1 /* 2 * QEMU KVM support 3 * 4 * Copyright (C) 2006-2008 Qumranet Technologies 5 * Copyright IBM, Corp. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or later. 11 * See the COPYING file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qapi/qapi-events-run-state.h" 17 #include "qapi/error.h" 18 #include "qapi/visitor.h" 19 #include <sys/ioctl.h> 20 #include <sys/utsname.h> 21 #include <sys/syscall.h> 22 23 #include <linux/kvm.h> 24 #include <linux/kvm_para.h> 25 #include "standard-headers/asm-x86/kvm_para.h" 26 #include "hw/xen/interface/arch-x86/cpuid.h" 27 28 #include "cpu.h" 29 #include "host-cpu.h" 30 #include "sysemu/sysemu.h" 31 #include "sysemu/hw_accel.h" 32 #include "sysemu/kvm_int.h" 33 #include "sysemu/runstate.h" 34 #include "kvm_i386.h" 35 #include "../confidential-guest.h" 36 #include "sev.h" 37 #include "xen-emu.h" 38 #include "hyperv.h" 39 #include "hyperv-proto.h" 40 41 #include "exec/gdbstub.h" 42 #include "qemu/host-utils.h" 43 #include "qemu/main-loop.h" 44 #include "qemu/ratelimit.h" 45 #include "qemu/config-file.h" 46 #include "qemu/error-report.h" 47 #include "qemu/memalign.h" 48 #include "hw/i386/x86.h" 49 #include "hw/i386/kvm/xen_evtchn.h" 50 #include "hw/i386/pc.h" 51 #include "hw/i386/apic.h" 52 #include "hw/i386/apic_internal.h" 53 #include "hw/i386/apic-msidef.h" 54 #include "hw/i386/intel_iommu.h" 55 #include "hw/i386/topology.h" 56 #include "hw/i386/x86-iommu.h" 57 #include "hw/i386/e820_memory_layout.h" 58 59 #include "hw/xen/xen.h" 60 61 #include "hw/pci/pci.h" 62 #include "hw/pci/msi.h" 63 #include "hw/pci/msix.h" 64 #include "migration/blocker.h" 65 #include "exec/memattrs.h" 66 #include "trace.h" 67 68 #include CONFIG_DEVICES 69 70 //#define DEBUG_KVM 71 72 #ifdef DEBUG_KVM 73 #define DPRINTF(fmt, ...) \ 74 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 75 #else 76 #define DPRINTF(fmt, ...) \ 77 do { } while (0) 78 #endif 79 80 /* From arch/x86/kvm/lapic.h */ 81 #define KVM_APIC_BUS_CYCLE_NS 1 82 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS) 83 84 #define MSR_KVM_WALL_CLOCK 0x11 85 #define MSR_KVM_SYSTEM_TIME 0x12 86 87 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus 88 * 255 kvm_msr_entry structs */ 89 #define MSR_BUF_SIZE 4096 90 91 static void kvm_init_msrs(X86CPU *cpu); 92 93 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 94 KVM_CAP_INFO(SET_TSS_ADDR), 95 KVM_CAP_INFO(EXT_CPUID), 96 KVM_CAP_INFO(MP_STATE), 97 KVM_CAP_INFO(SIGNAL_MSI), 98 KVM_CAP_INFO(IRQ_ROUTING), 99 KVM_CAP_INFO(DEBUGREGS), 100 KVM_CAP_INFO(XSAVE), 101 KVM_CAP_INFO(VCPU_EVENTS), 102 KVM_CAP_INFO(X86_ROBUST_SINGLESTEP), 103 KVM_CAP_INFO(MCE), 104 KVM_CAP_INFO(ADJUST_CLOCK), 105 KVM_CAP_INFO(SET_IDENTITY_MAP_ADDR), 106 KVM_CAP_LAST_INFO 107 }; 108 109 static bool has_msr_star; 110 static bool has_msr_hsave_pa; 111 static bool has_msr_tsc_aux; 112 static bool has_msr_tsc_adjust; 113 static bool has_msr_tsc_deadline; 114 static bool has_msr_feature_control; 115 static bool has_msr_misc_enable; 116 static bool has_msr_smbase; 117 static bool has_msr_bndcfgs; 118 static int lm_capable_kernel; 119 static bool has_msr_hv_hypercall; 120 static bool has_msr_hv_crash; 121 static bool has_msr_hv_reset; 122 static bool has_msr_hv_vpindex; 123 static bool hv_vpindex_settable; 124 static bool has_msr_hv_runtime; 125 static bool has_msr_hv_synic; 126 static bool has_msr_hv_stimer; 127 static bool has_msr_hv_frequencies; 128 static bool has_msr_hv_reenlightenment; 129 static bool has_msr_hv_syndbg_options; 130 static bool has_msr_xss; 131 static bool has_msr_umwait; 132 static bool has_msr_spec_ctrl; 133 static bool has_tsc_scale_msr; 134 static bool has_msr_tsx_ctrl; 135 static bool has_msr_virt_ssbd; 136 static bool has_msr_smi_count; 137 static bool has_msr_arch_capabs; 138 static bool has_msr_core_capabs; 139 static bool has_msr_vmx_vmfunc; 140 static bool has_msr_ucode_rev; 141 static bool has_msr_vmx_procbased_ctls2; 142 static bool has_msr_perf_capabs; 143 static bool has_msr_pkrs; 144 145 static uint32_t has_architectural_pmu_version; 146 static uint32_t num_architectural_pmu_gp_counters; 147 static uint32_t num_architectural_pmu_fixed_counters; 148 149 static int has_xsave2; 150 static int has_xcrs; 151 static int has_sregs2; 152 static int has_exception_payload; 153 static int has_triple_fault_event; 154 155 static bool has_msr_mcg_ext_ctl; 156 157 static struct kvm_cpuid2 *cpuid_cache; 158 static struct kvm_cpuid2 *hv_cpuid_cache; 159 static struct kvm_msr_list *kvm_feature_msrs; 160 161 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES]; 162 163 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */ 164 static RateLimit bus_lock_ratelimit_ctrl; 165 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value); 166 167 static const char *vm_type_name[] = { 168 [KVM_X86_DEFAULT_VM] = "default", 169 [KVM_X86_SEV_VM] = "SEV", 170 [KVM_X86_SEV_ES_VM] = "SEV-ES", 171 [KVM_X86_SNP_VM] = "SEV-SNP", 172 }; 173 174 bool kvm_is_vm_type_supported(int type) 175 { 176 uint32_t machine_types; 177 178 /* 179 * old KVM doesn't support KVM_CAP_VM_TYPES but KVM_X86_DEFAULT_VM 180 * is always supported 181 */ 182 if (type == KVM_X86_DEFAULT_VM) { 183 return true; 184 } 185 186 machine_types = kvm_check_extension(KVM_STATE(current_machine->accelerator), 187 KVM_CAP_VM_TYPES); 188 return !!(machine_types & BIT(type)); 189 } 190 191 int kvm_get_vm_type(MachineState *ms) 192 { 193 int kvm_type = KVM_X86_DEFAULT_VM; 194 195 if (ms->cgs) { 196 if (!object_dynamic_cast(OBJECT(ms->cgs), TYPE_X86_CONFIDENTIAL_GUEST)) { 197 error_report("configuration type %s not supported for x86 guests", 198 object_get_typename(OBJECT(ms->cgs))); 199 exit(1); 200 } 201 kvm_type = x86_confidential_guest_kvm_type( 202 X86_CONFIDENTIAL_GUEST(ms->cgs)); 203 } 204 205 if (!kvm_is_vm_type_supported(kvm_type)) { 206 error_report("vm-type %s not supported by KVM", vm_type_name[kvm_type]); 207 exit(1); 208 } 209 210 return kvm_type; 211 } 212 213 bool kvm_enable_hypercall(uint64_t enable_mask) 214 { 215 KVMState *s = KVM_STATE(current_accel()); 216 217 return !kvm_vm_enable_cap(s, KVM_CAP_EXIT_HYPERCALL, 0, enable_mask); 218 } 219 220 bool kvm_has_smm(void) 221 { 222 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM); 223 } 224 225 bool kvm_has_adjust_clock_stable(void) 226 { 227 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); 228 229 return (ret & KVM_CLOCK_TSC_STABLE); 230 } 231 232 bool kvm_has_exception_payload(void) 233 { 234 return has_exception_payload; 235 } 236 237 static bool kvm_x2apic_api_set_flags(uint64_t flags) 238 { 239 KVMState *s = KVM_STATE(current_accel()); 240 241 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); 242 } 243 244 #define MEMORIZE(fn, _result) \ 245 ({ \ 246 static bool _memorized; \ 247 \ 248 if (_memorized) { \ 249 return _result; \ 250 } \ 251 _memorized = true; \ 252 _result = fn; \ 253 }) 254 255 static bool has_x2apic_api; 256 257 bool kvm_has_x2apic_api(void) 258 { 259 return has_x2apic_api; 260 } 261 262 bool kvm_enable_x2apic(void) 263 { 264 return MEMORIZE( 265 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | 266 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), 267 has_x2apic_api); 268 } 269 270 bool kvm_hv_vpindex_settable(void) 271 { 272 return hv_vpindex_settable; 273 } 274 275 static int kvm_get_tsc(CPUState *cs) 276 { 277 X86CPU *cpu = X86_CPU(cs); 278 CPUX86State *env = &cpu->env; 279 uint64_t value; 280 int ret; 281 282 if (env->tsc_valid) { 283 return 0; 284 } 285 286 env->tsc_valid = !runstate_is_running(); 287 288 ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value); 289 if (ret < 0) { 290 return ret; 291 } 292 293 env->tsc = value; 294 return 0; 295 } 296 297 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) 298 { 299 kvm_get_tsc(cpu); 300 } 301 302 void kvm_synchronize_all_tsc(void) 303 { 304 CPUState *cpu; 305 306 if (kvm_enabled()) { 307 CPU_FOREACH(cpu) { 308 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); 309 } 310 } 311 } 312 313 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) 314 { 315 struct kvm_cpuid2 *cpuid; 316 int r, size; 317 318 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 319 cpuid = g_malloc0(size); 320 cpuid->nent = max; 321 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); 322 if (r == 0 && cpuid->nent >= max) { 323 r = -E2BIG; 324 } 325 if (r < 0) { 326 if (r == -E2BIG) { 327 g_free(cpuid); 328 return NULL; 329 } else { 330 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", 331 strerror(-r)); 332 exit(1); 333 } 334 } 335 return cpuid; 336 } 337 338 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough 339 * for all entries. 340 */ 341 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) 342 { 343 struct kvm_cpuid2 *cpuid; 344 int max = 1; 345 346 if (cpuid_cache != NULL) { 347 return cpuid_cache; 348 } 349 while ((cpuid = try_get_cpuid(s, max)) == NULL) { 350 max *= 2; 351 } 352 cpuid_cache = cpuid; 353 return cpuid; 354 } 355 356 static bool host_tsx_broken(void) 357 { 358 int family, model, stepping;\ 359 char vendor[CPUID_VENDOR_SZ + 1]; 360 361 host_cpu_vendor_fms(vendor, &family, &model, &stepping); 362 363 /* Check if we are running on a Haswell host known to have broken TSX */ 364 return !strcmp(vendor, CPUID_VENDOR_INTEL) && 365 (family == 6) && 366 ((model == 63 && stepping < 4) || 367 model == 60 || model == 69 || model == 70); 368 } 369 370 /* Returns the value for a specific register on the cpuid entry 371 */ 372 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) 373 { 374 uint32_t ret = 0; 375 switch (reg) { 376 case R_EAX: 377 ret = entry->eax; 378 break; 379 case R_EBX: 380 ret = entry->ebx; 381 break; 382 case R_ECX: 383 ret = entry->ecx; 384 break; 385 case R_EDX: 386 ret = entry->edx; 387 break; 388 } 389 return ret; 390 } 391 392 /* Find matching entry for function/index on kvm_cpuid2 struct 393 */ 394 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, 395 uint32_t function, 396 uint32_t index) 397 { 398 int i; 399 for (i = 0; i < cpuid->nent; ++i) { 400 if (cpuid->entries[i].function == function && 401 cpuid->entries[i].index == index) { 402 return &cpuid->entries[i]; 403 } 404 } 405 /* not found: */ 406 return NULL; 407 } 408 409 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, 410 uint32_t index, int reg) 411 { 412 struct kvm_cpuid2 *cpuid; 413 uint32_t ret = 0; 414 uint32_t cpuid_1_edx, unused; 415 uint64_t bitmask; 416 417 cpuid = get_supported_cpuid(s); 418 419 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); 420 if (entry) { 421 ret = cpuid_entry_get_reg(entry, reg); 422 } 423 424 /* Fixups for the data returned by KVM, below */ 425 426 if (function == 1 && reg == R_EDX) { 427 /* KVM before 2.6.30 misreports the following features */ 428 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; 429 /* KVM never reports CPUID_HT but QEMU can support when vcpus > 1 */ 430 ret |= CPUID_HT; 431 } else if (function == 1 && reg == R_ECX) { 432 /* We can set the hypervisor flag, even if KVM does not return it on 433 * GET_SUPPORTED_CPUID 434 */ 435 ret |= CPUID_EXT_HYPERVISOR; 436 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it 437 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, 438 * and the irqchip is in the kernel. 439 */ 440 if (kvm_irqchip_in_kernel() && 441 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { 442 ret |= CPUID_EXT_TSC_DEADLINE_TIMER; 443 } 444 445 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled 446 * without the in-kernel irqchip 447 */ 448 if (!kvm_irqchip_in_kernel()) { 449 ret &= ~CPUID_EXT_X2APIC; 450 } 451 452 if (enable_cpu_pm) { 453 int disable_exits = kvm_check_extension(s, 454 KVM_CAP_X86_DISABLE_EXITS); 455 456 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) { 457 ret |= CPUID_EXT_MONITOR; 458 } 459 } 460 } else if (function == 6 && reg == R_EAX) { 461 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ 462 } else if (function == 7 && index == 0 && reg == R_EBX) { 463 /* Not new instructions, just an optimization. */ 464 uint32_t ebx; 465 host_cpuid(7, 0, &unused, &ebx, &unused, &unused); 466 ret |= ebx & CPUID_7_0_EBX_ERMS; 467 468 if (host_tsx_broken()) { 469 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); 470 } 471 } else if (function == 7 && index == 0 && reg == R_EDX) { 472 /* Not new instructions, just an optimization. */ 473 uint32_t edx; 474 host_cpuid(7, 0, &unused, &unused, &unused, &edx); 475 ret |= edx & CPUID_7_0_EDX_FSRM; 476 477 /* 478 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts. 479 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is 480 * returned by KVM_GET_MSR_INDEX_LIST. 481 */ 482 if (!has_msr_arch_capabs) { 483 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES; 484 } 485 } else if (function == 7 && index == 1 && reg == R_EAX) { 486 /* Not new instructions, just an optimization. */ 487 uint32_t eax; 488 host_cpuid(7, 1, &eax, &unused, &unused, &unused); 489 ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC); 490 } else if (function == 7 && index == 2 && reg == R_EDX) { 491 uint32_t edx; 492 host_cpuid(7, 2, &unused, &unused, &unused, &edx); 493 ret |= edx & CPUID_7_2_EDX_MCDT_NO; 494 } else if (function == 0xd && index == 0 && 495 (reg == R_EAX || reg == R_EDX)) { 496 /* 497 * The value returned by KVM_GET_SUPPORTED_CPUID does not include 498 * features that still have to be enabled with the arch_prctl 499 * system call. QEMU needs the full value, which is retrieved 500 * with KVM_GET_DEVICE_ATTR. 501 */ 502 struct kvm_device_attr attr = { 503 .group = 0, 504 .attr = KVM_X86_XCOMP_GUEST_SUPP, 505 .addr = (unsigned long) &bitmask 506 }; 507 508 bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES); 509 if (!sys_attr) { 510 return ret; 511 } 512 513 int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr); 514 if (rc < 0) { 515 if (rc != -ENXIO) { 516 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) " 517 "error: %d", rc); 518 } 519 return ret; 520 } 521 ret = (reg == R_EAX) ? bitmask : bitmask >> 32; 522 } else if (function == 0x80000001 && reg == R_ECX) { 523 /* 524 * It's safe to enable TOPOEXT even if it's not returned by 525 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows 526 * us to keep CPU models including TOPOEXT runnable on older kernels. 527 */ 528 ret |= CPUID_EXT3_TOPOEXT; 529 } else if (function == 0x80000001 && reg == R_EDX) { 530 /* On Intel, kvm returns cpuid according to the Intel spec, 531 * so add missing bits according to the AMD spec: 532 */ 533 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); 534 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; 535 } else if (function == 0x80000007 && reg == R_EBX) { 536 ret |= CPUID_8000_0007_EBX_OVERFLOW_RECOV | CPUID_8000_0007_EBX_SUCCOR; 537 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { 538 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't 539 * be enabled without the in-kernel irqchip 540 */ 541 if (!kvm_irqchip_in_kernel()) { 542 ret &= ~(1U << KVM_FEATURE_PV_UNHALT); 543 } 544 if (kvm_irqchip_is_split()) { 545 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID; 546 } 547 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) { 548 ret |= 1U << KVM_HINTS_REALTIME; 549 } 550 551 return ret; 552 } 553 554 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index) 555 { 556 struct { 557 struct kvm_msrs info; 558 struct kvm_msr_entry entries[1]; 559 } msr_data = {}; 560 uint64_t value; 561 uint32_t ret, can_be_one, must_be_one; 562 563 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */ 564 return 0; 565 } 566 567 /* Check if requested MSR is supported feature MSR */ 568 int i; 569 for (i = 0; i < kvm_feature_msrs->nmsrs; i++) 570 if (kvm_feature_msrs->indices[i] == index) { 571 break; 572 } 573 if (i == kvm_feature_msrs->nmsrs) { 574 return 0; /* if the feature MSR is not supported, simply return 0 */ 575 } 576 577 msr_data.info.nmsrs = 1; 578 msr_data.entries[0].index = index; 579 580 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data); 581 if (ret != 1) { 582 error_report("KVM get MSR (index=0x%x) feature failed, %s", 583 index, strerror(-ret)); 584 exit(1); 585 } 586 587 value = msr_data.entries[0].data; 588 switch (index) { 589 case MSR_IA32_VMX_PROCBASED_CTLS2: 590 if (!has_msr_vmx_procbased_ctls2) { 591 /* KVM forgot to add these bits for some time, do this ourselves. */ 592 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) & 593 CPUID_XSAVE_XSAVES) { 594 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32; 595 } 596 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) & 597 CPUID_EXT_RDRAND) { 598 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32; 599 } 600 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 601 CPUID_7_0_EBX_INVPCID) { 602 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32; 603 } 604 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 605 CPUID_7_0_EBX_RDSEED) { 606 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32; 607 } 608 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) & 609 CPUID_EXT2_RDTSCP) { 610 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32; 611 } 612 } 613 /* fall through */ 614 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 615 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 616 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 617 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 618 /* 619 * Return true for bits that can be one, but do not have to be one. 620 * The SDM tells us which bits could have a "must be one" setting, 621 * so we can do the opposite transformation in make_vmx_msr_value. 622 */ 623 must_be_one = (uint32_t)value; 624 can_be_one = (uint32_t)(value >> 32); 625 return can_be_one & ~must_be_one; 626 627 default: 628 return value; 629 } 630 } 631 632 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, 633 int *max_banks) 634 { 635 *max_banks = kvm_check_extension(s, KVM_CAP_MCE); 636 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); 637 } 638 639 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) 640 { 641 CPUState *cs = CPU(cpu); 642 CPUX86State *env = &cpu->env; 643 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_EN | MCI_STATUS_MISCV | 644 MCI_STATUS_ADDRV; 645 uint64_t mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV; 646 int flags = 0; 647 648 if (!IS_AMD_CPU(env)) { 649 status |= MCI_STATUS_S | MCI_STATUS_UC; 650 if (code == BUS_MCEERR_AR) { 651 status |= MCI_STATUS_AR | 0x134; 652 mcg_status |= MCG_STATUS_EIPV; 653 } else { 654 status |= 0xc0; 655 } 656 } else { 657 if (code == BUS_MCEERR_AR) { 658 status |= MCI_STATUS_UC | MCI_STATUS_POISON; 659 mcg_status |= MCG_STATUS_EIPV; 660 } else { 661 /* Setting the POISON bit for deferred errors indicates to the 662 * guest kernel that the address provided by the MCE is valid 663 * and usable which will ensure that the guest kernel will send 664 * a SIGBUS_AO signal to the guest process. This allows for 665 * more desirable behavior in the case that the guest process 666 * with poisoned memory has set the MCE_KILL_EARLY prctl flag 667 * which indicates that the process would prefer to handle or 668 * shutdown due to the poisoned memory condition before the 669 * memory has been accessed. 670 * 671 * While the POISON bit would not be set in a deferred error 672 * sent from hardware, the bit is not meaningful for deferred 673 * errors and can be reused in this scenario. 674 */ 675 status |= MCI_STATUS_DEFERRED | MCI_STATUS_POISON; 676 } 677 } 678 679 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; 680 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the 681 * guest kernel back into env->mcg_ext_ctl. 682 */ 683 cpu_synchronize_state(cs); 684 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { 685 mcg_status |= MCG_STATUS_LMCE; 686 flags = 0; 687 } 688 689 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, 690 (MCM_ADDR_PHYS << 6) | 0xc, flags); 691 } 692 693 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar) 694 { 695 MemoryFailureFlags mff = {.action_required = ar, .recursive = false}; 696 697 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action, 698 &mff); 699 } 700 701 static void hardware_memory_error(void *host_addr) 702 { 703 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true); 704 error_report("QEMU got Hardware memory error at addr %p", host_addr); 705 exit(1); 706 } 707 708 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) 709 { 710 X86CPU *cpu = X86_CPU(c); 711 CPUX86State *env = &cpu->env; 712 ram_addr_t ram_addr; 713 hwaddr paddr; 714 715 /* If we get an action required MCE, it has been injected by KVM 716 * while the VM was running. An action optional MCE instead should 717 * be coming from the main thread, which qemu_init_sigbus identifies 718 * as the "early kill" thread. 719 */ 720 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); 721 722 if ((env->mcg_cap & MCG_SER_P) && addr) { 723 ram_addr = qemu_ram_addr_from_host(addr); 724 if (ram_addr != RAM_ADDR_INVALID && 725 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { 726 kvm_hwpoison_page_add(ram_addr); 727 kvm_mce_inject(cpu, paddr, code); 728 729 /* 730 * Use different logging severity based on error type. 731 * If there is additional MCE reporting on the hypervisor, QEMU VA 732 * could be another source to identify the PA and MCE details. 