1 /* 2 * QEMU KVM support 3 * 4 * Copyright (C) 2006-2008 Qumranet Technologies 5 * Copyright IBM, Corp. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or later. 11 * See the COPYING file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qapi/qapi-events-run-state.h" 17 #include "qapi/error.h" 18 #include "qapi/visitor.h" 19 #include <math.h> 20 #include <sys/ioctl.h> 21 #include <sys/utsname.h> 22 #include <sys/syscall.h> 23 #include <sys/resource.h> 24 #include <sys/time.h> 25 26 #include <linux/kvm.h> 27 #include <linux/kvm_para.h> 28 #include "standard-headers/asm-x86/kvm_para.h" 29 #include "hw/xen/interface/arch-x86/cpuid.h" 30 31 #include "cpu.h" 32 #include "host-cpu.h" 33 #include "vmsr_energy.h" 34 #include "sysemu/sysemu.h" 35 #include "sysemu/hw_accel.h" 36 #include "sysemu/kvm_int.h" 37 #include "sysemu/runstate.h" 38 #include "kvm_i386.h" 39 #include "../confidential-guest.h" 40 #include "sev.h" 41 #include "xen-emu.h" 42 #include "hyperv.h" 43 #include "hyperv-proto.h" 44 45 #include "gdbstub/enums.h" 46 #include "qemu/host-utils.h" 47 #include "qemu/main-loop.h" 48 #include "qemu/ratelimit.h" 49 #include "qemu/config-file.h" 50 #include "qemu/error-report.h" 51 #include "qemu/memalign.h" 52 #include "hw/i386/x86.h" 53 #include "hw/i386/kvm/xen_evtchn.h" 54 #include "hw/i386/pc.h" 55 #include "hw/i386/apic.h" 56 #include "hw/i386/apic_internal.h" 57 #include "hw/i386/apic-msidef.h" 58 #include "hw/i386/intel_iommu.h" 59 #include "hw/i386/topology.h" 60 #include "hw/i386/x86-iommu.h" 61 #include "hw/i386/e820_memory_layout.h" 62 63 #include "hw/xen/xen.h" 64 65 #include "hw/pci/pci.h" 66 #include "hw/pci/msi.h" 67 #include "hw/pci/msix.h" 68 #include "migration/blocker.h" 69 #include "exec/memattrs.h" 70 #include "trace.h" 71 72 #include CONFIG_DEVICES 73 74 //#define DEBUG_KVM 75 76 #ifdef DEBUG_KVM 77 #define DPRINTF(fmt, ...) \ 78 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 79 #else 80 #define DPRINTF(fmt, ...) \ 81 do { } while (0) 82 #endif 83 84 /* From arch/x86/kvm/lapic.h */ 85 #define KVM_APIC_BUS_CYCLE_NS 1 86 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS) 87 88 #define MSR_KVM_WALL_CLOCK 0x11 89 #define MSR_KVM_SYSTEM_TIME 0x12 90 91 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus 92 * 255 kvm_msr_entry structs */ 93 #define MSR_BUF_SIZE 4096 94 95 static void kvm_init_msrs(X86CPU *cpu); 96 97 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 98 KVM_CAP_INFO(SET_TSS_ADDR), 99 KVM_CAP_INFO(EXT_CPUID), 100 KVM_CAP_INFO(MP_STATE), 101 KVM_CAP_INFO(SIGNAL_MSI), 102 KVM_CAP_INFO(IRQ_ROUTING), 103 KVM_CAP_INFO(DEBUGREGS), 104 KVM_CAP_INFO(XSAVE), 105 KVM_CAP_INFO(VCPU_EVENTS), 106 KVM_CAP_INFO(X86_ROBUST_SINGLESTEP), 107 KVM_CAP_INFO(MCE), 108 KVM_CAP_INFO(ADJUST_CLOCK), 109 KVM_CAP_INFO(SET_IDENTITY_MAP_ADDR), 110 KVM_CAP_LAST_INFO 111 }; 112 113 static bool has_msr_star; 114 static bool has_msr_hsave_pa; 115 static bool has_msr_tsc_aux; 116 static bool has_msr_tsc_adjust; 117 static bool has_msr_tsc_deadline; 118 static bool has_msr_feature_control; 119 static bool has_msr_misc_enable; 120 static bool has_msr_smbase; 121 static bool has_msr_bndcfgs; 122 static int lm_capable_kernel; 123 static bool has_msr_hv_hypercall; 124 static bool has_msr_hv_crash; 125 static bool has_msr_hv_reset; 126 static bool has_msr_hv_vpindex; 127 static bool hv_vpindex_settable; 128 static bool has_msr_hv_runtime; 129 static bool has_msr_hv_synic; 130 static bool has_msr_hv_stimer; 131 static bool has_msr_hv_frequencies; 132 static bool has_msr_hv_reenlightenment; 133 static bool has_msr_hv_syndbg_options; 134 static bool has_msr_xss; 135 static bool has_msr_umwait; 136 static bool has_msr_spec_ctrl; 137 static bool has_tsc_scale_msr; 138 static bool has_msr_tsx_ctrl; 139 static bool has_msr_virt_ssbd; 140 static bool has_msr_smi_count; 141 static bool has_msr_arch_capabs; 142 static bool has_msr_core_capabs; 143 static bool has_msr_vmx_vmfunc; 144 static bool has_msr_ucode_rev; 145 static bool has_msr_vmx_procbased_ctls2; 146 static bool has_msr_perf_capabs; 147 static bool has_msr_pkrs; 148 149 static uint32_t has_architectural_pmu_version; 150 static uint32_t num_architectural_pmu_gp_counters; 151 static uint32_t num_architectural_pmu_fixed_counters; 152 153 static int has_xsave2; 154 static int has_xcrs; 155 static int has_sregs2; 156 static int has_exception_payload; 157 static int has_triple_fault_event; 158 159 static bool has_msr_mcg_ext_ctl; 160 161 static struct kvm_cpuid2 *cpuid_cache; 162 static struct kvm_cpuid2 *hv_cpuid_cache; 163 static struct kvm_msr_list *kvm_feature_msrs; 164 165 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES]; 166 167 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */ 168 static RateLimit bus_lock_ratelimit_ctrl; 169 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value); 170 171 static const char *vm_type_name[] = { 172 [KVM_X86_DEFAULT_VM] = "default", 173 [KVM_X86_SEV_VM] = "SEV", 174 [KVM_X86_SEV_ES_VM] = "SEV-ES", 175 [KVM_X86_SNP_VM] = "SEV-SNP", 176 }; 177 178 bool kvm_is_vm_type_supported(int type) 179 { 180 uint32_t machine_types; 181 182 /* 183 * old KVM doesn't support KVM_CAP_VM_TYPES but KVM_X86_DEFAULT_VM 184 * is always supported 185 */ 186 if (type == KVM_X86_DEFAULT_VM) { 187 return true; 188 } 189 190 machine_types = kvm_check_extension(KVM_STATE(current_machine->accelerator), 191 KVM_CAP_VM_TYPES); 192 return !!(machine_types & BIT(type)); 193 } 194 195 int kvm_get_vm_type(MachineState *ms) 196 { 197 int kvm_type = KVM_X86_DEFAULT_VM; 198 199 if (ms->cgs) { 200 if (!object_dynamic_cast(OBJECT(ms->cgs), TYPE_X86_CONFIDENTIAL_GUEST)) { 201 error_report("configuration type %s not supported for x86 guests", 202 object_get_typename(OBJECT(ms->cgs))); 203 exit(1); 204 } 205 kvm_type = x86_confidential_guest_kvm_type( 206 X86_CONFIDENTIAL_GUEST(ms->cgs)); 207 } 208 209 if (!kvm_is_vm_type_supported(kvm_type)) { 210 error_report("vm-type %s not supported by KVM", vm_type_name[kvm_type]); 211 exit(1); 212 } 213 214 return kvm_type; 215 } 216 217 bool kvm_enable_hypercall(uint64_t enable_mask) 218 { 219 KVMState *s = KVM_STATE(current_accel()); 220 221 return !kvm_vm_enable_cap(s, KVM_CAP_EXIT_HYPERCALL, 0, enable_mask); 222 } 223 224 bool kvm_has_smm(void) 225 { 226 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM); 227 } 228 229 bool kvm_has_adjust_clock_stable(void) 230 { 231 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); 232 233 return (ret & KVM_CLOCK_TSC_STABLE); 234 } 235 236 bool kvm_has_exception_payload(void) 237 { 238 return has_exception_payload; 239 } 240 241 static bool kvm_x2apic_api_set_flags(uint64_t flags) 242 { 243 KVMState *s = KVM_STATE(current_accel()); 244 245 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); 246 } 247 248 #define MEMORIZE(fn, _result) \ 249 ({ \ 250 static bool _memorized; \ 251 \ 252 if (_memorized) { \ 253 return _result; \ 254 } \ 255 _memorized = true; \ 256 _result = fn; \ 257 }) 258 259 static bool has_x2apic_api; 260 261 bool kvm_has_x2apic_api(void) 262 { 263 return has_x2apic_api; 264 } 265 266 bool kvm_enable_x2apic(void) 267 { 268 return MEMORIZE( 269 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | 270 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), 271 has_x2apic_api); 272 } 273 274 bool kvm_hv_vpindex_settable(void) 275 { 276 return hv_vpindex_settable; 277 } 278 279 static int kvm_get_tsc(CPUState *cs) 280 { 281 X86CPU *cpu = X86_CPU(cs); 282 CPUX86State *env = &cpu->env; 283 uint64_t value; 284 int ret; 285 286 if (env->tsc_valid) { 287 return 0; 288 } 289 290 env->tsc_valid = !runstate_is_running(); 291 292 ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value); 293 if (ret < 0) { 294 return ret; 295 } 296 297 env->tsc = value; 298 return 0; 299 } 300 301 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) 302 { 303 kvm_get_tsc(cpu); 304 } 305 306 void kvm_synchronize_all_tsc(void) 307 { 308 CPUState *cpu; 309 310 if (kvm_enabled()) { 311 CPU_FOREACH(cpu) { 312 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); 313 } 314 } 315 } 316 317 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) 318 { 319 struct kvm_cpuid2 *cpuid; 320 int r, size; 321 322 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 323 cpuid = g_malloc0(size); 324 cpuid->nent = max; 325 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); 326 if (r == 0 && cpuid->nent >= max) { 327 r = -E2BIG; 328 } 329 if (r < 0) { 330 if (r == -E2BIG) { 331 g_free(cpuid); 332 return NULL; 333 } else { 334 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", 335 strerror(-r)); 336 exit(1); 337 } 338 } 339 return cpuid; 340 } 341 342 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough 343 * for all entries. 344 */ 345 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) 346 { 347 struct kvm_cpuid2 *cpuid; 348 int max = 1; 349 350 if (cpuid_cache != NULL) { 351 return cpuid_cache; 352 } 353 while ((cpuid = try_get_cpuid(s, max)) == NULL) { 354 max *= 2; 355 } 356 cpuid_cache = cpuid; 357 return cpuid; 358 } 359 360 static bool host_tsx_broken(void) 361 { 362 int family, model, stepping;\ 363 char vendor[CPUID_VENDOR_SZ + 1]; 364 365 host_cpu_vendor_fms(vendor, &family, &model, &stepping); 366 367 /* Check if we are running on a Haswell host known to have broken TSX */ 368 return !strcmp(vendor, CPUID_VENDOR_INTEL) && 369 (family == 6) && 370 ((model == 63 && stepping < 4) || 371 model == 60 || model == 69 || model == 70); 372 } 373 374 /* Returns the value for a specific register on the cpuid entry 375 */ 376 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) 377 { 378 uint32_t ret = 0; 379 switch (reg) { 380 case R_EAX: 381 ret = entry->eax; 382 break; 383 case R_EBX: 384 ret = entry->ebx; 385 break; 386 case R_ECX: 387 ret = entry->ecx; 388 break; 389 case R_EDX: 390 ret = entry->edx; 391 break; 392 } 393 return ret; 394 } 395 396 /* Find matching entry for function/index on kvm_cpuid2 struct 397 */ 398 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, 399 uint32_t function, 400 uint32_t index) 401 { 402 int i; 403 for (i = 0; i < cpuid->nent; ++i) { 404 if (cpuid->entries[i].function == function && 405 cpuid->entries[i].index == index) { 406 return &cpuid->entries[i]; 407 } 408 } 409 /* not found: */ 410 return NULL; 411 } 412 413 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, 414 uint32_t index, int reg) 415 { 416 struct kvm_cpuid2 *cpuid; 417 uint32_t ret = 0; 418 uint32_t cpuid_1_edx, unused; 419 uint64_t bitmask; 420 421 cpuid = get_supported_cpuid(s); 422 423 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); 424 if (entry) { 425 ret = cpuid_entry_get_reg(entry, reg); 426 } 427 428 /* Fixups for the data returned by KVM, below */ 429 430 if (function == 1 && reg == R_EDX) { 431 /* KVM before 2.6.30 misreports the following features */ 432 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; 433 /* KVM never reports CPUID_HT but QEMU can support when vcpus > 1 */ 434 ret |= CPUID_HT; 435 } else if (function == 1 && reg == R_ECX) { 436 /* We can set the hypervisor flag, even if KVM does not return it on 437 * GET_SUPPORTED_CPUID 438 */ 439 ret |= CPUID_EXT_HYPERVISOR; 440 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it 441 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, 442 * and the irqchip is in the kernel. 443 */ 444 if (kvm_irqchip_in_kernel() && 445 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { 446 ret |= CPUID_EXT_TSC_DEADLINE_TIMER; 447 } 448 449 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled 450 * without the in-kernel irqchip 451 */ 452 if (!kvm_irqchip_in_kernel()) { 453 ret &= ~CPUID_EXT_X2APIC; 454 } 455 456 if (enable_cpu_pm) { 457 int disable_exits = kvm_check_extension(s, 458 KVM_CAP_X86_DISABLE_EXITS); 459 460 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) { 461 ret |= CPUID_EXT_MONITOR; 462 } 463 } 464 } else if (function == 6 && reg == R_EAX) { 465 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ 466 } else if (function == 7 && index == 0 && reg == R_EBX) { 467 /* Not new instructions, just an optimization. */ 468 uint32_t ebx; 469 host_cpuid(7, 0, &unused, &ebx, &unused, &unused); 470 ret |= ebx & CPUID_7_0_EBX_ERMS; 471 472 if (host_tsx_broken()) { 473 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); 474 } 475 } else if (function == 7 && index == 0 && reg == R_EDX) { 476 /* Not new instructions, just an optimization. */ 477 uint32_t edx; 478 host_cpuid(7, 0, &unused, &unused, &unused, &edx); 479 ret |= edx & CPUID_7_0_EDX_FSRM; 480 481 /* 482 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts. 483 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is 484 * returned by KVM_GET_MSR_INDEX_LIST. 485 */ 486 if (!has_msr_arch_capabs) { 487 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES; 488 } 489 } else if (function == 7 && index == 1 && reg == R_EAX) { 490 /* Not new instructions, just an optimization. */ 491 uint32_t eax; 492 host_cpuid(7, 1, &eax, &unused, &unused, &unused); 493 ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC); 494 } else if (function == 7 && index == 2 && reg == R_EDX) { 495 uint32_t edx; 496 host_cpuid(7, 2, &unused, &unused, &unused, &edx); 497 ret |= edx & CPUID_7_2_EDX_MCDT_NO; 498 } else if (function == 0xd && index == 0 && 499 (reg == R_EAX || reg == R_EDX)) { 500 /* 501 * The value returned by KVM_GET_SUPPORTED_CPUID does not include 502 * features that still have to be enabled with the arch_prctl 503 * system call. QEMU needs the full value, which is retrieved 504 * with KVM_GET_DEVICE_ATTR. 505 */ 506 struct kvm_device_attr attr = { 507 .group = 0, 508 .attr = KVM_X86_XCOMP_GUEST_SUPP, 509 .addr = (unsigned long) &bitmask 510 }; 511 512 bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES); 513 if (!sys_attr) { 514 return ret; 515 } 516 517 int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr); 518 if (rc < 0) { 519 if (rc != -ENXIO) { 520 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) " 521 "error: %d", rc); 522 } 523 return ret; 524 } 525 ret = (reg == R_EAX) ? bitmask : bitmask >> 32; 526 } else if (function == 0x80000001 && reg == R_ECX) { 527 /* 528 * It's safe to enable TOPOEXT even if it's not returned by 529 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows 530 * us to keep CPU models including TOPOEXT runnable on older kernels. 531 */ 532 ret |= CPUID_EXT3_TOPOEXT; 533 } else if (function == 0x80000001 && reg == R_EDX) { 534 /* On Intel, kvm returns cpuid according to the Intel spec, 535 * so add missing bits according to the AMD spec: 536 */ 537 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); 538 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; 539 } else if (function == 0x80000007 && reg == R_EBX) { 540 ret |= CPUID_8000_0007_EBX_OVERFLOW_RECOV | CPUID_8000_0007_EBX_SUCCOR; 541 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { 542 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't 543 * be enabled without the in-kernel irqchip 544 */ 545 if (!kvm_irqchip_in_kernel()) { 546 ret &= ~(1U << KVM_FEATURE_PV_UNHALT); 547 } 548 if (kvm_irqchip_is_split()) { 549 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID; 550 } 551 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) { 552 ret |= 1U << KVM_HINTS_REALTIME; 553 } 554 555 if (current_machine->cgs) { 556 ret = x86_confidential_guest_mask_cpuid_features( 557 X86_CONFIDENTIAL_GUEST(current_machine->cgs), 558 function, index, reg, ret); 559 } 560 return ret; 561 } 562 563 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index) 564 { 565 struct { 566 struct kvm_msrs info; 567 struct kvm_msr_entry entries[1]; 568 } msr_data = {}; 569 uint64_t value; 570 uint32_t ret, can_be_one, must_be_one; 571 572 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */ 573 return 0; 574 } 575 576 /* Check if requested MSR is supported feature MSR */ 577 int i; 578 for (i = 0; i < kvm_feature_msrs->nmsrs; i++) 579 if (kvm_feature_msrs->indices[i] == index) { 580 break; 581 } 582 if (i == kvm_feature_msrs->nmsrs) { 583 return 0; /* if the feature MSR is not supported, simply return 0 */ 584 } 585 586 msr_data.info.nmsrs = 1; 587 msr_data.entries[0].index = index; 588 589 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data); 590 if (ret != 1) { 591 error_report("KVM get MSR (index=0x%x) feature failed, %s", 592 index, strerror(-ret)); 593 exit(1); 594 } 595 596 value = msr_data.entries[0].data; 597 switch (index) { 598 case MSR_IA32_VMX_PROCBASED_CTLS2: 599 if (!has_msr_vmx_procbased_ctls2) { 600 /* KVM forgot to add these bits for some time, do this ourselves. */ 601 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) & 602 CPUID_XSAVE_XSAVES) { 603 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32; 604 } 605 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) & 606 CPUID_EXT_RDRAND) { 607 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32; 608 } 609 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 610 CPUID_7_0_EBX_INVPCID) { 611 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32; 612 } 613 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 614 CPUID_7_0_EBX_RDSEED) { 615 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32; 616 } 617 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) & 618 CPUID_EXT2_RDTSCP) { 619 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32; 620 } 621 } 622 /* fall through */ 623 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 624 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 625 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 626 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 627 /* 628 * Return true for bits that can be one, but do not have to be one. 629 * The SDM tells us which bits could have a "must be one" setting, 630 * so we can do the opposite transformation in make_vmx_msr_value. 631 */ 632 must_be_one = (uint32_t)value; 633 can_be_one = (uint32_t)(value >> 32); 634 return can_be_one & ~must_be_one; 635 636 default: 637 return value; 638 } 639 } 640 641 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, 642 int *max_banks) 643 { 644 *max_banks = kvm_check_extension(s, KVM_CAP_MCE); 645 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); 646 } 647 648 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) 649 { 650 CPUState *cs = CPU(cpu); 651 CPUX86State *env = &cpu->env; 652 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_EN | MCI_STATUS_MISCV | 653 MCI_STATUS_ADDRV; 654 uint64_t mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV; 655 int flags = 0; 656 657 if (!IS_AMD_CPU(env)) { 658 status |= MCI_STATUS_S | MCI_STATUS_UC; 659 if (code == BUS_MCEERR_AR) { 660 status |= MCI_STATUS_AR | 0x134; 661 mcg_status |= MCG_STATUS_EIPV; 662 } else { 663 status |= 0xc0; 664 } 665 } else { 666 if (code == BUS_MCEERR_AR) { 667 status |= MCI_STATUS_UC | MCI_STATUS_POISON; 668 mcg_status |= MCG_STATUS_EIPV; 669 } else { 670 /* Setting the POISON bit for deferred errors indicates to the 671 * guest kernel that the address provided by the MCE is valid 672 * and usable which will ensure that the guest kernel will send 673 * a SIGBUS_AO signal to the guest process. This allows for 674 * more desirable behavior in the case that the guest process 675 * with poisoned memory has set the MCE_KILL_EARLY prctl flag 676 * which indicates that the process would prefer to handle or 677 * shutdown due to the poisoned memory condition before the 678 * memory has been accessed. 679 * 680 * While the POISON bit would not be set in a deferred error 681 * sent from hardware, the bit is not meaningful for deferred 682 * errors and can be reused in this scenario. 683 */ 684 status |= MCI_STATUS_DEFERRED | MCI_STATUS_POISON; 685 } 686 } 687 688 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; 689 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the 690 * guest kernel back into env->mcg_ext_ctl. 691 */ 692 cpu_synchronize_state(cs); 693 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { 694 mcg_status |= MCG_STATUS_LMCE; 695 flags = 0; 696 } 697 698 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, 699 (MCM_ADDR_PHYS << 6) | 0xc, flags); 700 } 701 702 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar) 703 { 704 MemoryFailureFlags mff = {.action_required = ar, .recursive = false}; 705 706 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action, 707 &mff); 708 } 709 710 static void hardware_memory_error(void *host_addr) 711 { 712 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true); 713 error_report("QEMU got Hardware memory error at addr %p", host_addr); 714 exit(1); 715 } 716 717 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) 718 { 719 X86CPU *cpu = X86_CPU(c); 720 CPUX86State *env = &cpu->env; 721 ram_addr_t ram_addr; 722 hwaddr paddr; 723 724 /* If we get an action required MCE, it has been injected by KVM 725 * while the VM was running. An action optional MCE instead should 726 * be coming from the main thread, which qemu_init_sigbus identifies 727 * as the "early kill" thread. 728 */ 729 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); 730 731 if ((env->mcg_cap & MCG_SER_P) && addr) { 732 ram_addr = qemu_ram_addr_from_host(addr); 733 if (ram_addr != RAM_ADDR_INVALID && 734 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { 735 kvm_hwpoison_page_add(ram_addr); 736 kvm_mce_inject(cpu, paddr, code); 737 738 /* 739 * Use different logging severity based on error type. 740 * If there is additional MCE reporting on the hypervisor, QEMU VA 741 * could be another source to identify the PA and MCE details. 742 */ 743 if (code == BUS_MCEERR_AR) { 744 error_report("Guest MCE Memory Error at QEMU addr %p and " 745 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 746 addr, paddr, "BUS_MCEERR_AR"); 747 } else { 748 warn_report("Guest MCE Memory Error at QEMU addr %p and " 749 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 750 addr, paddr, "BUS_MCEERR_AO"); 751 } 752 753 return; 754 } 755 756 if (code == BUS_MCEERR_AO) { 757 warn_report("Hardware memory error at addr %p of type %s " 758 "for memory used by QEMU itself instead of guest system!", 759 addr, "BUS_MCEERR_AO"); 760 } 761 } 762 763 if (code == BUS_MCEERR_AR) { 764 hardware_memory_error(addr); 765 } 766 767 /* Hope we are lucky for AO MCE, just notify a event */ 768 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false); 769 } 770 771 static void kvm_queue_exception(CPUX86State *env, 772 int32_t exception_nr, 773 uint8_t exception_has_payload, 774 uint64_t exception_payload) 775 { 776 assert(env->exception_nr == -1); 777 assert(!env->exception_pending); 778 assert(!env->exception_injected); 779 assert(!env->exception_has_payload); 780 781 env->exception_nr = exception_nr; 782 783 if (has_exception_payload) { 784 env->exception_pending = 1; 785 786 env->exception_has_payload = exception_has_payload; 787 env->exception_payload = exception_payload; 788 } else { 789 env->exception_injected = 1; 790 791 if (exception_nr == EXCP01_DB) { 792 assert(exception_has_payload); 793 env->dr[6] = exception_payload; 794 } else if (exception_nr == EXCP0E_PAGE) { 795 assert(exception_has_payload); 796 env->cr[2] = exception_payload; 797 } else { 798 assert(!exception_has_payload); 799 } 800 } 801 } 802 803 static void cpu_update_state(void *opaque, bool running, RunState state) 804 { 805 CPUX86State *env = opaque; 806 807 if (running) { 808 env->tsc_valid = false; 809 } 810 } 811 812 unsigned long kvm_arch_vcpu_id(CPUState *cs) 813 { 814 X86CPU *cpu = X86_CPU(cs); 815 return cpu->apic_id; 816 } 817 818 #ifndef KVM_CPUID_SIGNATURE_NEXT 819 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 820 #endif 821 822 static bool hyperv_enabled(X86CPU *cpu) 823 { 824 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 && 825 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) || 826 cpu->hyperv_features || cpu->hyperv_passthrough); 827 } 828 829 /* 830 * Check whether target_freq is within conservative 831 * ntp correctable bounds (250ppm) of freq 832 */ 833 static inline bool freq_within_bounds(int freq, int target_freq) 834 { 835 int max_freq = freq + (freq * 250 / 1000000); 836 int min_freq = freq - (freq * 250 / 1000000); 837 838 if (target_freq >= min_freq && target_freq <= max_freq) { 839 return true; 840 } 841 842 return false; 843 } 844 845 static int kvm_arch_set_tsc_khz(CPUState *cs) 846 { 847 X86CPU *cpu = X86_CPU(cs); 848 CPUX86State *env = &cpu->env; 849 int r, cur_freq; 850 bool set_ioctl = false; 851 852 if (!env->tsc_khz) { 853 return 0; 854 } 855 856 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 857 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP; 858 859 /* 860 * If TSC scaling is supported, attempt to set TSC frequency. 