xref: /openbmc/qemu/target/i386/kvm/kvm.c (revision b9188f9c)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright (C) 2006-2008 Qumranet Technologies
5  * Copyright IBM, Corp. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include <sys/ioctl.h>
19 #include <sys/utsname.h>
20 
21 #include <linux/kvm.h>
22 #include "standard-headers/asm-x86/kvm_para.h"
23 
24 #include "cpu.h"
25 #include "host-cpu.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/hw_accel.h"
28 #include "sysemu/kvm_int.h"
29 #include "sysemu/runstate.h"
30 #include "kvm_i386.h"
31 #include "sev_i386.h"
32 #include "hyperv.h"
33 #include "hyperv-proto.h"
34 
35 #include "exec/gdbstub.h"
36 #include "qemu/host-utils.h"
37 #include "qemu/main-loop.h"
38 #include "qemu/config-file.h"
39 #include "qemu/error-report.h"
40 #include "hw/i386/x86.h"
41 #include "hw/i386/apic.h"
42 #include "hw/i386/apic_internal.h"
43 #include "hw/i386/apic-msidef.h"
44 #include "hw/i386/intel_iommu.h"
45 #include "hw/i386/x86-iommu.h"
46 #include "hw/i386/e820_memory_layout.h"
47 #include "sysemu/sev.h"
48 
49 #include "hw/pci/pci.h"
50 #include "hw/pci/msi.h"
51 #include "hw/pci/msix.h"
52 #include "migration/blocker.h"
53 #include "exec/memattrs.h"
54 #include "trace.h"
55 
56 //#define DEBUG_KVM
57 
58 #ifdef DEBUG_KVM
59 #define DPRINTF(fmt, ...) \
60     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
61 #else
62 #define DPRINTF(fmt, ...) \
63     do { } while (0)
64 #endif
65 
66 /* From arch/x86/kvm/lapic.h */
67 #define KVM_APIC_BUS_CYCLE_NS       1
68 #define KVM_APIC_BUS_FREQUENCY      (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
69 
70 #define MSR_KVM_WALL_CLOCK  0x11
71 #define MSR_KVM_SYSTEM_TIME 0x12
72 
73 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
74  * 255 kvm_msr_entry structs */
75 #define MSR_BUF_SIZE 4096
76 
77 static void kvm_init_msrs(X86CPU *cpu);
78 
79 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
80     KVM_CAP_INFO(SET_TSS_ADDR),
81     KVM_CAP_INFO(EXT_CPUID),
82     KVM_CAP_INFO(MP_STATE),
83     KVM_CAP_LAST_INFO
84 };
85 
86 static bool has_msr_star;
87 static bool has_msr_hsave_pa;
88 static bool has_msr_tsc_aux;
89 static bool has_msr_tsc_adjust;
90 static bool has_msr_tsc_deadline;
91 static bool has_msr_feature_control;
92 static bool has_msr_misc_enable;
93 static bool has_msr_smbase;
94 static bool has_msr_bndcfgs;
95 static int lm_capable_kernel;
96 static bool has_msr_hv_hypercall;
97 static bool has_msr_hv_crash;
98 static bool has_msr_hv_reset;
99 static bool has_msr_hv_vpindex;
100 static bool hv_vpindex_settable;
101 static bool has_msr_hv_runtime;
102 static bool has_msr_hv_synic;
103 static bool has_msr_hv_stimer;
104 static bool has_msr_hv_frequencies;
105 static bool has_msr_hv_reenlightenment;
106 static bool has_msr_xss;
107 static bool has_msr_umwait;
108 static bool has_msr_spec_ctrl;
109 static bool has_msr_tsx_ctrl;
110 static bool has_msr_virt_ssbd;
111 static bool has_msr_smi_count;
112 static bool has_msr_arch_capabs;
113 static bool has_msr_core_capabs;
114 static bool has_msr_vmx_vmfunc;
115 static bool has_msr_ucode_rev;
116 static bool has_msr_vmx_procbased_ctls2;
117 static bool has_msr_perf_capabs;
118 static bool has_msr_pkrs;
119 
120 static uint32_t has_architectural_pmu_version;
121 static uint32_t num_architectural_pmu_gp_counters;
122 static uint32_t num_architectural_pmu_fixed_counters;
123 
124 static int has_xsave;
125 static int has_xcrs;
126 static int has_pit_state2;
127 static int has_exception_payload;
128 
129 static bool has_msr_mcg_ext_ctl;
130 
131 static struct kvm_cpuid2 *cpuid_cache;
132 static struct kvm_cpuid2 *hv_cpuid_cache;
133 static struct kvm_msr_list *kvm_feature_msrs;
134 
135 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
136 static RateLimit bus_lock_ratelimit_ctrl;
137 
138 int kvm_has_pit_state2(void)
139 {
140     return has_pit_state2;
141 }
142 
143 bool kvm_has_smm(void)
144 {
145     return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
146 }
147 
148 bool kvm_has_adjust_clock_stable(void)
149 {
150     int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
151 
152     return (ret == KVM_CLOCK_TSC_STABLE);
153 }
154 
155 bool kvm_has_adjust_clock(void)
156 {
157     return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
158 }
159 
160 bool kvm_has_exception_payload(void)
161 {
162     return has_exception_payload;
163 }
164 
165 static bool kvm_x2apic_api_set_flags(uint64_t flags)
166 {
167     KVMState *s = KVM_STATE(current_accel());
168 
169     return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
170 }
171 
172 #define MEMORIZE(fn, _result) \
173     ({ \
174         static bool _memorized; \
175         \
176         if (_memorized) { \
177             return _result; \
178         } \
179         _memorized = true; \
180         _result = fn; \
181     })
182 
183 static bool has_x2apic_api;
184 
185 bool kvm_has_x2apic_api(void)
186 {
187     return has_x2apic_api;
188 }
189 
190 bool kvm_enable_x2apic(void)
191 {
192     return MEMORIZE(
193              kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
194                                       KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
195              has_x2apic_api);
196 }
197 
198 bool kvm_hv_vpindex_settable(void)
199 {
200     return hv_vpindex_settable;
201 }
202 
203 static int kvm_get_tsc(CPUState *cs)
204 {
205     X86CPU *cpu = X86_CPU(cs);
206     CPUX86State *env = &cpu->env;
207     struct {
208         struct kvm_msrs info;
209         struct kvm_msr_entry entries[1];
210     } msr_data = {};
211     int ret;
212 
213     if (env->tsc_valid) {
214         return 0;
215     }
216 
217     memset(&msr_data, 0, sizeof(msr_data));
218     msr_data.info.nmsrs = 1;
219     msr_data.entries[0].index = MSR_IA32_TSC;
220     env->tsc_valid = !runstate_is_running();
221 
222     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
223     if (ret < 0) {
224         return ret;
225     }
226 
227     assert(ret == 1);
228     env->tsc = msr_data.entries[0].data;
229     return 0;
230 }
231 
232 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
233 {
234     kvm_get_tsc(cpu);
235 }
236 
237 void kvm_synchronize_all_tsc(void)
238 {
239     CPUState *cpu;
240 
241     if (kvm_enabled()) {
242         CPU_FOREACH(cpu) {
243             run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
244         }
245     }
246 }
247 
248 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
249 {
250     struct kvm_cpuid2 *cpuid;
251     int r, size;
252 
253     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
254     cpuid = g_malloc0(size);
255     cpuid->nent = max;
256     r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
257     if (r == 0 && cpuid->nent >= max) {
258         r = -E2BIG;
259     }
260     if (r < 0) {
261         if (r == -E2BIG) {
262             g_free(cpuid);
263             return NULL;
264         } else {
265             fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
266                     strerror(-r));
267             exit(1);
268         }
269     }
270     return cpuid;
271 }
272 
273 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
274  * for all entries.
275  */
276 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
277 {
278     struct kvm_cpuid2 *cpuid;
279     int max = 1;
280 
281     if (cpuid_cache != NULL) {
282         return cpuid_cache;
283     }
284     while ((cpuid = try_get_cpuid(s, max)) == NULL) {
285         max *= 2;
286     }
287     cpuid_cache = cpuid;
288     return cpuid;
289 }
290 
291 static bool host_tsx_broken(void)
292 {
293     int family, model, stepping;\
294     char vendor[CPUID_VENDOR_SZ + 1];
295 
296     host_cpu_vendor_fms(vendor, &family, &model, &stepping);
297 
298     /* Check if we are running on a Haswell host known to have broken TSX */
299     return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
300            (family == 6) &&
301            ((model == 63 && stepping < 4) ||
302             model == 60 || model == 69 || model == 70);
303 }
304 
305 /* Returns the value for a specific register on the cpuid entry
306  */
307 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
308 {
309     uint32_t ret = 0;
310     switch (reg) {
311     case R_EAX:
312         ret = entry->eax;
313         break;
314     case R_EBX:
315         ret = entry->ebx;
316         break;
317     case R_ECX:
318         ret = entry->ecx;
319         break;
320     case R_EDX:
321         ret = entry->edx;
322         break;
323     }
324     return ret;
325 }
326 
327 /* Find matching entry for function/index on kvm_cpuid2 struct
328  */
329 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
330                                                  uint32_t function,
331                                                  uint32_t index)
332 {
333     int i;
334     for (i = 0; i < cpuid->nent; ++i) {
335         if (cpuid->entries[i].function == function &&
336             cpuid->entries[i].index == index) {
337             return &cpuid->entries[i];
338         }
339     }
340     /* not found: */
341     return NULL;
342 }
343 
344 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
345                                       uint32_t index, int reg)
346 {
347     struct kvm_cpuid2 *cpuid;
348     uint32_t ret = 0;
349     uint32_t cpuid_1_edx;
350 
351     cpuid = get_supported_cpuid(s);
352 
353     struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
354     if (entry) {
355         ret = cpuid_entry_get_reg(entry, reg);
356     }
357 
358     /* Fixups for the data returned by KVM, below */
359 
360     if (function == 1 && reg == R_EDX) {
361         /* KVM before 2.6.30 misreports the following features */
362         ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
363     } else if (function == 1 && reg == R_ECX) {
364         /* We can set the hypervisor flag, even if KVM does not return it on
365          * GET_SUPPORTED_CPUID
366          */
367         ret |= CPUID_EXT_HYPERVISOR;
368         /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
369          * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
370          * and the irqchip is in the kernel.
371          */
372         if (kvm_irqchip_in_kernel() &&
373                 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
374             ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
375         }
376 
377         /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
378          * without the in-kernel irqchip
379          */
380         if (!kvm_irqchip_in_kernel()) {
381             ret &= ~CPUID_EXT_X2APIC;
382         }
383 
384         if (enable_cpu_pm) {
385             int disable_exits = kvm_check_extension(s,
386                                                     KVM_CAP_X86_DISABLE_EXITS);
387 
388             if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
389                 ret |= CPUID_EXT_MONITOR;
390             }
391         }
392     } else if (function == 6 && reg == R_EAX) {
393         ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
394     } else if (function == 7 && index == 0 && reg == R_EBX) {
395         if (host_tsx_broken()) {
396             ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
397         }
398     } else if (function == 7 && index == 0 && reg == R_EDX) {
399         /*
400          * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
401          * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
402          * returned by KVM_GET_MSR_INDEX_LIST.
403          */
404         if (!has_msr_arch_capabs) {
405             ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
406         }
407     } else if (function == 0x80000001 && reg == R_ECX) {
408         /*
409          * It's safe to enable TOPOEXT even if it's not returned by
410          * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
411          * us to keep CPU models including TOPOEXT runnable on older kernels.
412          */
413         ret |= CPUID_EXT3_TOPOEXT;
414     } else if (function == 0x80000001 && reg == R_EDX) {
415         /* On Intel, kvm returns cpuid according to the Intel spec,
416          * so add missing bits according to the AMD spec:
417          */
418         cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
419         ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
420     } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
421         /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
422          * be enabled without the in-kernel irqchip
423          */
424         if (!kvm_irqchip_in_kernel()) {
425             ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
426         }
427         if (kvm_irqchip_is_split()) {
428             ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
429         }
430     } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
431         ret |= 1U << KVM_HINTS_REALTIME;
432     }
433 
434     return ret;
435 }
436 
437 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
438 {
439     struct {
440         struct kvm_msrs info;
441         struct kvm_msr_entry entries[1];
442     } msr_data = {};
443     uint64_t value;
444     uint32_t ret, can_be_one, must_be_one;
445 
446     if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
447         return 0;
448     }
449 
450     /* Check if requested MSR is supported feature MSR */
451     int i;
452     for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
453         if (kvm_feature_msrs->indices[i] == index) {
454             break;
455         }
456     if (i == kvm_feature_msrs->nmsrs) {
457         return 0; /* if the feature MSR is not supported, simply return 0 */
458     }
459 
460     msr_data.info.nmsrs = 1;
461     msr_data.entries[0].index = index;
462 
463     ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
464     if (ret != 1) {
465         error_report("KVM get MSR (index=0x%x) feature failed, %s",
466             index, strerror(-ret));
467         exit(1);
468     }
469 
470     value = msr_data.entries[0].data;
471     switch (index) {
472     case MSR_IA32_VMX_PROCBASED_CTLS2:
473         if (!has_msr_vmx_procbased_ctls2) {
474             /* KVM forgot to add these bits for some time, do this ourselves. */
475             if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
476                 CPUID_XSAVE_XSAVES) {
477                 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
478             }
479             if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
480                 CPUID_EXT_RDRAND) {
481                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
482             }
483             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
484                 CPUID_7_0_EBX_INVPCID) {
485                 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
486             }
487             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
488                 CPUID_7_0_EBX_RDSEED) {
489                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
490             }
491             if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
492                 CPUID_EXT2_RDTSCP) {
493                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
494             }
495         }
496         /* fall through */
497     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
498     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
499     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
500     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
501         /*
502          * Return true for bits that can be one, but do not have to be one.
503          * The SDM tells us which bits could have a "must be one" setting,
504          * so we can do the opposite transformation in make_vmx_msr_value.
505          */
506         must_be_one = (uint32_t)value;
507         can_be_one = (uint32_t)(value >> 32);
508         return can_be_one & ~must_be_one;
509 
510     default:
511         return value;
512     }
513 }
514 
515 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
516                                      int *max_banks)
517 {
518     int r;
519 
520     r = kvm_check_extension(s, KVM_CAP_MCE);
521     if (r > 0) {
522         *max_banks = r;
523         return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
524     }
525     return -ENOSYS;
526 }
527 
528 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
529 {
530     CPUState *cs = CPU(cpu);
531     CPUX86State *env = &cpu->env;
532     uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
533                       MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
534     uint64_t mcg_status = MCG_STATUS_MCIP;
535     int flags = 0;
536 
537     if (code == BUS_MCEERR_AR) {
538         status |= MCI_STATUS_AR | 0x134;
539         mcg_status |= MCG_STATUS_EIPV;
540     } else {
541         status |= 0xc0;
542         mcg_status |= MCG_STATUS_RIPV;
543     }
544 
545     flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
546     /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
547      * guest kernel back into env->mcg_ext_ctl.
548      */
549     cpu_synchronize_state(cs);
550     if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
551         mcg_status |= MCG_STATUS_LMCE;
552         flags = 0;
553     }
554 
555     cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
556                        (MCM_ADDR_PHYS << 6) | 0xc, flags);
557 }
558 
559 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
560 {
561     MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
562 
563     qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
564                                    &mff);
565 }
566 
567 static void hardware_memory_error(void *host_addr)
568 {
569     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
570     error_report("QEMU got Hardware memory error at addr %p", host_addr);
571     exit(1);
572 }
573 
574 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
575 {
576     X86CPU *cpu = X86_CPU(c);
577     CPUX86State *env = &cpu->env;
578     ram_addr_t ram_addr;
579     hwaddr paddr;
580 
581     /* If we get an action required MCE, it has been injected by KVM
582      * while the VM was running.  An action optional MCE instead should
583      * be coming from the main thread, which qemu_init_sigbus identifies
584      * as the "early kill" thread.
585      */
586     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
587 
588     if ((env->mcg_cap & MCG_SER_P) && addr) {
589         ram_addr = qemu_ram_addr_from_host(addr);
590         if (ram_addr != RAM_ADDR_INVALID &&
591             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
592             kvm_hwpoison_page_add(ram_addr);
593             kvm_mce_inject(cpu, paddr, code);
594 
595             /*
596              * Use different logging severity based on error type.
597              * If there is additional MCE reporting on the hypervisor, QEMU VA
598              * could be another source to identify the PA and MCE details.
599              */
600             if (code == BUS_MCEERR_AR) {
601                 error_report("Guest MCE Memory Error at QEMU addr %p and "
602                     "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
603                     addr, paddr, "BUS_MCEERR_AR");
604             } else {
605                  warn_report("Guest MCE Memory Error at QEMU addr %p and "
606                      "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
607                      addr, paddr, "BUS_MCEERR_AO");
608             }
609 
610             return;
611         }
612 
613         if (code == BUS_MCEERR_AO) {
614             warn_report("Hardware memory error at addr %p of type %s "
615                 "for memory used by QEMU itself instead of guest system!",
616                  addr, "BUS_MCEERR_AO");
617         }
618     }
619 
620     if (code == BUS_MCEERR_AR) {
621         hardware_memory_error(addr);
622     }
623 
624     /* Hope we are lucky for AO MCE, just notify a event */
625     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
626 }
627 
628 static void kvm_reset_exception(CPUX86State *env)
629 {
630     env->exception_nr = -1;
631     env->exception_pending = 0;
632     env->exception_injected = 0;
633     env->exception_has_payload = false;
634     env->exception_payload = 0;
635 }
636 
637 static void kvm_queue_exception(CPUX86State *env,
638                                 int32_t exception_nr,
639                                 uint8_t exception_has_payload,
640                                 uint64_t exception_payload)
641 {
642     assert(env->exception_nr == -1);
643     assert(!env->exception_pending);
644     assert(!env->exception_injected);
645     assert(!env->exception_has_payload);
646 
647     env->exception_nr = exception_nr;
648 
649     if (has_exception_payload) {
650         env->exception_pending = 1;
651 
652         env->exception_has_payload = exception_has_payload;
653         env->exception_payload = exception_payload;
654     } else {
655         env->exception_injected = 1;
656 
657         if (exception_nr == EXCP01_DB) {
658             assert(exception_has_payload);
659             env->dr[6] = exception_payload;
660         } else if (exception_nr == EXCP0E_PAGE) {
661             assert(exception_has_payload);
662             env->cr[2] = exception_payload;
663         } else {
664             assert(!exception_has_payload);
665         }
666     }
667 }
668 
669 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
670 {
671     CPUX86State *env = &cpu->env;
672 
673     if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
674         unsigned int bank, bank_num = env->mcg_cap & 0xff;
675         struct kvm_x86_mce mce;
676 
677         kvm_reset_exception(env);
678 
679         /*
680          * There must be at least one bank in use if an MCE is pending.
