
3009 
3010     assert(ret == 1);
3011     return 0;
3012 }
3013 
3014 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
3015 {
3016     uint32_t default1, can_be_one, can_be_zero;
3017     uint32_t must_be_one;
3018 
3019     switch (index) {
3020     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3021         default1 = 0x00000016;
3022         break;
3023     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3024         default1 = 0x0401e172;
3025         break;
3026     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3027         default1 = 0x000011ff;
3028         break;
3029     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3030         default1 = 0x00036dff;
3031         break;
3032     case MSR_IA32_VMX_PROCBASED_CTLS2:
3033         default1 = 0;
3034         break;
3035     default:
3036         abort();
3037     }
3038 
3039     /* If a feature bit is set, the control can be either set or clear.
3040      * Otherwise the value is limited to either 0 or 1 by default1.
3041      */
3042     can_be_one = features | default1;
3043     can_be_zero = features | ~default1;
3044     must_be_one = ~can_be_zero;
3045 
3046     /*
3047      * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
3048      * Bit 32:63 -> 1 if the control bit can be one.
3049      */
3050     return must_be_one | (((uint64_t)can_be_one) << 32);
3051 }
3052 
3053 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
3054 {
3055     uint64_t kvm_vmx_basic =
3056         kvm_arch_get_supported_msr_feature(kvm_state,
3057                                            MSR_IA32_VMX_BASIC);
3058 
3059     if (!kvm_vmx_basic) {
3060         /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
3061          * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
3062          */
3063         return;
3064     }
3065 
3066     uint64_t kvm_vmx_misc =
3067         kvm_arch_get_supported_msr_feature(kvm_state,
3068                                            MSR_IA32_VMX_MISC);
3069     uint64_t kvm_vmx_ept_vpid =
3070         kvm_arch_get_supported_msr_feature(kvm_state,
3071                                            MSR_IA32_VMX_EPT_VPID_CAP);
3072 
3073     /*
3074      * If the guest is 64-bit, a value of 1 is allowed for the host address
3075      * space size vmexit control.
3076      */
3077     uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
3078         ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
3079 
3080     /*
3081      * Bits 0-30, 32-44 and 50-53 come from the host.  KVM should
3082      * not change them for backwards compatibility.
3083      */
3084     uint64_t fixed_vmx_basic = kvm_vmx_basic &
3085         (MSR_VMX_BASIC_VMCS_REVISION_MASK |
3086          MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
3087          MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
3088 
3089     /*
3090      * Same for bits 0-4 and 25-27.  Bits 16-24 (CR3 target count) can
3091      * change in the future but are always zero for now, clear them to be
3092      * future proof.  Bits 32-63 in theory could change, though KVM does
3093      * not support dual-monitor treatment and probably never will; mask
3094      * them out as well.
3095      */
3096     uint64_t fixed_vmx_misc = kvm_vmx_misc &
3097         (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
3098          MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
3099 
3100     /*
3101      * EPT memory types should not change either, so we do not bother
3102      * adding features for them.
3103      */
3104     uint64_t fixed_vmx_ept_mask =
3105             (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
3106              MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
3107     uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
3108 
3109     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3110                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3111                                          f[FEAT_VMX_PROCBASED_CTLS]));
3112     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3113                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3114                                          f[FEAT_VMX_PINBASED_CTLS]));
3115     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3116                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
3117                                          f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
3118     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3119                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3120                                          f[FEAT_VMX_ENTRY_CTLS]));
3121     kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
3122                       make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
3123                                          f[FEAT_VMX_SECONDARY_CTLS]));
3124     kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
3125                       f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
3126     kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
3127                       f[FEAT_VMX_BASIC] | fixed_vmx_basic);
3128     kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
3129                       f[FEAT_VMX_MISC] | fixed_vmx_misc);
3130     if (has_msr_vmx_vmfunc) {
3131         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
3132     }
3133 
3134     /*
3135      * Just to be safe, write these with constant values.  The CRn_FIXED1
3136      * MSRs are generated by KVM based on the vCPU's CPUID.
3137      */
3138     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
3139                       CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
3140     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
3141                       CR4_VMXE_MASK);
3142 
3143     if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
3144         /* TSC multiplier (0x2032).  */
3145         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
3146     } else {
3147         /* Preemption timer (0x482E).  */
3148         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
3149     }
3150 }
3151 
3152 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
3153 {
3154     uint64_t kvm_perf_cap =
3155         kvm_arch_get_supported_msr_feature(kvm_state,
3156                                            MSR_IA32_PERF_CAPABILITIES);
3157 
3158     if (kvm_perf_cap) {
3159         kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
3160                         kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
3161     }
3162 }
3163 
3164 static int kvm_buf_set_msrs(X86CPU *cpu)
3165 {
3166     int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3167     if (ret < 0) {
3168         return ret;
3169     }
3170 
3171     if (ret < cpu->kvm_msr_buf->nmsrs) {
3172         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3173         error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
3174                      (uint32_t)e->index, (uint64_t)e->data);
3175     }
3176 
3177     assert(ret == cpu->kvm_msr_buf->nmsrs);
3178     return 0;
3179 }
3180 
3181 static void kvm_init_msrs(X86CPU *cpu)
3182 {
3183     CPUX86State *env = &cpu->env;
3184 
3185     kvm_msr_buf_reset(cpu);
3186     if (has_msr_arch_capabs) {
3187         kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3188                           env->features[FEAT_ARCH_CAPABILITIES]);
3189     }
3190 
3191     if (has_msr_core_capabs) {
3192         kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3193                           env->features[FEAT_CORE_CAPABILITY]);
3194     }
3195 
3196     if (has_msr_perf_capabs && cpu->enable_pmu) {
3197         kvm_msr_entry_add_perf(cpu, env->features);
3198     }
3199 
3200     if (has_msr_ucode_rev) {
3201         kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3202     }
3203 
3204     /*
3205      * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3206      * all kernels with MSR features should have them.
3207      */
3208     if (kvm_feature_msrs && cpu_has_vmx(env)) {
3209         kvm_msr_entry_add_vmx(cpu, env->features);
3210     }
3211 
3212     assert(kvm_buf_set_msrs(cpu) == 0);
3213 }
3214 
3215 static int kvm_put_msrs(X86CPU *cpu, int level)
3216 {
3217     CPUX86State *env = &cpu->env;
3218     int i;
3219 
3220     kvm_msr_buf_reset(cpu);
3221 
3222     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3223     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3224     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3225     kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3226     if (has_msr_star) {
3227         kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3228     }
3229     if (has_msr_hsave_pa) {
3230         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3231     }
3232     if (has_msr_tsc_aux) {
3233         kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3234     }
3235     if (has_msr_tsc_adjust) {
3236         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3237     }
3238     if (has_msr_misc_enable) {
3239         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3240                           env->msr_ia32_misc_enable);
3241     }
3242     if (has_msr_smbase) {
3243         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3244     }
3245     if (has_msr_smi_count) {
3246         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3247     }
3248     if (has_msr_pkrs) {
3249         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3250     }
3251     if (has_msr_bndcfgs) {
3252         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3253     }
3254     if (has_msr_xss) {
3255         kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3256     }
3257     if (has_msr_umwait) {
3258         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3259     }
3260     if (has_msr_spec_ctrl) {
3261         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3262     }
3263     if (has_tsc_scale_msr) {
3264         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3265     }
3266 
3267     if (has_msr_tsx_ctrl) {
3268         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3269     }
3270     if (has_msr_virt_ssbd) {
3271         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3272     }
3273 
3274 #ifdef TARGET_X86_64
3275     if (lm_capable_kernel) {
3276         kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3277         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3278         kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3279         kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3280     }
3281 #endif
3282 
3283     /*
3284      * The following MSRs have side effects on the guest or are too heavy
3285      * for normal writeback. Limit them to reset or full state updates.