733 */ 734 if (code == BUS_MCEERR_AR) { 735 error_report("Guest MCE Memory Error at QEMU addr %p and " 736 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 737 addr, paddr, "BUS_MCEERR_AR"); 738 } else { 739 warn_report("Guest MCE Memory Error at QEMU addr %p and " 740 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 741 addr, paddr, "BUS_MCEERR_AO"); 742 } 743 744 return; 745 } 746 747 if (code == BUS_MCEERR_AO) { 748 warn_report("Hardware memory error at addr %p of type %s " 749 "for memory used by QEMU itself instead of guest system!", 750 addr, "BUS_MCEERR_AO"); 751 } 752 } 753 754 if (code == BUS_MCEERR_AR) { 755 hardware_memory_error(addr); 756 } 757 758 /* Hope we are lucky for AO MCE, just notify a event */ 759 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false); 760 } 761 762 static void kvm_queue_exception(CPUX86State *env, 763 int32_t exception_nr, 764 uint8_t exception_has_payload, 765 uint64_t exception_payload) 766 { 767 assert(env->exception_nr == -1); 768 assert(!env->exception_pending); 769 assert(!env->exception_injected); 770 assert(!env->exception_has_payload); 771 772 env->exception_nr = exception_nr; 773 774 if (has_exception_payload) { 775 env->exception_pending = 1; 776 777 env->exception_has_payload = exception_has_payload; 778 env->exception_payload = exception_payload; 779 } else { 780 env->exception_injected = 1; 781 782 if (exception_nr == EXCP01_DB) { 783 assert(exception_has_payload); 784 env->dr[6] = exception_payload; 785 } else if (exception_nr == EXCP0E_PAGE) { 786 assert(exception_has_payload); 787 env->cr[2] = exception_payload; 788 } else { 789 assert(!exception_has_payload); 790 } 791 } 792 } 793 794 static void cpu_update_state(void *opaque, bool running, RunState state) 795 { 796 CPUX86State *env = opaque; 797 798 if (running) { 799 env->tsc_valid = false; 800 } 801 } 802 803 unsigned long kvm_arch_vcpu_id(CPUState *cs) 804 { 805 X86CPU *cpu = X86_CPU(cs); 806 return cpu->apic_id; 807 } 808 809 #ifndef KVM_CPUID_SIGNATURE_NEXT 810 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 811 #endif 812 813 static bool hyperv_enabled(X86CPU *cpu) 814 { 815 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 && 816 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) || 817 cpu->hyperv_features || cpu->hyperv_passthrough); 818 } 819 820 /* 821 * Check whether target_freq is within conservative 822 * ntp correctable bounds (250ppm) of freq 823 */ 824 static inline bool freq_within_bounds(int freq, int target_freq) 825 { 826 int max_freq = freq + (freq * 250 / 1000000); 827 int min_freq = freq - (freq * 250 / 1000000); 828 829 if (target_freq >= min_freq && target_freq <= max_freq) { 830 return true; 831 } 832 833 return false; 834 } 835 836 static int kvm_arch_set_tsc_khz(CPUState *cs) 837 { 838 X86CPU *cpu = X86_CPU(cs); 839 CPUX86State *env = &cpu->env; 840 int r, cur_freq; 841 bool set_ioctl = false; 842 843 if (!env->tsc_khz) { 844 return 0; 845 } 846 847 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 848 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP; 849 850 /* 851 * If TSC scaling is supported, attempt to set TSC frequency. 852 */ 853 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) { 854 set_ioctl = true; 855 } 856 857 /* 858 * If desired TSC frequency is within bounds of NTP correction, 859 * attempt to set TSC frequency. 860 */ 861 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) { 862 set_ioctl = true; 863 } 864 865 r = set_ioctl ? 866 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : 867 -ENOTSUP; 868 869 if (r < 0) { 870 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current 871 * TSC frequency doesn't match the one we want. 872 */ 873 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 874 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 875 -ENOTSUP; 876 if (cur_freq <= 0 || cur_freq != env->tsc_khz) { 877 warn_report("TSC frequency mismatch between " 878 "VM (%" PRId64 " kHz) and host (%d kHz), " 879 "and TSC scaling unavailable", 880 env->tsc_khz, cur_freq); 881 return r; 882 } 883 } 884 885 return 0; 886 } 887 888 static bool tsc_is_stable_and_known(CPUX86State *env) 889 { 890 if (!env->tsc_khz) { 891 return false; 892 } 893 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) 894 || env->user_tsc_khz; 895 } 896 897 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1) 898 899 static struct { 900 const char *desc; 901 struct { 902 uint32_t func; 903 int reg; 904 uint32_t bits; 905 } flags[2]; 906 uint64_t dependencies; 907 } kvm_hyperv_properties[] = { 908 [HYPERV_FEAT_RELAXED] = { 909 .desc = "relaxed timing (hv-relaxed)", 910 .flags = { 911 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 912 .bits = HV_RELAXED_TIMING_RECOMMENDED} 913 } 914 }, 915 [HYPERV_FEAT_VAPIC] = { 916 .desc = "virtual APIC (hv-vapic)", 917 .flags = { 918 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 919 .bits = HV_APIC_ACCESS_AVAILABLE} 920 } 921 }, 922 [HYPERV_FEAT_TIME] = { 923 .desc = "clocksources (hv-time)", 924 .flags = { 925 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 926 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE} 927 } 928 }, 929 [HYPERV_FEAT_CRASH] = { 930 .desc = "crash MSRs (hv-crash)", 931 .flags = { 932 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 933 .bits = HV_GUEST_CRASH_MSR_AVAILABLE} 934 } 935 }, 936 [HYPERV_FEAT_RESET] = { 937 .desc = "reset MSR (hv-reset)", 938 .flags = { 939 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 940 .bits = HV_RESET_AVAILABLE} 941 } 942 }, 943 [HYPERV_FEAT_VPINDEX] = { 944 .desc = "VP_INDEX MSR (hv-vpindex)", 945 .flags = { 946 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 947 .bits = HV_VP_INDEX_AVAILABLE} 948 } 949 }, 950 [HYPERV_FEAT_RUNTIME] = { 951 .desc = "VP_RUNTIME MSR (hv-runtime)", 952 .flags = { 953 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 954 .bits = HV_VP_RUNTIME_AVAILABLE} 955 } 956 }, 957 [HYPERV_FEAT_SYNIC] = { 958 .desc = "synthetic interrupt controller (hv-synic)", 959 .flags = { 960 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 961 .bits = HV_SYNIC_AVAILABLE} 962 } 963 }, 964 [HYPERV_FEAT_STIMER] = { 965 .desc = "synthetic timers (hv-stimer)", 966 .flags = { 967 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 968 .bits = HV_SYNTIMERS_AVAILABLE} 969 }, 970 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME) 971 }, 972 [HYPERV_FEAT_FREQUENCIES] = { 973 .desc = "frequency MSRs (hv-frequencies)", 974 .flags = { 975 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 976 .bits = HV_ACCESS_FREQUENCY_MSRS}, 977 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 978 .bits = HV_FREQUENCY_MSRS_AVAILABLE} 979 } 980 }, 981 [HYPERV_FEAT_REENLIGHTENMENT] = { 982 .desc = "reenlightenment MSRs (hv-reenlightenment)", 983 .flags = { 984 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 985 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL} 986 } 987 }, 988 [HYPERV_FEAT_TLBFLUSH] = { 989 .desc = "paravirtualized TLB flush (hv-tlbflush)", 990 .flags = { 991 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 992 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED | 993 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 994 }, 995 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 996 }, 997 [HYPERV_FEAT_EVMCS] = { 998 .desc = "enlightened VMCS (hv-evmcs)", 999 .flags = { 1000 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1001 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED} 1002 }, 1003 .dependencies = BIT(HYPERV_FEAT_VAPIC) 1004 }, 1005 [HYPERV_FEAT_IPI] = { 1006 .desc = "paravirtualized IPI (hv-ipi)", 1007 .flags = { 1008 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1009 .bits = HV_CLUSTER_IPI_RECOMMENDED | 1010 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 1011 }, 1012 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 1013 }, 1014 [HYPERV_FEAT_STIMER_DIRECT] = { 1015 .desc = "direct mode synthetic timers (hv-stimer-direct)", 1016 .flags = { 1017 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1018 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE} 1019 }, 1020 .dependencies = BIT(HYPERV_FEAT_STIMER) 1021 }, 1022 [HYPERV_FEAT_AVIC] = { 1023 .desc = "AVIC/APICv support (hv-avic/hv-apicv)", 1024 .flags = { 1025 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1026 .bits = HV_DEPRECATING_AEOI_RECOMMENDED} 1027 } 1028 }, 1029 #ifdef CONFIG_SYNDBG 1030 [HYPERV_FEAT_SYNDBG] = { 1031 .desc = "Enable synthetic kernel debugger channel (hv-syndbg)", 1032 .flags = { 1033 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1034 .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE} 1035 }, 1036 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED) 1037 }, 1038 #endif 1039 [HYPERV_FEAT_MSR_BITMAP] = { 1040 .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)", 1041 .flags = { 1042 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX, 1043 .bits = HV_NESTED_MSR_BITMAP} 1044 } 1045 }, 1046 [HYPERV_FEAT_XMM_INPUT] = { 1047 .desc = "XMM fast hypercall input (hv-xmm-input)", 1048 .flags = { 1049 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1050 .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE} 1051 } 1052 }, 1053 [HYPERV_FEAT_TLBFLUSH_EXT] = { 1054 .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)", 1055 .flags = { 1056 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1057 .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE} 1058 }, 1059 .dependencies = BIT(HYPERV_FEAT_TLBFLUSH) 1060 }, 1061 [HYPERV_FEAT_TLBFLUSH_DIRECT] = { 1062 .desc = "direct TLB flush (hv-tlbflush-direct)", 1063 .flags = { 1064 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX, 1065 .bits = HV_NESTED_DIRECT_FLUSH} 1066 }, 1067 .dependencies = BIT(HYPERV_FEAT_VAPIC) 1068 }, 1069 }; 1070 1071 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max, 1072 bool do_sys_ioctl) 1073 { 1074 struct kvm_cpuid2 *cpuid; 1075 int r, size; 1076 1077 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 1078 cpuid = g_malloc0(size); 1079 cpuid->nent = max; 1080 1081 if (do_sys_ioctl) { 1082 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1083 } else { 1084 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1085 } 1086 if (r == 0 && cpuid->nent >= max) { 1087 r = -E2BIG; 1088 } 1089 if (r < 0) { 1090 if (r == -E2BIG) { 1091 g_free(cpuid); 1092 return NULL; 1093 } else { 1094 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n", 1095 strerror(-r)); 1096 exit(1); 1097 } 1098 } 1099 return cpuid; 1100 } 1101 1102 /* 1103 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough 1104 * for all entries. 1105 */ 1106 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs) 1107 { 1108 struct kvm_cpuid2 *cpuid; 1109 /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */ 1110 int max = 11; 1111 int i; 1112 bool do_sys_ioctl; 1113 1114 do_sys_ioctl = 1115 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0; 1116 1117 /* 1118 * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is 1119 * unsupported, kvm_hyperv_expand_features() checks for that. 1120 */ 1121 assert(do_sys_ioctl || cs->kvm_state); 1122 1123 /* 1124 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with 1125 * -E2BIG, however, it doesn't report back the right size. Keep increasing 1126 * it and re-trying until we succeed. 1127 */ 1128 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) { 1129 max++; 1130 } 1131 1132 /* 1133 * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before 1134 * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the 1135 * information early, just check for the capability and set the bit 1136 * manually. 1137 */ 1138 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state, 1139 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1140 for (i = 0; i < cpuid->nent; i++) { 1141 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) { 1142 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1143 } 1144 } 1145 } 1146 1147 return cpuid; 1148 } 1149 1150 /* 1151 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature 1152 * leaves from KVM_CAP_HYPERV* and present MSRs data. 1153 */ 1154 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs) 1155 { 1156 X86CPU *cpu = X86_CPU(cs); 1157 struct kvm_cpuid2 *cpuid; 1158 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm; 1159 1160 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */ 1161 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries)); 1162 cpuid->nent = 2; 1163 1164 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */ 1165 entry_feat = &cpuid->entries[0]; 1166 entry_feat->function = HV_CPUID_FEATURES; 1167 1168 entry_recomm = &cpuid->entries[1]; 1169 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO; 1170 entry_recomm->ebx = cpu->hyperv_spinlock_attempts; 1171 1172 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) { 1173 entry_feat->eax |= HV_HYPERCALL_AVAILABLE; 1174 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE; 1175 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1176 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED; 1177 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED; 1178 } 1179 1180 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { 1181 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE; 1182 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE; 1183 } 1184 1185 if (has_msr_hv_frequencies) { 1186 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS; 1187 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE; 1188 } 1189 1190 if (has_msr_hv_crash) { 1191 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE; 1192 } 1193 1194 if (has_msr_hv_reenlightenment) { 1195 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL; 1196 } 1197 1198 if (has_msr_hv_reset) { 1199 entry_feat->eax |= HV_RESET_AVAILABLE; 1200 } 1201 1202 if (has_msr_hv_vpindex) { 1203 entry_feat->eax |= HV_VP_INDEX_AVAILABLE; 1204 } 1205 1206 if (has_msr_hv_runtime) { 1207 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE; 1208 } 1209 1210 if (has_msr_hv_synic) { 1211 unsigned int cap = cpu->hyperv_synic_kvm_only ? 1212 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1213 1214 if (kvm_check_extension(cs->kvm_state, cap) > 0) { 1215 entry_feat->eax |= HV_SYNIC_AVAILABLE; 1216 } 1217 } 1218 1219 if (has_msr_hv_stimer) { 1220 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE; 1221 } 1222 1223 if (has_msr_hv_syndbg_options) { 1224 entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE; 1225 entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE; 1226 entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED; 1227 } 1228 1229 if (kvm_check_extension(cs->kvm_state, 1230 KVM_CAP_HYPERV_TLBFLUSH) > 0) { 1231 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED; 1232 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1233 } 1234 1235 if (kvm_check_extension(cs->kvm_state, 1236 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1237 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1238 } 1239 1240 if (kvm_check_extension(cs->kvm_state, 1241 KVM_CAP_HYPERV_SEND_IPI) > 0) { 1242 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED; 1243 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1244 } 1245 1246 return cpuid; 1247 } 1248 1249 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg) 1250 { 1251 struct kvm_cpuid_entry2 *entry; 1252 struct kvm_cpuid2 *cpuid; 1253 1254 if (hv_cpuid_cache) { 1255 cpuid = hv_cpuid_cache; 1256 } else { 1257 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) { 1258 cpuid = get_supported_hv_cpuid(cs); 1259 } else { 1260 /* 1261 * 'cs->kvm_state' may be NULL when Hyper-V features are expanded 1262 * before KVM context is created but this is only done when 1263 * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies 1264 * KVM_CAP_HYPERV_CPUID. 1265 */ 1266 assert(cs->kvm_state); 1267 1268 cpuid = get_supported_hv_cpuid_legacy(cs); 1269 } 1270 hv_cpuid_cache = cpuid; 1271 } 1272 1273 if (!cpuid) { 1274 return 0; 1275 } 1276 1277 entry = cpuid_find_entry(cpuid, func, 0); 1278 if (!entry) { 1279 return 0; 1280 } 1281 1282 return cpuid_entry_get_reg(entry, reg); 1283 } 1284 1285 static bool hyperv_feature_supported(CPUState *cs, int feature) 1286 { 1287 uint32_t func, bits; 1288 int i, reg; 1289 1290 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) { 1291 1292 func = kvm_hyperv_properties[feature].flags[i].func; 1293 reg = kvm_hyperv_properties[feature].flags[i].reg; 1294 bits = kvm_hyperv_properties[feature].flags[i].bits; 1295 1296 if (!func) { 1297 continue; 1298 } 1299 1300 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) { 1301 return false; 1302 } 1303 } 1304 1305 return true; 1306 } 1307 1308 /* Checks that all feature dependencies are enabled */ 1309 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp) 1310 { 1311 uint64_t deps; 1312 int dep_feat; 1313 1314 deps = kvm_hyperv_properties[feature].dependencies; 1315 while (deps) { 1316 dep_feat = ctz64(deps); 1317 if (!(hyperv_feat_enabled(cpu, dep_feat))) { 1318 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1319 kvm_hyperv_properties[feature].desc, 1320 kvm_hyperv_properties[dep_feat].desc); 1321 return false; 1322 } 1323 deps &= ~(1ull << dep_feat); 1324 } 1325 1326 return true; 1327 } 1328 1329 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg) 1330 { 1331 X86CPU *cpu = X86_CPU(cs); 1332 uint32_t r = 0; 1333 int i, j; 1334 1335 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) { 1336 if (!hyperv_feat_enabled(cpu, i)) { 1337 continue; 1338 } 1339 1340 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) { 1341 if (kvm_hyperv_properties[i].flags[j].func != func) { 1342 continue; 1343 } 1344 if (kvm_hyperv_properties[i].flags[j].reg != reg) { 1345 continue; 1346 } 1347 1348 r |= kvm_hyperv_properties[i].flags[j].bits; 1349 } 1350 } 1351 1352 /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */ 1353 if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) { 1354 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1355 r |= DEFAULT_EVMCS_VERSION; 1356 } 1357 } 1358 1359 return r; 1360 } 1361 1362 /* 1363 * Expand Hyper-V CPU features. In partucular, check that all the requested 1364 * features are supported by the host and the sanity of the configuration 1365 * (that all the required dependencies are included). Also, this takes care 1366 * of 'hv_passthrough' mode and fills the environment with all supported 1367 * Hyper-V features. 1368 */ 1369 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp) 1370 { 1371 CPUState *cs = CPU(cpu); 1372 Error *local_err = NULL; 1373 int feat; 1374 1375 if (!hyperv_enabled(cpu)) 1376 return true; 1377 1378 /* 1379 * When kvm_hyperv_expand_features is called at CPU feature expansion 1380 * time per-CPU kvm_state is not available yet so we can only proceed 1381 * when KVM_CAP_SYS_HYPERV_CPUID is supported. 1382 */ 1383 if (!cs->kvm_state && 1384 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID)) 1385 return true; 1386 1387 if (cpu->hyperv_passthrough) { 1388 cpu->hyperv_vendor_id[0] = 1389 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX); 1390 cpu->hyperv_vendor_id[1] = 1391 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX); 1392 cpu->hyperv_vendor_id[2] = 1393 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX); 1394 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor, 1395 sizeof(cpu->hyperv_vendor_id) + 1); 1396 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id, 1397 sizeof(cpu->hyperv_vendor_id)); 1398 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0; 1399 1400 cpu->hyperv_interface_id[0] = 1401 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX); 1402 cpu->hyperv_interface_id[1] = 1403 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX); 1404 cpu->hyperv_interface_id[2] = 1405 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX); 1406 cpu->hyperv_interface_id[3] = 1407 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX); 1408 1409 cpu->hyperv_ver_id_build = 1410 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX); 1411 cpu->hyperv_ver_id_major = 1412 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16; 1413 cpu->hyperv_ver_id_minor = 1414 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff; 1415 cpu->hyperv_ver_id_sp = 1416 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX); 1417 cpu->hyperv_ver_id_sb = 1418 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24; 1419 cpu->hyperv_ver_id_sn = 1420 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff; 1421 1422 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, 1423 R_EAX); 1424 cpu->hyperv_limits[0] = 1425 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX); 1426 cpu->hyperv_limits[1] = 1427 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX); 1428 cpu->hyperv_limits[2] = 1429 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX); 1430 1431 cpu->hyperv_spinlock_attempts = 1432 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX); 1433 1434 /* 1435 * Mark feature as enabled in 'cpu->hyperv_features' as 1436 * hv_build_cpuid_leaf() uses this info to build guest CPUIDs. 1437 */ 1438 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1439 if (hyperv_feature_supported(cs, feat)) { 1440 cpu->hyperv_features |= BIT(feat); 1441 } 1442 } 1443 } else { 1444 /* Check features availability and dependencies */ 1445 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1446 /* If the feature was not requested skip it. */ 1447 if (!hyperv_feat_enabled(cpu, feat)) { 1448 continue; 1449 } 1450 1451 /* Check if the feature is supported by KVM */ 1452 if (!hyperv_feature_supported(cs, feat)) { 1453 error_setg(errp, "Hyper-V %s is not supported by kernel", 1454 kvm_hyperv_properties[feat].desc); 1455 return false; 1456 } 1457 1458 /* Check dependencies */ 1459 if (!hv_feature_check_deps(cpu, feat, &local_err)) { 1460 error_propagate(errp, local_err); 1461 return false; 1462 } 1463 } 1464 } 1465 1466 /* Additional dependencies not covered by kvm_hyperv_properties[] */ 1467 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1468 !cpu->hyperv_synic_kvm_only && 1469 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) { 1470 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1471 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc, 1472 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc); 1473 return false; 1474 } 1475 1476 return true; 1477 } 1478 1479 /* 1480 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent. 1481 */ 1482 static int hyperv_fill_cpuids(CPUState *cs, 1483 struct kvm_cpuid_entry2 *cpuid_ent) 1484 { 1485 X86CPU *cpu = X86_CPU(cs); 1486 struct kvm_cpuid_entry2 *c; 1487 uint32_t signature[3]; 1488 uint32_t cpuid_i = 0, max_cpuid_leaf = 0; 1489 uint32_t nested_eax = 1490 hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX); 1491 1492 max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES : 1493 HV_CPUID_IMPLEMENT_LIMITS; 1494 1495 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) { 1496 max_cpuid_leaf = 1497 MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES); 1498 } 1499 1500 c = &cpuid_ent[cpuid_i++]; 1501 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS; 1502 c->eax = max_cpuid_leaf; 1503 c->ebx = cpu->hyperv_vendor_id[0]; 1504 c->ecx = cpu->hyperv_vendor_id[1]; 1505 c->edx = cpu->hyperv_vendor_id[2]; 1506 1507 c = &cpuid_ent[cpuid_i++]; 1508 c->function = HV_CPUID_INTERFACE; 1509 c->eax = cpu->hyperv_interface_id[0]; 1510 c->ebx = cpu->hyperv_interface_id[1]; 1511 c->ecx = cpu->hyperv_interface_id[2]; 1512 c->edx = cpu->hyperv_interface_id[3]; 1513 1514 c = &cpuid_ent[cpuid_i++]; 1515 c->function = HV_CPUID_VERSION; 1516 c->eax = cpu->hyperv_ver_id_build; 1517 c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 | 1518 cpu->hyperv_ver_id_minor; 1519 c->ecx = cpu->hyperv_ver_id_sp; 1520 c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 | 1521 (cpu->hyperv_ver_id_sn & 0xffffff); 1522 1523 c = &cpuid_ent[cpuid_i++]; 1524 c->function = HV_CPUID_FEATURES; 1525 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX); 1526 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX); 1527 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX); 1528 1529 /* Unconditionally required with any Hyper-V enlightenment */ 1530 c->eax |= HV_HYPERCALL_AVAILABLE; 1531 1532 /* SynIC and Vmbus devices require messages/signals hypercalls */ 1533 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1534 !cpu->hyperv_synic_kvm_only) { 1535 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS; 1536 } 1537 1538 1539 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */ 1540 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1541 1542 c = &cpuid_ent[cpuid_i++]; 1543 c->function = HV_CPUID_ENLIGHTMENT_INFO; 1544 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX); 1545 c->ebx = cpu->hyperv_spinlock_attempts; 1546 1547 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) && 1548 !