861 */ 862 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) { 863 set_ioctl = true; 864 } 865 866 /* 867 * If desired TSC frequency is within bounds of NTP correction, 868 * attempt to set TSC frequency. 869 */ 870 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) { 871 set_ioctl = true; 872 } 873 874 r = set_ioctl ? 875 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : 876 -ENOTSUP; 877 878 if (r < 0) { 879 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current 880 * TSC frequency doesn't match the one we want. 881 */ 882 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 883 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 884 -ENOTSUP; 885 if (cur_freq <= 0 || cur_freq != env->tsc_khz) { 886 warn_report("TSC frequency mismatch between " 887 "VM (%" PRId64 " kHz) and host (%d kHz), " 888 "and TSC scaling unavailable", 889 env->tsc_khz, cur_freq); 890 return r; 891 } 892 } 893 894 return 0; 895 } 896 897 static bool tsc_is_stable_and_known(CPUX86State *env) 898 { 899 if (!env->tsc_khz) { 900 return false; 901 } 902 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) 903 || env->user_tsc_khz; 904 } 905 906 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1) 907 908 static struct { 909 const char *desc; 910 struct { 911 uint32_t func; 912 int reg; 913 uint32_t bits; 914 } flags[2]; 915 uint64_t dependencies; 916 } kvm_hyperv_properties[] = { 917 [HYPERV_FEAT_RELAXED] = { 918 .desc = "relaxed timing (hv-relaxed)", 919 .flags = { 920 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 921 .bits = HV_RELAXED_TIMING_RECOMMENDED} 922 } 923 }, 924 [HYPERV_FEAT_VAPIC] = { 925 .desc = "virtual APIC (hv-vapic)", 926 .flags = { 927 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 928 .bits = HV_APIC_ACCESS_AVAILABLE} 929 } 930 }, 931 [HYPERV_FEAT_TIME] = { 932 .desc = "clocksources (hv-time)", 933 .flags = { 934 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 935 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE} 936 } 937 }, 938 [HYPERV_FEAT_CRASH] = { 939 .desc = "crash MSRs (hv-crash)", 940 .flags = { 941 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 942 .bits = HV_GUEST_CRASH_MSR_AVAILABLE} 943 } 944 }, 945 [HYPERV_FEAT_RESET] = { 946 .desc = "reset MSR (hv-reset)", 947 .flags = { 948 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 949 .bits = HV_RESET_AVAILABLE} 950 } 951 }, 952 [HYPERV_FEAT_VPINDEX] = { 953 .desc = "VP_INDEX MSR (hv-vpindex)", 954 .flags = { 955 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 956 .bits = HV_VP_INDEX_AVAILABLE} 957 } 958 }, 959 [HYPERV_FEAT_RUNTIME] = { 960 .desc = "VP_RUNTIME MSR (hv-runtime)", 961 .flags = { 962 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 963 .bits = HV_VP_RUNTIME_AVAILABLE} 964 } 965 }, 966 [HYPERV_FEAT_SYNIC] = { 967 .desc = "synthetic interrupt controller (hv-synic)", 968 .flags = { 969 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 970 .bits = HV_SYNIC_AVAILABLE} 971 } 972 }, 973 [HYPERV_FEAT_STIMER] = { 974 .desc = "synthetic timers (hv-stimer)", 975 .flags = { 976 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 977 .bits = HV_SYNTIMERS_AVAILABLE} 978 }, 979 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME) 980 }, 981 [HYPERV_FEAT_FREQUENCIES] = { 982 .desc = "frequency MSRs (hv-frequencies)", 983 .flags = { 984 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 985 .bits = HV_ACCESS_FREQUENCY_MSRS}, 986 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 987 .bits = HV_FREQUENCY_MSRS_AVAILABLE} 988 } 989 }, 990 [HYPERV_FEAT_REENLIGHTENMENT] = { 991 .desc = "reenlightenment MSRs (hv-reenlightenment)", 992 .flags = { 993 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 994 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL} 995 } 996 }, 997 [HYPERV_FEAT_TLBFLUSH] = { 998 .desc = "paravirtualized TLB flush (hv-tlbflush)", 999 .flags = { 1000 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1001 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED | 1002 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 1003 }, 1004 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 1005 }, 1006 [HYPERV_FEAT_EVMCS] = { 1007 .desc = "enlightened VMCS (hv-evmcs)", 1008 .flags = { 1009 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1010 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED} 1011 }, 1012 .dependencies = BIT(HYPERV_FEAT_VAPIC) 1013 }, 1014 [HYPERV_FEAT_IPI] = { 1015 .desc = "paravirtualized IPI (hv-ipi)", 1016 .flags = { 1017 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1018 .bits = HV_CLUSTER_IPI_RECOMMENDED | 1019 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 1020 }, 1021 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 1022 }, 1023 [HYPERV_FEAT_STIMER_DIRECT] = { 1024 .desc = "direct mode synthetic timers (hv-stimer-direct)", 1025 .flags = { 1026 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1027 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE} 1028 }, 1029 .dependencies = BIT(HYPERV_FEAT_STIMER) 1030 }, 1031 [HYPERV_FEAT_AVIC] = { 1032 .desc = "AVIC/APICv support (hv-avic/hv-apicv)", 1033 .flags = { 1034 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1035 .bits = HV_DEPRECATING_AEOI_RECOMMENDED} 1036 } 1037 }, 1038 #ifdef CONFIG_SYNDBG 1039 [HYPERV_FEAT_SYNDBG] = { 1040 .desc = "Enable synthetic kernel debugger channel (hv-syndbg)", 1041 .flags = { 1042 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1043 .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE} 1044 }, 1045 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED) 1046 }, 1047 #endif 1048 [HYPERV_FEAT_MSR_BITMAP] = { 1049 .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)", 1050 .flags = { 1051 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX, 1052 .bits = HV_NESTED_MSR_BITMAP} 1053 } 1054 }, 1055 [HYPERV_FEAT_XMM_INPUT] = { 1056 .desc = "XMM fast hypercall input (hv-xmm-input)", 1057 .flags = { 1058 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1059 .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE} 1060 } 1061 }, 1062 [HYPERV_FEAT_TLBFLUSH_EXT] = { 1063 .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)", 1064 .flags = { 1065 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1066 .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE} 1067 }, 1068 .dependencies = BIT(HYPERV_FEAT_TLBFLUSH) 1069 }, 1070 [HYPERV_FEAT_TLBFLUSH_DIRECT] = { 1071 .desc = "direct TLB flush (hv-tlbflush-direct)", 1072 .flags = { 1073 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX, 1074 .bits = HV_NESTED_DIRECT_FLUSH} 1075 }, 1076 .dependencies = BIT(HYPERV_FEAT_VAPIC) 1077 }, 1078 }; 1079 1080 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max, 1081 bool do_sys_ioctl) 1082 { 1083 struct kvm_cpuid2 *cpuid; 1084 int r, size; 1085 1086 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 1087 cpuid = g_malloc0(size); 1088 cpuid->nent = max; 1089 1090 if (do_sys_ioctl) { 1091 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1092 } else { 1093 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1094 } 1095 if (r == 0 && cpuid->nent >= max) { 1096 r = -E2BIG; 1097 } 1098 if (r < 0) { 1099 if (r == -E2BIG) { 1100 g_free(cpuid); 1101 return NULL; 1102 } else { 1103 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n", 1104 strerror(-r)); 1105 exit(1); 1106 } 1107 } 1108 return cpuid; 1109 } 1110 1111 /* 1112 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough 1113 * for all entries. 1114 */ 1115 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs) 1116 { 1117 struct kvm_cpuid2 *cpuid; 1118 /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */ 1119 int max = 11; 1120 int i; 1121 bool do_sys_ioctl; 1122 1123 do_sys_ioctl = 1124 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0; 1125 1126 /* 1127 * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is 1128 * unsupported, kvm_hyperv_expand_features() checks for that. 1129 */ 1130 assert(do_sys_ioctl || cs->kvm_state); 1131 1132 /* 1133 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with 1134 * -E2BIG, however, it doesn't report back the right size. Keep increasing 1135 * it and re-trying until we succeed. 1136 */ 1137 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) { 1138 max++; 1139 } 1140 1141 /* 1142 * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before 1143 * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the 1144 * information early, just check for the capability and set the bit 1145 * manually. 1146 */ 1147 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state, 1148 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1149 for (i = 0; i < cpuid->nent; i++) { 1150 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) { 1151 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1152 } 1153 } 1154 } 1155 1156 return cpuid; 1157 } 1158 1159 /* 1160 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature 1161 * leaves from KVM_CAP_HYPERV* and present MSRs data. 1162 */ 1163 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs) 1164 { 1165 X86CPU *cpu = X86_CPU(cs); 1166 struct kvm_cpuid2 *cpuid; 1167 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm; 1168 1169 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */ 1170 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries)); 1171 cpuid->nent = 2; 1172 1173 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */ 1174 entry_feat = &cpuid->entries[0]; 1175 entry_feat->function = HV_CPUID_FEATURES; 1176 1177 entry_recomm = &cpuid->entries[1]; 1178 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO; 1179 entry_recomm->ebx = cpu->hyperv_spinlock_attempts; 1180 1181 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) { 1182 entry_feat->eax |= HV_HYPERCALL_AVAILABLE; 1183 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE; 1184 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1185 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED; 1186 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED; 1187 } 1188 1189 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { 1190 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE; 1191 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE; 1192 } 1193 1194 if (has_msr_hv_frequencies) { 1195 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS; 1196 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE; 1197 } 1198 1199 if (has_msr_hv_crash) { 1200 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE; 1201 } 1202 1203 if (has_msr_hv_reenlightenment) { 1204 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL; 1205 } 1206 1207 if (has_msr_hv_reset) { 1208 entry_feat->eax |= HV_RESET_AVAILABLE; 1209 } 1210 1211 if (has_msr_hv_vpindex) { 1212 entry_feat->eax |= HV_VP_INDEX_AVAILABLE; 1213 } 1214 1215 if (has_msr_hv_runtime) { 1216 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE; 1217 } 1218 1219 if (has_msr_hv_synic) { 1220 unsigned int cap = cpu->hyperv_synic_kvm_only ? 1221 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1222 1223 if (kvm_check_extension(cs->kvm_state, cap) > 0) { 1224 entry_feat->eax |= HV_SYNIC_AVAILABLE; 1225 } 1226 } 1227 1228 if (has_msr_hv_stimer) { 1229 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE; 1230 } 1231 1232 if (has_msr_hv_syndbg_options) { 1233 entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE; 1234 entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE; 1235 entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED; 1236 } 1237 1238 if (kvm_check_extension(cs->kvm_state, 1239 KVM_CAP_HYPERV_TLBFLUSH) > 0) { 1240 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED; 1241 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1242 } 1243 1244 if (kvm_check_extension(cs->kvm_state, 1245 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1246 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1247 } 1248 1249 if (kvm_check_extension(cs->kvm_state, 1250 KVM_CAP_HYPERV_SEND_IPI) > 0) { 1251 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED; 1252 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1253 } 1254 1255 return cpuid; 1256 } 1257 1258 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg) 1259 { 1260 struct kvm_cpuid_entry2 *entry; 1261 struct kvm_cpuid2 *cpuid; 1262 1263 if (hv_cpuid_cache) { 1264 cpuid = hv_cpuid_cache; 1265 } else { 1266 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) { 1267 cpuid = get_supported_hv_cpuid(cs); 1268 } else { 1269 /* 1270 * 'cs->kvm_state' may be NULL when Hyper-V features are expanded 1271 * before KVM context is created but this is only done when 1272 * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies 1273 * KVM_CAP_HYPERV_CPUID. 1274 */ 1275 assert(cs->kvm_state); 1276 1277 cpuid = get_supported_hv_cpuid_legacy(cs); 1278 } 1279 hv_cpuid_cache = cpuid; 1280 } 1281 1282 if (!cpuid) { 1283 return 0; 1284 } 1285 1286 entry = cpuid_find_entry(cpuid, func, 0); 1287 if (!entry) { 1288 return 0; 1289 } 1290 1291 return cpuid_entry_get_reg(entry, reg); 1292 } 1293 1294 static bool hyperv_feature_supported(CPUState *cs, int feature) 1295 { 1296 uint32_t func, bits; 1297 int i, reg; 1298 1299 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) { 1300 1301 func = kvm_hyperv_properties[feature].flags[i].func; 1302 reg = kvm_hyperv_properties[feature].flags[i].reg; 1303 bits = kvm_hyperv_properties[feature].flags[i].bits; 1304 1305 if (!func) { 1306 continue; 1307 } 1308 1309 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) { 1310 return false; 1311 } 1312 } 1313 1314 return true; 1315 } 1316 1317 /* Checks that all feature dependencies are enabled */ 1318 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp) 1319 { 1320 uint64_t deps; 1321 int dep_feat; 1322 1323 deps = kvm_hyperv_properties[feature].dependencies; 1324 while (deps) { 1325 dep_feat = ctz64(deps); 1326 if (!(hyperv_feat_enabled(cpu, dep_feat))) { 1327 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1328 kvm_hyperv_properties[feature].desc, 1329 kvm_hyperv_properties[dep_feat].desc); 1330 return false; 1331 } 1332 deps &= ~(1ull << dep_feat); 1333 } 1334 1335 return true; 1336 } 1337 1338 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg) 1339 { 1340 X86CPU *cpu = X86_CPU(cs); 1341 uint32_t r = 0; 1342 int i, j; 1343 1344 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) { 1345 if (!hyperv_feat_enabled(cpu, i)) { 1346 continue; 1347 } 1348 1349 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) { 1350 if (kvm_hyperv_properties[i].flags[j].func != func) { 1351 continue; 1352 } 1353 if (kvm_hyperv_properties[i].flags[j].reg != reg) { 1354 continue; 1355 } 1356 1357 r |= kvm_hyperv_properties[i].flags[j].bits; 1358 } 1359 } 1360 1361 /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */ 1362 if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) { 1363 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1364 r |= DEFAULT_EVMCS_VERSION; 1365 } 1366 } 1367 1368 return r; 1369 } 1370 1371 /* 1372 * Expand Hyper-V CPU features. In partucular, check that all the requested 1373 * features are supported by the host and the sanity of the configuration 1374 * (that all the required dependencies are included). Also, this takes care 1375 * of 'hv_passthrough' mode and fills the environment with all supported 1376 * Hyper-V features. 1377 */ 1378 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp) 1379 { 1380 CPUState *cs = CPU(cpu); 1381 Error *local_err = NULL; 1382 int feat; 1383 1384 if (!hyperv_enabled(cpu)) 1385 return true; 1386 1387 /* 1388 * When kvm_hyperv_expand_features is called at CPU feature expansion 1389 * time per-CPU kvm_state is not available yet so we can only proceed 1390 * when KVM_CAP_SYS_HYPERV_CPUID is supported. 1391 */ 1392 if (!cs->kvm_state && 1393 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID)) 1394 return true; 1395 1396 if (cpu->hyperv_passthrough) { 1397 cpu->hyperv_vendor_id[0] = 1398 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX); 1399 cpu->hyperv_vendor_id[1] = 1400 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX); 1401 cpu->hyperv_vendor_id[2] = 1402 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX); 1403 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor, 1404 sizeof(cpu->hyperv_vendor_id) + 1); 1405 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id, 1406 sizeof(cpu->hyperv_vendor_id)); 1407 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0; 1408 1409 cpu->hyperv_interface_id[0] = 1410 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX); 1411 cpu->hyperv_interface_id[1] = 1412 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX); 1413 cpu->hyperv_interface_id[2] = 1414 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX); 1415 cpu->hyperv_interface_id[3] = 1416 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX); 1417 1418 cpu->hyperv_ver_id_build = 1419 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX); 1420 cpu->hyperv_ver_id_major = 1421 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16; 1422 cpu->hyperv_ver_id_minor = 1423 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff; 1424 cpu->hyperv_ver_id_sp = 1425 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX); 1426 cpu->hyperv_ver_id_sb = 1427 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24; 1428 cpu->hyperv_ver_id_sn = 1429 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff; 1430 1431 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, 1432 R_EAX); 1433 cpu->hyperv_limits[0] = 1434 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX); 1435 cpu->hyperv_limits[1] = 1436 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX); 1437 cpu->hyperv_limits[2] = 1438 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX); 1439 1440 cpu->hyperv_spinlock_attempts = 1441 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX); 1442 1443 /* 1444 * Mark feature as enabled in 'cpu->hyperv_features' as 1445 * hv_build_cpuid_leaf() uses this info to build guest CPUIDs. 1446 */ 1447 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1448 if (hyperv_feature_supported(cs, feat)) { 1449 cpu->hyperv_features |= BIT(feat); 1450 } 1451 } 1452 } else { 1453 /* Check features availability and dependencies */ 1454 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1455 /* If the feature was not requested skip it. */ 1456 if (!hyperv_feat_enabled(cpu, feat)) { 1457 continue; 1458 } 1459 1460 /* Check if the feature is supported by KVM */ 1461 if (!hyperv_feature_supported(cs, feat)) { 1462 error_setg(errp, "Hyper-V %s is not supported by kernel", 1463 kvm_hyperv_properties[feat].desc); 1464 return false; 1465 } 1466 1467 /* Check dependencies */ 1468 if (!hv_feature_check_deps(cpu, feat, &local_err)) { 1469 error_propagate(errp, local_err); 1470 return false; 1471 } 1472 } 1473 } 1474 1475 /* Additional dependencies not covered by kvm_hyperv_properties[] */ 1476 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1477 !cpu->hyperv_synic_kvm_only && 1478 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) { 1479 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1480 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc, 1481 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc); 1482 return false; 1483 } 1484 1485 return true; 1486 } 1487 1488 /* 1489 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent. 1490 */ 1491 static int hyperv_fill_cpuids(CPUState *cs, 1492 struct kvm_cpuid_entry2 *cpuid_ent) 1493 { 1494 X86CPU *cpu = X86_CPU(cs); 1495 struct kvm_cpuid_entry2 *c; 1496 uint32_t signature[3]; 1497 uint32_t cpuid_i = 0, max_cpuid_leaf = 0; 1498 uint32_t nested_eax = 1499 hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX); 1500 1501 max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES : 1502 HV_CPUID_IMPLEMENT_LIMITS; 1503 1504 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) { 1505 max_cpuid_leaf = 1506 MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES); 1507 } 1508 1509 c = &cpuid_ent[cpuid_i++]; 1510 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS; 1511 c->eax = max_cpuid_leaf; 1512 c->ebx = cpu->hyperv_vendor_id[0]; 1513 c->ecx = cpu->hyperv_vendor_id[1]; 1514 c->edx = cpu->hyperv_vendor_id[2]; 1515 1516 c = &cpuid_ent[cpuid_i++]; 1517 c->function = HV_CPUID_INTERFACE; 1518 c->eax = cpu->hyperv_interface_id[0]; 1519 c->ebx = cpu->hyperv_interface_id[1]; 1520 c->ecx = cpu->hyperv_interface_id[2]; 1521 c->edx = cpu->hyperv_interface_id[3]; 1522 1523 c = &cpuid_ent[cpuid_i++]; 1524 c->function = HV_CPUID_VERSION; 1525 c->eax = cpu->hyperv_ver_id_build; 1526 c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 | 1527 cpu->hyperv_ver_id_minor; 1528 c->ecx = cpu->hyperv_ver_id_sp; 1529 c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 | 1530 (cpu->hyperv_ver_id_sn & 0xffffff); 1531 1532 c = &cpuid_ent[cpuid_i++]; 1533 c->function = HV_CPUID_FEATURES; 1534 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX); 1535 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX); 1536 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX); 1537 1538 /* Unconditionally required with any Hyper-V enlightenment */ 1539 c->eax |= HV_HYPERCALL_AVAILABLE; 1540 1541 /* SynIC and Vmbus devices require messages/signals hypercalls */ 1542 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1543 !cpu->hyperv_synic_kvm_only) { 1544 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS; 1545 } 1546 1547 1548 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */ 1549 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1550 1551 c = &cpuid_ent[cpuid_i++]; 1552 c->function = HV_CPUID_ENLIGHTMENT_INFO; 1553 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX); 1554 c->ebx = cpu->hyperv_spinlock_attempts; 1555 1556 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) && 1557 !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) { 1558 c->eax |= HV_APIC_ACCESS_RECOMMENDED; 1559 } 1560 1561 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) { 1562 c->eax |= HV_NO_NONARCH_CORESHARING; 1563 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) { 1564 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) & 1565 HV_NO_NONARCH_CORESHARING; 1566 } 1567 1568 c = &cpuid_ent[cpuid_i++]; 1569 c->function = HV_CPUID_IMPLEMENT_LIMITS; 1570 c->eax = cpu->hv_max_vps; 1571 c->ebx = cpu->hyperv_limits[0]; 1572 c->ecx = cpu->hyperv_limits[1]; 1573 c->edx = cpu->hyperv_limits[2]; 1574 1575 if (nested_eax) { 1576 uint32_t function; 1577 1578 /* Create zeroed 0x40000006..0x40000009 leaves */ 1579 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1; 1580 function < HV_CPUID_NESTED_FEATURES; function++) { 1581 c = &cpuid_ent[cpuid_i++]; 1582 c->function = function; 1583 } 1584 1585 c = &cpuid_ent[cpuid_i++]; 1586 c->function = HV_CPUID_NESTED_FEATURES; 1587 c->eax = nested_eax; 1588 } 1589 1590 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) { 1591 c = &cpuid_ent[cpuid_i++]; 1592 c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS; 1593 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ? 