3286      */
3287     if (level >= KVM_PUT_RESET_STATE) {
3288         kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3289         kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3290         kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3291         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3292             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3293         }
3294         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3295             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
3296         }
3297         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3298             kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
3299         }
3300         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3301             kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
3302         }
3303 
3304         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3305             kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3306         }
3307 
3308         if (has_architectural_pmu_version > 0) {
3309             if (has_architectural_pmu_version > 1) {
3310                 /* Stop the counter.  */
3311                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3312                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3313             }
3314 
3315             /* Set the counter values.  */
3316             for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3317                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
3318                                   env->msr_fixed_counters[i]);
3319             }
3320             for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3321                 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
3322                                   env->msr_gp_counters[i]);
3323                 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
3324                                   env->msr_gp_evtsel[i]);
3325             }
3326             if (has_architectural_pmu_version > 1) {
3327                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3328                                   env->msr_global_status);
3329                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3330                                   env->msr_global_ovf_ctrl);
3331 
3332                 /* Now start the PMU.  */
3333                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3334                                   env->msr_fixed_ctr_ctrl);
3335                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3336                                   env->msr_global_ctrl);
3337             }
3338         }
3339         /*
3340          * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3341          * only sync them to KVM on the first cpu
3342          */
3343         if (current_cpu == first_cpu) {
3344             if (has_msr_hv_hypercall) {
3345                 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
3346                                   env->msr_hv_guest_os_id);
3347                 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
3348                                   env->msr_hv_hypercall);
3349             }
3350             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3351                 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
3352                                   env->msr_hv_tsc);
3353             }
3354             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3355                 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
3356                                   env->msr_hv_reenlightenment_control);
3357                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
3358                                   env->msr_hv_tsc_emulation_control);
3359                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
3360                                   env->msr_hv_tsc_emulation_status);
3361             }
3362 #ifdef CONFIG_SYNDBG
3363             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) &&
3364                 has_msr_hv_syndbg_options) {
3365                 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS,
3366                                   hyperv_syndbg_query_options());
3367             }
3368 #endif
3369         }
3370         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3371             kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
3372                               env->msr_hv_vapic);
3373         }
3374         if (has_msr_hv_crash) {
3375             int j;
3376 
3377             for (j = 0; j < HV_CRASH_PARAMS; j++)
3378                 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
3379                                   env->msr_hv_crash_params[j]);
3380 
3381             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
3382         }
3383         if (has_msr_hv_runtime) {
3384             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
3385         }
3386         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
3387             && hv_vpindex_settable) {
3388             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
3389                               hyperv_vp_index(CPU(cpu)));
3390         }
3391         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3392             int j;
3393 
3394             kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
3395 
3396             kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
3397                               env->msr_hv_synic_control);
3398             kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
3399                               env->msr_hv_synic_evt_page);
3400             kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
3401                               env->msr_hv_synic_msg_page);
3402 
3403             for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
3404                 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
3405                                   env->msr_hv_synic_sint[j]);
3406             }
3407         }
3408         if (has_msr_hv_stimer) {
3409             int j;
3410 
3411             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
3412                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
3413                                 env->msr_hv_stimer_config[j]);
3414             }
3415 
3416             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
3417                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
3418                                 env->msr_hv_stimer_count[j]);
3419             }
3420         }
3421         if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3422             uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
3423 
3424             kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
3425             kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
3426             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
3427             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
3428             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
3429             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
3430             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
3431             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
3432             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
3433             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
3434             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3435             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
3436             for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3437                 /* The CPU GPs if we write to a bit above the physical limit of
3438                  * the host CPU (and KVM emulates that)
3439                  */
3440                 uint64_t mask = env->mtrr_var[i].mask;
3441                 mask &= phys_mask;
3442 
3443                 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3444                                   env->mtrr_var[i].base);
3445                 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
3446             }
3447         }
3448         if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3449             int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3450                                                     0x14, 1, R_EAX) & 0x7;
3451 
3452             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3453                             env->msr_rtit_ctrl);
3454             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3455                             env->msr_rtit_status);
3456             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3457                             env->msr_rtit_output_base);
3458             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3459                             env->msr_rtit_output_mask);
3460             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3461                             env->msr_rtit_cr3_match);
3462             for (i = 0; i < addr_num; i++) {
3463                 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3464                             env->msr_rtit_addrs[i]);
3465             }
3466         }
3467 
3468         if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3469             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
3470                               env->msr_ia32_sgxlepubkeyhash[0]);
3471             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
3472                               env->msr_ia32_sgxlepubkeyhash[1]);
3473             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
3474                               env->msr_ia32_sgxlepubkeyhash[2]);
3475             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
3476                               env->msr_ia32_sgxlepubkeyhash[3]);
3477         }
3478 
3479         if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3480             kvm_msr_entry_add(cpu, MSR_IA32_XFD,
3481                               env->msr_xfd);
3482             kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
3483                               env->msr_xfd_err);
3484         }
3485 
3486         if (kvm_enabled() && cpu->enable_pmu &&
3487             (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3488             uint64_t depth;
3489             int i, ret;
3490 
3491             /*
3492              * Only migrate Arch LBR states when the host Arch LBR depth
3493              * equals that of source guest's, this is to avoid mismatch
3494              * of guest/host config for the msr hence avoid unexpected
3495              * misbehavior.
3496              */
3497             ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3498 
3499             if (ret == 1 && !!depth && depth == env->msr_lbr_depth) {
3500                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl);
3501                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth);
3502 
3503                 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3504                     if (!env->lbr_records[i].from) {
3505                         continue;
3506                     }
3507                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i,
3508                                       env->lbr_records[i].from);
3509                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i,
3510                                       env->lbr_records[i].to);
3511                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i,
3512                                       env->lbr_records[i].info);
3513                 }
3514             }
3515         }
3516 
3517         /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3518          *       kvm_put_msr_feature_control. */
3519     }
3520 
3521     if (env->mcg_cap) {
3522         int i;
3523 
3524         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3525         kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
3526         if (has_msr_mcg_ext_ctl) {
3527             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3528         }
3529         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3530             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
3531         }
3532     }
3533 
3534     return kvm_buf_set_msrs(cpu);
3535 }
3536 
3537 
3538 static int kvm_get_fpu(X86CPU *cpu)
3539 {
3540     CPUX86State *env = &cpu->env;
3541     struct kvm_fpu fpu;
3542     int i, ret;
3543 
3544     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
3545     if (ret < 0) {
3546         return ret;
3547     }
3548 
3549     env->fpstt = (fpu.fsw >> 11) & 7;
3550     env->fpus = fpu.fsw;
3551     env->fpuc = fpu.fcw;
3552     env->fpop = fpu.last_opcode;
3553     env->fpip = fpu.last_ip;
3554     env->fpdp = fpu.last_dp;
3555     for (i = 0; i < 8; ++i) {
3556         env->fptags[i] = !((fpu.ftwx >> i) & 1);
3557     }
3558     memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
3559     for (i = 0; i < CPU_NB_REGS; i++) {
3560         env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3561         env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
3562     }
3563     env->mxcsr = fpu.mxcsr;
3564 
3565     return 0;
3566 }
3567 
3568 static int kvm_get_xsave(X86CPU *cpu)
3569 {
3570     CPUX86State *env = &cpu->env;
3571     void *xsave = env->xsave_buf;
3572     int type, ret;
3573 
3574     if (!has_xsave) {
3575         return kvm_get_fpu(cpu);
3576     }
3577 
3578     type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
3579     ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
3580     if (ret < 0) {
3581         return ret;
3582     }
3583     x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
3584 
3585     return 0;
3586 }
3587 
3588 static int kvm_get_xcrs(X86CPU *cpu)
3589 {
3590     CPUX86State *env = &cpu->env;
3591     int i, ret;
3592     struct kvm_xcrs xcrs;
3593 
3594     if (!has_xcrs) {
3595         return 0;
3596     }
3597 
3598     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3599     if (ret < 0) {
3600         return ret;
3601     }
3602 
3603     for (i = 0; i < xcrs.nr_xcrs; i++) {
3604         /* Only support xcr0 now */
3605         if (xcrs.xcrs[i].xcr == 0) {
3606             env->xcr0 = xcrs.xcrs[i].value;
3607             break;
3608         }
3609     }
3610     return 0;
3611 }
3612 
3613 static int kvm_get_sregs(X86CPU *cpu)
3614 {
3615     CPUX86State *env = &cpu->env;
3616     struct kvm_sregs sregs;
3617     int ret;
3618 
3619     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3620     if (ret < 0) {
3621         return ret;
3622     }
3623 
3624     /*
3625      * The interrupt_bitmap is ignored because KVM_GET_SREGS is
3626      * always preceded by KVM_GET_VCPU_EVENTS.
3627      */
3628 
3629     get_seg(&env->segs[R_CS], &sregs.cs);
3630     get_seg(&env->segs[R_DS], &sregs.ds);
