xref: /openbmc/qemu/target/i386/kvm/kvm.c (revision a0bc3cefe287cdaf604817e0477bb03a04b88b34)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright (C) 2006-2008 Qumranet Technologies
5  * Copyright IBM, Corp. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include "qapi/visitor.h"
19 #include <math.h>
20 #include <sys/ioctl.h>
21 #include <sys/utsname.h>
22 #include <sys/syscall.h>
23 #include <sys/resource.h>
24 #include <sys/time.h>
25 
26 #include <linux/kvm.h>
27 #include <linux/kvm_para.h>
28 #include "standard-headers/asm-x86/kvm_para.h"
29 #include "hw/xen/interface/arch-x86/cpuid.h"
30 
31 #include "cpu.h"
32 #include "host-cpu.h"
33 #include "vmsr_energy.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hw_accel.h"
36 #include "sysemu/kvm_int.h"
37 #include "sysemu/runstate.h"
38 #include "kvm_i386.h"
39 #include "../confidential-guest.h"
40 #include "sev.h"
41 #include "xen-emu.h"
42 #include "hyperv.h"
43 #include "hyperv-proto.h"
44 
45 #include "gdbstub/enums.h"
46 #include "qemu/host-utils.h"
47 #include "qemu/main-loop.h"
48 #include "qemu/ratelimit.h"
49 #include "qemu/config-file.h"
50 #include "qemu/error-report.h"
51 #include "qemu/memalign.h"
52 #include "hw/i386/x86.h"
53 #include "hw/i386/kvm/xen_evtchn.h"
54 #include "hw/i386/pc.h"
55 #include "hw/i386/apic.h"
56 #include "hw/i386/apic_internal.h"
57 #include "hw/i386/apic-msidef.h"
58 #include "hw/i386/intel_iommu.h"
59 #include "hw/i386/topology.h"
60 #include "hw/i386/x86-iommu.h"
61 #include "hw/i386/e820_memory_layout.h"
62 
63 #include "hw/xen/xen.h"
64 
65 #include "hw/pci/pci.h"
66 #include "hw/pci/msi.h"
67 #include "hw/pci/msix.h"
68 #include "migration/blocker.h"
69 #include "exec/memattrs.h"
70 #include "trace.h"
71 
72 #include CONFIG_DEVICES
73 
74 //#define DEBUG_KVM
75 
76 #ifdef DEBUG_KVM
77 #define DPRINTF(fmt, ...) \
78     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
79 #else
80 #define DPRINTF(fmt, ...) \
81     do { } while (0)
82 #endif
83 
84 /*
85  * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
86  * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
87  * Since these must be part of guest physical memory, we need to allocate
88  * them, both by setting their start addresses in the kernel and by
89  * creating a corresponding e820 entry. We need 4 pages before the BIOS,
90  * so this value allows up to 16M BIOSes.
91  */
92 #define KVM_IDENTITY_BASE 0xfeffc000
93 
94 /* From arch/x86/kvm/lapic.h */
95 #define KVM_APIC_BUS_CYCLE_NS       1
96 #define KVM_APIC_BUS_FREQUENCY      (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
97 
98 #define MSR_KVM_WALL_CLOCK  0x11
99 #define MSR_KVM_SYSTEM_TIME 0x12
100 
101 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
102  * 255 kvm_msr_entry structs */
103 #define MSR_BUF_SIZE 4096
104 
105 typedef bool QEMURDMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t *val);
106 typedef bool QEMUWRMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t val);
107 typedef struct {
108     uint32_t msr;
109     QEMURDMSRHandler *rdmsr;
110     QEMUWRMSRHandler *wrmsr;
111 } KVMMSRHandlers;
112 
113 static void kvm_init_msrs(X86CPU *cpu);
114 static bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
115                            QEMUWRMSRHandler *wrmsr);
116 
117 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
118     KVM_CAP_INFO(SET_TSS_ADDR),
119     KVM_CAP_INFO(EXT_CPUID),
120     KVM_CAP_INFO(MP_STATE),
121     KVM_CAP_INFO(SIGNAL_MSI),
122     KVM_CAP_INFO(IRQ_ROUTING),
123     KVM_CAP_INFO(DEBUGREGS),
124     KVM_CAP_INFO(XSAVE),
125     KVM_CAP_INFO(VCPU_EVENTS),
126     KVM_CAP_INFO(X86_ROBUST_SINGLESTEP),
127     KVM_CAP_INFO(MCE),
128     KVM_CAP_INFO(ADJUST_CLOCK),
129     KVM_CAP_INFO(SET_IDENTITY_MAP_ADDR),
130     KVM_CAP_LAST_INFO
131 };
132 
133 static bool has_msr_star;
134 static bool has_msr_hsave_pa;
135 static bool has_msr_tsc_aux;
136 static bool has_msr_tsc_adjust;
137 static bool has_msr_tsc_deadline;
138 static bool has_msr_feature_control;
139 static bool has_msr_misc_enable;
140 static bool has_msr_smbase;
141 static bool has_msr_bndcfgs;
142 static int lm_capable_kernel;
143 static bool has_msr_hv_hypercall;
144 static bool has_msr_hv_crash;
145 static bool has_msr_hv_reset;
146 static bool has_msr_hv_vpindex;
147 static bool hv_vpindex_settable;
148 static bool has_msr_hv_runtime;
149 static bool has_msr_hv_synic;
150 static bool has_msr_hv_stimer;
151 static bool has_msr_hv_frequencies;
152 static bool has_msr_hv_reenlightenment;
153 static bool has_msr_hv_syndbg_options;
154 static bool has_msr_xss;
155 static bool has_msr_umwait;
156 static bool has_msr_spec_ctrl;
157 static bool has_tsc_scale_msr;
158 static bool has_msr_tsx_ctrl;
159 static bool has_msr_virt_ssbd;
160 static bool has_msr_smi_count;
161 static bool has_msr_arch_capabs;
162 static bool has_msr_core_capabs;
163 static bool has_msr_vmx_vmfunc;
164 static bool has_msr_ucode_rev;
165 static bool has_msr_vmx_procbased_ctls2;
166 static bool has_msr_perf_capabs;
167 static bool has_msr_pkrs;
168 
169 static uint32_t has_architectural_pmu_version;
170 static uint32_t num_architectural_pmu_gp_counters;
171 static uint32_t num_architectural_pmu_fixed_counters;
172 
173 static int has_xsave2;
174 static int has_xcrs;
175 static int has_sregs2;
176 static int has_exception_payload;
177 static int has_triple_fault_event;
178 
179 static bool has_msr_mcg_ext_ctl;
180 
181 static struct kvm_cpuid2 *cpuid_cache;
182 static struct kvm_cpuid2 *hv_cpuid_cache;
183 static struct kvm_msr_list *kvm_feature_msrs;
184 
185 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES];
186 
187 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
188 static RateLimit bus_lock_ratelimit_ctrl;
189 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value);
190 
191 static const char *vm_type_name[] = {
192     [KVM_X86_DEFAULT_VM] = "default",
193     [KVM_X86_SEV_VM] = "SEV",
194     [KVM_X86_SEV_ES_VM] = "SEV-ES",
195     [KVM_X86_SNP_VM] = "SEV-SNP",
196 };
197 
198 bool kvm_is_vm_type_supported(int type)
199 {
200     uint32_t machine_types;
201 
202     /*
203      * old KVM doesn't support KVM_CAP_VM_TYPES but KVM_X86_DEFAULT_VM
204      * is always supported
205      */
206     if (type == KVM_X86_DEFAULT_VM) {
207         return true;
208     }
209 
210     machine_types = kvm_check_extension(KVM_STATE(current_machine->accelerator),
211                                         KVM_CAP_VM_TYPES);
212     return !!(machine_types & BIT(type));
213 }
214 
215 int kvm_get_vm_type(MachineState *ms)
216 {
217     int kvm_type = KVM_X86_DEFAULT_VM;
218 
219     if (ms->cgs) {
220         if (!object_dynamic_cast(OBJECT(ms->cgs), TYPE_X86_CONFIDENTIAL_GUEST)) {
221             error_report("configuration type %s not supported for x86 guests",
222                          object_get_typename(OBJECT(ms->cgs)));
223             exit(1);
224         }
225         kvm_type = x86_confidential_guest_kvm_type(
226             X86_CONFIDENTIAL_GUEST(ms->cgs));
227     }
228 
229     if (!kvm_is_vm_type_supported(kvm_type)) {
230         error_report("vm-type %s not supported by KVM", vm_type_name[kvm_type]);
231         exit(1);
232     }
233 
234     return kvm_type;
235 }
236 
237 bool kvm_enable_hypercall(uint64_t enable_mask)
238 {
239     KVMState *s = KVM_STATE(current_accel());
240 
241     return !kvm_vm_enable_cap(s, KVM_CAP_EXIT_HYPERCALL, 0, enable_mask);
242 }
243 
244 bool kvm_has_smm(void)
245 {
246     return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
247 }
248 
249 bool kvm_has_adjust_clock_stable(void)
250 {
251     int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
252 
253     return (ret & KVM_CLOCK_TSC_STABLE);
254 }
255 
256 bool kvm_has_exception_payload(void)
257 {
258     return has_exception_payload;
259 }
260 
261 static bool kvm_x2apic_api_set_flags(uint64_t flags)
262 {
263     KVMState *s = KVM_STATE(current_accel());
264 
265     return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
266 }
267 
268 #define MEMORIZE(fn, _result) \
269     ({ \
270         static bool _memorized; \
271         \
272         if (_memorized) { \
273             return _result; \
274         } \
275         _memorized = true; \
276         _result = fn; \
277     })
278 
279 static bool has_x2apic_api;
280 
281 bool kvm_has_x2apic_api(void)
282 {
283     return has_x2apic_api;
284 }
285 
286 bool kvm_enable_x2apic(void)
287 {
288     return MEMORIZE(
289              kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
290                                       KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
291              has_x2apic_api);
292 }
293 
294 bool kvm_hv_vpindex_settable(void)
295 {
296     return hv_vpindex_settable;
297 }
298 
299 static int kvm_get_tsc(CPUState *cs)
300 {
301     X86CPU *cpu = X86_CPU(cs);
302     CPUX86State *env = &cpu->env;
303     uint64_t value;
304     int ret;
305 
306     if (env->tsc_valid) {
307         return 0;
308     }
309 
310     env->tsc_valid = !runstate_is_running();
311 
312     ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value);
313     if (ret < 0) {
314         return ret;
315     }
316 
317     env->tsc = value;
318     return 0;
319 }
320 
321 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
322 {
323     kvm_get_tsc(cpu);
324 }
325 
326 void kvm_synchronize_all_tsc(void)
327 {
328     CPUState *cpu;
329 
330     if (kvm_enabled()) {
331         CPU_FOREACH(cpu) {
332             run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
333         }
334     }
335 }
336 
337 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
338 {
339     struct kvm_cpuid2 *cpuid;
340     int r, size;
341 
342     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
343     cpuid = g_malloc0(size);
344     cpuid->nent = max;
345     r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
346     if (r == 0 && cpuid->nent >= max) {
347         r = -E2BIG;
348     }
349     if (r < 0) {
350         if (r == -E2BIG) {
351             g_free(cpuid);
352             return NULL;
353         } else {
354             fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
355                     strerror(-r));
356             exit(1);
357         }
358     }
359     return cpuid;
360 }
361 
362 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
363  * for all entries.