681          * Find it and use its values for the event injection.
682          */
683         for (bank = 0; bank < bank_num; bank++) {
684             if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
685                 break;
686             }
687         }
688         assert(bank < bank_num);
689 
690         mce.bank = bank;
691         mce.status = env->mce_banks[bank * 4 + 1];
692         mce.mcg_status = env->mcg_status;
693         mce.addr = env->mce_banks[bank * 4 + 2];
694         mce.misc = env->mce_banks[bank * 4 + 3];
695 
696         return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
697     }
698     return 0;
699 }
700 
701 static void cpu_update_state(void *opaque, bool running, RunState state)
702 {
703     CPUX86State *env = opaque;
704 
705     if (running) {
706         env->tsc_valid = false;
707     }
708 }
709 
710 unsigned long kvm_arch_vcpu_id(CPUState *cs)
711 {
712     X86CPU *cpu = X86_CPU(cs);
713     return cpu->apic_id;
714 }
715 
716 #ifndef KVM_CPUID_SIGNATURE_NEXT
717 #define KVM_CPUID_SIGNATURE_NEXT                0x40000100
718 #endif
719 
720 static bool hyperv_enabled(X86CPU *cpu)
721 {
722     return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
723         ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
724          cpu->hyperv_features || cpu->hyperv_passthrough);
725 }
726 
727 /*
728  * Check whether target_freq is within conservative
729  * ntp correctable bounds (250ppm) of freq
730  */
731 static inline bool freq_within_bounds(int freq, int target_freq)
732 {
733         int max_freq = freq + (freq * 250 / 1000000);
734         int min_freq = freq - (freq * 250 / 1000000);
735 
736         if (target_freq >= min_freq && target_freq <= max_freq) {
737                 return true;
738         }
739 
740         return false;
741 }
742 
743 static int kvm_arch_set_tsc_khz(CPUState *cs)
744 {
745     X86CPU *cpu = X86_CPU(cs);
746     CPUX86State *env = &cpu->env;
747     int r, cur_freq;
748     bool set_ioctl = false;
749 
750     if (!env->tsc_khz) {
751         return 0;
752     }
753 
754     cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
755                kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
756 
757     /*
758      * If TSC scaling is supported, attempt to set TSC frequency.
759      */
760     if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
761         set_ioctl = true;
762     }
763 
764     /*
765      * If desired TSC frequency is within bounds of NTP correction,
766      * attempt to set TSC frequency.
767      */
768     if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
769         set_ioctl = true;
770     }
771 
772     r = set_ioctl ?
773         kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
774         -ENOTSUP;
775 
776     if (r < 0) {
777         /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
778          * TSC frequency doesn't match the one we want.
779          */
780         cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
781                    kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
782                    -ENOTSUP;
783         if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
784             warn_report("TSC frequency mismatch between "
785                         "VM (%" PRId64 " kHz) and host (%d kHz), "
786                         "and TSC scaling unavailable",
787                         env->tsc_khz, cur_freq);
788             return r;
789         }
790     }
791 
792     return 0;
793 }
794 
795 static bool tsc_is_stable_and_known(CPUX86State *env)
796 {
797     if (!env->tsc_khz) {
798         return false;
799     }
800     return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
801         || env->user_tsc_khz;
802 }
803 
804 static struct {
805     const char *desc;
806     struct {
807         uint32_t func;
808         int reg;
809         uint32_t bits;
810     } flags[2];
811     uint64_t dependencies;
812 } kvm_hyperv_properties[] = {
813     [HYPERV_FEAT_RELAXED] = {
814         .desc = "relaxed timing (hv-relaxed)",
815         .flags = {
816             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
817              .bits = HV_RELAXED_TIMING_RECOMMENDED}
818         }
819     },
820     [HYPERV_FEAT_VAPIC] = {
821         .desc = "virtual APIC (hv-vapic)",
822         .flags = {
823             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
824              .bits = HV_APIC_ACCESS_AVAILABLE},
825             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
826              .bits = HV_APIC_ACCESS_RECOMMENDED}
827         }
828     },
829     [HYPERV_FEAT_TIME] = {
830         .desc = "clocksources (hv-time)",
831         .flags = {
832             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
833              .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
834         }
835     },
836     [HYPERV_FEAT_CRASH] = {
837         .desc = "crash MSRs (hv-crash)",
838         .flags = {
839             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
840              .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
841         }
842     },
843     [HYPERV_FEAT_RESET] = {
844         .desc = "reset MSR (hv-reset)",
845         .flags = {
846             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
847              .bits = HV_RESET_AVAILABLE}
848         }
849     },
850     [HYPERV_FEAT_VPINDEX] = {
851         .desc = "VP_INDEX MSR (hv-vpindex)",
852         .flags = {
853             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
854              .bits = HV_VP_INDEX_AVAILABLE}
855         }
856     },
857     [HYPERV_FEAT_RUNTIME] = {
858         .desc = "VP_RUNTIME MSR (hv-runtime)",
859         .flags = {
860             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
861              .bits = HV_VP_RUNTIME_AVAILABLE}
862         }
863     },
864     [HYPERV_FEAT_SYNIC] = {
865         .desc = "synthetic interrupt controller (hv-synic)",
866         .flags = {
867             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
868              .bits = HV_SYNIC_AVAILABLE}
869         }
870     },
871     [HYPERV_FEAT_STIMER] = {
872         .desc = "synthetic timers (hv-stimer)",
873         .flags = {
874             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
875              .bits = HV_SYNTIMERS_AVAILABLE}
876         },
877         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
878     },
879     [HYPERV_FEAT_FREQUENCIES] = {
880         .desc = "frequency MSRs (hv-frequencies)",
881         .flags = {
882             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
883              .bits = HV_ACCESS_FREQUENCY_MSRS},
884             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
885              .bits = HV_FREQUENCY_MSRS_AVAILABLE}
886         }
887     },
888     [HYPERV_FEAT_REENLIGHTENMENT] = {
889         .desc = "reenlightenment MSRs (hv-reenlightenment)",
890         .flags = {
891             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
892              .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
893         }
894     },
895     [HYPERV_FEAT_TLBFLUSH] = {
896         .desc = "paravirtualized TLB flush (hv-tlbflush)",
897         .flags = {
898             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
899              .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
900              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
901         },
902         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
903     },
904     [HYPERV_FEAT_EVMCS] = {
905         .desc = "enlightened VMCS (hv-evmcs)",
906         .flags = {
907             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
908              .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
909         },
910         .dependencies = BIT(HYPERV_FEAT_VAPIC)
911     },
912     [HYPERV_FEAT_IPI] = {
913         .desc = "paravirtualized IPI (hv-ipi)",
914         .flags = {
915             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
916              .bits = HV_CLUSTER_IPI_RECOMMENDED |
917              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
918         },
919         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
920     },
921     [HYPERV_FEAT_STIMER_DIRECT] = {
922         .desc = "direct mode synthetic timers (hv-stimer-direct)",
923         .flags = {
924             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
925              .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
926         },
927         .dependencies = BIT(HYPERV_FEAT_STIMER)
928     },
929 };
930 
931 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
932                                            bool do_sys_ioctl)
933 {
934     struct kvm_cpuid2 *cpuid;
935     int r, size;
936 
937     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
938     cpuid = g_malloc0(size);
939     cpuid->nent = max;
940 
941     if (do_sys_ioctl) {
942         r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
943     } else {
944         r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
945     }
946     if (r == 0 && cpuid->nent >= max) {
947         r = -E2BIG;
948     }
949     if (r < 0) {
950         if (r == -E2BIG) {
951             g_free(cpuid);
952             return NULL;
953         } else {
954             fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
955                     strerror(-r));
956             exit(1);
957         }
958     }
959     return cpuid;
960 }
961 
962 /*
963  * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
964  * for all entries.
965  */
966 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
967 {
968     struct kvm_cpuid2 *cpuid;
969     /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000080 leaves */
970     int max = 10;
971     int i;
972     bool do_sys_ioctl;
973 
974     do_sys_ioctl =
975         kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
976 
977     /*
978      * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
979      * unsupported, kvm_hyperv_expand_features() checks for that.
980      */
981     assert(do_sys_ioctl || cs->kvm_state);
982 
983     /*
984      * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
985      * -E2BIG, however, it doesn't report back the right size. Keep increasing
986      * it and re-trying until we succeed.
987      */
988     while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
989         max++;
990     }
991 
992     /*
993      * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
994      * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
995      * information early, just check for the capability and set the bit
996      * manually.
997      */
998     if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
999                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1000         for (i = 0; i < cpuid->nent; i++) {
1001             if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1002                 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1003             }
1004         }
1005     }
1006 
1007     return cpuid;
1008 }
1009 
1010 /*
1011  * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1012  * leaves from KVM_CAP_HYPERV* and present MSRs data.
1013  */
1014 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1015 {
1016     X86CPU *cpu = X86_CPU(cs);
1017     struct kvm_cpuid2 *cpuid;
1018     struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1019 
1020     /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1021     cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1022     cpuid->nent = 2;
1023 
1024     /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1025     entry_feat = &cpuid->entries[0];
1026     entry_feat->function = HV_CPUID_FEATURES;
1027 
1028     entry_recomm = &cpuid->entries[1];
1029     entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1030     entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1031 
1032     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1033         entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1034         entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1035         entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1036         entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1037         entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1038     }
1039 
1040     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1041         entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1042         entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1043     }
1044 
1045     if (has_msr_hv_frequencies) {
1046         entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1047         entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1048     }
1049 
1050     if (has_msr_hv_crash) {
1051         entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1052     }
1053 
1054     if (has_msr_hv_reenlightenment) {
1055         entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1056     }
1057 
1058     if (has_msr_hv_reset) {
1059         entry_feat->eax |= HV_RESET_AVAILABLE;
1060     }
1061 
1062     if (has_msr_hv_vpindex) {
1063         entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1064     }
1065 
1066     if (has_msr_hv_runtime) {
1067         entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1068     }
1069 
1070     if (has_msr_hv_synic) {
1071         unsigned int cap = cpu->hyperv_synic_kvm_only ?
1072             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1073 
1074         if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1075             entry_feat->eax |= HV_SYNIC_AVAILABLE;
1076         }
1077     }
1078 
1079     if (has_msr_hv_stimer) {
1080         entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1081     }
1082 
1083     if (kvm_check_extension(cs->kvm_state,
1084                             KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1085         entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1086         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1087     }
1088 
1089     if (kvm_check_extension(cs->kvm_state,
1090                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1091         entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1092     }
1093 
1094     if (kvm_check_extension(cs->kvm_state,
1095                             KVM_CAP_HYPERV_SEND_IPI) > 0) {
1096         entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1097         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1098     }
1099 
1100     return cpuid;
1101 }
1102 
1103 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1104 {
1105     struct kvm_cpuid_entry2 *entry;
1106     struct kvm_cpuid2 *cpuid;
1107 
1108     if (hv_cpuid_cache) {
1109         cpuid = hv_cpuid_cache;
1110     } else {
1111         if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1112             cpuid = get_supported_hv_cpuid(cs);
1113         } else {
1114             /*
1115              * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1116              * before KVM context is created but this is only done when
1117              * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1118              * KVM_CAP_HYPERV_CPUID.
1119              */
1120             assert(cs->kvm_state);
1121 
1122             cpuid = get_supported_hv_cpuid_legacy(cs);
1123         }
1124         hv_cpuid_cache = cpuid;
1125     }
1126 
1127     if (!cpuid) {
1128         return 0;
1129     }
1130 
1131     entry = cpuid_find_entry(cpuid, func, 0);
1132     if (!entry) {
1133         return 0;
1134     }
1135 
1136     return cpuid_entry_get_reg(entry, reg);
1137 }
1138 
1139 static bool hyperv_feature_supported(CPUState *cs, int feature)
1140 {
1141     uint32_t func, bits;
1142     int i, reg;
1143 
1144     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1145 
1146         func = kvm_hyperv_properties[feature].flags[i].func;
1147         reg = kvm_hyperv_properties[feature].flags[i].reg;
1148         bits = kvm_hyperv_properties[feature].flags[i].bits;
1149 
1150         if (!func) {
1151             continue;
1152         }
1153 
1154         if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1155             return false;
1156         }
1157     }
1158 
1159     return true;
1160 }
1161 
1162 /* Checks that all feature dependencies are enabled */
1163 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1164 {
1165     uint64_t deps;
1166     int dep_feat;
1167 
1168     deps = kvm_hyperv_properties[feature].dependencies;
1169     while (deps) {
1170         dep_feat = ctz64(deps);
1171         if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1172             error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1173                        kvm_hyperv_properties[feature].desc,
1174                        kvm_hyperv_properties[dep_feat].desc);
1175             return false;
1176         }
1177         deps &= ~(1ull << dep_feat);
1178     }
1179 
1180     return true;
1181 }
1182 
1183 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1184 {
1185     X86CPU *cpu = X86_CPU(cs);
1186     uint32_t r = 0;
1187     int i, j;
1188 
1189     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1190         if (!hyperv_feat_enabled(cpu, i)) {
1191             continue;
1192         }
1193 
1194         for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1195             if (kvm_hyperv_properties[i].flags[j].func != func) {
1196                 continue;
1197             }
1198             if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1199                 continue;
1200             }
1201 
1202             r |= kvm_hyperv_properties[i].flags[j].bits;
1203         }
1204     }
1205 
1206     return r;
1207 }
1208 
1209 /*
1210  * Expand Hyper-V CPU features. In partucular, check that all the requested
1211  * features are supported by the host and the sanity of the configuration
1212  * (that all the required dependencies are included). Also, this takes care
1213  * of 'hv_passthrough' mode and fills the environment with all supported
1214  * Hyper-V features.