3631     get_seg(&env->segs[R_ES], &sregs.es);
3632     get_seg(&env->segs[R_FS], &sregs.fs);
3633     get_seg(&env->segs[R_GS], &sregs.gs);
3634     get_seg(&env->segs[R_SS], &sregs.ss);
3635 
3636     get_seg(&env->tr, &sregs.tr);
3637     get_seg(&env->ldt, &sregs.ldt);
3638 
3639     env->idt.limit = sregs.idt.limit;
3640     env->idt.base = sregs.idt.base;
3641     env->gdt.limit = sregs.gdt.limit;
3642     env->gdt.base = sregs.gdt.base;
3643 
3644     env->cr[0] = sregs.cr0;
3645     env->cr[2] = sregs.cr2;
3646     env->cr[3] = sregs.cr3;
3647     env->cr[4] = sregs.cr4;
3648 
3649     env->efer = sregs.efer;
3650 
3651     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3652     x86_update_hflags(env);
3653 
3654     return 0;
3655 }
3656 
3657 static int kvm_get_sregs2(X86CPU *cpu)
3658 {
3659     CPUX86State *env = &cpu->env;
3660     struct kvm_sregs2 sregs;
3661     int i, ret;
3662 
3663     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
3664     if (ret < 0) {
3665         return ret;
3666     }
3667 
3668     get_seg(&env->segs[R_CS], &sregs.cs);
3669     get_seg(&env->segs[R_DS], &sregs.ds);
3670     get_seg(&env->segs[R_ES], &sregs.es);
3671     get_seg(&env->segs[R_FS], &sregs.fs);
3672     get_seg(&env->segs[R_GS], &sregs.gs);
3673     get_seg(&env->segs[R_SS], &sregs.ss);
3674 
3675     get_seg(&env->tr, &sregs.tr);
3676     get_seg(&env->ldt, &sregs.ldt);
3677 
3678     env->idt.limit = sregs.idt.limit;
3679     env->idt.base = sregs.idt.base;
3680     env->gdt.limit = sregs.gdt.limit;
3681     env->gdt.base = sregs.gdt.base;
3682 
3683     env->cr[0] = sregs.cr0;
3684     env->cr[2] = sregs.cr2;
3685     env->cr[3] = sregs.cr3;
3686     env->cr[4] = sregs.cr4;
3687 
3688     env->efer = sregs.efer;
3689 
3690     env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
3691 
3692     if (env->pdptrs_valid) {
3693         for (i = 0; i < 4; i++) {
3694             env->pdptrs[i] = sregs.pdptrs[i];
3695         }
3696     }
3697 
3698     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3699     x86_update_hflags(env);
3700 
3701     return 0;
3702 }
3703 
3704 static int kvm_get_msrs(X86CPU *cpu)
3705 {
3706     CPUX86State *env = &cpu->env;
3707     struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3708     int ret, i;
3709     uint64_t mtrr_top_bits;
3710 
3711     kvm_msr_buf_reset(cpu);
3712 
3713     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3714     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3715     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3716     kvm_msr_entry_add(cpu, MSR_PAT, 0);
3717     if (has_msr_star) {
3718         kvm_msr_entry_add(cpu, MSR_STAR, 0);
3719     }
3720     if (has_msr_hsave_pa) {
3721         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3722     }
3723     if (has_msr_tsc_aux) {
3724         kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3725     }
3726     if (has_msr_tsc_adjust) {
3727         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3728     }
3729     if (has_msr_tsc_deadline) {
3730         kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3731     }
3732     if (has_msr_misc_enable) {
3733         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3734     }
3735     if (has_msr_smbase) {
3736         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3737     }
3738     if (has_msr_smi_count) {
3739         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3740     }
3741     if (has_msr_feature_control) {
3742         kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3743     }
3744     if (has_msr_pkrs) {
3745         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3746     }
3747     if (has_msr_bndcfgs) {
3748         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3749     }
3750     if (has_msr_xss) {
3751         kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3752     }
3753     if (has_msr_umwait) {
3754         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3755     }
3756     if (has_msr_spec_ctrl) {
3757         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3758     }
3759     if (has_tsc_scale_msr) {
3760         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
3761     }
3762 
3763     if (has_msr_tsx_ctrl) {
3764         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3765     }
3766     if (has_msr_virt_ssbd) {
3767         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3768     }
3769     if (!env->tsc_valid) {
3770         kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3771         env->tsc_valid = !runstate_is_running();
3772     }
3773 
3774 #ifdef TARGET_X86_64
3775     if (lm_capable_kernel) {
3776         kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3777         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3778         kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3779         kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3780     }
3781 #endif
3782     kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3783     kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3784     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3785         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3786     }
3787     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3788         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3789     }
3790     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3791         kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3792     }
3793     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3794         kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3795     }
3796     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3797         kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3798     }
3799     if (has_architectural_pmu_version > 0) {
3800         if (has_architectural_pmu_version > 1) {
3801             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3802             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3803             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3804             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3805         }
3806         for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3807             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3808         }
3809         for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3810             kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3811             kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3812         }
3813     }
3814 
3815     if (env->mcg_cap) {
3816         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3817         kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3818         if (has_msr_mcg_ext_ctl) {
3819             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3820         }
3821         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3822             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3823         }
3824     }
3825 
3826     if (has_msr_hv_hypercall) {
3827         kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3828         kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3829     }
3830     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3831         kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3832     }
3833     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3834         kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3835     }
3836     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3837         kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3838         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3839         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3840     }
3841     if (has_msr_hv_syndbg_options) {
3842         kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0);
3843     }
3844     if (has_msr_hv_crash) {
3845         int j;
3846 
3847         for (j = 0; j < HV_CRASH_PARAMS; j++) {
3848             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3849         }
3850     }
3851     if (has_msr_hv_runtime) {
3852         kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3853     }
3854     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3855         uint32_t msr;
3856 
3857         kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3858         kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3859         kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3860         for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3861             kvm_msr_entry_add(cpu, msr, 0);
3862         }
3863     }
3864     if (has_msr_hv_stimer) {
3865         uint32_t msr;
3866 
3867         for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3868              msr++) {
3869             kvm_msr_entry_add(cpu, msr, 0);
3870         }
3871     }
3872     if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3873         kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3874         kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3875         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3876         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3877         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3878         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3879         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3880         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3881         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3882         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3883         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3884         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
3885         for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3886             kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3887             kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
3888         }
3889     }
3890 
3891     if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3892         int addr_num =
3893             kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3894 
3895         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3896         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3897         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3898         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3899         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3900         for (i = 0; i < addr_num; i++) {
3901             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3902         }
3903     }
3904 
3905     if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3906         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
3907         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
3908         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
3909         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
3910     }
3911 
3912     if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3913         kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
3914         kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
3915     }
3916 
3917     if (kvm_enabled() && cpu->enable_pmu &&
3918         (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3919         uint64_t depth;
3920         int i, ret;
3921 
3922         ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3923         if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) {
3924             kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0);
3925             kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0);
3926 
3927             for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3928                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0);
3929                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0);
3930                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0);
3931             }
3932         }
3933     }
3934 
3935     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
3936     if (ret < 0) {
3937         return ret;
3938     }
3939 
3940     if (ret < cpu->kvm_msr_buf->nmsrs) {
3941         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3942         error_report("error: failed to get MSR 0x%" PRIx32,
3943                      (uint32_t)e->index);
3944     }
3945 
3946     assert(ret == cpu->kvm_msr_buf->nmsrs);
3947     /*
3948      * MTRR masks: Each mask consists of 5 parts
3949      * a  10..0: must be zero
3950      * b  11   : valid bit
3951      * c n-1.12: actual mask bits
3952      * d  51..n: reserved must be zero
3953      * e  63.52: reserved must be zero
3954      *
3955      * 'n' is the number of physical bits supported by the CPU and is
3956      * apparently always <= 52.   We know our 'n' but don't know what
3957      * the destinations 'n' is; it might be smaller, in which case
3958      * it masks (c) on loading. It might be larger, in which case
3959      * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3960      * we're migrating to.
3961      */
3962 
3963     if (cpu->fill_mtrr_mask) {
3964         QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3965         assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3966         mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3967     } else {
3968         mtrr_top_bits = 0;
3969     }
3970 
3971     for (i = 0; i < ret; i++) {
3972         uint32_t index = msrs[i].index;
3973         switch (index) {
3974         case MSR_IA32_SYSENTER_CS:
3975             env->sysenter_cs = msrs[i].data;
3976             break;
3977         case MSR_IA32_SYSENTER_ESP:
3978             env->sysenter_esp = msrs[i].data;
3979             break;
3980         case MSR_IA32_SYSENTER_EIP:
3981             env->sysenter_eip = msrs[i].data;
3982             break;
3983         case MSR_PAT:
3984             env->pat = msrs[i].data;
3985             break;
3986         case MSR_STAR:
3987             env->star = msrs[i].data;
3988             break;
3989 #ifdef TARGET_X86_64
3990         case MSR_CSTAR:
3991             env->cstar = msrs[i].data;
3992             break;
3993         case MSR_KERNELGSBASE:
3994             env->kernelgsbase = msrs[i].data;
3995             break;
3996         case MSR_FMASK:
3997             env->fmask = msrs[i].data;
3998             break;
3999         case MSR_LSTAR:
4000             env->lstar = msrs[i].data;
4001             break;
4002 #endif
4003         case MSR_IA32_TSC:
4004             env->tsc = msrs[i].data;
4005             break;
4006         case MSR_TSC_AUX:
4007             env->tsc_aux = msrs[i].data;
4008             break;
4009         case MSR_TSC_ADJUST:
4010             env->tsc_adjust = msrs[i].data;
4011             break;
4012         case MSR_IA32_TSCDEADLINE:
4013             env->tsc_deadline = msrs[i].data;
4014             break;
4015         case MSR_VM_HSAVE_PA:
4016             env->vm_hsave = msrs[i].data;
4017             break;