1594 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS; 1595 memcpy(signature, "Microsoft VS", 12); 1596 c->eax = 0; 1597 c->ebx = signature[0]; 1598 c->ecx = signature[1]; 1599 c->edx = signature[2]; 1600 1601 c = &cpuid_ent[cpuid_i++]; 1602 c->function = HV_CPUID_SYNDBG_INTERFACE; 1603 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12); 1604 c->eax = signature[0]; 1605 c->ebx = 0; 1606 c->ecx = 0; 1607 c->edx = 0; 1608 1609 c = &cpuid_ent[cpuid_i++]; 1610 c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES; 1611 c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING; 1612 c->ebx = 0; 1613 c->ecx = 0; 1614 c->edx = 0; 1615 } 1616 1617 return cpuid_i; 1618 } 1619 1620 static Error *hv_passthrough_mig_blocker; 1621 static Error *hv_no_nonarch_cs_mig_blocker; 1622 1623 /* Checks that the exposed eVMCS version range is supported by KVM */ 1624 static bool evmcs_version_supported(uint16_t evmcs_version, 1625 uint16_t supported_evmcs_version) 1626 { 1627 uint8_t min_version = evmcs_version & 0xff; 1628 uint8_t max_version = evmcs_version >> 8; 1629 uint8_t min_supported_version = supported_evmcs_version & 0xff; 1630 uint8_t max_supported_version = supported_evmcs_version >> 8; 1631 1632 return (min_version >= min_supported_version) && 1633 (max_version <= max_supported_version); 1634 } 1635 1636 static int hyperv_init_vcpu(X86CPU *cpu) 1637 { 1638 CPUState *cs = CPU(cpu); 1639 Error *local_err = NULL; 1640 int ret; 1641 1642 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) { 1643 error_setg(&hv_passthrough_mig_blocker, 1644 "'hv-passthrough' CPU flag prevents migration, use explicit" 1645 " set of hv-* flags instead"); 1646 ret = migrate_add_blocker(&hv_passthrough_mig_blocker, &local_err); 1647 if (ret < 0) { 1648 error_report_err(local_err); 1649 return ret; 1650 } 1651 } 1652 1653 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO && 1654 hv_no_nonarch_cs_mig_blocker == NULL) { 1655 error_setg(&hv_no_nonarch_cs_mig_blocker, 1656 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration" 1657 " use explicit 'hv-no-nonarch-coresharing=on' instead (but" 1658 " make sure SMT is disabled and/or that vCPUs are properly" 1659 " pinned)"); 1660 ret = migrate_add_blocker(&hv_no_nonarch_cs_mig_blocker, &local_err); 1661 if (ret < 0) { 1662 error_report_err(local_err); 1663 return ret; 1664 } 1665 } 1666 1667 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) { 1668 /* 1669 * the kernel doesn't support setting vp_index; assert that its value 1670 * is in sync 1671 */ 1672 uint64_t value; 1673 1674 ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value); 1675 if (ret < 0) { 1676 return ret; 1677 } 1678 1679 if (value != hyperv_vp_index(CPU(cpu))) { 1680 error_report("kernel's vp_index != QEMU's vp_index"); 1681 return -ENXIO; 1682 } 1683 } 1684 1685 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 1686 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ? 1687 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1688 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0); 1689 if (ret < 0) { 1690 error_report("failed to turn on HyperV SynIC in KVM: %s", 1691 strerror(-ret)); 1692 return ret; 1693 } 1694 1695 if (!cpu->hyperv_synic_kvm_only) { 1696 ret = hyperv_x86_synic_add(cpu); 1697 if (ret < 0) { 1698 error_report("failed to create HyperV SynIC: %s", 1699 strerror(-ret)); 1700 return ret; 1701 } 1702 } 1703 } 1704 1705 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1706 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION; 1707 uint16_t supported_evmcs_version; 1708 1709 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0, 1710 (uintptr_t)&supported_evmcs_version); 1711 1712 /* 1713 * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs' 1714 * option sets. Note: we hardcode the maximum supported eVMCS version 1715 * to '1' as well so 'hv-evmcs' feature is migratable even when (and if) 1716 * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have 1717 * to be added. 1718 */ 1719 if (ret < 0) { 1720 error_report("Hyper-V %s is not supported by kernel", 1721 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc); 1722 return ret; 1723 } 1724 1725 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) { 1726 error_report("eVMCS version range [%d..%d] is not supported by " 1727 "kernel (supported: [%d..%d])", evmcs_version & 0xff, 1728 evmcs_version >> 8, supported_evmcs_version & 0xff, 1729 supported_evmcs_version >> 8); 1730 return -ENOTSUP; 1731 } 1732 } 1733 1734 if (cpu->hyperv_enforce_cpuid) { 1735 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1); 1736 if (ret < 0) { 1737 error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s", 1738 strerror(-ret)); 1739 return ret; 1740 } 1741 } 1742 1743 /* Skip SynIC and VP_INDEX since they are hard deps already */ 1744 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_STIMER) && 1745 hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) && 1746 hyperv_feat_enabled(cpu, HYPERV_FEAT_RUNTIME)) { 1747 hyperv_x86_set_vmbus_recommended_features_enabled(); 1748 } 1749 1750 return 0; 1751 } 1752 1753 static Error *invtsc_mig_blocker; 1754 1755 #define KVM_MAX_CPUID_ENTRIES 100 1756 1757 static void kvm_init_xsave(CPUX86State *env) 1758 { 1759 if (has_xsave2) { 1760 env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096); 1761 } else { 1762 env->xsave_buf_len = sizeof(struct kvm_xsave); 1763 } 1764 1765 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len); 1766 memset(env->xsave_buf, 0, env->xsave_buf_len); 1767 /* 1768 * The allocated storage must be large enough for all of the 1769 * possible XSAVE state components. 1770 */ 1771 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <= 1772 env->xsave_buf_len); 1773 } 1774 1775 static void kvm_init_nested_state(CPUX86State *env) 1776 { 1777 struct kvm_vmx_nested_state_hdr *vmx_hdr; 1778 uint32_t size; 1779 1780 if (!env->nested_state) { 1781 return; 1782 } 1783 1784 size = env->nested_state->size; 1785 1786 memset(env->nested_state, 0, size); 1787 env->nested_state->size = size; 1788 1789 if (cpu_has_vmx(env)) { 1790 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX; 1791 vmx_hdr = &env->nested_state->hdr.vmx; 1792 vmx_hdr->vmxon_pa = -1ull; 1793 vmx_hdr->vmcs12_pa = -1ull; 1794 } else if (cpu_has_svm(env)) { 1795 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM; 1796 } 1797 } 1798 1799 static uint32_t kvm_x86_build_cpuid(CPUX86State *env, 1800 struct kvm_cpuid_entry2 *entries, 1801 uint32_t cpuid_i) 1802 { 1803 uint32_t limit, i, j; 1804 uint32_t unused; 1805 struct kvm_cpuid_entry2 *c; 1806 1807 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); 1808 1809 for (i = 0; i <= limit; i++) { 1810 j = 0; 1811 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1812 goto full; 1813 } 1814 c = &entries[cpuid_i++]; 1815 switch (i) { 1816 case 2: { 1817 /* Keep reading function 2 till all the input is received */ 1818 int times; 1819 1820 c->function = i; 1821 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | 1822 KVM_CPUID_FLAG_STATE_READ_NEXT; 1823 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1824 times = c->eax & 0xff; 1825 1826 for (j = 1; j < times; ++j) { 1827 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1828 goto full; 1829 } 1830 c = &entries[cpuid_i++]; 1831 c->function = i; 1832 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; 1833 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1834 } 1835 break; 1836 } 1837 case 0x1f: 1838 if (!x86_has_extended_topo(env->avail_cpu_topo)) { 1839 cpuid_i--; 1840 break; 1841 } 1842 /* fallthrough */ 1843 case 4: 1844 case 0xb: 1845 case 0xd: 1846 for (j = 0; ; j++) { 1847 if (i == 0xd && j == 64) { 1848 break; 1849 } 1850 1851 c->function = i; 1852 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1853 c->index = j; 1854 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1855 1856 if (i == 4 && c->eax == 0) { 1857 break; 1858 } 1859 if (i == 0xb && !(c->ecx & 0xff00)) { 1860 break; 1861 } 1862 if (i == 0x1f && !(c->ecx & 0xff00)) { 1863 break; 1864 } 1865 if (i == 0xd && c->eax == 0) { 1866 continue; 1867 } 1868 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1869 goto full; 1870 } 1871 c = &entries[cpuid_i++]; 1872 } 1873 break; 1874 case 0x12: 1875 for (j = 0; ; j++) { 1876 c->function = i; 1877 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1878 c->index = j; 1879 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1880 1881 if (j > 1 && (c->eax & 0xf) != 1) { 1882 break; 1883 } 1884 1885 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1886 goto full; 1887 } 1888 c = &entries[cpuid_i++]; 1889 } 1890 break; 1891 case 0x7: 1892 case 0x14: 1893 case 0x1d: 1894 case 0x1e: { 1895 uint32_t times; 1896 1897 c->function = i; 1898 c->index = 0; 1899 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1900 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1901 times = c->eax; 1902 1903 for (j = 1; j <= times; ++j) { 1904 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1905 goto full; 1906 } 1907 c = &entries[cpuid_i++]; 1908 c->function = i; 1909 c->index = j; 1910 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1911 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1912 } 1913 break; 1914 } 1915 default: 1916 c->function = i; 1917 c->flags = 0; 1918 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1919 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 1920 /* 1921 * KVM already returns all zeroes if a CPUID entry is missing, 1922 * so we can omit it and avoid hitting KVM's 80-entry limit. 1923 */ 1924 cpuid_i--; 1925 } 1926 break; 1927 } 1928 } 1929 1930 if (limit >= 0x0a) { 1931 uint32_t eax, edx; 1932 1933 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx); 1934 1935 has_architectural_pmu_version = eax & 0xff; 1936 if (has_architectural_pmu_version > 0) { 1937 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8; 1938 1939 /* Shouldn't be more than 32, since that's the number of bits 1940 * available in EBX to tell us _which_ counters are available. 1941 * Play it safe. 1942 */ 1943 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) { 1944 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS; 1945 } 1946 1947 if (has_architectural_pmu_version > 1) { 1948 num_architectural_pmu_fixed_counters = edx & 0x1f; 1949 1950 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) { 1951 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS; 1952 } 1953 } 1954 } 1955 } 1956 1957 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); 1958 1959 for (i = 0x80000000; i <= limit; i++) { 1960 j = 0; 1961 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1962 goto full; 1963 } 1964 c = &entries[cpuid_i++]; 1965 1966 switch (i) { 1967 case 0x8000001d: 1968 /* Query for all AMD cache information leaves */ 1969 for (j = 0; ; j++) { 1970 c->function = i; 1971 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1972 c->index = j; 1973 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1974 1975 if (c->eax == 0) { 1976 break; 1977 } 1978 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1979 goto full; 1980 } 1981 c = &entries[cpuid_i++]; 1982 } 1983 break; 1984 default: 1985 c->function = i; 1986 c->flags = 0; 1987 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1988 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 1989 /* 1990 * KVM already returns all zeroes if a CPUID entry is missing, 1991 * so we can omit it and avoid hitting KVM's 80-entry limit. 1992 */ 1993 cpuid_i--; 1994 } 1995 break; 1996 } 1997 } 1998 1999 /* Call Centaur's CPUID instructions they are supported. */ 2000 if (env->cpuid_xlevel2 > 0) { 2001 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); 2002 2003 for (i = 0xC0000000; i <= limit; i++) { 2004 j = 0; 2005 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2006 goto full; 2007 } 2008 c = &entries[cpuid_i++]; 2009 2010 c->function = i; 2011 c->flags = 0; 2012 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 2013 } 2014 } 2015 2016 return cpuid_i; 2017 2018 full: 2019 fprintf(stderr, "cpuid_data is full, no space for " 2020 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 2021 abort(); 2022 } 2023 2024 int kvm_arch_init_vcpu(CPUState *cs) 2025 { 2026 struct { 2027 struct kvm_cpuid2 cpuid; 2028 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; 2029 } cpuid_data; 2030 /* 2031 * The kernel defines these structs with padding fields so there 2032 * should be no extra padding in our cpuid_data struct. 2033 */ 2034 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) != 2035 sizeof(struct kvm_cpuid2) + 2036 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES); 2037 2038 X86CPU *cpu = X86_CPU(cs); 2039 CPUX86State *env = &cpu->env; 2040 uint32_t cpuid_i; 2041 struct kvm_cpuid_entry2 *c; 2042 uint32_t signature[3]; 2043 int kvm_base = KVM_CPUID_SIGNATURE; 2044 int max_nested_state_len; 2045 int r; 2046 Error *local_err = NULL; 2047 2048 memset(&cpuid_data, 0, sizeof(cpuid_data)); 2049 2050 cpuid_i = 0; 2051 2052 has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2); 2053 2054 r = kvm_arch_set_tsc_khz(cs); 2055 if (r < 0) { 2056 return r; 2057 } 2058 2059 /* vcpu's TSC frequency is either specified by user, or following 2060 * the value used by KVM if the former is not present. In the 2061 * latter case, we query it from KVM and record in env->tsc_khz, 2062 * so that vcpu's TSC frequency can be migrated later via this field. 2063 */ 2064 if (!env->tsc_khz) { 2065 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 2066 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 2067 -ENOTSUP; 2068 if (r > 0) { 2069 env->tsc_khz = r; 2070 } 2071 } 2072 2073 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY; 2074 2075 /* 2076 * kvm_hyperv_expand_features() is called here for the second time in case 2077 * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle 2078 * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to 2079 * check which Hyper-V enlightenments are supported and which are not, we 2080 * can still proceed and check/expand Hyper-V enlightenments here so legacy 2081 * behavior is preserved. 2082 */ 2083 if (!kvm_hyperv_expand_features(cpu, &local_err)) { 2084 error_report_err(local_err); 2085 return -ENOSYS; 2086 } 2087 2088 if (hyperv_enabled(cpu)) { 2089 r = hyperv_init_vcpu(cpu); 2090 if (r) { 2091 return r; 2092 } 2093 2094 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries); 2095 kvm_base = KVM_CPUID_SIGNATURE_NEXT; 2096 has_msr_hv_hypercall = true; 2097 } 2098 2099 if (cs->kvm_state->xen_version) { 2100 #ifdef CONFIG_XEN_EMU 2101 struct kvm_cpuid_entry2 *xen_max_leaf; 2102 2103 memcpy(signature, "XenVMMXenVMM", 12); 2104 2105 xen_max_leaf = c = &cpuid_data.entries[cpuid_i++]; 2106 c->function = kvm_base + XEN_CPUID_SIGNATURE; 2107 c->eax = kvm_base + XEN_CPUID_TIME; 2108 c->ebx = signature[0]; 2109 c->ecx = signature[1]; 2110 c->edx = signature[2]; 2111 2112 c = &cpuid_data.entries[cpuid_i++]; 2113 c->function = kvm_base + XEN_CPUID_VENDOR; 2114 c->eax = cs->kvm_state->xen_version; 2115 c->ebx = 0; 2116 c->ecx = 0; 2117 c->edx = 0; 2118 2119 c = &cpuid_data.entries[cpuid_i++]; 2120 c->function = kvm_base + XEN_CPUID_HVM_MSR; 2121 /* Number of hypercall-transfer pages */ 2122 c->eax = 1; 2123 /* Hypercall MSR base address */ 2124 if (hyperv_enabled(cpu)) { 2125 c->ebx = XEN_HYPERCALL_MSR_HYPERV; 2126 kvm_xen_init(cs->kvm_state, c->ebx); 2127 } else { 2128 c->ebx = XEN_HYPERCALL_MSR; 2129 } 2130 c->ecx = 0; 2131 c->edx = 0; 2132 2133 c = &cpuid_data.entries[cpuid_i++]; 2134 c->function = kvm_base + XEN_CPUID_TIME; 2135 c->eax = ((!!tsc_is_stable_and_known(env) << 1) | 2136 (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2)); 2137 /* default=0 (emulate if necessary) */ 2138 c->ebx = 0; 2139 /* guest tsc frequency */ 2140 c->ecx = env->user_tsc_khz; 2141 /* guest tsc incarnation (migration count) */ 2142 c->edx = 0; 2143 2144 c = &cpuid_data.entries[cpuid_i++]; 2145 c->function = kvm_base + XEN_CPUID_HVM; 2146 xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM; 2147 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) { 2148 c->function = kvm_base + XEN_CPUID_HVM; 2149 2150 if (cpu->xen_vapic) { 2151 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT; 2152 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT; 2153 } 2154 2155 c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS; 2156 2157 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) { 2158 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT; 2159 c->ebx = cs->cpu_index; 2160 } 2161 2162 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 17)) { 2163 c->eax |= XEN_HVM_CPUID_UPCALL_VECTOR; 2164 } 2165 } 2166 2167 r = kvm_xen_init_vcpu(cs); 2168 if (r) { 2169 return r; 2170 } 2171 2172 kvm_base += 0x100; 2173 #else /* CONFIG_XEN_EMU */ 2174 /* This should never happen as kvm_arch_init() would have died first. */ 2175 fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n"); 2176 abort(); 2177 #endif 2178 } else if (cpu->expose_kvm) { 2179 memcpy(signature, "KVMKVMKVM\0\0\0", 12); 2180 c = &cpuid_data.entries[cpuid_i++]; 2181 c->function = KVM_CPUID_SIGNATURE | kvm_base; 2182 c->eax = KVM_CPUID_FEATURES | kvm_base; 2183 c->ebx = signature[0]; 2184 c->ecx = signature[1]; 2185 c->edx = signature[2]; 2186 2187 c = &cpuid_data.entries[cpuid_i++]; 2188 c->function = KVM_CPUID_FEATURES | kvm_base; 2189 c->eax = env->features[FEAT_KVM]; 2190 c->edx = env->features[FEAT_KVM_HINTS]; 2191 } 2192 2193 if (cpu->kvm_pv_enforce_cpuid) { 2194 r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1); 2195 if (r < 0) { 2196 fprintf(stderr, 2197 "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s", 2198 strerror(-r)); 2199 abort(); 2200 } 2201 } 2202 2203 cpuid_i = kvm_x86_build_cpuid(env, cpuid_data.entries, cpuid_i); 2204 cpuid_data.cpuid.nent = cpuid_i; 2205 2206 if (((env->cpuid_version >> 8)&0xF) >= 6 2207 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == 2208 (CPUID_MCE | CPUID_MCA)) { 2209 uint64_t mcg_cap, unsupported_caps; 2210 int banks; 2211 int ret; 2212 2213 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); 2214 if (ret < 0) { 2215 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); 2216 return ret; 2217 } 2218 2219 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { 2220 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", 2221 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); 2222 return -ENOTSUP; 2223 } 2224 2225 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); 2226 if (unsupported_caps) { 2227 if (unsupported_caps & MCG_LMCE_P) { 2228 error_report("kvm: LMCE not supported"); 2229 return -ENOTSUP; 2230 } 2231 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64, 2232 unsupported_caps); 2233 } 2234 2235 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; 2236 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); 2237 if (ret < 0) { 2238 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); 2239 return ret; 2240 } 2241 } 2242 2243 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env); 2244 2245 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); 2246 if (c) { 2247 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || 2248 !!(c->ecx & CPUID_EXT_SMX); 2249 } 2250 2251 c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0); 2252 if (c && (c->ebx & CPUID_7_0_EBX_SGX)) { 2253 has_msr_feature_control = true; 2254 } 2255 2256 if (env->mcg_cap & MCG_LMCE_P) { 2257 has_msr_mcg_ext_ctl = has_msr_feature_control = true; 2258 } 2259 2260 if (!env->user_tsc_khz) { 2261 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && 2262 invtsc_mig_blocker == NULL) { 2263 error_setg(&invtsc_mig_blocker, 2264 "State blocked by non-migratable CPU device" 2265 " (invtsc flag)"); 2266 r = migrate_add_blocker(&invtsc_mig_blocker, &local_err); 2267 if (r < 0) { 2268 error_report_err(local_err); 2269 return r; 2270 } 2271 } 2272 } 2273 2274 if (cpu->vmware_cpuid_freq 2275 /* Guests depend on 0x40000000 to detect this feature, so only expose 2276 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ 2277 && cpu->expose_kvm 2278 && kvm_base == KVM_CPUID_SIGNATURE 2279 /* TSC clock must be stable and known for this feature. */ 2280 && tsc_is_stable_and_known(env)) { 2281 2282 c = &cpuid_data.entries[cpuid_i++]; 2283 c->function = KVM_CPUID_SIGNATURE | 0x10; 2284 c->eax = env->tsc_khz; 2285 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */ 2286 c->ecx = c->edx = 0; 2287 2288 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); 2289 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); 2290 } 2291 2292 cpuid_data.cpuid.nent = cpuid_i; 2293 2294 cpuid_data.cpuid.padding = 0; 2295 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); 2296 if (r) { 2297 goto fail; 2298 } 2299 kvm_init_xsave(env); 2300 2301 max_nested_state_len = kvm_max_nested_state_length(); 2302 if (max_nested_state_len > 0) { 2303 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data)); 2304 2305 if (cpu_has_vmx(env) || cpu_has_svm(env)) { 2306 env->nested_state = g_malloc0(max_nested_state_len); 2307 env->nested_state->size = max_nested_state_len; 2308 2309 kvm_init_nested_state(env); 2310 } 2311 } 2312 2313 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); 2314 2315 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { 2316 has_msr_tsc_aux = false; 2317 } 2318 2319 kvm_init_msrs(cpu); 2320 2321 return 0; 2322 2323 fail: 2324 migrate_del_blocker(&invtsc_mig_blocker); 2325 2326 return r; 2327 } 2328 2329 int kvm_arch_destroy_vcpu(CPUState *cs) 2330 { 2331 X86CPU *cpu = X86_CPU(cs); 2332 CPUX86State *env = &cpu->env; 2333 2334 g_free(env->xsave_buf); 2335 2336 g_free(cpu->kvm_msr_buf); 2337 cpu->kvm_msr_buf = NULL; 2338 2339 g_free(env->nested_state); 2340 env->nested_state = NULL; 2341 2342 qemu_del_vm_change_state_handler(cpu->vmsentry); 2343 2344 return 0; 2345 } 2346 2347 void kvm_arch_reset_vcpu(X86CPU *cpu) 2348 { 2349 CPUX86State *env = &cpu->env; 2350 2351 env->xcr0 = 1; 2352 if (kvm_irqchip_in_kernel()) { 2353 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : 2354 KVM_MP_STATE_UNINITIALIZED; 2355 } else { 2356 env->mp_state = KVM_MP_STATE_RUNNABLE; 2357 } 2358 2359 /* enabled by default */ 2360 env->poll_control_msr = 1; 2361 2362 kvm_init_nested_state(env); 2363 2364 sev_es_set_reset_vector(CPU(cpu)); 2365 } 2366 2367 void kvm_arch_after_reset_vcpu(X86CPU *cpu) 2368 { 2369 CPUX86State *env = &cpu->env; 2370 int i; 2371 2372 /* 2373 * Reset SynIC after all other devices have been reset to let them remove 2374 * their SINT routes first. 2375 */ 2376 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 2377 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { 2378 env->msr_hv_synic_sint[i] = HV_SINT_MASKED; 2379 } 2380 2381 hyperv_x86_synic_reset(cpu); 2382 } 2383 } 2384 2385 void kvm_arch_do_init_vcpu(X86CPU *cpu) 2386 { 2387 CPUX86State *env = &cpu->env; 2388 2389 /* APs get directly into wait-for-SIPI state. */ 2390 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { 2391 env->mp_state = KVM_MP_STATE_INIT_RECEIVED; 2392 } 2393 } 2394 2395 static int kvm_get_supported_feature_msrs(KVMState *s) 2396 { 2397 int ret = 0; 2398 2399 if (kvm_feature_msrs != NULL) { 2400 return 0; 2401 } 2402 2403 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) { 2404 return 0; 2405 } 2406 2407 struct kvm_msr_list msr_list; 2408 2409 msr_list.nmsrs = 0; 2410 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list); 2411 if (ret < 0 && ret != -E2BIG) { 2412 error_report("Fetch KVM feature MSR list failed: %s", 2413 strerror(-ret)); 2414 return ret; 2415 } 2416 2417 assert(msr_list.nmsrs > 0); 2418 kvm_feature_msrs = g_malloc0(sizeof(msr_list) + 2419 msr_list.nmsrs * sizeof(msr_list.indices[0])); 2420 2421 kvm_feature_msrs->nmsrs = msr_list.nmsrs; 2422 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs); 2423 2424 if (ret < 0) { 2425 error_report("Fetch KVM feature MSR list failed: %s", 2426 strerror(-ret)); 2427 g_free(kvm_feature_msrs); 2428 kvm_feature_msrs = NULL; 2429 return ret; 2430 } 2431 2432 return 0; 2433 } 2434 2435 static int kvm_get_supported_msrs(KVMState *s) 2436 { 2437 int ret = 0; 2438 struct kvm_msr_list msr_list, *kvm_msr_list; 2439 2440 /* 2441 * Obtain MSR list from KVM. These are the MSRs that we must 2442 * save/restore. 