1215  */
1216 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1217 {
1218     CPUState *cs = CPU(cpu);
1219     Error *local_err = NULL;
1220     int feat;
1221 
1222     if (!hyperv_enabled(cpu))
1223         return true;
1224 
1225     /*
1226      * When kvm_hyperv_expand_features is called at CPU feature expansion
1227      * time per-CPU kvm_state is not available yet so we can only proceed
1228      * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1229      */
1230     if (!cs->kvm_state &&
1231         !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1232         return true;
1233 
1234     if (cpu->hyperv_passthrough) {
1235         cpu->hyperv_vendor_id[0] =
1236             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1237         cpu->hyperv_vendor_id[1] =
1238             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1239         cpu->hyperv_vendor_id[2] =
1240             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1241         cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1242                                        sizeof(cpu->hyperv_vendor_id) + 1);
1243         memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1244                sizeof(cpu->hyperv_vendor_id));
1245         cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1246 
1247         cpu->hyperv_interface_id[0] =
1248             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1249         cpu->hyperv_interface_id[1] =
1250             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1251         cpu->hyperv_interface_id[2] =
1252             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1253         cpu->hyperv_interface_id[3] =
1254             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1255 
1256         cpu->hyperv_version_id[0] =
1257             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1258         cpu->hyperv_version_id[1] =
1259             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX);
1260         cpu->hyperv_version_id[2] =
1261             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1262         cpu->hyperv_version_id[3] =
1263             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX);
1264 
1265         cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1266                                             R_EAX);
1267         cpu->hyperv_limits[0] =
1268             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1269         cpu->hyperv_limits[1] =
1270             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1271         cpu->hyperv_limits[2] =
1272             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1273 
1274         cpu->hyperv_spinlock_attempts =
1275             hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1276 
1277         /*
1278          * Mark feature as enabled in 'cpu->hyperv_features' as
1279          * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1280          */
1281         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1282             if (hyperv_feature_supported(cs, feat)) {
1283                 cpu->hyperv_features |= BIT(feat);
1284             }
1285         }
1286     } else {
1287         /* Check features availability and dependencies */
1288         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1289             /* If the feature was not requested skip it. */
1290             if (!hyperv_feat_enabled(cpu, feat)) {
1291                 continue;
1292             }
1293 
1294             /* Check if the feature is supported by KVM */
1295             if (!hyperv_feature_supported(cs, feat)) {
1296                 error_setg(errp, "Hyper-V %s is not supported by kernel",
1297                            kvm_hyperv_properties[feat].desc);
1298                 return false;
1299             }
1300 
1301             /* Check dependencies */
1302             if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1303                 error_propagate(errp, local_err);
1304                 return false;
1305             }
1306         }
1307     }
1308 
1309     /* Additional dependencies not covered by kvm_hyperv_properties[] */
1310     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1311         !cpu->hyperv_synic_kvm_only &&
1312         !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1313         error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1314                    kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1315                    kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1316         return false;
1317     }
1318 
1319     return true;
1320 }
1321 
1322 /*
1323  * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1324  */
1325 static int hyperv_fill_cpuids(CPUState *cs,
1326                               struct kvm_cpuid_entry2 *cpuid_ent)
1327 {
1328     X86CPU *cpu = X86_CPU(cs);
1329     struct kvm_cpuid_entry2 *c;
1330     uint32_t cpuid_i = 0;
1331 
1332     c = &cpuid_ent[cpuid_i++];
1333     c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1334     c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1335         HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1336     c->ebx = cpu->hyperv_vendor_id[0];
1337     c->ecx = cpu->hyperv_vendor_id[1];
1338     c->edx = cpu->hyperv_vendor_id[2];
1339 
1340     c = &cpuid_ent[cpuid_i++];
1341     c->function = HV_CPUID_INTERFACE;
1342     c->eax = cpu->hyperv_interface_id[0];
1343     c->ebx = cpu->hyperv_interface_id[1];
1344     c->ecx = cpu->hyperv_interface_id[2];
1345     c->edx = cpu->hyperv_interface_id[3];
1346 
1347     c = &cpuid_ent[cpuid_i++];
1348     c->function = HV_CPUID_VERSION;
1349     c->eax = cpu->hyperv_version_id[0];
1350     c->ebx = cpu->hyperv_version_id[1];
1351     c->ecx = cpu->hyperv_version_id[2];
1352     c->edx = cpu->hyperv_version_id[3];
1353 
1354     c = &cpuid_ent[cpuid_i++];
1355     c->function = HV_CPUID_FEATURES;
1356     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1357     c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1358     c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1359 
1360     /* Unconditionally required with any Hyper-V enlightenment */
1361     c->eax |= HV_HYPERCALL_AVAILABLE;
1362 
1363     /* SynIC and Vmbus devices require messages/signals hypercalls */
1364     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1365         !cpu->hyperv_synic_kvm_only) {
1366         c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1367     }
1368 
1369     /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1370     c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1371 
1372     c = &cpuid_ent[cpuid_i++];
1373     c->function = HV_CPUID_ENLIGHTMENT_INFO;
1374     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1375     c->ebx = cpu->hyperv_spinlock_attempts;
1376 
1377     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1378         c->eax |= HV_NO_NONARCH_CORESHARING;
1379     } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1380         c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1381             HV_NO_NONARCH_CORESHARING;
1382     }
1383 
1384     c = &cpuid_ent[cpuid_i++];
1385     c->function = HV_CPUID_IMPLEMENT_LIMITS;
1386     c->eax = cpu->hv_max_vps;
1387     c->ebx = cpu->hyperv_limits[0];
1388     c->ecx = cpu->hyperv_limits[1];
1389     c->edx = cpu->hyperv_limits[2];
1390 
1391     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1392         __u32 function;
1393 
1394         /* Create zeroed 0x40000006..0x40000009 leaves */
1395         for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1396              function < HV_CPUID_NESTED_FEATURES; function++) {
1397             c = &cpuid_ent[cpuid_i++];
1398             c->function = function;
1399         }
1400 
1401         c = &cpuid_ent[cpuid_i++];
1402         c->function = HV_CPUID_NESTED_FEATURES;
1403         c->eax = cpu->hyperv_nested[0];
1404     }
1405 
1406     return cpuid_i;
1407 }
1408 
1409 static Error *hv_passthrough_mig_blocker;
1410 static Error *hv_no_nonarch_cs_mig_blocker;
1411 
1412 /* Checks that the exposed eVMCS version range is supported by KVM */
1413 static bool evmcs_version_supported(uint16_t evmcs_version,
1414                                     uint16_t supported_evmcs_version)
1415 {
1416     uint8_t min_version = evmcs_version & 0xff;
1417     uint8_t max_version = evmcs_version >> 8;
1418     uint8_t min_supported_version = supported_evmcs_version & 0xff;
1419     uint8_t max_supported_version = supported_evmcs_version >> 8;
1420 
1421     return (min_version >= min_supported_version) &&
1422         (max_version <= max_supported_version);
1423 }
1424 
1425 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
1426 
1427 static int hyperv_init_vcpu(X86CPU *cpu)
1428 {
1429     CPUState *cs = CPU(cpu);
1430     Error *local_err = NULL;
1431     int ret;
1432 
1433     if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1434         error_setg(&hv_passthrough_mig_blocker,
1435                    "'hv-passthrough' CPU flag prevents migration, use explicit"
1436                    " set of hv-* flags instead");
1437         ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1438         if (ret < 0) {
1439             error_report_err(local_err);
1440             return ret;
1441         }
1442     }
1443 
1444     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1445         hv_no_nonarch_cs_mig_blocker == NULL) {
1446         error_setg(&hv_no_nonarch_cs_mig_blocker,
1447                    "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1448                    " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1449                    " make sure SMT is disabled and/or that vCPUs are properly"
1450                    " pinned)");
1451         ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1452         if (ret < 0) {
1453             error_report_err(local_err);
1454             return ret;
1455         }
1456     }
1457 
1458     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1459         /*
1460          * the kernel doesn't support setting vp_index; assert that its value
1461          * is in sync
1462          */
1463         struct {
1464             struct kvm_msrs info;
1465             struct kvm_msr_entry entries[1];
1466         } msr_data = {
1467             .info.nmsrs = 1,
1468             .entries[0].index = HV_X64_MSR_VP_INDEX,
1469         };
1470 
1471         ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
1472         if (ret < 0) {
1473             return ret;
1474         }
1475         assert(ret == 1);
1476 
1477         if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
1478             error_report("kernel's vp_index != QEMU's vp_index");
1479             return -ENXIO;
1480         }
1481     }
1482 
1483     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1484         uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1485             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1486         ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1487         if (ret < 0) {
1488             error_report("failed to turn on HyperV SynIC in KVM: %s",
1489                          strerror(-ret));
1490             return ret;
1491         }
1492 
1493         if (!cpu->hyperv_synic_kvm_only) {
1494             ret = hyperv_x86_synic_add(cpu);
1495             if (ret < 0) {
1496                 error_report("failed to create HyperV SynIC: %s",
1497                              strerror(-ret));
1498                 return ret;
1499             }
1500         }
1501     }
1502 
1503     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1504         uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1505         uint16_t supported_evmcs_version;
1506 
1507         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1508                                   (uintptr_t)&supported_evmcs_version);
1509 
1510         /*
1511          * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1512          * option sets. Note: we hardcode the maximum supported eVMCS version
1513          * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1514          * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1515          * to be added.
1516          */
1517         if (ret < 0) {
1518             error_report("Hyper-V %s is not supported by kernel",
1519                          kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1520             return ret;
1521         }
1522 
1523         if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1524             error_report("eVMCS version range [%d..%d] is not supported by "
1525                          "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1526                          evmcs_version >> 8, supported_evmcs_version & 0xff,
1527                          supported_evmcs_version >> 8);
1528             return -ENOTSUP;
1529         }
1530 
1531         cpu->hyperv_nested[0] = evmcs_version;
1532     }
1533 
1534     return 0;
1535 }
1536 
1537 static Error *invtsc_mig_blocker;
1538 
1539 #define KVM_MAX_CPUID_ENTRIES  100
1540 
1541 int kvm_arch_init_vcpu(CPUState *cs)
1542 {
1543     struct {
1544         struct kvm_cpuid2 cpuid;
1545         struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1546     } cpuid_data;
1547     /*
1548      * The kernel defines these structs with padding fields so there
1549      * should be no extra padding in our cpuid_data struct.
1550      */
1551     QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1552                       sizeof(struct kvm_cpuid2) +
1553                       sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1554 
1555     X86CPU *cpu = X86_CPU(cs);
1556     CPUX86State *env = &cpu->env;
1557     uint32_t limit, i, j, cpuid_i;
1558     uint32_t unused;
1559     struct kvm_cpuid_entry2 *c;
1560     uint32_t signature[3];
1561     int kvm_base = KVM_CPUID_SIGNATURE;
1562     int max_nested_state_len;
1563     int r;
1564     Error *local_err = NULL;
1565 
1566     memset(&cpuid_data, 0, sizeof(cpuid_data));
1567 
1568     cpuid_i = 0;
1569 
1570     r = kvm_arch_set_tsc_khz(cs);
1571     if (r < 0) {
1572         return r;
1573     }
1574 
1575     /* vcpu's TSC frequency is either specified by user, or following
1576      * the value used by KVM if the former is not present. In the
1577      * latter case, we query it from KVM and record in env->tsc_khz,
1578      * so that vcpu's TSC frequency can be migrated later via this field.
1579      */
1580     if (!env->tsc_khz) {
1581         r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1582             kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1583             -ENOTSUP;
1584         if (r > 0) {
1585             env->tsc_khz = r;
1586         }
1587     }
1588 
1589     env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1590 
1591     /*
1592      * kvm_hyperv_expand_features() is called here for the second time in case
1593      * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
1594      * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
1595      * check which Hyper-V enlightenments are supported and which are not, we
1596      * can still proceed and check/expand Hyper-V enlightenments here so legacy
1597      * behavior is preserved.
1598      */
1599     if (!kvm_hyperv_expand_features(cpu, &local_err)) {
1600         error_report_err(local_err);
1601         return -ENOSYS;
1602     }
1603 
1604     if (hyperv_enabled(cpu)) {
1605         r = hyperv_init_vcpu(cpu);
1606         if (r) {
1607             return r;
1608         }
1609 
1610         cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
1611         kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1612         has_msr_hv_hypercall = true;
1613     }
1614 
1615     if (cpu->expose_kvm) {
1616         memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1617         c = &cpuid_data.entries[cpuid_i++];
1618         c->function = KVM_CPUID_SIGNATURE | kvm_base;
1619         c->eax = KVM_CPUID_FEATURES | kvm_base;
1620         c->ebx = signature[0];
1621         c->ecx = signature[1];
1622         c->edx = signature[2];
1623 
1624         c = &cpuid_data.entries[cpuid_i++];
1625         c->function = KVM_CPUID_FEATURES | kvm_base;
1626         c->eax = env->features[FEAT_KVM];
1627         c->edx = env->features[FEAT_KVM_HINTS];
1628     }
1629 
1630     cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1631 
1632     for (i = 0; i <= limit; i++) {
1633         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1634             fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1635             abort();
1636         }
1637         c = &cpuid_data.entries[cpuid_i++];
1638 
1639         switch (i) {
1640         case 2: {
1641             /* Keep reading function 2 till all the input is received */
1642             int times;
1643 
1644             c->function = i;
1645             c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1646                        KVM_CPUID_FLAG_STATE_READ_NEXT;
1647             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1648             times = c->eax & 0xff;
1649 
1650             for (j = 1; j < times; ++j) {
1651                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1652                     fprintf(stderr, "cpuid_data is full, no space for "
1653                             "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1654                     abort();
1655                 }
1656                 c = &cpuid_data.entries[cpuid_i++];
1657                 c->function = i;
1658                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1659                 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1660             }
1661             break;
1662         }
1663         case 0x1f:
1664             if (env->nr_dies < 2) {
1665                 break;
1666             }
1667             /* fallthrough */
1668         case 4:
1669         case 0xb:
1670         case 0xd:
1671             for (j = 0; ; j++) {
1672                 if (i == 0xd && j == 64) {
1673                     break;
1674                 }
1675 
1676                 if (i == 0x1f && j == 64) {
1677                     break;
1678                 }
1679 
1680                 c->function = i;
1681                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1682                 c->index = j;
1683                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1684 
1685                 if (i == 4 && c->eax == 0) {
1686                     break;
1687                 }
1688                 if (i == 0xb && !(c->ecx & 0xff00)) {
1689                     break;
1690                 }
1691                 if (i == 0x1f && !(c->ecx & 0xff00)) {
1692                     break;
1693                 }
1694                 if (i == 0xd && c->eax == 0) {
1695                     continue;
1696                 }
1697                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1698                     fprintf(stderr, "cpuid_data is full, no space for "
1699                             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1700                     abort();
1701                 }
1702                 c = &cpuid_data.entries[cpuid_i++];
1703             }
1704             break;
1705         case 0x7:
1706         case 0x12:
1707             for (j = 0; ; j++) {
1708                 c->function = i;
1709                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1710                 c->index = j;
1711                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1712 
1713                 if (j > 1 && (c->eax & 0xf) != 1) {
1714                     break;
1715                 }
1716 
1717                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1718                     fprintf(stderr, "cpuid_data is full, no space for "
1719                                 "cpuid(eax:0x12,ecx:0x%x)\n", j);
1720                     abort();
1721                 }
1722                 c = &cpuid_data.entries[cpuid_i++];
1723             }
1724             break;
1725         case 0x14: {
1726             uint32_t times;
1727 
1728             c->function = i;
1729             c->index = 0;
1730             c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1731             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1732             times = c->eax;
1733 
1734             for (j = 1; j <= times; ++j) {
1735                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1736                     fprintf(stderr, "cpuid_data is full, no space for "
1737                                 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1738                     abort();
1739                 }
1740                 c = &cpuid_data.entries[cpuid_i++];
1741                 c->function = i;
1742                 c->index = j;
1743                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1744                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1745             }
1746             break;
1747         }
1748         default:
1749             c->function = i;
1750             c->flags = 0;
1751             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1752             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1753                 /*
1754                  * KVM already returns all zeroes if a CPUID entry is missing,
1755                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1756                  */
1757                 cpuid_i--;
1758             }
1759             break;
1760         }
1761     }
1762 
1763     if (limit >= 0x0a) {
1764         uint32_t eax, edx;
1765 
1766         cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1767 
1768         has_architectural_pmu_version = eax & 0xff;
1769         if (has_architectural_pmu_version > 0) {
1770             num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1771 
1772             /* Shouldn't be more than 32, since that's the number of bits
1773              * available in EBX to tell us _which_ counters are available.
1774              * Play it safe.
1775              */
1776             if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1777                 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1778             }
1779 
1780             if (has_architectural_pmu_version > 1) {
1781                 num_architectural_pmu_fixed_counters = edx & 0x1f;
1782 
1783                 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1784                     num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1785                 }
1786             }
1787         }
1788     }
1789 
1790     cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1791 
1792     for (i = 0x80000000; i <= limit; i++) {
1793         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1794             fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1795             abort();
1796         }
1797         c = &cpuid_data.entries[cpuid_i++];
1798 
1799         switch (i) {
1800         case 0x8000001d:
1801             /* Query for all AMD cache information leaves */
1802             for (j = 0; ; j++) {
1803                 c->function = i;
1804                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1805                 c->index = j;
1806                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1807 
1808                 if (c->eax == 0) {
1809                     break;
1810                 }
1811                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1812                     fprintf(stderr, "cpuid_data is full, no space for "
1813                             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1814                     abort();
1815                 }
1816                 c = &cpuid_data.entries[cpuid_i++];
1817             }
1818             break;
1819         default:
1820             c->function = i;
1821             c->flags = 0;
1822             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1823             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1824                 /*
1825                  * KVM already returns all zeroes if a CPUID entry is missing,
1826                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1827                  */
1828                 cpuid_i--;
1829             }
1830             break;
1831         }
1832     }
1833 
1834     /* Call Centaur's CPUID instructions they are supported. */
1835     if (env->cpuid_xlevel2 > 0) {
1836         cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1837 
1838         for (i = 0xC0000000; i <= limit; i++) {
1839             if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1840                 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1841                 abort();
1842             }
1843             c = &cpuid_data.entries[cpuid_i++];
1844 
1845             c->function = i;
1846             c->flags = 0;
1847             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1848         }
1849     }
1850 
1851     cpuid_data.cpuid.nent = cpuid_i;
1852 
1853     if (((env->cpuid_version >> 8)&0xF) >= 6
1854         && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
1855            (CPUID_MCE | CPUID_MCA)
1856         && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
1857         uint64_t mcg_cap, unsupported_caps;
1858         int banks;
1859         int ret;
1860 
1861         ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1862         if (ret < 0) {
1863             fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1864             return ret;
1865         }
1866 
1867         if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1868             error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1869                          (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1870             return -ENOTSUP;
1871         }
1872 
1873         unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1874         if (unsupported_caps) {
1875             if (unsupported_caps & MCG_LMCE_P) {
1876                 error_report("kvm: LMCE not supported");
1877                 return -ENOTSUP;
1878             }
1879             warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1880                         unsupported_caps);
1881         }
1882 
1883         env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1884         ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1885         if (ret < 0) {
1886             fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1887             return ret;
1888         }
1889     }
1890 
1891     cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
1892 
1893     c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1894     if (c) {
1895         has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1896                                   !!(c->ecx & CPUID_EXT_SMX);
1897     }
1898 
1899     c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
1900     if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
1901         has_msr_feature_control = true;
1902     }
1903 
1904     if (env->mcg_cap & MCG_LMCE_P) {
1905         has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1906     }
1907 
1908     if (!env->user_tsc_khz) {
1909         if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1910             invtsc_mig_blocker == NULL) {
1911             error_setg(&invtsc_mig_blocker,
1912                        "State blocked by non-migratable CPU device"
1913                        " (invtsc flag)");
1914             r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1915             if (r < 0) {
1916                 error_report_err(local_err);
1917                 return r;
1918             }
1919         }
1920     }
1921 
1922     if (cpu->vmware_cpuid_freq
1923         /* Guests depend on 0x40000000 to detect this feature, so only expose
1924          * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1925         && cpu->expose_kvm
1926         && kvm_base == KVM_CPUID_SIGNATURE
1927         /* TSC clock must be stable and known for this feature. */
1928         && tsc_is_stable_and_known(env)) {
1929 
1930         c = &cpuid_data.entries[cpuid_i++];
1931         c->function = KVM_CPUID_SIGNATURE | 0x10;
1932         c->eax = env->tsc_khz;
1933         c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
1934         c->ecx = c->edx = 0;
1935 
1936         c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1937         c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1938     }
1939 
1940     cpuid_data.cpuid.nent = cpuid_i;
1941 
1942     cpuid_data.cpuid.padding = 0;
1943     r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1944     if (r) {
1945         goto fail;
1946     }
1947 
1948     if (has_xsave) {
1949         env->xsave_buf_len = sizeof(struct kvm_xsave);
1950         env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1951         memset(env->xsave_buf, 0, env->xsave_buf_len);
1952 
1953         /*
1954          * The allocated storage must be large enough for all of the
1955          * possible XSAVE state components.