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) { 1549 c->eax |= HV_APIC_ACCESS_RECOMMENDED; 1550 } 1551 1552 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) { 1553 c->eax |= HV_NO_NONARCH_CORESHARING; 1554 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) { 1555 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) & 1556 HV_NO_NONARCH_CORESHARING; 1557 } 1558 1559 c = &cpuid_ent[cpuid_i++]; 1560 c->function = HV_CPUID_IMPLEMENT_LIMITS; 1561 c->eax = cpu->hv_max_vps; 1562 c->ebx = cpu->hyperv_limits[0]; 1563 c->ecx = cpu->hyperv_limits[1]; 1564 c->edx = cpu->hyperv_limits[2]; 1565 1566 if (nested_eax) { 1567 uint32_t function; 1568 1569 /* Create zeroed 0x40000006..0x40000009 leaves */ 1570 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1; 1571 function < HV_CPUID_NESTED_FEATURES; function++) { 1572 c = &cpuid_ent[cpuid_i++]; 1573 c->function = function; 1574 } 1575 1576 c = &cpuid_ent[cpuid_i++]; 1577 c->function = HV_CPUID_NESTED_FEATURES; 1578 c->eax = nested_eax; 1579 } 1580 1581 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) { 1582 c = &cpuid_ent[cpuid_i++]; 1583 c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS; 1584 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ? 1585 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS; 1586 memcpy(signature, "Microsoft VS", 12); 1587 c->eax = 0; 1588 c->ebx = signature[0]; 1589 c->ecx = signature[1]; 1590 c->edx = signature[2]; 1591 1592 c = &cpuid_ent[cpuid_i++]; 1593 c->function = HV_CPUID_SYNDBG_INTERFACE; 1594 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12); 1595 c->eax = signature[0]; 1596 c->ebx = 0; 1597 c->ecx = 0; 1598 c->edx = 0; 1599 1600 c = &cpuid_ent[cpuid_i++]; 1601 c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES; 1602 c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING; 1603 c->ebx = 0; 1604 c->ecx = 0; 1605 c->edx = 0; 1606 } 1607 1608 return cpuid_i; 1609 } 1610 1611 static Error *hv_passthrough_mig_blocker; 1612 static Error *hv_no_nonarch_cs_mig_blocker; 1613 1614 /* Checks that the exposed eVMCS version range is supported by KVM */ 1615 static bool evmcs_version_supported(uint16_t evmcs_version, 1616 uint16_t supported_evmcs_version) 1617 { 1618 uint8_t min_version = evmcs_version & 0xff; 1619 uint8_t max_version = evmcs_version >> 8; 1620 uint8_t min_supported_version = supported_evmcs_version & 0xff; 1621 uint8_t max_supported_version = supported_evmcs_version >> 8; 1622 1623 return (min_version >= min_supported_version) && 1624 (max_version <= max_supported_version); 1625 } 1626 1627 static int hyperv_init_vcpu(X86CPU *cpu) 1628 { 1629 CPUState *cs = CPU(cpu); 1630 Error *local_err = NULL; 1631 int ret; 1632 1633 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) { 1634 error_setg(&hv_passthrough_mig_blocker, 1635 "'hv-passthrough' CPU flag prevents migration, use explicit" 1636 " set of hv-* flags instead"); 1637 ret = migrate_add_blocker(&hv_passthrough_mig_blocker, &local_err); 1638 if (ret < 0) { 1639 error_report_err(local_err); 1640 return ret; 1641 } 1642 } 1643 1644 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO && 1645 hv_no_nonarch_cs_mig_blocker == NULL) { 1646 error_setg(&hv_no_nonarch_cs_mig_blocker, 1647 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration" 1648 " use explicit 'hv-no-nonarch-coresharing=on' instead (but" 1649 " make sure SMT is disabled and/or that vCPUs are properly" 1650 " pinned)"); 1651 ret = migrate_add_blocker(&hv_no_nonarch_cs_mig_blocker, &local_err); 1652 if (ret < 0) { 1653 error_report_err(local_err); 1654 return ret; 1655 } 1656 } 1657 1658 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) { 1659 /* 1660 * the kernel doesn't support setting vp_index; assert that its value 1661 * is in sync 1662 */ 1663 uint64_t value; 1664 1665 ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value); 1666 if (ret < 0) { 1667 return ret; 1668 } 1669 1670 if (value != hyperv_vp_index(CPU(cpu))) { 1671 error_report("kernel's vp_index != QEMU's vp_index"); 1672 return -ENXIO; 1673 } 1674 } 1675 1676 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 1677 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ? 1678 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1679 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0); 1680 if (ret < 0) { 1681 error_report("failed to turn on HyperV SynIC in KVM: %s", 1682 strerror(-ret)); 1683 return ret; 1684 } 1685 1686 if (!cpu->hyperv_synic_kvm_only) { 1687 ret = hyperv_x86_synic_add(cpu); 1688 if (ret < 0) { 1689 error_report("failed to create HyperV SynIC: %s", 1690 strerror(-ret)); 1691 return ret; 1692 } 1693 } 1694 } 1695 1696 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1697 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION; 1698 uint16_t supported_evmcs_version; 1699 1700 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0, 1701 (uintptr_t)&supported_evmcs_version); 1702 1703 /* 1704 * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs' 1705 * option sets. Note: we hardcode the maximum supported eVMCS version 1706 * to '1' as well so 'hv-evmcs' feature is migratable even when (and if) 1707 * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have 1708 * to be added. 1709 */ 1710 if (ret < 0) { 1711 error_report("Hyper-V %s is not supported by kernel", 1712 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc); 1713 return ret; 1714 } 1715 1716 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) { 1717 error_report("eVMCS version range [%d..%d] is not supported by " 1718 "kernel (supported: [%d..%d])", evmcs_version & 0xff, 1719 evmcs_version >> 8, supported_evmcs_version & 0xff, 1720 supported_evmcs_version >> 8); 1721 return -ENOTSUP; 1722 } 1723 } 1724 1725 if (cpu->hyperv_enforce_cpuid) { 1726 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1); 1727 if (ret < 0) { 1728 error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s", 1729 strerror(-ret)); 1730 return ret; 1731 } 1732 } 1733 1734 /* Skip SynIC and VP_INDEX since they are hard deps already */ 1735 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_STIMER) && 1736 hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) && 1737 hyperv_feat_enabled(cpu, HYPERV_FEAT_RUNTIME)) { 1738 hyperv_x86_set_vmbus_recommended_features_enabled(); 1739 } 1740 1741 return 0; 1742 } 1743 1744 static Error *invtsc_mig_blocker; 1745 1746 #define KVM_MAX_CPUID_ENTRIES 100 1747 1748 static void kvm_init_xsave(CPUX86State *env) 1749 { 1750 if (has_xsave2) { 1751 env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096); 1752 } else { 1753 env->xsave_buf_len = sizeof(struct kvm_xsave); 1754 } 1755 1756 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len); 1757 memset(env->xsave_buf, 0, env->xsave_buf_len); 1758 /* 1759 * The allocated storage must be large enough for all of the 1760 * possible XSAVE state components. 1761 */ 1762 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <= 1763 env->xsave_buf_len); 1764 } 1765 1766 static void kvm_init_nested_state(CPUX86State *env) 1767 { 1768 struct kvm_vmx_nested_state_hdr *vmx_hdr; 1769 uint32_t size; 1770 1771 if (!env->nested_state) { 1772 return; 1773 } 1774 1775 size = env->nested_state->size; 1776 1777 memset(env->nested_state, 0, size); 1778 env->nested_state->size = size; 1779 1780 if (cpu_has_vmx(env)) { 1781 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX; 1782 vmx_hdr = &env->nested_state->hdr.vmx; 1783 vmx_hdr->vmxon_pa = -1ull; 1784 vmx_hdr->vmcs12_pa = -1ull; 1785 } else if (cpu_has_svm(env)) { 1786 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM; 1787 } 1788 } 1789 1790 static uint32_t kvm_x86_build_cpuid(CPUX86State *env, 1791 struct kvm_cpuid_entry2 *entries, 1792 uint32_t cpuid_i) 1793 { 1794 uint32_t limit, i, j; 1795 uint32_t unused; 1796 struct kvm_cpuid_entry2 *c; 1797 1798 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); 1799 1800 for (i = 0; i <= limit; i++) { 1801 j = 0; 1802 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1803 goto full; 1804 } 1805 c = &entries[cpuid_i++]; 1806 switch (i) { 1807 case 2: { 1808 /* Keep reading function 2 till all the input is received */ 1809 int times; 1810 1811 c->function = i; 1812 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | 1813 KVM_CPUID_FLAG_STATE_READ_NEXT; 1814 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1815 times = c->eax & 0xff; 1816 1817 for (j = 1; j < times; ++j) { 1818 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1819 goto full; 1820 } 1821 c = &entries[cpuid_i++]; 1822 c->function = i; 1823 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; 1824 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1825 } 1826 break; 1827 } 1828 case 0x1f: 1829 if (!x86_has_extended_topo(env->avail_cpu_topo)) { 1830 cpuid_i--; 1831 break; 1832 } 1833 /* fallthrough */ 1834 case 4: 1835 case 0xb: 1836 case 0xd: 1837 for (j = 0; ; j++) { 1838 if (i == 0xd && j == 64) { 1839 break; 1840 } 1841 1842 c->function = i; 1843 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1844 c->index = j; 1845 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1846 1847 if (i == 4 && c->eax == 0) { 1848 break; 1849 } 1850 if (i == 0xb && !(c->ecx & 0xff00)) { 1851 break; 1852 } 1853 if (i == 0x1f && !(c->ecx & 0xff00)) { 1854 break; 1855 } 1856 if (i == 0xd && c->eax == 0) { 1857 continue; 1858 } 1859 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1860 goto full; 1861 } 1862 c = &entries[cpuid_i++]; 1863 } 1864 break; 1865 case 0x12: 1866 for (j = 0; ; j++) { 1867 c->function = i; 1868 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1869 c->index = j; 1870 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1871 1872 if (j > 1 && (c->eax & 0xf) != 1) { 1873 break; 1874 } 1875 1876 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1877 goto full; 1878 } 1879 c = &entries[cpuid_i++]; 1880 } 1881 break; 1882 case 0x7: 1883 case 0x14: 1884 case 0x1d: 1885 case 0x1e: { 1886 uint32_t times; 1887 1888 c->function = i; 1889 c->index = 0; 1890 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1891 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1892 times = c->eax; 1893 1894 for (j = 1; j <= times; ++j) { 1895 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1896 goto full; 1897 } 1898 c = &entries[cpuid_i++]; 1899 c->function = i; 1900 c->index = j; 1901 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1902 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1903 } 1904 break; 1905 } 1906 default: 1907 c->function = i; 1908 c->flags = 0; 1909 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1910 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 1911 /* 1912 * KVM already returns all zeroes if a CPUID entry is missing, 1913 * so we can omit it and avoid hitting KVM's 80-entry limit. 1914 */ 1915 cpuid_i--; 1916 } 1917 break; 1918 } 1919 } 1920 1921 if (limit >= 0x0a) { 1922 uint32_t eax, edx; 1923 1924 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx); 1925 1926 has_architectural_pmu_version = eax & 0xff; 1927 if (has_architectural_pmu_version > 0) { 1928 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8; 1929 1930 /* Shouldn't be more than 32, since that's the number of bits 1931 * available in EBX to tell us _which_ counters are available. 1932 * Play it safe. 1933 */ 1934 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) { 1935 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS; 1936 } 1937 1938 if (has_architectural_pmu_version > 1) { 1939 num_architectural_pmu_fixed_counters = edx & 0x1f; 1940 1941 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) { 1942 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS; 1943 } 1944 } 1945 } 1946 } 1947 1948 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); 1949 1950 for (i = 0x80000000; i <= limit; i++) { 1951 j = 0; 1952 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1953 goto full; 1954 } 1955 c = &entries[cpuid_i++]; 1956 1957 switch (i) { 1958 case 0x8000001d: 1959 /* Query for all AMD cache information leaves */ 1960 for (j = 0; ; j++) { 1961 c->function = i; 1962 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1963 c->index = j; 1964 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1965 1966 if (c->eax == 0) { 1967 break; 1968 } 1969 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1970 goto full; 1971 } 1972 c = &entries[cpuid_i++]; 1973 } 1974 break; 1975 default: 1976 c->function = i; 1977 c->flags = 0; 1978 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1979 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 1980 /* 1981 * KVM already returns all zeroes if a CPUID entry is missing, 1982 * so we can omit it and avoid hitting KVM's 80-entry limit. 1983 */ 1984 cpuid_i--; 1985 } 1986 break; 1987 } 1988 } 1989 1990 /* Call Centaur's CPUID instructions they are supported. */ 1991 if (env->cpuid_xlevel2 > 0) { 1992 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); 1993 1994 for (i = 0xC0000000; i <= limit; i++) { 1995 j = 0; 1996 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1997 goto full; 1998 } 1999 c = &entries[cpuid_i++]; 2000 2001 c->function = i; 2002 c->flags = 0; 2003 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 2004 } 2005 } 2006 2007 return cpuid_i; 2008 2009 full: 2010 fprintf(stderr, "cpuid_data is full, no space for " 2011 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 2012 abort(); 2013 } 2014 2015 int kvm_arch_init_vcpu(CPUState *cs) 2016 { 2017 struct { 2018 struct kvm_cpuid2 cpuid; 2019 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; 2020 } cpuid_data; 2021 /* 2022 * The kernel defines these structs with padding fields so there 2023 * should be no extra padding in our cpuid_data struct. 2024 */ 2025 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) != 2026 sizeof(struct kvm_cpuid2) + 2027 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES); 2028 2029 X86CPU *cpu = X86_CPU(cs); 2030 CPUX86State *env = &cpu->env; 2031 uint32_t cpuid_i; 2032 struct kvm_cpuid_entry2 *c; 2033 uint32_t signature[3]; 2034 int kvm_base = KVM_CPUID_SIGNATURE; 2035 int max_nested_state_len; 2036 int r; 2037 Error *local_err = NULL; 2038 2039 memset(&cpuid_data, 0, sizeof(cpuid_data)); 2040 2041 cpuid_i = 0; 2042 2043 has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2); 2044 2045 r = kvm_arch_set_tsc_khz(cs); 2046 if (r < 0) { 2047 return r; 2048 } 2049 2050 /* vcpu's TSC frequency is either specified by user, or following 2051 * the value used by KVM if the former is not present. In the 2052 * latter case, we query it from KVM and record in env->tsc_khz, 2053 * so that vcpu's TSC frequency can be migrated later via this field. 2054 */ 2055 if (!env->tsc_khz) { 2056 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 2057 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 2058 -ENOTSUP; 2059 if (r > 0) { 2060 env->tsc_khz = r; 2061 } 2062 } 2063 2064 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY; 2065 2066 /* 2067 * kvm_hyperv_expand_features() is called here for the second time in case 2068 * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle 2069 * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to 2070 * check which Hyper-V enlightenments are supported and which are not, we 2071 * can still proceed and check/expand Hyper-V enlightenments here so legacy 2072 * behavior is preserved. 2073 */ 2074 if (!kvm_hyperv_expand_features(cpu, &local_err)) { 2075 error_report_err(local_err); 2076 return -ENOSYS; 2077 } 2078 2079 if (hyperv_enabled(cpu)) { 2080 r = hyperv_init_vcpu(cpu); 2081 if (r) { 2082 return r; 2083 } 2084 2085 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries); 2086 kvm_base = KVM_CPUID_SIGNATURE_NEXT; 2087 has_msr_hv_hypercall = true; 2088 } 2089 2090 if (cs->kvm_state->xen_version) { 2091 #ifdef CONFIG_XEN_EMU 2092 struct kvm_cpuid_entry2 *xen_max_leaf; 2093 2094 memcpy(signature, "XenVMMXenVMM", 12); 2095 2096 xen_max_leaf = c = &cpuid_data.entries[cpuid_i++]; 2097 c->function = kvm_base + XEN_CPUID_SIGNATURE; 2098 c->eax = kvm_base + XEN_CPUID_TIME; 2099 c->ebx = signature[0]; 2100 c->ecx = signature[1]; 2101 c->edx = signature[2]; 2102 2103 c = &cpuid_data.entries[cpuid_i++]; 2104 c->function = kvm_base + XEN_CPUID_VENDOR; 2105 c->eax = cs->kvm_state->xen_version; 2106 c->ebx = 0; 2107 c->ecx = 0; 2108 c->edx = 0; 2109 2110 c = &cpuid_data.entries[cpuid_i++]; 2111 c->function = kvm_base + XEN_CPUID_HVM_MSR; 2112 /* Number of hypercall-transfer pages */ 2113 c->eax = 1; 2114 /* Hypercall MSR base address */ 2115 if (hyperv_enabled(cpu)) { 2116 c->ebx = XEN_HYPERCALL_MSR_HYPERV; 2117 kvm_xen_init(cs->kvm_state, c->ebx); 2118 } else { 2119 c->ebx = XEN_HYPERCALL_MSR; 2120 } 2121 c->ecx = 0; 2122 c->edx = 0; 2123 2124 c = &cpuid_data.entries[cpuid_i++]; 2125 c->function = kvm_base + XEN_CPUID_TIME; 2126 c->eax = ((!!tsc_is_stable_and_known(env) << 1) | 2127 (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2)); 2128 /* default=0 (emulate if necessary) */ 2129 c->ebx = 0; 2130 /* guest tsc frequency */ 2131 c->ecx = env->user_tsc_khz; 2132 /* guest tsc incarnation (migration count) */ 2133 c->edx = 0; 2134 2135 c = &cpuid_data.entries[cpuid_i++]; 2136 c->function = kvm_base + XEN_CPUID_HVM; 2137 xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM; 2138 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) { 2139 c->function = kvm_base + XEN_CPUID_HVM; 2140 2141 if (cpu->xen_vapic) { 2142 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT; 2143 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT; 2144 } 2145 2146 c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS; 2147 2148 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) { 2149 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT; 2150 c->ebx = cs->cpu_index; 2151 } 2152 2153 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 17)) { 2154 c->eax |= XEN_HVM_CPUID_UPCALL_VECTOR; 2155 } 2156 } 2157 2158 r = kvm_xen_init_vcpu(cs); 2159 if (r) { 2160 return r; 2161 } 2162 2163 kvm_base += 0x100; 2164 #else /* CONFIG_XEN_EMU */ 2165 /* This should never happen as kvm_arch_init() would have died first. */ 2166 fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n"); 2167 abort(); 2168 #endif 2169 } else if (cpu->expose_kvm) { 2170 memcpy(signature, "KVMKVMKVM\0\0\0", 12); 2171 c = &cpuid_data.entries[cpuid_i++]; 2172 c->function = KVM_CPUID_SIGNATURE | kvm_base; 2173 c->eax = KVM_CPUID_FEATURES | kvm_base; 2174 c->ebx = signature[0]; 2175 c->ecx = signature[1]; 2176 c->edx = signature[2]; 2177 2178 c = &cpuid_data.entries[cpuid_i++]; 2179 c->function = KVM_CPUID_FEATURES | kvm_base; 2180 c->eax = env->features[FEAT_KVM]; 2181 c->edx = env->features[FEAT_KVM_HINTS]; 2182 } 2183 2184 if (cpu->kvm_pv_enforce_cpuid) { 2185 r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1); 2186 if (r < 0) { 2187 fprintf(stderr, 2188 "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s", 2189 strerror(-r)); 2190 abort(); 2191 } 2192 } 2193 2194 cpuid_i = kvm_x86_build_cpuid(env, cpuid_data.entries, cpuid_i); 2195 cpuid_data.cpuid.nent = cpuid_i; 2196 2197 if (((env->cpuid_version >> 8)&0xF) >= 6 2198 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == 2199 (CPUID_MCE | CPUID_MCA)) { 2200 uint64_t mcg_cap, unsupported_caps; 2201 int banks; 2202 int ret; 2203 2204 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); 2205 if (ret < 0) { 2206 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); 2207 return ret; 2208 } 2209 2210 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { 2211 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", 2212 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); 2213 return -ENOTSUP; 2214 } 2215 2216 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); 2217 if (unsupported_caps) { 2218 if (unsupported_caps & MCG_LMCE_P) { 2219 error_report("kvm: LMCE not supported"); 2220 return -ENOTSUP; 2221 } 2222 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64, 2223 unsupported_caps); 2224 } 2225 2226 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; 2227 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); 2228 if (ret < 0) { 2229 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); 2230 return ret; 2231 } 2232 } 2233 2234 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env); 2235 2236 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); 2237 if (c) { 2238 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || 2239 !!