4018         case MSR_KVM_SYSTEM_TIME:
4019             env->system_time_msr = msrs[i].data;
4020             break;
4021         case MSR_KVM_WALL_CLOCK:
4022             env->wall_clock_msr = msrs[i].data;
4023             break;
4024         case MSR_MCG_STATUS:
4025             env->mcg_status = msrs[i].data;
4026             break;
4027         case MSR_MCG_CTL:
4028             env->mcg_ctl = msrs[i].data;
4029             break;
4030         case MSR_MCG_EXT_CTL:
4031             env->mcg_ext_ctl = msrs[i].data;
4032             break;
4033         case MSR_IA32_MISC_ENABLE:
4034             env->msr_ia32_misc_enable = msrs[i].data;
4035             break;
4036         case MSR_IA32_SMBASE:
4037             env->smbase = msrs[i].data;
4038             break;
4039         case MSR_SMI_COUNT:
4040             env->msr_smi_count = msrs[i].data;
4041             break;
4042         case MSR_IA32_FEATURE_CONTROL:
4043             env->msr_ia32_feature_control = msrs[i].data;
4044             break;
4045         case MSR_IA32_BNDCFGS:
4046             env->msr_bndcfgs = msrs[i].data;
4047             break;
4048         case MSR_IA32_XSS:
4049             env->xss = msrs[i].data;
4050             break;
4051         case MSR_IA32_UMWAIT_CONTROL:
4052             env->umwait = msrs[i].data;
4053             break;
4054         case MSR_IA32_PKRS:
4055             env->pkrs = msrs[i].data;
4056             break;
4057         default:
4058             if (msrs[i].index >= MSR_MC0_CTL &&
4059                 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
4060                 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
4061             }
4062             break;
4063         case MSR_KVM_ASYNC_PF_EN:
4064             env->async_pf_en_msr = msrs[i].data;
4065             break;
4066         case MSR_KVM_ASYNC_PF_INT:
4067             env->async_pf_int_msr = msrs[i].data;
4068             break;
4069         case MSR_KVM_PV_EOI_EN:
4070             env->pv_eoi_en_msr = msrs[i].data;
4071             break;
4072         case MSR_KVM_STEAL_TIME:
4073             env->steal_time_msr = msrs[i].data;
4074             break;
4075         case MSR_KVM_POLL_CONTROL: {
4076             env->poll_control_msr = msrs[i].data;
4077             break;
4078         }
4079         case MSR_CORE_PERF_FIXED_CTR_CTRL:
4080             env->msr_fixed_ctr_ctrl = msrs[i].data;
4081             break;
4082         case MSR_CORE_PERF_GLOBAL_CTRL:
4083             env->msr_global_ctrl = msrs[i].data;
4084             break;
4085         case MSR_CORE_PERF_GLOBAL_STATUS:
4086             env->msr_global_status = msrs[i].data;
4087             break;
4088         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
4089             env->msr_global_ovf_ctrl = msrs[i].data;
4090             break;
4091         case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
4092             env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
4093             break;
4094         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
4095             env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
4096             break;
4097         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
4098             env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
4099             break;
4100         case HV_X64_MSR_HYPERCALL:
4101             env->msr_hv_hypercall = msrs[i].data;
4102             break;
4103         case HV_X64_MSR_GUEST_OS_ID:
4104             env->msr_hv_guest_os_id = msrs[i].data;
4105             break;
4106         case HV_X64_MSR_APIC_ASSIST_PAGE:
4107             env->msr_hv_vapic = msrs[i].data;
4108             break;
4109         case HV_X64_MSR_REFERENCE_TSC:
4110             env->msr_hv_tsc = msrs[i].data;
4111             break;
4112         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4113             env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
4114             break;
4115         case HV_X64_MSR_VP_RUNTIME:
4116             env->msr_hv_runtime = msrs[i].data;
4117             break;
4118         case HV_X64_MSR_SCONTROL:
4119             env->msr_hv_synic_control = msrs[i].data;
4120             break;
4121         case HV_X64_MSR_SIEFP:
4122             env->msr_hv_synic_evt_page = msrs[i].data;
4123             break;
4124         case HV_X64_MSR_SIMP:
4125             env->msr_hv_synic_msg_page = msrs[i].data;
4126             break;
4127         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
4128             env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
4129             break;
4130         case HV_X64_MSR_STIMER0_CONFIG:
4131         case HV_X64_MSR_STIMER1_CONFIG:
4132         case HV_X64_MSR_STIMER2_CONFIG:
4133         case HV_X64_MSR_STIMER3_CONFIG:
4134             env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
4135                                 msrs[i].data;
4136             break;
4137         case HV_X64_MSR_STIMER0_COUNT:
4138         case HV_X64_MSR_STIMER1_COUNT:
4139         case HV_X64_MSR_STIMER2_COUNT:
4140         case HV_X64_MSR_STIMER3_COUNT:
4141             env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
4142                                 msrs[i].data;
4143             break;
4144         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4145             env->msr_hv_reenlightenment_control = msrs[i].data;
4146             break;
4147         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4148             env->msr_hv_tsc_emulation_control = msrs[i].data;
4149             break;
4150         case HV_X64_MSR_TSC_EMULATION_STATUS:
4151             env->msr_hv_tsc_emulation_status = msrs[i].data;
4152             break;
4153         case HV_X64_MSR_SYNDBG_OPTIONS:
4154             env->msr_hv_syndbg_options = msrs[i].data;
4155             break;
4156         case MSR_MTRRdefType:
4157             env->mtrr_deftype = msrs[i].data;
4158             break;
4159         case MSR_MTRRfix64K_00000:
4160             env->mtrr_fixed[0] = msrs[i].data;
4161             break;
4162         case MSR_MTRRfix16K_80000:
4163             env->mtrr_fixed[1] = msrs[i].data;
4164             break;
4165         case MSR_MTRRfix16K_A0000:
4166             env->mtrr_fixed[2] = msrs[i].data;
4167             break;
4168         case MSR_MTRRfix4K_C0000:
4169             env->mtrr_fixed[3] = msrs[i].data;
4170             break;
4171         case MSR_MTRRfix4K_C8000:
4172             env->mtrr_fixed[4] = msrs[i].data;
4173             break;
4174         case MSR_MTRRfix4K_D0000:
4175             env->mtrr_fixed[5] = msrs[i].data;
4176             break;
4177         case MSR_MTRRfix4K_D8000:
4178             env->mtrr_fixed[6] = msrs[i].data;
4179             break;
4180         case MSR_MTRRfix4K_E0000:
4181             env->mtrr_fixed[7] = msrs[i].data;
4182             break;
4183         case MSR_MTRRfix4K_E8000:
4184             env->mtrr_fixed[8] = msrs[i].data;
4185             break;
4186         case MSR_MTRRfix4K_F0000:
4187             env->mtrr_fixed[9] = msrs[i].data;
4188             break;
4189         case MSR_MTRRfix4K_F8000:
4190             env->mtrr_fixed[10] = msrs[i].data;
4191             break;
4192         case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
4193             if (index & 1) {
4194                 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
4195                                                                mtrr_top_bits;
4196             } else {
4197                 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
4198             }
4199             break;
4200         case MSR_IA32_SPEC_CTRL:
4201             env->spec_ctrl = msrs[i].data;
4202             break;
4203         case MSR_AMD64_TSC_RATIO:
4204             env->amd_tsc_scale_msr = msrs[i].data;
4205             break;
4206         case MSR_IA32_TSX_CTRL:
4207             env->tsx_ctrl = msrs[i].data;
4208             break;
4209         case MSR_VIRT_SSBD:
4210             env->virt_ssbd = msrs[i].data;
4211             break;
4212         case MSR_IA32_RTIT_CTL:
4213             env->msr_rtit_ctrl = msrs[i].data;
4214             break;
4215         case MSR_IA32_RTIT_STATUS:
4216             env->msr_rtit_status = msrs[i].data;
4217             break;
4218         case MSR_IA32_RTIT_OUTPUT_BASE:
4219             env->msr_rtit_output_base = msrs[i].data;
4220             break;
4221         case MSR_IA32_RTIT_OUTPUT_MASK:
4222             env->msr_rtit_output_mask = msrs[i].data;
4223             break;
4224         case MSR_IA32_RTIT_CR3_MATCH:
4225             env->msr_rtit_cr3_match = msrs[i].data;
4226             break;
4227         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
4228             env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
4229             break;
4230         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
4231             env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
4232                            msrs[i].data;
4233             break;
4234         case MSR_IA32_XFD:
4235             env->msr_xfd = msrs[i].data;
4236             break;
4237         case MSR_IA32_XFD_ERR:
4238             env->msr_xfd_err = msrs[i].data;
4239             break;
4240         case MSR_ARCH_LBR_CTL:
4241             env->msr_lbr_ctl = msrs[i].data;
4242             break;
4243         case MSR_ARCH_LBR_DEPTH:
4244             env->msr_lbr_depth = msrs[i].data;
4245             break;
4246         case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31:
4247             env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data;
4248             break;
4249         case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31:
4250             env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data;
4251             break;
4252         case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31:
4253             env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data;
4254             break;
4255         }
4256     }
4257 
4258     return 0;
4259 }
4260 
4261 static int kvm_put_mp_state(X86CPU *cpu)
4262 {
4263     struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4264 
4265     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4266 }
4267 
4268 static int kvm_get_mp_state(X86CPU *cpu)
4269 {
4270     CPUState *cs = CPU(cpu);
4271     CPUX86State *env = &cpu->env;
4272     struct kvm_mp_state mp_state;
4273     int ret;
4274 
4275     ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
4276     if (ret < 0) {
4277         return ret;
4278     }
4279     env->mp_state = mp_state.mp_state;
4280     if (kvm_irqchip_in_kernel()) {
4281         cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
4282     }
4283     return 0;
4284 }
4285 
4286 static int kvm_get_apic(X86CPU *cpu)
4287 {
4288     DeviceState *apic = cpu->apic_state;
4289     struct kvm_lapic_state kapic;
4290     int ret;
4291 
4292     if (apic && kvm_irqchip_in_kernel()) {
4293         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
4294         if (ret < 0) {
4295             return ret;
4296         }
4297 
4298         kvm_get_apic_state(apic, &kapic);
4299     }
4300     return 0;
4301 }
4302 
4303 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
4304 {
4305     CPUState *cs = CPU(cpu);
4306     CPUX86State *env = &cpu->env;
4307     struct kvm_vcpu_events events = {};
4308 
4309     if (!kvm_has_vcpu_events()) {
4310         return 0;
4311     }
4312 
4313     events.flags = 0;
4314 
4315     if (has_exception_payload) {
4316         events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4317         events.exception.pending = env->exception_pending;
4318         events.exception_has_payload = env->exception_has_payload;
4319         events.exception_payload = env->exception_payload;
4320     }
4321     events.exception.nr = env->exception_nr;
4322     events.exception.injected = env->exception_injected;
4323     events.exception.has_error_code = env->has_error_code;
4324     events.exception.error_code = env->error_code;
4325 
4326     events.interrupt.injected = (env->interrupt_injected >= 0);
4327     events.interrupt.nr = env->interrupt_injected;
4328     events.interrupt.soft = env->soft_interrupt;
4329 
4330     events.nmi.injected = env->nmi_injected;
4331     events.nmi.pending = env->nmi_pending;
4332     events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
4333 
4334     events.sipi_vector = env->sipi_vector;
4335 
4336     if (has_msr_smbase) {
4337         events.smi.smm = !!(env->hflags & HF_SMM_MASK);
4338         events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
4339         if (kvm_irqchip_in_kernel()) {
4340             /* As soon as these are moved to the kernel, remove them
4341              * from cs->interrupt_request.
4342              */
4343             events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
4344             events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
4345             cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
4346         } else {
4347             /* Keep these in cs->interrupt_request.  */
4348             events.smi.pending = 0;
4349             events.smi.latched_init = 0;
4350         }
4351         /* Stop SMI delivery on old machine types to avoid a reboot
4352          * on an inward migration of an old VM.
4353          */
4354         if (!cpu->kvm_no_smi_migration) {
4355             events.flags |= KVM_VCPUEVENT_VALID_SMM;
4356         }
4357     }
4358 
4359     if (level >= KVM_PUT_RESET_STATE) {
4360         events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
4361         if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
4362             events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
4363         }
4364     }
4365 
4366     if (has_triple_fault_event) {
4367         events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
4368         events.triple_fault.pending = env->triple_fault_pending;
4369     }
4370 
4371     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
4372 }
4373 
4374 static int kvm_get_vcpu_events(X86CPU *cpu)
4375 {
4376     CPUX86State *env = &cpu->env;
4377     struct kvm_vcpu_events events;
4378     int ret;
4379 
4380     if (!kvm_has_vcpu_events()) {
4381         return 0;
4382     }
4383 
4384     memset(&events, 0, sizeof(events));
4385     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
4386     if (ret < 0) {
4387        return ret;
4388     }
4389 
4390     if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4391         env->exception_pending = events.exception.pending;
4392         env->exception_has_payload = events.exception_has_payload;
4393         env->exception_payload = events.exception_payload;
4394     } else {
4395         env->exception_pending = 0;
4396         env->exception_has_payload = false;
4397     }
4398     env->exception_injected = events.exception.injected;
4399     env->exception_nr =
4400         (env->exception_pending || env->exception_injected) ?