1956          */
1957         assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX)
1958                <= env->xsave_buf_len);
1959     }
1960 
1961     max_nested_state_len = kvm_max_nested_state_length();
1962     if (max_nested_state_len > 0) {
1963         assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
1964 
1965         if (cpu_has_vmx(env) || cpu_has_svm(env)) {
1966             struct kvm_vmx_nested_state_hdr *vmx_hdr;
1967 
1968             env->nested_state = g_malloc0(max_nested_state_len);
1969             env->nested_state->size = max_nested_state_len;
1970 
1971             if (cpu_has_vmx(env)) {
1972                 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1973                 vmx_hdr = &env->nested_state->hdr.vmx;
1974                 vmx_hdr->vmxon_pa = -1ull;
1975                 vmx_hdr->vmcs12_pa = -1ull;
1976             } else {
1977                 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1978             }
1979         }
1980     }
1981 
1982     cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
1983 
1984     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1985         has_msr_tsc_aux = false;
1986     }
1987 
1988     kvm_init_msrs(cpu);
1989 
1990     return 0;
1991 
1992  fail:
1993     migrate_del_blocker(invtsc_mig_blocker);
1994 
1995     return r;
1996 }
1997 
1998 int kvm_arch_destroy_vcpu(CPUState *cs)
1999 {
2000     X86CPU *cpu = X86_CPU(cs);
2001     CPUX86State *env = &cpu->env;
2002 
2003     if (cpu->kvm_msr_buf) {
2004         g_free(cpu->kvm_msr_buf);
2005         cpu->kvm_msr_buf = NULL;
2006     }
2007 
2008     if (env->nested_state) {
2009         g_free(env->nested_state);
2010         env->nested_state = NULL;
2011     }
2012 
2013     qemu_del_vm_change_state_handler(cpu->vmsentry);
2014 
2015     return 0;
2016 }
2017 
2018 void kvm_arch_reset_vcpu(X86CPU *cpu)
2019 {
2020     CPUX86State *env = &cpu->env;
2021 
2022     env->xcr0 = 1;
2023     if (kvm_irqchip_in_kernel()) {
2024         env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2025                                           KVM_MP_STATE_UNINITIALIZED;
2026     } else {
2027         env->mp_state = KVM_MP_STATE_RUNNABLE;
2028     }
2029 
2030     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2031         int i;
2032         for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2033             env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2034         }
2035 
2036         hyperv_x86_synic_reset(cpu);
2037     }
2038     /* enabled by default */
2039     env->poll_control_msr = 1;
2040 
2041     sev_es_set_reset_vector(CPU(cpu));
2042 }
2043 
2044 void kvm_arch_do_init_vcpu(X86CPU *cpu)
2045 {
2046     CPUX86State *env = &cpu->env;
2047 
2048     /* APs get directly into wait-for-SIPI state.  */
2049     if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2050         env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2051     }
2052 }
2053 
2054 static int kvm_get_supported_feature_msrs(KVMState *s)
2055 {
2056     int ret = 0;
2057 
2058     if (kvm_feature_msrs != NULL) {
2059         return 0;
2060     }
2061 
2062     if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2063         return 0;
2064     }
2065 
2066     struct kvm_msr_list msr_list;
2067 
2068     msr_list.nmsrs = 0;
2069     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2070     if (ret < 0 && ret != -E2BIG) {
2071         error_report("Fetch KVM feature MSR list failed: %s",
2072             strerror(-ret));
2073         return ret;
2074     }
2075 
2076     assert(msr_list.nmsrs > 0);
2077     kvm_feature_msrs = (struct kvm_msr_list *) \
2078         g_malloc0(sizeof(msr_list) +
2079                  msr_list.nmsrs * sizeof(msr_list.indices[0]));
2080 
2081     kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2082     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2083 
2084     if (ret < 0) {
2085         error_report("Fetch KVM feature MSR list failed: %s",
2086             strerror(-ret));
2087         g_free(kvm_feature_msrs);
2088         kvm_feature_msrs = NULL;
2089         return ret;
2090     }
2091 
2092     return 0;
2093 }
2094 
2095 static int kvm_get_supported_msrs(KVMState *s)
2096 {
2097     int ret = 0;
2098     struct kvm_msr_list msr_list, *kvm_msr_list;
2099 
2100     /*
2101      *  Obtain MSR list from KVM.  These are the MSRs that we must
2102      *  save/restore.
2103      */
2104     msr_list.nmsrs = 0;
2105     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2106     if (ret < 0 && ret != -E2BIG) {
2107         return ret;
2108     }
2109     /*
2110      * Old kernel modules had a bug and could write beyond the provided
2111      * memory. Allocate at least a safe amount of 1K.
2112      */
2113     kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2114                                           msr_list.nmsrs *
2115                                           sizeof(msr_list.indices[0])));
2116 
2117     kvm_msr_list->nmsrs = msr_list.nmsrs;
2118     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2119     if (ret >= 0) {
2120         int i;
2121 
2122         for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2123             switch (kvm_msr_list->indices[i]) {
2124             case MSR_STAR:
2125                 has_msr_star = true;
2126                 break;
2127             case MSR_VM_HSAVE_PA:
2128                 has_msr_hsave_pa = true;
2129                 break;
2130             case MSR_TSC_AUX:
2131                 has_msr_tsc_aux = true;
2132                 break;
2133             case MSR_TSC_ADJUST:
2134                 has_msr_tsc_adjust = true;
2135                 break;
2136             case MSR_IA32_TSCDEADLINE:
2137                 has_msr_tsc_deadline = true;
2138                 break;
2139             case MSR_IA32_SMBASE:
2140                 has_msr_smbase = true;
2141                 break;
2142             case MSR_SMI_COUNT:
2143                 has_msr_smi_count = true;
2144                 break;
2145             case MSR_IA32_MISC_ENABLE:
2146                 has_msr_misc_enable = true;
2147                 break;
2148             case MSR_IA32_BNDCFGS:
2149                 has_msr_bndcfgs = true;
2150                 break;
2151             case MSR_IA32_XSS:
2152                 has_msr_xss = true;
2153                 break;
2154             case MSR_IA32_UMWAIT_CONTROL:
2155                 has_msr_umwait = true;
2156                 break;
2157             case HV_X64_MSR_CRASH_CTL:
2158                 has_msr_hv_crash = true;
2159                 break;
2160             case HV_X64_MSR_RESET:
2161                 has_msr_hv_reset = true;
2162                 break;
2163             case HV_X64_MSR_VP_INDEX:
2164                 has_msr_hv_vpindex = true;
2165                 break;
2166             case HV_X64_MSR_VP_RUNTIME:
2167                 has_msr_hv_runtime = true;
2168                 break;
2169             case HV_X64_MSR_SCONTROL:
2170                 has_msr_hv_synic = true;
2171                 break;
2172             case HV_X64_MSR_STIMER0_CONFIG:
2173                 has_msr_hv_stimer = true;
2174                 break;
2175             case HV_X64_MSR_TSC_FREQUENCY:
2176                 has_msr_hv_frequencies = true;
2177                 break;
2178             case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2179                 has_msr_hv_reenlightenment = true;
2180                 break;
2181             case MSR_IA32_SPEC_CTRL:
2182                 has_msr_spec_ctrl = true;
2183                 break;
2184             case MSR_IA32_TSX_CTRL:
2185                 has_msr_tsx_ctrl = true;
2186                 break;
2187             case MSR_VIRT_SSBD:
2188                 has_msr_virt_ssbd = true;
2189                 break;
2190             case MSR_IA32_ARCH_CAPABILITIES:
2191                 has_msr_arch_capabs = true;
2192                 break;
2193             case MSR_IA32_CORE_CAPABILITY:
2194                 has_msr_core_capabs = true;
2195                 break;
2196             case MSR_IA32_PERF_CAPABILITIES:
2197                 has_msr_perf_capabs = true;
2198                 break;
2199             case MSR_IA32_VMX_VMFUNC:
2200                 has_msr_vmx_vmfunc = true;
2201                 break;
2202             case MSR_IA32_UCODE_REV:
2203                 has_msr_ucode_rev = true;
2204                 break;
2205             case MSR_IA32_VMX_PROCBASED_CTLS2:
2206                 has_msr_vmx_procbased_ctls2 = true;
2207                 break;
2208             case MSR_IA32_PKRS:
2209                 has_msr_pkrs = true;
2210                 break;
2211             }
2212         }
2213     }
2214 
2215     g_free(kvm_msr_list);
2216 
2217     return ret;
2218 }
2219 
2220 static Notifier smram_machine_done;
2221 static KVMMemoryListener smram_listener;
2222 static AddressSpace smram_address_space;
2223 static MemoryRegion smram_as_root;
2224 static MemoryRegion smram_as_mem;
2225 
2226 static void register_smram_listener(Notifier *n, void *unused)
2227 {
2228     MemoryRegion *smram =
2229         (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2230 
2231     /* Outer container... */
2232     memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2233     memory_region_set_enabled(&smram_as_root, true);
2234 
2235     /* ... with two regions inside: normal system memory with low
2236      * priority, and...
2237      */
2238     memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2239                              get_system_memory(), 0, ~0ull);
2240     memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2241     memory_region_set_enabled(&smram_as_mem, true);
2242 
2243     if (smram) {
2244         /* ... SMRAM with higher priority */
2245         memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2246         memory_region_set_enabled(smram, true);
2247     }
2248 
2249     address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2250     kvm_memory_listener_register(kvm_state, &smram_listener,
2251                                  &smram_address_space, 1, "kvm-smram");
2252 }
2253 
2254 int kvm_arch_init(MachineState *ms, KVMState *s)
2255 {
2256     uint64_t identity_base = 0xfffbc000;
2257     uint64_t shadow_mem;
2258     int ret;
2259     struct utsname utsname;
2260     Error *local_err = NULL;
2261 
2262     /*
2263      * Initialize SEV context, if required
2264      *
2265      * If no memory encryption is requested (ms->cgs == NULL) this is
2266      * a no-op.
2267      *
2268      * It's also a no-op if a non-SEV confidential guest support
2269      * mechanism is selected.  SEV is the only mechanism available to
2270      * select on x86 at present, so this doesn't arise, but if new
2271      * mechanisms are supported in future (e.g. TDX), they'll need
2272      * their own initialization either here or elsewhere.
2273      */
2274     ret = sev_kvm_init(ms->cgs, &local_err);
2275     if (ret < 0) {
2276         error_report_err(local_err);
2277         return ret;
2278     }
2279 
2280     if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2281         error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2282         return -ENOTSUP;
2283     }
2284 
2285     has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2286     has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2287     has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2288 
2289     hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2290 
2291     has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2292     if (has_exception_payload) {
2293         ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2294         if (ret < 0) {
2295             error_report("kvm: Failed to enable exception payload cap: %s",
2296                          strerror(-ret));
2297             return ret;
2298         }
2299     }
2300 
2301     ret = kvm_get_supported_msrs(s);
2302     if (ret < 0) {
2303         return ret;
2304     }
2305 
2306     kvm_get_supported_feature_msrs(s);
2307 
2308     uname(&utsname);
2309     lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2310 
2311     /*
2312      * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2313      * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
2314      * Since these must be part of guest physical memory, we need to allocate
2315      * them, both by setting their start addresses in the kernel and by
2316      * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2317      *
2318      * Older KVM versions may not support setting the identity map base. In
2319      * that case we need to stick with the default, i.e. a 256K maximum BIOS
2320      * size.
2321      */
2322     if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2323         /* Allows up to 16M BIOSes. */
2324         identity_base = 0xfeffc000;
2325 
2326         ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2327         if (ret < 0) {
2328             return ret;
2329         }
2330     }
2331 
2332     /* Set TSS base one page after EPT identity map. */
2333     ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2334     if (ret < 0) {
2335         return ret;
2336     }
2337 
2338     /* Tell fw_cfg to notify the BIOS to reserve the range. */
2339     ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2340     if (ret < 0) {
2341         fprintf(stderr, "e820_add_entry() table is full\n");
2342         return ret;
2343     }
2344 
2345     shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2346     if (shadow_mem != -1) {
2347         shadow_mem /= 4096;
2348         ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2349         if (ret < 0) {
2350             return ret;
2351         }
2352     }
2353 
2354     if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2355         object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2356         x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2357         smram_machine_done.notify = register_smram_listener;
2358         qemu_add_machine_init_done_notifier(&smram_machine_done);
2359     }
2360 
2361     if (enable_cpu_pm) {
2362         int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2363         int ret;
2364 
2365 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2366 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2367 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2368 #endif
2369         if (disable_exits) {
2370             disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2371                               KVM_X86_DISABLE_EXITS_HLT |
2372                               KVM_X86_DISABLE_EXITS_PAUSE |
2373                               KVM_X86_DISABLE_EXITS_CSTATE);
2374         }
2375 
2376         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2377                                 disable_exits);
2378         if (ret < 0) {
2379             error_report("kvm: guest stopping CPU not supported: %s",
2380                          strerror(-ret));
2381         }
2382     }
2383 
2384     if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
2385         X86MachineState *x86ms = X86_MACHINE(ms);
2386 
2387         if (x86ms->bus_lock_ratelimit > 0) {
2388             ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
2389             if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
2390                 error_report("kvm: bus lock detection unsupported");
2391                 return -ENOTSUP;
2392             }
2393             ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
2394                                     KVM_BUS_LOCK_DETECTION_EXIT);
2395             if (ret < 0) {
2396                 error_report("kvm: Failed to enable bus lock detection cap: %s",
2397                              strerror(-ret));
2398                 return ret;
2399             }
2400             ratelimit_init(&bus_lock_ratelimit_ctrl);
2401             ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
2402                                 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
2403         }
2404     }
2405 
2406     return 0;
2407 }
2408 
2409 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2410 {
2411     lhs->selector = rhs->selector;
2412     lhs->base = rhs->base;
2413     lhs->limit = rhs->limit;
2414     lhs->type = 3;
2415     lhs->present = 1;
2416     lhs->dpl = 3;
2417     lhs->db = 0;
2418     lhs->s = 1;
2419     lhs->l = 0;
2420     lhs->g = 0;
2421     lhs->avl = 0;
2422     lhs->unusable = 0;
2423 }
2424 
2425 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2426 {
2427     unsigned flags = rhs->flags;
2428     lhs->selector = rhs->selector;
2429     lhs->base = rhs->base;
2430     lhs->limit = rhs->limit;
2431     lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2432     lhs->present = (flags & DESC_P_MASK) != 0;
2433     lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2434     lhs->db = (flags >> DESC_B_SHIFT) & 1;
2435     lhs->s = (flags & DESC_S_MASK) != 0;
2436     lhs->l = (flags >> DESC_L_SHIFT) & 1;
2437     lhs->g = (flags & DESC_G_MASK) != 0;
2438     lhs->avl = (flags & DESC_AVL_MASK) != 0;
2439     lhs->unusable = !lhs->present;
2440     lhs->padding = 0;
2441 }
2442 
2443 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2444 {
2445     lhs->selector = rhs->selector;
2446     lhs->base = rhs->base;
2447     lhs->limit = rhs->limit;
2448     lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2449                  ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2450                  (rhs->dpl << DESC_DPL_SHIFT) |
2451                  (rhs->db << DESC_B_SHIFT) |
2452                  (rhs->s * DESC_S_MASK) |
2453                  (rhs->l << DESC_L_SHIFT) |
2454                  (rhs->g * DESC_G_MASK) |
2455                  (rhs->avl * DESC_AVL_MASK);
2456 }
2457 
2458 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2459 {
2460     if (set) {
2461         *kvm_reg = *qemu_reg;
2462     } else {
2463         *qemu_reg = *kvm_reg;
2464     }
2465 }
2466 
2467 static int kvm_getput_regs(X86CPU *cpu, int set)
2468 {
2469     CPUX86State *env = &cpu->env;
2470     struct kvm_regs regs;
2471     int ret = 0;
2472 
2473     if (!set) {
2474         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2475         if (ret < 0) {
2476             return ret;
2477         }
2478     }
2479 
2480     kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2481     kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2482     kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2483     kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2484     kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2485     kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2486     kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2487     kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2488 #ifdef TARGET_X86_64
2489     kvm_getput_reg(&regs.r8, &env->regs[8], set);
2490     kvm_getput_reg(&regs.r9, &env->regs[9], set);
2491     kvm_getput_reg(&regs.r10, &env->regs[10], set);
2492     kvm_getput_reg(&regs.r11, &env->regs[11], set);
2493     kvm_getput_reg(&regs.r12, &env->regs[12], set);
2494     kvm_getput_reg(&regs.r13, &env->regs[13], set);
2495     kvm_getput_reg(&regs.r14, &env->regs[14], set);
2496     kvm_getput_reg(&regs.r15, &env->regs[15], set);
2497 #endif
2498 
2499     kvm_getput_reg(&regs.rflags, &env->eflags, set);
2500     kvm_getput_reg(&regs.rip, &env->eip, set);
2501 
2502     if (set) {
2503         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2504     }
2505 
2506     return ret;
2507 }
2508 
2509 static int kvm_put_fpu(X86CPU *cpu)
2510 {
2511     CPUX86State *env = &cpu->env;
2512     struct kvm_fpu fpu;
2513     int i;
2514 
2515     memset(&fpu, 0, sizeof fpu);
2516     fpu.fsw = env->fpus & ~(7 << 11);
2517     fpu.fsw |= (env->fpstt & 7) << 11;
2518     fpu.fcw = env->fpuc;
2519     fpu.last_opcode = env->fpop;
2520     fpu.last_ip = env->fpip;
2521     fpu.last_dp = env->fpdp;
2522     for (i = 0; i < 8; ++i) {
2523         fpu.ftwx |= (!env->fptags[i]) << i;
2524     }
2525     memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2526     for (i = 0; i < CPU_NB_REGS; i++) {
2527         stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2528         stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2529     }
2530     fpu.mxcsr = env->mxcsr;
2531 
2532     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2533 }
2534 
2535 static int kvm_put_xsave(X86CPU *cpu)
2536 {
2537     CPUX86State *env = &cpu->env;
2538     void *xsave = env->xsave_buf;
2539 
2540     if (!has_xsave) {
2541         return kvm_put_fpu(cpu);
2542     }
2543     x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
2544 
2545     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2546 }
2547 
2548 static int kvm_put_xcrs(X86CPU *cpu)
2549 {
2550     CPUX86State *env = &cpu->env;
2551     struct kvm_xcrs xcrs = {};
2552 
2553     if (!has_xcrs) {
2554         return 0;
2555     }
2556 
2557     xcrs.nr_xcrs = 1;
2558     xcrs.flags = 0;
2559     xcrs.xcrs[0].xcr = 0;
2560     xcrs.xcrs[0].value = env->xcr0;
2561     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2562 }
2563 
2564 static int kvm_put_sregs(X86CPU *cpu)
2565 {
2566     CPUX86State *env = &cpu->env;
2567     struct kvm_sregs sregs;
2568 
2569     memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2570     if (env->interrupt_injected >= 0) {
2571         sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
2572                 (uint64_t)1 << (env->interrupt_injected % 64);
2573     }
2574 
2575     if ((env->eflags & VM_MASK)) {
2576         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2577         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2578         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2579         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2580         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2581         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2582     } else {
2583         set_seg(&sregs.cs, &env->segs[R_CS]);
2584         set_seg(&sregs.ds, &env->segs[R_DS]);
2585         set_seg(&sregs.es, &env->segs[R_ES]);
2586         set_seg(&sregs.fs, &env->segs[R_FS]);
2587         set_seg(&sregs.gs, &env->segs[R_GS]);
2588         set_seg(&sregs.ss, &env->segs[R_SS]);
2589     }
2590 
2591     set_seg(&sregs.tr, &env->tr);
2592     set_seg(&sregs.ldt, &env->ldt);
2593 
2594     sregs.idt.limit = env->idt.limit;
2595     sregs.idt.base = env->idt.base;
2596     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2597     sregs.gdt.limit = env->gdt.limit;
2598     sregs.gdt.base = env->gdt.base;
2599     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2600 
2601     sregs.cr0 = env->cr[0];
2602     sregs.cr2 = env->cr[2];
2603     sregs.cr3 = env->cr[3];
2604     sregs.cr4 = env->cr[4];
2605 
2606     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2607     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2608 
2609     sregs.efer = env->efer;
2610 
2611     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2612 }
2613 
2614 static void kvm_msr_buf_reset(X86CPU *cpu)
2615 {
2616     memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2617 }
2618 
2619 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2620 {
2621     struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2622     void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2623     struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2624 
2625     assert((void *)(entry + 1) <= limit);
2626 
2627     entry->index = index;
2628     entry->reserved = 0;
2629     entry->data = value;
2630     msrs->nmsrs++;
2631 }
2632 
2633 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2634 {
2635     kvm_msr_buf_reset(cpu);
2636     kvm_msr_entry_add(cpu, index, value);
2637 
2638     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2639 }
2640 
2641 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2642 {
2643     int ret;
2644 
2645     ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2646     assert(ret == 1);
2647 }
2648 
2649 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2650 {
2651     CPUX86State *env = &cpu->env;
2652     int ret;
2653 
2654     if (!has_msr_tsc_deadline) {
2655         return 0;
2656     }
2657 
2658     ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
2659     if (ret < 0) {
2660         return ret;
2661     }
2662 
2663     assert(ret == 1);
2664     return 0;
2665 }
2666 
2667 /*
2668  * Provide a separate write service for the feature control MSR in order to
2669  * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2670  * before writing any other state because forcibly leaving nested mode
2671  * invalidates the VCPU state.