(c->ecx & CPUID_EXT_SMX); 2240 } 2241 2242 c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0); 2243 if (c && (c->ebx & CPUID_7_0_EBX_SGX)) { 2244 has_msr_feature_control = true; 2245 } 2246 2247 if (env->mcg_cap & MCG_LMCE_P) { 2248 has_msr_mcg_ext_ctl = has_msr_feature_control = true; 2249 } 2250 2251 if (!env->user_tsc_khz) { 2252 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && 2253 invtsc_mig_blocker == NULL) { 2254 error_setg(&invtsc_mig_blocker, 2255 "State blocked by non-migratable CPU device" 2256 " (invtsc flag)"); 2257 r = migrate_add_blocker(&invtsc_mig_blocker, &local_err); 2258 if (r < 0) { 2259 error_report_err(local_err); 2260 return r; 2261 } 2262 } 2263 } 2264 2265 if (cpu->vmware_cpuid_freq 2266 /* Guests depend on 0x40000000 to detect this feature, so only expose 2267 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ 2268 && cpu->expose_kvm 2269 && kvm_base == KVM_CPUID_SIGNATURE 2270 /* TSC clock must be stable and known for this feature. */ 2271 && tsc_is_stable_and_known(env)) { 2272 2273 c = &cpuid_data.entries[cpuid_i++]; 2274 c->function = KVM_CPUID_SIGNATURE | 0x10; 2275 c->eax = env->tsc_khz; 2276 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */ 2277 c->ecx = c->edx = 0; 2278 2279 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); 2280 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); 2281 } 2282 2283 cpuid_data.cpuid.nent = cpuid_i; 2284 2285 cpuid_data.cpuid.padding = 0; 2286 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); 2287 if (r) { 2288 goto fail; 2289 } 2290 kvm_init_xsave(env); 2291 2292 max_nested_state_len = kvm_max_nested_state_length(); 2293 if (max_nested_state_len > 0) { 2294 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data)); 2295 2296 if (cpu_has_vmx(env) || cpu_has_svm(env)) { 2297 env->nested_state = g_malloc0(max_nested_state_len); 2298 env->nested_state->size = max_nested_state_len; 2299 2300 kvm_init_nested_state(env); 2301 } 2302 } 2303 2304 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); 2305 2306 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { 2307 has_msr_tsc_aux = false; 2308 } 2309 2310 kvm_init_msrs(cpu); 2311 2312 return 0; 2313 2314 fail: 2315 migrate_del_blocker(&invtsc_mig_blocker); 2316 2317 return r; 2318 } 2319 2320 int kvm_arch_destroy_vcpu(CPUState *cs) 2321 { 2322 X86CPU *cpu = X86_CPU(cs); 2323 CPUX86State *env = &cpu->env; 2324 2325 g_free(env->xsave_buf); 2326 2327 g_free(cpu->kvm_msr_buf); 2328 cpu->kvm_msr_buf = NULL; 2329 2330 g_free(env->nested_state); 2331 env->nested_state = NULL; 2332 2333 qemu_del_vm_change_state_handler(cpu->vmsentry); 2334 2335 return 0; 2336 } 2337 2338 void kvm_arch_reset_vcpu(X86CPU *cpu) 2339 { 2340 CPUX86State *env = &cpu->env; 2341 2342 env->xcr0 = 1; 2343 if (kvm_irqchip_in_kernel()) { 2344 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : 2345 KVM_MP_STATE_UNINITIALIZED; 2346 } else { 2347 env->mp_state = KVM_MP_STATE_RUNNABLE; 2348 } 2349 2350 /* enabled by default */ 2351 env->poll_control_msr = 1; 2352 2353 kvm_init_nested_state(env); 2354 2355 sev_es_set_reset_vector(CPU(cpu)); 2356 } 2357 2358 void kvm_arch_after_reset_vcpu(X86CPU *cpu) 2359 { 2360 CPUX86State *env = &cpu->env; 2361 int i; 2362 2363 /* 2364 * Reset SynIC after all other devices have been reset to let them remove 2365 * their SINT routes first. 2366 */ 2367 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 2368 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { 2369 env->msr_hv_synic_sint[i] = HV_SINT_MASKED; 2370 } 2371 2372 hyperv_x86_synic_reset(cpu); 2373 } 2374 } 2375 2376 void kvm_arch_do_init_vcpu(X86CPU *cpu) 2377 { 2378 CPUX86State *env = &cpu->env; 2379 2380 /* APs get directly into wait-for-SIPI state. */ 2381 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { 2382 env->mp_state = KVM_MP_STATE_INIT_RECEIVED; 2383 } 2384 } 2385 2386 static int kvm_get_supported_feature_msrs(KVMState *s) 2387 { 2388 int ret = 0; 2389 2390 if (kvm_feature_msrs != NULL) { 2391 return 0; 2392 } 2393 2394 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) { 2395 return 0; 2396 } 2397 2398 struct kvm_msr_list msr_list; 2399 2400 msr_list.nmsrs = 0; 2401 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list); 2402 if (ret < 0 && ret != -E2BIG) { 2403 error_report("Fetch KVM feature MSR list failed: %s", 2404 strerror(-ret)); 2405 return ret; 2406 } 2407 2408 assert(msr_list.nmsrs > 0); 2409 kvm_feature_msrs = g_malloc0(sizeof(msr_list) + 2410 msr_list.nmsrs * sizeof(msr_list.indices[0])); 2411 2412 kvm_feature_msrs->nmsrs = msr_list.nmsrs; 2413 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs); 2414 2415 if (ret < 0) { 2416 error_report("Fetch KVM feature MSR list failed: %s", 2417 strerror(-ret)); 2418 g_free(kvm_feature_msrs); 2419 kvm_feature_msrs = NULL; 2420 return ret; 2421 } 2422 2423 return 0; 2424 } 2425 2426 static int kvm_get_supported_msrs(KVMState *s) 2427 { 2428 int ret = 0; 2429 struct kvm_msr_list msr_list, *kvm_msr_list; 2430 2431 /* 2432 * Obtain MSR list from KVM. These are the MSRs that we must 2433 * save/restore. 2434 */ 2435 msr_list.nmsrs = 0; 2436 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); 2437 if (ret < 0 && ret != -E2BIG) { 2438 return ret; 2439 } 2440 /* 2441 * Old kernel modules had a bug and could write beyond the provided 2442 * memory. Allocate at least a safe amount of 1K. 2443 */ 2444 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + 2445 msr_list.nmsrs * 2446 sizeof(msr_list.indices[0]))); 2447 2448 kvm_msr_list->nmsrs = msr_list.nmsrs; 2449 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); 2450 if (ret >= 0) { 2451 int i; 2452 2453 for (i = 0; i < kvm_msr_list->nmsrs; i++) { 2454 switch (kvm_msr_list->indices[i]) { 2455 case MSR_STAR: 2456 has_msr_star = true; 2457 break; 2458 case MSR_VM_HSAVE_PA: 2459 has_msr_hsave_pa = true; 2460 break; 2461 case MSR_TSC_AUX: 2462 has_msr_tsc_aux = true; 2463 break; 2464 case MSR_TSC_ADJUST: 2465 has_msr_tsc_adjust = true; 2466 break; 2467 case MSR_IA32_TSCDEADLINE: 2468 has_msr_tsc_deadline = true; 2469 break; 2470 case MSR_IA32_SMBASE: 2471 has_msr_smbase = true; 2472 break; 2473 case MSR_SMI_COUNT: 2474 has_msr_smi_count = true; 2475 break; 2476 case MSR_IA32_MISC_ENABLE: 2477 has_msr_misc_enable = true; 2478 break; 2479 case MSR_IA32_BNDCFGS: 2480 has_msr_bndcfgs = true; 2481 break; 2482 case MSR_IA32_XSS: 2483 has_msr_xss = true; 2484 break; 2485 case MSR_IA32_UMWAIT_CONTROL: 2486 has_msr_umwait = true; 2487 break; 2488 case HV_X64_MSR_CRASH_CTL: 2489 has_msr_hv_crash = true; 2490 break; 2491 case HV_X64_MSR_RESET: 2492 has_msr_hv_reset = true; 2493 break; 2494 case HV_X64_MSR_VP_INDEX: 2495 has_msr_hv_vpindex = true; 2496 break; 2497 case HV_X64_MSR_VP_RUNTIME: 2498 has_msr_hv_runtime = true; 2499 break; 2500 case HV_X64_MSR_SCONTROL: 2501 has_msr_hv_synic = true; 2502 break; 2503 case HV_X64_MSR_STIMER0_CONFIG: 2504 has_msr_hv_stimer = true; 2505 break; 2506 case HV_X64_MSR_TSC_FREQUENCY: 2507 has_msr_hv_frequencies = true; 2508 break; 2509 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 2510 has_msr_hv_reenlightenment = true; 2511 break; 2512 case HV_X64_MSR_SYNDBG_OPTIONS: 2513 has_msr_hv_syndbg_options = true; 2514 break; 2515 case MSR_IA32_SPEC_CTRL: 2516 has_msr_spec_ctrl = true; 2517 break; 2518 case MSR_AMD64_TSC_RATIO: 2519 has_tsc_scale_msr = true; 2520 break; 2521 case MSR_IA32_TSX_CTRL: 2522 has_msr_tsx_ctrl = true; 2523 break; 2524 case MSR_VIRT_SSBD: 2525 has_msr_virt_ssbd = true; 2526 break; 2527 case MSR_IA32_ARCH_CAPABILITIES: 2528 has_msr_arch_capabs = true; 2529 break; 2530 case MSR_IA32_CORE_CAPABILITY: 2531 has_msr_core_capabs = true; 2532 break; 2533 case MSR_IA32_PERF_CAPABILITIES: 2534 has_msr_perf_capabs = true; 2535 break; 2536 case MSR_IA32_VMX_VMFUNC: 2537 has_msr_vmx_vmfunc = true; 2538 break; 2539 case MSR_IA32_UCODE_REV: 2540 has_msr_ucode_rev = true; 2541 break; 2542 case MSR_IA32_VMX_PROCBASED_CTLS2: 2543 has_msr_vmx_procbased_ctls2 = true; 2544 break; 2545 case MSR_IA32_PKRS: 2546 has_msr_pkrs = true; 2547 break; 2548 } 2549 } 2550 } 2551 2552 g_free(kvm_msr_list); 2553 2554 return ret; 2555 } 2556 2557 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu, uint32_t msr, 2558 uint64_t *val) 2559 { 2560 CPUState *cs = CPU(cpu); 2561 2562 *val = cs->nr_threads * cs->nr_cores; /* thread count, bits 15..0 */ 2563 *val |= ((uint32_t)cs->nr_cores << 16); /* core count, bits 31..16 */ 2564 2565 return true; 2566 } 2567 2568 static Notifier smram_machine_done; 2569 static KVMMemoryListener smram_listener; 2570 static AddressSpace smram_address_space; 2571 static MemoryRegion smram_as_root; 2572 static MemoryRegion smram_as_mem; 2573 2574 static void register_smram_listener(Notifier *n, void *unused) 2575 { 2576 MemoryRegion *smram = 2577 (MemoryRegion *) object_resolve_path("/machine/smram", NULL); 2578 2579 /* Outer container... */ 2580 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); 2581 memory_region_set_enabled(&smram_as_root, true); 2582 2583 /* ... with two regions inside: normal system memory with low 2584 * priority, and... 2585 */ 2586 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", 2587 get_system_memory(), 0, ~0ull); 2588 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); 2589 memory_region_set_enabled(&smram_as_mem, true); 2590 2591 if (smram) { 2592 /* ... SMRAM with higher priority */ 2593 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); 2594 memory_region_set_enabled(smram, true); 2595 } 2596 2597 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); 2598 kvm_memory_listener_register(kvm_state, &smram_listener, 2599 &smram_address_space, 1, "kvm-smram"); 2600 } 2601 2602 int kvm_arch_get_default_type(MachineState *ms) 2603 { 2604 return 0; 2605 } 2606 2607 int kvm_arch_init(MachineState *ms, KVMState *s) 2608 { 2609 uint64_t identity_base = 0xfffbc000; 2610 uint64_t shadow_mem; 2611 int ret; 2612 struct utsname utsname; 2613 Error *local_err = NULL; 2614 2615 /* 2616 * Initialize SEV context, if required 2617 * 2618 * If no memory encryption is requested (ms->cgs == NULL) this is 2619 * a no-op. 2620 * 2621 * It's also a no-op if a non-SEV confidential guest support 2622 * mechanism is selected. SEV is the only mechanism available to 2623 * select on x86 at present, so this doesn't arise, but if new 2624 * mechanisms are supported in future (e.g. TDX), they'll need 2625 * their own initialization either here or elsewhere. 2626 */ 2627 if (ms->cgs) { 2628 ret = confidential_guest_kvm_init(ms->cgs, &local_err); 2629 if (ret < 0) { 2630 error_report_err(local_err); 2631 return ret; 2632 } 2633 } 2634 2635 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); 2636 has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0; 2637 2638 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX); 2639 2640 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD); 2641 if (has_exception_payload) { 2642 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true); 2643 if (ret < 0) { 2644 error_report("kvm: Failed to enable exception payload cap: %s", 2645 strerror(-ret)); 2646 return ret; 2647 } 2648 } 2649 2650 has_triple_fault_event = kvm_check_extension(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT); 2651 if (has_triple_fault_event) { 2652 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true); 2653 if (ret < 0) { 2654 error_report("kvm: Failed to enable triple fault event cap: %s", 2655 strerror(-ret)); 2656 return ret; 2657 } 2658 } 2659 2660 if (s->xen_version) { 2661 #ifdef CONFIG_XEN_EMU 2662 if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) { 2663 error_report("kvm: Xen support only available in PC machine"); 2664 return -ENOTSUP; 2665 } 2666 /* hyperv_enabled() doesn't work yet. */ 2667 uint32_t msr = XEN_HYPERCALL_MSR; 2668 ret = kvm_xen_init(s, msr); 2669 if (ret < 0) { 2670 return ret; 2671 } 2672 #else 2673 error_report("kvm: Xen support not enabled in qemu"); 2674 return -ENOTSUP; 2675 #endif 2676 } 2677 2678 ret = kvm_get_supported_msrs(s); 2679 if (ret < 0) { 2680 return ret; 2681 } 2682 2683 kvm_get_supported_feature_msrs(s); 2684 2685 uname(&utsname); 2686 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; 2687 2688 /* 2689 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. 2690 * In order to use vm86 mode, an EPT identity map and a TSS are needed. 2691 * Since these must be part of guest physical memory, we need to allocate 2692 * them, both by setting their start addresses in the kernel and by 2693 * creating a corresponding e820 entry. We need 4 pages before the BIOS, 2694 * so this value allows up to 16M BIOSes. 2695 */ 2696 identity_base = 0xfeffc000; 2697 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); 2698 if (ret < 0) { 2699 return ret; 2700 } 2701 2702 /* Set TSS base one page after EPT identity map. */ 2703 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); 2704 if (ret < 0) { 2705 return ret; 2706 } 2707 2708 /* Tell fw_cfg to notify the BIOS to reserve the range. */ 2709 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); 2710 if (ret < 0) { 2711 fprintf(stderr, "e820_add_entry() table is full\n"); 2712 return ret; 2713 } 2714 2715 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort); 2716 if (shadow_mem != -1) { 2717 shadow_mem /= 4096; 2718 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); 2719 if (ret < 0) { 2720 return ret; 2721 } 2722 } 2723 2724 if (kvm_check_extension(s, KVM_CAP_X86_SMM) && 2725 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) && 2726 x86_machine_is_smm_enabled(X86_MACHINE(ms))) { 2727 smram_machine_done.notify = register_smram_listener; 2728 qemu_add_machine_init_done_notifier(&smram_machine_done); 2729 } 2730 2731 if (enable_cpu_pm) { 2732 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS); 2733 /* Work around for kernel header with a typo. TODO: fix header and drop. */ 2734 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT) 2735 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL 2736 #endif 2737 if (disable_exits) { 2738 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT | 2739 KVM_X86_DISABLE_EXITS_HLT | 2740 KVM_X86_DISABLE_EXITS_PAUSE | 2741 KVM_X86_DISABLE_EXITS_CSTATE); 2742 } 2743 2744 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0, 2745 disable_exits); 2746 if (ret < 0) { 2747 error_report("kvm: guest stopping CPU not supported: %s", 2748 strerror(-ret)); 2749 } 2750 } 2751 2752 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) { 2753 X86MachineState *x86ms = X86_MACHINE(ms); 2754 2755 if (x86ms->bus_lock_ratelimit > 0) { 2756 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT); 2757 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) { 2758 error_report("kvm: bus lock detection unsupported"); 2759 return -ENOTSUP; 2760 } 2761 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0, 2762 KVM_BUS_LOCK_DETECTION_EXIT); 2763 if (ret < 0) { 2764 error_report("kvm: Failed to enable bus lock detection cap: %s", 2765 strerror(-ret)); 2766 return ret; 2767 } 2768 ratelimit_init(&bus_lock_ratelimit_ctrl); 2769 ratelimit_set_speed(&bus_lock_ratelimit_ctrl, 2770 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME); 2771 } 2772 } 2773 2774 if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE && 2775 kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) { 2776 uint64_t notify_window_flags = 2777 ((uint64_t)s->notify_window << 32) | 2778 KVM_X86_NOTIFY_VMEXIT_ENABLED | 2779 KVM_X86_NOTIFY_VMEXIT_USER; 2780 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0, 2781 notify_window_flags); 2782 if (ret < 0) { 2783 error_report("kvm: Failed to enable notify vmexit cap: %s", 2784 strerror(-ret)); 2785 return ret; 2786 } 2787 } 2788 if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) { 2789 bool r; 2790 2791 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0, 2792 KVM_MSR_EXIT_REASON_FILTER); 2793 if (ret) { 2794 error_report("Could not enable user space MSRs: %s", 2795 strerror(-ret)); 2796 exit(1); 2797 } 2798 2799 r = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT, 2800 kvm_rdmsr_core_thread_count, NULL); 2801 if (!r) { 2802 error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s", 2803 strerror(-ret)); 2804 exit(1); 2805 } 2806 } 2807 2808 return 0; 2809 } 2810 2811 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 2812 { 2813 lhs->selector = rhs->selector; 2814 lhs->base = rhs->base; 2815 lhs->limit = rhs->limit; 2816 lhs->type = 3; 2817 lhs->present = 1; 2818 lhs->dpl = 3; 2819 lhs->db = 0; 2820 lhs->s = 1; 2821 lhs->l = 0; 2822 lhs->g = 0; 2823 lhs->avl = 0; 2824 lhs->unusable = 0; 2825 } 2826 2827 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 2828 { 2829 unsigned flags = rhs->flags; 2830 lhs->selector = rhs->selector; 2831 lhs->base = rhs->base; 2832 lhs->limit = rhs->limit; 2833 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; 2834 lhs->present = (flags & DESC_P_MASK) != 0; 2835 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; 2836 lhs->db = (flags >> DESC_B_SHIFT) & 1; 2837 lhs->s = (flags & DESC_S_MASK) != 0; 2838 lhs->l = (flags >> DESC_L_SHIFT) & 1; 2839 lhs->g = (flags & DESC_G_MASK) != 0; 2840 lhs->avl = (flags & DESC_AVL_MASK) != 0; 2841 lhs->unusable = !lhs->present; 2842 lhs->padding = 0; 2843 } 2844 2845 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) 2846 { 2847 lhs->selector = rhs->selector; 2848 lhs->base = rhs->base; 2849 lhs->limit = rhs->limit; 2850 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | 2851 ((rhs->present && !rhs->unusable) * DESC_P_MASK) | 2852 (rhs->dpl << DESC_DPL_SHIFT) | 2853 (rhs->db << DESC_B_SHIFT) | 2854 (rhs->s * DESC_S_MASK) | 2855 (rhs->l << DESC_L_SHIFT) | 2856 (rhs->g * DESC_G_MASK) | 2857 (rhs->avl * DESC_AVL_MASK); 2858 } 2859 2860 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) 2861 { 2862 if (set) { 2863 *kvm_reg = *qemu_reg; 2864 } else { 2865 *qemu_reg = *kvm_reg; 2866 } 2867 } 2868 2869 static int kvm_getput_regs(X86CPU *cpu, int set) 2870 { 2871 CPUX86State *env = &cpu->env; 2872 struct kvm_regs regs; 2873 int ret = 0; 2874 2875 if (!set) { 2876 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); 2877 if (ret < 0) { 2878 return ret; 2879 } 2880 } 2881 2882 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); 2883 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); 2884 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); 2885 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); 2886 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); 2887 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); 2888 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); 2889 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); 2890 #ifdef TARGET_X86_64 2891 kvm_getput_reg(®s.r8, &env->regs[8], set); 2892 kvm_getput_reg(®s.r9, &env->regs[9], set); 2893 kvm_getput_reg(®s.r10, &env->regs[10], set); 2894 kvm_getput_reg(®s.r11, &env->regs[11], set); 2895 kvm_getput_reg(®s.r12, &env->regs[12], set); 2896 kvm_getput_reg(®s.r13, &env->regs[13], set); 2897 kvm_getput_reg(®s.r14, &env->regs[14], set); 2898 kvm_getput_reg(®s.r15, &env->regs[15], set); 2899 #endif 2900 2901 kvm_getput_reg(®s.rflags, &env->eflags, set); 2902 kvm_getput_reg(®s.rip, &env->eip, set); 2903 2904 if (set) { 2905 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); 2906 } 2907 2908 return ret; 2909 } 2910 2911 static int kvm_put_xsave(X86CPU *cpu) 2912 { 2913 CPUX86State *env = &cpu->env; 2914 void *xsave = env->xsave_buf; 2915 2916 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len); 2917 2918 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); 2919 } 2920 2921 static int kvm_put_xcrs(X86CPU *cpu) 2922 { 2923 CPUX86State *env = &cpu->env; 2924 struct kvm_xcrs xcrs = {}; 2925 2926 if (!has_xcrs) { 2927 return 0; 2928 } 2929 2930 xcrs.nr_xcrs = 1; 2931 xcrs.flags = 0; 2932 xcrs.xcrs[0].xcr = 0; 2933 xcrs.xcrs[0].value = env->xcr0; 2934 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); 2935 } 2936 2937 static int kvm_put_sregs(X86CPU *cpu) 2938 { 2939 CPUX86State *env = &cpu->env; 2940 struct kvm_sregs sregs; 2941 2942 /* 2943 * The interrupt_bitmap is ignored because KVM_SET_SREGS is 2944 * always followed by KVM_SET_VCPU_EVENTS. 2945 */ 2946 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); 2947 2948 if ((env->eflags & VM_MASK)) { 2949 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 2950 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 2951 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 2952 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 2953 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 2954 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 2955 } else { 2956 set_seg(&sregs.cs, &env->segs[R_CS]); 2957 set_seg(&sregs.ds, &env->segs[R_DS]); 2958 set_seg(&sregs.es, &env->segs[R_ES]); 2959 set_seg(&sregs.fs, &env->segs[R_FS]); 2960 set_seg(&sregs.gs, &env->segs[R_GS]); 2961 set_seg(&sregs.ss, &env->segs[R_SS]); 2962 } 2963 2964 set_seg(&sregs.tr, &env->tr); 2965 set_seg(&sregs.ldt, &env->ldt); 2966 2967 sregs.idt.limit = env->idt.limit; 2968 sregs.idt.base = env->idt.base; 2969 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 2970 sregs.gdt.limit = env->gdt.limit; 2971 sregs.gdt.base = env->gdt.base; 2972 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 2973 2974 sregs.cr0 = env->cr[0]; 2975 sregs.cr2 = env->cr[2]; 2976 sregs.cr3 = env->cr[3]; 2977 sregs.cr4 = env->cr[4]; 2978 2979 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 2980 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 2981 2982 sregs.efer = env->efer; 2983 2984 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); 2985 } 2986 2987 static int kvm_put_sregs2(X86CPU *cpu) 2988 { 2989 CPUX86State *env = &cpu->env; 2990 struct kvm_sregs2 sregs; 2991 int i; 2992 2993 sregs.flags = 0; 2994 2995 if ((env->eflags & VM_MASK)) { 2996 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 2997 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 2998 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 2999 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 3000 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 3001 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 3002 } else { 3003 set_seg(&sregs.cs, &env->segs[R_CS]); 3004 set_seg(&sregs.ds, &env->segs[R_DS]); 3005 set_seg(&sregs.es, &env->segs[R_ES]); 3006 set_seg(&sregs.fs, &env->segs[R_FS]); 3007 set_seg(&sregs.gs, &env->segs[R_GS]); 3008 set_seg(&sregs.ss, &env->segs[R_SS]); 3009 } 3010 3011 set_seg(&sregs.tr, &env->tr); 3012 set_seg(&sregs.ldt, &env->ldt); 3013 3014 sregs.idt.limit = env->idt.limit; 3015 sregs.idt.base = env->idt.base; 3016 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 3017 sregs.gdt.limit = env->gdt.limit; 3018 sregs.gdt.base = env->gdt.base; 3019 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 3020 3021 sregs.cr0 = env->cr[0]; 3022 sregs.cr2 = env->cr[2]; 3023 sregs.cr3 = env->cr[3]; 3024 sregs.cr4 = env->cr[4]; 3025 3026 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 3027 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 3028 3029 sregs.efer = env->efer; 3030 3031 if (env->pdptrs_valid) { 3032 for (i = 0; i < 4; i++) { 3033 sregs.pdptrs[i] = env->pdptrs[i]; 3034 } 3035 sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 3036 } 3037 3038 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs); 3039 } 3040 3041 3042 static void kvm_msr_buf_reset(X86CPU *cpu) 3043 { 3044 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); 3045 } 3046 3047 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) 3048 { 3049 struct kvm_msrs *msrs = cpu->kvm_msr_buf; 3050 void *limit = ((void *)msrs) + MSR_BUF_SIZE; 3051 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; 3052 3053 assert((void *)(entry + 1) <= limit); 3054 3055 entry->index = index; 3056 entry->reserved = 0; 3057 entry->data = value; 3058 msrs->nmsrs++; 3059 } 3060 3061 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) 3062 { 3063 kvm_msr_buf_reset(cpu); 3064 kvm_msr_entry_add(cpu, index, value); 3065 3066 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 3067 } 3068 3069 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value) 3070 { 3071 int ret; 3072 struct { 3073 struct kvm_msrs info; 3074 struct kvm_msr_entry entries[1]; 3075 } msr_data = { 3076 .info.nmsrs = 1, 3077 .entries[0].index = index, 3078 }; 3079 3080 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); 3081 if (ret < 0) { 3082 return ret; 3083 } 3084 assert(ret == 1); 3085 *value = msr_data.entries[0].data; 3086 return ret; 3087 } 3088 void kvm_put_apicbase(X86CPU *cpu, uint64_t value) 3089 { 3090 int ret; 3091 3092 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); 3093 assert(ret == 1); 3094 } 3095 3096 static int kvm_put_tscdeadline_msr(X86CPU *cpu) 3097 { 3098 CPUX86State *env = &cpu->env; 3099 int ret; 3100 3101 if (!has_msr_tsc_deadline) { 3102 return 0; 3103 } 3104 3105 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); 3106 if (ret < 0) { 3107 return ret; 3108 } 3109 3110 assert(ret == 1); 3111 return 0; 3112 } 3113 3114 /* 3115 * Provide a separate write service for the feature control MSR in order to 3116 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done 3117 * before writing any other state because forcibly leaving nested mode 3118 * invalidates the VCPU state. 