4401         events.exception.nr : -1;
4402     env->has_error_code = events.exception.has_error_code;
4403     env->error_code = events.exception.error_code;
4404 
4405     env->interrupt_injected =
4406         events.interrupt.injected ? events.interrupt.nr : -1;
4407     env->soft_interrupt = events.interrupt.soft;
4408 
4409     env->nmi_injected = events.nmi.injected;
4410     env->nmi_pending = events.nmi.pending;
4411     if (events.nmi.masked) {
4412         env->hflags2 |= HF2_NMI_MASK;
4413     } else {
4414         env->hflags2 &= ~HF2_NMI_MASK;
4415     }
4416 
4417     if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
4418         if (events.smi.smm) {
4419             env->hflags |= HF_SMM_MASK;
4420         } else {
4421             env->hflags &= ~HF_SMM_MASK;
4422         }
4423         if (events.smi.pending) {
4424             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4425         } else {
4426             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4427         }
4428         if (events.smi.smm_inside_nmi) {
4429             env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
4430         } else {
4431             env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
4432         }
4433         if (events.smi.latched_init) {
4434             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4435         } else {
4436             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4437         }
4438     }
4439 
4440     if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
4441         env->triple_fault_pending = events.triple_fault.pending;
4442     }
4443 
4444     env->sipi_vector = events.sipi_vector;
4445 
4446     return 0;
4447 }
4448 
4449 static int kvm_guest_debug_workarounds(X86CPU *cpu)
4450 {
4451     CPUState *cs = CPU(cpu);
4452     CPUX86State *env = &cpu->env;
4453     int ret = 0;
4454     unsigned long reinject_trap = 0;
4455 
4456     if (!kvm_has_vcpu_events()) {
4457         if (env->exception_nr == EXCP01_DB) {
4458             reinject_trap = KVM_GUESTDBG_INJECT_DB;
4459         } else if (env->exception_injected == EXCP03_INT3) {
4460             reinject_trap = KVM_GUESTDBG_INJECT_BP;
4461         }
4462         kvm_reset_exception(env);
4463     }
4464 
4465     /*
4466      * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
4467      * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
4468      * by updating the debug state once again if single-stepping is on.
4469      * Another reason to call kvm_update_guest_debug here is a pending debug
4470      * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
4471      * reinject them via SET_GUEST_DEBUG.
4472      */
4473     if (reinject_trap ||
4474         (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
4475         ret = kvm_update_guest_debug(cs, reinject_trap);
4476     }
4477     return ret;
4478 }
4479 
4480 static int kvm_put_debugregs(X86CPU *cpu)
4481 {
4482     CPUX86State *env = &cpu->env;
4483     struct kvm_debugregs dbgregs;
4484     int i;
4485 
4486     if (!kvm_has_debugregs()) {
4487         return 0;
4488     }
4489 
4490     memset(&dbgregs, 0, sizeof(dbgregs));
4491     for (i = 0; i < 4; i++) {
4492         dbgregs.db[i] = env->dr[i];
4493     }
4494     dbgregs.dr6 = env->dr[6];
4495     dbgregs.dr7 = env->dr[7];
4496     dbgregs.flags = 0;
4497 
4498     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
4499 }
4500 
4501 static int kvm_get_debugregs(X86CPU *cpu)
4502 {
4503     CPUX86State *env = &cpu->env;
4504     struct kvm_debugregs dbgregs;
4505     int i, ret;
4506 
4507     if (!kvm_has_debugregs()) {
4508         return 0;
4509     }
4510 
4511     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
4512     if (ret < 0) {
4513         return ret;
4514     }
4515     for (i = 0; i < 4; i++) {
4516         env->dr[i] = dbgregs.db[i];
4517     }
4518     env->dr[4] = env->dr[6] = dbgregs.dr6;
4519     env->dr[5] = env->dr[7] = dbgregs.dr7;
4520 
4521     return 0;
4522 }
4523 
4524 static int kvm_put_nested_state(X86CPU *cpu)
4525 {
4526     CPUX86State *env = &cpu->env;
4527     int max_nested_state_len = kvm_max_nested_state_length();
4528 
4529     if (!env->nested_state) {
4530         return 0;
4531     }
4532 
4533     /*
4534      * Copy flags that are affected by reset from env->hflags and env->hflags2.
4535      */
4536     if (env->hflags & HF_GUEST_MASK) {
4537         env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
4538     } else {
4539         env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
4540     }
4541 
4542     /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
4543     if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
4544         env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
4545     } else {
4546         env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
4547     }
4548 
4549     assert(env->nested_state->size <= max_nested_state_len);
4550     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
4551 }
4552 
4553 static int kvm_get_nested_state(X86CPU *cpu)
4554 {
4555     CPUX86State *env = &cpu->env;
4556     int max_nested_state_len = kvm_max_nested_state_length();
4557     int ret;
4558 
4559     if (!env->nested_state) {
4560         return 0;
4561     }
4562 
4563     /*
4564      * It is possible that migration restored a smaller size into
4565      * nested_state->hdr.size than what our kernel support.
4566      * We preserve migration origin nested_state->hdr.size for
4567      * call to KVM_SET_NESTED_STATE but wish that our next call
4568      * to KVM_GET_NESTED_STATE will use max size our kernel support.
4569      */
4570     env->nested_state->size = max_nested_state_len;
4571 
4572     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
4573     if (ret < 0) {
4574         return ret;
4575     }
4576 
4577     /*
4578      * Copy flags that are affected by reset to env->hflags and env->hflags2.
4579      */
4580     if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
4581         env->hflags |= HF_GUEST_MASK;
4582     } else {
4583         env->hflags &= ~HF_GUEST_MASK;
4584     }
4585 
4586     /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
4587     if (cpu_has_svm(env)) {
4588         if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
4589             env->hflags2 |= HF2_GIF_MASK;
4590         } else {
4591             env->hflags2 &= ~HF2_GIF_MASK;
4592         }
4593     }
4594 
4595     return ret;
4596 }
4597 
4598 int kvm_arch_put_registers(CPUState *cpu, int level)
4599 {
4600     X86CPU *x86_cpu = X86_CPU(cpu);
4601     int ret;
4602 
4603     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
4604 
4605     /*
4606      * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX
4607      * root operation upon vCPU reset. kvm_put_msr_feature_control() should also
4608      * preceed kvm_put_nested_state() when 'real' nested state is set.
4609      */
4610     if (level >= KVM_PUT_RESET_STATE) {
4611         ret = kvm_put_msr_feature_control(x86_cpu);
4612         if (ret < 0) {
4613             return ret;
4614         }
4615     }
4616 
4617     /* must be before kvm_put_nested_state so that EFER.SVME is set */
4618     ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
4619     if (ret < 0) {
4620         return ret;
4621     }
4622 
4623     if (level >= KVM_PUT_RESET_STATE) {
4624         ret = kvm_put_nested_state(x86_cpu);
4625         if (ret < 0) {
4626             return ret;
4627         }
4628     }
4629 
4630     if (level == KVM_PUT_FULL_STATE) {
4631         /* We don't check for kvm_arch_set_tsc_khz() errors here,
4632          * because TSC frequency mismatch shouldn't abort migration,
4633          * unless the user explicitly asked for a more strict TSC
4634          * setting (e.g. using an explicit "tsc-freq" option).
4635          */
4636         kvm_arch_set_tsc_khz(cpu);
4637     }
4638 
4639     ret = kvm_getput_regs(x86_cpu, 1);
4640     if (ret < 0) {
4641         return ret;
4642     }
4643     ret = kvm_put_xsave(x86_cpu);
4644     if (ret < 0) {
4645         return ret;
4646     }
4647     ret = kvm_put_xcrs(x86_cpu);
4648     if (ret < 0) {
4649         return ret;
4650     }
4651     /* must be before kvm_put_msrs */
4652     ret = kvm_inject_mce_oldstyle(x86_cpu);
4653     if (ret < 0) {
4654         return ret;
4655     }
4656     ret = kvm_put_msrs(x86_cpu, level);
4657     if (ret < 0) {
4658         return ret;
4659     }
4660     ret = kvm_put_vcpu_events(x86_cpu, level);
4661     if (ret < 0) {
4662         return ret;
4663     }
4664     if (level >= KVM_PUT_RESET_STATE) {
4665         ret = kvm_put_mp_state(x86_cpu);
4666         if (ret < 0) {
4667             return ret;
4668         }
4669     }
4670 
4671     ret = kvm_put_tscdeadline_msr(x86_cpu);
4672     if (ret < 0) {
4673         return ret;
4674     }
4675     ret = kvm_put_debugregs(x86_cpu);
4676     if (ret < 0) {
4677         return ret;
4678     }
4679     /* must be last */
4680     ret = kvm_guest_debug_workarounds(x86_cpu);
4681     if (ret < 0) {
4682         return ret;
4683     }
4684     return 0;
4685 }
4686 
4687 int kvm_arch_get_registers(CPUState *cs)
4688 {
4689     X86CPU *cpu = X86_CPU(cs);
4690     int ret;
4691 
4692     assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4693 
4694     ret = kvm_get_vcpu_events(cpu);
4695     if (ret < 0) {
4696         goto out;
4697     }
4698     /*
4699      * KVM_GET_MPSTATE can modify CS and RIP, call it before
4700      * KVM_GET_REGS and KVM_GET_SREGS.