2443 */ 2444 msr_list.nmsrs = 0; 2445 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); 2446 if (ret < 0 && ret != -E2BIG) { 2447 return ret; 2448 } 2449 /* 2450 * Old kernel modules had a bug and could write beyond the provided 2451 * memory. Allocate at least a safe amount of 1K. 2452 */ 2453 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + 2454 msr_list.nmsrs * 2455 sizeof(msr_list.indices[0]))); 2456 2457 kvm_msr_list->nmsrs = msr_list.nmsrs; 2458 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); 2459 if (ret >= 0) { 2460 int i; 2461 2462 for (i = 0; i < kvm_msr_list->nmsrs; i++) { 2463 switch (kvm_msr_list->indices[i]) { 2464 case MSR_STAR: 2465 has_msr_star = true; 2466 break; 2467 case MSR_VM_HSAVE_PA: 2468 has_msr_hsave_pa = true; 2469 break; 2470 case MSR_TSC_AUX: 2471 has_msr_tsc_aux = true; 2472 break; 2473 case MSR_TSC_ADJUST: 2474 has_msr_tsc_adjust = true; 2475 break; 2476 case MSR_IA32_TSCDEADLINE: 2477 has_msr_tsc_deadline = true; 2478 break; 2479 case MSR_IA32_SMBASE: 2480 has_msr_smbase = true; 2481 break; 2482 case MSR_SMI_COUNT: 2483 has_msr_smi_count = true; 2484 break; 2485 case MSR_IA32_MISC_ENABLE: 2486 has_msr_misc_enable = true; 2487 break; 2488 case MSR_IA32_BNDCFGS: 2489 has_msr_bndcfgs = true; 2490 break; 2491 case MSR_IA32_XSS: 2492 has_msr_xss = true; 2493 break; 2494 case MSR_IA32_UMWAIT_CONTROL: 2495 has_msr_umwait = true; 2496 break; 2497 case HV_X64_MSR_CRASH_CTL: 2498 has_msr_hv_crash = true; 2499 break; 2500 case HV_X64_MSR_RESET: 2501 has_msr_hv_reset = true; 2502 break; 2503 case HV_X64_MSR_VP_INDEX: 2504 has_msr_hv_vpindex = true; 2505 break; 2506 case HV_X64_MSR_VP_RUNTIME: 2507 has_msr_hv_runtime = true; 2508 break; 2509 case HV_X64_MSR_SCONTROL: 2510 has_msr_hv_synic = true; 2511 break; 2512 case HV_X64_MSR_STIMER0_CONFIG: 2513 has_msr_hv_stimer = true; 2514 break; 2515 case HV_X64_MSR_TSC_FREQUENCY: 2516 has_msr_hv_frequencies = true; 2517 break; 2518 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 2519 has_msr_hv_reenlightenment = true; 2520 break; 2521 case HV_X64_MSR_SYNDBG_OPTIONS: 2522 has_msr_hv_syndbg_options = true; 2523 break; 2524 case MSR_IA32_SPEC_CTRL: 2525 has_msr_spec_ctrl = true; 2526 break; 2527 case MSR_AMD64_TSC_RATIO: 2528 has_tsc_scale_msr = true; 2529 break; 2530 case MSR_IA32_TSX_CTRL: 2531 has_msr_tsx_ctrl = true; 2532 break; 2533 case MSR_VIRT_SSBD: 2534 has_msr_virt_ssbd = true; 2535 break; 2536 case MSR_IA32_ARCH_CAPABILITIES: 2537 has_msr_arch_capabs = true; 2538 break; 2539 case MSR_IA32_CORE_CAPABILITY: 2540 has_msr_core_capabs = true; 2541 break; 2542 case MSR_IA32_PERF_CAPABILITIES: 2543 has_msr_perf_capabs = true; 2544 break; 2545 case MSR_IA32_VMX_VMFUNC: 2546 has_msr_vmx_vmfunc = true; 2547 break; 2548 case MSR_IA32_UCODE_REV: 2549 has_msr_ucode_rev = true; 2550 break; 2551 case MSR_IA32_VMX_PROCBASED_CTLS2: 2552 has_msr_vmx_procbased_ctls2 = true; 2553 break; 2554 case MSR_IA32_PKRS: 2555 has_msr_pkrs = true; 2556 break; 2557 } 2558 } 2559 } 2560 2561 g_free(kvm_msr_list); 2562 2563 return ret; 2564 } 2565 2566 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu, 2567 uint32_t msr, 2568 uint64_t *val) 2569 { 2570 CPUState *cs = CPU(cpu); 2571 2572 *val = cs->nr_threads * cs->nr_cores; /* thread count, bits 15..0 */ 2573 *val |= ((uint32_t)cs->nr_cores << 16); /* core count, bits 31..16 */ 2574 2575 return true; 2576 } 2577 2578 static bool kvm_rdmsr_rapl_power_unit(X86CPU *cpu, 2579 uint32_t msr, 2580 uint64_t *val) 2581 { 2582 2583 CPUState *cs = CPU(cpu); 2584 2585 *val = cs->kvm_state->msr_energy.msr_unit; 2586 2587 return true; 2588 } 2589 2590 static bool kvm_rdmsr_pkg_power_limit(X86CPU *cpu, 2591 uint32_t msr, 2592 uint64_t *val) 2593 { 2594 2595 CPUState *cs = CPU(cpu); 2596 2597 *val = cs->kvm_state->msr_energy.msr_limit; 2598 2599 return true; 2600 } 2601 2602 static bool kvm_rdmsr_pkg_power_info(X86CPU *cpu, 2603 uint32_t msr, 2604 uint64_t *val) 2605 { 2606 2607 CPUState *cs = CPU(cpu); 2608 2609 *val = cs->kvm_state->msr_energy.msr_info; 2610 2611 return true; 2612 } 2613 2614 static bool kvm_rdmsr_pkg_energy_status(X86CPU *cpu, 2615 uint32_t msr, 2616 uint64_t *val) 2617 { 2618 2619 CPUState *cs = CPU(cpu); 2620 *val = cs->kvm_state->msr_energy.msr_value[cs->cpu_index]; 2621 2622 return true; 2623 } 2624 2625 static Notifier smram_machine_done; 2626 static KVMMemoryListener smram_listener; 2627 static AddressSpace smram_address_space; 2628 static MemoryRegion smram_as_root; 2629 static MemoryRegion smram_as_mem; 2630 2631 static void register_smram_listener(Notifier *n, void *unused) 2632 { 2633 MemoryRegion *smram = 2634 (MemoryRegion *) object_resolve_path("/machine/smram", NULL); 2635 2636 /* Outer container... */ 2637 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); 2638 memory_region_set_enabled(&smram_as_root, true); 2639 2640 /* ... with two regions inside: normal system memory with low 2641 * priority, and... 2642 */ 2643 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", 2644 get_system_memory(), 0, ~0ull); 2645 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); 2646 memory_region_set_enabled(&smram_as_mem, true); 2647 2648 if (smram) { 2649 /* ... SMRAM with higher priority */ 2650 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); 2651 memory_region_set_enabled(smram, true); 2652 } 2653 2654 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); 2655 kvm_memory_listener_register(kvm_state, &smram_listener, 2656 &smram_address_space, 1, "kvm-smram"); 2657 } 2658 2659 static void *kvm_msr_energy_thread(void *data) 2660 { 2661 KVMState *s = data; 2662 struct KVMMsrEnergy *vmsr = &s->msr_energy; 2663 2664 g_autofree vmsr_package_energy_stat *pkg_stat = NULL; 2665 g_autofree vmsr_thread_stat *thd_stat = NULL; 2666 g_autofree CPUState *cpu = NULL; 2667 g_autofree unsigned int *vpkgs_energy_stat = NULL; 2668 unsigned int num_threads = 0; 2669 2670 X86CPUTopoIDs topo_ids; 2671 2672 rcu_register_thread(); 2673 2674 /* Allocate memory for each package energy status */ 2675 pkg_stat = g_new0(vmsr_package_energy_stat, vmsr->host_topo.maxpkgs); 2676 2677 /* Allocate memory for thread stats */ 2678 thd_stat = g_new0(vmsr_thread_stat, 1); 2679 2680 /* Allocate memory for holding virtual package energy counter */ 2681 vpkgs_energy_stat = g_new0(unsigned int, vmsr->guest_vsockets); 2682 2683 /* Populate the max tick of each packages */ 2684 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) { 2685 /* 2686 * Max numbers of ticks per package 2687 * Time in second * Number of ticks/second * Number of cores/package 2688 * ex: 100 ticks/second/CPU, 12 CPUs per Package gives 1200 ticks max 2689 */ 2690 vmsr->host_topo.maxticks[i] = (MSR_ENERGY_THREAD_SLEEP_US / 1000000) 2691 * sysconf(_SC_CLK_TCK) 2692 * vmsr->host_topo.pkg_cpu_count[i]; 2693 } 2694 2695 while (true) { 2696 /* Get all qemu threads id */ 2697 g_autofree pid_t *thread_ids 2698 = vmsr_get_thread_ids(vmsr->pid, &num_threads); 2699 2700 if (thread_ids == NULL) { 2701 goto clean; 2702 } 2703 2704 thd_stat = g_renew(vmsr_thread_stat, thd_stat, num_threads); 2705 /* Unlike g_new0, g_renew0 function doesn't exist yet... */ 2706 memset(thd_stat, 0, num_threads * sizeof(vmsr_thread_stat)); 2707 2708 /* Populate all the thread stats */ 2709 for (int i = 0; i < num_threads; i++) { 2710 thd_stat[i].utime = g_new0(unsigned long long, 2); 2711 thd_stat[i].stime = g_new0(unsigned long long, 2); 2712 thd_stat[i].thread_id = thread_ids[i]; 2713 vmsr_read_thread_stat(vmsr->pid, 2714 thd_stat[i].thread_id, 2715 &thd_stat[i].utime[0], 2716 &thd_stat[i].stime[0], 2717 &thd_stat[i].cpu_id); 2718 thd_stat[i].pkg_id = 2719 vmsr_get_physical_package_id(thd_stat[i].cpu_id); 2720 } 2721 2722 /* Retrieve all packages power plane energy counter */ 2723 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) { 2724 for (int j = 0; j < num_threads; j++) { 2725 /* 2726 * Use the first thread we found that ran on the CPU 2727 * of the package to read the packages energy counter 2728 */ 2729 if (thd_stat[j].pkg_id == i) { 2730 pkg_stat[i].e_start = 2731 vmsr_read_msr(MSR_PKG_ENERGY_STATUS, 2732 thd_stat[j].cpu_id, 2733 thd_stat[j].thread_id, 2734 s->msr_energy.sioc); 2735 break; 2736 } 2737 } 2738 } 2739 2740 /* Sleep a short period while the other threads are working */ 2741 usleep(MSR_ENERGY_THREAD_SLEEP_US); 2742 2743 /* 2744 * Retrieve all packages power plane energy counter 2745 * Calculate the delta of all packages 2746 */ 2747 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) { 2748 for (int j = 0; j < num_threads; j++) { 2749 /* 2750 * Use the first thread we found that ran on the CPU 2751 * of the package to read the packages energy counter 2752 */ 2753 if (thd_stat[j].pkg_id == i) { 2754 pkg_stat[i].e_end = 2755 vmsr_read_msr(MSR_PKG_ENERGY_STATUS, 2756 thd_stat[j].cpu_id, 2757 thd_stat[j].thread_id, 2758 s->msr_energy.sioc); 2759 /* 2760 * Prevent the case we have migrate the VM 2761 * during the sleep period or any other cases 2762 * were energy counter might be lower after 2763 * the sleep period. 2764 */ 2765 if (pkg_stat[i].e_end > pkg_stat[i].e_start) { 2766 pkg_stat[i].e_delta = 2767 pkg_stat[i].e_end - pkg_stat[i].e_start; 2768 } else { 2769 pkg_stat[i].e_delta = 0; 2770 } 2771 break; 2772 } 2773 } 2774 } 2775 2776 /* Delta of ticks spend by each thread between the sample */ 2777 for (int i = 0; i < num_threads; i++) { 2778 vmsr_read_thread_stat(vmsr->pid, 2779 thd_stat[i].thread_id, 2780 &thd_stat[i].utime[1], 2781 &thd_stat[i].stime[1], 2782 &thd_stat[i].cpu_id); 2783 2784 if (vmsr->pid < 0) { 2785 /* 2786 * We don't count the dead thread 2787 * i.e threads that existed before the sleep 2788 * and not anymore 2789 */ 2790 thd_stat[i].delta_ticks = 0; 2791 } else { 2792 vmsr_delta_ticks(thd_stat, i); 2793 } 2794 } 2795 2796 /* 2797 * Identify the vcpu threads 2798 * Calculate the number of vcpu per package 2799 */ 2800 CPU_FOREACH(cpu) { 2801 for (int i = 0; i < num_threads; i++) { 2802 if (cpu->thread_id == thd_stat[i].thread_id) { 2803 thd_stat[i].is_vcpu = true; 2804 thd_stat[i].vcpu_id = cpu->cpu_index; 2805 pkg_stat[thd_stat[i].pkg_id].nb_vcpu++; 2806 thd_stat[i].acpi_id = kvm_arch_vcpu_id(cpu); 2807 break; 2808 } 2809 } 2810 } 2811 2812 /* Retrieve the virtual package number of each vCPU */ 2813 for (int i = 0; i < vmsr->guest_cpu_list->len; i++) { 2814 for (int j = 0; j < num_threads; j++) { 2815 if ((thd_stat[j].acpi_id == 2816 vmsr->guest_cpu_list->cpus[i].arch_id) 2817 && (thd_stat[j].is_vcpu == true)) { 2818 x86_topo_ids_from_apicid(thd_stat[j].acpi_id, 2819 &vmsr->guest_topo_info, &topo_ids); 2820 thd_stat[j].vpkg_id = topo_ids.pkg_id; 2821 } 2822 } 2823 } 2824 2825 /* Calculate the total energy of all non-vCPU thread */ 2826 for (int i = 0; i < num_threads; i++) { 2827 if ((thd_stat[i].is_vcpu != true) && 2828 (thd_stat[i].delta_ticks > 0)) { 2829 double temp; 2830 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta, 2831 thd_stat[i].delta_ticks, 2832 vmsr->host_topo.maxticks[thd_stat[i].pkg_id]); 2833 pkg_stat[thd_stat[i].pkg_id].e_ratio 2834 += (uint64_t)lround(temp); 2835 } 2836 } 2837 2838 /* Calculate the ratio per non-vCPU thread of each package */ 2839 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) { 2840 if (pkg_stat[i].nb_vcpu > 0) { 2841 pkg_stat[i].e_ratio = pkg_stat[i].e_ratio / pkg_stat[i].nb_vcpu; 2842 } 2843 } 2844 2845 /* 2846 * Calculate the energy for each Package: 2847 * Energy Package = sum of each vCPU energy that belongs to the package 2848 */ 2849 for (int i = 0; i < num_threads; i++) { 2850 if ((thd_stat[i].is_vcpu == true) && \ 2851 (thd_stat[i].delta_ticks > 0)) { 2852 double temp; 2853 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta, 2854 thd_stat[i].delta_ticks, 2855 vmsr->host_topo.maxticks[thd_stat[i].pkg_id]); 2856 vpkgs_energy_stat[thd_stat[i].vpkg_id] += 2857 (uint64_t)lround(temp); 2858 vpkgs_energy_stat[thd_stat[i].vpkg_id] += 2859 pkg_stat[thd_stat[i].pkg_id].e_ratio; 2860 } 2861 } 2862 2863 /* 2864 * Finally populate the vmsr register of each vCPU with the total 2865 * package value to emulate the real hardware where each CPU return the 2866 * value of the package it belongs. 2867 */ 2868 for (int i = 0; i < num_threads; i++) { 2869 if ((thd_stat[i].is_vcpu == true) && \ 2870 (thd_stat[i].delta_ticks > 0)) { 2871 vmsr->msr_value[thd_stat[i].vcpu_id] = \ 2872 vpkgs_energy_stat[thd_stat[i].vpkg_id]; 2873 } 2874 } 2875 2876 /* Freeing memory before zeroing the pointer */ 2877 for (int i = 0; i < num_threads; i++) { 2878 g_free(thd_stat[i].utime); 2879 g_free(thd_stat[i].stime); 2880 } 2881 } 2882 2883 clean: 2884 rcu_unregister_thread(); 2885 return NULL; 2886 } 2887 2888 static int kvm_msr_energy_thread_init(KVMState *s, MachineState *ms) 2889 { 2890 MachineClass *mc = MACHINE_GET_CLASS(ms); 2891 struct KVMMsrEnergy *r = &s->msr_energy; 2892 int ret = 0; 2893 2894 /* 2895 * Sanity check 2896 * 1. Host cpu must be Intel cpu 2897 * 2. RAPL must be enabled on the Host 2898 */ 2899 if (is_host_cpu_intel()) { 2900 error_report("The RAPL feature can only be enabled on hosts\ 2901 with Intel CPU models"); 2902 ret = 1; 2903 goto out; 2904 } 2905 2906 if (!is_rapl_enabled()) { 2907 ret = 1; 2908 goto out; 2909 } 2910 2911 /* Retrieve the virtual topology */ 2912 vmsr_init_topo_info(&r->guest_topo_info, ms); 2913 2914 /* Retrieve the number of vcpu */ 2915 r->guest_vcpus = ms->smp.cpus; 2916 2917 /* Retrieve the number of virtual sockets */ 2918 r->guest_vsockets = ms->smp.sockets; 2919 2920 /* Allocate register memory (MSR_PKG_STATUS) for each vcpu */ 2921 r->msr_value = g_new0(uint64_t, r->guest_vcpus); 2922 2923 /* Retrieve the CPUArchIDlist */ 2924 r->guest_cpu_list = mc->possible_cpu_arch_ids(ms); 2925 2926 /* Max number of cpus on the Host */ 2927 r->host_topo.maxcpus = vmsr_get_maxcpus(); 2928 if (r->host_topo.maxcpus == 0) { 2929 error_report("host max cpus = 0"); 2930 ret = 1; 2931 goto out; 2932 } 2933 2934 /* Max number of packages on the host */ 2935 r->host_topo.maxpkgs = vmsr_get_max_physical_package(r->host_topo.maxcpus); 2936 if (r->host_topo.maxpkgs == 0) { 2937 error_report("host max pkgs = 0"); 2938 ret = 1; 2939 goto out; 2940 } 2941 2942 /* Allocate memory for each package on the host */ 2943 r->host_topo.pkg_cpu_count = g_new0(unsigned int, r->host_topo.maxpkgs); 2944 r->host_topo.maxticks = g_new0(unsigned int, r->host_topo.maxpkgs); 2945 2946 vmsr_count_cpus_per_package(r->host_topo.pkg_cpu_count, 2947 r->host_topo.maxpkgs); 2948 for (int i = 0; i < r->host_topo.maxpkgs; i++) { 2949 if (r->host_topo.pkg_cpu_count[i] == 0) { 2950 error_report("cpu per packages = 0 on package_%d", i); 2951 ret = 1; 2952 goto out; 2953 } 2954 } 2955 2956 /* Get QEMU PID*/ 2957 r->pid = getpid(); 2958 2959 /* Compute the socket path if necessary */ 2960 if (s->msr_energy.socket_path == NULL) { 2961 s->msr_energy.socket_path = vmsr_compute_default_paths(); 2962 } 2963 2964 /* Open socket with vmsr helper */ 2965 s->msr_energy.sioc = vmsr_open_socket(s->msr_energy.socket_path); 2966 2967 if (s->msr_energy.sioc == NULL) { 2968 error_report("vmsr socket opening failed"); 2969 ret = 1; 2970 goto out; 2971 } 2972 2973 /* Those MSR values should not change */ 2974 r->msr_unit = vmsr_read_msr(MSR_RAPL_POWER_UNIT, 0, r->pid, 2975 s->msr_energy.sioc); 2976 r->msr_limit = vmsr_read_msr(MSR_PKG_POWER_LIMIT, 0, r->pid, 2977 s->msr_energy.sioc); 2978 r->msr_info = vmsr_read_msr(MSR_PKG_POWER_INFO, 0, r->pid, 2979 s->msr_energy.sioc); 2980 if (r->msr_unit == 0 || r->msr_limit == 0 || r->msr_info == 0) { 2981 error_report("can't read any virtual msr"); 2982 ret = 1; 2983 goto out; 2984 } 2985 2986 qemu_thread_create(&r->msr_thr, "kvm-msr", 2987 kvm_msr_energy_thread, 2988 s, QEMU_THREAD_JOINABLE); 2989 out: 2990 return ret; 2991 } 2992 2993 int kvm_arch_get_default_type(MachineState *ms) 2994 { 2995 return 0; 2996 } 2997 2998 int kvm_arch_init(MachineState *ms, KVMState *s) 2999 { 3000 uint64_t identity_base = 0xfffbc000; 3001 uint64_t shadow_mem; 3002 int ret; 3003 struct utsname utsname; 3004 Error *local_err = NULL; 3005 3006 /* 3007 * Initialize SEV context, if required 3008 * 3009 * If no memory encryption is requested (ms->cgs == NULL) this is 3010 * a no-op. 3011 * 3012 * It's also a no-op if a non-SEV confidential guest support 3013 * mechanism is selected. SEV is the only mechanism available to 3014 * select on x86 at present, so this doesn't arise, but if new 3015 * mechanisms are supported in future (e.g. TDX), they'll need 3016 * their own initialization either here or elsewhere. 3017 */ 3018 if (ms->cgs) { 3019 ret = confidential_guest_kvm_init(ms->cgs, &local_err); 3020 if (ret < 0) { 3021 error_report_err(local_err); 3022 return ret; 3023 } 3024 } 3025 3026 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); 3027 has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0; 3028 3029 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX); 3030 3031 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD); 3032 if (has_exception_payload) { 3033 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true); 3034 if (ret < 0) { 3035 error_report("kvm: Failed to enable exception payload cap: %s", 3036 strerror(-ret)); 3037 return ret; 3038 } 3039 } 3040 3041 has_triple_fault_event = kvm_check_extension(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT); 3042 if (has_triple_fault_event) { 3043 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true); 3044 if (ret < 0) { 3045 error_report("kvm: Failed to enable triple fault event cap: %s", 3046 strerror(-ret)); 3047 return ret; 3048 } 3049 } 3050 3051 if (s->xen_version) { 3052 #ifdef CONFIG_XEN_EMU 3053 if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) { 3054 error_report("kvm: Xen support only available in PC machine"); 3055 return -ENOTSUP; 3056 } 3057 /* hyperv_enabled() doesn't work yet. */ 3058 uint32_t msr = XEN_HYPERCALL_MSR; 3059 ret = kvm_xen_init(s, msr); 3060 if (ret < 0) { 3061 return ret; 3062 } 3063 #else 3064 error_report("kvm: Xen support not enabled in qemu"); 3065 return -ENOTSUP; 3066 #endif 3067 } 3068 3069 ret = kvm_get_supported_msrs(s); 3070 if (ret < 0) { 3071 return ret; 3072 } 3073 3074 kvm_get_supported_feature_msrs(s); 3075 3076 uname(&utsname); 3077 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; 3078 3079 /* 3080 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. 3081 * In order to use vm86 mode, an EPT identity map and a TSS are needed. 3082 * Since these must be part of guest physical memory, we need to allocate 3083 * them, both by setting their start addresses in the kernel and by 3084 * creating a corresponding e820 entry. We need 4 pages before the BIOS, 3085 * so this value allows up to 16M BIOSes. 3086 */ 3087 identity_base = 0xfeffc000; 3088 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); 3089 if (ret < 0) { 3090 return ret; 3091 } 3092 3093 /* Set TSS base one page after EPT identity map. */ 3094 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); 3095 if (ret < 0) { 3096 return ret; 3097 } 3098 3099 /* Tell fw_cfg to notify the BIOS to reserve the range. */ 3100 e820_add_entry(identity_base, 0x4000, E820_RESERVED); 3101 3102 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort); 3103 if (shadow_mem != -1) { 3104 shadow_mem /= 4096; 3105 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); 3106 if (ret < 0) { 3107 return ret; 3108 } 3109 } 3110 3111 if (kvm_check_extension(s, KVM_CAP_X86_SMM) && 3112 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) && 3113 x86_machine_is_smm_enabled(X86_MACHINE(ms))) { 3114 smram_machine_done.notify = register_smram_listener; 3115 qemu_add_machine_init_done_notifier(&smram_machine_done); 3116 } 3117 3118 if (enable_cpu_pm) { 3119 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS); 3120 /* Work around for kernel header with a typo. TODO: fix header and drop. */ 3121 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT) 3122 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL 3123 #endif 3124 if (disable_exits) { 3125 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT | 3126 KVM_X86_DISABLE_EXITS_HLT | 3127 KVM_X86_DISABLE_EXITS_PAUSE | 3128 KVM_X86_DISABLE_EXITS_CSTATE); 3129 } 3130 3131 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0, 3132 disable_exits); 3133 if (ret < 0) { 3134 error_report("kvm: guest stopping CPU not supported: %s", 3135 strerror(-ret)); 3136 } 3137 } 3138 3139 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) { 3140 X86MachineState *x86ms = X86_MACHINE(ms); 3141 3142 if (x86ms->bus_lock_ratelimit > 0) { 3143 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT); 3144 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) { 3145 error_report("kvm: bus lock detection unsupported"); 3146 return -ENOTSUP; 3147 } 3148 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0, 3149 KVM_BUS_LOCK_DETECTION_EXIT); 3150 if (ret < 0) { 3151 error_report("kvm: Failed to enable bus lock detection cap: %s", 3152 strerror(-ret)); 3153 return ret; 3154 } 3155 ratelimit_init(&bus_lock_ratelimit_ctrl); 3156 ratelimit_set_speed(&bus_lock_ratelimit_ctrl, 3157 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME); 3158 } 3159 } 3160 3161 if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE && 3162 kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) { 3163 uint64_t notify_window_flags = 3164 ((uint64_t)s->notify_window << 32) | 3165 KVM_X86_NOTIFY_VMEXIT_ENABLED | 3166 KVM_X86_NOTIFY_VMEXIT_USER; 3167 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0, 3168 notify_window_flags); 3169 if (ret < 0) { 3170 error_report("kvm: Failed to enable notify vmexit cap: %s", 3171 strerror(-ret)); 3172 return ret; 3173 } 3174 } 3175 if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) { 3176 bool r; 3177 3178 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0, 3179 KVM_MSR_EXIT_REASON_FILTER); 3180 if (ret) { 3181 error_report("Could not enable user space MSRs: %s", 3182 strerror(-ret)); 3183 exit(1); 3184 } 3185 3186 r = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT, 3187 kvm_rdmsr_core_thread_count, NULL); 3188 if (!r) { 3189 error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s", 3190 strerror(-ret)); 3191 exit(1); 3192 } 3193 3194 if (s->msr_energy.enable == true) { 3195 r = kvm_filter_msr(s, MSR_RAPL_POWER_UNIT, 3196 kvm_rdmsr_rapl_power_unit, NULL); 3197 if (!r) { 3198 error_report("Could not install MSR_RAPL_POWER_UNIT \ 3199 handler: %s", 3200 strerror(-ret)); 3201 exit(1); 3202 } 3203 3204 r = kvm_filter_msr(s, MSR_PKG_POWER_LIMIT, 3205 kvm_rdmsr_pkg_power_limit, NULL); 3206 if (!r) { 3207 error_report("Could not install MSR_PKG_POWER_LIMIT \ 3208 handler: %s", 3209 strerror(-ret)); 3210 exit(1); 3211 } 3212 3213 r = kvm_filter_msr(s, MSR_PKG_POWER_INFO, 3214 kvm_rdmsr_pkg_power_info, NULL); 3215 if (!r) { 3216 error_report("Could not install MSR_PKG_POWER_INFO \ 3217 handler: %s", 3218 strerror(-ret)); 3219 exit(1); 3220 } 3221 r = kvm_filter_msr(s, MSR_PKG_ENERGY_STATUS, 3222 kvm_rdmsr_pkg_energy_status, NULL); 3223 if (!r) { 3224 error_report("Could not install MSR_PKG_ENERGY_STATUS \ 3225 handler: %s", 3226 strerror(-ret)); 3227 exit(1); 3228 } 3229 r = kvm_msr_energy_thread_init(s, ms); 3230 if (r) { 3231 error_report("kvm : error RAPL feature requirement not meet"); 3232 exit(1); 3233 } 3234 3235 } 3236 } 3237 3238 return 0; 3239 } 3240 3241 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 3242 { 3243 lhs->selector = rhs->selector; 3244 lhs->base = rhs->base; 3245 lhs->limit = rhs->limit; 3246 lhs->type = 3; 3247 lhs->present = 1; 3248 lhs->dpl = 3; 3249 lhs->db = 0; 3250 lhs->s = 1; 3251 lhs->l = 0; 3252 lhs->g = 0; 3253 lhs->avl = 0; 