364  */
365 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
366 {
367     struct kvm_cpuid2 *cpuid;
368     int max = 1;
369 
370     if (cpuid_cache != NULL) {
371         return cpuid_cache;
372     }
373     while ((cpuid = try_get_cpuid(s, max)) == NULL) {
374         max *= 2;
375     }
376     cpuid_cache = cpuid;
377     return cpuid;
378 }
379 
380 static bool host_tsx_broken(void)
381 {
382     int family, model, stepping;\
383     char vendor[CPUID_VENDOR_SZ + 1];
384 
385     host_cpu_vendor_fms(vendor, &family, &model, &stepping);
386 
387     /* Check if we are running on a Haswell host known to have broken TSX */
388     return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
389            (family == 6) &&
390            ((model == 63 && stepping < 4) ||
391             model == 60 || model == 69 || model == 70);
392 }
393 
394 /* Returns the value for a specific register on the cpuid entry
395  */
396 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
397 {
398     uint32_t ret = 0;
399     switch (reg) {
400     case R_EAX:
401         ret = entry->eax;
402         break;
403     case R_EBX:
404         ret = entry->ebx;
405         break;
406     case R_ECX:
407         ret = entry->ecx;
408         break;
409     case R_EDX:
410         ret = entry->edx;
411         break;
412     }
413     return ret;
414 }
415 
416 /* Find matching entry for function/index on kvm_cpuid2 struct
417  */
418 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
419                                                  uint32_t function,
420                                                  uint32_t index)
421 {
422     int i;
423     for (i = 0; i < cpuid->nent; ++i) {
424         if (cpuid->entries[i].function == function &&
425             cpuid->entries[i].index == index) {
426             return &cpuid->entries[i];
427         }
428     }
429     /* not found: */
430     return NULL;
431 }
432 
433 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
434                                       uint32_t index, int reg)
435 {
436     struct kvm_cpuid2 *cpuid;
437     uint32_t ret = 0;
438     uint32_t cpuid_1_edx, unused;
439     uint64_t bitmask;
440 
441     cpuid = get_supported_cpuid(s);
442 
443     struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
444     if (entry) {
445         ret = cpuid_entry_get_reg(entry, reg);
446     }
447 
448     /* Fixups for the data returned by KVM, below */
449 
450     if (function == 1 && reg == R_EDX) {
451         /* KVM before 2.6.30 misreports the following features */
452         ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
453         /* KVM never reports CPUID_HT but QEMU can support when vcpus > 1 */
454         ret |= CPUID_HT;
455     } else if (function == 1 && reg == R_ECX) {
456         /* We can set the hypervisor flag, even if KVM does not return it on
457          * GET_SUPPORTED_CPUID
458          */
459         ret |= CPUID_EXT_HYPERVISOR;
460         /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
461          * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
462          * and the irqchip is in the kernel.
463          */
464         if (kvm_irqchip_in_kernel() &&
465                 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
466             ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
467         }
468 
469         /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
470          * without the in-kernel irqchip
471          */
472         if (!kvm_irqchip_in_kernel()) {
473             ret &= ~CPUID_EXT_X2APIC;
474         }
475 
476         if (enable_cpu_pm) {
477             int disable_exits = kvm_check_extension(s,
478                                                     KVM_CAP_X86_DISABLE_EXITS);
479 
480             if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
481                 ret |= CPUID_EXT_MONITOR;
482             }
483         }
484     } else if (function == 6 && reg == R_EAX) {
485         ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
486     } else if (function == 7 && index == 0 && reg == R_EBX) {
487         /* Not new instructions, just an optimization.  */
488         uint32_t ebx;
489         host_cpuid(7, 0, &unused, &ebx, &unused, &unused);
490         ret |= ebx & CPUID_7_0_EBX_ERMS;
491 
492         if (host_tsx_broken()) {
493             ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
494         }
495     } else if (function == 7 && index == 0 && reg == R_EDX) {
496         /* Not new instructions, just an optimization.  */
497         uint32_t edx;
498         host_cpuid(7, 0, &unused, &unused, &unused, &edx);
499         ret |= edx & CPUID_7_0_EDX_FSRM;
500 
501         /*
502          * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
503          * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
504          * returned by KVM_GET_MSR_INDEX_LIST.
505          */
506         if (!has_msr_arch_capabs) {
507             ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
508         }
509     } else if (function == 7 && index == 1 && reg == R_EAX) {
510         /* Not new instructions, just an optimization.  */
511         uint32_t eax;
512         host_cpuid(7, 1, &eax, &unused, &unused, &unused);
513         ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC);
514     } else if (function == 7 && index == 2 && reg == R_EDX) {
515         uint32_t edx;
516         host_cpuid(7, 2, &unused, &unused, &unused, &edx);
517         ret |= edx & CPUID_7_2_EDX_MCDT_NO;
518     } else if (function == 0xd && index == 0 &&
519                (reg == R_EAX || reg == R_EDX)) {
520         /*
521          * The value returned by KVM_GET_SUPPORTED_CPUID does not include
522          * features that still have to be enabled with the arch_prctl
523          * system call.  QEMU needs the full value, which is retrieved
524          * with KVM_GET_DEVICE_ATTR.
525          */
526         struct kvm_device_attr attr = {
527             .group = 0,
528             .attr = KVM_X86_XCOMP_GUEST_SUPP,
529             .addr = (unsigned long) &bitmask
530         };
531 
532         bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
533         if (!sys_attr) {
534             return ret;
535         }
536 
537         int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
538         if (rc < 0) {
539             if (rc != -ENXIO) {
540                 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
541                             "error: %d", rc);
542             }
543             return ret;
544         }
545         ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
546     } else if (function == 0x80000001 && reg == R_ECX) {
547         /*
548          * It's safe to enable TOPOEXT even if it's not returned by
549          * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
550          * us to keep CPU models including TOPOEXT runnable on older kernels.
551          */
552         ret |= CPUID_EXT3_TOPOEXT;
553     } else if (function == 0x80000001 && reg == R_EDX) {
554         /* On Intel, kvm returns cpuid according to the Intel spec,
555          * so add missing bits according to the AMD spec:
556          */
557         cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
558         ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
559     } else if (function == 0x80000007 && reg == R_EBX) {
560         ret |= CPUID_8000_0007_EBX_OVERFLOW_RECOV | CPUID_8000_0007_EBX_SUCCOR;
561     } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
562         /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
563          * be enabled without the in-kernel irqchip
564          */
565         if (!kvm_irqchip_in_kernel()) {
566             ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
567         }
568         if (kvm_irqchip_is_split()) {
569             ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
570         }
571     } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
572         ret |= 1U << KVM_HINTS_REALTIME;
573     }
574 
575     if (current_machine->cgs) {
576         ret = x86_confidential_guest_mask_cpuid_features(
577             X86_CONFIDENTIAL_GUEST(current_machine->cgs),
578             function, index, reg, ret);
579     }
580     return ret;
581 }
582 
583 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
584 {
585     struct {
586         struct kvm_msrs info;
587         struct kvm_msr_entry entries[1];
588     } msr_data = {};
589     uint64_t value;
590     uint32_t ret, can_be_one, must_be_one;
591 
592     if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
593         return 0;
594     }
595 
596     /* Check if requested MSR is supported feature MSR */
597     int i;
598     for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
599         if (kvm_feature_msrs->indices[i] == index) {
600             break;
601         }
602     if (i == kvm_feature_msrs->nmsrs) {
603         return 0; /* if the feature MSR is not supported, simply return 0 */
604     }
605 
606     msr_data.info.nmsrs = 1;
607     msr_data.entries[0].index = index;
608 
609     ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
610     if (ret != 1) {
611         error_report("KVM get MSR (index=0x%x) feature failed, %s",
612             index, strerror(-ret));
613         exit(1);
614     }
615 
616     value = msr_data.entries[0].data;
617     switch (index) {
618     case MSR_IA32_VMX_PROCBASED_CTLS2:
619         if (!has_msr_vmx_procbased_ctls2) {
620             /* KVM forgot to add these bits for some time, do this ourselves. */
621             if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
622                 CPUID_XSAVE_XSAVES) {
623                 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
624             }
625             if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
626                 CPUID_EXT_RDRAND) {
627                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
628             }
629             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
630                 CPUID_7_0_EBX_INVPCID) {
631                 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
632             }
633             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
634                 CPUID_7_0_EBX_RDSEED) {
635                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
636             }
637             if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
638                 CPUID_EXT2_RDTSCP) {
639                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
640             }
641         }
642         /* fall through */
643     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
644     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
645     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
646     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
647         /*
648          * Return true for bits that can be one, but do not have to be one.
649          * The SDM tells us which bits could have a "must be one" setting,
650          * so we can do the opposite transformation in make_vmx_msr_value.