4701      */
4702     ret = kvm_get_mp_state(cpu);
4703     if (ret < 0) {
4704         goto out;
4705     }
4706     ret = kvm_getput_regs(cpu, 0);
4707     if (ret < 0) {
4708         goto out;
4709     }
4710     ret = kvm_get_xsave(cpu);
4711     if (ret < 0) {
4712         goto out;
4713     }
4714     ret = kvm_get_xcrs(cpu);
4715     if (ret < 0) {
4716         goto out;
4717     }
4718     ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
4719     if (ret < 0) {
4720         goto out;
4721     }
4722     ret = kvm_get_msrs(cpu);
4723     if (ret < 0) {
4724         goto out;
4725     }
4726     ret = kvm_get_apic(cpu);
4727     if (ret < 0) {
4728         goto out;
4729     }
4730     ret = kvm_get_debugregs(cpu);
4731     if (ret < 0) {
4732         goto out;
4733     }
4734     ret = kvm_get_nested_state(cpu);
4735     if (ret < 0) {
4736         goto out;
4737     }
4738     ret = 0;
4739  out:
4740     cpu_sync_bndcs_hflags(&cpu->env);
4741     return ret;
4742 }
4743 
4744 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4745 {
4746     X86CPU *x86_cpu = X86_CPU(cpu);
4747     CPUX86State *env = &x86_cpu->env;
4748     int ret;
4749 
4750     /* Inject NMI */
4751     if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4752         if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4753             qemu_mutex_lock_iothread();
4754             cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4755             qemu_mutex_unlock_iothread();
4756             DPRINTF("injected NMI\n");
4757             ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4758             if (ret < 0) {
4759                 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4760                         strerror(-ret));
4761             }
4762         }
4763         if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4764             qemu_mutex_lock_iothread();
4765             cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4766             qemu_mutex_unlock_iothread();
4767             DPRINTF("injected SMI\n");
4768             ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4769             if (ret < 0) {
4770                 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4771                         strerror(-ret));
4772             }
4773         }
4774     }
4775 
4776     if (!kvm_pic_in_kernel()) {
4777         qemu_mutex_lock_iothread();
4778     }
4779 
4780     /* Force the VCPU out of its inner loop to process any INIT requests
4781      * or (for userspace APIC, but it is cheap to combine the checks here)
4782      * pending TPR access reports.
4783      */
4784     if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4785         if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4786             !(env->hflags & HF_SMM_MASK)) {
4787             cpu->exit_request = 1;
4788         }
4789         if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4790             cpu->exit_request = 1;
4791         }
4792     }
4793 
4794     if (!kvm_pic_in_kernel()) {
4795         /* Try to inject an interrupt if the guest can accept it */
4796         if (run->ready_for_interrupt_injection &&
4797             (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4798             (env->eflags & IF_MASK)) {
4799             int irq;
4800 
4801             cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4802             irq = cpu_get_pic_interrupt(env);
4803             if (irq >= 0) {
4804                 struct kvm_interrupt intr;
4805 
4806                 intr.irq = irq;
4807                 DPRINTF("injected interrupt %d\n", irq);
4808                 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4809                 if (ret < 0) {
4810                     fprintf(stderr,
4811                             "KVM: injection failed, interrupt lost (%s)\n",
4812                             strerror(-ret));
4813                 }
4814             }
4815         }
4816 
4817         /* If we have an interrupt but the guest is not ready to receive an
4818          * interrupt, request an interrupt window exit.  This will
4819          * cause a return to userspace as soon as the guest is ready to
4820          * receive interrupts. */
4821         if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4822             run->request_interrupt_window = 1;
4823         } else {
4824             run->request_interrupt_window = 0;
4825         }
4826 
4827         DPRINTF("setting tpr\n");
4828         run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4829 
4830         qemu_mutex_unlock_iothread();
4831     }
4832 }
4833 
4834 static void kvm_rate_limit_on_bus_lock(void)
4835 {
4836     uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
4837 
4838     if (delay_ns) {
4839         g_usleep(delay_ns / SCALE_US);
4840     }
4841 }
4842 
4843 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4844 {
4845     X86CPU *x86_cpu = X86_CPU(cpu);
4846     CPUX86State *env = &x86_cpu->env;
4847 
4848     if (run->flags & KVM_RUN_X86_SMM) {
4849         env->hflags |= HF_SMM_MASK;
4850     } else {
4851         env->hflags &= ~HF_SMM_MASK;
4852     }
4853     if (run->if_flag) {
4854         env->eflags |= IF_MASK;
4855     } else {
4856         env->eflags &= ~IF_MASK;
4857     }
4858     if (run->flags & KVM_RUN_X86_BUS_LOCK) {
4859         kvm_rate_limit_on_bus_lock();
4860     }
4861 
4862     /* We need to protect the apic state against concurrent accesses from
4863      * different threads in case the userspace irqchip is used. */
4864     if (!kvm_irqchip_in_kernel()) {
4865         qemu_mutex_lock_iothread();
4866     }
4867     cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4868     cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4869     if (!kvm_irqchip_in_kernel()) {
4870         qemu_mutex_unlock_iothread();
4871     }
4872     return cpu_get_mem_attrs(env);
4873 }
4874 
4875 int kvm_arch_process_async_events(CPUState *cs)
4876 {
4877     X86CPU *cpu = X86_CPU(cs);
4878     CPUX86State *env = &cpu->env;
4879 
4880     if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
4881         /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4882         assert(env->mcg_cap);
4883 
4884         cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
4885 
4886         kvm_cpu_synchronize_state(cs);
4887 
4888         if (env->exception_nr == EXCP08_DBLE) {
4889             /* this means triple fault */
4890             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
4891             cs->exit_request = 1;
4892             return 0;
4893         }
4894         kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
4895         env->has_error_code = 0;
4896 
4897         cs->halted = 0;
4898         if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4899             env->mp_state = KVM_MP_STATE_RUNNABLE;
4900         }
4901     }
4902 
4903     if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4904         !(env->hflags & HF_SMM_MASK)) {
4905         kvm_cpu_synchronize_state(cs);
4906         do_cpu_init(cpu);
4907     }
4908 
4909     if (kvm_irqchip_in_kernel()) {
4910         return 0;
4911     }
4912 
4913     if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4914         cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
4915         apic_poll_irq(cpu->apic_state);
4916     }
4917     if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4918          (env->eflags & IF_MASK)) ||
4919         (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4920         cs->halted = 0;
4921     }
4922     if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
4923         kvm_cpu_synchronize_state(cs);
4924         do_cpu_sipi(cpu);
4925     }
4926     if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4927         cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
4928         kvm_cpu_synchronize_state(cs);
4929         apic_handle_tpr_access_report(cpu->apic_state, env->eip,
4930                                       env->tpr_access_type);
4931     }
4932 
4933     return cs->halted;
4934 }
4935 
4936 static int kvm_handle_halt(X86CPU *cpu)
4937 {
4938     CPUState *cs = CPU(cpu);
4939     CPUX86State *env = &cpu->env;
4940 
4941     if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4942           (env->eflags & IF_MASK)) &&
4943         !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4944         cs->halted = 1;
4945         return EXCP_HLT;
4946     }
4947 
4948     return 0;
4949 }
4950 
4951 static int kvm_handle_tpr_access(X86CPU *cpu)
4952 {
4953     CPUState *cs = CPU(cpu);
4954     struct kvm_run *run = cs->kvm_run;
4955 
4956     apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
4957                                   run->tpr_access.is_write ? TPR_ACCESS_WRITE
4958                                                            : TPR_ACCESS_READ);
4959     return 1;
4960 }
4961 
4962 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4963 {
4964     static const uint8_t int3 = 0xcc;
4965 
4966     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4967         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
4968         return -EINVAL;
4969     }
4970     return 0;
4971 }
4972 
4973 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4974 {
4975     uint8_t int3;
4976 
4977     if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
4978         return -EINVAL;
4979     }
4980     if (int3 != 0xcc) {
4981         return 0;
4982     }
4983     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
4984         return -EINVAL;
4985     }
4986     return 0;
4987 }
4988 
4989 static struct {
4990     target_ulong addr;
4991     int len;
4992     int type;
4993 } hw_breakpoint[4];
4994 
4995 static int nb_hw_breakpoint;
4996 
4997 static int find_hw_breakpoint(target_ulong addr, int len, int type)
4998 {
4999     int n;
5000 
5001     for (n = 0; n < nb_hw_breakpoint; n++) {
5002         if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
5003             (hw_breakpoint[n].len == len || len == -1)) {
5004             return n;
5005         }
5006     }
5007     return -1;
5008 }
5009 
5010 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
5011                                   target_ulong len, int type)
5012 {
5013     switch (type) {
5014     case GDB_BREAKPOINT_HW:
5015         len = 1;
5016         break;
5017     case GDB_WATCHPOINT_WRITE:
5018     case GDB_WATCHPOINT_ACCESS:
5019         switch (len) {
5020         case 1:
5021             break;
5022         case 2:
5023         case 4:
5024         case 8:
5025             if (addr & (len - 1)) {
5026                 return -EINVAL;
5027             }
5028             break;
5029         default:
5030             return -EINVAL;
5031         }
5032         break;
5033     default:
5034         return -ENOSYS;
5035     }
5036 
5037     if (nb_hw_breakpoint == 4) {
5038         return -ENOBUFS;
5039     }
5040     if (find_hw_breakpoint(addr, len, type) >= 0) {
5041         return -EEXIST;
5042     }
5043     hw_breakpoint[nb_hw_breakpoint].addr = addr;
5044     hw_breakpoint[nb_hw_breakpoint].len = len;
5045     hw_breakpoint[nb_hw_breakpoint].type = type;
5046     nb_hw_breakpoint++;
5047 
5048     return 0;
5049 }
5050 
5051 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
5052                                   target_ulong len, int type)
5053 {
5054     int n;
5055 
5056     n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
5057     if (n < 0) {
5058         return -ENOENT;
5059     }
5060     nb_hw_breakpoint--;