3254 lhs->unusable = 0; 3255 } 3256 3257 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 3258 { 3259 unsigned flags = rhs->flags; 3260 lhs->selector = rhs->selector; 3261 lhs->base = rhs->base; 3262 lhs->limit = rhs->limit; 3263 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; 3264 lhs->present = (flags & DESC_P_MASK) != 0; 3265 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; 3266 lhs->db = (flags >> DESC_B_SHIFT) & 1; 3267 lhs->s = (flags & DESC_S_MASK) != 0; 3268 lhs->l = (flags >> DESC_L_SHIFT) & 1; 3269 lhs->g = (flags & DESC_G_MASK) != 0; 3270 lhs->avl = (flags & DESC_AVL_MASK) != 0; 3271 lhs->unusable = !lhs->present; 3272 lhs->padding = 0; 3273 } 3274 3275 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) 3276 { 3277 lhs->selector = rhs->selector; 3278 lhs->base = rhs->base; 3279 lhs->limit = rhs->limit; 3280 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | 3281 ((rhs->present && !rhs->unusable) * DESC_P_MASK) | 3282 (rhs->dpl << DESC_DPL_SHIFT) | 3283 (rhs->db << DESC_B_SHIFT) | 3284 (rhs->s * DESC_S_MASK) | 3285 (rhs->l << DESC_L_SHIFT) | 3286 (rhs->g * DESC_G_MASK) | 3287 (rhs->avl * DESC_AVL_MASK); 3288 } 3289 3290 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) 3291 { 3292 if (set) { 3293 *kvm_reg = *qemu_reg; 3294 } else { 3295 *qemu_reg = *kvm_reg; 3296 } 3297 } 3298 3299 static int kvm_getput_regs(X86CPU *cpu, int set) 3300 { 3301 CPUX86State *env = &cpu->env; 3302 struct kvm_regs regs; 3303 int ret = 0; 3304 3305 if (!set) { 3306 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); 3307 if (ret < 0) { 3308 return ret; 3309 } 3310 } 3311 3312 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); 3313 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); 3314 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); 3315 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); 3316 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); 3317 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); 3318 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); 3319 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); 3320 #ifdef TARGET_X86_64 3321 kvm_getput_reg(®s.r8, &env->regs[8], set); 3322 kvm_getput_reg(®s.r9, &env->regs[9], set); 3323 kvm_getput_reg(®s.r10, &env->regs[10], set); 3324 kvm_getput_reg(®s.r11, &env->regs[11], set); 3325 kvm_getput_reg(®s.r12, &env->regs[12], set); 3326 kvm_getput_reg(®s.r13, &env->regs[13], set); 3327 kvm_getput_reg(®s.r14, &env->regs[14], set); 3328 kvm_getput_reg(®s.r15, &env->regs[15], set); 3329 #endif 3330 3331 kvm_getput_reg(®s.rflags, &env->eflags, set); 3332 kvm_getput_reg(®s.rip, &env->eip, set); 3333 3334 if (set) { 3335 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); 3336 } 3337 3338 return ret; 3339 } 3340 3341 static int kvm_put_xsave(X86CPU *cpu) 3342 { 3343 CPUX86State *env = &cpu->env; 3344 void *xsave = env->xsave_buf; 3345 3346 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len); 3347 3348 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); 3349 } 3350 3351 static int kvm_put_xcrs(X86CPU *cpu) 3352 { 3353 CPUX86State *env = &cpu->env; 3354 struct kvm_xcrs xcrs = {}; 3355 3356 if (!has_xcrs) { 3357 return 0; 3358 } 3359 3360 xcrs.nr_xcrs = 1; 3361 xcrs.flags = 0; 3362 xcrs.xcrs[0].xcr = 0; 3363 xcrs.xcrs[0].value = env->xcr0; 3364 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); 3365 } 3366 3367 static int kvm_put_sregs(X86CPU *cpu) 3368 { 3369 CPUX86State *env = &cpu->env; 3370 struct kvm_sregs sregs; 3371 3372 /* 3373 * The interrupt_bitmap is ignored because KVM_SET_SREGS is 3374 * always followed by KVM_SET_VCPU_EVENTS. 3375 */ 3376 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); 3377 3378 if ((env->eflags & VM_MASK)) { 3379 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 3380 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 3381 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 3382 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 3383 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 3384 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 3385 } else { 3386 set_seg(&sregs.cs, &env->segs[R_CS]); 3387 set_seg(&sregs.ds, &env->segs[R_DS]); 3388 set_seg(&sregs.es, &env->segs[R_ES]); 3389 set_seg(&sregs.fs, &env->segs[R_FS]); 3390 set_seg(&sregs.gs, &env->segs[R_GS]); 3391 set_seg(&sregs.ss, &env->segs[R_SS]); 3392 } 3393 3394 set_seg(&sregs.tr, &env->tr); 3395 set_seg(&sregs.ldt, &env->ldt); 3396 3397 sregs.idt.limit = env->idt.limit; 3398 sregs.idt.base = env->idt.base; 3399 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 3400 sregs.gdt.limit = env->gdt.limit; 3401 sregs.gdt.base = env->gdt.base; 3402 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 3403 3404 sregs.cr0 = env->cr[0]; 3405 sregs.cr2 = env->cr[2]; 3406 sregs.cr3 = env->cr[3]; 3407 sregs.cr4 = env->cr[4]; 3408 3409 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 3410 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 3411 3412 sregs.efer = env->efer; 3413 3414 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); 3415 } 3416 3417 static int kvm_put_sregs2(X86CPU *cpu) 3418 { 3419 CPUX86State *env = &cpu->env; 3420 struct kvm_sregs2 sregs; 3421 int i; 3422 3423 sregs.flags = 0; 3424 3425 if ((env->eflags & VM_MASK)) { 3426 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 3427 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 3428 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 3429 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 3430 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 3431 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 3432 } else { 3433 set_seg(&sregs.cs, &env->segs[R_CS]); 3434 set_seg(&sregs.ds, &env->segs[R_DS]); 3435 set_seg(&sregs.es, &env->segs[R_ES]); 3436 set_seg(&sregs.fs, &env->segs[R_FS]); 3437 set_seg(&sregs.gs, &env->segs[R_GS]); 3438 set_seg(&sregs.ss, &env->segs[R_SS]); 3439 } 3440 3441 set_seg(&sregs.tr, &env->tr); 3442 set_seg(&sregs.ldt, &env->ldt); 3443 3444 sregs.idt.limit = env->idt.limit; 3445 sregs.idt.base = env->idt.base; 3446 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 3447 sregs.gdt.limit = env->gdt.limit; 3448 sregs.gdt.base = env->gdt.base; 3449 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 3450 3451 sregs.cr0 = env->cr[0]; 3452 sregs.cr2 = env->cr[2]; 3453 sregs.cr3 = env->cr[3]; 3454 sregs.cr4 = env->cr[4]; 3455 3456 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 3457 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 3458 3459 sregs.efer = env->efer; 3460 3461 if (env->pdptrs_valid) { 3462 for (i = 0; i < 4; i++) { 3463 sregs.pdptrs[i] = env->pdptrs[i]; 3464 } 3465 sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 3466 } 3467 3468 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs); 3469 } 3470 3471 3472 static void kvm_msr_buf_reset(X86CPU *cpu) 3473 { 3474 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); 3475 } 3476 3477 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) 3478 { 3479 struct kvm_msrs *msrs = cpu->kvm_msr_buf; 3480 void *limit = ((void *)msrs) + MSR_BUF_SIZE; 3481 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; 3482 3483 assert((void *)(entry + 1) <= limit); 3484 3485 entry->index = index; 3486 entry->reserved = 0; 3487 entry->data = value; 3488 msrs->nmsrs++; 3489 } 3490 3491 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) 3492 { 3493 kvm_msr_buf_reset(cpu); 3494 kvm_msr_entry_add(cpu, index, value); 3495 3496 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 3497 } 3498 3499 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value) 3500 { 3501 int ret; 3502 struct { 3503 struct kvm_msrs info; 3504 struct kvm_msr_entry entries[1]; 3505 } msr_data = { 3506 .info.nmsrs = 1, 3507 .entries[0].index = index, 3508 }; 3509 3510 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); 3511 if (ret < 0) { 3512 return ret; 3513 } 3514 assert(ret == 1); 3515 *value = msr_data.entries[0].data; 3516 return ret; 3517 } 3518 void kvm_put_apicbase(X86CPU *cpu, uint64_t value) 3519 { 3520 int ret; 3521 3522 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); 3523 assert(ret == 1); 3524 } 3525 3526 static int kvm_put_tscdeadline_msr(X86CPU *cpu) 3527 { 3528 CPUX86State *env = &cpu->env; 3529 int ret; 3530 3531 if (!has_msr_tsc_deadline) { 3532 return 0; 3533 } 3534 3535 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); 3536 if (ret < 0) { 3537 return ret; 3538 } 3539 3540 assert(ret == 1); 3541 return 0; 3542 } 3543 3544 /* 3545 * Provide a separate write service for the feature control MSR in order to 3546 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done 3547 * before writing any other state because forcibly leaving nested mode 3548 * invalidates the VCPU state. 3549 */ 3550 static int kvm_put_msr_feature_control(X86CPU *cpu) 3551 { 3552 int ret; 3553 3554 if (!has_msr_feature_control) { 3555 return 0; 3556 } 3557 3558 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, 3559 cpu->env.msr_ia32_feature_control); 3560 if (ret < 0) { 3561 return ret; 3562 } 3563 3564 assert(ret == 1); 3565 return 0; 3566 } 3567 3568 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features) 3569 { 3570 uint32_t default1, can_be_one, can_be_zero; 3571 uint32_t must_be_one; 3572 3573 switch (index) { 3574 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 3575 default1 = 0x00000016; 3576 break; 3577 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 3578 default1 = 0x0401e172; 3579 break; 3580 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 3581 default1 = 0x000011ff; 3582 break; 3583 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 3584 default1 = 0x00036dff; 3585 break; 3586 case MSR_IA32_VMX_PROCBASED_CTLS2: 3587 default1 = 0; 3588 break; 3589 default: 3590 abort(); 3591 } 3592 3593 /* If a feature bit is set, the control can be either set or clear. 3594 * Otherwise the value is limited to either 0 or 1 by default1. 3595 */ 3596 can_be_one = features | default1; 3597 can_be_zero = features | ~default1; 3598 must_be_one = ~can_be_zero; 3599 3600 /* 3601 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one). 3602 * Bit 32:63 -> 1 if the control bit can be one. 3603 */ 3604 return must_be_one | (((uint64_t)can_be_one) << 32); 3605 } 3606 3607 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f) 3608 { 3609 uint64_t kvm_vmx_basic = 3610 kvm_arch_get_supported_msr_feature(kvm_state, 3611 MSR_IA32_VMX_BASIC); 3612 3613 if (!kvm_vmx_basic) { 3614 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0), 3615 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail. 3616 */ 3617 return; 3618 } 3619 3620 uint64_t kvm_vmx_misc = 3621 kvm_arch_get_supported_msr_feature(kvm_state, 3622 MSR_IA32_VMX_MISC); 3623 uint64_t kvm_vmx_ept_vpid = 3624 kvm_arch_get_supported_msr_feature(kvm_state, 3625 MSR_IA32_VMX_EPT_VPID_CAP); 3626 3627 /* 3628 * If the guest is 64-bit, a value of 1 is allowed for the host address 3629 * space size vmexit control. 3630 */ 3631 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM 3632 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0; 3633 3634 /* 3635 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should 3636 * not change them for backwards compatibility. 3637 */ 3638 uint64_t fixed_vmx_basic = kvm_vmx_basic & 3639 (MSR_VMX_BASIC_VMCS_REVISION_MASK | 3640 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK | 3641 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK); 3642 3643 /* 3644 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can 3645 * change in the future but are always zero for now, clear them to be 3646 * future proof. Bits 32-63 in theory could change, though KVM does 3647 * not support dual-monitor treatment and probably never will; mask 3648 * them out as well. 3649 */ 3650 uint64_t fixed_vmx_misc = kvm_vmx_misc & 3651 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK | 3652 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK); 3653 3654 /* 3655 * EPT memory types should not change either, so we do not bother 3656 * adding features for them. 3657 */ 3658 uint64_t fixed_vmx_ept_mask = 3659 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ? 3660 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0); 3661 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask; 3662 3663 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 3664 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 3665 f[FEAT_VMX_PROCBASED_CTLS])); 3666 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS, 3667 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS, 3668 f[FEAT_VMX_PINBASED_CTLS])); 3669 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS, 3670 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS, 3671 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit); 3672 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS, 3673 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS, 3674 f[FEAT_VMX_ENTRY_CTLS])); 3675 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2, 3676 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2, 3677 f[FEAT_VMX_SECONDARY_CTLS])); 3678 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP, 3679 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid); 3680 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC, 3681 f[FEAT_VMX_BASIC] | fixed_vmx_basic); 3682 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC, 3683 f[FEAT_VMX_MISC] | fixed_vmx_misc); 3684 if (has_msr_vmx_vmfunc) { 3685 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]); 3686 } 3687 3688 /* 3689 * Just to be safe, write these with constant values. The CRn_FIXED1 3690 * MSRs are generated by KVM based on the vCPU's CPUID. 3691 */ 3692 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0, 3693 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK); 3694 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0, 3695 CR4_VMXE_MASK); 3696 3697 if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) { 3698 /* TSC multiplier (0x2032). */ 3699 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32); 3700 } else { 3701 /* Preemption timer (0x482E). */ 3702 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E); 3703 } 3704 } 3705 3706 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f) 3707 { 3708 uint64_t kvm_perf_cap = 3709 kvm_arch_get_supported_msr_feature(kvm_state, 3710 MSR_IA32_PERF_CAPABILITIES); 3711 3712 if (kvm_perf_cap) { 3713 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES, 3714 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]); 3715 } 3716 } 3717 3718 static int kvm_buf_set_msrs(X86CPU *cpu) 3719 { 3720 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 3721 if (ret < 0) { 3722 return ret; 3723 } 3724 3725 if (ret < cpu->kvm_msr_buf->nmsrs) { 3726 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 3727 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, 3728 (uint32_t)e->index, (uint64_t)e->data); 3729 } 3730 3731 assert(ret == cpu->kvm_msr_buf->nmsrs); 3732 return 0; 3733 } 3734 3735 static void kvm_init_msrs(X86CPU *cpu) 3736 { 3737 CPUX86State *env = &cpu->env; 3738 3739 kvm_msr_buf_reset(cpu); 3740 if (has_msr_arch_capabs) { 3741 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES, 3742 env->features[FEAT_ARCH_CAPABILITIES]); 3743 } 3744 3745 if (has_msr_core_capabs) { 3746 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY, 3747 env->features[FEAT_CORE_CAPABILITY]); 3748 } 3749 3750 if (has_msr_perf_capabs && cpu->enable_pmu) { 3751 kvm_msr_entry_add_perf(cpu, env->features); 3752 } 3753 3754 if (has_msr_ucode_rev) { 3755 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev); 3756 } 3757 3758 /* 3759 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but 3760 * all kernels with MSR features should have them. 3761 */ 3762 if (kvm_feature_msrs && cpu_has_vmx(env)) { 3763 kvm_msr_entry_add_vmx(cpu, env->features); 3764 } 3765 3766 assert(kvm_buf_set_msrs(cpu) == 0); 3767 } 3768 3769 static int kvm_put_msrs(X86CPU *cpu, int level) 3770 { 3771 CPUX86State *env = &cpu->env; 3772 int i; 3773 3774 kvm_msr_buf_reset(cpu); 3775 3776 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); 3777 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); 3778 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); 3779 kvm_msr_entry_add(cpu, MSR_PAT, env->pat); 3780 if (has_msr_star) { 3781 kvm_msr_entry_add(cpu, MSR_STAR, env->star); 3782 } 3783 if (has_msr_hsave_pa) { 3784 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); 3785 } 3786 if (has_msr_tsc_aux) { 3787 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); 3788 } 3789 if (has_msr_tsc_adjust) { 3790 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); 3791 } 3792 if (has_msr_misc_enable) { 3793 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 3794 env->msr_ia32_misc_enable); 3795 } 3796 if (has_msr_smbase) { 3797 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); 3798 } 3799 if (has_msr_smi_count) { 3800 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count); 3801 } 3802 if (has_msr_pkrs) { 3803 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs); 3804 } 3805 if (has_msr_bndcfgs) { 3806 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); 3807 } 3808 if (has_msr_xss) { 3809 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); 3810 } 3811 if (has_msr_umwait) { 3812 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait); 3813 } 3814 if (has_msr_spec_ctrl) { 3815 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl); 3816 } 3817 if (has_tsc_scale_msr) { 3818 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr); 3819 } 3820 3821 if (has_msr_tsx_ctrl) { 3822 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl); 3823 } 3824 if (has_msr_virt_ssbd) { 3825 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd); 3826 } 3827 3828 #ifdef TARGET_X86_64 3829 if (lm_capable_kernel) { 3830 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); 3831 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); 3832 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); 3833 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); 3834 if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) { 3835 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, env->fred_rsp0); 3836 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, env->fred_rsp1); 3837 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, env->fred_rsp2); 3838 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, env->fred_rsp3); 3839 kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, env->fred_stklvls); 3840 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, env->fred_ssp1); 3841 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, env->fred_ssp2); 3842 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, env->fred_ssp3); 3843 kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, env->fred_config); 3844 } 3845 } 3846 #endif 3847 3848 /* 3849 * The following MSRs have side effects on the guest or are too heavy 3850 * for normal writeback. Limit them to reset or full state updates. 3851 */ 3852 if (level >= KVM_PUT_RESET_STATE) { 3853 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); 3854 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); 3855 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); 3856 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { 3857 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr); 3858 } 3859 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { 3860 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); 3861 } 3862 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { 3863 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); 3864 } 3865 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { 3866 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); 3867 } 3868 3869 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { 3870 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr); 3871 } 3872 3873 if (has_architectural_pmu_version > 0) { 3874 if (has_architectural_pmu_version > 1) { 3875 /* Stop the counter. */ 3876 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 3877 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 3878 } 3879 3880 /* Set the counter values. */ 3881 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 3882 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 3883 env->msr_fixed_counters[i]); 3884 } 3885 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 3886 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 3887 env->msr_gp_counters[i]); 3888 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 3889 env->msr_gp_evtsel[i]); 3890 } 3891 if (has_architectural_pmu_version > 1) { 3892 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 3893 env->msr_global_status); 3894 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 3895 env->msr_global_ovf_ctrl); 3896 3897 /* Now start the PMU. */ 3898 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 3899 env->msr_fixed_ctr_ctrl); 3900 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 3901 env->msr_global_ctrl); 3902 } 3903 } 3904 /* 3905 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add, 3906 * only sync them to KVM on the first cpu 3907 */ 3908 if (current_cpu == first_cpu) { 3909 if (has_msr_hv_hypercall) { 3910 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 3911 env->msr_hv_guest_os_id); 3912 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 3913 env->msr_hv_hypercall); 3914 } 3915 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 3916 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 3917 env->msr_hv_tsc); 3918 } 3919 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 3920 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 3921 env->msr_hv_reenlightenment_control); 3922 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 3923 env->msr_hv_tsc_emulation_control); 3924 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 3925 env->msr_hv_tsc_emulation_status); 3926 } 3927 #ifdef CONFIG_SYNDBG 3928 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) && 3929 has_msr_hv_syndbg_options) { 3930 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 3931 hyperv_syndbg_query_options()); 3932 } 3933 #endif 3934 } 3935 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 3936 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 3937 env->msr_hv_vapic); 3938 } 3939 if (has_msr_hv_crash) { 3940 int j; 3941 3942 for (j = 0; j < HV_CRASH_PARAMS; j++) 3943 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 3944 env->msr_hv_crash_params[j]); 3945 3946 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY); 3947 } 3948 if (has_msr_hv_runtime) { 3949 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); 3950 } 3951 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) 3952 && hv_vpindex_settable) { 3953 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX, 3954 hyperv_vp_index(CPU(cpu))); 3955 } 3956 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 3957 int j; 3958 3959 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION); 3960 3961 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 3962 env->msr_hv_synic_control); 3963 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 3964 env->msr_hv_synic_evt_page); 3965 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 3966 env->msr_hv_synic_msg_page); 3967 3968 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { 3969 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, 3970 env->msr_hv_synic_sint[j]); 3971 } 3972 } 3973 if (has_msr_hv_stimer) { 3974 int j; 3975 3976 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { 3977 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, 3978 env->msr_hv_stimer_config[j]); 3979 } 3980 3981 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { 3982 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, 3983 env->msr_hv_stimer_count[j]); 3984 } 3985 } 3986 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 3987 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); 3988 3989 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); 3990 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); 3991 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); 3992 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); 3993 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); 3994 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); 3995 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); 3996 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); 3997 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); 3998 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); 3999 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); 4000 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); 4001 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 4002 /* The CPU GPs if we write to a bit above the physical limit of 4003 * the host CPU (and KVM emulates that) 4004 */ 4005 uint64_t mask = env->mtrr_var[i].mask; 4006 mask &= phys_mask; 4007 4008 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 4009 env->mtrr_var[i].base); 4010 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); 4011 } 4012 } 4013 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 4014 int addr_num = kvm_arch_get_supported_cpuid(kvm_state, 4015 0x14, 1, R_EAX) & 0x7; 4016 4017 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 4018 env->msr_rtit_ctrl); 4019 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 4020 env->msr_rtit_status); 4021 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 4022 env->msr_rtit_output_base); 4023 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 4024 env->msr_rtit_output_mask); 4025 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 4026 env->msr_rtit_cr3_match); 4027 for (i = 0; i < addr_num; i++) { 4028 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 4029 env->msr_rtit_addrs[i]); 4030 } 4031 } 4032 4033 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 4034 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 4035 env->msr_ia32_sgxlepubkeyhash[0]); 4036 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 4037 env->msr_ia32_sgxlepubkeyhash[1]); 4038 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 4039 env->msr_ia32_sgxlepubkeyhash[2]); 4040 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 4041 env->msr_ia32_sgxlepubkeyhash[3]); 4042 } 4043 4044 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) { 4045 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 4046 env->msr_xfd); 4047 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 4048 env->msr_xfd_err); 4049 } 4050 4051 if (kvm_enabled() && cpu->enable_pmu && 4052 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) { 4053 uint64_t depth; 4054 int ret; 4055 4056 /* 4057 * Only migrate Arch LBR states when the host Arch LBR depth 4058 * equals that of source guest's, this is to avoid mismatch 4059 * of guest/host config for the msr hence avoid unexpected 4060 * misbehavior. 