651          */
652         must_be_one = (uint32_t)value;
653         can_be_one = (uint32_t)(value >> 32);
654         return can_be_one & ~must_be_one;
655 
656     default:
657         return value;
658     }
659 }
660 
661 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
662                                      int *max_banks)
663 {
664     *max_banks = kvm_check_extension(s, KVM_CAP_MCE);
665     return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
666 }
667 
668 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
669 {
670     CPUState *cs = CPU(cpu);
671     CPUX86State *env = &cpu->env;
672     uint64_t status = MCI_STATUS_VAL | MCI_STATUS_EN | MCI_STATUS_MISCV |
673                       MCI_STATUS_ADDRV;
674     uint64_t mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
675     int flags = 0;
676 
677     if (!IS_AMD_CPU(env)) {
678         status |= MCI_STATUS_S | MCI_STATUS_UC;
679         if (code == BUS_MCEERR_AR) {
680             status |= MCI_STATUS_AR | 0x134;
681             mcg_status |= MCG_STATUS_EIPV;
682         } else {
683             status |= 0xc0;
684         }
685     } else {
686         if (code == BUS_MCEERR_AR) {
687             status |= MCI_STATUS_UC | MCI_STATUS_POISON;
688             mcg_status |= MCG_STATUS_EIPV;
689         } else {
690             /* Setting the POISON bit for deferred errors indicates to the
691              * guest kernel that the address provided by the MCE is valid
692              * and usable which will ensure that the guest kernel will send
693              * a SIGBUS_AO signal to the guest process. This allows for
694              * more desirable behavior in the case that the guest process
695              * with poisoned memory has set the MCE_KILL_EARLY prctl flag
696              * which indicates that the process would prefer to handle or
697              * shutdown due to the poisoned memory condition before the
698              * memory has been accessed.
699              *
700              * While the POISON bit would not be set in a deferred error
701              * sent from hardware, the bit is not meaningful for deferred
702              * errors and can be reused in this scenario.
703              */
704             status |= MCI_STATUS_DEFERRED | MCI_STATUS_POISON;
705         }
706     }
707 
708     flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
709     /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
710      * guest kernel back into env->mcg_ext_ctl.
711      */
712     cpu_synchronize_state(cs);
713     if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
714         mcg_status |= MCG_STATUS_LMCE;
715         flags = 0;
716     }
717 
718     cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
719                        (MCM_ADDR_PHYS << 6) | 0xc, flags);
720 }
721 
722 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
723 {
724     MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
725 
726     qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
727                                    &mff);
728 }
729 
730 static void hardware_memory_error(void *host_addr)
731 {
732     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
733     error_report("QEMU got Hardware memory error at addr %p", host_addr);
734     exit(1);
735 }
736 
737 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
738 {
739     X86CPU *cpu = X86_CPU(c);
740     CPUX86State *env = &cpu->env;
741     ram_addr_t ram_addr;
742     hwaddr paddr;
743 
744     /* If we get an action required MCE, it has been injected by KVM
745      * while the VM was running.  An action optional MCE instead should
746      * be coming from the main thread, which qemu_init_sigbus identifies
747      * as the "early kill" thread.
748      */
749     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
750 
751     if ((env->mcg_cap & MCG_SER_P) && addr) {
752         ram_addr = qemu_ram_addr_from_host(addr);
753         if (ram_addr != RAM_ADDR_INVALID &&
754             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
755             kvm_hwpoison_page_add(ram_addr);
756             kvm_mce_inject(cpu, paddr, code);
757 
758             /*
759              * Use different logging severity based on error type.
760              * If there is additional MCE reporting on the hypervisor, QEMU VA
761              * could be another source to identify the PA and MCE details.
762              */
763             if (code == BUS_MCEERR_AR) {
764                 error_report("Guest MCE Memory Error at QEMU addr %p and "
765                     "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
766                     addr, paddr, "BUS_MCEERR_AR");
767             } else {
768                  warn_report("Guest MCE Memory Error at QEMU addr %p and "
769                      "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
770                      addr, paddr, "BUS_MCEERR_AO");
771             }
772 
773             return;
774         }
775 
776         if (code == BUS_MCEERR_AO) {
777             warn_report("Hardware memory error at addr %p of type %s "
778                 "for memory used by QEMU itself instead of guest system!",
779                  addr, "BUS_MCEERR_AO");
780         }
781     }
782 
783     if (code == BUS_MCEERR_AR) {
784         hardware_memory_error(addr);
785     }
786 
787     /* Hope we are lucky for AO MCE, just notify a event */
788     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
789 }
790 
791 static void kvm_queue_exception(CPUX86State *env,
792                                 int32_t exception_nr,
793                                 uint8_t exception_has_payload,
794                                 uint64_t exception_payload)
795 {
796     assert(env->exception_nr == -1);
797     assert(!env->exception_pending);
798     assert(!env->exception_injected);
799     assert(!env->exception_has_payload);
800 
801     env->exception_nr = exception_nr;
802 
803     if (has_exception_payload) {
804         env->exception_pending = 1;
805 
806         env->exception_has_payload = exception_has_payload;
807         env->exception_payload = exception_payload;
808     } else {
809         env->exception_injected = 1;
810 
811         if (exception_nr == EXCP01_DB) {
812             assert(exception_has_payload);
813             env->dr[6] = exception_payload;
814         } else if (exception_nr == EXCP0E_PAGE) {
815             assert(exception_has_payload);
816             env->cr[2] = exception_payload;
817         } else {
818             assert(!exception_has_payload);
819         }
820     }
821 }
822 
823 static void cpu_update_state(void *opaque, bool running, RunState state)
824 {
825     CPUX86State *env = opaque;
826 
827     if (running) {
828         env->tsc_valid = false;
829     }
830 }
831 
832 unsigned long kvm_arch_vcpu_id(CPUState *cs)
833 {
834     X86CPU *cpu = X86_CPU(cs);
835     return cpu->apic_id;
836 }
837 
838 #ifndef KVM_CPUID_SIGNATURE_NEXT
839 #define KVM_CPUID_SIGNATURE_NEXT                0x40000100
840 #endif
841 
842 static bool hyperv_enabled(X86CPU *cpu)
843 {
844     return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
845         ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
846          cpu->hyperv_features || cpu->hyperv_passthrough);
847 }
848 
849 /*
850  * Check whether target_freq is within conservative
851  * ntp correctable bounds (250ppm) of freq
852  */
853 static inline bool freq_within_bounds(int freq, int target_freq)
854 {
855         int max_freq = freq + (freq * 250 / 1000000);
856         int min_freq = freq - (freq * 250 / 1000000);
857 
858         if (target_freq >= min_freq && target_freq <= max_freq) {
859                 return true;
860         }
861 
862         return false;
863 }
864 
865 static int kvm_arch_set_tsc_khz(CPUState *cs)
866 {
867     X86CPU *cpu = X86_CPU(cs);
868     CPUX86State *env = &cpu->env;
869     int r, cur_freq;
870     bool set_ioctl = false;
871 
872     if (!env->tsc_khz) {
873         return 0;
874     }
875 
876     cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
877                kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
878 
879     /*
880      * If TSC scaling is supported, attempt to set TSC frequency.
881      */
882     if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
883         set_ioctl = true;
884     }
885 
886     /*
887      * If desired TSC frequency is within bounds of NTP correction,
888      * attempt to set TSC frequency.
889      */
890     if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
891         set_ioctl = true;
892     }
893 
894     r = set_ioctl ?
895         kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
896         -ENOTSUP;
897 
898     if (r < 0) {
899         /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
900          * TSC frequency doesn't match the one we want.
901          */
902         cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
903                    kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
904                    -ENOTSUP;
905         if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
906             warn_report("TSC frequency mismatch between "
907                         "VM (%" PRId64 " kHz) and host (%d kHz), "
908                         "and TSC scaling unavailable",
909                         env->tsc_khz, cur_freq);
910             return r;
911         }
912     }
913 
914     return 0;
915 }
916 
917 static bool tsc_is_stable_and_known(CPUX86State *env)
918 {
919     if (!env->tsc_khz) {
920         return false;
921     }
922     return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
923         || env->user_tsc_khz;
924 }
925 
926 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
927 
928 static struct {
929     const char *desc;
930     struct {
931         uint32_t func;
932         int reg;
933         uint32_t bits;
934     } flags[2];
935     uint64_t dependencies;
936 } kvm_hyperv_properties[] = {
937     [HYPERV_FEAT_RELAXED] = {
938         .desc = "relaxed timing (hv-relaxed)",
939         .flags = {
940             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
941              .bits = HV_RELAXED_TIMING_RECOMMENDED}
942         }
943     },
944     [HYPERV_FEAT_VAPIC] = {
945         .desc = "virtual APIC (hv-vapic)",
946         .flags = {
947             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
948              .bits = HV_APIC_ACCESS_AVAILABLE}
949         }
950     },
951     [HYPERV_FEAT_TIME] = {
952         .desc = "clocksources (hv-time)",
953         .flags = {
954             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
955              .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
956         }
957     },
958     [HYPERV_FEAT_CRASH] = {
959         .desc = "crash MSRs (hv-crash)",
960         .flags = {
961             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
962              .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
963         }
964     },
965     [HYPERV_FEAT_RESET] = {
966         .desc = "reset MSR (hv-reset)",
967         .flags = {
968             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
969              .bits = HV_RESET_AVAILABLE}
970         }
971     },
972     [HYPERV_FEAT_VPINDEX] = {
973         .desc = "VP_INDEX MSR (hv-vpindex)",
974         .flags = {
975             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
976              .bits = HV_VP_INDEX_AVAILABLE}
977         }
978     },
979     [HYPERV_FEAT_RUNTIME] = {
980         .desc = "VP_RUNTIME MSR (hv-runtime)",
981         .flags = {
982             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
983              .bits = HV_VP_RUNTIME_AVAILABLE}
984         }
985     },
986     [HYPERV_FEAT_SYNIC] = {
987         .desc = "synthetic interrupt controller (hv-synic)",
988         .flags = {
989             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
990              .bits = HV_SYNIC_AVAILABLE}
991         }
992     },
993     [HYPERV_FEAT_STIMER] = {
994         .desc = "synthetic timers (hv-stimer)",
995         .flags = {
996             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
997              .bits = HV_SYNTIMERS_AVAILABLE}
998         },
999         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
1000     },
1001     [HYPERV_FEAT_FREQUENCIES] = {
1002         .desc = "frequency MSRs (hv-frequencies)",
1003         .flags = {
1004             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
1005              .bits = HV_ACCESS_FREQUENCY_MSRS},
1006             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1007              .bits = HV_FREQUENCY_MSRS_AVAILABLE}
1008         }
1009     },
1010     [HYPERV_FEAT_REENLIGHTENMENT] = {
1011         .desc = "reenlightenment MSRs (hv-reenlightenment)",
1012         .flags = {
1013             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
1014              .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
1015         }
1016     },
1017     [HYPERV_FEAT_TLBFLUSH] = {
1018         .desc = "paravirtualized TLB flush (hv-tlbflush)",
1019         .flags = {
1020             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1021              .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
1022              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
1023         },
1024         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
1025     },
1026     [HYPERV_FEAT_EVMCS] = {
1027         .desc = "enlightened VMCS (hv-evmcs)",
1028         .flags = {
1029             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1030              .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
1031         },
1032         .dependencies = BIT(HYPERV_FEAT_VAPIC)
1033     },
1034     [HYPERV_FEAT_IPI] = {
1035         .desc = "paravirtualized IPI (hv-ipi)",
1036         .flags = {
1037             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1038              .bits = HV_CLUSTER_IPI_RECOMMENDED |
1039              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
1040         },
1041         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
1042     },
1043     [HYPERV_FEAT_STIMER_DIRECT] = {
1044         .desc = "direct mode synthetic timers (hv-stimer-direct)",
1045         .flags = {
1046             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1047              .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
1048         },
1049         .dependencies = BIT(HYPERV_FEAT_STIMER)
1050     },
1051     [HYPERV_FEAT_AVIC] = {
1052         .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
1053         .flags = {
1054             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1055              .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
1056         }
1057     },
1058 #ifdef CONFIG_SYNDBG
1059     [HYPERV_FEAT_SYNDBG] = {
1060         .desc = "Enable synthetic kernel debugger channel (hv-syndbg)",
1061         .flags = {
1062             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1063              .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE}
1064         },
1065         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED)
1066     },
1067 #endif
1068     [HYPERV_FEAT_MSR_BITMAP] = {
1069         .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)",
1070         .flags = {
1071             {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1072              .bits = HV_NESTED_MSR_BITMAP}
1073         }
1074     },
1075     [HYPERV_FEAT_XMM_INPUT] = {
1076         .desc = "XMM fast hypercall input (hv-xmm-input)",
1077         .flags = {
1078             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1079              .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE}
1080         }
1081     },
1082     [HYPERV_FEAT_TLBFLUSH_EXT] = {
1083         .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)",
1084         .flags = {
1085             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1086              .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE}
1087         },
1088         .dependencies = BIT(HYPERV_FEAT_TLBFLUSH)
1089     },
1090     [HYPERV_FEAT_TLBFLUSH_DIRECT] = {
1091         .desc = "direct TLB flush (hv-tlbflush-direct)",
1092         .flags = {
1093             {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1094              .bits = HV_NESTED_DIRECT_FLUSH}
1095         },
1096         .dependencies = BIT(HYPERV_FEAT_VAPIC)
1097     },
1098 };
1099 
1100 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
1101                                            bool do_sys_ioctl)
1102 {
1103     struct kvm_cpuid2 *cpuid;
1104     int r, size;
1105 
1106     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
1107     cpuid = g_malloc0(size);
1108     cpuid->nent = max;
1109 
1110     if (do_sys_ioctl) {
1111         r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1112     } else {
1113         r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1114     }
1115     if (r == 0 && cpuid->nent >= max) {
1116         r = -E2BIG;
1117     }
1118     if (r < 0) {
1119         if (r == -E2BIG) {
1120             g_free(cpuid);
1121             return NULL;
1122         } else {
1123             fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
1124                     strerror(-r));
1125             exit(1);
1126         }
1127     }
1128     return cpuid;
1129 }
1130 
1131 /*
1132  * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1133  * for all entries.