3119 */ 3120 static int kvm_put_msr_feature_control(X86CPU *cpu) 3121 { 3122 int ret; 3123 3124 if (!has_msr_feature_control) { 3125 return 0; 3126 } 3127 3128 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, 3129 cpu->env.msr_ia32_feature_control); 3130 if (ret < 0) { 3131 return ret; 3132 } 3133 3134 assert(ret == 1); 3135 return 0; 3136 } 3137 3138 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features) 3139 { 3140 uint32_t default1, can_be_one, can_be_zero; 3141 uint32_t must_be_one; 3142 3143 switch (index) { 3144 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 3145 default1 = 0x00000016; 3146 break; 3147 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 3148 default1 = 0x0401e172; 3149 break; 3150 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 3151 default1 = 0x000011ff; 3152 break; 3153 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 3154 default1 = 0x00036dff; 3155 break; 3156 case MSR_IA32_VMX_PROCBASED_CTLS2: 3157 default1 = 0; 3158 break; 3159 default: 3160 abort(); 3161 } 3162 3163 /* If a feature bit is set, the control can be either set or clear. 3164 * Otherwise the value is limited to either 0 or 1 by default1. 3165 */ 3166 can_be_one = features | default1; 3167 can_be_zero = features | ~default1; 3168 must_be_one = ~can_be_zero; 3169 3170 /* 3171 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one). 3172 * Bit 32:63 -> 1 if the control bit can be one. 3173 */ 3174 return must_be_one | (((uint64_t)can_be_one) << 32); 3175 } 3176 3177 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f) 3178 { 3179 uint64_t kvm_vmx_basic = 3180 kvm_arch_get_supported_msr_feature(kvm_state, 3181 MSR_IA32_VMX_BASIC); 3182 3183 if (!kvm_vmx_basic) { 3184 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0), 3185 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail. 3186 */ 3187 return; 3188 } 3189 3190 uint64_t kvm_vmx_misc = 3191 kvm_arch_get_supported_msr_feature(kvm_state, 3192 MSR_IA32_VMX_MISC); 3193 uint64_t kvm_vmx_ept_vpid = 3194 kvm_arch_get_supported_msr_feature(kvm_state, 3195 MSR_IA32_VMX_EPT_VPID_CAP); 3196 3197 /* 3198 * If the guest is 64-bit, a value of 1 is allowed for the host address 3199 * space size vmexit control. 3200 */ 3201 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM 3202 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0; 3203 3204 /* 3205 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should 3206 * not change them for backwards compatibility. 3207 */ 3208 uint64_t fixed_vmx_basic = kvm_vmx_basic & 3209 (MSR_VMX_BASIC_VMCS_REVISION_MASK | 3210 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK | 3211 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK); 3212 3213 /* 3214 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can 3215 * change in the future but are always zero for now, clear them to be 3216 * future proof. Bits 32-63 in theory could change, though KVM does 3217 * not support dual-monitor treatment and probably never will; mask 3218 * them out as well. 3219 */ 3220 uint64_t fixed_vmx_misc = kvm_vmx_misc & 3221 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK | 3222 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK); 3223 3224 /* 3225 * EPT memory types should not change either, so we do not bother 3226 * adding features for them. 3227 */ 3228 uint64_t fixed_vmx_ept_mask = 3229 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ? 3230 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0); 3231 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask; 3232 3233 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 3234 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 3235 f[FEAT_VMX_PROCBASED_CTLS])); 3236 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS, 3237 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS, 3238 f[FEAT_VMX_PINBASED_CTLS])); 3239 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS, 3240 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS, 3241 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit); 3242 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS, 3243 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS, 3244 f[FEAT_VMX_ENTRY_CTLS])); 3245 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2, 3246 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2, 3247 f[FEAT_VMX_SECONDARY_CTLS])); 3248 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP, 3249 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid); 3250 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC, 3251 f[FEAT_VMX_BASIC] | fixed_vmx_basic); 3252 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC, 3253 f[FEAT_VMX_MISC] | fixed_vmx_misc); 3254 if (has_msr_vmx_vmfunc) { 3255 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]); 3256 } 3257 3258 /* 3259 * Just to be safe, write these with constant values. The CRn_FIXED1 3260 * MSRs are generated by KVM based on the vCPU's CPUID. 3261 */ 3262 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0, 3263 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK); 3264 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0, 3265 CR4_VMXE_MASK); 3266 3267 if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) { 3268 /* TSC multiplier (0x2032). */ 3269 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32); 3270 } else { 3271 /* Preemption timer (0x482E). */ 3272 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E); 3273 } 3274 } 3275 3276 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f) 3277 { 3278 uint64_t kvm_perf_cap = 3279 kvm_arch_get_supported_msr_feature(kvm_state, 3280 MSR_IA32_PERF_CAPABILITIES); 3281 3282 if (kvm_perf_cap) { 3283 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES, 3284 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]); 3285 } 3286 } 3287 3288 static int kvm_buf_set_msrs(X86CPU *cpu) 3289 { 3290 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 3291 if (ret < 0) { 3292 return ret; 3293 } 3294 3295 if (ret < cpu->kvm_msr_buf->nmsrs) { 3296 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 3297 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, 3298 (uint32_t)e->index, (uint64_t)e->data); 3299 } 3300 3301 assert(ret == cpu->kvm_msr_buf->nmsrs); 3302 return 0; 3303 } 3304 3305 static void kvm_init_msrs(X86CPU *cpu) 3306 { 3307 CPUX86State *env = &cpu->env; 3308 3309 kvm_msr_buf_reset(cpu); 3310 if (has_msr_arch_capabs) { 3311 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES, 3312 env->features[FEAT_ARCH_CAPABILITIES]); 3313 } 3314 3315 if (has_msr_core_capabs) { 3316 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY, 3317 env->features[FEAT_CORE_CAPABILITY]); 3318 } 3319 3320 if (has_msr_perf_capabs && cpu->enable_pmu) { 3321 kvm_msr_entry_add_perf(cpu, env->features); 3322 } 3323 3324 if (has_msr_ucode_rev) { 3325 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev); 3326 } 3327 3328 /* 3329 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but 3330 * all kernels with MSR features should have them. 3331 */ 3332 if (kvm_feature_msrs && cpu_has_vmx(env)) { 3333 kvm_msr_entry_add_vmx(cpu, env->features); 3334 } 3335 3336 assert(kvm_buf_set_msrs(cpu) == 0); 3337 } 3338 3339 static int kvm_put_msrs(X86CPU *cpu, int level) 3340 { 3341 CPUX86State *env = &cpu->env; 3342 int i; 3343 3344 kvm_msr_buf_reset(cpu); 3345 3346 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); 3347 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); 3348 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); 3349 kvm_msr_entry_add(cpu, MSR_PAT, env->pat); 3350 if (has_msr_star) { 3351 kvm_msr_entry_add(cpu, MSR_STAR, env->star); 3352 } 3353 if (has_msr_hsave_pa) { 3354 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); 3355 } 3356 if (has_msr_tsc_aux) { 3357 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); 3358 } 3359 if (has_msr_tsc_adjust) { 3360 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); 3361 } 3362 if (has_msr_misc_enable) { 3363 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 3364 env->msr_ia32_misc_enable); 3365 } 3366 if (has_msr_smbase) { 3367 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); 3368 } 3369 if (has_msr_smi_count) { 3370 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count); 3371 } 3372 if (has_msr_pkrs) { 3373 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs); 3374 } 3375 if (has_msr_bndcfgs) { 3376 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); 3377 } 3378 if (has_msr_xss) { 3379 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); 3380 } 3381 if (has_msr_umwait) { 3382 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait); 3383 } 3384 if (has_msr_spec_ctrl) { 3385 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl); 3386 } 3387 if (has_tsc_scale_msr) { 3388 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr); 3389 } 3390 3391 if (has_msr_tsx_ctrl) { 3392 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl); 3393 } 3394 if (has_msr_virt_ssbd) { 3395 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd); 3396 } 3397 3398 #ifdef TARGET_X86_64 3399 if (lm_capable_kernel) { 3400 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); 3401 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); 3402 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); 3403 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); 3404 if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) { 3405 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, env->fred_rsp0); 3406 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, env->fred_rsp1); 3407 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, env->fred_rsp2); 3408 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, env->fred_rsp3); 3409 kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, env->fred_stklvls); 3410 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, env->fred_ssp1); 3411 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, env->fred_ssp2); 3412 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, env->fred_ssp3); 3413 kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, env->fred_config); 3414 } 3415 } 3416 #endif 3417 3418 /* 3419 * The following MSRs have side effects on the guest or are too heavy 3420 * for normal writeback. Limit them to reset or full state updates. 3421 */ 3422 if (level >= KVM_PUT_RESET_STATE) { 3423 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); 3424 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); 3425 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); 3426 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { 3427 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr); 3428 } 3429 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { 3430 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); 3431 } 3432 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { 3433 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); 3434 } 3435 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { 3436 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); 3437 } 3438 3439 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { 3440 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr); 3441 } 3442 3443 if (has_architectural_pmu_version > 0) { 3444 if (has_architectural_pmu_version > 1) { 3445 /* Stop the counter. */ 3446 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 3447 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 3448 } 3449 3450 /* Set the counter values. */ 3451 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 3452 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 3453 env->msr_fixed_counters[i]); 3454 } 3455 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 3456 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 3457 env->msr_gp_counters[i]); 3458 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 3459 env->msr_gp_evtsel[i]); 3460 } 3461 if (has_architectural_pmu_version > 1) { 3462 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 3463 env->msr_global_status); 3464 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 3465 env->msr_global_ovf_ctrl); 3466 3467 /* Now start the PMU. */ 3468 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 3469 env->msr_fixed_ctr_ctrl); 3470 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 3471 env->msr_global_ctrl); 3472 } 3473 } 3474 /* 3475 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add, 3476 * only sync them to KVM on the first cpu 3477 */ 3478 if (current_cpu == first_cpu) { 3479 if (has_msr_hv_hypercall) { 3480 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 3481 env->msr_hv_guest_os_id); 3482 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 3483 env->msr_hv_hypercall); 3484 } 3485 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 3486 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 3487 env->msr_hv_tsc); 3488 } 3489 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 3490 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 3491 env->msr_hv_reenlightenment_control); 3492 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 3493 env->msr_hv_tsc_emulation_control); 3494 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 3495 env->msr_hv_tsc_emulation_status); 3496 } 3497 #ifdef CONFIG_SYNDBG 3498 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) && 3499 has_msr_hv_syndbg_options) { 3500 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 3501 hyperv_syndbg_query_options()); 3502 } 3503 #endif 3504 } 3505 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 3506 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 3507 env->msr_hv_vapic); 3508 } 3509 if (has_msr_hv_crash) { 3510 int j; 3511 3512 for (j = 0; j < HV_CRASH_PARAMS; j++) 3513 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 3514 env->msr_hv_crash_params[j]); 3515 3516 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY); 3517 } 3518 if (has_msr_hv_runtime) { 3519 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); 3520 } 3521 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) 3522 && hv_vpindex_settable) { 3523 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX, 3524 hyperv_vp_index(CPU(cpu))); 3525 } 3526 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 3527 int j; 3528 3529 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION); 3530 3531 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 3532 env->msr_hv_synic_control); 3533 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 3534 env->msr_hv_synic_evt_page); 3535 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 3536 env->msr_hv_synic_msg_page); 3537 3538 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { 3539 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, 3540 env->msr_hv_synic_sint[j]); 3541 } 3542 } 3543 if (has_msr_hv_stimer) { 3544 int j; 3545 3546 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { 3547 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, 3548 env->msr_hv_stimer_config[j]); 3549 } 3550 3551 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { 3552 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, 3553 env->msr_hv_stimer_count[j]); 3554 } 3555 } 3556 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 3557 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); 3558 3559 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); 3560 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); 3561 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); 3562 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); 3563 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); 3564 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); 3565 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); 3566 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); 3567 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); 3568 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); 3569 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); 3570 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); 3571 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 3572 /* The CPU GPs if we write to a bit above the physical limit of 3573 * the host CPU (and KVM emulates that) 3574 */ 3575 uint64_t mask = env->mtrr_var[i].mask; 3576 mask &= phys_mask; 3577 3578 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 3579 env->mtrr_var[i].base); 3580 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); 3581 } 3582 } 3583 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 3584 int addr_num = kvm_arch_get_supported_cpuid(kvm_state, 3585 0x14, 1, R_EAX) & 0x7; 3586 3587 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 3588 env->msr_rtit_ctrl); 3589 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 3590 env->msr_rtit_status); 3591 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 3592 env->msr_rtit_output_base); 3593 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 3594 env->msr_rtit_output_mask); 3595 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 3596 env->msr_rtit_cr3_match); 3597 for (i = 0; i < addr_num; i++) { 3598 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 3599 env->msr_rtit_addrs[i]); 3600 } 3601 } 3602 3603 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 3604 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 3605 env->msr_ia32_sgxlepubkeyhash[0]); 3606 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 3607 env->msr_ia32_sgxlepubkeyhash[1]); 3608 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 3609 env->msr_ia32_sgxlepubkeyhash[2]); 3610 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 3611 env->msr_ia32_sgxlepubkeyhash[3]); 3612 } 3613 3614 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) { 3615 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 3616 env->msr_xfd); 3617 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 3618 env->msr_xfd_err); 3619 } 3620 3621 if (kvm_enabled() && cpu->enable_pmu && 3622 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) { 3623 uint64_t depth; 3624 int ret; 3625 3626 /* 3627 * Only migrate Arch LBR states when the host Arch LBR depth 3628 * equals that of source guest's, this is to avoid mismatch 3629 * of guest/host config for the msr hence avoid unexpected 3630 * misbehavior. 3631 */ 3632 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth); 3633 3634 if (ret == 1 && !!depth && depth == env->msr_lbr_depth) { 3635 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl); 3636 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth); 3637 3638 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) { 3639 if (!env->lbr_records[i].from) { 3640 continue; 3641 } 3642 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 3643 env->lbr_records[i].from); 3644 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 3645 env->lbr_records[i].to); 3646 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 3647 env->lbr_records[i].info); 3648 } 3649 } 3650 } 3651 3652 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see 3653 * kvm_put_msr_feature_control. */ 3654 } 3655 3656 if (env->mcg_cap) { 3657 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); 3658 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); 3659 if (has_msr_mcg_ext_ctl) { 3660 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); 3661 } 3662 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 3663 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); 3664 } 3665 } 3666 3667 return kvm_buf_set_msrs(cpu); 3668 } 3669 3670 3671 static int kvm_get_xsave(X86CPU *cpu) 3672 { 3673 CPUX86State *env = &cpu->env; 3674 void *xsave = env->xsave_buf; 3675 int type, ret; 3676 3677 type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE; 3678 ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave); 3679 if (ret < 0) { 3680 return ret; 3681 } 3682 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len); 3683 3684 return 0; 3685 } 3686 3687 static int kvm_get_xcrs(X86CPU *cpu) 3688 { 3689 CPUX86State *env = &cpu->env; 3690 int i, ret; 3691 struct kvm_xcrs xcrs; 3692 3693 if (!has_xcrs) { 3694 return 0; 3695 } 3696 3697 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); 3698 if (ret < 0) { 3699 return ret; 3700 } 3701 3702 for (i = 0; i < xcrs.nr_xcrs; i++) { 3703 /* Only support xcr0 now */ 3704 if (xcrs.xcrs[i].xcr == 0) { 3705 env->xcr0 = xcrs.xcrs[i].value; 3706 break; 3707 } 3708 } 3709 return 0; 3710 } 3711 3712 static int kvm_get_sregs(X86CPU *cpu) 3713 { 3714 CPUX86State *env = &cpu->env; 3715 struct kvm_sregs sregs; 3716 int ret; 3717 3718 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); 3719 if (ret < 0) { 3720 return ret; 3721 } 3722 3723 /* 3724 * The interrupt_bitmap is ignored because KVM_GET_SREGS is 3725 * always preceded by KVM_GET_VCPU_EVENTS. 