4061 */ 4062 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth); 4063 4064 if (ret == 1 && !!depth && depth == env->msr_lbr_depth) { 4065 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl); 4066 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth); 4067 4068 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) { 4069 if (!env->lbr_records[i].from) { 4070 continue; 4071 } 4072 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 4073 env->lbr_records[i].from); 4074 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 4075 env->lbr_records[i].to); 4076 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 4077 env->lbr_records[i].info); 4078 } 4079 } 4080 } 4081 4082 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see 4083 * kvm_put_msr_feature_control. */ 4084 } 4085 4086 if (env->mcg_cap) { 4087 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); 4088 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); 4089 if (has_msr_mcg_ext_ctl) { 4090 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); 4091 } 4092 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 4093 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); 4094 } 4095 } 4096 4097 return kvm_buf_set_msrs(cpu); 4098 } 4099 4100 4101 static int kvm_get_xsave(X86CPU *cpu) 4102 { 4103 CPUX86State *env = &cpu->env; 4104 void *xsave = env->xsave_buf; 4105 unsigned long type; 4106 int ret; 4107 4108 type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE; 4109 ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave); 4110 if (ret < 0) { 4111 return ret; 4112 } 4113 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len); 4114 4115 return 0; 4116 } 4117 4118 static int kvm_get_xcrs(X86CPU *cpu) 4119 { 4120 CPUX86State *env = &cpu->env; 4121 int i, ret; 4122 struct kvm_xcrs xcrs; 4123 4124 if (!has_xcrs) { 4125 return 0; 4126 } 4127 4128 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); 4129 if (ret < 0) { 4130 return ret; 4131 } 4132 4133 for (i = 0; i < xcrs.nr_xcrs; i++) { 4134 /* Only support xcr0 now */ 4135 if (xcrs.xcrs[i].xcr == 0) { 4136 env->xcr0 = xcrs.xcrs[i].value; 4137 break; 4138 } 4139 } 4140 return 0; 4141 } 4142 4143 static int kvm_get_sregs(X86CPU *cpu) 4144 { 4145 CPUX86State *env = &cpu->env; 4146 struct kvm_sregs sregs; 4147 int ret; 4148 4149 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); 4150 if (ret < 0) { 4151 return ret; 4152 } 4153 4154 /* 4155 * The interrupt_bitmap is ignored because KVM_GET_SREGS is 4156 * always preceded by KVM_GET_VCPU_EVENTS. 4157 */ 4158 4159 get_seg(&env->segs[R_CS], &sregs.cs); 4160 get_seg(&env->segs[R_DS], &sregs.ds); 4161 get_seg(&env->segs[R_ES], &sregs.es); 4162 get_seg(&env->segs[R_FS], &sregs.fs); 4163 get_seg(&env->segs[R_GS], &sregs.gs); 4164 get_seg(&env->segs[R_SS], &sregs.ss); 4165 4166 get_seg(&env->tr, &sregs.tr); 4167 get_seg(&env->ldt, &sregs.ldt); 4168 4169 env->idt.limit = sregs.idt.limit; 4170 env->idt.base = sregs.idt.base; 4171 env->gdt.limit = sregs.gdt.limit; 4172 env->gdt.base = sregs.gdt.base; 4173 4174 env->cr[0] = sregs.cr0; 4175 env->cr[2] = sregs.cr2; 4176 env->cr[3] = sregs.cr3; 4177 env->cr[4] = sregs.cr4; 4178 4179 env->efer = sregs.efer; 4180 if (sev_es_enabled() && env->efer & MSR_EFER_LME && 4181 env->cr[0] & CR0_PG_MASK) { 4182 env->efer |= MSR_EFER_LMA; 4183 } 4184 4185 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 4186 x86_update_hflags(env); 4187 4188 return 0; 4189 } 4190 4191 static int kvm_get_sregs2(X86CPU *cpu) 4192 { 4193 CPUX86State *env = &cpu->env; 4194 struct kvm_sregs2 sregs; 4195 int i, ret; 4196 4197 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs); 4198 if (ret < 0) { 4199 return ret; 4200 } 4201 4202 get_seg(&env->segs[R_CS], &sregs.cs); 4203 get_seg(&env->segs[R_DS], &sregs.ds); 4204 get_seg(&env->segs[R_ES], &sregs.es); 4205 get_seg(&env->segs[R_FS], &sregs.fs); 4206 get_seg(&env->segs[R_GS], &sregs.gs); 4207 get_seg(&env->segs[R_SS], &sregs.ss); 4208 4209 get_seg(&env->tr, &sregs.tr); 4210 get_seg(&env->ldt, &sregs.ldt); 4211 4212 env->idt.limit = sregs.idt.limit; 4213 env->idt.base = sregs.idt.base; 4214 env->gdt.limit = sregs.gdt.limit; 4215 env->gdt.base = sregs.gdt.base; 4216 4217 env->cr[0] = sregs.cr0; 4218 env->cr[2] = sregs.cr2; 4219 env->cr[3] = sregs.cr3; 4220 env->cr[4] = sregs.cr4; 4221 4222 env->efer = sregs.efer; 4223 if (sev_es_enabled() && env->efer & MSR_EFER_LME && 4224 env->cr[0] & CR0_PG_MASK) { 4225 env->efer |= MSR_EFER_LMA; 4226 } 4227 4228 env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 4229 4230 if (env->pdptrs_valid) { 4231 for (i = 0; i < 4; i++) { 4232 env->pdptrs[i] = sregs.pdptrs[i]; 4233 } 4234 } 4235 4236 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 4237 x86_update_hflags(env); 4238 4239 return 0; 4240 } 4241 4242 static int kvm_get_msrs(X86CPU *cpu) 4243 { 4244 CPUX86State *env = &cpu->env; 4245 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; 4246 int ret, i; 4247 uint64_t mtrr_top_bits; 4248 4249 kvm_msr_buf_reset(cpu); 4250 4251 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); 4252 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); 4253 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); 4254 kvm_msr_entry_add(cpu, MSR_PAT, 0); 4255 if (has_msr_star) { 4256 kvm_msr_entry_add(cpu, MSR_STAR, 0); 4257 } 4258 if (has_msr_hsave_pa) { 4259 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); 4260 } 4261 if (has_msr_tsc_aux) { 4262 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); 4263 } 4264 if (has_msr_tsc_adjust) { 4265 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); 4266 } 4267 if (has_msr_tsc_deadline) { 4268 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); 4269 } 4270 if (has_msr_misc_enable) { 4271 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); 4272 } 4273 if (has_msr_smbase) { 4274 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); 4275 } 4276 if (has_msr_smi_count) { 4277 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0); 4278 } 4279 if (has_msr_feature_control) { 4280 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); 4281 } 4282 if (has_msr_pkrs) { 4283 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0); 4284 } 4285 if (has_msr_bndcfgs) { 4286 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); 4287 } 4288 if (has_msr_xss) { 4289 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); 4290 } 4291 if (has_msr_umwait) { 4292 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0); 4293 } 4294 if (has_msr_spec_ctrl) { 4295 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0); 4296 } 4297 if (has_tsc_scale_msr) { 4298 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0); 4299 } 4300 4301 if (has_msr_tsx_ctrl) { 4302 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0); 4303 } 4304 if (has_msr_virt_ssbd) { 4305 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0); 4306 } 4307 if (!env->tsc_valid) { 4308 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); 4309 env->tsc_valid = !runstate_is_running(); 4310 } 4311 4312 #ifdef TARGET_X86_64 4313 if (lm_capable_kernel) { 4314 kvm_msr_entry_add(cpu, MSR_CSTAR, 0); 4315 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); 4316 kvm_msr_entry_add(cpu, MSR_FMASK, 0); 4317 kvm_msr_entry_add(cpu, MSR_LSTAR, 0); 4318 if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) { 4319 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, 0); 4320 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, 0); 4321 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, 0); 4322 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, 0); 4323 kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, 0); 4324 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, 0); 4325 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, 0); 4326 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, 0); 4327 kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, 0); 4328 } 4329 } 4330 #endif 4331 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); 4332 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); 4333 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { 4334 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0); 4335 } 4336 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { 4337 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); 4338 } 4339 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { 4340 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); 4341 } 4342 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { 4343 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); 4344 } 4345 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { 4346 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1); 4347 } 4348 if (has_architectural_pmu_version > 0) { 4349 if (has_architectural_pmu_version > 1) { 4350 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 4351 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 4352 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); 4353 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); 4354 } 4355 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 4356 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); 4357 } 4358 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 4359 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); 4360 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); 4361 } 4362 } 4363 4364 if (env->mcg_cap) { 4365 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); 4366 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); 4367 if (has_msr_mcg_ext_ctl) { 4368 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); 4369 } 4370 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 4371 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); 4372 } 4373 } 4374 4375 if (has_msr_hv_hypercall) { 4376 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); 4377 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); 4378 } 4379 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 4380 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); 4381 } 4382 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 4383 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); 4384 } 4385 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 4386 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0); 4387 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0); 4388 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0); 4389 } 4390 if (has_msr_hv_syndbg_options) { 4391 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0); 4392 } 4393 if (has_msr_hv_crash) { 4394 int j; 4395 4396 for (j = 0; j < HV_CRASH_PARAMS; j++) { 4397 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); 4398 } 4399 } 4400 if (has_msr_hv_runtime) { 4401 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); 4402 } 4403 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 4404 uint32_t msr; 4405 4406 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); 4407 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); 4408 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); 4409 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { 4410 kvm_msr_entry_add(cpu, msr, 0); 4411 } 4412 } 4413 if (has_msr_hv_stimer) { 4414 uint32_t msr; 4415 4416 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; 4417 msr++) { 4418 kvm_msr_entry_add(cpu, msr, 0); 4419 } 4420 } 4421 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 4422 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); 4423 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); 4424 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); 4425 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); 4426 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); 4427 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); 4428 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); 4429 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); 4430 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); 4431 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); 4432 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); 4433 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); 4434 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 4435 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); 4436 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); 4437 } 4438 } 4439 4440 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 4441 int addr_num = 4442 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7; 4443 4444 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0); 4445 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0); 4446 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0); 4447 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0); 4448 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0); 4449 for (i = 0; i < addr_num; i++) { 4450 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0); 4451 } 4452 } 4453 4454 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 4455 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0); 4456 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0); 4457 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0); 4458 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0); 4459 } 4460 4461 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) { 4462 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0); 4463 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0); 4464 } 4465 4466 if (kvm_enabled() && cpu->enable_pmu && 4467 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) { 4468 uint64_t depth; 4469 4470 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth); 4471 if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) { 4472 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0); 4473 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0); 4474 4475 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) { 4476 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0); 4477 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0); 4478 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0); 4479 } 4480 } 4481 } 4482 4483 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); 4484 if (ret < 0) { 4485 return ret; 4486 } 4487 4488 if (ret < cpu->kvm_msr_buf->nmsrs) { 4489 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 4490 error_report("error: failed to get MSR 0x%" PRIx32, 4491 (uint32_t)e->index); 4492 } 4493 4494 assert(ret == cpu->kvm_msr_buf->nmsrs); 4495 /* 4496 * MTRR masks: Each mask consists of 5 parts 4497 * a 10..0: must be zero 4498 * b 11 : valid bit 4499 * c n-1.12: actual mask bits 4500 * d 51..n: reserved must be zero 4501 * e 63.52: reserved must be zero 4502 * 4503 * 'n' is the number of physical bits supported by the CPU and is 4504 * apparently always <= 52. We know our 'n' but don't know what 4505 * the destinations 'n' is; it might be smaller, in which case 4506 * it masks (c) on loading. It might be larger, in which case 4507 * we fill 'd' so that d..c is consistent irrespetive of the 'n' 4508 * we're migrating to. 4509 */ 4510 4511 if (cpu->fill_mtrr_mask) { 4512 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); 4513 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); 4514 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); 4515 } else { 4516 mtrr_top_bits = 0; 4517 } 4518 4519 for (i = 0; i < ret; i++) { 4520 uint32_t index = msrs[i].index; 4521 switch (index) { 4522 case MSR_IA32_SYSENTER_CS: 4523 env->sysenter_cs = msrs[i].data; 4524 break; 4525 case MSR_IA32_SYSENTER_ESP: 4526 env->sysenter_esp = msrs[i].data; 4527 break; 4528 case MSR_IA32_SYSENTER_EIP: 4529 env->sysenter_eip = msrs[i].data; 4530 break; 4531 case MSR_PAT: 4532 env->pat = msrs[i].data; 4533 break; 4534 case MSR_STAR: 4535 env->star = msrs[i].data; 4536 break; 4537 #ifdef TARGET_X86_64 4538 case MSR_CSTAR: 4539 env->cstar = msrs[i].data; 4540 break; 4541 case MSR_KERNELGSBASE: 4542 env->kernelgsbase = msrs[i].data; 4543 break; 4544 case MSR_FMASK: 4545 env->fmask = msrs[i].data; 4546 break; 4547 case MSR_LSTAR: 4548 env->lstar = msrs[i].data; 4549 break; 4550 case MSR_IA32_FRED_RSP0: 4551 env->fred_rsp0 = msrs[i].data; 4552 break; 4553 case MSR_IA32_FRED_RSP1: 4554 env->fred_rsp1 = msrs[i].data; 4555 break; 4556 case MSR_IA32_FRED_RSP2: 4557 env->fred_rsp2 = msrs[i].data; 4558 break; 4559 case MSR_IA32_FRED_RSP3: 4560 env->fred_rsp3 = msrs[i].data; 4561 break; 4562 case MSR_IA32_FRED_STKLVLS: 4563 env->fred_stklvls = msrs[i].data; 4564 break; 4565 case MSR_IA32_FRED_SSP1: 4566 env->fred_ssp1 = msrs[i].data; 4567 break; 4568 case MSR_IA32_FRED_SSP2: 4569 env->fred_ssp2 = msrs[i].data; 4570 break; 4571 case MSR_IA32_FRED_SSP3: 4572 env->fred_ssp3 = msrs[i].data; 4573 break; 4574 case MSR_IA32_FRED_CONFIG: 4575 env->fred_config = msrs[i].data; 4576 break; 4577 #endif 4578 case MSR_IA32_TSC: 4579 env->tsc = msrs[i].data; 4580 break; 4581 case MSR_TSC_AUX: 4582 env->tsc_aux = msrs[i].data; 4583 break; 4584 case MSR_TSC_ADJUST: 4585 env->tsc_adjust = msrs[i].data; 4586 break; 4587 case MSR_IA32_TSCDEADLINE: 4588 env->tsc_deadline = msrs[i].data; 4589 break; 4590 case MSR_VM_HSAVE_PA: 4591 env->vm_hsave = msrs[i].data; 4592 break; 4593 case MSR_KVM_SYSTEM_TIME: 4594 env->system_time_msr = msrs[i].data; 4595 break; 4596 case MSR_KVM_WALL_CLOCK: 4597 env->wall_clock_msr = msrs[i].data; 4598 break; 4599 case MSR_MCG_STATUS: 4600 env->mcg_status = msrs[i].data; 4601 break; 4602 case MSR_MCG_CTL: 4603 env->mcg_ctl = msrs[i].data; 4604 break; 4605 case MSR_MCG_EXT_CTL: 4606 env->mcg_ext_ctl = msrs[i].data; 4607 break; 4608 case MSR_IA32_MISC_ENABLE: 4609 env->msr_ia32_misc_enable = msrs[i].data; 4610 break; 4611 case MSR_IA32_SMBASE: 4612 env->smbase = msrs[i].data; 4613 break; 4614 case MSR_SMI_COUNT: 4615 env->msr_smi_count = msrs[i].data; 4616 break; 4617 case MSR_IA32_FEATURE_CONTROL: 4618 env->msr_ia32_feature_control = msrs[i].data; 4619 break; 4620 case MSR_IA32_BNDCFGS: 4621 env->msr_bndcfgs = msrs[i].data; 4622 break; 4623 case MSR_IA32_XSS: 4624 env->xss = msrs[i].data; 4625 break; 4626 case MSR_IA32_UMWAIT_CONTROL: 4627 env->umwait = msrs[i].data; 4628 break; 4629 case MSR_IA32_PKRS: 4630 env->pkrs = msrs[i].data; 4631 break; 4632 default: 4633 if (msrs[i].index >= MSR_MC0_CTL && 4634 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { 4635 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; 4636 } 4637 break; 4638 case MSR_KVM_ASYNC_PF_EN: 4639 env->async_pf_en_msr = msrs[i].data; 4640 break; 4641 case MSR_KVM_ASYNC_PF_INT: 4642 env->async_pf_int_msr = msrs[i].data; 4643 break; 4644 case MSR_KVM_PV_EOI_EN: 4645 env->pv_eoi_en_msr = msrs[i].data; 4646 break; 4647 case MSR_KVM_STEAL_TIME: 4648 env->steal_time_msr = msrs[i].data; 4649 break; 4650 case MSR_KVM_POLL_CONTROL: { 4651 env->poll_control_msr = msrs[i].data; 4652 break; 4653 } 4654 case MSR_CORE_PERF_FIXED_CTR_CTRL: 4655 env->msr_fixed_ctr_ctrl = msrs[i].data; 4656 break; 4657 case MSR_CORE_PERF_GLOBAL_CTRL: 4658 env->msr_global_ctrl = msrs[i].data; 4659 break; 4660 case MSR_CORE_PERF_GLOBAL_STATUS: 4661 env->msr_global_status = msrs[i].data; 4662 break; 4663 case MSR_CORE_PERF_GLOBAL_OVF_CTRL: 4664 env->msr_global_ovf_ctrl = msrs[i].data; 4665 break; 4666 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: 4667 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; 4668 break; 4669 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: 4670 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; 4671 break; 4672 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: 4673 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; 4674 break; 4675 case HV_X64_MSR_HYPERCALL: 4676 env->msr_hv_hypercall = msrs[i].data; 4677 break; 4678 case HV_X64_MSR_GUEST_OS_ID: 4679 env->msr_hv_guest_os_id = msrs[i].data; 4680 break; 4681 case HV_X64_MSR_APIC_ASSIST_PAGE: 4682 env->msr_hv_vapic = msrs[i].data; 4683 break; 4684 case HV_X64_MSR_REFERENCE_TSC: 4685 env->msr_hv_tsc = msrs[i].data; 4686 break; 4687 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4688 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; 4689 break; 4690 case HV_X64_MSR_VP_RUNTIME: 4691 env->msr_hv_runtime = msrs[i].data; 4692 break; 4693 case HV_X64_MSR_SCONTROL: 4694 env->msr_hv_synic_control = msrs[i].data; 4695 break; 4696 case HV_X64_MSR_SIEFP: 4697 env->msr_hv_synic_evt_page = msrs[i].data; 4698 break; 4699 case HV_X64_MSR_SIMP: 4700 env->msr_hv_synic_msg_page = msrs[i].data; 4701 break; 4702 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 4703 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; 4704 break; 4705 case HV_X64_MSR_STIMER0_CONFIG: 4706 case HV_X64_MSR_STIMER1_CONFIG: 4707 case HV_X64_MSR_STIMER2_CONFIG: 4708 case HV_X64_MSR_STIMER3_CONFIG: 4709 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = 4710 msrs[i].data; 4711 break; 4712 case HV_X64_MSR_STIMER0_COUNT: 4713 case HV_X64_MSR_STIMER1_COUNT: 4714 