1134  */
1135 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1136 {
1137     struct kvm_cpuid2 *cpuid;
1138     /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */
1139     int max = 11;
1140     int i;
1141     bool do_sys_ioctl;
1142 
1143     do_sys_ioctl =
1144         kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1145 
1146     /*
1147      * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1148      * unsupported, kvm_hyperv_expand_features() checks for that.
1149      */
1150     assert(do_sys_ioctl || cs->kvm_state);
1151 
1152     /*
1153      * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1154      * -E2BIG, however, it doesn't report back the right size. Keep increasing
1155      * it and re-trying until we succeed.
1156      */
1157     while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1158         max++;
1159     }
1160 
1161     /*
1162      * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1163      * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1164      * information early, just check for the capability and set the bit
1165      * manually.
1166      */
1167     if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1168                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1169         for (i = 0; i < cpuid->nent; i++) {
1170             if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1171                 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1172             }
1173         }
1174     }
1175 
1176     return cpuid;
1177 }
1178 
1179 /*
1180  * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1181  * leaves from KVM_CAP_HYPERV* and present MSRs data.
1182  */
1183 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1184 {
1185     X86CPU *cpu = X86_CPU(cs);
1186     struct kvm_cpuid2 *cpuid;
1187     struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1188 
1189     /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1190     cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1191     cpuid->nent = 2;
1192 
1193     /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1194     entry_feat = &cpuid->entries[0];
1195     entry_feat->function = HV_CPUID_FEATURES;
1196 
1197     entry_recomm = &cpuid->entries[1];
1198     entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1199     entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1200 
1201     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1202         entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1203         entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1204         entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1205         entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1206         entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1207     }
1208 
1209     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1210         entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1211         entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1212     }
1213 
1214     if (has_msr_hv_frequencies) {
1215         entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1216         entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1217     }
1218 
1219     if (has_msr_hv_crash) {
1220         entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1221     }
1222 
1223     if (has_msr_hv_reenlightenment) {
1224         entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1225     }
1226 
1227     if (has_msr_hv_reset) {
1228         entry_feat->eax |= HV_RESET_AVAILABLE;
1229     }
1230 
1231     if (has_msr_hv_vpindex) {
1232         entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1233     }
1234 
1235     if (has_msr_hv_runtime) {
1236         entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1237     }
1238 
1239     if (has_msr_hv_synic) {
1240         unsigned int cap = cpu->hyperv_synic_kvm_only ?
1241             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1242 
1243         if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1244             entry_feat->eax |= HV_SYNIC_AVAILABLE;
1245         }
1246     }
1247 
1248     if (has_msr_hv_stimer) {
1249         entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1250     }
1251 
1252     if (has_msr_hv_syndbg_options) {
1253         entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE;
1254         entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1255         entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED;
1256     }
1257 
1258     if (kvm_check_extension(cs->kvm_state,
1259                             KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1260         entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1261         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1262     }
1263 
1264     if (kvm_check_extension(cs->kvm_state,
1265                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1266         entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1267     }
1268 
1269     if (kvm_check_extension(cs->kvm_state,
1270                             KVM_CAP_HYPERV_SEND_IPI) > 0) {
1271         entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1272         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1273     }
1274 
1275     return cpuid;
1276 }
1277 
1278 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1279 {
1280     struct kvm_cpuid_entry2 *entry;
1281     struct kvm_cpuid2 *cpuid;
1282 
1283     if (hv_cpuid_cache) {
1284         cpuid = hv_cpuid_cache;
1285     } else {
1286         if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1287             cpuid = get_supported_hv_cpuid(cs);
1288         } else {
1289             /*
1290              * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1291              * before KVM context is created but this is only done when
1292              * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1293              * KVM_CAP_HYPERV_CPUID.
1294              */
1295             assert(cs->kvm_state);
1296 
1297             cpuid = get_supported_hv_cpuid_legacy(cs);
1298         }
1299         hv_cpuid_cache = cpuid;
1300     }
1301 
1302     if (!cpuid) {
1303         return 0;
1304     }
1305 
1306     entry = cpuid_find_entry(cpuid, func, 0);
1307     if (!entry) {
1308         return 0;
1309     }
1310 
1311     return cpuid_entry_get_reg(entry, reg);
1312 }
1313 
1314 static bool hyperv_feature_supported(CPUState *cs, int feature)
1315 {
1316     uint32_t func, bits;
1317     int i, reg;
1318 
1319     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1320 
1321         func = kvm_hyperv_properties[feature].flags[i].func;
1322         reg = kvm_hyperv_properties[feature].flags[i].reg;
1323         bits = kvm_hyperv_properties[feature].flags[i].bits;
1324 
1325         if (!func) {
1326             continue;
1327         }
1328 
1329         if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1330             return false;
1331         }
1332     }
1333 
1334     return true;
1335 }
1336 
1337 /* Checks that all feature dependencies are enabled */
1338 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1339 {
1340     uint64_t deps;
1341     int dep_feat;
1342 
1343     deps = kvm_hyperv_properties[feature].dependencies;
1344     while (deps) {
1345         dep_feat = ctz64(deps);
1346         if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1347             error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1348                        kvm_hyperv_properties[feature].desc,
1349                        kvm_hyperv_properties[dep_feat].desc);
1350             return false;
1351         }
1352         deps &= ~(1ull << dep_feat);
1353     }
1354 
1355     return true;
1356 }
1357 
1358 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1359 {
1360     X86CPU *cpu = X86_CPU(cs);
1361     uint32_t r = 0;
1362     int i, j;
1363 
1364     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1365         if (!hyperv_feat_enabled(cpu, i)) {
1366             continue;
1367         }
1368 
1369         for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1370             if (kvm_hyperv_properties[i].flags[j].func != func) {
1371                 continue;
1372             }
1373             if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1374                 continue;
1375             }
1376 
1377             r |= kvm_hyperv_properties[i].flags[j].bits;
1378         }
1379     }
1380 
1381     /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */
1382     if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) {
1383         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1384             r |= DEFAULT_EVMCS_VERSION;
1385         }
1386     }
1387 
1388     return r;
1389 }
1390 
1391 /*
1392  * Expand Hyper-V CPU features. In partucular, check that all the requested
1393  * features are supported by the host and the sanity of the configuration
1394  * (that all the required dependencies are included). Also, this takes care
1395  * of 'hv_passthrough' mode and fills the environment with all supported
1396  * Hyper-V features.