2672  */
2673 static int kvm_put_msr_feature_control(X86CPU *cpu)
2674 {
2675     int ret;
2676 
2677     if (!has_msr_feature_control) {
2678         return 0;
2679     }
2680 
2681     ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2682                           cpu->env.msr_ia32_feature_control);
2683     if (ret < 0) {
2684         return ret;
2685     }
2686 
2687     assert(ret == 1);
2688     return 0;
2689 }
2690 
2691 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2692 {
2693     uint32_t default1, can_be_one, can_be_zero;
2694     uint32_t must_be_one;
2695 
2696     switch (index) {
2697     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2698         default1 = 0x00000016;
2699         break;
2700     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2701         default1 = 0x0401e172;
2702         break;
2703     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2704         default1 = 0x000011ff;
2705         break;
2706     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2707         default1 = 0x00036dff;
2708         break;
2709     case MSR_IA32_VMX_PROCBASED_CTLS2:
2710         default1 = 0;
2711         break;
2712     default:
2713         abort();
2714     }
2715 
2716     /* If a feature bit is set, the control can be either set or clear.
2717      * Otherwise the value is limited to either 0 or 1 by default1.
2718      */
2719     can_be_one = features | default1;
2720     can_be_zero = features | ~default1;
2721     must_be_one = ~can_be_zero;
2722 
2723     /*
2724      * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2725      * Bit 32:63 -> 1 if the control bit can be one.
2726      */
2727     return must_be_one | (((uint64_t)can_be_one) << 32);
2728 }
2729 
2730 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2731 {
2732     uint64_t kvm_vmx_basic =
2733         kvm_arch_get_supported_msr_feature(kvm_state,
2734                                            MSR_IA32_VMX_BASIC);
2735 
2736     if (!kvm_vmx_basic) {
2737         /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
2738          * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
2739          */
2740         return;
2741     }
2742 
2743     uint64_t kvm_vmx_misc =
2744         kvm_arch_get_supported_msr_feature(kvm_state,
2745                                            MSR_IA32_VMX_MISC);
2746     uint64_t kvm_vmx_ept_vpid =
2747         kvm_arch_get_supported_msr_feature(kvm_state,
2748                                            MSR_IA32_VMX_EPT_VPID_CAP);
2749 
2750     /*
2751      * If the guest is 64-bit, a value of 1 is allowed for the host address
2752      * space size vmexit control.
2753      */
2754     uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2755         ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2756 
2757     /*
2758      * Bits 0-30, 32-44 and 50-53 come from the host.  KVM should
2759      * not change them for backwards compatibility.
2760      */
2761     uint64_t fixed_vmx_basic = kvm_vmx_basic &
2762         (MSR_VMX_BASIC_VMCS_REVISION_MASK |
2763          MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
2764          MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
2765 
2766     /*
2767      * Same for bits 0-4 and 25-27.  Bits 16-24 (CR3 target count) can
2768      * change in the future but are always zero for now, clear them to be
2769      * future proof.  Bits 32-63 in theory could change, though KVM does
2770      * not support dual-monitor treatment and probably never will; mask
2771      * them out as well.
2772      */
2773     uint64_t fixed_vmx_misc = kvm_vmx_misc &
2774         (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
2775          MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
2776 
2777     /*
2778      * EPT memory types should not change either, so we do not bother
2779      * adding features for them.
2780      */
2781     uint64_t fixed_vmx_ept_mask =
2782             (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
2783              MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
2784     uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
2785 
2786     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2787                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2788                                          f[FEAT_VMX_PROCBASED_CTLS]));
2789     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2790                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2791                                          f[FEAT_VMX_PINBASED_CTLS]));
2792     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2793                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
2794                                          f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
2795     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2796                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2797                                          f[FEAT_VMX_ENTRY_CTLS]));
2798     kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
2799                       make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
2800                                          f[FEAT_VMX_SECONDARY_CTLS]));
2801     kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
2802                       f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
2803     kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
2804                       f[FEAT_VMX_BASIC] | fixed_vmx_basic);
2805     kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
2806                       f[FEAT_VMX_MISC] | fixed_vmx_misc);
2807     if (has_msr_vmx_vmfunc) {
2808         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
2809     }
2810 
2811     /*
2812      * Just to be safe, write these with constant values.  The CRn_FIXED1
2813      * MSRs are generated by KVM based on the vCPU's CPUID.
2814      */
2815     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
2816                       CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
2817     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
2818                       CR4_VMXE_MASK);
2819 
2820     if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
2821         /* TSC multiplier (0x2032).  */
2822         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
2823     } else {
2824         /* Preemption timer (0x482E).  */
2825         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
2826     }
2827 }
2828 
2829 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
2830 {
2831     uint64_t kvm_perf_cap =
2832         kvm_arch_get_supported_msr_feature(kvm_state,
2833                                            MSR_IA32_PERF_CAPABILITIES);
2834 
2835     if (kvm_perf_cap) {
2836         kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
2837                         kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
2838     }
2839 }
2840 
2841 static int kvm_buf_set_msrs(X86CPU *cpu)
2842 {
2843     int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2844     if (ret < 0) {
2845         return ret;
2846     }
2847 
2848     if (ret < cpu->kvm_msr_buf->nmsrs) {
2849         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2850         error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2851                      (uint32_t)e->index, (uint64_t)e->data);
2852     }
2853 
2854     assert(ret == cpu->kvm_msr_buf->nmsrs);
2855     return 0;
2856 }
2857 
2858 static void kvm_init_msrs(X86CPU *cpu)
2859 {
2860     CPUX86State *env = &cpu->env;
2861 
2862     kvm_msr_buf_reset(cpu);
2863     if (has_msr_arch_capabs) {
2864         kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2865                           env->features[FEAT_ARCH_CAPABILITIES]);
2866     }
2867 
2868     if (has_msr_core_capabs) {
2869         kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
2870                           env->features[FEAT_CORE_CAPABILITY]);
2871     }
2872 
2873     if (has_msr_perf_capabs && cpu->enable_pmu) {
2874         kvm_msr_entry_add_perf(cpu, env->features);
2875     }
2876 
2877     if (has_msr_ucode_rev) {
2878         kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
2879     }
2880 
2881     /*
2882      * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
2883      * all kernels with MSR features should have them.
2884      */
2885     if (kvm_feature_msrs && cpu_has_vmx(env)) {
2886         kvm_msr_entry_add_vmx(cpu, env->features);
2887     }
2888 
2889     assert(kvm_buf_set_msrs(cpu) == 0);
2890 }
2891 
2892 static int kvm_put_msrs(X86CPU *cpu, int level)
2893 {
2894     CPUX86State *env = &cpu->env;
2895     int i;
2896 
2897     kvm_msr_buf_reset(cpu);
2898 
2899     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
2900     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
2901     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
2902     kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
2903     if (has_msr_star) {
2904         kvm_msr_entry_add(cpu, MSR_STAR, env->star);
2905     }
2906     if (has_msr_hsave_pa) {
2907         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
2908     }
2909     if (has_msr_tsc_aux) {
2910         kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
2911     }
2912     if (has_msr_tsc_adjust) {
2913         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
2914     }
2915     if (has_msr_misc_enable) {
2916         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
2917                           env->msr_ia32_misc_enable);
2918     }
2919     if (has_msr_smbase) {
2920         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
2921     }
2922     if (has_msr_smi_count) {
2923         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2924     }
2925     if (has_msr_pkrs) {
2926         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
2927     }
2928     if (has_msr_bndcfgs) {
2929         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
2930     }
2931     if (has_msr_xss) {
2932         kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
2933     }
2934     if (has_msr_umwait) {
2935         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
2936     }
2937     if (has_msr_spec_ctrl) {
2938         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2939     }
2940     if (has_msr_tsx_ctrl) {
2941         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
2942     }
2943     if (has_msr_virt_ssbd) {
2944         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2945     }
2946 
2947 #ifdef TARGET_X86_64
2948     if (lm_capable_kernel) {
2949         kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2950         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2951         kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2952         kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
2953     }
2954 #endif
2955 
2956     /*
2957      * The following MSRs have side effects on the guest or are too heavy
2958      * for normal writeback. Limit them to reset or full state updates.
2959      */
2960     if (level >= KVM_PUT_RESET_STATE) {
2961         kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2962         kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2963         kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
2964         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
2965             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
2966         }
2967         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2968             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
2969         }
2970         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2971             kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
2972         }
2973         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2974             kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
2975         }
2976 
2977         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
2978             kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
2979         }
2980 
2981         if (has_architectural_pmu_version > 0) {
2982             if (has_architectural_pmu_version > 1) {
2983                 /* Stop the counter.  */
2984                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2985                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2986             }
2987 
2988             /* Set the counter values.  */
2989             for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2990                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
2991                                   env->msr_fixed_counters[i]);
2992             }
2993             for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2994                 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
2995                                   env->msr_gp_counters[i]);
2996                 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
2997                                   env->msr_gp_evtsel[i]);
2998             }
2999             if (has_architectural_pmu_version > 1) {
3000                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3001                                   env->msr_global_status);
3002                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3003                                   env->msr_global_ovf_ctrl);
3004 
3005                 /* Now start the PMU.  */
3006                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3007                                   env->msr_fixed_ctr_ctrl);
3008                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3009                                   env->msr_global_ctrl);
3010             }
3011         }
3012         /*
3013          * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3014          * only sync them to KVM on the first cpu
3015          */
3016         if (current_cpu == first_cpu) {
3017             if (has_msr_hv_hypercall) {
3018                 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
3019                                   env->msr_hv_guest_os_id);
3020                 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
3021                                   env->msr_hv_hypercall);
3022             }
3023             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3024                 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
3025                                   env->msr_hv_tsc);
3026             }
3027             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3028                 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
3029                                   env->msr_hv_reenlightenment_control);
3030                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
3031                                   env->msr_hv_tsc_emulation_control);
3032                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
3033                                   env->msr_hv_tsc_emulation_status);
3034             }
3035         }
3036         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3037             kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
3038                               env->msr_hv_vapic);
3039         }
3040         if (has_msr_hv_crash) {
3041             int j;
3042 
3043             for (j = 0; j < HV_CRASH_PARAMS; j++)
3044                 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
3045                                   env->msr_hv_crash_params[j]);
3046 
3047             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
3048         }
3049         if (has_msr_hv_runtime) {
3050             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
3051         }
3052         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
3053             && hv_vpindex_settable) {
3054             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
3055                               hyperv_vp_index(CPU(cpu)));
3056         }
3057         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3058             int j;
3059 
3060             kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
3061 
3062             kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
3063                               env->msr_hv_synic_control);
3064             kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
3065                               env->msr_hv_synic_evt_page);
3066             kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
3067                               env->msr_hv_synic_msg_page);
3068 
3069             for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
3070                 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
3071                                   env->msr_hv_synic_sint[j]);
3072             }
3073         }
3074         if (has_msr_hv_stimer) {
3075             int j;
3076 
3077             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
3078                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
3079                                 env->msr_hv_stimer_config[j]);
3080             }
3081 
3082             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
3083                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
3084                                 env->msr_hv_stimer_count[j]);
3085             }
3086         }
3087         if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3088             uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
3089 
3090             kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
3091             kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
3092             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
3093             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
3094             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
3095             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
3096             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
3097             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
3098             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
3099             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
3100             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3101             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
3102             for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3103                 /* The CPU GPs if we write to a bit above the physical limit of
3104                  * the host CPU (and KVM emulates that)
3105                  */
3106                 uint64_t mask = env->mtrr_var[i].mask;
3107                 mask &= phys_mask;
3108 
3109                 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3110                                   env->mtrr_var[i].base);
3111                 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
3112             }
3113         }
3114         if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3115             int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3116                                                     0x14, 1, R_EAX) & 0x7;
3117 
3118             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3119                             env->msr_rtit_ctrl);
3120             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3121                             env->msr_rtit_status);
3122             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3123                             env->msr_rtit_output_base);
3124             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3125                             env->msr_rtit_output_mask);
3126             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3127                             env->msr_rtit_cr3_match);
3128             for (i = 0; i < addr_num; i++) {
3129                 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3130                             env->msr_rtit_addrs[i]);
3131             }
3132         }
3133 
3134         if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3135             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
3136                               env->msr_ia32_sgxlepubkeyhash[0]);
3137             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
3138                               env->msr_ia32_sgxlepubkeyhash[1]);
3139             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
3140                               env->msr_ia32_sgxlepubkeyhash[2]);
3141             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
3142                               env->msr_ia32_sgxlepubkeyhash[3]);
3143         }
3144 
3145         /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3146          *       kvm_put_msr_feature_control. */
3147     }
3148 
3149     if (env->mcg_cap) {
3150         int i;
3151 
3152         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3153         kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
3154         if (has_msr_mcg_ext_ctl) {
3155             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3156         }
3157         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3158             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
3159         }
3160     }
3161 
3162     return kvm_buf_set_msrs(cpu);
3163 }
3164 
3165 
3166 static int kvm_get_fpu(X86CPU *cpu)
3167 {
3168     CPUX86State *env = &cpu->env;
3169     struct kvm_fpu fpu;
3170     int i, ret;
3171 
3172     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
3173     if (ret < 0) {
3174         return ret;
3175     }
3176 
3177     env->fpstt = (fpu.fsw >> 11) & 7;
3178     env->fpus = fpu.fsw;
3179     env->fpuc = fpu.fcw;
3180     env->fpop = fpu.last_opcode;
3181     env->fpip = fpu.last_ip;
3182     env->fpdp = fpu.last_dp;
3183     for (i = 0; i < 8; ++i) {
3184         env->fptags[i] = !((fpu.ftwx >> i) & 1);
3185     }
3186     memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
3187     for (i = 0; i < CPU_NB_REGS; i++) {
3188         env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3189         env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
3190     }
3191     env->mxcsr = fpu.mxcsr;
3192 
3193     return 0;
3194 }
3195 
3196 static int kvm_get_xsave(X86CPU *cpu)
3197 {
3198     CPUX86State *env = &cpu->env;
3199     void *xsave = env->xsave_buf;
3200     int ret;
3201 
3202     if (!has_xsave) {
3203         return kvm_get_fpu(cpu);
3204     }
3205 
3206     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
3207     if (ret < 0) {
3208         return ret;
3209     }
3210     x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
3211 
3212     return 0;
3213 }
3214 
3215 static int kvm_get_xcrs(X86CPU *cpu)
3216 {
3217     CPUX86State *env = &cpu->env;
3218     int i, ret;
3219     struct kvm_xcrs xcrs;
3220 
3221     if (!has_xcrs) {
3222         return 0;
3223     }
3224 
3225     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3226     if (ret < 0) {
3227         return ret;
3228     }
3229 
3230     for (i = 0; i < xcrs.nr_xcrs; i++) {
3231         /* Only support xcr0 now */
3232         if (xcrs.xcrs[i].xcr == 0) {
3233             env->xcr0 = xcrs.xcrs[i].value;
3234             break;
3235         }
3236     }
3237     return 0;
3238 }
3239 
3240 static int kvm_get_sregs(X86CPU *cpu)
3241 {
3242     CPUX86State *env = &cpu->env;
3243     struct kvm_sregs sregs;
3244     int bit, i, ret;
3245 
3246     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3247     if (ret < 0) {
3248         return ret;
3249     }
3250 
3251     /* There can only be one pending IRQ set in the bitmap at a time, so try
3252        to find it and save its number instead (-1 for none). */
3253     env->interrupt_injected = -1;
3254     for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
3255         if (sregs.interrupt_bitmap[i]) {
3256             bit = ctz64(sregs.interrupt_bitmap[i]);
3257             env->interrupt_injected = i * 64 + bit;