3726 */ 3727 3728 get_seg(&env->segs[R_CS], &sregs.cs); 3729 get_seg(&env->segs[R_DS], &sregs.ds); 3730 get_seg(&env->segs[R_ES], &sregs.es); 3731 get_seg(&env->segs[R_FS], &sregs.fs); 3732 get_seg(&env->segs[R_GS], &sregs.gs); 3733 get_seg(&env->segs[R_SS], &sregs.ss); 3734 3735 get_seg(&env->tr, &sregs.tr); 3736 get_seg(&env->ldt, &sregs.ldt); 3737 3738 env->idt.limit = sregs.idt.limit; 3739 env->idt.base = sregs.idt.base; 3740 env->gdt.limit = sregs.gdt.limit; 3741 env->gdt.base = sregs.gdt.base; 3742 3743 env->cr[0] = sregs.cr0; 3744 env->cr[2] = sregs.cr2; 3745 env->cr[3] = sregs.cr3; 3746 env->cr[4] = sregs.cr4; 3747 3748 env->efer = sregs.efer; 3749 if (sev_es_enabled() && env->efer & MSR_EFER_LME && 3750 env->cr[0] & CR0_PG_MASK) { 3751 env->efer |= MSR_EFER_LMA; 3752 } 3753 3754 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 3755 x86_update_hflags(env); 3756 3757 return 0; 3758 } 3759 3760 static int kvm_get_sregs2(X86CPU *cpu) 3761 { 3762 CPUX86State *env = &cpu->env; 3763 struct kvm_sregs2 sregs; 3764 int i, ret; 3765 3766 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs); 3767 if (ret < 0) { 3768 return ret; 3769 } 3770 3771 get_seg(&env->segs[R_CS], &sregs.cs); 3772 get_seg(&env->segs[R_DS], &sregs.ds); 3773 get_seg(&env->segs[R_ES], &sregs.es); 3774 get_seg(&env->segs[R_FS], &sregs.fs); 3775 get_seg(&env->segs[R_GS], &sregs.gs); 3776 get_seg(&env->segs[R_SS], &sregs.ss); 3777 3778 get_seg(&env->tr, &sregs.tr); 3779 get_seg(&env->ldt, &sregs.ldt); 3780 3781 env->idt.limit = sregs.idt.limit; 3782 env->idt.base = sregs.idt.base; 3783 env->gdt.limit = sregs.gdt.limit; 3784 env->gdt.base = sregs.gdt.base; 3785 3786 env->cr[0] = sregs.cr0; 3787 env->cr[2] = sregs.cr2; 3788 env->cr[3] = sregs.cr3; 3789 env->cr[4] = sregs.cr4; 3790 3791 env->efer = sregs.efer; 3792 if (sev_es_enabled() && env->efer & MSR_EFER_LME && 3793 env->cr[0] & CR0_PG_MASK) { 3794 env->efer |= MSR_EFER_LMA; 3795 } 3796 3797 env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 3798 3799 if (env->pdptrs_valid) { 3800 for (i = 0; i < 4; i++) { 3801 env->pdptrs[i] = sregs.pdptrs[i]; 3802 } 3803 } 3804 3805 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 3806 x86_update_hflags(env); 3807 3808 return 0; 3809 } 3810 3811 static int kvm_get_msrs(X86CPU *cpu) 3812 { 3813 CPUX86State *env = &cpu->env; 3814 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; 3815 int ret, i; 3816 uint64_t mtrr_top_bits; 3817 3818 kvm_msr_buf_reset(cpu); 3819 3820 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); 3821 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); 3822 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); 3823 kvm_msr_entry_add(cpu, MSR_PAT, 0); 3824 if (has_msr_star) { 3825 kvm_msr_entry_add(cpu, MSR_STAR, 0); 3826 } 3827 if (has_msr_hsave_pa) { 3828 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); 3829 } 3830 if (has_msr_tsc_aux) { 3831 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); 3832 } 3833 if (has_msr_tsc_adjust) { 3834 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); 3835 } 3836 if (has_msr_tsc_deadline) { 3837 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); 3838 } 3839 if (has_msr_misc_enable) { 3840 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); 3841 } 3842 if (has_msr_smbase) { 3843 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); 3844 } 3845 if (has_msr_smi_count) { 3846 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0); 3847 } 3848 if (has_msr_feature_control) { 3849 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); 3850 } 3851 if (has_msr_pkrs) { 3852 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0); 3853 } 3854 if (has_msr_bndcfgs) { 3855 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); 3856 } 3857 if (has_msr_xss) { 3858 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); 3859 } 3860 if (has_msr_umwait) { 3861 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0); 3862 } 3863 if (has_msr_spec_ctrl) { 3864 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0); 3865 } 3866 if (has_tsc_scale_msr) { 3867 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0); 3868 } 3869 3870 if (has_msr_tsx_ctrl) { 3871 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0); 3872 } 3873 if (has_msr_virt_ssbd) { 3874 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0); 3875 } 3876 if (!env->tsc_valid) { 3877 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); 3878 env->tsc_valid = !runstate_is_running(); 3879 } 3880 3881 #ifdef TARGET_X86_64 3882 if (lm_capable_kernel) { 3883 kvm_msr_entry_add(cpu, MSR_CSTAR, 0); 3884 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); 3885 kvm_msr_entry_add(cpu, MSR_FMASK, 0); 3886 kvm_msr_entry_add(cpu, MSR_LSTAR, 0); 3887 if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) { 3888 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, 0); 3889 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, 0); 3890 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, 0); 3891 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, 0); 3892 kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, 0); 3893 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, 0); 3894 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, 0); 3895 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, 0); 3896 kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, 0); 3897 } 3898 } 3899 #endif 3900 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); 3901 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); 3902 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { 3903 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0); 3904 } 3905 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { 3906 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); 3907 } 3908 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { 3909 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); 3910 } 3911 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { 3912 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); 3913 } 3914 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { 3915 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1); 3916 } 3917 if (has_architectural_pmu_version > 0) { 3918 if (has_architectural_pmu_version > 1) { 3919 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 3920 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 3921 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); 3922 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); 3923 } 3924 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 3925 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); 3926 } 3927 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 3928 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); 3929 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); 3930 } 3931 } 3932 3933 if (env->mcg_cap) { 3934 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); 3935 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); 3936 if (has_msr_mcg_ext_ctl) { 3937 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); 3938 } 3939 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 3940 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); 3941 } 3942 } 3943 3944 if (has_msr_hv_hypercall) { 3945 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); 3946 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); 3947 } 3948 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 3949 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); 3950 } 3951 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 3952 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); 3953 } 3954 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 3955 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0); 3956 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0); 3957 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0); 3958 } 3959 if (has_msr_hv_syndbg_options) { 3960 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0); 3961 } 3962 if (has_msr_hv_crash) { 3963 int j; 3964 3965 for (j = 0; j < HV_CRASH_PARAMS; j++) { 3966 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); 3967 } 3968 } 3969 if (has_msr_hv_runtime) { 3970 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); 3971 } 3972 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 3973 uint32_t msr; 3974 3975 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); 3976 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); 3977 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); 3978 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { 3979 kvm_msr_entry_add(cpu, msr, 0); 3980 } 3981 } 3982 if (has_msr_hv_stimer) { 3983 uint32_t msr; 3984 3985 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; 3986 msr++) { 3987 kvm_msr_entry_add(cpu, msr, 0); 3988 } 3989 } 3990 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 3991 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); 3992 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); 3993 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); 3994 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); 3995 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); 3996 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); 3997 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); 3998 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); 3999 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); 4000 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); 4001 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); 4002 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); 4003 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 4004 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); 4005 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); 4006 } 4007 } 4008 4009 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 4010 int addr_num = 4011 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7; 4012 4013 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0); 4014 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0); 4015 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0); 4016 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0); 4017 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0); 4018 for (i = 0; i < addr_num; i++) { 4019 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0); 4020 } 4021 } 4022 4023 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 4024 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0); 4025 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0); 4026 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0); 4027 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0); 4028 } 4029 4030 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) { 4031 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0); 4032 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0); 4033 } 4034 4035 if (kvm_enabled() && cpu->enable_pmu && 4036 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) { 4037 uint64_t depth; 4038 4039 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth); 4040 if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) { 4041 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0); 4042 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0); 4043 4044 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) { 4045 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0); 4046 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0); 4047 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0); 4048 } 4049 } 4050 } 4051 4052 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); 4053 if (ret < 0) { 4054 return ret; 4055 } 4056 4057 if (ret < cpu->kvm_msr_buf->nmsrs) { 4058 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 4059 error_report("error: failed to get MSR 0x%" PRIx32, 4060 (uint32_t)e->index); 4061 } 4062 4063 assert(ret == cpu->kvm_msr_buf->nmsrs); 4064 /* 4065 * MTRR masks: Each mask consists of 5 parts 4066 * a 10..0: must be zero 4067 * b 11 : valid bit 4068 * c n-1.12: actual mask bits 4069 * d 51..n: reserved must be zero 4070 * e 63.52: reserved must be zero 4071 * 4072 * 'n' is the number of physical bits supported by the CPU and is 4073 * apparently always <= 52. We know our 'n' but don't know what 4074 * the destinations 'n' is; it might be smaller, in which case 4075 * it masks (c) on loading. It might be larger, in which case 4076 * we fill 'd' so that d..c is consistent irrespetive of the 'n' 4077 * we're migrating to. 4078 */ 4079 4080 if (cpu->fill_mtrr_mask) { 4081 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); 4082 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); 4083 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); 4084 } else { 4085 mtrr_top_bits = 0; 4086 } 4087 4088 for (i = 0; i < ret; i++) { 4089 uint32_t index = msrs[i].index; 4090 switch (index) { 4091 case MSR_IA32_SYSENTER_CS: 4092 env->sysenter_cs = msrs[i].data; 4093 break; 4094 case MSR_IA32_SYSENTER_ESP: 4095 env->sysenter_esp = msrs[i].data; 4096 break; 4097 case MSR_IA32_SYSENTER_EIP: 4098 env->sysenter_eip = msrs[i].data; 4099 break; 4100 case MSR_PAT: 4101 env->pat = msrs[i].data; 4102 break; 4103 case MSR_STAR: 4104 env->star = msrs[i].data; 4105 break; 4106 #ifdef TARGET_X86_64 4107 case MSR_CSTAR: 4108 env->cstar = msrs[i].data; 4109 break; 4110 case MSR_KERNELGSBASE: 4111 env->kernelgsbase = msrs[i].data; 4112 break; 4113 case MSR_FMASK: 4114 env->fmask = msrs[i].data; 4115 break; 4116 case MSR_LSTAR: 4117 env->lstar = msrs[i].data; 4118 break; 4119 case MSR_IA32_FRED_RSP0: 4120 env->fred_rsp0 = msrs[i].data; 4121 break; 4122 case MSR_IA32_FRED_RSP1: 4123 env->fred_rsp1 = msrs[i].data; 4124 break; 4125 case MSR_IA32_FRED_RSP2: 4126 env->fred_rsp2 = msrs[i].data; 4127 break; 4128 case MSR_IA32_FRED_RSP3: 4129 env->fred_rsp3 = msrs[i].data; 4130 break; 4131 case MSR_IA32_FRED_STKLVLS: 4132 env->fred_stklvls = msrs[i].data; 4133 break; 4134 case MSR_IA32_FRED_SSP1: 4135 env->fred_ssp1 = msrs[i].data; 4136 break; 4137 case MSR_IA32_FRED_SSP2: 4138 env->fred_ssp2 = msrs[i].data; 4139 break; 4140 case MSR_IA32_FRED_SSP3: 4141 env->fred_ssp3 = msrs[i].data; 4142 break; 4143 case MSR_IA32_FRED_CONFIG: 4144 env->fred_config = msrs[i].data; 4145 break; 4146 #endif 4147 case MSR_IA32_TSC: 4148 env->tsc = msrs[i].data; 4149 break; 4150 case MSR_TSC_AUX: 4151 env->tsc_aux = msrs[i].data; 4152 break; 4153 case MSR_TSC_ADJUST: 4154 env->tsc_adjust = msrs[i].data; 4155 break; 4156 case MSR_IA32_TSCDEADLINE: 4157 env->tsc_deadline = msrs[i].data; 4158 break; 4159 case MSR_VM_HSAVE_PA: 4160 env->vm_hsave = msrs[i].data; 4161 break; 4162 case MSR_KVM_SYSTEM_TIME: 4163 env->system_time_msr = msrs[i].data; 4164 break; 4165 case MSR_KVM_WALL_CLOCK: 4166 env->wall_clock_msr = msrs[i].data; 4167 break; 4168 case MSR_MCG_STATUS: 4169 env->mcg_status = msrs[i].data; 4170 break; 4171 case MSR_MCG_CTL: 4172 env->mcg_ctl = msrs[i].data; 4173 break; 4174 case MSR_MCG_EXT_CTL: 4175 env->mcg_ext_ctl = msrs[i].data; 4176 break; 4177 case MSR_IA32_MISC_ENABLE: 4178 env->msr_ia32_misc_enable = msrs[i].data; 4179 break; 4180 case MSR_IA32_SMBASE: 4181 env->smbase = msrs[i].data; 4182 break; 4183 case MSR_SMI_COUNT: 4184 env->msr_smi_count = msrs[i].data; 4185 break; 4186 case MSR_IA32_FEATURE_CONTROL: 4187 env->msr_ia32_feature_control = msrs[i].data; 4188 break; 4189 case MSR_IA32_BNDCFGS: 4190 env->msr_bndcfgs = msrs[i].data; 4191 break; 4192 case MSR_IA32_XSS: 4193 env->xss = msrs[i].data; 4194 break; 4195 case MSR_IA32_UMWAIT_CONTROL: 4196 env->umwait = msrs[i].data; 4197 break; 4198 case MSR_IA32_PKRS: 4199 env->pkrs = msrs[i].data; 4200 break; 4201 default: 4202 if (msrs[i].index >= MSR_MC0_CTL && 4203 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { 4204 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; 4205 } 4206 break; 4207 case MSR_KVM_ASYNC_PF_EN: 4208 env->async_pf_en_msr = msrs[i].data; 4209 break; 4210 case MSR_KVM_ASYNC_PF_INT: 4211 env->async_pf_int_msr = msrs[i].data; 4212 break; 4213 case MSR_KVM_PV_EOI_EN: 4214 env->pv_eoi_en_msr = msrs[i].data; 4215 break; 4216 case MSR_KVM_STEAL_TIME: 4217 env->steal_time_msr = msrs[i].data; 4218 break; 4219 case MSR_KVM_POLL_CONTROL: { 4220 env->poll_control_msr = msrs[i].data; 4221 break; 4222 } 4223 case MSR_CORE_PERF_FIXED_CTR_CTRL: 4224 env->msr_fixed_ctr_ctrl = msrs[i].data; 4225 break; 4226 case MSR_CORE_PERF_GLOBAL_CTRL: 4227 env->msr_global_ctrl = msrs[i].data; 4228 break; 4229 case MSR_CORE_PERF_GLOBAL_STATUS: 4230 env->msr_global_status = msrs[i].data; 4231 break; 4232 case MSR_CORE_PERF_GLOBAL_OVF_CTRL: 4233 env->msr_global_ovf_ctrl = msrs[i].data; 4234 break; 4235 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: 4236 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; 4237 break; 4238 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: 4239 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; 4240 break; 4241 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: 4242 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; 4243 break; 4244 case HV_X64_MSR_HYPERCALL: 4245 env->msr_hv_hypercall = msrs[i].data; 4246 break; 4247 case HV_X64_MSR_GUEST_OS_ID: 4248 env->msr_hv_guest_os_id = msrs[i].data; 4249 break; 4250 case HV_X64_MSR_APIC_ASSIST_PAGE: 4251 env->msr_hv_vapic = msrs[i].data; 4252 break; 4253 case HV_X64_MSR_REFERENCE_TSC: 4254 env->msr_hv_tsc = msrs[i].data; 4255 break; 4256 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4257 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; 4258 break; 4259 case HV_X64_MSR_VP_RUNTIME: 4260 env->msr_hv_runtime = msrs[i].data; 4261 break; 4262 case HV_X64_MSR_SCONTROL: 4263 env->msr_hv_synic_control = msrs[i].data; 4264 break; 4265 case HV_X64_MSR_SIEFP: 4266 env->msr_hv_synic_evt_page = msrs[i].data; 4267 break; 4268 case HV_X64_MSR_SIMP: 4269 env->msr_hv_synic_msg_page = msrs[i].data; 4270 break; 4271 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 4272 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; 4273 break; 4274 case HV_X64_MSR_STIMER0_CONFIG: 4275 case HV_X64_MSR_STIMER1_CONFIG: 4276 case HV_X64_MSR_STIMER2_CONFIG: 4277 case HV_X64_MSR_STIMER3_CONFIG: 4278 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = 4279 msrs[i].data; 4280 break; 4281 case HV_X64_MSR_STIMER0_COUNT: 4282 case HV_X64_MSR_STIMER1_COUNT: 4283 case HV_X64_MSR_STIMER2_COUNT: 4284 case HV_X64_MSR_STIMER3_COUNT: 4285 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = 4286 msrs[i].data; 4287 break; 4288 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4289 env->msr_hv_reenlightenment_control = msrs[i].data; 4290 break; 4291 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4292 env->msr_hv_tsc_emulation_control = msrs[i].data; 4293 break; 4294 case HV_X64_MSR_TSC_EMULATION_STATUS: 4295 env->msr_hv_tsc_emulation_status = msrs[i].data; 4296 break; 4297 case HV_X64_MSR_SYNDBG_OPTIONS: 4298 env->msr_hv_syndbg_options = msrs[i].data; 4299 break; 4300 case MSR_MTRRdefType: 4301 env->mtrr_deftype = msrs[i].data; 4302 break; 4303 case MSR_MTRRfix64K_00000: 4304 env->mtrr_fixed[0] = msrs[i].data; 4305 break; 4306 case MSR_MTRRfix16K_80000: 4307 env->mtrr_fixed[1] = msrs[i].data; 4308 break; 4309 case MSR_MTRRfix16K_A0000: 4310 env->mtrr_fixed[2] = msrs[i].data; 4311 break; 4312 case MSR_MTRRfix4K_C0000: 4313 env->mtrr_fixed[3] = msrs[i].data; 4314 break; 4315 case MSR_MTRRfix4K_C8000: 4316 env->mtrr_fixed[4] = msrs[i].data; 4317 break; 4318 case MSR_MTRRfix4K_D0000: 4319 env->mtrr_fixed[5] = msrs[i].data; 4320 break; 4321 case MSR_MTRRfix4K_D8000: 4322 env->mtrr_fixed[6] = msrs[i].data; 4323 break; 4324 case MSR_MTRRfix4K_E0000: 4325 env->mtrr_fixed[7] = msrs[i].data; 4326 break; 4327 case MSR_MTRRfix4K_E8000: 4328 env->mtrr_fixed[8] = msrs[i].data; 4329 break; 4330 case MSR_MTRRfix4K_F0000: 4331 env->mtrr_fixed[9] = msrs[i].data; 4332 break; 4333 case MSR_MTRRfix4K_F8000: 4334 env->mtrr_fixed[10] = msrs[i].data; 4335 break; 4336 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): 4337 if (index & 1) { 4338 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | 4339 mtrr_top_bits; 4340 } else { 4341 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; 4342 } 4343 break; 4344 case MSR_IA32_SPEC_CTRL: 4345 env->spec_ctrl = msrs[i].data; 4346 break; 4347 case MSR_AMD64_TSC_RATIO: 4348 env->amd_tsc_scale_msr = msrs[i].data; 4349 break; 4350 case MSR_IA32_TSX_CTRL: 4351 env->tsx_ctrl = msrs[i].data; 4352 break; 4353 case MSR_VIRT_SSBD: 4354 env->virt_ssbd = msrs[i].data; 4355 break; 4356 case MSR_IA32_RTIT_CTL: 4357 env->msr_rtit_ctrl = msrs[i].data; 4358 break; 4359 case MSR_IA32_RTIT_STATUS: 4360 env->msr_rtit_status = msrs[i].data; 4361 break; 4362 case MSR_IA32_RTIT_OUTPUT_BASE: 4363 env->msr_rtit_output_base = msrs[i].data; 4364 break; 4365 case MSR_IA32_RTIT_OUTPUT_MASK: 4366 env->msr_rtit_output_mask = msrs[i].data; 4367 break; 4368 case MSR_IA32_RTIT_CR3_MATCH: 4369 env->msr_rtit_cr3_match = msrs[i].data; 4370 break; 4371 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 4372 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data; 4373 break; 4374 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 4375 env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] = 4376 msrs[i].data; 4377 break; 4378 case MSR_IA32_XFD: 4379 env->msr_xfd = msrs[i].data; 4380 break; 4381 case MSR_IA32_XFD_ERR: 4382 env->msr_xfd_err = msrs[i].data; 4383 break; 4384 case MSR_ARCH_LBR_CTL: 4385 env->msr_lbr_ctl = msrs[i].data; 4386 break; 4387 case MSR_ARCH_LBR_DEPTH: 4388 env->msr_lbr_depth = msrs[i].data; 4389 break; 4390 case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31: 4391 env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data; 4392 break; 4393 case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31: 4394 env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data; 4395 break; 4396 case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31: 4397 env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data; 4398 break; 4399 } 4400 } 4401 4402 return 0; 4403 } 4404 4405 static int kvm_put_mp_state(X86CPU *cpu) 4406 { 4407 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; 4408 4409 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 4410 } 4411 4412 static int kvm_get_mp_state(X86CPU *cpu) 4413 { 4414 CPUState *cs = CPU(cpu); 4415 CPUX86State *env = &cpu->env; 4416 struct kvm_mp_state mp_state; 4417 int ret; 4418 4419 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); 4420 if (ret < 0) { 4421 return ret; 4422 } 4423 env->mp_state = mp_state.mp_state; 4424 if (kvm_irqchip_in_kernel()) { 4425 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); 4426 } 4427 return 0; 4428 } 4429 4430 static int kvm_get_apic(X86CPU *cpu) 4431 { 4432 DeviceState *apic = cpu->apic_state; 4433 struct kvm_lapic_state kapic; 4434 int ret; 4435 4436 if (apic && kvm_irqchip_in_kernel()) { 4437 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); 4438 if (ret < 0) { 4439 return ret; 4440 } 4441 4442 kvm_get_apic_state(apic, &kapic); 4443 } 4444 return 0; 4445 } 4446 4447 static int kvm_put_vcpu_events(X86CPU *cpu, int level) 4448 { 4449 CPUState *cs = CPU(cpu); 4450 CPUX86State *env = &cpu->env; 4451 struct kvm_vcpu_events events = {}; 4452 4453 events.flags = 0; 4454 4455 if (has_exception_payload) { 4456 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 4457 events.exception.pending = env->exception_pending; 4458 events.exception_has_payload = env->exception_has_payload; 4459 events.exception_payload = env->exception_payload; 4460 } 4461 events.exception.nr = env->exception_nr; 4462 events.exception.injected = env->exception_injected; 4463 events.exception.has_error_code = env->has_error_code; 4464 events.exception.error_code = env->error_code; 4465 4466 events.interrupt.injected = (env->interrupt_injected >= 0); 4467 events.interrupt.nr = env->interrupt_injected; 4468 events.interrupt.soft = env->soft_interrupt; 4469 4470 events.nmi.injected = env->nmi_injected; 4471 events.nmi.pending = env->nmi_pending; 4472 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); 4473 4474 events.sipi_vector = env->sipi_vector; 4475 4476 if (has_msr_smbase) { 4477 events.flags |= KVM_VCPUEVENT_VALID_SMM; 4478 events.smi.smm = !!