1397  */
1398 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1399 {
1400     CPUState *cs = CPU(cpu);
1401     Error *local_err = NULL;
1402     int feat;
1403 
1404     if (!hyperv_enabled(cpu))
1405         return true;
1406 
1407     /*
1408      * When kvm_hyperv_expand_features is called at CPU feature expansion
1409      * time per-CPU kvm_state is not available yet so we can only proceed
1410      * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1411      */
1412     if (!cs->kvm_state &&
1413         !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1414         return true;
1415 
1416     if (cpu->hyperv_passthrough) {
1417         cpu->hyperv_vendor_id[0] =
1418             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1419         cpu->hyperv_vendor_id[1] =
1420             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1421         cpu->hyperv_vendor_id[2] =
1422             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1423         cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1424                                        sizeof(cpu->hyperv_vendor_id) + 1);
1425         memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1426                sizeof(cpu->hyperv_vendor_id));
1427         cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1428 
1429         cpu->hyperv_interface_id[0] =
1430             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1431         cpu->hyperv_interface_id[1] =
1432             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1433         cpu->hyperv_interface_id[2] =
1434             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1435         cpu->hyperv_interface_id[3] =
1436             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1437 
1438         cpu->hyperv_ver_id_build =
1439             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1440         cpu->hyperv_ver_id_major =
1441             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1442         cpu->hyperv_ver_id_minor =
1443             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1444         cpu->hyperv_ver_id_sp =
1445             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1446         cpu->hyperv_ver_id_sb =
1447             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1448         cpu->hyperv_ver_id_sn =
1449             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1450 
1451         cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1452                                             R_EAX);
1453         cpu->hyperv_limits[0] =
1454             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1455         cpu->hyperv_limits[1] =
1456             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1457         cpu->hyperv_limits[2] =
1458             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1459 
1460         cpu->hyperv_spinlock_attempts =
1461             hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1462 
1463         /*
1464          * Mark feature as enabled in 'cpu->hyperv_features' as
1465          * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1466          */
1467         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1468             if (hyperv_feature_supported(cs, feat)) {
1469                 cpu->hyperv_features |= BIT(feat);
1470             }
1471         }
1472     } else {
1473         /* Check features availability and dependencies */
1474         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1475             /* If the feature was not requested skip it. */
1476             if (!hyperv_feat_enabled(cpu, feat)) {
1477                 continue;
1478             }
1479 
1480             /* Check if the feature is supported by KVM */
1481             if (!hyperv_feature_supported(cs, feat)) {
1482                 error_setg(errp, "Hyper-V %s is not supported by kernel",
1483                            kvm_hyperv_properties[feat].desc);
1484                 return false;
1485             }
1486 
1487             /* Check dependencies */
1488             if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1489                 error_propagate(errp, local_err);
1490                 return false;
1491             }
1492         }
1493     }
1494 
1495     /* Additional dependencies not covered by kvm_hyperv_properties[] */
1496     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1497         !cpu->hyperv_synic_kvm_only &&
1498         !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1499         error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1500                    kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1501                    kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1502         return false;
1503     }
1504 
1505     return true;
1506 }
1507 
1508 /*
1509  * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1510  */
1511 static int hyperv_fill_cpuids(CPUState *cs,
1512                               struct kvm_cpuid_entry2 *cpuid_ent)
1513 {
1514     X86CPU *cpu = X86_CPU(cs);
1515     struct kvm_cpuid_entry2 *c;
1516     uint32_t signature[3];
1517     uint32_t cpuid_i = 0, max_cpuid_leaf = 0;
1518     uint32_t nested_eax =
1519         hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX);
1520 
1521     max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES :
1522         HV_CPUID_IMPLEMENT_LIMITS;
1523 
1524     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1525         max_cpuid_leaf =
1526             MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
1527     }
1528 
1529     c = &cpuid_ent[cpuid_i++];
1530     c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1531     c->eax = max_cpuid_leaf;
1532     c->ebx = cpu->hyperv_vendor_id[0];
1533     c->ecx = cpu->hyperv_vendor_id[1];
1534     c->edx = cpu->hyperv_vendor_id[2];
1535 
1536     c = &cpuid_ent[cpuid_i++];
1537     c->function = HV_CPUID_INTERFACE;
1538     c->eax = cpu->hyperv_interface_id[0];
1539     c->ebx = cpu->hyperv_interface_id[1];
1540     c->ecx = cpu->hyperv_interface_id[2];
1541     c->edx = cpu->hyperv_interface_id[3];
1542 
1543     c = &cpuid_ent[cpuid_i++];
1544     c->function = HV_CPUID_VERSION;
1545     c->eax = cpu->hyperv_ver_id_build;
1546     c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1547         cpu->hyperv_ver_id_minor;
1548     c->ecx = cpu->hyperv_ver_id_sp;
1549     c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1550         (cpu->hyperv_ver_id_sn & 0xffffff);
1551 
1552     c = &cpuid_ent[cpuid_i++];
1553     c->function = HV_CPUID_FEATURES;
1554     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1555     c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1556     c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1557 
1558     /* Unconditionally required with any Hyper-V enlightenment */
1559     c->eax |= HV_HYPERCALL_AVAILABLE;
1560 
1561     /* SynIC and Vmbus devices require messages/signals hypercalls */
1562     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1563         !cpu->hyperv_synic_kvm_only) {
1564         c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1565     }
1566 
1567 
1568     /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1569     c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1570 
1571     c = &cpuid_ent[cpuid_i++];
1572     c->function = HV_CPUID_ENLIGHTMENT_INFO;
1573     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1574     c->ebx = cpu->hyperv_spinlock_attempts;
1575 
1576     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1577         !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1578         c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1579     }
1580 
1581     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1582         c->eax |= HV_NO_NONARCH_CORESHARING;
1583     } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1584         c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1585             HV_NO_NONARCH_CORESHARING;
1586     }
1587 
1588     c = &cpuid_ent[cpuid_i++];
1589     c->function = HV_CPUID_IMPLEMENT_LIMITS;
1590     c->eax = cpu->hv_max_vps;
1591     c->ebx = cpu->hyperv_limits[0];
1592     c->ecx = cpu->hyperv_limits[1];
1593     c->edx = cpu->hyperv_limits[2];
1594 
1595     if (nested_eax) {
1596         uint32_t function;
1597 
1598         /* Create zeroed 0x40000006..0x40000009 leaves */
1599         for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1600              function < HV_CPUID_NESTED_FEATURES; function++) {
1601             c = &cpuid_ent[cpuid_i++];
1602             c->function = function;
1603         }
1604 
1605         c = &cpuid_ent[cpuid_i++];
1606         c->function = HV_CPUID_NESTED_FEATURES;
1607         c->eax = nested_eax;
1608     }
1609 
1610     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1611         c = &cpuid_ent[cpuid_i++];
1612         c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS;
1613         c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1614             HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1615         memcpy(signature, "Microsoft VS", 12);
1616         c->eax = 0;
1617         c->ebx = signature[0];
1618         c->ecx = signature[1];
1619         c->edx = signature[2];
1620 
1621         c = &cpuid_ent[cpuid_i++];
1622         c->function = HV_CPUID_SYNDBG_INTERFACE;
1623         memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
1624         c->eax = signature[0];
1625         c->ebx = 0;
1626         c->ecx = 0;
1627         c->edx = 0;
1628 
1629         c = &cpuid_ent[cpuid_i++];
1630         c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1631         c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
1632         c->ebx = 0;
1633         c->ecx = 0;
1634         c->edx = 0;
1635     }
1636 
1637     return cpuid_i;
1638 }
1639 
1640 static Error *hv_passthrough_mig_blocker;
1641 static Error *hv_no_nonarch_cs_mig_blocker;
1642 
1643 /* Checks that the exposed eVMCS version range is supported by KVM */
1644 static bool evmcs_version_supported(uint16_t evmcs_version,
1645                                     uint16_t supported_evmcs_version)
1646 {
1647     uint8_t min_version = evmcs_version & 0xff;
1648     uint8_t max_version = evmcs_version >> 8;
1649     uint8_t min_supported_version = supported_evmcs_version & 0xff;
1650     uint8_t max_supported_version = supported_evmcs_version >> 8;
1651 
1652     return (min_version >= min_supported_version) &&
1653         (max_version <= max_supported_version);
1654 }
1655 
1656 static int hyperv_init_vcpu(X86CPU *cpu)
1657 {
1658     CPUState *cs = CPU(cpu);
1659     Error *local_err = NULL;
1660     int ret;
1661 
1662     if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1663         error_setg(&hv_passthrough_mig_blocker,
1664                    "'hv-passthrough' CPU flag prevents migration, use explicit"
1665                    " set of hv-* flags instead");
1666         ret = migrate_add_blocker(&hv_passthrough_mig_blocker, &local_err);
1667         if (ret < 0) {
1668             error_report_err(local_err);
1669             return ret;
1670         }
1671     }
1672 
1673     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1674         hv_no_nonarch_cs_mig_blocker == NULL) {
1675         error_setg(&hv_no_nonarch_cs_mig_blocker,
1676                    "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1677                    " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1678                    " make sure SMT is disabled and/or that vCPUs are properly"
1679                    " pinned)");
1680         ret = migrate_add_blocker(&hv_no_nonarch_cs_mig_blocker, &local_err);
1681         if (ret < 0) {
1682             error_report_err(local_err);
1683             return ret;
1684         }
1685     }
1686 
1687     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1688         /*
1689          * the kernel doesn't support setting vp_index; assert that its value
1690          * is in sync
1691          */
1692         uint64_t value;
1693 
1694         ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value);
1695         if (ret < 0) {
1696             return ret;
1697         }
1698 
1699         if (value != hyperv_vp_index(CPU(cpu))) {
1700             error_report("kernel's vp_index != QEMU's vp_index");
1701             return -ENXIO;
1702         }
1703     }
1704 
1705     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1706         uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1707             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1708         ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1709         if (ret < 0) {
1710             error_report("failed to turn on HyperV SynIC in KVM: %s",
1711                          strerror(-ret));
1712             return ret;
1713         }
1714 
1715         if (!cpu->hyperv_synic_kvm_only) {
1716             ret = hyperv_x86_synic_add(cpu);
1717             if (ret < 0) {
1718                 error_report("failed to create HyperV SynIC: %s",
1719                              strerror(-ret));
1720                 return ret;
1721             }
1722         }
1723     }
1724 
1725     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1726         uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1727         uint16_t supported_evmcs_version;
1728 
1729         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1730                                   (uintptr_t)&supported_evmcs_version);
1731 
1732         /*
1733          * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1734          * option sets. Note: we hardcode the maximum supported eVMCS version
1735          * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1736          * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1737          * to be added.
1738          */
1739         if (ret < 0) {
1740             error_report("Hyper-V %s is not supported by kernel",
1741                          kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1742             return ret;
1743         }
1744 
1745         if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1746             error_report("eVMCS version range [%d..%d] is not supported by "
1747                          "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1748                          evmcs_version >> 8, supported_evmcs_version & 0xff,
1749                          supported_evmcs_version >> 8);
1750             return -ENOTSUP;
1751         }
1752     }
1753 
1754     if (cpu->hyperv_enforce_cpuid) {
1755         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1756         if (ret < 0) {
1757             error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1758                          strerror(-ret));
1759             return ret;
1760         }
1761     }
1762 
1763     /* Skip SynIC and VP_INDEX since they are hard deps already */
1764     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_STIMER) &&
1765         hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1766         hyperv_feat_enabled(cpu, HYPERV_FEAT_RUNTIME)) {
1767         hyperv_x86_set_vmbus_recommended_features_enabled();
1768     }
1769 
1770     return 0;
1771 }
1772 
1773 static Error *invtsc_mig_blocker;
1774 
1775 #define KVM_MAX_CPUID_ENTRIES  100
1776 
1777 static void kvm_init_xsave(CPUX86State *env)
1778 {
1779     if (has_xsave2) {
1780         env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1781     } else {
1782         env->xsave_buf_len = sizeof(struct kvm_xsave);
1783     }
1784 
1785     env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1786     memset(env->xsave_buf, 0, env->xsave_buf_len);
1787     /*
1788      * The allocated storage must be large enough for all of the
1789      * possible XSAVE state components.