case HV_X64_MSR_STIMER2_COUNT: 4715 case HV_X64_MSR_STIMER3_COUNT: 4716 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = 4717 msrs[i].data; 4718 break; 4719 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4720 env->msr_hv_reenlightenment_control = msrs[i].data; 4721 break; 4722 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4723 env->msr_hv_tsc_emulation_control = msrs[i].data; 4724 break; 4725 case HV_X64_MSR_TSC_EMULATION_STATUS: 4726 env->msr_hv_tsc_emulation_status = msrs[i].data; 4727 break; 4728 case HV_X64_MSR_SYNDBG_OPTIONS: 4729 env->msr_hv_syndbg_options = msrs[i].data; 4730 break; 4731 case MSR_MTRRdefType: 4732 env->mtrr_deftype = msrs[i].data; 4733 break; 4734 case MSR_MTRRfix64K_00000: 4735 env->mtrr_fixed[0] = msrs[i].data; 4736 break; 4737 case MSR_MTRRfix16K_80000: 4738 env->mtrr_fixed[1] = msrs[i].data; 4739 break; 4740 case MSR_MTRRfix16K_A0000: 4741 env->mtrr_fixed[2] = msrs[i].data; 4742 break; 4743 case MSR_MTRRfix4K_C0000: 4744 env->mtrr_fixed[3] = msrs[i].data; 4745 break; 4746 case MSR_MTRRfix4K_C8000: 4747 env->mtrr_fixed[4] = msrs[i].data; 4748 break; 4749 case MSR_MTRRfix4K_D0000: 4750 env->mtrr_fixed[5] = msrs[i].data; 4751 break; 4752 case MSR_MTRRfix4K_D8000: 4753 env->mtrr_fixed[6] = msrs[i].data; 4754 break; 4755 case MSR_MTRRfix4K_E0000: 4756 env->mtrr_fixed[7] = msrs[i].data; 4757 break; 4758 case MSR_MTRRfix4K_E8000: 4759 env->mtrr_fixed[8] = msrs[i].data; 4760 break; 4761 case MSR_MTRRfix4K_F0000: 4762 env->mtrr_fixed[9] = msrs[i].data; 4763 break; 4764 case MSR_MTRRfix4K_F8000: 4765 env->mtrr_fixed[10] = msrs[i].data; 4766 break; 4767 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): 4768 if (index & 1) { 4769 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | 4770 mtrr_top_bits; 4771 } else { 4772 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; 4773 } 4774 break; 4775 case MSR_IA32_SPEC_CTRL: 4776 env->spec_ctrl = msrs[i].data; 4777 break; 4778 case MSR_AMD64_TSC_RATIO: 4779 env->amd_tsc_scale_msr = msrs[i].data; 4780 break; 4781 case MSR_IA32_TSX_CTRL: 4782 env->tsx_ctrl = msrs[i].data; 4783 break; 4784 case MSR_VIRT_SSBD: 4785 env->virt_ssbd = msrs[i].data; 4786 break; 4787 case MSR_IA32_RTIT_CTL: 4788 env->msr_rtit_ctrl = msrs[i].data; 4789 break; 4790 case MSR_IA32_RTIT_STATUS: 4791 env->msr_rtit_status = msrs[i].data; 4792 break; 4793 case MSR_IA32_RTIT_OUTPUT_BASE: 4794 env->msr_rtit_output_base = msrs[i].data; 4795 break; 4796 case MSR_IA32_RTIT_OUTPUT_MASK: 4797 env->msr_rtit_output_mask = msrs[i].data; 4798 break; 4799 case MSR_IA32_RTIT_CR3_MATCH: 4800 env->msr_rtit_cr3_match = msrs[i].data; 4801 break; 4802 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 4803 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data; 4804 break; 4805 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 4806 env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] = 4807 msrs[i].data; 4808 break; 4809 case MSR_IA32_XFD: 4810 env->msr_xfd = msrs[i].data; 4811 break; 4812 case MSR_IA32_XFD_ERR: 4813 env->msr_xfd_err = msrs[i].data; 4814 break; 4815 case MSR_ARCH_LBR_CTL: 4816 env->msr_lbr_ctl = msrs[i].data; 4817 break; 4818 case MSR_ARCH_LBR_DEPTH: 4819 env->msr_lbr_depth = msrs[i].data; 4820 break; 4821 case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31: 4822 env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data; 4823 break; 4824 case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31: 4825 env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data; 4826 break; 4827 case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31: 4828 env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data; 4829 break; 4830 } 4831 } 4832 4833 return 0; 4834 } 4835 4836 static int kvm_put_mp_state(X86CPU *cpu) 4837 { 4838 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; 4839 4840 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 4841 } 4842 4843 static int kvm_get_mp_state(X86CPU *cpu) 4844 { 4845 CPUState *cs = CPU(cpu); 4846 CPUX86State *env = &cpu->env; 4847 struct kvm_mp_state mp_state; 4848 int ret; 4849 4850 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); 4851 if (ret < 0) { 4852 return ret; 4853 } 4854 env->mp_state = mp_state.mp_state; 4855 if (kvm_irqchip_in_kernel()) { 4856 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); 4857 } 4858 return 0; 4859 } 4860 4861 static int kvm_get_apic(X86CPU *cpu) 4862 { 4863 DeviceState *apic = cpu->apic_state; 4864 struct kvm_lapic_state kapic; 4865 int ret; 4866 4867 if (apic && kvm_irqchip_in_kernel()) { 4868 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); 4869 if (ret < 0) { 4870 return ret; 4871 } 4872 4873 kvm_get_apic_state(apic, &kapic); 4874 } 4875 return 0; 4876 } 4877 4878 static int kvm_put_vcpu_events(X86CPU *cpu, int level) 4879 { 4880 CPUState *cs = CPU(cpu); 4881 CPUX86State *env = &cpu->env; 4882 struct kvm_vcpu_events events = {}; 4883 4884 events.flags = 0; 4885 4886 if (has_exception_payload) { 4887 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 4888 events.exception.pending = env->exception_pending; 4889 events.exception_has_payload = env->exception_has_payload; 4890 events.exception_payload = env->exception_payload; 4891 } 4892 events.exception.nr = env->exception_nr; 4893 events.exception.injected = env->exception_injected; 4894 events.exception.has_error_code = env->has_error_code; 4895 events.exception.error_code = env->error_code; 4896 4897 events.interrupt.injected = (env->interrupt_injected >= 0); 4898 events.interrupt.nr = env->interrupt_injected; 4899 events.interrupt.soft = env->soft_interrupt; 4900 4901 events.nmi.injected = env->nmi_injected; 4902 events.nmi.pending = env->nmi_pending; 4903 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); 4904 4905 events.sipi_vector = env->sipi_vector; 4906 4907 if (has_msr_smbase) { 4908 events.flags |= KVM_VCPUEVENT_VALID_SMM; 4909 events.smi.smm = !!(env->hflags & HF_SMM_MASK); 4910 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); 4911 if (kvm_irqchip_in_kernel()) { 4912 /* As soon as these are moved to the kernel, remove them 4913 * from cs->interrupt_request. 4914 */ 4915 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; 4916 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; 4917 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); 4918 } else { 4919 /* Keep these in cs->interrupt_request. */ 4920 events.smi.pending = 0; 4921 events.smi.latched_init = 0; 4922 } 4923 } 4924 4925 if (level >= KVM_PUT_RESET_STATE) { 4926 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; 4927 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 4928 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR; 4929 } 4930 } 4931 4932 if (has_triple_fault_event) { 4933 events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 4934 events.triple_fault.pending = env->triple_fault_pending; 4935 } 4936 4937 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 4938 } 4939 4940 static int kvm_get_vcpu_events(X86CPU *cpu) 4941 { 4942 CPUX86State *env = &cpu->env; 4943 struct kvm_vcpu_events events; 4944 int ret; 4945 4946 memset(&events, 0, sizeof(events)); 4947 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 4948 if (ret < 0) { 4949 return ret; 4950 } 4951 4952 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 4953 env->exception_pending = events.exception.pending; 4954 env->exception_has_payload = events.exception_has_payload; 4955 env->exception_payload = events.exception_payload; 4956 } else { 4957 env->exception_pending = 0; 4958 env->exception_has_payload = false; 4959 } 4960 env->exception_injected = events.exception.injected; 4961 env->exception_nr = 4962 (env->exception_pending || env->exception_injected) ? 4963 events.exception.nr : -1; 4964 env->has_error_code = events.exception.has_error_code; 4965 env->error_code = events.exception.error_code; 4966 4967 env->interrupt_injected = 4968 events.interrupt.injected ? events.interrupt.nr : -1; 4969 env->soft_interrupt = events.interrupt.soft; 4970 4971 env->nmi_injected = events.nmi.injected; 4972 env->nmi_pending = events.nmi.pending; 4973 if (events.nmi.masked) { 4974 env->hflags2 |= HF2_NMI_MASK; 4975 } else { 4976 env->hflags2 &= ~HF2_NMI_MASK; 4977 } 4978 4979 if (events.flags & KVM_VCPUEVENT_VALID_SMM) { 4980 if (events.smi.smm) { 4981 env->hflags |= HF_SMM_MASK; 4982 } else { 4983 env->hflags &= ~HF_SMM_MASK; 4984 } 4985 if (events.smi.pending) { 4986 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 4987 } else { 4988 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 4989 } 4990 if (events.smi.smm_inside_nmi) { 4991 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; 4992 } else { 4993 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; 4994 } 4995 if (events.smi.latched_init) { 4996 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 4997 } else { 4998 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 4999 } 5000 } 5001 5002 if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5003 env->triple_fault_pending = events.triple_fault.pending; 5004 } 5005 5006 env->sipi_vector = events.sipi_vector; 5007 5008 return 0; 5009 } 5010 5011 static int kvm_put_debugregs(X86CPU *cpu) 5012 { 5013 CPUX86State *env = &cpu->env; 5014 struct kvm_debugregs dbgregs; 5015 int i; 5016 5017 memset(&dbgregs, 0, sizeof(dbgregs)); 5018 for (i = 0; i < 4; i++) { 5019 dbgregs.db[i] = env->dr[i]; 5020 } 5021 dbgregs.dr6 = env->dr[6]; 5022 dbgregs.dr7 = env->dr[7]; 5023 dbgregs.flags = 0; 5024 5025 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); 5026 } 5027 5028 static int kvm_get_debugregs(X86CPU *cpu) 5029 { 5030 CPUX86State *env = &cpu->env; 5031 struct kvm_debugregs dbgregs; 5032 int i, ret; 5033 5034 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); 5035 if (ret < 0) { 5036 return ret; 5037 } 5038 for (i = 0; i < 4; i++) { 5039 env->dr[i] = dbgregs.db[i]; 5040 } 5041 env->dr[4] = env->dr[6] = dbgregs.dr6; 5042 env->dr[5] = env->dr[7] = dbgregs.dr7; 5043 5044 return 0; 5045 } 5046 5047 static int kvm_put_nested_state(X86CPU *cpu) 5048 { 5049 CPUX86State *env = &cpu->env; 5050 int max_nested_state_len = kvm_max_nested_state_length(); 5051 5052 if (!env->nested_state) { 5053 return 0; 5054 } 5055 5056 /* 5057 * Copy flags that are affected by reset from env->hflags and env->hflags2. 5058 */ 5059 if (env->hflags & HF_GUEST_MASK) { 5060 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE; 5061 } else { 5062 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE; 5063 } 5064 5065 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */ 5066 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) { 5067 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET; 5068 } else { 5069 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET; 5070 } 5071 5072 assert(env->nested_state->size <= max_nested_state_len); 5073 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state); 5074 } 5075 5076 static int kvm_get_nested_state(X86CPU *cpu) 5077 { 5078 CPUX86State *env = &cpu->env; 5079 int max_nested_state_len = kvm_max_nested_state_length(); 5080 int ret; 5081 5082 if (!env->nested_state) { 5083 return 0; 5084 } 5085 5086 /* 5087 * It is possible that migration restored a smaller size into 5088 * nested_state->hdr.size than what our kernel support. 5089 * We preserve migration origin nested_state->hdr.size for 5090 * call to KVM_SET_NESTED_STATE but wish that our next call 5091 * to KVM_GET_NESTED_STATE will use max size our kernel support. 5092 */ 5093 env->nested_state->size = max_nested_state_len; 5094 5095 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state); 5096 if (ret < 0) { 5097 return ret; 5098 } 5099 5100 /* 5101 * Copy flags that are affected by reset to env->hflags and env->hflags2. 5102 */ 5103 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) { 5104 env->hflags |= HF_GUEST_MASK; 5105 } else { 5106 env->hflags &= ~HF_GUEST_MASK; 5107 } 5108 5109 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */ 5110 if (cpu_has_svm(env)) { 5111 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) { 5112 env->hflags2 |= HF2_GIF_MASK; 5113 } else { 5114 env->hflags2 &= ~HF2_GIF_MASK; 5115 } 5116 } 5117 5118 return ret; 5119 } 5120 5121 int kvm_arch_put_registers(CPUState *cpu, int level) 5122 { 5123 X86CPU *x86_cpu = X86_CPU(cpu); 5124 int ret; 5125 5126 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); 5127 5128 /* 5129 * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX 5130 * root operation upon vCPU reset. kvm_put_msr_feature_control() should also 5131 * precede kvm_put_nested_state() when 'real' nested state is set. 5132 */ 5133 if (level >= KVM_PUT_RESET_STATE) { 5134 ret = kvm_put_msr_feature_control(x86_cpu); 5135 if (ret < 0) { 5136 return ret; 5137 } 5138 } 5139 5140 /* must be before kvm_put_nested_state so that EFER.SVME is set */ 5141 ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu); 5142 if (ret < 0) { 5143 return ret; 5144 } 5145 5146 if (level >= KVM_PUT_RESET_STATE) { 5147 ret = kvm_put_nested_state(x86_cpu); 5148 if (ret < 0) { 5149 return ret; 5150 } 5151 } 5152 5153 if (level == KVM_PUT_FULL_STATE) { 5154 /* We don't check for kvm_arch_set_tsc_khz() errors here, 5155 * because TSC frequency mismatch shouldn't abort migration, 5156 * unless the user explicitly asked for a more strict TSC 5157 * setting (e.g. using an explicit "tsc-freq" option). 5158 */ 5159 kvm_arch_set_tsc_khz(cpu); 5160 } 5161 5162 #ifdef CONFIG_XEN_EMU 5163 if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) { 5164 ret = kvm_put_xen_state(cpu); 5165 if (ret < 0) { 5166 return ret; 5167 } 5168 } 5169 #endif 5170 5171 ret = kvm_getput_regs(x86_cpu, 1); 5172 if (ret < 0) { 5173 return ret; 5174 } 5175 ret = kvm_put_xsave(x86_cpu); 5176 if (ret < 0) { 5177 return ret; 5178 } 5179 ret = kvm_put_xcrs(x86_cpu); 5180 if (ret < 0) { 5181 return ret; 5182 } 5183 ret = kvm_put_msrs(x86_cpu, level); 5184 if (ret < 0) { 5185 return ret; 5186 } 5187 ret = kvm_put_vcpu_events(x86_cpu, level); 5188 if (ret < 0) { 5189 return ret; 5190 } 5191 if (level >= KVM_PUT_RESET_STATE) { 5192 ret = kvm_put_mp_state(x86_cpu); 5193 if (ret < 0) { 5194 return ret; 5195 } 5196 } 5197 5198 ret = kvm_put_tscdeadline_msr(x86_cpu); 5199 if (ret < 0) { 5200 return ret; 5201 } 5202 ret = kvm_put_debugregs(x86_cpu); 5203 if (ret < 0) { 5204 return ret; 5205 } 5206 return 0; 5207 } 5208 5209 int kvm_arch_get_registers(CPUState *cs) 5210 { 5211 X86CPU *cpu = X86_CPU(cs); 5212 int ret; 5213 5214 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); 5215 5216 ret = kvm_get_vcpu_events(cpu); 5217 if (ret < 0) { 5218 goto out; 5219 } 5220 /* 5221 * KVM_GET_MPSTATE can modify CS and RIP, call it before 5222 * KVM_GET_REGS and KVM_GET_SREGS. 5223 */ 5224 ret = kvm_get_mp_state(cpu); 5225 if (ret < 0) { 5226 goto out; 5227 } 5228 ret = kvm_getput_regs(cpu, 0); 5229 if (ret < 0) { 5230 goto out; 5231 } 5232 ret = kvm_get_xsave(cpu); 5233 if (ret < 0) { 5234 goto out; 5235 } 5236 ret = kvm_get_xcrs(cpu); 5237 if (ret < 0) { 5238 goto out; 5239 } 5240 ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu); 5241 if (ret < 0) { 5242 goto out; 5243 } 5244 ret = kvm_get_msrs(cpu); 5245 if (ret < 0) { 5246 goto out; 5247 } 5248 ret = kvm_get_apic(cpu); 5249 if (ret < 0) { 5250 goto out; 5251 } 5252 ret = kvm_get_debugregs(cpu); 5253 if (ret < 0) { 5254 goto out; 5255 } 5256 ret = kvm_get_nested_state(cpu); 5257 if (ret < 0) { 5258 goto out; 5259 } 5260 #ifdef CONFIG_XEN_EMU 5261 if (xen_mode == XEN_EMULATE) { 5262 ret = kvm_get_xen_state(cs); 5263 if (ret < 0) { 5264 goto out; 5265 } 5266 } 5267 #endif 5268 ret = 0; 5269 out: 5270 cpu_sync_bndcs_hflags(&cpu->env); 5271 return ret; 5272 } 5273 5274 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 5275 { 5276 X86CPU *x86_cpu = X86_CPU(cpu); 5277 CPUX86State *env = &x86_cpu->env; 5278 int ret; 5279 5280 /* Inject NMI */ 5281 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { 5282 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { 5283 bql_lock(); 5284 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; 5285 bql_unlock(); 5286 DPRINTF("injected NMI\n"); 5287 ret = kvm_vcpu_ioctl(cpu, KVM_NMI); 5288 if (ret < 0) { 5289 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", 5290 strerror(-ret)); 5291 } 5292 } 5293 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { 5294 bql_lock(); 5295 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; 5296 bql_unlock(); 5297 DPRINTF("injected SMI\n"); 5298 ret = kvm_vcpu_ioctl(cpu, KVM_SMI); 5299 if (ret < 0) { 5300 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", 5301 strerror(-ret)); 5302 } 5303 } 5304 } 5305 5306 if (!kvm_pic_in_kernel()) { 5307 bql_lock(); 5308 } 5309 5310 /* Force the VCPU out of its inner loop to process any INIT requests 5311 * or (for userspace APIC, but it is cheap to combine the checks here) 5312 * pending TPR access reports. 5313 */ 5314 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { 5315 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && 5316 !(env->hflags & HF_SMM_MASK)) { 5317 cpu->exit_request = 1; 5318 } 5319 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { 5320 cpu->exit_request = 1; 5321 } 5322 } 5323 5324 if (!kvm_pic_in_kernel()) { 5325 /* Try to inject an interrupt if the guest can accept it */ 5326 if (run->ready_for_interrupt_injection && 5327 (cpu->interrupt_request & CPU_INTERRUPT_HARD) && 5328 (env->eflags & IF_MASK)) { 5329 int irq; 5330 5331 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; 5332 irq = cpu_get_pic_interrupt(env); 5333 if (irq >= 0) { 5334 struct kvm_interrupt intr; 5335 5336 intr.irq = irq; 5337 DPRINTF("injected interrupt %d\n", irq); 5338 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); 5339 if (ret < 0) { 5340 fprintf(stderr, 5341 "KVM: injection failed, interrupt lost (%s)\n", 5342 strerror(-ret)); 5343 } 5344 } 5345 } 5346 5347 /* If we have an interrupt but the guest is not ready to receive an 5348 * interrupt, request an interrupt window exit. This will 5349 * cause a return to userspace as soon as the guest is ready to 5350 * receive interrupts. */ 5351 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { 5352 run->request_interrupt_window = 1; 5353 } else { 5354 run->request_interrupt_window = 0; 5355 } 5356 5357 DPRINTF("setting tpr\n"); 5358 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); 5359 5360 bql_unlock(); 5361 } 5362 } 5363 5364 static void kvm_rate_limit_on_bus_lock(void) 5365 { 5366 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1); 5367 5368 if (delay_ns) { 5369 g_usleep(delay_ns / SCALE_US); 5370 } 5371 } 5372 5373 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) 5374 { 5375 X86CPU *x86_cpu = X86_CPU(cpu); 5376 CPUX86State *env = &x86_cpu->env; 5377 5378 if (run->flags & KVM_RUN_X86_SMM) { 5379 env->hflags |= HF_SMM_MASK; 5380 } else { 5381 env->hflags &= ~HF_SMM_MASK; 5382 } 5383 if (run->if_flag) { 5384 env->eflags |= IF_MASK; 5385 } else { 5386 env->eflags &= ~IF_MASK; 5387 } 5388 if (run->flags & KVM_RUN_X86_BUS_LOCK) { 5389 kvm_rate_limit_on_bus_lock(); 5390 } 5391 5392 #ifdef CONFIG_XEN_EMU 5393 /* 5394 * If the callback is asserted as a GSI (or PCI INTx) then check if 5395 * vcpu_info->evtchn_upcall_pending has been cleared, and deassert 5396 * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC 5397 * EOI and only resample then, exactly how the VFIO eventfd pairs 5398 * are designed to work for level triggered interrupts. 5399 */ 5400 if (x86_cpu->env.xen_callback_asserted) { 5401 kvm_xen_maybe_deassert_callback(cpu); 5402 } 5403 #endif 5404 5405 /* We need to protect the apic state against concurrent accesses from 5406 * different threads in case the userspace irqchip is used. */ 5407 if (!kvm_irqchip_in_kernel()) { 5408 bql_lock(); 5409 } 5410 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); 5411 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); 5412 if (!kvm_irqchip_in_kernel()) { 5413 bql_unlock(); 5414 } 5415 return cpu_get_mem_attrs(env); 5416 } 5417 5418 int kvm_arch_process_async_events(CPUState *cs) 5419 { 5420 X86CPU *cpu = X86_CPU(cs); 5421 CPUX86State *env = &cpu->env; 5422 5423 if (cs->interrupt_request & CPU_INTERRUPT_MCE) { 5424 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ 5425 assert(env->mcg_cap); 5426 5427 cs->interrupt_request &= ~CPU_INTERRUPT_MCE; 5428 5429 kvm_cpu_synchronize_state(cs); 5430 5431 if (env->exception_nr == EXCP08_DBLE) { 5432 /* this means triple fault */ 5433 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 5434 cs->exit_request = 1; 5435 return 0; 5436 } 5437 kvm_queue_exception(env, EXCP12_MCHK, 0, 0); 5438 env->has_error_code = 0; 5439 5440 cs->halted = 0; 5441 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { 5442 env->mp_state = KVM_MP_STATE_RUNNABLE; 5443 } 5444 } 5445 5446 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && 5447 !