(env->hflags & HF_SMM_MASK); 4479 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); 4480 if (kvm_irqchip_in_kernel()) { 4481 /* As soon as these are moved to the kernel, remove them 4482 * from cs->interrupt_request. 4483 */ 4484 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; 4485 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; 4486 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); 4487 } else { 4488 /* Keep these in cs->interrupt_request. */ 4489 events.smi.pending = 0; 4490 events.smi.latched_init = 0; 4491 } 4492 } 4493 4494 if (level >= KVM_PUT_RESET_STATE) { 4495 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; 4496 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 4497 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR; 4498 } 4499 } 4500 4501 if (has_triple_fault_event) { 4502 events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 4503 events.triple_fault.pending = env->triple_fault_pending; 4504 } 4505 4506 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 4507 } 4508 4509 static int kvm_get_vcpu_events(X86CPU *cpu) 4510 { 4511 CPUX86State *env = &cpu->env; 4512 struct kvm_vcpu_events events; 4513 int ret; 4514 4515 memset(&events, 0, sizeof(events)); 4516 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 4517 if (ret < 0) { 4518 return ret; 4519 } 4520 4521 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 4522 env->exception_pending = events.exception.pending; 4523 env->exception_has_payload = events.exception_has_payload; 4524 env->exception_payload = events.exception_payload; 4525 } else { 4526 env->exception_pending = 0; 4527 env->exception_has_payload = false; 4528 } 4529 env->exception_injected = events.exception.injected; 4530 env->exception_nr = 4531 (env->exception_pending || env->exception_injected) ? 4532 events.exception.nr : -1; 4533 env->has_error_code = events.exception.has_error_code; 4534 env->error_code = events.exception.error_code; 4535 4536 env->interrupt_injected = 4537 events.interrupt.injected ? events.interrupt.nr : -1; 4538 env->soft_interrupt = events.interrupt.soft; 4539 4540 env->nmi_injected = events.nmi.injected; 4541 env->nmi_pending = events.nmi.pending; 4542 if (events.nmi.masked) { 4543 env->hflags2 |= HF2_NMI_MASK; 4544 } else { 4545 env->hflags2 &= ~HF2_NMI_MASK; 4546 } 4547 4548 if (events.flags & KVM_VCPUEVENT_VALID_SMM) { 4549 if (events.smi.smm) { 4550 env->hflags |= HF_SMM_MASK; 4551 } else { 4552 env->hflags &= ~HF_SMM_MASK; 4553 } 4554 if (events.smi.pending) { 4555 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 4556 } else { 4557 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 4558 } 4559 if (events.smi.smm_inside_nmi) { 4560 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; 4561 } else { 4562 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; 4563 } 4564 if (events.smi.latched_init) { 4565 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 4566 } else { 4567 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 4568 } 4569 } 4570 4571 if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 4572 env->triple_fault_pending = events.triple_fault.pending; 4573 } 4574 4575 env->sipi_vector = events.sipi_vector; 4576 4577 return 0; 4578 } 4579 4580 static int kvm_put_debugregs(X86CPU *cpu) 4581 { 4582 CPUX86State *env = &cpu->env; 4583 struct kvm_debugregs dbgregs; 4584 int i; 4585 4586 memset(&dbgregs, 0, sizeof(dbgregs)); 4587 for (i = 0; i < 4; i++) { 4588 dbgregs.db[i] = env->dr[i]; 4589 } 4590 dbgregs.dr6 = env->dr[6]; 4591 dbgregs.dr7 = env->dr[7]; 4592 dbgregs.flags = 0; 4593 4594 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); 4595 } 4596 4597 static int kvm_get_debugregs(X86CPU *cpu) 4598 { 4599 CPUX86State *env = &cpu->env; 4600 struct kvm_debugregs dbgregs; 4601 int i, ret; 4602 4603 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); 4604 if (ret < 0) { 4605 return ret; 4606 } 4607 for (i = 0; i < 4; i++) { 4608 env->dr[i] = dbgregs.db[i]; 4609 } 4610 env->dr[4] = env->dr[6] = dbgregs.dr6; 4611 env->dr[5] = env->dr[7] = dbgregs.dr7; 4612 4613 return 0; 4614 } 4615 4616 static int kvm_put_nested_state(X86CPU *cpu) 4617 { 4618 CPUX86State *env = &cpu->env; 4619 int max_nested_state_len = kvm_max_nested_state_length(); 4620 4621 if (!env->nested_state) { 4622 return 0; 4623 } 4624 4625 /* 4626 * Copy flags that are affected by reset from env->hflags and env->hflags2. 4627 */ 4628 if (env->hflags & HF_GUEST_MASK) { 4629 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE; 4630 } else { 4631 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE; 4632 } 4633 4634 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */ 4635 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) { 4636 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET; 4637 } else { 4638 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET; 4639 } 4640 4641 assert(env->nested_state->size <= max_nested_state_len); 4642 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state); 4643 } 4644 4645 static int kvm_get_nested_state(X86CPU *cpu) 4646 { 4647 CPUX86State *env = &cpu->env; 4648 int max_nested_state_len = kvm_max_nested_state_length(); 4649 int ret; 4650 4651 if (!env->nested_state) { 4652 return 0; 4653 } 4654 4655 /* 4656 * It is possible that migration restored a smaller size into 4657 * nested_state->hdr.size than what our kernel support. 4658 * We preserve migration origin nested_state->hdr.size for 4659 * call to KVM_SET_NESTED_STATE but wish that our next call 4660 * to KVM_GET_NESTED_STATE will use max size our kernel support. 4661 */ 4662 env->nested_state->size = max_nested_state_len; 4663 4664 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state); 4665 if (ret < 0) { 4666 return ret; 4667 } 4668 4669 /* 4670 * Copy flags that are affected by reset to env->hflags and env->hflags2. 4671 */ 4672 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) { 4673 env->hflags |= HF_GUEST_MASK; 4674 } else { 4675 env->hflags &= ~HF_GUEST_MASK; 4676 } 4677 4678 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */ 4679 if (cpu_has_svm(env)) { 4680 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) { 4681 env->hflags2 |= HF2_GIF_MASK; 4682 } else { 4683 env->hflags2 &= ~HF2_GIF_MASK; 4684 } 4685 } 4686 4687 return ret; 4688 } 4689 4690 int kvm_arch_put_registers(CPUState *cpu, int level) 4691 { 4692 X86CPU *x86_cpu = X86_CPU(cpu); 4693 int ret; 4694 4695 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); 4696 4697 /* 4698 * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX 4699 * root operation upon vCPU reset. kvm_put_msr_feature_control() should also 4700 * precede kvm_put_nested_state() when 'real' nested state is set. 4701 */ 4702 if (level >= KVM_PUT_RESET_STATE) { 4703 ret = kvm_put_msr_feature_control(x86_cpu); 4704 if (ret < 0) { 4705 return ret; 4706 } 4707 } 4708 4709 /* must be before kvm_put_nested_state so that EFER.SVME is set */ 4710 ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu); 4711 if (ret < 0) { 4712 return ret; 4713 } 4714 4715 if (level >= KVM_PUT_RESET_STATE) { 4716 ret = kvm_put_nested_state(x86_cpu); 4717 if (ret < 0) { 4718 return ret; 4719 } 4720 } 4721 4722 if (level == KVM_PUT_FULL_STATE) { 4723 /* We don't check for kvm_arch_set_tsc_khz() errors here, 4724 * because TSC frequency mismatch shouldn't abort migration, 4725 * unless the user explicitly asked for a more strict TSC 4726 * setting (e.g. using an explicit "tsc-freq" option). 4727 */ 4728 kvm_arch_set_tsc_khz(cpu); 4729 } 4730 4731 #ifdef CONFIG_XEN_EMU 4732 if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) { 4733 ret = kvm_put_xen_state(cpu); 4734 if (ret < 0) { 4735 return ret; 4736 } 4737 } 4738 #endif 4739 4740 ret = kvm_getput_regs(x86_cpu, 1); 4741 if (ret < 0) { 4742 return ret; 4743 } 4744 ret = kvm_put_xsave(x86_cpu); 4745 if (ret < 0) { 4746 return ret; 4747 } 4748 ret = kvm_put_xcrs(x86_cpu); 4749 if (ret < 0) { 4750 return ret; 4751 } 4752 ret = kvm_put_msrs(x86_cpu, level); 4753 if (ret < 0) { 4754 return ret; 4755 } 4756 ret = kvm_put_vcpu_events(x86_cpu, level); 4757 if (ret < 0) { 4758 return ret; 4759 } 4760 if (level >= KVM_PUT_RESET_STATE) { 4761 ret = kvm_put_mp_state(x86_cpu); 4762 if (ret < 0) { 4763 return ret; 4764 } 4765 } 4766 4767 ret = kvm_put_tscdeadline_msr(x86_cpu); 4768 if (ret < 0) { 4769 return ret; 4770 } 4771 ret = kvm_put_debugregs(x86_cpu); 4772 if (ret < 0) { 4773 return ret; 4774 } 4775 return 0; 4776 } 4777 4778 int kvm_arch_get_registers(CPUState *cs) 4779 { 4780 X86CPU *cpu = X86_CPU(cs); 4781 int ret; 4782 4783 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); 4784 4785 ret = kvm_get_vcpu_events(cpu); 4786 if (ret < 0) { 4787 goto out; 4788 } 4789 /* 4790 * KVM_GET_MPSTATE can modify CS and RIP, call it before 4791 * KVM_GET_REGS and KVM_GET_SREGS. 4792 */ 4793 ret = kvm_get_mp_state(cpu); 4794 if (ret < 0) { 4795 goto out; 4796 } 4797 ret = kvm_getput_regs(cpu, 0); 4798 if (ret < 0) { 4799 goto out; 4800 } 4801 ret = kvm_get_xsave(cpu); 4802 if (ret < 0) { 4803 goto out; 4804 } 4805 ret = kvm_get_xcrs(cpu); 4806 if (ret < 0) { 4807 goto out; 4808 } 4809 ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu); 4810 if (ret < 0) { 4811 goto out; 4812 } 4813 ret = kvm_get_msrs(cpu); 4814 if (ret < 0) { 4815 goto out; 4816 } 4817 ret = kvm_get_apic(cpu); 4818 if (ret < 0) { 4819 goto out; 4820 } 4821 ret = kvm_get_debugregs(cpu); 4822 if (ret < 0) { 4823 goto out; 4824 } 4825 ret = kvm_get_nested_state(cpu); 4826 if (ret < 0) { 4827 goto out; 4828 } 4829 #ifdef CONFIG_XEN_EMU 4830 if (xen_mode == XEN_EMULATE) { 4831 ret = kvm_get_xen_state(cs); 4832 if (ret < 0) { 4833 goto out; 4834 } 4835 } 4836 #endif 4837 ret = 0; 4838 out: 4839 cpu_sync_bndcs_hflags(&cpu->env); 4840 return ret; 4841 } 4842 4843 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 4844 { 4845 X86CPU *x86_cpu = X86_CPU(cpu); 4846 CPUX86State *env = &x86_cpu->env; 4847 int ret; 4848 4849 /* Inject NMI */ 4850 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { 4851 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { 4852 bql_lock(); 4853 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; 4854 bql_unlock(); 4855 DPRINTF("injected NMI\n"); 4856 ret = kvm_vcpu_ioctl(cpu, KVM_NMI); 4857 if (ret < 0) { 4858 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", 4859 strerror(-ret)); 4860 } 4861 } 4862 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { 4863 bql_lock(); 4864 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; 4865 bql_unlock(); 4866 DPRINTF("injected SMI\n"); 4867 ret = kvm_vcpu_ioctl(cpu, KVM_SMI); 4868 if (ret < 0) { 4869 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", 4870 strerror(-ret)); 4871 } 4872 } 4873 } 4874 4875 if (!kvm_pic_in_kernel()) { 4876 bql_lock(); 4877 } 4878 4879 /* Force the VCPU out of its inner loop to process any INIT requests 4880 * or (for userspace APIC, but it is cheap to combine the checks here) 4881 * pending TPR access reports. 4882 */ 4883 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { 4884 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && 4885 !(env->hflags & HF_SMM_MASK)) { 4886 cpu->exit_request = 1; 4887 } 4888 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { 4889 cpu->exit_request = 1; 4890 } 4891 } 4892 4893 if (!kvm_pic_in_kernel()) { 4894 /* Try to inject an interrupt if the guest can accept it */ 4895 if (run->ready_for_interrupt_injection && 4896 (cpu->interrupt_request & CPU_INTERRUPT_HARD) && 4897 (env->eflags & IF_MASK)) { 4898 int irq; 4899 4900 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; 4901 irq = cpu_get_pic_interrupt(env); 4902 if (irq >= 0) { 4903 struct kvm_interrupt intr; 4904 4905 intr.irq = irq; 4906 DPRINTF("injected interrupt %d\n", irq); 4907 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); 4908 if (ret < 0) { 4909 fprintf(stderr, 4910 "KVM: injection failed, interrupt lost (%s)\n", 4911 strerror(-ret)); 4912 } 4913 } 4914 } 4915 4916 /* If we have an interrupt but the guest is not ready to receive an 4917 * interrupt, request an interrupt window exit. This will 4918 * cause a return to userspace as soon as the guest is ready to 4919 * receive interrupts. */ 4920 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { 4921 run->request_interrupt_window = 1; 4922 } else { 4923 run->request_interrupt_window = 0; 4924 } 4925 4926 DPRINTF("setting tpr\n"); 4927 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); 4928 4929 bql_unlock(); 4930 } 4931 } 4932 4933 static void kvm_rate_limit_on_bus_lock(void) 4934 { 4935 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1); 4936 4937 if (delay_ns) { 4938 g_usleep(delay_ns / SCALE_US); 4939 } 4940 } 4941 4942 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) 4943 { 4944 X86CPU *x86_cpu = X86_CPU(cpu); 4945 CPUX86State *env = &x86_cpu->env; 4946 4947 if (run->flags & KVM_RUN_X86_SMM) { 4948 env->hflags |= HF_SMM_MASK; 4949 } else { 4950 env->hflags &= ~HF_SMM_MASK; 4951 } 4952 if (run->if_flag) { 4953 env->eflags |= IF_MASK; 4954 } else { 4955 env->eflags &= ~IF_MASK; 4956 } 4957 if (run->flags & KVM_RUN_X86_BUS_LOCK) { 4958 kvm_rate_limit_on_bus_lock(); 4959 } 4960 4961 #ifdef CONFIG_XEN_EMU 4962 /* 4963 * If the callback is asserted as a GSI (or PCI INTx) then check if 4964 * vcpu_info->evtchn_upcall_pending has been cleared, and deassert 4965 * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC 4966 * EOI and only resample then, exactly how the VFIO eventfd pairs 4967 * are designed to work for level triggered interrupts. 4968 */ 4969 if (x86_cpu->env.xen_callback_asserted) { 4970 kvm_xen_maybe_deassert_callback(cpu); 4971 } 4972 #endif 4973 4974 /* We need to protect the apic state against concurrent accesses from 4975 * different threads in case the userspace irqchip is used. */ 4976 if (!kvm_irqchip_in_kernel()) { 4977 bql_lock(); 4978 } 4979 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); 4980 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); 4981 if (!kvm_irqchip_in_kernel()) { 4982 bql_unlock(); 4983 } 4984 return cpu_get_mem_attrs(env); 4985 } 4986 4987 int kvm_arch_process_async_events(CPUState *cs) 4988 { 4989 X86CPU *cpu = X86_CPU(cs); 4990 CPUX86State *env = &cpu->env; 4991 4992 if (cs->interrupt_request & CPU_INTERRUPT_MCE) { 4993 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ 4994 assert(env->mcg_cap); 4995 4996 cs->interrupt_request &= ~CPU_INTERRUPT_MCE; 4997 4998 kvm_cpu_synchronize_state(cs); 4999 5000 if (env->exception_nr == EXCP08_DBLE) { 5001 /* this means triple fault */ 5002 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 5003 cs->exit_request = 1; 5004 return 0; 5005 } 5006 kvm_queue_exception(env, EXCP12_MCHK, 0, 0); 5007 env->has_error_code = 0; 5008 5009 cs->halted = 0; 5010 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { 5011 env->mp_state = KVM_MP_STATE_RUNNABLE; 5012 } 5013 } 5014 5015 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && 5016 !(env->hflags & HF_SMM_MASK)) { 5017 kvm_cpu_synchronize_state(cs); 5018 do_cpu_init(cpu); 5019 } 5020 5021 if (kvm_irqchip_in_kernel()) { 5022 return 0; 5023 } 5024 5025 if (cs->interrupt_request & CPU_INTERRUPT_POLL) { 5026 cs->interrupt_request &= ~CPU_INTERRUPT_POLL; 5027 apic_poll_irq(cpu->apic_state); 5028 } 5029 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && 5030 (env->eflags & IF_MASK)) || 5031 (cs->interrupt_request & CPU_INTERRUPT_NMI)) { 5032 cs->halted = 0; 5033 } 5034 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { 5035 kvm_cpu_synchronize_state(cs); 5036 do_cpu_sipi(cpu); 5037 } 5038 if (cs->interrupt_request & CPU_INTERRUPT_TPR) { 5039 cs->interrupt_request &= ~CPU_INTERRUPT_TPR; 5040 kvm_cpu_synchronize_state(cs); 5041 apic_handle_tpr_access_report(cpu->apic_state, env->eip, 5042 env->tpr_access_type); 5043 } 5044 5045 return cs->halted; 5046 } 5047 5048 static int kvm_handle_halt(X86CPU *cpu) 5049 { 5050 CPUState *cs = CPU(cpu); 5051 CPUX86State *env = &cpu->env; 5052 5053 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && 5054 (env->eflags & IF_MASK)) && 5055 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { 5056 cs->halted = 1; 5057 return EXCP_HLT; 5058 } 5059 5060 return 0; 5061 } 5062 5063 static int kvm_handle_tpr_access(X86CPU *cpu) 5064 { 5065 CPUState *cs = CPU(cpu); 5066 struct kvm_run *run = cs->kvm_run; 5067 5068 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, 5069 run->tpr_access.is_write ? TPR_ACCESS_WRITE 5070 : TPR_ACCESS_READ); 5071 return 1; 5072 } 5073 5074 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 5075 { 5076 static const uint8_t int3 = 0xcc; 5077 5078 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || 5079 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { 5080 return -EINVAL; 5081 } 5082 return 0; 5083 } 5084 5085 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 5086 { 5087 uint8_t int3; 5088 5089 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) { 5090 return -EINVAL; 5091 } 5092 if (int3 != 0xcc) { 5093 return 0; 5094 } 5095 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { 5096 return -EINVAL; 5097 } 5098 return 0; 5099 } 5100 5101 static struct { 5102 target_ulong addr; 5103 int len; 5104 int type; 5105 } hw_breakpoint[4]; 5106 5107 static int nb_hw_breakpoint; 5108 5109 static int find_hw_breakpoint(target_ulong addr, int len, int type) 5110 { 5111 int n; 5112 5113 for (n = 0; n < nb_hw_breakpoint; n++) { 5114 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && 5115 (hw_breakpoint[n].len == len || len == -1)) { 5116 return n; 5117 } 5118 } 5119 return -1; 5120 } 5121 5122 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type) 5123 { 5124 switch (type) { 5125 case GDB_BREAKPOINT_HW: 5126 len = 1; 5127 break; 5128 case GDB_WATCHPOINT_WRITE: 5129 case GDB_WATCHPOINT_ACCESS: 5130 switch (len) { 5131 case 1: 5132 break; 5133 case 2: 5134 case 4: 5135 case 8: 5136 if (addr & (len - 1)) { 5137 return -EINVAL; 5138 } 5139 break; 5140 default: 5141 return -EINVAL; 5142 } 5143 break; 5144 default: 5145 return -ENOSYS; 5146 } 5147 5148 if (nb_hw_breakpoint == 4) { 5149 return -ENOBUFS; 5150 } 5151 if (find_hw_breakpoint(addr, len, type) >= 0) { 5152 return -EEXIST; 5153 } 5154 hw_breakpoint[nb_hw_breakpoint].addr = addr; 5155 hw_breakpoint[nb_hw_breakpoint].len = len; 5156 hw_breakpoint[nb_hw_breakpoint].type = type; 5157 nb_hw_breakpoint++; 5158 5159 return 0; 5160 } 5161 5162 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type) 5163 { 5164 int n; 5165 5166 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); 5167 if (n < 0) { 5168 return -ENOENT; 5169 } 5170 nb_hw_breakpoint--; 5171 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; 5172 5173 return 0; 5174 } 5175 5176 void kvm_arch_remove_all_hw_breakpoints(void) 5177 { 5178 nb_hw_breakpoint = 0; 5179 } 5180 5181 static CPUWatchpoint hw_watchpoint; 5182 5183 static int kvm_handle_debug(X86CPU *cpu, 5184 struct kvm_debug_exit_arch *arch_info) 5185 { 5186 CPUState *cs = CPU(cpu); 5187 CPUX86State *env = &cpu->env; 5188 int ret = 0; 5189 int n; 5190 5191 if (arch_info->exception == EXCP01_DB) { 5192 if (arch_info->dr6 & DR6_BS) { 5193 if (cs->singlestep_enabled) { 5194 ret = EXCP_DEBUG; 5195 } 5196 } else { 5197 for (n = 0; n < 4; n++) { 5198 if (arch_info->dr6 & (1 << n)) { 5199 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { 5200 case 0x0: 5201 ret = EXCP_DEBUG; 5202 break; 5203 case 0x1: 5204 ret = EXCP_DEBUG; 5205 cs->watchpoint_hit = &hw_watchpoint; 5206 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 5207 hw_watchpoint.flags = BP_MEM_WRITE; 5208 break; 5209 case 0x3: 5210 ret = EXCP_DEBUG; 5211 cs->watchpoint_hit = &hw_watchpoint; 5212 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 5213 hw_watchpoint.flags = BP_MEM_ACCESS; 5214 break; 5215 } 5216 } 5217 } 5218 } 5219 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { 5220 ret = EXCP_DEBUG; 5221 } 5222 if (ret == 0) { 5223 cpu_synchronize_state(cs); 5224 assert(env->exception_nr == -1); 5225 5226 /* pass to guest */ 5227 kvm_queue_exception(env, arch_info->exception, 5228 arch_info->exception == EXCP01_DB, 5229 arch_info->dr6); 5230 env->has_error_code = 0; 5231 } 5232 5233 return ret; 5234 } 5235 5236 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 5237 { 5238 const uint8_t type_code[] = { 5239 [GDB_BREAKPOINT_HW] = 0x0, 5240 [GDB_WATCHPOINT_WRITE] = 0x1, 5241 [GDB_WATCHPOINT_ACCESS] = 0x3 5242 }; 5243 const uint8_t len_code[] = { 5244 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 5245 }; 5246 int n; 5247 5248 if (kvm_sw_breakpoints_active(cpu)) { 5249 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 5250 } 5251 if (nb_hw_breakpoint > 0) { 5252 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 5253 dbg->arch.debugreg[7] = 0x0600; 5254 for (n = 0; n < nb_hw_breakpoint; n++) { 5255 dbg->arch.debugreg[n] = hw_breakpoint[n].addr; 5256 dbg->arch.debugreg[7] |= (2 << (n * 2)) | 5257 (type_code[hw_breakpoint[n].type] << (16 + n*4)) | 5258 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); 5259 } 5260 } 5261 } 5262 5263 static bool kvm_install_msr_filters(KVMState *s) 5264 { 5265 uint64_t zero = 0; 5266 struct kvm_msr_filter filter = { 5267 .flags = KVM_MSR_FILTER_DEFAULT_ALLOW, 5268 }; 5269 int r, i, j = 0; 5270 5271 for (i = 0; i < KVM_MSR_FILTER_MAX_RANGES; i++) { 5272 KVMMSRHandlers *handler = &msr_handlers[i]; 5273 if (handler->msr) { 5274 struct kvm_msr_filter_range *range = &filter.ranges[j++]; 5275 5276 *range = (struct kvm_msr_filter_range) { 5277 .flags = 0, 5278 .nmsrs = 1, 5279 .base = handler->msr, 5280 .bitmap = (__u8 *)&zero, 5281 }; 5282 5283 if (handler->rdmsr) { 5284 range->flags |= KVM_MSR_FILTER_READ; 5285 } 5286 5287 if (handler->wrmsr) { 5288 range->flags |= KVM_MSR_FILTER_WRITE; 5289 } 5290 } 5291 } 5292 5293 r = kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter); 5294 if (r) { 5295 return false; 5296 } 5297 5298 return true; 5299 } 5300 5301 bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr, 5302 QEMUWRMSRHandler *wrmsr) 5303 { 5304 int i; 5305 5306 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5307 if (!msr_handlers[i].msr) { 5308 msr_handlers[i] = (KVMMSRHandlers) { 5309 .msr = msr, 5310 .rdmsr = rdmsr, 5311 .wrmsr = wrmsr, 5312 }; 5313 5314 if (!kvm_install_msr_filters(s)) { 5315 msr_handlers[i] = (KVMMSRHandlers) { }; 5316 return false; 5317 } 5318 5319 return true; 5320 } 5321 } 5322 5323 return false; 5324 } 5325 5326 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run) 5327 { 5328 int i; 5329 bool r; 5330 5331 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5332 KVMMSRHandlers *handler = &msr_handlers[i]; 5333 if (run->msr.index == handler->msr) { 5334 if (handler->rdmsr) { 5335 r = handler->rdmsr(cpu, handler->msr, 5336 (uint64_t *)&run->msr.data); 5337 run->msr.error = r ? 