1790      */
1791     assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1792            env->xsave_buf_len);
1793 }
1794 
1795 static void kvm_init_nested_state(CPUX86State *env)
1796 {
1797     struct kvm_vmx_nested_state_hdr *vmx_hdr;
1798     uint32_t size;
1799 
1800     if (!env->nested_state) {
1801         return;
1802     }
1803 
1804     size = env->nested_state->size;
1805 
1806     memset(env->nested_state, 0, size);
1807     env->nested_state->size = size;
1808 
1809     if (cpu_has_vmx(env)) {
1810         env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1811         vmx_hdr = &env->nested_state->hdr.vmx;
1812         vmx_hdr->vmxon_pa = -1ull;
1813         vmx_hdr->vmcs12_pa = -1ull;
1814     } else if (cpu_has_svm(env)) {
1815         env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1816     }
1817 }
1818 
1819 static uint32_t kvm_x86_build_cpuid(CPUX86State *env,
1820                                     struct kvm_cpuid_entry2 *entries,
1821                                     uint32_t cpuid_i)
1822 {
1823     uint32_t limit, i, j;
1824     uint32_t unused;
1825     struct kvm_cpuid_entry2 *c;
1826 
1827     cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1828 
1829     for (i = 0; i <= limit; i++) {
1830         j = 0;
1831         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1832             goto full;
1833         }
1834         c = &entries[cpuid_i++];
1835         switch (i) {
1836         case 2: {
1837             /* Keep reading function 2 till all the input is received */
1838             int times;
1839 
1840             c->function = i;
1841             c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1842                        KVM_CPUID_FLAG_STATE_READ_NEXT;
1843             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1844             times = c->eax & 0xff;
1845 
1846             for (j = 1; j < times; ++j) {
1847                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1848                     goto full;
1849                 }
1850                 c = &entries[cpuid_i++];
1851                 c->function = i;
1852                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1853                 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1854             }
1855             break;
1856         }
1857         case 0x1f:
1858             if (!x86_has_extended_topo(env->avail_cpu_topo)) {
1859                 cpuid_i--;
1860                 break;
1861             }
1862             /* fallthrough */
1863         case 4:
1864         case 0xb:
1865         case 0xd:
1866             for (j = 0; ; j++) {
1867                 if (i == 0xd && j == 64) {
1868                     break;
1869                 }
1870 
1871                 c->function = i;
1872                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1873                 c->index = j;
1874                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1875 
1876                 if (i == 4 && c->eax == 0) {
1877                     break;
1878                 }
1879                 if (i == 0xb && !(c->ecx & 0xff00)) {
1880                     break;
1881                 }
1882                 if (i == 0x1f && !(c->ecx & 0xff00)) {
1883                     break;
1884                 }
1885                 if (i == 0xd && c->eax == 0) {
1886                     continue;
1887                 }
1888                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1889                     goto full;
1890                 }
1891                 c = &entries[cpuid_i++];
1892             }
1893             break;
1894         case 0x12:
1895             for (j = 0; ; j++) {
1896                 c->function = i;
1897                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1898                 c->index = j;
1899                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1900 
1901                 if (j > 1 && (c->eax & 0xf) != 1) {
1902                     break;
1903                 }
1904 
1905                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1906                     goto full;
1907                 }
1908                 c = &entries[cpuid_i++];
1909             }
1910             break;
1911         case 0x7:
1912         case 0x14:
1913         case 0x1d:
1914         case 0x1e: {
1915             uint32_t times;
1916 
1917             c->function = i;
1918             c->index = 0;
1919             c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1920             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1921             times = c->eax;
1922 
1923             for (j = 1; j <= times; ++j) {
1924                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1925                     goto full;
1926                 }
1927                 c = &entries[cpuid_i++];
1928                 c->function = i;
1929                 c->index = j;
1930                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1931                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1932             }
1933             break;
1934         }
1935         default:
1936             c->function = i;
1937             c->flags = 0;
1938             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1939             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1940                 /*
1941                  * KVM already returns all zeroes if a CPUID entry is missing,
1942                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1943                  */
1944                 cpuid_i--;
1945             }
1946             break;
1947         }
1948     }
1949 
1950     if (limit >= 0x0a) {
1951         uint32_t eax, edx;
1952 
1953         cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1954 
1955         has_architectural_pmu_version = eax & 0xff;
1956         if (has_architectural_pmu_version > 0) {
1957             num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1958 
1959             /* Shouldn't be more than 32, since that's the number of bits
1960              * available in EBX to tell us _which_ counters are available.
1961              * Play it safe.
1962              */
1963             if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1964                 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1965             }
1966 
1967             if (has_architectural_pmu_version > 1) {
1968                 num_architectural_pmu_fixed_counters = edx & 0x1f;
1969 
1970                 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1971                     num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1972                 }
1973             }
1974         }
1975     }
1976 
1977     cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1978 
1979     for (i = 0x80000000; i <= limit; i++) {
1980         j = 0;
1981         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1982             goto full;
1983         }
1984         c = &entries[cpuid_i++];
1985 
1986         switch (i) {
1987         case 0x8000001d:
1988             /* Query for all AMD cache information leaves */
1989             for (j = 0; ; j++) {
1990                 c->function = i;
1991                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1992                 c->index = j;
1993                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1994 
1995                 if (c->eax == 0) {
1996                     break;
1997                 }
1998                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1999                     goto full;
2000                 }
2001                 c = &entries[cpuid_i++];
2002             }
2003             break;
2004         default:
2005             c->function = i;
2006             c->flags = 0;
2007             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2008             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2009                 /*
2010                  * KVM already returns all zeroes if a CPUID entry is missing,
2011                  * so we can omit it and avoid hitting KVM's 80-entry limit.
2012                  */
2013                 cpuid_i--;
2014             }
2015             break;
2016         }
2017     }
2018 
2019     /* Call Centaur's CPUID instructions they are supported. */
2020     if (env->cpuid_xlevel2 > 0) {
2021         cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
2022 
2023         for (i = 0xC0000000; i <= limit; i++) {
2024             j = 0;
2025             if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2026                 goto full;
2027             }
2028             c = &entries[cpuid_i++];
2029 
2030             c->function = i;
2031             c->flags = 0;
2032             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2033         }
2034     }
2035 
2036     return cpuid_i;
2037 
2038 full:
2039     fprintf(stderr, "cpuid_data is full, no space for "
2040             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2041     abort();
2042 }
2043 
2044 int kvm_arch_init_vcpu(CPUState *cs)
2045 {
2046     struct {
2047         struct kvm_cpuid2 cpuid;
2048         struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
2049     } cpuid_data;
2050     /*
2051      * The kernel defines these structs with padding fields so there
2052      * should be no extra padding in our cpuid_data struct.
2053      */
2054     QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
2055                       sizeof(struct kvm_cpuid2) +
2056                       sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
2057 
2058     X86CPU *cpu = X86_CPU(cs);
2059     CPUX86State *env = &cpu->env;
2060     uint32_t cpuid_i;
2061     struct kvm_cpuid_entry2 *c;
2062     uint32_t signature[3];
2063     int kvm_base = KVM_CPUID_SIGNATURE;
2064     int max_nested_state_len;
2065     int r;
2066     Error *local_err = NULL;
2067 
2068     memset(&cpuid_data, 0, sizeof(cpuid_data));
2069 
2070     cpuid_i = 0;
2071 
2072     has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
2073 
2074     r = kvm_arch_set_tsc_khz(cs);
2075     if (r < 0) {
2076         return r;
2077     }
2078 
2079     /* vcpu's TSC frequency is either specified by user, or following
2080      * the value used by KVM if the former is not present. In the
2081      * latter case, we query it from KVM and record in env->tsc_khz,
2082      * so that vcpu's TSC frequency can be migrated later via this field.
2083      */
2084     if (!env->tsc_khz) {
2085         r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
2086             kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
2087             -ENOTSUP;
2088         if (r > 0) {
2089             env->tsc_khz = r;
2090         }
2091     }
2092 
2093     env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
2094 
2095     /*
2096      * kvm_hyperv_expand_features() is called here for the second time in case
2097      * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
2098      * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
2099      * check which Hyper-V enlightenments are supported and which are not, we
2100      * can still proceed and check/expand Hyper-V enlightenments here so legacy
2101      * behavior is preserved.