(env->hflags & HF_SMM_MASK)) { 5448 kvm_cpu_synchronize_state(cs); 5449 do_cpu_init(cpu); 5450 } 5451 5452 if (kvm_irqchip_in_kernel()) { 5453 return 0; 5454 } 5455 5456 if (cs->interrupt_request & CPU_INTERRUPT_POLL) { 5457 cs->interrupt_request &= ~CPU_INTERRUPT_POLL; 5458 apic_poll_irq(cpu->apic_state); 5459 } 5460 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && 5461 (env->eflags & IF_MASK)) || 5462 (cs->interrupt_request & CPU_INTERRUPT_NMI)) { 5463 cs->halted = 0; 5464 } 5465 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { 5466 kvm_cpu_synchronize_state(cs); 5467 do_cpu_sipi(cpu); 5468 } 5469 if (cs->interrupt_request & CPU_INTERRUPT_TPR) { 5470 cs->interrupt_request &= ~CPU_INTERRUPT_TPR; 5471 kvm_cpu_synchronize_state(cs); 5472 apic_handle_tpr_access_report(cpu->apic_state, env->eip, 5473 env->tpr_access_type); 5474 } 5475 5476 return cs->halted; 5477 } 5478 5479 static int kvm_handle_halt(X86CPU *cpu) 5480 { 5481 CPUState *cs = CPU(cpu); 5482 CPUX86State *env = &cpu->env; 5483 5484 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && 5485 (env->eflags & IF_MASK)) && 5486 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { 5487 cs->halted = 1; 5488 return EXCP_HLT; 5489 } 5490 5491 return 0; 5492 } 5493 5494 static int kvm_handle_tpr_access(X86CPU *cpu) 5495 { 5496 CPUState *cs = CPU(cpu); 5497 struct kvm_run *run = cs->kvm_run; 5498 5499 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, 5500 run->tpr_access.is_write ? TPR_ACCESS_WRITE 5501 : TPR_ACCESS_READ); 5502 return 1; 5503 } 5504 5505 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 5506 { 5507 static const uint8_t int3 = 0xcc; 5508 5509 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || 5510 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { 5511 return -EINVAL; 5512 } 5513 return 0; 5514 } 5515 5516 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 5517 { 5518 uint8_t int3; 5519 5520 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) { 5521 return -EINVAL; 5522 } 5523 if (int3 != 0xcc) { 5524 return 0; 5525 } 5526 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { 5527 return -EINVAL; 5528 } 5529 return 0; 5530 } 5531 5532 static struct { 5533 target_ulong addr; 5534 int len; 5535 int type; 5536 } hw_breakpoint[4]; 5537 5538 static int nb_hw_breakpoint; 5539 5540 static int find_hw_breakpoint(target_ulong addr, int len, int type) 5541 { 5542 int n; 5543 5544 for (n = 0; n < nb_hw_breakpoint; n++) { 5545 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && 5546 (hw_breakpoint[n].len == len || len == -1)) { 5547 return n; 5548 } 5549 } 5550 return -1; 5551 } 5552 5553 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type) 5554 { 5555 switch (type) { 5556 case GDB_BREAKPOINT_HW: 5557 len = 1; 5558 break; 5559 case GDB_WATCHPOINT_WRITE: 5560 case GDB_WATCHPOINT_ACCESS: 5561 switch (len) { 5562 case 1: 5563 break; 5564 case 2: 5565 case 4: 5566 case 8: 5567 if (addr & (len - 1)) { 5568 return -EINVAL; 5569 } 5570 break; 5571 default: 5572 return -EINVAL; 5573 } 5574 break; 5575 default: 5576 return -ENOSYS; 5577 } 5578 5579 if (nb_hw_breakpoint == 4) { 5580 return -ENOBUFS; 5581 } 5582 if (find_hw_breakpoint(addr, len, type) >= 0) { 5583 return -EEXIST; 5584 } 5585 hw_breakpoint[nb_hw_breakpoint].addr = addr; 5586 hw_breakpoint[nb_hw_breakpoint].len = len; 5587 hw_breakpoint[nb_hw_breakpoint].type = type; 5588 nb_hw_breakpoint++; 5589 5590 return 0; 5591 } 5592 5593 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type) 5594 { 5595 int n; 5596 5597 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); 5598 if (n < 0) { 5599 return -ENOENT; 5600 } 5601 nb_hw_breakpoint--; 5602 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; 5603 5604 return 0; 5605 } 5606 5607 void kvm_arch_remove_all_hw_breakpoints(void) 5608 { 5609 nb_hw_breakpoint = 0; 5610 } 5611 5612 static CPUWatchpoint hw_watchpoint; 5613 5614 static int kvm_handle_debug(X86CPU *cpu, 5615 struct kvm_debug_exit_arch *arch_info) 5616 { 5617 CPUState *cs = CPU(cpu); 5618 CPUX86State *env = &cpu->env; 5619 int ret = 0; 5620 int n; 5621 5622 if (arch_info->exception == EXCP01_DB) { 5623 if (arch_info->dr6 & DR6_BS) { 5624 if (cs->singlestep_enabled) { 5625 ret = EXCP_DEBUG; 5626 } 5627 } else { 5628 for (n = 0; n < 4; n++) { 5629 if (arch_info->dr6 & (1 << n)) { 5630 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { 5631 case 0x0: 5632 ret = EXCP_DEBUG; 5633 break; 5634 case 0x1: 5635 ret = EXCP_DEBUG; 5636 cs->watchpoint_hit = &hw_watchpoint; 5637 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 5638 hw_watchpoint.flags = BP_MEM_WRITE; 5639 break; 5640 case 0x3: 5641 ret = EXCP_DEBUG; 5642 cs->watchpoint_hit = &hw_watchpoint; 5643 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 5644 hw_watchpoint.flags = BP_MEM_ACCESS; 5645 break; 5646 } 5647 } 5648 } 5649 } 5650 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { 5651 ret = EXCP_DEBUG; 5652 } 5653 if (ret == 0) { 5654 cpu_synchronize_state(cs); 5655 assert(env->exception_nr == -1); 5656 5657 /* pass to guest */ 5658 kvm_queue_exception(env, arch_info->exception, 5659 arch_info->exception == EXCP01_DB, 5660 arch_info->dr6); 5661 env->has_error_code = 0; 5662 } 5663 5664 return ret; 5665 } 5666 5667 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 5668 { 5669 const uint8_t type_code[] = { 5670 [GDB_BREAKPOINT_HW] = 0x0, 5671 [GDB_WATCHPOINT_WRITE] = 0x1, 5672 [GDB_WATCHPOINT_ACCESS] = 0x3 5673 }; 5674 const uint8_t len_code[] = { 5675 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 5676 }; 5677 int n; 5678 5679 if (kvm_sw_breakpoints_active(cpu)) { 5680 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 5681 } 5682 if (nb_hw_breakpoint > 0) { 5683 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 5684 dbg->arch.debugreg[7] = 0x0600; 5685 for (n = 0; n < nb_hw_breakpoint; n++) { 5686 dbg->arch.debugreg[n] = hw_breakpoint[n].addr; 5687 dbg->arch.debugreg[7] |= (2 << (n * 2)) | 5688 (type_code[hw_breakpoint[n].type] << (16 + n*4)) | 5689 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); 5690 } 5691 } 5692 } 5693 5694 static bool kvm_install_msr_filters(KVMState *s) 5695 { 5696 uint64_t zero = 0; 5697 struct kvm_msr_filter filter = { 5698 .flags = KVM_MSR_FILTER_DEFAULT_ALLOW, 5699 }; 5700 int r, i, j = 0; 5701 5702 for (i = 0; i < KVM_MSR_FILTER_MAX_RANGES; i++) { 5703 KVMMSRHandlers *handler = &msr_handlers[i]; 5704 if (handler->msr) { 5705 struct kvm_msr_filter_range *range = &filter.ranges[j++]; 5706 5707 *range = (struct kvm_msr_filter_range) { 5708 .flags = 0, 5709 .nmsrs = 1, 5710 .base = handler->msr, 5711 .bitmap = (__u8 *)&zero, 5712 }; 5713 5714 if (handler->rdmsr) { 5715 range->flags |= KVM_MSR_FILTER_READ; 5716 } 5717 5718 if (handler->wrmsr) { 5719 range->flags |= KVM_MSR_FILTER_WRITE; 5720 } 5721 } 5722 } 5723 5724 r = kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter); 5725 if (r) { 5726 return false; 5727 } 5728 5729 return true; 5730 } 5731 5732 bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr, 5733 QEMUWRMSRHandler *wrmsr) 5734 { 5735 int i; 5736 5737 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5738 if (!msr_handlers[i].msr) { 5739 msr_handlers[i] = (KVMMSRHandlers) { 5740 .msr = msr, 5741 .rdmsr = rdmsr, 5742 .wrmsr = wrmsr, 5743 }; 5744 5745 if (!kvm_install_msr_filters(s)) { 5746 msr_handlers[i] = (KVMMSRHandlers) { }; 5747 return false; 5748 } 5749 5750 return true; 5751 } 5752 } 5753 5754 return false; 5755 } 5756 5757 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run) 5758 { 5759 int i; 5760 bool r; 5761 5762 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5763 KVMMSRHandlers *handler = &msr_handlers[i]; 5764 if (run->msr.index == handler->msr) { 5765 if (handler->rdmsr) { 5766 r = handler->rdmsr(cpu, handler->msr, 5767 (uint64_t *)&run->msr.data); 5768 run->msr.error = r ? 0 : 1; 5769 return 0; 5770 } 5771 } 5772 } 5773 5774 assert(false); 5775 } 5776 5777 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run) 5778 { 5779 int i; 5780 bool r; 5781 5782 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5783 KVMMSRHandlers *handler = &msr_handlers[i]; 5784 if (run->msr.index == handler->msr) { 5785 if (handler->wrmsr) { 5786 r = handler->wrmsr(cpu, handler->msr, run->msr.data); 5787 run->msr.error = r ? 0 : 1; 5788 return 0; 5789 } 5790 } 5791 } 5792 5793 assert(false); 5794 } 5795 5796 static bool has_sgx_provisioning; 5797 5798 static bool __kvm_enable_sgx_provisioning(KVMState *s) 5799 { 5800 int fd, ret; 5801 5802 if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) { 5803 return false; 5804 } 5805 5806 fd = qemu_open_old("/dev/sgx_provision", O_RDONLY); 5807 if (fd < 0) { 5808 return false; 5809 } 5810 5811 ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd); 5812 if (ret) { 5813 error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret)); 5814 exit(1); 5815 } 5816 close(fd); 5817 return true; 5818 } 5819 5820 bool kvm_enable_sgx_provisioning(KVMState *s) 5821 { 5822 return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning); 5823 } 5824 5825 static bool host_supports_vmx(void) 5826 { 5827 uint32_t ecx, unused; 5828 5829 host_cpuid(1, 0, &unused, &unused, &ecx, &unused); 5830 return ecx & CPUID_EXT_VMX; 5831 } 5832 5833 /* 5834 * Currently the handling here only supports use of KVM_HC_MAP_GPA_RANGE 5835 * to service guest-initiated memory attribute update requests so that 5836 * KVM_SET_MEMORY_ATTRIBUTES can update whether or not a page should be 5837 * backed by the private memory pool provided by guest_memfd, and as such 5838 * is only applicable to guest_memfd-backed guests (e.g. SNP/TDX). 5839 * 5840 * Other other use-cases for KVM_HC_MAP_GPA_RANGE, such as for SEV live 5841 * migration, are not implemented here currently. 5842 * 5843 * For the guest_memfd use-case, these exits will generally be synthesized 5844 * by KVM based on platform-specific hypercalls, like GHCB requests in the 5845 * case of SEV-SNP, and not issued directly within the guest though the 5846 * KVM_HC_MAP_GPA_RANGE hypercall. So in this case, KVM_HC_MAP_GPA_RANGE is 5847 * not actually advertised to guests via the KVM CPUID feature bit, as 5848 * opposed to SEV live migration where it would be. Since it is unlikely the 5849 * SEV live migration use-case would be useful for guest-memfd backed guests, 5850 * because private/shared page tracking is already provided through other 5851 * means, these 2 use-cases should be treated as being mutually-exclusive. 5852 */ 5853 static int kvm_handle_hc_map_gpa_range(struct kvm_run *run) 5854 { 5855 uint64_t gpa, size, attributes; 5856 5857 if (!machine_require_guest_memfd(current_machine)) 5858 return -EINVAL; 5859 5860 gpa = run->hypercall.args[0]; 5861 size = run->hypercall.args[1] * TARGET_PAGE_SIZE; 5862 attributes = run->hypercall.args[2]; 5863 5864 trace_kvm_hc_map_gpa_range(gpa, size, attributes, run->hypercall.flags); 5865 5866 return kvm_convert_memory(gpa, size, attributes & KVM_MAP_GPA_RANGE_ENCRYPTED); 5867 } 5868 5869 static int kvm_handle_hypercall(struct kvm_run *run) 5870 { 5871 if (run->hypercall.nr == KVM_HC_MAP_GPA_RANGE) 5872 return kvm_handle_hc_map_gpa_range(run); 5873 5874 return -EINVAL; 5875 } 5876 5877 #define VMX_INVALID_GUEST_STATE 0x80000021 5878 5879 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 5880 { 5881 X86CPU *cpu = X86_CPU(cs); 5882 uint64_t code; 5883 int ret; 5884 bool ctx_invalid; 5885 KVMState *state; 5886 5887 switch (run->exit_reason) { 5888 case KVM_EXIT_HLT: 5889 DPRINTF("handle_hlt\n"); 5890 bql_lock(); 5891 ret = kvm_handle_halt(cpu); 5892 bql_unlock(); 5893 break; 5894 case KVM_EXIT_SET_TPR: 5895 ret = 0; 5896 break; 5897 case KVM_EXIT_TPR_ACCESS: 5898 bql_lock(); 5899 ret = kvm_handle_tpr_access(cpu); 5900 bql_unlock(); 5901 break; 5902 case KVM_EXIT_FAIL_ENTRY: 5903 code = run->fail_entry.hardware_entry_failure_reason; 5904 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", 5905 code); 5906 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { 5907 fprintf(stderr, 5908 "\nIf you're running a guest on an Intel machine without " 5909 "unrestricted mode\n" 5910 "support, the failure can be most likely due to the guest " 5911 "entering an invalid\n" 5912 "state for Intel VT. For example, the guest maybe running " 5913 "in big real mode\n" 5914 "which is not supported on less recent Intel processors." 5915 "\n\n"); 5916 } 5917 ret = -1; 5918 break; 5919 case KVM_EXIT_EXCEPTION: 5920 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", 5921 run->ex.exception, run->ex.error_code); 5922 ret = -1; 5923 break; 5924 case KVM_EXIT_DEBUG: 5925 DPRINTF("kvm_exit_debug\n"); 5926 bql_lock(); 5927 ret = kvm_handle_debug(cpu, &run->debug.arch); 5928 bql_unlock(); 5929 break; 5930 case KVM_EXIT_HYPERV: 5931 ret = kvm_hv_handle_exit(cpu, &run->hyperv); 5932 break; 5933 case KVM_EXIT_IOAPIC_EOI: 5934 ioapic_eoi_broadcast(run->eoi.vector); 5935 ret = 0; 5936 break; 5937 case KVM_EXIT_X86_BUS_LOCK: 5938 /* already handled in kvm_arch_post_run */ 5939 ret = 0; 5940 break; 5941 case KVM_EXIT_NOTIFY: 5942 ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID); 5943 state = KVM_STATE(current_accel()); 5944 if (ctx_invalid || 5945 state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) { 5946 warn_report("KVM internal error: Encountered a notify exit " 5947 "with invalid context in guest."); 5948 ret = -1; 5949 } else { 5950 warn_report_once("KVM: Encountered a notify exit with valid " 5951 "context in guest. " 5952 "The guest could be misbehaving."); 5953 ret = 0; 5954 } 5955 break; 5956 case KVM_EXIT_X86_RDMSR: 5957 /* We only enable MSR filtering, any other exit is bogus */ 5958 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER); 5959 ret = kvm_handle_rdmsr(cpu, run); 5960 break; 5961 case KVM_EXIT_X86_WRMSR: 5962 /* We only enable MSR filtering, any other exit is bogus */ 5963 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER); 5964 ret = kvm_handle_wrmsr(cpu, run); 5965 break; 5966 #ifdef CONFIG_XEN_EMU 5967 case KVM_EXIT_XEN: 5968 ret = kvm_xen_handle_exit(cpu, &run->xen); 5969 break; 5970 #endif 5971 case KVM_EXIT_HYPERCALL: 5972 ret = kvm_handle_hypercall(run); 5973 break; 5974 default: 5975 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); 5976 ret = -1; 5977 break; 5978 } 5979 5980 return ret; 5981 } 5982 5983 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 5984 { 5985 X86CPU *cpu = X86_CPU(cs); 5986 CPUX86State *env = &cpu->env; 5987 5988 kvm_cpu_synchronize_state(cs); 5989 return !(env->cr[0] & CR0_PE_MASK) || 5990 ((env->segs[R_CS].selector & 3) != 3); 5991 } 5992 5993 void kvm_arch_init_irq_routing(KVMState *s) 5994 { 5995 /* We know at this point that we're using the in-kernel 5996 * irqchip, so we can use irqfds, and on x86 we know 5997 * we can use msi via irqfd and GSI routing. 5998 */ 5999 kvm_msi_via_irqfd_allowed = true; 6000 kvm_gsi_routing_allowed = true; 6001 6002 if (kvm_irqchip_is_split()) { 6003 KVMRouteChange c = kvm_irqchip_begin_route_changes(s); 6004 int i; 6005 6006 /* If the ioapic is in QEMU and the lapics are in KVM, reserve 6007 MSI routes for signaling interrupts to the local apics. */ 6008 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 6009 if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) { 6010 error_report("Could not enable split IRQ mode."); 6011 exit(1); 6012 } 6013 } 6014 kvm_irqchip_commit_route_changes(&c); 6015 } 6016 } 6017 6018 int kvm_arch_irqchip_create(KVMState *s) 6019 { 6020 int ret; 6021 if (kvm_kernel_irqchip_split()) { 6022 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); 6023 if (ret) { 6024 error_report("Could not enable split irqchip mode: %s", 6025 strerror(-ret)); 6026 exit(1); 6027 } else { 6028 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); 6029 kvm_split_irqchip = true; 6030 return 1; 6031 } 6032 } else { 6033 return 0; 6034 } 6035 } 6036 6037 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address) 6038 { 6039 CPUX86State *env; 6040 uint64_t ext_id; 6041 6042 if (!first_cpu) { 6043 return address; 6044 } 6045 env = &X86_CPU(first_cpu)->env; 6046 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) { 6047 return address; 6048 } 6049 6050 /* 6051 * If the remappable format bit is set, or the upper bits are 6052 * already set in address_hi, or the low extended bits aren't 6053 * there anyway, do nothing. 6054 */ 6055 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT); 6056 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) { 6057 return address; 6058 } 6059 6060 address &= ~ext_id; 6061 address |= ext_id << 35; 6062 return address; 6063 } 6064 6065 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 6066 uint64_t address, uint32_t data, PCIDevice *dev) 6067 { 6068 X86IOMMUState *iommu = x86_iommu_get_default(); 6069 6070 if (iommu) { 6071 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu); 6072 6073 if (class->int_remap) { 6074 int ret; 6075 MSIMessage src, dst; 6076 6077 src.address = route->u.msi.address_hi; 6078 src.address <<= VTD_MSI_ADDR_HI_SHIFT; 6079 src.address |= route->u.msi.address_lo; 6080 src.data = route->u.msi.data; 6081 6082 ret = class->int_remap(iommu, &src, &dst, dev ? \ 6083 pci_requester_id(dev) : \ 6084 X86_IOMMU_SID_INVALID); 6085 if (ret) { 6086 trace_kvm_x86_fixup_msi_error(route->gsi); 6087 return 1; 6088 } 6089 6090 /* 6091 * Handled untranslated compatibility format interrupt with 6092 * extended destination ID in the low bits 11-5. */ 6093 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address); 6094 6095 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; 6096 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; 6097 route->u.msi.data = dst.data; 6098 return 0; 6099 } 6100 } 6101 6102 #ifdef CONFIG_XEN_EMU 6103 if (xen_mode == XEN_EMULATE) { 6104 int handled = xen_evtchn_translate_pirq_msi(route, address, data); 6105 6106 /* 6107 * If it was a PIRQ and successfully routed (handled == 0) or it was 6108 * an error (handled < 0), return. If it wasn't a PIRQ, keep going. 6109 */ 6110 if (handled <= 0) { 6111 return handled; 6112 } 6113 } 6114 #endif 6115 6116 address = kvm_swizzle_msi_ext_dest_id(address); 6117 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT; 6118 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK; 6119 return 0; 6120 } 6121 6122 typedef struct MSIRouteEntry MSIRouteEntry; 6123 6124 struct MSIRouteEntry { 6125 PCIDevice *dev; /* Device pointer */ 6126 int vector; /* MSI/MSIX vector index */ 6127 int virq; /* Virtual IRQ index */ 6128 QLIST_ENTRY(MSIRouteEntry) list; 6129 }; 6130 6131 /* List of used GSI routes */ 6132 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ 6133 QLIST_HEAD_INITIALIZER(msi_route_list); 6134 6135 void kvm_update_msi_routes_all(void *private, bool global, 6136 uint32_t index, uint32_t mask) 6137 { 6138 int cnt = 0, vector; 6139 MSIRouteEntry *entry; 6140 MSIMessage msg; 6141 PCIDevice *dev; 6142 6143 /* TODO: explicit route update */ 6144 QLIST_FOREACH(entry, &msi_route_list, list) { 6145 cnt++; 6146 vector = entry->vector; 6147 dev = entry->dev; 6148 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) { 6149 msg = msix_get_message(dev, vector); 6150 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) { 6151 msg = msi_get_message(dev, vector); 6152 } else { 6153 /* 6154 * Either MSI/MSIX is disabled for the device, or the 6155 * specific message was masked out. Skip this one. 6156 */ 6157 continue; 6158 } 6159 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); 6160 } 6161 kvm_irqchip_commit_routes(kvm_state); 6162 trace_kvm_x86_update_msi_routes(cnt); 6163 } 6164 6165 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 6166 int vector, PCIDevice *dev) 6167 { 6168 static bool notify_list_inited = false; 6169 MSIRouteEntry *entry; 6170 6171 if (!dev) { 6172 /* These are (possibly) IOAPIC routes only used for split 6173 * kernel irqchip mode, while what we are housekeeping are 6174 * PCI devices only. */ 6175 return 0; 6176 } 6177 6178 entry = g_new0(MSIRouteEntry, 1); 6179 entry->dev = dev; 6180 entry->vector = vector; 6181 entry->virq = route->gsi; 6182 QLIST_INSERT_HEAD(&msi_route_list, entry, list); 6183 6184 trace_kvm_x86_add_msi_route(route->gsi); 6185 6186 if (!notify_list_inited) { 6187 /* For the first time we do add route, add ourselves into 6188 * IOMMU's IEC notify list if needed. */ 6189 X86IOMMUState *iommu = x86_iommu_get_default(); 6190 if (iommu) { 6191 x86_iommu_iec_register_notifier(iommu, 6192 kvm_update_msi_routes_all, 6193 NULL); 6194 } 6195 notify_list_inited = true; 6196 } 6197 return 0; 6198 } 6199 6200 int kvm_arch_release_virq_post(int virq) 6201 { 6202 MSIRouteEntry *entry, *next; 6203 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { 6204 if (entry->virq == virq) { 6205 trace_kvm_x86_remove_msi_route(virq); 6206 QLIST_REMOVE(entry, list); 6207 g_free(entry); 6208 break; 6209 } 6210 } 6211 return 0; 6212 } 6213 6214 int kvm_arch_msi_data_to_gsi(uint32_t data) 6215 { 6216 abort(); 6217 } 6218 6219 bool kvm_has_waitpkg(void) 6220 { 6221 return has_msr_umwait; 6222 } 6223 6224 #define ARCH_REQ_XCOMP_GUEST_PERM 0x1025 6225 6226 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask) 6227 { 6228 KVMState *s = kvm_state; 6229 uint64_t supported; 6230 6231 mask &= XSTATE_DYNAMIC_MASK; 6232 if (!mask) { 6233 return; 6234 } 6235 /* 6236 * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0]. 6237 * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned 6238 * about them already because they are not supported features. 6239 */ 6240 supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX); 6241 supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32; 6242 mask &= supported; 6243 6244 while (mask) { 6245 int bit = ctz64(mask); 6246 int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit); 6247 if (rc) { 6248 /* 6249 * Older kernel version (<5.17) do not support 6250 * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return 6251 * any dynamic feature from kvm_arch_get_supported_cpuid. 6252 */ 6253 warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure " 6254 "for feature bit %d", bit); 6255 } 6256 mask &= ~BIT_ULL(bit); 6257 } 6258 } 6259 6260 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp) 6261 { 6262 KVMState *s = KVM_STATE(obj); 6263 return s->notify_vmexit; 6264 } 6265 6266 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp) 6267 { 6268 KVMState *s = KVM_STATE(obj); 6269 6270 if (s->fd != -1) { 6271 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 6272 return; 6273 } 6274 6275 s->notify_vmexit = value; 6276 } 6277 6278 static void kvm_arch_get_notify_window(Object *obj, Visitor *v, 6279 const char *name, void *opaque, 6280 Error **errp) 6281 { 6282 KVMState *s = KVM_STATE(obj); 6283 uint32_t value = s->notify_window; 6284 6285 visit_type_uint32(v, name, &value, errp); 6286 } 6287 6288 static void kvm_arch_set_notify_window(Object *obj, Visitor *v, 6289 const char *name, void *opaque, 6290 Error **errp) 6291 { 6292 KVMState *s = KVM_STATE(obj); 6293 uint32_t value; 6294 6295 if (s->fd != -1) { 6296 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 6297 return; 6298 } 6299 6300 if (!visit_type_uint32(v, name, &value, errp)) { 6301 return; 6302 } 6303 6304 s->notify_window = value; 6305 } 6306 6307 static void kvm_arch_get_xen_version(Object *obj, Visitor *v, 6308 const char *name, void *opaque, 6309 Error **errp) 6310 { 6311 KVMState *s = KVM_STATE(obj); 6312 uint32_t value = s->xen_version; 6313 6314 visit_type_uint32(v, name, &value, errp); 6315 } 6316 6317 static void kvm_arch_set_xen_version(Object *obj, Visitor *v, 6318 const char *name, void *opaque, 6319 Error **errp) 6320 { 6321 KVMState *s = KVM_STATE(obj); 6322 Error *error = NULL; 6323 uint32_t value; 6324 6325 visit_type_uint32(v, name, &value, &error); 6326 if (error) { 6327 error_propagate(errp, error); 6328 return; 6329 } 6330 6331 s->xen_version = value; 6332 if (value && xen_mode == XEN_DISABLED) { 6333 xen_mode = XEN_EMULATE; 6334 } 6335 } 6336 6337 static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v, 6338 const char *name, void *opaque, 6339 Error **errp) 6340 { 6341 KVMState *s = KVM_STATE(obj); 6342 uint16_t value = s->xen_gnttab_max_frames; 6343 6344 visit_type_uint16(v, name, &value, errp); 6345 } 6346 6347 static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v, 6348 const char *name, void *opaque, 6349 Error **errp) 6350 { 6351 KVMState *s = KVM_STATE(obj); 6352 Error *error = NULL; 6353 uint16_t value; 6354 6355 visit_type_uint16(v, name, &value, &error); 6356 if (error) { 6357 error_propagate(errp, error); 6358 return; 6359 } 6360 6361 s->xen_gnttab_max_frames = value; 6362 } 6363 6364 static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v, 6365 const char *name, void *opaque, 6366 Error **errp) 6367 { 6368 KVMState *s = KVM_STATE(obj); 6369 uint16_t value = s->xen_evtchn_max_pirq; 6370 6371 visit_type_uint16(v, name, &value, errp); 6372 } 6373 6374 static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v, 6375 const char *name, void *opaque, 6376 Error **errp) 6377 { 6378 KVMState *s = KVM_STATE(obj); 6379 Error *error = NULL; 6380 uint16_t value; 6381 6382 visit_type_uint16(v, name, &value, &error); 6383 if (error) { 6384 error_propagate(errp, error); 6385 return; 6386 } 6387 6388 s->xen_evtchn_max_pirq = value; 6389 } 6390 6391 void kvm_arch_accel_class_init(ObjectClass *oc) 6392 { 6393 object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption", 6394 &NotifyVmexitOption_lookup, 6395 kvm_arch_get_notify_vmexit, 6396 kvm_arch_set_notify_vmexit); 6397 object_class_property_set_description(oc, "notify-vmexit", 6398 "Enable notify VM exit"); 6399 6400 object_class_property_add(oc, "notify-window", "uint32", 6401 kvm_arch_get_notify_window, 6402 kvm_arch_set_notify_window, 6403 NULL, NULL); 6404 object_class_property_set_description(oc, "notify-window", 6405 "Clock cycles without an event window " 6406 "after which a notification VM exit occurs"); 6407 6408 object_class_property_add(oc, "xen-version", "uint32", 6409 kvm_arch_get_xen_version, 6410 kvm_arch_set_xen_version, 6411 NULL, NULL); 6412 object_class_property_set_description(oc, "xen-version", 6413 "Xen version to be emulated " 6414 "(in XENVER_version form " 6415 "e.g. 0x4000a for 4.10)"); 6416 6417 object_class_property_add(oc, "xen-gnttab-max-frames", "uint16", 6418 kvm_arch_get_xen_gnttab_max_frames, 6419 kvm_arch_set_xen_gnttab_max_frames, 6420 NULL, NULL); 6421 object_class_property_set_description(oc, "xen-gnttab-max-frames", 6422 "Maximum number of grant table frames"); 6423 6424 object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16", 6425 kvm_arch_get_xen_evtchn_max_pirq, 6426 kvm_arch_set_xen_evtchn_max_pirq, 6427 NULL, NULL); 6428 object_class_property_set_description(oc, "xen-evtchn-max-pirq", 6429 "Maximum number of Xen PIRQs"); 6430 } 6431 6432 void kvm_set_max_apic_id(uint32_t max_apic_id) 6433 { 6434 kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id); 6435 } 6436