3258             break;
3259         }
3260     }
3261 
3262     get_seg(&env->segs[R_CS], &sregs.cs);
3263     get_seg(&env->segs[R_DS], &sregs.ds);
3264     get_seg(&env->segs[R_ES], &sregs.es);
3265     get_seg(&env->segs[R_FS], &sregs.fs);
3266     get_seg(&env->segs[R_GS], &sregs.gs);
3267     get_seg(&env->segs[R_SS], &sregs.ss);
3268 
3269     get_seg(&env->tr, &sregs.tr);
3270     get_seg(&env->ldt, &sregs.ldt);
3271 
3272     env->idt.limit = sregs.idt.limit;
3273     env->idt.base = sregs.idt.base;
3274     env->gdt.limit = sregs.gdt.limit;
3275     env->gdt.base = sregs.gdt.base;
3276 
3277     env->cr[0] = sregs.cr0;
3278     env->cr[2] = sregs.cr2;
3279     env->cr[3] = sregs.cr3;
3280     env->cr[4] = sregs.cr4;
3281 
3282     env->efer = sregs.efer;
3283 
3284     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3285     x86_update_hflags(env);
3286 
3287     return 0;
3288 }
3289 
3290 static int kvm_get_msrs(X86CPU *cpu)
3291 {
3292     CPUX86State *env = &cpu->env;
3293     struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3294     int ret, i;
3295     uint64_t mtrr_top_bits;
3296 
3297     kvm_msr_buf_reset(cpu);
3298 
3299     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3300     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3301     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3302     kvm_msr_entry_add(cpu, MSR_PAT, 0);
3303     if (has_msr_star) {
3304         kvm_msr_entry_add(cpu, MSR_STAR, 0);
3305     }
3306     if (has_msr_hsave_pa) {
3307         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3308     }
3309     if (has_msr_tsc_aux) {
3310         kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3311     }
3312     if (has_msr_tsc_adjust) {
3313         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3314     }
3315     if (has_msr_tsc_deadline) {
3316         kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3317     }
3318     if (has_msr_misc_enable) {
3319         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3320     }
3321     if (has_msr_smbase) {
3322         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3323     }
3324     if (has_msr_smi_count) {
3325         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3326     }
3327     if (has_msr_feature_control) {
3328         kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3329     }
3330     if (has_msr_pkrs) {
3331         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3332     }
3333     if (has_msr_bndcfgs) {
3334         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3335     }
3336     if (has_msr_xss) {
3337         kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3338     }
3339     if (has_msr_umwait) {
3340         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3341     }
3342     if (has_msr_spec_ctrl) {
3343         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3344     }
3345     if (has_msr_tsx_ctrl) {
3346         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3347     }
3348     if (has_msr_virt_ssbd) {
3349         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3350     }
3351     if (!env->tsc_valid) {
3352         kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3353         env->tsc_valid = !runstate_is_running();
3354     }
3355 
3356 #ifdef TARGET_X86_64
3357     if (lm_capable_kernel) {
3358         kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3359         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3360         kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3361         kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3362     }
3363 #endif
3364     kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3365     kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3366     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3367         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3368     }
3369     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3370         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3371     }
3372     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3373         kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3374     }
3375     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3376         kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3377     }
3378     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3379         kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3380     }
3381     if (has_architectural_pmu_version > 0) {
3382         if (has_architectural_pmu_version > 1) {
3383             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3384             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3385             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3386             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3387         }
3388         for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3389             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3390         }
3391         for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3392             kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3393             kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3394         }
3395     }
3396 
3397     if (env->mcg_cap) {
3398         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3399         kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3400         if (has_msr_mcg_ext_ctl) {
3401             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3402         }
3403         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3404             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3405         }
3406     }
3407 
3408     if (has_msr_hv_hypercall) {
3409         kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3410         kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3411     }
3412     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3413         kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3414     }
3415     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3416         kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3417     }
3418     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3419         kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3420         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3421         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3422     }
3423     if (has_msr_hv_crash) {
3424         int j;
3425 
3426         for (j = 0; j < HV_CRASH_PARAMS; j++) {
3427             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3428         }
3429     }
3430     if (has_msr_hv_runtime) {
3431         kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3432     }
3433     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3434         uint32_t msr;
3435 
3436         kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3437         kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3438         kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3439         for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3440             kvm_msr_entry_add(cpu, msr, 0);
3441         }
3442     }
3443     if (has_msr_hv_stimer) {
3444         uint32_t msr;
3445 
3446         for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3447              msr++) {
3448             kvm_msr_entry_add(cpu, msr, 0);
3449         }
3450     }
3451     if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3452         kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3453         kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3454         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3455         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3456         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3457         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3458         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3459         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3460         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3461         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3462         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3463         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
3464         for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3465             kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3466             kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
3467         }
3468     }
3469 
3470     if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3471         int addr_num =
3472             kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3473 
3474         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3475         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3476         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3477         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3478         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3479         for (i = 0; i < addr_num; i++) {
3480             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3481         }
3482     }
3483 
3484     if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3485         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
3486         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
3487         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
3488         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
3489     }
3490 
3491     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
3492     if (ret < 0) {
3493         return ret;
3494     }
3495 
3496     if (ret < cpu->kvm_msr_buf->nmsrs) {
3497         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3498         error_report("error: failed to get MSR 0x%" PRIx32,
3499                      (uint32_t)e->index);
3500     }
3501 
3502     assert(ret == cpu->kvm_msr_buf->nmsrs);
3503     /*
3504      * MTRR masks: Each mask consists of 5 parts
3505      * a  10..0: must be zero
3506      * b  11   : valid bit
3507      * c n-1.12: actual mask bits
3508      * d  51..n: reserved must be zero
3509      * e  63.52: reserved must be zero
3510      *
3511      * 'n' is the number of physical bits supported by the CPU and is
3512      * apparently always <= 52.   We know our 'n' but don't know what
3513      * the destinations 'n' is; it might be smaller, in which case
3514      * it masks (c) on loading. It might be larger, in which case
3515      * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3516      * we're migrating to.
3517      */
3518 
3519     if (cpu->fill_mtrr_mask) {
3520         QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3521         assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3522         mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3523     } else {
3524         mtrr_top_bits = 0;
3525     }
3526 
3527     for (i = 0; i < ret; i++) {
3528         uint32_t index = msrs[i].index;
3529         switch (index) {
3530         case MSR_IA32_SYSENTER_CS:
3531             env->sysenter_cs = msrs[i].data;
3532             break;
3533         case MSR_IA32_SYSENTER_ESP:
3534             env->sysenter_esp = msrs[i].data;
3535             break;
3536         case MSR_IA32_SYSENTER_EIP:
3537             env->sysenter_eip = msrs[i].data;
3538             break;
3539         case MSR_PAT:
3540             env->pat = msrs[i].data;
3541             break;
3542         case MSR_STAR:
3543             env->star = msrs[i].data;
3544             break;
3545 #ifdef TARGET_X86_64
3546         case MSR_CSTAR:
3547             env->cstar = msrs[i].data;
3548             break;
3549         case MSR_KERNELGSBASE:
3550             env->kernelgsbase = msrs[i].data;
3551             break;
3552         case MSR_FMASK:
3553             env->fmask = msrs[i].data;
3554             break;
3555         case MSR_LSTAR:
3556             env->lstar = msrs[i].data;
3557             break;
3558 #endif
3559         case MSR_IA32_TSC:
3560             env->tsc = msrs[i].data;
3561             break;
3562         case MSR_TSC_AUX:
3563             env->tsc_aux = msrs[i].data;
3564             break;
3565         case MSR_TSC_ADJUST:
3566             env->tsc_adjust = msrs[i].data;
3567             break;
3568         case MSR_IA32_TSCDEADLINE:
3569             env->tsc_deadline = msrs[i].data;
3570             break;
3571         case MSR_VM_HSAVE_PA:
3572             env->vm_hsave = msrs[i].data;
3573             break;
3574         case MSR_KVM_SYSTEM_TIME:
3575             env->system_time_msr = msrs[i].data;
3576             break;
3577         case MSR_KVM_WALL_CLOCK:
3578             env->wall_clock_msr = msrs[i].data;
3579             break;
3580         case MSR_MCG_STATUS:
3581             env->mcg_status = msrs[i].data;
3582             break;
3583         case MSR_MCG_CTL:
3584             env->mcg_ctl = msrs[i].data;
3585             break;
3586         case MSR_MCG_EXT_CTL:
3587             env->mcg_ext_ctl = msrs[i].data;
3588             break;
3589         case MSR_IA32_MISC_ENABLE:
3590             env->msr_ia32_misc_enable = msrs[i].data;
3591             break;
3592         case MSR_IA32_SMBASE:
3593             env->smbase = msrs[i].data;
3594             break;
3595         case MSR_SMI_COUNT:
3596             env->msr_smi_count = msrs[i].data;
3597             break;
3598         case MSR_IA32_FEATURE_CONTROL:
3599             env->msr_ia32_feature_control = msrs[i].data;
3600             break;
3601         case MSR_IA32_BNDCFGS:
3602             env->msr_bndcfgs = msrs[i].data;
3603             break;
3604         case MSR_IA32_XSS:
3605             env->xss = msrs[i].data;
3606             break;
3607         case MSR_IA32_UMWAIT_CONTROL:
3608             env->umwait = msrs[i].data;
3609             break;
3610         case MSR_IA32_PKRS:
3611             env->pkrs = msrs[i].data;
3612             break;
3613         default:
3614             if (msrs[i].index >= MSR_MC0_CTL &&
3615                 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3616                 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
3617             }
3618             break;
3619         case MSR_KVM_ASYNC_PF_EN:
3620             env->async_pf_en_msr = msrs[i].data;
3621             break;
3622         case MSR_KVM_ASYNC_PF_INT:
3623             env->async_pf_int_msr = msrs[i].data;
3624             break;
3625         case MSR_KVM_PV_EOI_EN:
3626             env->pv_eoi_en_msr = msrs[i].data;
3627             break;
3628         case MSR_KVM_STEAL_TIME:
3629             env->steal_time_msr = msrs[i].data;
3630             break;
3631         case MSR_KVM_POLL_CONTROL: {
3632             env->poll_control_msr = msrs[i].data;
3633             break;
3634         }
3635         case MSR_CORE_PERF_FIXED_CTR_CTRL:
3636             env->msr_fixed_ctr_ctrl = msrs[i].data;
3637             break;
3638         case MSR_CORE_PERF_GLOBAL_CTRL:
3639             env->msr_global_ctrl = msrs[i].data;
3640             break;
3641         case MSR_CORE_PERF_GLOBAL_STATUS:
3642             env->msr_global_status = msrs[i].data;
3643             break;
3644         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3645             env->msr_global_ovf_ctrl = msrs[i].data;
3646             break;
3647         case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3648             env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3649             break;
3650         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3651             env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3652             break;
3653         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3654             env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3655             break;
3656         case HV_X64_MSR_HYPERCALL:
3657             env->msr_hv_hypercall = msrs[i].data;
3658             break;
3659         case HV_X64_MSR_GUEST_OS_ID:
3660             env->msr_hv_guest_os_id = msrs[i].data;
3661             break;
3662         case HV_X64_MSR_APIC_ASSIST_PAGE:
3663             env->msr_hv_vapic = msrs[i].data;
3664             break;
3665         case HV_X64_MSR_REFERENCE_TSC:
3666             env->msr_hv_tsc = msrs[i].data;
3667             break;
3668         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3669             env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3670             break;
3671         case HV_X64_MSR_VP_RUNTIME:
3672             env->msr_hv_runtime = msrs[i].data;
3673             break;
3674         case HV_X64_MSR_SCONTROL:
3675             env->msr_hv_synic_control = msrs[i].data;
3676             break;
3677         case HV_X64_MSR_SIEFP:
3678             env->msr_hv_synic_evt_page = msrs[i].data;
3679             break;
3680         case HV_X64_MSR_SIMP:
3681             env->msr_hv_synic_msg_page = msrs[i].data;
3682             break;
3683         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3684             env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
3685             break;
3686         case HV_X64_MSR_STIMER0_CONFIG:
3687         case HV_X64_MSR_STIMER1_CONFIG:
3688         case HV_X64_MSR_STIMER2_CONFIG:
3689         case HV_X64_MSR_STIMER3_CONFIG:
3690             env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3691                                 msrs[i].data;
3692             break;
3693         case HV_X64_MSR_STIMER0_COUNT:
3694         case HV_X64_MSR_STIMER1_COUNT:
3695         case HV_X64_MSR_STIMER2_COUNT:
3696         case HV_X64_MSR_STIMER3_COUNT:
3697             env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3698                                 msrs[i].data;
3699             break;
3700         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3701             env->msr_hv_reenlightenment_control = msrs[i].data;
3702             break;
3703         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3704             env->msr_hv_tsc_emulation_control = msrs[i].data;
3705             break;
3706         case HV_X64_MSR_TSC_EMULATION_STATUS:
3707             env->msr_hv_tsc_emulation_status = msrs[i].data;
3708             break;
3709         case MSR_MTRRdefType:
3710             env->mtrr_deftype = msrs[i].data;
3711             break;
3712         case MSR_MTRRfix64K_00000:
3713             env->mtrr_fixed[0] = msrs[i].data;
3714             break;
3715         case MSR_MTRRfix16K_80000:
3716             env->mtrr_fixed[1] = msrs[i].data;
3717             break;
3718         case MSR_MTRRfix16K_A0000:
3719             env->mtrr_fixed[2] = msrs[i].data;
3720             break;
3721         case MSR_MTRRfix4K_C0000:
3722             env->mtrr_fixed[3] = msrs[i].data;
3723             break;
3724         case MSR_MTRRfix4K_C8000:
3725             env->mtrr_fixed[4] = msrs[i].data;
3726             break;
3727         case MSR_MTRRfix4K_D0000:
3728             env->mtrr_fixed[5] = msrs[i].data;
3729             break;
3730         case MSR_MTRRfix4K_D8000:
3731             env->mtrr_fixed[6] = msrs[i].data;
3732             break;
3733         case MSR_MTRRfix4K_E0000:
3734             env->mtrr_fixed[7] = msrs[i].data;
3735             break;
3736         case MSR_MTRRfix4K_E8000:
3737             env->mtrr_fixed[8] = msrs[i].data;
3738             break;
3739         case MSR_MTRRfix4K_F0000:
3740             env->mtrr_fixed[9] = msrs[i].data;
3741             break;
3742         case MSR_MTRRfix4K_F8000:
3743             env->mtrr_fixed[10] = msrs[i].data;
3744             break;
3745         case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3746             if (index & 1) {
3747                 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3748                                                                mtrr_top_bits;
3749             } else {
3750                 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3751             }
3752             break;
3753         case MSR_IA32_SPEC_CTRL:
3754             env->spec_ctrl = msrs[i].data;
3755             break;
3756         case MSR_IA32_TSX_CTRL:
3757             env->tsx_ctrl = msrs[i].data;
3758             break;
3759         case MSR_VIRT_SSBD:
3760             env->virt_ssbd = msrs[i].data;
3761             break;
3762         case MSR_IA32_RTIT_CTL:
3763             env->msr_rtit_ctrl = msrs[i].data;
3764             break;
3765         case MSR_IA32_RTIT_STATUS:
3766             env->msr_rtit_status = msrs[i].data;
3767             break;
3768         case MSR_IA32_RTIT_OUTPUT_BASE:
3769             env->msr_rtit_output_base = msrs[i].data;
3770             break;
3771         case MSR_IA32_RTIT_OUTPUT_MASK:
3772             env->msr_rtit_output_mask = msrs[i].data;
3773             break;
3774         case MSR_IA32_RTIT_CR3_MATCH:
3775             env->msr_rtit_cr3_match = msrs[i].data;
3776             break;
3777         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3778             env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3779             break;
3780         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
3781             env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
3782                            msrs[i].data;
3783             break;
3784         }
3785     }
3786 
3787     return 0;
3788 }
3789 
3790 static int kvm_put_mp_state(X86CPU *cpu)
3791 {
3792     struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
3793 
3794     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
3795 }
3796 
3797 static int kvm_get_mp_state(X86CPU *cpu)
3798 {
3799     CPUState *cs = CPU(cpu);
3800     CPUX86State *env = &cpu->env;
3801     struct kvm_mp_state mp_state;
3802     int ret;
3803 
3804     ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
3805     if (ret < 0) {
3806         return ret;
3807     }
3808     env->mp_state = mp_state.mp_state;
3809     if (kvm_irqchip_in_kernel()) {
3810         cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
3811     }
3812     return 0;
3813 }
3814 
3815 static int kvm_get_apic(X86CPU *cpu)
3816 {
3817     DeviceState *apic = cpu->apic_state;
3818     struct kvm_lapic_state kapic;
3819     int ret;
3820 
3821     if (apic && kvm_irqchip_in_kernel()) {
3822         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
3823         if (ret < 0) {
3824             return ret;
3825         }
3826 
3827         kvm_get_apic_state(apic, &kapic);
3828     }
3829     return 0;
3830 }
3831 
3832 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
3833 {
3834     CPUState *cs = CPU(cpu);
3835     CPUX86State *env = &cpu->env;
3836     struct kvm_vcpu_events events = {};
3837 
3838     if (!kvm_has_vcpu_events()) {
3839         return 0;
3840     }
3841 
3842     events.flags = 0;
3843 
3844     if (has_exception_payload) {
3845         events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3846         events.exception.pending = env->exception_pending;
3847         events.exception_has_payload = env->exception_has_payload;
3848         events.exception_payload = env->exception_payload;
3849     }
3850     events.exception.nr = env->exception_nr;
3851     events.exception.injected = env->exception_injected;
3852     events.exception.has_error_code = env->has_error_code;
3853     events.exception.error_code = env->error_code;
3854 
3855     events.interrupt.injected = (env->interrupt_injected >= 0);
3856     events.interrupt.nr = env->interrupt_injected;
3857     events.interrupt.soft = env->soft_interrupt;
3858 
3859     events.nmi.injected = env->nmi_injected;
3860     events.nmi.pending = env->nmi_pending;
3861     events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
3862 
3863     events.sipi_vector = env->sipi_vector;
3864 
3865     if (has_msr_smbase) {
3866         events.smi.smm = !!(env->hflags & HF_SMM_MASK);
3867         events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
3868         if (kvm_irqchip_in_kernel()) {
3869             /* As soon as these are moved to the kernel, remove them
3870              * from cs->interrupt_request.