2102      */
2103     if (!kvm_hyperv_expand_features(cpu, &local_err)) {
2104         error_report_err(local_err);
2105         return -ENOSYS;
2106     }
2107 
2108     if (hyperv_enabled(cpu)) {
2109         r = hyperv_init_vcpu(cpu);
2110         if (r) {
2111             return r;
2112         }
2113 
2114         cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
2115         kvm_base = KVM_CPUID_SIGNATURE_NEXT;
2116         has_msr_hv_hypercall = true;
2117     }
2118 
2119     if (cs->kvm_state->xen_version) {
2120 #ifdef CONFIG_XEN_EMU
2121         struct kvm_cpuid_entry2 *xen_max_leaf;
2122 
2123         memcpy(signature, "XenVMMXenVMM", 12);
2124 
2125         xen_max_leaf = c = &cpuid_data.entries[cpuid_i++];
2126         c->function = kvm_base + XEN_CPUID_SIGNATURE;
2127         c->eax = kvm_base + XEN_CPUID_TIME;
2128         c->ebx = signature[0];
2129         c->ecx = signature[1];
2130         c->edx = signature[2];
2131 
2132         c = &cpuid_data.entries[cpuid_i++];
2133         c->function = kvm_base + XEN_CPUID_VENDOR;
2134         c->eax = cs->kvm_state->xen_version;
2135         c->ebx = 0;
2136         c->ecx = 0;
2137         c->edx = 0;
2138 
2139         c = &cpuid_data.entries[cpuid_i++];
2140         c->function = kvm_base + XEN_CPUID_HVM_MSR;
2141         /* Number of hypercall-transfer pages */
2142         c->eax = 1;
2143         /* Hypercall MSR base address */
2144         if (hyperv_enabled(cpu)) {
2145             c->ebx = XEN_HYPERCALL_MSR_HYPERV;
2146             kvm_xen_init(cs->kvm_state, c->ebx);
2147         } else {
2148             c->ebx = XEN_HYPERCALL_MSR;
2149         }
2150         c->ecx = 0;
2151         c->edx = 0;
2152 
2153         c = &cpuid_data.entries[cpuid_i++];
2154         c->function = kvm_base + XEN_CPUID_TIME;
2155         c->eax = ((!!tsc_is_stable_and_known(env) << 1) |
2156             (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2));
2157         /* default=0 (emulate if necessary) */
2158         c->ebx = 0;
2159         /* guest tsc frequency */
2160         c->ecx = env->user_tsc_khz;
2161         /* guest tsc incarnation (migration count) */
2162         c->edx = 0;
2163 
2164         c = &cpuid_data.entries[cpuid_i++];
2165         c->function = kvm_base + XEN_CPUID_HVM;
2166         xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM;
2167         if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) {
2168             c->function = kvm_base + XEN_CPUID_HVM;
2169 
2170             if (cpu->xen_vapic) {
2171                 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT;
2172                 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT;
2173             }
2174 
2175             c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS;
2176 
2177             if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) {
2178                 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT;
2179                 c->ebx = cs->cpu_index;
2180             }
2181 
2182             if (cs->kvm_state->xen_version >= XEN_VERSION(4, 17)) {
2183                 c->eax |= XEN_HVM_CPUID_UPCALL_VECTOR;
2184             }
2185         }
2186 
2187         r = kvm_xen_init_vcpu(cs);
2188         if (r) {
2189             return r;
2190         }
2191 
2192         kvm_base += 0x100;
2193 #else /* CONFIG_XEN_EMU */
2194         /* This should never happen as kvm_arch_init() would have died first. */
2195         fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n");
2196         abort();
2197 #endif
2198     } else if (cpu->expose_kvm) {
2199         memcpy(signature, "KVMKVMKVM\0\0\0", 12);
2200         c = &cpuid_data.entries[cpuid_i++];
2201         c->function = KVM_CPUID_SIGNATURE | kvm_base;
2202         c->eax = KVM_CPUID_FEATURES | kvm_base;
2203         c->ebx = signature[0];
2204         c->ecx = signature[1];
2205         c->edx = signature[2];
2206 
2207         c = &cpuid_data.entries[cpuid_i++];
2208         c->function = KVM_CPUID_FEATURES | kvm_base;
2209         c->eax = env->features[FEAT_KVM];
2210         c->edx = env->features[FEAT_KVM_HINTS];
2211     }
2212 
2213     if (cpu->kvm_pv_enforce_cpuid) {
2214         r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
2215         if (r < 0) {
2216             fprintf(stderr,
2217                     "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
2218                     strerror(-r));
2219             abort();
2220         }
2221     }
2222 
2223     cpuid_i = kvm_x86_build_cpuid(env, cpuid_data.entries, cpuid_i);
2224     cpuid_data.cpuid.nent = cpuid_i;
2225 
2226     if (((env->cpuid_version >> 8)&0xF) >= 6
2227         && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
2228            (CPUID_MCE | CPUID_MCA)) {
2229         uint64_t mcg_cap, unsupported_caps;
2230         int banks;
2231         int ret;
2232 
2233         ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
2234         if (ret < 0) {
2235             fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
2236             return ret;
2237         }
2238 
2239         if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
2240             error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2241                          (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
2242             return -ENOTSUP;
2243         }
2244 
2245         unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
2246         if (unsupported_caps) {
2247             if (unsupported_caps & MCG_LMCE_P) {
2248                 error_report("kvm: LMCE not supported");
2249                 return -ENOTSUP;
2250             }
2251             warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
2252                         unsupported_caps);
2253         }
2254 
2255         env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
2256         ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
2257         if (ret < 0) {
2258             fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
2259             return ret;
2260         }
2261     }
2262 
2263     cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
2264 
2265     c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
2266     if (c) {
2267         has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
2268                                   !!(c->ecx & CPUID_EXT_SMX);
2269     }
2270 
2271     c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
2272     if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
2273         has_msr_feature_control = true;
2274     }
2275 
2276     if (env->mcg_cap & MCG_LMCE_P) {
2277         has_msr_mcg_ext_ctl = has_msr_feature_control = true;
2278     }
2279 
2280     if (!env->user_tsc_khz) {
2281         if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2282             invtsc_mig_blocker == NULL) {
2283             error_setg(&invtsc_mig_blocker,
2284                        "State blocked by non-migratable CPU device"
2285                        " (invtsc flag)");
2286             r = migrate_add_blocker(&invtsc_mig_blocker, &local_err);
2287             if (r < 0) {
2288                 error_report_err(local_err);
2289                 return r;
2290             }
2291         }
2292     }
2293 
2294     if (cpu->vmware_cpuid_freq
2295         /* Guests depend on 0x40000000 to detect this feature, so only expose
2296          * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2297         && cpu->expose_kvm
2298         && kvm_base == KVM_CPUID_SIGNATURE
2299         /* TSC clock must be stable and known for this feature. */
2300         && tsc_is_stable_and_known(env)) {
2301 
2302         c = &cpuid_data.entries[cpuid_i++];
2303         c->function = KVM_CPUID_SIGNATURE | 0x10;
2304         c->eax = env->tsc_khz;
2305         c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2306         c->ecx = c->edx = 0;
2307 
2308         c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2309         c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2310     }
2311 
2312     cpuid_data.cpuid.nent = cpuid_i;
2313 
2314     cpuid_data.cpuid.padding = 0;
2315     r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2316     if (r) {
2317         goto fail;
2318     }
2319     kvm_init_xsave(env);
2320 
2321     max_nested_state_len = kvm_max_nested_state_length();
2322     if (max_nested_state_len > 0) {
2323         assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2324 
2325         if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2326             env->nested_state = g_malloc0(max_nested_state_len);
2327             env->nested_state->size = max_nested_state_len;
2328 
2329             kvm_init_nested_state(env);
2330         }
2331     }
2332 
2333     cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2334 
2335     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2336         has_msr_tsc_aux = false;
2337     }
2338 
2339     kvm_init_msrs(cpu);
2340 
2341     return 0;
2342 
2343  fail:
2344     migrate_del_blocker(&invtsc_mig_blocker);
2345 
2346     return r;
2347 }
2348 
2349 int kvm_arch_destroy_vcpu(CPUState *cs)
2350 {
2351     X86CPU *cpu = X86_CPU(cs);
2352     CPUX86State *env = &cpu->env;
2353 
2354     g_free(env->xsave_buf);
2355 
2356     g_free(cpu->kvm_msr_buf);
2357     cpu->kvm_msr_buf = NULL;
2358 
2359     g_free(env->nested_state);
2360     env->nested_state = NULL;
2361 
2362     qemu_del_vm_change_state_handler(cpu->vmsentry);
2363 
2364     return 0;
2365 }
2366 
2367 void kvm_arch_reset_vcpu(X86CPU *cpu)
2368 {
2369     CPUX86State *env = &cpu->env;
2370 
2371     env->xcr0 = 1;
2372     if (kvm_irqchip_in_kernel()) {
2373         env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2374                                           KVM_MP_STATE_UNINITIALIZED;
2375     } else {
2376         env->mp_state = KVM_MP_STATE_RUNNABLE;
2377     }
2378 
2379     /* enabled by default */
2380     env->poll_control_msr = 1;
2381 
2382     kvm_init_nested_state(env);
2383 
2384     sev_es_set_reset_vector(CPU(cpu));
2385 }
2386 
2387 void kvm_arch_after_reset_vcpu(X86CPU *cpu)
2388 {
2389     CPUX86State *env = &cpu->env;
2390     int i;
2391 
2392     /*
2393      * Reset SynIC after all other devices have been reset to let them remove
2394      * their SINT routes first.
2395      */
2396     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2397         for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2398             env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2399         }
2400 
2401         hyperv_x86_synic_reset(cpu);
2402     }
2403 }
2404 
2405 void kvm_arch_do_init_vcpu(X86CPU *cpu)
2406 {
2407     CPUX86State *env = &cpu->env;
2408 
2409     /* APs get directly into wait-for-SIPI state.  */
2410     if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2411         env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2412     }
2413 }
2414 
2415 static int kvm_get_supported_feature_msrs(KVMState *s)
2416 {
2417     int ret = 0;
2418 
2419     if (kvm_feature_msrs != NULL) {
2420         return 0;
2421     }
2422 
2423     if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2424         return 0;
2425     }
2426 
2427     struct kvm_msr_list msr_list;
2428 
2429     msr_list.nmsrs = 0;
2430     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2431     if (ret < 0 && ret != -E2BIG) {
2432         error_report("Fetch KVM feature MSR list failed: %s",
2433             strerror(-ret));
2434         return ret;
2435     }
2436 
2437     assert(msr_list.nmsrs > 0);
2438     kvm_feature_msrs = g_malloc0(sizeof(msr_list) +
2439                  msr_list.nmsrs * sizeof(msr_list.indices[0]));
2440 
2441     kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2442     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2443 
2444     if (ret < 0) {
2445         error_report("Fetch KVM feature MSR list failed: %s",
2446             strerror(-ret));
2447         g_free(kvm_feature_msrs);
2448         kvm_feature_msrs = NULL;
2449         return ret;
2450     }
2451 
2452     return 0;
2453 }
2454 
2455 static int kvm_get_supported_msrs(KVMState *s)
2456 {
2457     int ret = 0;
2458     struct kvm_msr_list msr_list, *kvm_msr_list;
2459 
2460     /*
2461      *  Obtain MSR list from KVM.  These are the MSRs that we must
2462      *  save/restore.
2463      */
2464     msr_list.nmsrs = 0;
2465     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2466     if (ret < 0 && ret != -E2BIG) {
2467         return ret;
2468     }
2469     /*
2470      * Old kernel modules had a bug and could write beyond the provided
2471      * memory. Allocate at least a safe amount of 1K.