0 : 1; 5338 return 0; 5339 } 5340 } 5341 } 5342 5343 assert(false); 5344 } 5345 5346 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run) 5347 { 5348 int i; 5349 bool r; 5350 5351 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5352 KVMMSRHandlers *handler = &msr_handlers[i]; 5353 if (run->msr.index == handler->msr) { 5354 if (handler->wrmsr) { 5355 r = handler->wrmsr(cpu, handler->msr, run->msr.data); 5356 run->msr.error = r ? 0 : 1; 5357 return 0; 5358 } 5359 } 5360 } 5361 5362 assert(false); 5363 } 5364 5365 static bool has_sgx_provisioning; 5366 5367 static bool __kvm_enable_sgx_provisioning(KVMState *s) 5368 { 5369 int fd, ret; 5370 5371 if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) { 5372 return false; 5373 } 5374 5375 fd = qemu_open_old("/dev/sgx_provision", O_RDONLY); 5376 if (fd < 0) { 5377 return false; 5378 } 5379 5380 ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd); 5381 if (ret) { 5382 error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret)); 5383 exit(1); 5384 } 5385 close(fd); 5386 return true; 5387 } 5388 5389 bool kvm_enable_sgx_provisioning(KVMState *s) 5390 { 5391 return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning); 5392 } 5393 5394 static bool host_supports_vmx(void) 5395 { 5396 uint32_t ecx, unused; 5397 5398 host_cpuid(1, 0, &unused, &unused, &ecx, &unused); 5399 return ecx & CPUID_EXT_VMX; 5400 } 5401 5402 /* 5403 * Currently the handling here only supports use of KVM_HC_MAP_GPA_RANGE 5404 * to service guest-initiated memory attribute update requests so that 5405 * KVM_SET_MEMORY_ATTRIBUTES can update whether or not a page should be 5406 * backed by the private memory pool provided by guest_memfd, and as such 5407 * is only applicable to guest_memfd-backed guests (e.g. SNP/TDX). 5408 * 5409 * Other other use-cases for KVM_HC_MAP_GPA_RANGE, such as for SEV live 5410 * migration, are not implemented here currently. 5411 * 5412 * For the guest_memfd use-case, these exits will generally be synthesized 5413 * by KVM based on platform-specific hypercalls, like GHCB requests in the 5414 * case of SEV-SNP, and not issued directly within the guest though the 5415 * KVM_HC_MAP_GPA_RANGE hypercall. So in this case, KVM_HC_MAP_GPA_RANGE is 5416 * not actually advertised to guests via the KVM CPUID feature bit, as 5417 * opposed to SEV live migration where it would be. Since it is unlikely the 5418 * SEV live migration use-case would be useful for guest-memfd backed guests, 5419 * because private/shared page tracking is already provided through other 5420 * means, these 2 use-cases should be treated as being mutually-exclusive. 5421 */ 5422 static int kvm_handle_hc_map_gpa_range(struct kvm_run *run) 5423 { 5424 uint64_t gpa, size, attributes; 5425 5426 if (!machine_require_guest_memfd(current_machine)) 5427 return -EINVAL; 5428 5429 gpa = run->hypercall.args[0]; 5430 size = run->hypercall.args[1] * TARGET_PAGE_SIZE; 5431 attributes = run->hypercall.args[2]; 5432 5433 trace_kvm_hc_map_gpa_range(gpa, size, attributes, run->hypercall.flags); 5434 5435 return kvm_convert_memory(gpa, size, attributes & KVM_MAP_GPA_RANGE_ENCRYPTED); 5436 } 5437 5438 static int kvm_handle_hypercall(struct kvm_run *run) 5439 { 5440 if (run->hypercall.nr == KVM_HC_MAP_GPA_RANGE) 5441 return kvm_handle_hc_map_gpa_range(run); 5442 5443 return -EINVAL; 5444 } 5445 5446 #define VMX_INVALID_GUEST_STATE 0x80000021 5447 5448 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 5449 { 5450 X86CPU *cpu = X86_CPU(cs); 5451 uint64_t code; 5452 int ret; 5453 bool ctx_invalid; 5454 KVMState *state; 5455 5456 switch (run->exit_reason) { 5457 case KVM_EXIT_HLT: 5458 DPRINTF("handle_hlt\n"); 5459 bql_lock(); 5460 ret = kvm_handle_halt(cpu); 5461 bql_unlock(); 5462 break; 5463 case KVM_EXIT_SET_TPR: 5464 ret = 0; 5465 break; 5466 case KVM_EXIT_TPR_ACCESS: 5467 bql_lock(); 5468 ret = kvm_handle_tpr_access(cpu); 5469 bql_unlock(); 5470 break; 5471 case KVM_EXIT_FAIL_ENTRY: 5472 code = run->fail_entry.hardware_entry_failure_reason; 5473 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", 5474 code); 5475 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { 5476 fprintf(stderr, 5477 "\nIf you're running a guest on an Intel machine without " 5478 "unrestricted mode\n" 5479 "support, the failure can be most likely due to the guest " 5480 "entering an invalid\n" 5481 "state for Intel VT. For example, the guest maybe running " 5482 "in big real mode\n" 5483 "which is not supported on less recent Intel processors." 5484 "\n\n"); 5485 } 5486 ret = -1; 5487 break; 5488 case KVM_EXIT_EXCEPTION: 5489 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", 5490 run->ex.exception, run->ex.error_code); 5491 ret = -1; 5492 break; 5493 case KVM_EXIT_DEBUG: 5494 DPRINTF("kvm_exit_debug\n"); 5495 bql_lock(); 5496 ret = kvm_handle_debug(cpu, &run->debug.arch); 5497 bql_unlock(); 5498 break; 5499 case KVM_EXIT_HYPERV: 5500 ret = kvm_hv_handle_exit(cpu, &run->hyperv); 5501 break; 5502 case KVM_EXIT_IOAPIC_EOI: 5503 ioapic_eoi_broadcast(run->eoi.vector); 5504 ret = 0; 5505 break; 5506 case KVM_EXIT_X86_BUS_LOCK: 5507 /* already handled in kvm_arch_post_run */ 5508 ret = 0; 5509 break; 5510 case KVM_EXIT_NOTIFY: 5511 ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID); 5512 state = KVM_STATE(current_accel()); 5513 if (ctx_invalid || 5514 state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) { 5515 warn_report("KVM internal error: Encountered a notify exit " 5516 "with invalid context in guest."); 5517 ret = -1; 5518 } else { 5519 warn_report_once("KVM: Encountered a notify exit with valid " 5520 "context in guest. " 5521 "The guest could be misbehaving."); 5522 ret = 0; 5523 } 5524 break; 5525 case KVM_EXIT_X86_RDMSR: 5526 /* We only enable MSR filtering, any other exit is bogus */ 5527 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER); 5528 ret = kvm_handle_rdmsr(cpu, run); 5529 break; 5530 case KVM_EXIT_X86_WRMSR: 5531 /* We only enable MSR filtering, any other exit is bogus */ 5532 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER); 5533 ret = kvm_handle_wrmsr(cpu, run); 5534 break; 5535 #ifdef CONFIG_XEN_EMU 5536 case KVM_EXIT_XEN: 5537 ret = kvm_xen_handle_exit(cpu, &run->xen); 5538 break; 5539 #endif 5540 case KVM_EXIT_HYPERCALL: 5541 ret = kvm_handle_hypercall(run); 5542 break; 5543 default: 5544 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); 5545 ret = -1; 5546 break; 5547 } 5548 5549 return ret; 5550 } 5551 5552 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 5553 { 5554 X86CPU *cpu = X86_CPU(cs); 5555 CPUX86State *env = &cpu->env; 5556 5557 kvm_cpu_synchronize_state(cs); 5558 return !(env->cr[0] & CR0_PE_MASK) || 5559 ((env->segs[R_CS].selector & 3) != 3); 5560 } 5561 5562 void kvm_arch_init_irq_routing(KVMState *s) 5563 { 5564 /* We know at this point that we're using the in-kernel 5565 * irqchip, so we can use irqfds, and on x86 we know 5566 * we can use msi via irqfd and GSI routing. 5567 */ 5568 kvm_msi_via_irqfd_allowed = true; 5569 kvm_gsi_routing_allowed = true; 5570 5571 if (kvm_irqchip_is_split()) { 5572 KVMRouteChange c = kvm_irqchip_begin_route_changes(s); 5573 int i; 5574 5575 /* If the ioapic is in QEMU and the lapics are in KVM, reserve 5576 MSI routes for signaling interrupts to the local apics. */ 5577 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 5578 if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) { 5579 error_report("Could not enable split IRQ mode."); 5580 exit(1); 5581 } 5582 } 5583 kvm_irqchip_commit_route_changes(&c); 5584 } 5585 } 5586 5587 int kvm_arch_irqchip_create(KVMState *s) 5588 { 5589 int ret; 5590 if (kvm_kernel_irqchip_split()) { 5591 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); 5592 if (ret) { 5593 error_report("Could not enable split irqchip mode: %s", 5594 strerror(-ret)); 5595 exit(1); 5596 } else { 5597 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); 5598 kvm_split_irqchip = true; 5599 return 1; 5600 } 5601 } else { 5602 return 0; 5603 } 5604 } 5605 5606 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address) 5607 { 5608 CPUX86State *env; 5609 uint64_t ext_id; 5610 5611 if (!first_cpu) { 5612 return address; 5613 } 5614 env = &X86_CPU(first_cpu)->env; 5615 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) { 5616 return address; 5617 } 5618 5619 /* 5620 * If the remappable format bit is set, or the upper bits are 5621 * already set in address_hi, or the low extended bits aren't 5622 * there anyway, do nothing. 5623 */ 5624 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT); 5625 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) { 5626 return address; 5627 } 5628 5629 address &= ~ext_id; 5630 address |= ext_id << 35; 5631 return address; 5632 } 5633 5634 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 5635 uint64_t address, uint32_t data, PCIDevice *dev) 5636 { 5637 X86IOMMUState *iommu = x86_iommu_get_default(); 5638 5639 if (iommu) { 5640 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu); 5641 5642 if (class->int_remap) { 5643 int ret; 5644 MSIMessage src, dst; 5645 5646 src.address = route->u.msi.address_hi; 5647 src.address <<= VTD_MSI_ADDR_HI_SHIFT; 5648 src.address |= route->u.msi.address_lo; 5649 src.data = route->u.msi.data; 5650 5651 ret = class->int_remap(iommu, &src, &dst, dev ? \ 5652 pci_requester_id(dev) : \ 5653 X86_IOMMU_SID_INVALID); 5654 if (ret) { 5655 trace_kvm_x86_fixup_msi_error(route->gsi); 5656 return 1; 5657 } 5658 5659 /* 5660 * Handled untranslated compatibility format interrupt with 5661 * extended destination ID in the low bits 11-5. */ 5662 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address); 5663 5664 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; 5665 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; 5666 route->u.msi.data = dst.data; 5667 return 0; 5668 } 5669 } 5670 5671 #ifdef CONFIG_XEN_EMU 5672 if (xen_mode == XEN_EMULATE) { 5673 int handled = xen_evtchn_translate_pirq_msi(route, address, data); 5674 5675 /* 5676 * If it was a PIRQ and successfully routed (handled == 0) or it was 5677 * an error (handled < 0), return. If it wasn't a PIRQ, keep going. 5678 */ 5679 if (handled <= 0) { 5680 return handled; 5681 } 5682 } 5683 #endif 5684 5685 address = kvm_swizzle_msi_ext_dest_id(address); 5686 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT; 5687 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK; 5688 return 0; 5689 } 5690 5691 typedef struct MSIRouteEntry MSIRouteEntry; 5692 5693 struct MSIRouteEntry { 5694 PCIDevice *dev; /* Device pointer */ 5695 int vector; /* MSI/MSIX vector index */ 5696 int virq; /* Virtual IRQ index */ 5697 QLIST_ENTRY(MSIRouteEntry) list; 5698 }; 5699 5700 /* List of used GSI routes */ 5701 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ 5702 QLIST_HEAD_INITIALIZER(msi_route_list); 5703 5704 void kvm_update_msi_routes_all(void *private, bool global, 5705 uint32_t index, uint32_t mask) 5706 { 5707 int cnt = 0, vector; 5708 MSIRouteEntry *entry; 5709 MSIMessage msg; 5710 PCIDevice *dev; 5711 5712 /* TODO: explicit route update */ 5713 QLIST_FOREACH(entry, &msi_route_list, list) { 5714 cnt++; 5715 vector = entry->vector; 5716 dev = entry->dev; 5717 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) { 5718 msg = msix_get_message(dev, vector); 5719 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) { 5720 msg = msi_get_message(dev, vector); 5721 } else { 5722 /* 5723 * Either MSI/MSIX is disabled for the device, or the 5724 * specific message was masked out. Skip this one. 5725 */ 5726 continue; 5727 } 5728 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); 5729 } 5730 kvm_irqchip_commit_routes(kvm_state); 5731 trace_kvm_x86_update_msi_routes(cnt); 5732 } 5733 5734 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 5735 int vector, PCIDevice *dev) 5736 { 5737 static bool notify_list_inited = false; 5738 MSIRouteEntry *entry; 5739 5740 if (!dev) { 5741 /* These are (possibly) IOAPIC routes only used for split 5742 * kernel irqchip mode, while what we are housekeeping are 5743 * PCI devices only. */ 5744 return 0; 5745 } 5746 5747 entry = g_new0(MSIRouteEntry, 1); 5748 entry->dev = dev; 5749 entry->vector = vector; 5750 entry->virq = route->gsi; 5751 QLIST_INSERT_HEAD(&msi_route_list, entry, list); 5752 5753 trace_kvm_x86_add_msi_route(route->gsi); 5754 5755 if (!notify_list_inited) { 5756 /* For the first time we do add route, add ourselves into 5757 * IOMMU's IEC notify list if needed. */ 5758 X86IOMMUState *iommu = x86_iommu_get_default(); 5759 if (iommu) { 5760 x86_iommu_iec_register_notifier(iommu, 5761 kvm_update_msi_routes_all, 5762 NULL); 5763 } 5764 notify_list_inited = true; 5765 } 5766 return 0; 5767 } 5768 5769 int kvm_arch_release_virq_post(int virq) 5770 { 5771 MSIRouteEntry *entry, *next; 5772 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { 5773 if (entry->virq == virq) { 5774 trace_kvm_x86_remove_msi_route(virq); 5775 QLIST_REMOVE(entry, list); 5776 g_free(entry); 5777 break; 5778 } 5779 } 5780 return 0; 5781 } 5782 5783 int kvm_arch_msi_data_to_gsi(uint32_t data) 5784 { 5785 abort(); 5786 } 5787 5788 bool kvm_has_waitpkg(void) 5789 { 5790 return has_msr_umwait; 5791 } 5792 5793 #define ARCH_REQ_XCOMP_GUEST_PERM 0x1025 5794 5795 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask) 5796 { 5797 KVMState *s = kvm_state; 5798 uint64_t supported; 5799 5800 mask &= XSTATE_DYNAMIC_MASK; 5801 if (!mask) { 5802 return; 5803 } 5804 /* 5805 * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0]. 5806 * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned 5807 * about them already because they are not supported features. 5808 */ 5809 supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX); 5810 supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32; 5811 mask &= supported; 5812 5813 while (mask) { 5814 int bit = ctz64(mask); 5815 int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit); 5816 if (rc) { 5817 /* 5818 * Older kernel version (<5.17) do not support 5819 * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return 5820 * any dynamic feature from kvm_arch_get_supported_cpuid. 5821 */ 5822 warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure " 5823 "for feature bit %d", bit); 5824 } 5825 mask &= ~BIT_ULL(bit); 5826 } 5827 } 5828 5829 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp) 5830 { 5831 KVMState *s = KVM_STATE(obj); 5832 return s->notify_vmexit; 5833 } 5834 5835 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp) 5836 { 5837 KVMState *s = KVM_STATE(obj); 5838 5839 if (s->fd != -1) { 5840 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 5841 return; 5842 } 5843 5844 s->notify_vmexit = value; 5845 } 5846 5847 static void kvm_arch_get_notify_window(Object *obj, Visitor *v, 5848 const char *name, void *opaque, 5849 Error **errp) 5850 { 5851 KVMState *s = KVM_STATE(obj); 5852 uint32_t value = s->notify_window; 5853 5854 visit_type_uint32(v, name, &value, errp); 5855 } 5856 5857 static void kvm_arch_set_notify_window(Object *obj, Visitor *v, 5858 const char *name, void *opaque, 5859 Error **errp) 5860 { 5861 KVMState *s = KVM_STATE(obj); 5862 uint32_t value; 5863 5864 if (s->fd != -1) { 5865 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 5866 return; 5867 } 5868 5869 if (!visit_type_uint32(v, name, &value, errp)) { 5870 return; 5871 } 5872 5873 s->notify_window = value; 5874 } 5875 5876 static void kvm_arch_get_xen_version(Object *obj, Visitor *v, 5877 const char *name, void *opaque, 5878 Error **errp) 5879 { 5880 KVMState *s = KVM_STATE(obj); 5881 uint32_t value = s->xen_version; 5882 5883 visit_type_uint32(v, name, &value, errp); 5884 } 5885 5886 static void kvm_arch_set_xen_version(Object *obj, Visitor *v, 5887 const char *name, void *opaque, 5888 Error **errp) 5889 { 5890 KVMState *s = KVM_STATE(obj); 5891 Error *error = NULL; 5892 uint32_t value; 5893 5894 visit_type_uint32(v, name, &value, &error); 5895 if (error) { 5896 error_propagate(errp, error); 5897 return; 5898 } 5899 5900 s->xen_version = value; 5901 if (value && xen_mode == XEN_DISABLED) { 5902 xen_mode = XEN_EMULATE; 5903 } 5904 } 5905 5906 static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v, 5907 const char *name, void *opaque, 5908 Error **errp) 5909 { 5910 KVMState *s = KVM_STATE(obj); 5911 uint16_t value = s->xen_gnttab_max_frames; 5912 5913 visit_type_uint16(v, name, &value, errp); 5914 } 5915 5916 static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v, 5917 const char *name, void *opaque, 5918 Error **errp) 5919 { 5920 KVMState *s = KVM_STATE(obj); 5921 Error *error = NULL; 5922 uint16_t value; 5923 5924 visit_type_uint16(v, name, &value, &error); 5925 if (error) { 5926 error_propagate(errp, error); 5927 return; 5928 } 5929 5930 s->xen_gnttab_max_frames = value; 5931 } 5932 5933 static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v, 5934 const char *name, void *opaque, 5935 Error **errp) 5936 { 5937 KVMState *s = KVM_STATE(obj); 5938 uint16_t value = s->xen_evtchn_max_pirq; 5939 5940 visit_type_uint16(v, name, &value, errp); 5941 } 5942 5943 static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v, 5944 const char *name, void *opaque, 5945 Error **errp) 5946 { 5947 KVMState *s = KVM_STATE(obj); 5948 Error *error = NULL; 5949 uint16_t value; 5950 5951 visit_type_uint16(v, name, &value, &error); 5952 if (error) { 5953 error_propagate(errp, error); 5954 return; 5955 } 5956 5957 s->xen_evtchn_max_pirq = value; 5958 } 5959 5960 void kvm_arch_accel_class_init(ObjectClass *oc) 5961 { 5962 object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption", 5963 &NotifyVmexitOption_lookup, 5964 kvm_arch_get_notify_vmexit, 5965 kvm_arch_set_notify_vmexit); 5966 object_class_property_set_description(oc, "notify-vmexit", 5967 "Enable notify VM exit"); 5968 5969 object_class_property_add(oc, "notify-window", "uint32", 5970 kvm_arch_get_notify_window, 5971 kvm_arch_set_notify_window, 5972 NULL, NULL); 5973 object_class_property_set_description(oc, "notify-window", 5974 "Clock cycles without an event window " 5975 "after which a notification VM exit occurs"); 5976 5977 object_class_property_add(oc, "xen-version", "uint32", 5978 kvm_arch_get_xen_version, 5979 kvm_arch_set_xen_version, 5980 NULL, NULL); 5981 object_class_property_set_description(oc, "xen-version", 5982 "Xen version to be emulated " 5983 "(in XENVER_version form " 5984 "e.g. 0x4000a for 4.10)"); 5985 5986 object_class_property_add(oc, "xen-gnttab-max-frames", "uint16", 5987 kvm_arch_get_xen_gnttab_max_frames, 5988 kvm_arch_set_xen_gnttab_max_frames, 5989 NULL, NULL); 5990 object_class_property_set_description(oc, "xen-gnttab-max-frames", 5991 "Maximum number of grant table frames"); 5992 5993 object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16", 5994 kvm_arch_get_xen_evtchn_max_pirq, 5995 kvm_arch_set_xen_evtchn_max_pirq, 5996 NULL, NULL); 5997 object_class_property_set_description(oc, "xen-evtchn-max-pirq", 5998 "Maximum number of Xen PIRQs"); 5999 } 6000 6001 void kvm_set_max_apic_id(uint32_t max_apic_id) 6002 { 6003 kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id); 6004 } 6005