3871              */
3872             events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
3873             events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
3874             cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
3875         } else {
3876             /* Keep these in cs->interrupt_request.  */
3877             events.smi.pending = 0;
3878             events.smi.latched_init = 0;
3879         }
3880         /* Stop SMI delivery on old machine types to avoid a reboot
3881          * on an inward migration of an old VM.
3882          */
3883         if (!cpu->kvm_no_smi_migration) {
3884             events.flags |= KVM_VCPUEVENT_VALID_SMM;
3885         }
3886     }
3887 
3888     if (level >= KVM_PUT_RESET_STATE) {
3889         events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
3890         if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
3891             events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
3892         }
3893     }
3894 
3895     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
3896 }
3897 
3898 static int kvm_get_vcpu_events(X86CPU *cpu)
3899 {
3900     CPUX86State *env = &cpu->env;
3901     struct kvm_vcpu_events events;
3902     int ret;
3903 
3904     if (!kvm_has_vcpu_events()) {
3905         return 0;
3906     }
3907 
3908     memset(&events, 0, sizeof(events));
3909     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
3910     if (ret < 0) {
3911        return ret;
3912     }
3913 
3914     if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3915         env->exception_pending = events.exception.pending;
3916         env->exception_has_payload = events.exception_has_payload;
3917         env->exception_payload = events.exception_payload;
3918     } else {
3919         env->exception_pending = 0;
3920         env->exception_has_payload = false;
3921     }
3922     env->exception_injected = events.exception.injected;
3923     env->exception_nr =
3924         (env->exception_pending || env->exception_injected) ?
3925         events.exception.nr : -1;
3926     env->has_error_code = events.exception.has_error_code;
3927     env->error_code = events.exception.error_code;
3928 
3929     env->interrupt_injected =
3930         events.interrupt.injected ? events.interrupt.nr : -1;
3931     env->soft_interrupt = events.interrupt.soft;
3932 
3933     env->nmi_injected = events.nmi.injected;
3934     env->nmi_pending = events.nmi.pending;
3935     if (events.nmi.masked) {
3936         env->hflags2 |= HF2_NMI_MASK;
3937     } else {
3938         env->hflags2 &= ~HF2_NMI_MASK;
3939     }
3940 
3941     if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
3942         if (events.smi.smm) {
3943             env->hflags |= HF_SMM_MASK;
3944         } else {
3945             env->hflags &= ~HF_SMM_MASK;
3946         }
3947         if (events.smi.pending) {
3948             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3949         } else {
3950             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3951         }
3952         if (events.smi.smm_inside_nmi) {
3953             env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
3954         } else {
3955             env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
3956         }
3957         if (events.smi.latched_init) {
3958             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3959         } else {
3960             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3961         }
3962     }
3963 
3964     env->sipi_vector = events.sipi_vector;
3965 
3966     return 0;
3967 }
3968 
3969 static int kvm_guest_debug_workarounds(X86CPU *cpu)
3970 {
3971     CPUState *cs = CPU(cpu);
3972     CPUX86State *env = &cpu->env;
3973     int ret = 0;
3974     unsigned long reinject_trap = 0;
3975 
3976     if (!kvm_has_vcpu_events()) {
3977         if (env->exception_nr == EXCP01_DB) {
3978             reinject_trap = KVM_GUESTDBG_INJECT_DB;
3979         } else if (env->exception_injected == EXCP03_INT3) {
3980             reinject_trap = KVM_GUESTDBG_INJECT_BP;
3981         }
3982         kvm_reset_exception(env);
3983     }
3984 
3985     /*
3986      * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3987      * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3988      * by updating the debug state once again if single-stepping is on.
3989      * Another reason to call kvm_update_guest_debug here is a pending debug
3990      * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3991      * reinject them via SET_GUEST_DEBUG.
3992      */
3993     if (reinject_trap ||
3994         (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
3995         ret = kvm_update_guest_debug(cs, reinject_trap);
3996     }
3997     return ret;
3998 }
3999 
4000 static int kvm_put_debugregs(X86CPU *cpu)
4001 {
4002     CPUX86State *env = &cpu->env;
4003     struct kvm_debugregs dbgregs;
4004     int i;
4005 
4006     if (!kvm_has_debugregs()) {
4007         return 0;
4008     }
4009 
4010     memset(&dbgregs, 0, sizeof(dbgregs));
4011     for (i = 0; i < 4; i++) {
4012         dbgregs.db[i] = env->dr[i];
4013     }
4014     dbgregs.dr6 = env->dr[6];
4015     dbgregs.dr7 = env->dr[7];
4016     dbgregs.flags = 0;
4017 
4018     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
4019 }
4020 
4021 static int kvm_get_debugregs(X86CPU *cpu)
4022 {
4023     CPUX86State *env = &cpu->env;
4024     struct kvm_debugregs dbgregs;
4025     int i, ret;
4026 
4027     if (!kvm_has_debugregs()) {
4028         return 0;
4029     }
4030 
4031     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
4032     if (ret < 0) {
4033         return ret;
4034     }
4035     for (i = 0; i < 4; i++) {
4036         env->dr[i] = dbgregs.db[i];
4037     }
4038     env->dr[4] = env->dr[6] = dbgregs.dr6;
4039     env->dr[5] = env->dr[7] = dbgregs.dr7;
4040 
4041     return 0;
4042 }
4043 
4044 static int kvm_put_nested_state(X86CPU *cpu)
4045 {
4046     CPUX86State *env = &cpu->env;
4047     int max_nested_state_len = kvm_max_nested_state_length();
4048 
4049     if (!env->nested_state) {
4050         return 0;
4051     }
4052 
4053     /*
4054      * Copy flags that are affected by reset from env->hflags and env->hflags2.
4055      */
4056     if (env->hflags & HF_GUEST_MASK) {
4057         env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
4058     } else {
4059         env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
4060     }
4061 
4062     /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
4063     if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
4064         env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
4065     } else {
4066         env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
4067     }
4068 
4069     assert(env->nested_state->size <= max_nested_state_len);
4070     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
4071 }
4072 
4073 static int kvm_get_nested_state(X86CPU *cpu)
4074 {
4075     CPUX86State *env = &cpu->env;
4076     int max_nested_state_len = kvm_max_nested_state_length();
4077     int ret;
4078 
4079     if (!env->nested_state) {
4080         return 0;
4081     }
4082 
4083     /*
4084      * It is possible that migration restored a smaller size into
4085      * nested_state->hdr.size than what our kernel support.
4086      * We preserve migration origin nested_state->hdr.size for
4087      * call to KVM_SET_NESTED_STATE but wish that our next call
4088      * to KVM_GET_NESTED_STATE will use max size our kernel support.
4089      */
4090     env->nested_state->size = max_nested_state_len;
4091 
4092     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
4093     if (ret < 0) {
4094         return ret;
4095     }
4096 
4097     /*
4098      * Copy flags that are affected by reset to env->hflags and env->hflags2.
4099      */
4100     if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
4101         env->hflags |= HF_GUEST_MASK;
4102     } else {
4103         env->hflags &= ~HF_GUEST_MASK;
4104     }
4105 
4106     /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
4107     if (cpu_has_svm(env)) {
4108         if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
4109             env->hflags2 |= HF2_GIF_MASK;
4110         } else {
4111             env->hflags2 &= ~HF2_GIF_MASK;
4112         }
4113     }
4114 
4115     return ret;
4116 }
4117 
4118 int kvm_arch_put_registers(CPUState *cpu, int level)
4119 {
4120     X86CPU *x86_cpu = X86_CPU(cpu);
4121     int ret;
4122 
4123     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
4124 
4125     /* must be before kvm_put_nested_state so that EFER.SVME is set */
4126     ret = kvm_put_sregs(x86_cpu);
4127     if (ret < 0) {
4128         return ret;
4129     }
4130 
4131     if (level >= KVM_PUT_RESET_STATE) {
4132         ret = kvm_put_nested_state(x86_cpu);
4133         if (ret < 0) {
4134             return ret;
4135         }
4136 
4137         ret = kvm_put_msr_feature_control(x86_cpu);
4138         if (ret < 0) {
4139             return ret;
4140         }
4141     }
4142 
4143     if (level == KVM_PUT_FULL_STATE) {
4144         /* We don't check for kvm_arch_set_tsc_khz() errors here,
4145          * because TSC frequency mismatch shouldn't abort migration,
4146          * unless the user explicitly asked for a more strict TSC
4147          * setting (e.g. using an explicit "tsc-freq" option).
4148          */
4149         kvm_arch_set_tsc_khz(cpu);
4150     }
4151 
4152     ret = kvm_getput_regs(x86_cpu, 1);
4153     if (ret < 0) {
4154         return ret;
4155     }
4156     ret = kvm_put_xsave(x86_cpu);
4157     if (ret < 0) {
4158         return ret;
4159     }
4160     ret = kvm_put_xcrs(x86_cpu);
4161     if (ret < 0) {
4162         return ret;
4163     }
4164     /* must be before kvm_put_msrs */
4165     ret = kvm_inject_mce_oldstyle(x86_cpu);
4166     if (ret < 0) {
4167         return ret;
4168     }
4169     ret = kvm_put_msrs(x86_cpu, level);
4170     if (ret < 0) {
4171         return ret;
4172     }
4173     ret = kvm_put_vcpu_events(x86_cpu, level);
4174     if (ret < 0) {
4175         return ret;
4176     }
4177     if (level >= KVM_PUT_RESET_STATE) {
4178         ret = kvm_put_mp_state(x86_cpu);
4179         if (ret < 0) {
4180             return ret;
4181         }
4182     }
4183 
4184     ret = kvm_put_tscdeadline_msr(x86_cpu);
4185     if (ret < 0) {
4186         return ret;
4187     }
4188     ret = kvm_put_debugregs(x86_cpu);
4189     if (ret < 0) {
4190         return ret;
4191     }
4192     /* must be last */
4193     ret = kvm_guest_debug_workarounds(x86_cpu);
4194     if (ret < 0) {
4195         return ret;
4196     }
4197     return 0;
4198 }
4199 
4200 int kvm_arch_get_registers(CPUState *cs)
4201 {
4202     X86CPU *cpu = X86_CPU(cs);
4203     int ret;
4204 
4205     assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4206 
4207     ret = kvm_get_vcpu_events(cpu);
4208     if (ret < 0) {
4209         goto out;
4210     }
4211     /*
4212      * KVM_GET_MPSTATE can modify CS and RIP, call it before
4213      * KVM_GET_REGS and KVM_GET_SREGS.
4214      */
4215     ret = kvm_get_mp_state(cpu);
4216     if (ret < 0) {
4217         goto out;
4218     }
4219     ret = kvm_getput_regs(cpu, 0);
4220     if (ret < 0) {
4221         goto out;
4222     }
4223     ret = kvm_get_xsave(cpu);
4224     if (ret < 0) {
4225         goto out;
4226     }
4227     ret = kvm_get_xcrs(cpu);
4228     if (ret < 0) {
4229         goto out;
4230     }
4231     ret = kvm_get_sregs(cpu);
4232     if (ret < 0) {
4233         goto out;
4234     }
4235     ret = kvm_get_msrs(cpu);
4236     if (ret < 0) {
4237         goto out;
4238     }
4239     ret = kvm_get_apic(cpu);
4240     if (ret < 0) {
4241         goto out;
4242     }
4243     ret = kvm_get_debugregs(cpu);
4244     if (ret < 0) {
4245         goto out;
4246     }
4247     ret = kvm_get_nested_state(cpu);
4248     if (ret < 0) {
4249         goto out;
4250     }
4251     ret = 0;
4252  out:
4253     cpu_sync_bndcs_hflags(&cpu->env);
4254     return ret;
4255 }
4256 
4257 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4258 {
4259     X86CPU *x86_cpu = X86_CPU(cpu);
4260     CPUX86State *env = &x86_cpu->env;
4261     int ret;
4262 
4263     /* Inject NMI */
4264     if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4265         if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4266             qemu_mutex_lock_iothread();
4267             cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4268             qemu_mutex_unlock_iothread();
4269             DPRINTF("injected NMI\n");
4270             ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4271             if (ret < 0) {
4272                 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4273                         strerror(-ret));
4274             }
4275         }
4276         if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4277             qemu_mutex_lock_iothread();
4278             cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4279             qemu_mutex_unlock_iothread();
4280             DPRINTF("injected SMI\n");
4281             ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4282             if (ret < 0) {
4283                 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4284                         strerror(-ret));
4285             }
4286         }
4287     }
4288 
4289     if (!kvm_pic_in_kernel()) {
4290         qemu_mutex_lock_iothread();
4291     }
4292 
4293     /* Force the VCPU out of its inner loop to process any INIT requests
4294      * or (for userspace APIC, but it is cheap to combine the checks here)
4295      * pending TPR access reports.