5061     hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
5062 
5063     return 0;
5064 }
5065 
5066 void kvm_arch_remove_all_hw_breakpoints(void)
5067 {
5068     nb_hw_breakpoint = 0;
5069 }
5070 
5071 static CPUWatchpoint hw_watchpoint;
5072 
5073 static int kvm_handle_debug(X86CPU *cpu,
5074                             struct kvm_debug_exit_arch *arch_info)
5075 {
5076     CPUState *cs = CPU(cpu);
5077     CPUX86State *env = &cpu->env;
5078     int ret = 0;
5079     int n;
5080 
5081     if (arch_info->exception == EXCP01_DB) {
5082         if (arch_info->dr6 & DR6_BS) {
5083             if (cs->singlestep_enabled) {
5084                 ret = EXCP_DEBUG;
5085             }
5086         } else {
5087             for (n = 0; n < 4; n++) {
5088                 if (arch_info->dr6 & (1 << n)) {
5089                     switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
5090                     case 0x0:
5091                         ret = EXCP_DEBUG;
5092                         break;
5093                     case 0x1:
5094                         ret = EXCP_DEBUG;
5095                         cs->watchpoint_hit = &hw_watchpoint;
5096                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5097                         hw_watchpoint.flags = BP_MEM_WRITE;
5098                         break;
5099                     case 0x3:
5100                         ret = EXCP_DEBUG;
5101                         cs->watchpoint_hit = &hw_watchpoint;
5102                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5103                         hw_watchpoint.flags = BP_MEM_ACCESS;
5104                         break;
5105                     }
5106                 }
5107             }
5108         }
5109     } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
5110         ret = EXCP_DEBUG;
5111     }
5112     if (ret == 0) {
5113         cpu_synchronize_state(cs);
5114         assert(env->exception_nr == -1);
5115 
5116         /* pass to guest */
5117         kvm_queue_exception(env, arch_info->exception,
5118                             arch_info->exception == EXCP01_DB,
5119                             arch_info->dr6);
5120         env->has_error_code = 0;
5121     }
5122 
5123     return ret;
5124 }
5125 
5126 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
5127 {
5128     const uint8_t type_code[] = {
5129         [GDB_BREAKPOINT_HW] = 0x0,
5130         [GDB_WATCHPOINT_WRITE] = 0x1,
5131         [GDB_WATCHPOINT_ACCESS] = 0x3
5132     };
5133     const uint8_t len_code[] = {
5134         [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
5135     };
5136     int n;
5137 
5138     if (kvm_sw_breakpoints_active(cpu)) {
5139         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
5140     }
5141     if (nb_hw_breakpoint > 0) {
5142         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
5143         dbg->arch.debugreg[7] = 0x0600;
5144         for (n = 0; n < nb_hw_breakpoint; n++) {
5145             dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
5146             dbg->arch.debugreg[7] |= (2 << (n * 2)) |
5147                 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
5148                 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
5149         }
5150     }
5151 }
5152 
5153 static bool kvm_install_msr_filters(KVMState *s)
5154 {
5155     uint64_t zero = 0;
5156     struct kvm_msr_filter filter = {
5157         .flags = KVM_MSR_FILTER_DEFAULT_ALLOW,
5158     };
5159     int r, i, j = 0;
5160 
5161     for (i = 0; i < KVM_MSR_FILTER_MAX_RANGES; i++) {
5162         KVMMSRHandlers *handler = &msr_handlers[i];
5163         if (handler->msr) {
5164             struct kvm_msr_filter_range *range = &filter.ranges[j++];
5165 
5166             *range = (struct kvm_msr_filter_range) {
5167                 .flags = 0,
5168                 .nmsrs = 1,
5169                 .base = handler->msr,
5170                 .bitmap = (__u8 *)&zero,
5171             };
5172 
5173             if (handler->rdmsr) {
5174                 range->flags |= KVM_MSR_FILTER_READ;
5175             }
5176 
5177             if (handler->wrmsr) {
5178                 range->flags |= KVM_MSR_FILTER_WRITE;
5179             }
5180         }
5181     }
5182 
5183     r = kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter);
5184     if (r) {
5185         return false;
5186     }
5187 
5188     return true;
5189 }
5190 
5191 bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
5192                     QEMUWRMSRHandler *wrmsr)
5193 {
5194     int i;
5195 
5196     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5197         if (!msr_handlers[i].msr) {
5198             msr_handlers[i] = (KVMMSRHandlers) {
5199                 .msr = msr,
5200                 .rdmsr = rdmsr,
5201                 .wrmsr = wrmsr,
5202             };
5203 
5204             if (!kvm_install_msr_filters(s)) {
5205                 msr_handlers[i] = (KVMMSRHandlers) { };
5206                 return false;
5207             }
5208 
5209             return true;
5210         }
5211     }
5212 
5213     return false;
5214 }
5215 
5216 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run)
5217 {
5218     int i;
5219     bool r;
5220 
5221     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5222         KVMMSRHandlers *handler = &msr_handlers[i];
5223         if (run->msr.index == handler->msr) {
5224             if (handler->rdmsr) {
5225                 r = handler->rdmsr(cpu, handler->msr,
5226                                    (uint64_t *)&run->msr.data);
5227                 run->msr.error = r ? 0 : 1;
5228                 return 0;
5229             }
5230         }
5231     }
5232 
5233     assert(false);
5234 }
5235 
5236 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run)
5237 {
5238     int i;
5239     bool r;
5240 
5241     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5242         KVMMSRHandlers *handler = &msr_handlers[i];
5243         if (run->msr.index == handler->msr) {
5244             if (handler->wrmsr) {
5245                 r = handler->wrmsr(cpu, handler->msr, run->msr.data);
5246                 run->msr.error = r ? 0 : 1;
5247                 return 0;
5248             }
5249         }
5250     }
5251 
5252     assert(false);
5253 }
5254 
5255 static bool has_sgx_provisioning;
5256 
5257 static bool __kvm_enable_sgx_provisioning(KVMState *s)
5258 {
5259     int fd, ret;
5260 
5261     if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
5262         return false;
5263     }
5264 
5265     fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
5266     if (fd < 0) {
5267         return false;
5268     }
5269 
5270     ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
5271     if (ret) {
5272         error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
5273         exit(1);
5274     }
5275     close(fd);
5276     return true;
5277 }
5278 
5279 bool kvm_enable_sgx_provisioning(KVMState *s)
5280 {
5281     return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
5282 }
5283 
5284 static bool host_supports_vmx(void)
5285 {
5286     uint32_t ecx, unused;
5287 
5288     host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
5289     return ecx & CPUID_EXT_VMX;
5290 }
5291 
5292 #define VMX_INVALID_GUEST_STATE 0x80000021
5293 
5294 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
5295 {
5296     X86CPU *cpu = X86_CPU(cs);
5297     uint64_t code;
5298     int ret;
5299     bool ctx_invalid;
5300     char str[256];
5301     KVMState *state;
5302 
5303     switch (run->exit_reason) {
5304     case KVM_EXIT_HLT:
5305         DPRINTF("handle_hlt\n");
5306         qemu_mutex_lock_iothread();
5307         ret = kvm_handle_halt(cpu);
5308         qemu_mutex_unlock_iothread();
5309         break;
5310     case KVM_EXIT_SET_TPR:
5311         ret = 0;
5312         break;
5313     case KVM_EXIT_TPR_ACCESS:
5314         qemu_mutex_lock_iothread();
5315         ret = kvm_handle_tpr_access(cpu);
5316         qemu_mutex_unlock_iothread();
5317         break;
5318     case KVM_EXIT_FAIL_ENTRY:
5319         code = run->fail_entry.hardware_entry_failure_reason;
5320         fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
5321                 code);
5322         if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
5323             fprintf(stderr,
5324                     "\nIf you're running a guest on an Intel machine without "
5325                         "unrestricted mode\n"
5326                     "support, the failure can be most likely due to the guest "
5327                         "entering an invalid\n"
5328                     "state for Intel VT. For example, the guest maybe running "
5329                         "in big real mode\n"
5330                     "which is not supported on less recent Intel processors."
5331                         "\n\n");
5332         }
5333         ret = -1;
5334         break;
5335     case KVM_EXIT_EXCEPTION:
5336         fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
5337                 run->ex.exception, run->ex.error_code);
5338         ret = -1;
5339         break;
5340     case KVM_EXIT_DEBUG:
5341         DPRINTF("kvm_exit_debug\n");
5342         qemu_mutex_lock_iothread();
5343         ret = kvm_handle_debug(cpu, &run->debug.arch);
5344         qemu_mutex_unlock_iothread();
5345         break;
5346     case KVM_EXIT_HYPERV:
5347         ret = kvm_hv_handle_exit(cpu, &run->hyperv);
5348         break;
5349     case KVM_EXIT_IOAPIC_EOI:
5350         ioapic_eoi_broadcast(run->eoi.vector);
5351         ret = 0;
5352         break;
5353     case KVM_EXIT_X86_BUS_LOCK:
5354         /* already handled in kvm_arch_post_run */
5355         ret = 0;
5356         break;
5357     case KVM_EXIT_NOTIFY:
5358         ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID);
5359         state = KVM_STATE(current_accel());
5360         sprintf(str, "Encounter a notify exit with %svalid context in"
5361                      " guest. There can be possible misbehaves in guest."
5362                      " Please have a look.", ctx_invalid ? "in" : "");
5363         if (ctx_invalid ||
5364             state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) {
5365             warn_report("KVM internal error: %s", str);
5366             ret = -1;
5367         } else {
5368             warn_report_once("KVM: %s", str);
5369             ret = 0;
5370         }
5371         break;
5372     case KVM_EXIT_X86_RDMSR:
5373         /* We only enable MSR filtering, any other exit is bogus */
5374         assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5375         ret = kvm_handle_rdmsr(cpu, run);
5376         break;
5377     case KVM_EXIT_X86_WRMSR:
5378         /* We only enable MSR filtering, any other exit is bogus */
5379         assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5380         ret = kvm_handle_wrmsr(cpu, run);
5381         break;
5382     default:
5383         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
5384         ret = -1;
5385         break;
5386     }
5387 
5388     return ret;
5389 }
5390 
5391 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
5392 {
5393     X86CPU *cpu = X86_CPU(cs);
5394     CPUX86State *env = &cpu->env;
5395 
5396     kvm_cpu_synchronize_state(cs);
5397     return !(env->cr[0] & CR0_PE_MASK) ||
5398            ((env->segs[R_CS].selector  & 3) != 3);
5399 }
5400 
5401 void kvm_arch_init_irq_routing(KVMState *s)
5402 {
5403     /* We know at this point that we're using the in-kernel
5404      * irqchip, so we can use irqfds, and on x86 we know
5405      * we can use msi via irqfd and GSI routing.
5406      */
5407     kvm_msi_via_irqfd_allowed = true;
5408     kvm_gsi_routing_allowed = true;
5409 
5410     if (kvm_irqchip_is_split()) {
5411         KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
5412         int i;
5413 
5414         /* If the ioapic is in QEMU and the lapics are in KVM, reserve
5415            MSI routes for signaling interrupts to the local apics. */
5416         for (i = 0; i < IOAPIC_NUM_PINS; i++) {
5417             if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
5418                 error_report("Could not enable split IRQ mode.");
5419                 exit(1);
5420             }
5421         }
5422         kvm_irqchip_commit_route_changes(&c);
5423     }
5424 }
5425 
5426 int kvm_arch_irqchip_create(KVMState *s)
5427 {
5428     int ret;
5429     if (kvm_kernel_irqchip_split()) {
5430         ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
5431         if (ret) {
5432             error_report("Could not enable split irqchip mode: %s",
5433                          strerror(-ret));
5434             exit(1);
5435         } else {
5436             DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
5437             kvm_split_irqchip = true;
5438             return 1;
5439         }
5440     } else {
5441         return 0;
5442     }
5443 }
5444 
5445 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
5446 {
5447     CPUX86State *env;
5448     uint64_t ext_id;
5449 
5450     if (!first_cpu) {
5451         return address;
5452     }
5453     env = &X86_CPU(first_cpu)->env;
5454     if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
5455         return address;
5456     }
5457 
5458     /*
5459      * If the remappable format bit is set, or the upper bits are
5460      * already set in address_hi, or the low extended bits aren't
5461      * there anyway, do nothing.
5462      */
5463     ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
5464     if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
5465         return address;
5466     }
5467 
5468     address &= ~ext_id;
5469     address |= ext_id << 35;
5470     return address;
5471 }
5472 
5473 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
5474                              uint64_t address, uint32_t data, PCIDevice *dev)
5475 {
5476     X86IOMMUState *iommu = x86_iommu_get_default();
5477 
5478     if (iommu) {
5479         X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
5480 
5481         if (class->int_remap) {
5482             int ret;
5483             MSIMessage src, dst;
5484 
5485             src.address = route->u.msi.address_hi;
5486             src.address <<= VTD_MSI_ADDR_HI_SHIFT;
5487             src.address |= route->u.msi.address_lo;
5488             src.data = route->u.msi.data;
5489 
5490             ret = class->int_remap(iommu, &src, &dst, dev ?     \
5491                                    pci_requester_id(dev) :      \
5492                                    X86_IOMMU_SID_INVALID);
5493             if (ret) {
5494                 trace_kvm_x86_fixup_msi_error(route->gsi);
5495                 return 1;
5496             }
5497 
5498             /*
5499              * Handled untranslated compatibilty format interrupt with
5500              * extended destination ID in the low bits 11-5. */
5501             dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
5502 
5503             route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
5504             route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
5505             route->u.msi.data = dst.data;
5506             return 0;
5507         }
5508     }
5509 
5510     address = kvm_swizzle_msi_ext_dest_id(address);
5511     route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
5512     route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
5513     return 0;
5514 }
5515 
5516 typedef struct MSIRouteEntry MSIRouteEntry;
5517 
5518 struct MSIRouteEntry {
5519     PCIDevice *dev;             /* Device pointer */
5520     int vector;                 /* MSI/MSIX vector index */
5521     int virq;                   /* Virtual IRQ index */
5522     QLIST_ENTRY(MSIRouteEntry) list;
5523 };
5524 
5525 /* List of used GSI routes */
5526 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
5527     QLIST_HEAD_INITIALIZER(msi_route_list);
5528 
5529 static void kvm_update_msi_routes_all(void *private, bool global,
5530                                       uint32_t index, uint32_t mask)
5531 {
5532     int cnt = 0, vector;
5533     MSIRouteEntry *entry;
5534     MSIMessage msg;
5535     PCIDevice *dev;
5536 
5537     /* TODO: explicit route update */
5538     QLIST_FOREACH(entry, &msi_route_list, list) {
5539         cnt++;
5540         vector = entry->vector;
5541         dev = entry->dev;
5542         if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
5543             msg = msix_get_message(dev, vector);
5544         } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
5545             msg = msi_get_message(dev, vector);
5546         } else {
5547             /*
5548              * Either MSI/MSIX is disabled for the device, or the
5549              * specific message was masked out.  Skip this one.
5550              */
5551             continue;
5552         }
5553         kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
5554     }
5555     kvm_irqchip_commit_routes(kvm_state);
5556     trace_kvm_x86_update_msi_routes(cnt);
5557 }
5558 
5559 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
5560                                 int vector, PCIDevice *dev)
5561 {
5562     static bool notify_list_inited = false;
5563     MSIRouteEntry *entry;
5564 
5565     if (!dev) {
5566         /* These are (possibly) IOAPIC routes only used for split
5567          * kernel irqchip mode, while what we are housekeeping are
5568          * PCI devices only. */
5569         return 0;
5570     }
5571 
5572     entry = g_new0(MSIRouteEntry, 1);
5573     entry->dev = dev;
5574     entry->vector = vector;
5575     entry->virq = route->gsi;
5576     QLIST_INSERT_HEAD(&msi_route_list, entry, list);
5577 
5578     trace_kvm_x86_add_msi_route(route->gsi);
5579 
5580     if (!notify_list_inited) {
5581         /* For the first time we do add route, add ourselves into
5582          * IOMMU's IEC notify list if needed. */
5583         X86IOMMUState *iommu = x86_iommu_get_default();
5584         if (iommu) {
5585             x86_iommu_iec_register_notifier(iommu,
5586                                             kvm_update_msi_routes_all,
5587                                             NULL);
5588         }
5589         notify_list_inited = true;
5590     }
5591     return 0;
5592 }
5593 
5594 int kvm_arch_release_virq_post(int virq)
5595 {
5596     MSIRouteEntry *entry, *next;
5597     QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
5598         if (entry->virq == virq) {
5599             trace_kvm_x86_remove_msi_route(virq);
5600             QLIST_REMOVE(entry, list);
5601             g_free(entry);
5602             break;
5603         }
5604     }
5605     return 0;
5606 }
5607 
5608 int kvm_arch_msi_data_to_gsi(uint32_t data)
5609 {
5610     abort();
5611 }
5612 
5613 bool kvm_has_waitpkg(void)
5614 {
5615     return has_msr_umwait;
5616 }
5617 
5618 bool kvm_arch_cpu_check_are_resettable(void)
5619 {
5620     return !sev_es_enabled();
5621 }
5622 
5623 #define ARCH_REQ_XCOMP_GUEST_PERM       0x1025
5624 
5625 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
5626 {
5627     KVMState *s = kvm_state;
5628     uint64_t supported;
5629 
5630     mask &= XSTATE_DYNAMIC_MASK;
5631     if (!mask) {
5632         return;
5633     }
5634     /*
5635      * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
5636      * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
5637      * about them already because they are not supported features.
5638      */
5639     supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
5640     supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
5641     mask &= supported;
5642 
5643     while (mask) {
5644         int bit = ctz64(mask);
5645         int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
5646         if (rc) {
5647             /*
5648              * Older kernel version (<5.17) do not support
5649              * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
5650              * any dynamic feature from kvm_arch_get_supported_cpuid.
5651              */
5652             warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
5653                         "for feature bit %d", bit);
5654         }
5655         mask &= ~BIT_ULL(bit);
5656     }
5657 }
5658 
5659 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp)
5660 {
5661     KVMState *s = KVM_STATE(obj);
5662     return s->notify_vmexit;
5663 }
5664 
5665 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp)
5666 {
5667     KVMState *s = KVM_STATE(obj);
5668 
5669     if (s->fd != -1) {
5670         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5671         return;
5672     }
5673 
5674     s->notify_vmexit = value;
5675 }
5676 
5677 static void kvm_arch_get_notify_window(Object *obj, Visitor *v,
5678                                        const char *name, void *opaque,
5679                                        Error **errp)
5680 {
5681     KVMState *s = KVM_STATE(obj);
5682     uint32_t value = s->notify_window;
5683 
5684     visit_type_uint32(v, name, &value, errp);
5685 }
5686 
5687 static void kvm_arch_set_notify_window(Object *obj, Visitor *v,
5688                                        const char *name, void *opaque,
5689                                        Error **errp)
5690 {
5691     KVMState *s = KVM_STATE(obj);
5692     Error *error = NULL;
5693     uint32_t value;
5694 
5695     if (s->fd != -1) {
5696         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5697         return;
5698     }
5699 
5700     visit_type_uint32(v, name, &value, &error);
5701     if (error) {
5702         error_propagate(errp, error);
5703         return;
5704     }
5705 
5706     s->notify_window = value;
5707 }
5708 
5709 void kvm_arch_accel_class_init(ObjectClass *oc)
5710 {
5711     object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption",
5712                                    &NotifyVmexitOption_lookup,
5713                                    kvm_arch_get_notify_vmexit,
5714                                    kvm_arch_set_notify_vmexit);
5715     object_class_property_set_description(oc, "notify-vmexit",
5716                                           "Enable notify VM exit");
5717 
5718     object_class_property_add(oc, "notify-window", "uint32",
5719                               kvm_arch_get_notify_window,
5720                               kvm_arch_set_notify_window,
5721                               NULL, NULL);
5722     object_class_property_set_description(oc, "notify-window",
5723                                           "Clock cycles without an event window "
5724                                           "after which a notification VM exit occurs");
5725 }
5726 
5727 void kvm_set_max_apic_id(uint32_t max_apic_id)
5728 {
5729     kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id);
5730 }
5731