4296      */
4297     if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4298         if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4299             !(env->hflags & HF_SMM_MASK)) {
4300             cpu->exit_request = 1;
4301         }
4302         if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4303             cpu->exit_request = 1;
4304         }
4305     }
4306 
4307     if (!kvm_pic_in_kernel()) {
4308         /* Try to inject an interrupt if the guest can accept it */
4309         if (run->ready_for_interrupt_injection &&
4310             (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4311             (env->eflags & IF_MASK)) {
4312             int irq;
4313 
4314             cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4315             irq = cpu_get_pic_interrupt(env);
4316             if (irq >= 0) {
4317                 struct kvm_interrupt intr;
4318 
4319                 intr.irq = irq;
4320                 DPRINTF("injected interrupt %d\n", irq);
4321                 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4322                 if (ret < 0) {
4323                     fprintf(stderr,
4324                             "KVM: injection failed, interrupt lost (%s)\n",
4325                             strerror(-ret));
4326                 }
4327             }
4328         }
4329 
4330         /* If we have an interrupt but the guest is not ready to receive an
4331          * interrupt, request an interrupt window exit.  This will
4332          * cause a return to userspace as soon as the guest is ready to
4333          * receive interrupts. */
4334         if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4335             run->request_interrupt_window = 1;
4336         } else {
4337             run->request_interrupt_window = 0;
4338         }
4339 
4340         DPRINTF("setting tpr\n");
4341         run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4342 
4343         qemu_mutex_unlock_iothread();
4344     }
4345 }
4346 
4347 static void kvm_rate_limit_on_bus_lock(void)
4348 {
4349     uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
4350 
4351     if (delay_ns) {
4352         g_usleep(delay_ns / SCALE_US);
4353     }
4354 }
4355 
4356 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4357 {
4358     X86CPU *x86_cpu = X86_CPU(cpu);
4359     CPUX86State *env = &x86_cpu->env;
4360 
4361     if (run->flags & KVM_RUN_X86_SMM) {
4362         env->hflags |= HF_SMM_MASK;
4363     } else {
4364         env->hflags &= ~HF_SMM_MASK;
4365     }
4366     if (run->if_flag) {
4367         env->eflags |= IF_MASK;
4368     } else {
4369         env->eflags &= ~IF_MASK;
4370     }
4371     if (run->flags & KVM_RUN_X86_BUS_LOCK) {
4372         kvm_rate_limit_on_bus_lock();
4373     }
4374 
4375     /* We need to protect the apic state against concurrent accesses from
4376      * different threads in case the userspace irqchip is used. */
4377     if (!kvm_irqchip_in_kernel()) {
4378         qemu_mutex_lock_iothread();
4379     }
4380     cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4381     cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4382     if (!kvm_irqchip_in_kernel()) {
4383         qemu_mutex_unlock_iothread();
4384     }
4385     return cpu_get_mem_attrs(env);
4386 }
4387 
4388 int kvm_arch_process_async_events(CPUState *cs)
4389 {
4390     X86CPU *cpu = X86_CPU(cs);
4391     CPUX86State *env = &cpu->env;
4392 
4393     if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
4394         /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4395         assert(env->mcg_cap);
4396 
4397         cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
4398 
4399         kvm_cpu_synchronize_state(cs);
4400 
4401         if (env->exception_nr == EXCP08_DBLE) {
4402             /* this means triple fault */
4403             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
4404             cs->exit_request = 1;
4405             return 0;
4406         }
4407         kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
4408         env->has_error_code = 0;
4409 
4410         cs->halted = 0;
4411         if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4412             env->mp_state = KVM_MP_STATE_RUNNABLE;
4413         }
4414     }
4415 
4416     if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4417         !(env->hflags & HF_SMM_MASK)) {
4418         kvm_cpu_synchronize_state(cs);
4419         do_cpu_init(cpu);
4420     }
4421 
4422     if (kvm_irqchip_in_kernel()) {
4423         return 0;
4424     }
4425 
4426     if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4427         cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
4428         apic_poll_irq(cpu->apic_state);
4429     }
4430     if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4431          (env->eflags & IF_MASK)) ||
4432         (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4433         cs->halted = 0;
4434     }
4435     if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
4436         kvm_cpu_synchronize_state(cs);
4437         do_cpu_sipi(cpu);
4438     }
4439     if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4440         cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
4441         kvm_cpu_synchronize_state(cs);
4442         apic_handle_tpr_access_report(cpu->apic_state, env->eip,
4443                                       env->tpr_access_type);
4444     }
4445 
4446     return cs->halted;
4447 }
4448 
4449 static int kvm_handle_halt(X86CPU *cpu)
4450 {
4451     CPUState *cs = CPU(cpu);
4452     CPUX86State *env = &cpu->env;
4453 
4454     if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4455           (env->eflags & IF_MASK)) &&
4456         !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4457         cs->halted = 1;
4458         return EXCP_HLT;
4459     }
4460 
4461     return 0;
4462 }
4463 
4464 static int kvm_handle_tpr_access(X86CPU *cpu)
4465 {
4466     CPUState *cs = CPU(cpu);
4467     struct kvm_run *run = cs->kvm_run;
4468 
4469     apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
4470                                   run->tpr_access.is_write ? TPR_ACCESS_WRITE
4471                                                            : TPR_ACCESS_READ);
4472     return 1;
4473 }
4474 
4475 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4476 {
4477     static const uint8_t int3 = 0xcc;
4478 
4479     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4480         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
4481         return -EINVAL;
4482     }
4483     return 0;
4484 }
4485 
4486 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4487 {
4488     uint8_t int3;
4489 
4490     if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
4491         return -EINVAL;
4492     }
4493     if (int3 != 0xcc) {
4494         return 0;
4495     }
4496     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
4497         return -EINVAL;
4498     }
4499     return 0;
4500 }
4501 
4502 static struct {
4503     target_ulong addr;
4504     int len;
4505     int type;
4506 } hw_breakpoint[4];
4507 
4508 static int nb_hw_breakpoint;
4509 
4510 static int find_hw_breakpoint(target_ulong addr, int len, int type)
4511 {
4512     int n;
4513 
4514     for (n = 0; n < nb_hw_breakpoint; n++) {
4515         if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
4516             (hw_breakpoint[n].len == len || len == -1)) {
4517             return n;
4518         }
4519     }
4520     return -1;
4521 }
4522 
4523 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4524                                   target_ulong len, int type)
4525 {
4526     switch (type) {
4527     case GDB_BREAKPOINT_HW:
4528         len = 1;
4529         break;
4530     case GDB_WATCHPOINT_WRITE:
4531     case GDB_WATCHPOINT_ACCESS:
4532         switch (len) {
4533         case 1:
4534             break;
4535         case 2:
4536         case 4:
4537         case 8:
4538             if (addr & (len - 1)) {
4539                 return -EINVAL;
4540             }
4541             break;
4542         default:
4543             return -EINVAL;
4544         }
4545         break;
4546     default:
4547         return -ENOSYS;
4548     }
4549 
4550     if (nb_hw_breakpoint == 4) {
4551         return -ENOBUFS;
4552     }
4553     if (find_hw_breakpoint(addr, len, type) >= 0) {
4554         return -EEXIST;
4555     }
4556     hw_breakpoint[nb_hw_breakpoint].addr = addr;
4557     hw_breakpoint[nb_hw_breakpoint].len = len;
4558     hw_breakpoint[nb_hw_breakpoint].type = type;
4559     nb_hw_breakpoint++;
4560 
4561     return 0;
4562 }
4563 
4564 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4565                                   target_ulong len, int type)
4566 {
4567     int n;
4568 
4569     n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
4570     if (n < 0) {
4571         return -ENOENT;
4572     }
4573     nb_hw_breakpoint--;
4574     hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4575 
4576     return 0;
4577 }
4578 
4579 void kvm_arch_remove_all_hw_breakpoints(void)
4580 {
4581     nb_hw_breakpoint = 0;
4582 }
4583 
4584 static CPUWatchpoint hw_watchpoint;
4585 
4586 static int kvm_handle_debug(X86CPU *cpu,
4587                             struct kvm_debug_exit_arch *arch_info)
4588 {
4589     CPUState *cs = CPU(cpu);
4590     CPUX86State *env = &cpu->env;
4591     int ret = 0;
4592     int n;
4593 
4594     if (arch_info->exception == EXCP01_DB) {
4595         if (arch_info->dr6 & DR6_BS) {
4596             if (cs->singlestep_enabled) {
4597                 ret = EXCP_DEBUG;
4598             }
4599         } else {
4600             for (n = 0; n < 4; n++) {
4601                 if (arch_info->dr6 & (1 << n)) {
4602                     switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4603                     case 0x0:
4604                         ret = EXCP_DEBUG;
4605                         break;
4606                     case 0x1:
4607                         ret = EXCP_DEBUG;
4608                         cs->watchpoint_hit = &hw_watchpoint;
4609                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4610                         hw_watchpoint.flags = BP_MEM_WRITE;
4611                         break;
4612                     case 0x3:
4613                         ret = EXCP_DEBUG;
4614                         cs->watchpoint_hit = &hw_watchpoint;
4615                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4616                         hw_watchpoint.flags = BP_MEM_ACCESS;
4617                         break;
4618                     }
4619                 }
4620             }
4621         }
4622     } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
4623         ret = EXCP_DEBUG;
4624     }
4625     if (ret == 0) {
4626         cpu_synchronize_state(cs);
4627         assert(env->exception_nr == -1);
4628 
4629         /* pass to guest */
4630         kvm_queue_exception(env, arch_info->exception,
4631                             arch_info->exception == EXCP01_DB,
4632                             arch_info->dr6);
4633         env->has_error_code = 0;
4634     }
4635 
4636     return ret;
4637 }
4638 
4639 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
4640 {
4641     const uint8_t type_code[] = {
4642         [GDB_BREAKPOINT_HW] = 0x0,
4643         [GDB_WATCHPOINT_WRITE] = 0x1,
4644         [GDB_WATCHPOINT_ACCESS] = 0x3
4645     };
4646     const uint8_t len_code[] = {
4647         [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4648     };
4649     int n;
4650 
4651     if (kvm_sw_breakpoints_active(cpu)) {
4652         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
4653     }
4654     if (nb_hw_breakpoint > 0) {
4655         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4656         dbg->arch.debugreg[7] = 0x0600;
4657         for (n = 0; n < nb_hw_breakpoint; n++) {
4658             dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4659             dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4660                 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
4661                 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
4662         }
4663     }
4664 }
4665 
4666 static bool has_sgx_provisioning;
4667 
4668 static bool __kvm_enable_sgx_provisioning(KVMState *s)
4669 {
4670     int fd, ret;
4671 
4672     if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
4673         return false;
4674     }
4675 
4676     fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
4677     if (fd < 0) {
4678         return false;
4679     }
4680 
4681     ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
4682     if (ret) {
4683         error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
4684         exit(1);
4685     }
4686     close(fd);
4687     return true;
4688 }
4689 
4690 bool kvm_enable_sgx_provisioning(KVMState *s)
4691 {
4692     return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
4693 }
4694 
4695 static bool host_supports_vmx(void)
4696 {
4697     uint32_t ecx, unused;
4698 
4699     host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4700     return ecx & CPUID_EXT_VMX;
4701 }
4702 
4703 #define VMX_INVALID_GUEST_STATE 0x80000021
4704 
4705 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
4706 {
4707     X86CPU *cpu = X86_CPU(cs);
4708     uint64_t code;
4709     int ret;
4710 
4711     switch (run->exit_reason) {
4712     case KVM_EXIT_HLT:
4713         DPRINTF("handle_hlt\n");
4714         qemu_mutex_lock_iothread();
4715         ret = kvm_handle_halt(cpu);
4716         qemu_mutex_unlock_iothread();
4717         break;
4718     case KVM_EXIT_SET_TPR:
4719         ret = 0;
4720         break;
4721     case KVM_EXIT_TPR_ACCESS:
4722         qemu_mutex_lock_iothread();
4723         ret = kvm_handle_tpr_access(cpu);
4724         qemu_mutex_unlock_iothread();
4725         break;
4726     case KVM_EXIT_FAIL_ENTRY:
4727         code = run->fail_entry.hardware_entry_failure_reason;
4728         fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4729                 code);
4730         if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4731             fprintf(stderr,
4732                     "\nIf you're running a guest on an Intel machine without "
4733                         "unrestricted mode\n"
4734                     "support, the failure can be most likely due to the guest "
4735                         "entering an invalid\n"
4736                     "state for Intel VT. For example, the guest maybe running "
4737                         "in big real mode\n"
4738                     "which is not supported on less recent Intel processors."
4739                         "\n\n");
4740         }
4741         ret = -1;
4742         break;
4743     case KVM_EXIT_EXCEPTION:
4744         fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4745                 run->ex.exception, run->ex.error_code);
4746         ret = -1;
4747         break;
4748     case KVM_EXIT_DEBUG:
4749         DPRINTF("kvm_exit_debug\n");
4750         qemu_mutex_lock_iothread();
4751         ret = kvm_handle_debug(cpu, &run->debug.arch);
4752         qemu_mutex_unlock_iothread();
4753         break;
4754     case KVM_EXIT_HYPERV:
4755         ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4756         break;
4757     case KVM_EXIT_IOAPIC_EOI:
4758         ioapic_eoi_broadcast(run->eoi.vector);
4759         ret = 0;
4760         break;
4761     case KVM_EXIT_X86_BUS_LOCK:
4762         /* already handled in kvm_arch_post_run */
4763         ret = 0;
4764         break;
4765     default:
4766         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4767         ret = -1;
4768         break;
4769     }
4770 
4771     return ret;
4772 }
4773 
4774 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4775 {
4776     X86CPU *cpu = X86_CPU(cs);
4777     CPUX86State *env = &cpu->env;
4778 
4779     kvm_cpu_synchronize_state(cs);
4780     return !(env->cr[0] & CR0_PE_MASK) ||
4781            ((env->segs[R_CS].selector  & 3) != 3);
4782 }
4783 
4784 void kvm_arch_init_irq_routing(KVMState *s)
4785 {
4786     /* We know at this point that we're using the in-kernel
4787      * irqchip, so we can use irqfds, and on x86 we know
4788      * we can use msi via irqfd and GSI routing.
4789      */
4790     kvm_msi_via_irqfd_allowed = true;
4791     kvm_gsi_routing_allowed = true;
4792 
4793     if (kvm_irqchip_is_split()) {
4794         int i;
4795 
4796         /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4797            MSI routes for signaling interrupts to the local apics. */
4798         for (i = 0; i < IOAPIC_NUM_PINS; i++) {
4799             if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
4800                 error_report("Could not enable split IRQ mode.");
4801                 exit(1);
4802             }
4803         }
4804     }
4805 }
4806 
4807 int kvm_arch_irqchip_create(KVMState *s)
4808 {
4809     int ret;
4810     if (kvm_kernel_irqchip_split()) {
4811         ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
4812         if (ret) {
4813             error_report("Could not enable split irqchip mode: %s",
4814                          strerror(-ret));
4815             exit(1);
4816         } else {
4817             DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4818             kvm_split_irqchip = true;
4819             return 1;
4820         }
4821     } else {
4822         return 0;
4823     }
4824 }
4825 
4826 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
4827 {
4828     CPUX86State *env;
4829     uint64_t ext_id;
4830 
4831     if (!first_cpu) {
4832         return address;
4833     }
4834     env = &X86_CPU(first_cpu)->env;
4835     if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
4836         return address;
4837     }
4838 
4839     /*
4840      * If the remappable format bit is set, or the upper bits are
4841      * already set in address_hi, or the low extended bits aren't
4842      * there anyway, do nothing.
4843      */
4844     ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
4845     if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
4846         return address;
4847     }
4848 
4849     address &= ~ext_id;
4850     address |= ext_id << 35;
4851     return address;
4852 }
4853 
4854 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
4855                              uint64_t address, uint32_t data, PCIDevice *dev)
4856 {
4857     X86IOMMUState *iommu = x86_iommu_get_default();
4858 
4859     if (iommu) {
4860         X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
4861 
4862         if (class->int_remap) {
4863             int ret;
4864             MSIMessage src, dst;
4865 
4866             src.address = route->u.msi.address_hi;
4867             src.address <<= VTD_MSI_ADDR_HI_SHIFT;
4868             src.address |= route->u.msi.address_lo;
4869             src.data = route->u.msi.data;
4870 
4871             ret = class->int_remap(iommu, &src, &dst, dev ?     \
4872                                    pci_requester_id(dev) :      \
4873                                    X86_IOMMU_SID_INVALID);
4874             if (ret) {
4875                 trace_kvm_x86_fixup_msi_error(route->gsi);
4876                 return 1;
4877             }
4878 
4879             /*
4880              * Handled untranslated compatibilty format interrupt with
4881              * extended destination ID in the low bits 11-5. */
4882             dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
4883 
4884             route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
4885             route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
4886             route->u.msi.data = dst.data;
4887             return 0;
4888         }
4889     }
4890 
4891     address = kvm_swizzle_msi_ext_dest_id(address);
4892     route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
4893     route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
4894     return 0;
4895 }
4896 
4897 typedef struct MSIRouteEntry MSIRouteEntry;
4898 
4899 struct MSIRouteEntry {
4900     PCIDevice *dev;             /* Device pointer */
4901     int vector;                 /* MSI/MSIX vector index */
4902     int virq;                   /* Virtual IRQ index */
4903     QLIST_ENTRY(MSIRouteEntry) list;
4904 };
4905 
4906 /* List of used GSI routes */
4907 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
4908     QLIST_HEAD_INITIALIZER(msi_route_list);
4909 
4910 static void kvm_update_msi_routes_all(void *private, bool global,
4911                                       uint32_t index, uint32_t mask)
4912 {
4913     int cnt = 0, vector;
4914     MSIRouteEntry *entry;
4915     MSIMessage msg;
4916     PCIDevice *dev;
4917 
4918     /* TODO: explicit route update */
4919     QLIST_FOREACH(entry, &msi_route_list, list) {
4920         cnt++;
4921         vector = entry->vector;
4922         dev = entry->dev;
4923         if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
4924             msg = msix_get_message(dev, vector);
4925         } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
4926             msg = msi_get_message(dev, vector);
4927         } else {
4928             /*
4929              * Either MSI/MSIX is disabled for the device, or the
4930              * specific message was masked out.  Skip this one.
4931              */
4932             continue;
4933         }
4934         kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
4935     }
4936     kvm_irqchip_commit_routes(kvm_state);
4937     trace_kvm_x86_update_msi_routes(cnt);
4938 }
4939 
4940 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
4941                                 int vector, PCIDevice *dev)
4942 {
4943     static bool notify_list_inited = false;
4944     MSIRouteEntry *entry;
4945 
4946     if (!dev) {
4947         /* These are (possibly) IOAPIC routes only used for split
4948          * kernel irqchip mode, while what we are housekeeping are
4949          * PCI devices only. */
4950         return 0;
4951     }
4952 
4953     entry = g_new0(MSIRouteEntry, 1);
4954     entry->dev = dev;
4955     entry->vector = vector;
4956     entry->virq = route->gsi;
4957     QLIST_INSERT_HEAD(&msi_route_list, entry, list);
4958 
4959     trace_kvm_x86_add_msi_route(route->gsi);
4960 
4961     if (!notify_list_inited) {
4962         /* For the first time we do add route, add ourselves into
4963          * IOMMU's IEC notify list if needed. */
4964         X86IOMMUState *iommu = x86_iommu_get_default();
4965         if (iommu) {
4966             x86_iommu_iec_register_notifier(iommu,
4967                                             kvm_update_msi_routes_all,
4968                                             NULL);
4969         }
4970         notify_list_inited = true;
4971     }
4972     return 0;
4973 }
4974 
4975 int kvm_arch_release_virq_post(int virq)
4976 {
4977     MSIRouteEntry *entry, *next;
4978     QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
4979         if (entry->virq == virq) {
4980             trace_kvm_x86_remove_msi_route(virq);
4981             QLIST_REMOVE(entry, list);
4982             g_free(entry);
4983             break;
4984         }
4985     }
4986     return 0;
4987 }
4988 
4989 int kvm_arch_msi_data_to_gsi(uint32_t data)
4990 {
4991     abort();
4992 }
4993 
4994 bool kvm_has_waitpkg(void)
4995 {
4996     return has_msr_umwait;
4997 }
4998 
4999 bool kvm_arch_cpu_check_are_resettable(void)
5000 {
5001     return !sev_es_enabled();
5002 }
5003