2472      */
2473     kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2474                                           msr_list.nmsrs *
2475                                           sizeof(msr_list.indices[0])));
2476 
2477     kvm_msr_list->nmsrs = msr_list.nmsrs;
2478     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2479     if (ret >= 0) {
2480         int i;
2481 
2482         for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2483             switch (kvm_msr_list->indices[i]) {
2484             case MSR_STAR:
2485                 has_msr_star = true;
2486                 break;
2487             case MSR_VM_HSAVE_PA:
2488                 has_msr_hsave_pa = true;
2489                 break;
2490             case MSR_TSC_AUX:
2491                 has_msr_tsc_aux = true;
2492                 break;
2493             case MSR_TSC_ADJUST:
2494                 has_msr_tsc_adjust = true;
2495                 break;
2496             case MSR_IA32_TSCDEADLINE:
2497                 has_msr_tsc_deadline = true;
2498                 break;
2499             case MSR_IA32_SMBASE:
2500                 has_msr_smbase = true;
2501                 break;
2502             case MSR_SMI_COUNT:
2503                 has_msr_smi_count = true;
2504                 break;
2505             case MSR_IA32_MISC_ENABLE:
2506                 has_msr_misc_enable = true;
2507                 break;
2508             case MSR_IA32_BNDCFGS:
2509                 has_msr_bndcfgs = true;
2510                 break;
2511             case MSR_IA32_XSS:
2512                 has_msr_xss = true;
2513                 break;
2514             case MSR_IA32_UMWAIT_CONTROL:
2515                 has_msr_umwait = true;
2516                 break;
2517             case HV_X64_MSR_CRASH_CTL:
2518                 has_msr_hv_crash = true;
2519                 break;
2520             case HV_X64_MSR_RESET:
2521                 has_msr_hv_reset = true;
2522                 break;
2523             case HV_X64_MSR_VP_INDEX:
2524                 has_msr_hv_vpindex = true;
2525                 break;
2526             case HV_X64_MSR_VP_RUNTIME:
2527                 has_msr_hv_runtime = true;
2528                 break;
2529             case HV_X64_MSR_SCONTROL:
2530                 has_msr_hv_synic = true;
2531                 break;
2532             case HV_X64_MSR_STIMER0_CONFIG:
2533                 has_msr_hv_stimer = true;
2534                 break;
2535             case HV_X64_MSR_TSC_FREQUENCY:
2536                 has_msr_hv_frequencies = true;
2537                 break;
2538             case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2539                 has_msr_hv_reenlightenment = true;
2540                 break;
2541             case HV_X64_MSR_SYNDBG_OPTIONS:
2542                 has_msr_hv_syndbg_options = true;
2543                 break;
2544             case MSR_IA32_SPEC_CTRL:
2545                 has_msr_spec_ctrl = true;
2546                 break;
2547             case MSR_AMD64_TSC_RATIO:
2548                 has_tsc_scale_msr = true;
2549                 break;
2550             case MSR_IA32_TSX_CTRL:
2551                 has_msr_tsx_ctrl = true;
2552                 break;
2553             case MSR_VIRT_SSBD:
2554                 has_msr_virt_ssbd = true;
2555                 break;
2556             case MSR_IA32_ARCH_CAPABILITIES:
2557                 has_msr_arch_capabs = true;
2558                 break;
2559             case MSR_IA32_CORE_CAPABILITY:
2560                 has_msr_core_capabs = true;
2561                 break;
2562             case MSR_IA32_PERF_CAPABILITIES:
2563                 has_msr_perf_capabs = true;
2564                 break;
2565             case MSR_IA32_VMX_VMFUNC:
2566                 has_msr_vmx_vmfunc = true;
2567                 break;
2568             case MSR_IA32_UCODE_REV:
2569                 has_msr_ucode_rev = true;
2570                 break;
2571             case MSR_IA32_VMX_PROCBASED_CTLS2:
2572                 has_msr_vmx_procbased_ctls2 = true;
2573                 break;
2574             case MSR_IA32_PKRS:
2575                 has_msr_pkrs = true;
2576                 break;
2577             }
2578         }
2579     }
2580 
2581     g_free(kvm_msr_list);
2582 
2583     return ret;
2584 }
2585 
2586 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu,
2587                                         uint32_t msr,
2588                                         uint64_t *val)
2589 {
2590     CPUState *cs = CPU(cpu);
2591 
2592     *val = cs->nr_threads * cs->nr_cores; /* thread count, bits 15..0 */
2593     *val |= ((uint32_t)cs->nr_cores << 16); /* core count, bits 31..16 */
2594 
2595     return true;
2596 }
2597 
2598 static bool kvm_rdmsr_rapl_power_unit(X86CPU *cpu,
2599                                       uint32_t msr,
2600                                       uint64_t *val)
2601 {
2602 
2603     CPUState *cs = CPU(cpu);
2604 
2605     *val = cs->kvm_state->msr_energy.msr_unit;
2606 
2607     return true;
2608 }
2609 
2610 static bool kvm_rdmsr_pkg_power_limit(X86CPU *cpu,
2611                                       uint32_t msr,
2612                                       uint64_t *val)
2613 {
2614 
2615     CPUState *cs = CPU(cpu);
2616 
2617     *val = cs->kvm_state->msr_energy.msr_limit;
2618 
2619     return true;
2620 }
2621 
2622 static bool kvm_rdmsr_pkg_power_info(X86CPU *cpu,
2623                                      uint32_t msr,
2624                                      uint64_t *val)
2625 {
2626 
2627     CPUState *cs = CPU(cpu);
2628 
2629     *val = cs->kvm_state->msr_energy.msr_info;
2630 
2631     return true;
2632 }
2633 
2634 static bool kvm_rdmsr_pkg_energy_status(X86CPU *cpu,
2635                                         uint32_t msr,
2636                                         uint64_t *val)
2637 {
2638 
2639     CPUState *cs = CPU(cpu);
2640     *val = cs->kvm_state->msr_energy.msr_value[cs->cpu_index];
2641 
2642     return true;
2643 }
2644 
2645 static Notifier smram_machine_done;
2646 static KVMMemoryListener smram_listener;
2647 static AddressSpace smram_address_space;
2648 static MemoryRegion smram_as_root;
2649 static MemoryRegion smram_as_mem;
2650 
2651 static void register_smram_listener(Notifier *n, void *unused)
2652 {
2653     MemoryRegion *smram =
2654         (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2655 
2656     /* Outer container... */
2657     memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2658     memory_region_set_enabled(&smram_as_root, true);
2659 
2660     /* ... with two regions inside: normal system memory with low
2661      * priority, and...
2662      */
2663     memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2664                              get_system_memory(), 0, ~0ull);
2665     memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2666     memory_region_set_enabled(&smram_as_mem, true);
2667 
2668     if (smram) {
2669         /* ... SMRAM with higher priority */
2670         memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2671         memory_region_set_enabled(smram, true);
2672     }
2673 
2674     address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2675     kvm_memory_listener_register(kvm_state, &smram_listener,
2676                                  &smram_address_space, 1, "kvm-smram");
2677 }
2678 
2679 static void *kvm_msr_energy_thread(void *data)
2680 {
2681     KVMState *s = data;
2682     struct KVMMsrEnergy *vmsr = &s->msr_energy;
2683 
2684     g_autofree vmsr_package_energy_stat *pkg_stat = NULL;
2685     g_autofree vmsr_thread_stat *thd_stat = NULL;
2686     g_autofree CPUState *cpu = NULL;
2687     g_autofree unsigned int *vpkgs_energy_stat = NULL;
2688     unsigned int num_threads = 0;
2689 
2690     X86CPUTopoIDs topo_ids;
2691 
2692     rcu_register_thread();
2693 
2694     /* Allocate memory for each package energy status */
2695     pkg_stat = g_new0(vmsr_package_energy_stat, vmsr->host_topo.maxpkgs);
2696 
2697     /* Allocate memory for thread stats */
2698     thd_stat = g_new0(vmsr_thread_stat, 1);
2699 
2700     /* Allocate memory for holding virtual package energy counter */
2701     vpkgs_energy_stat = g_new0(unsigned int, vmsr->guest_vsockets);
2702 
2703     /* Populate the max tick of each packages */
2704     for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2705         /*
2706          * Max numbers of ticks per package
2707          * Time in second * Number of ticks/second * Number of cores/package
2708          * ex: 100 ticks/second/CPU, 12 CPUs per Package gives 1200 ticks max
2709          */
2710         vmsr->host_topo.maxticks[i] = (MSR_ENERGY_THREAD_SLEEP_US / 1000000)
2711                         * sysconf(_SC_CLK_TCK)
2712                         * vmsr->host_topo.pkg_cpu_count[i];
2713     }
2714 
2715     while (true) {
2716         /* Get all qemu threads id */
2717         g_autofree pid_t *thread_ids
2718             = vmsr_get_thread_ids(vmsr->pid, &num_threads);
2719 
2720         if (thread_ids == NULL) {
2721             goto clean;
2722         }
2723 
2724         thd_stat = g_renew(vmsr_thread_stat, thd_stat, num_threads);
2725         /* Unlike g_new0, g_renew0 function doesn't exist yet... */
2726         memset(thd_stat, 0, num_threads * sizeof(vmsr_thread_stat));
2727 
2728         /* Populate all the thread stats */
2729         for (int i = 0; i < num_threads; i++) {
2730             thd_stat[i].utime = g_new0(unsigned long long, 2);
2731             thd_stat[i].stime = g_new0(unsigned long long, 2);
2732             thd_stat[i].thread_id = thread_ids[i];
2733             vmsr_read_thread_stat(vmsr->pid,
2734                                   thd_stat[i].thread_id,
2735                                   &thd_stat[i].utime[0],
2736                                   &thd_stat[i].stime[0],
2737                                   &thd_stat[i].cpu_id);
2738             thd_stat[i].pkg_id =
2739                 vmsr_get_physical_package_id(thd_stat[i].cpu_id);
2740         }
2741 
2742         /* Retrieve all packages power plane energy counter */
2743         for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2744             for (int j = 0; j < num_threads; j++) {
2745                 /*
2746                  * Use the first thread we found that ran on the CPU
2747                  * of the package to read the packages energy counter
2748                  */
2749                 if (thd_stat[j].pkg_id == i) {
2750                     pkg_stat[i].e_start =
2751                     vmsr_read_msr(MSR_PKG_ENERGY_STATUS,
2752                                   thd_stat[j].cpu_id,
2753                                   thd_stat[j].thread_id,
2754                                   s->msr_energy.sioc);
2755                     break;
2756                 }
2757             }
2758         }
2759 
2760         /* Sleep a short period while the other threads are working */
2761         usleep(MSR_ENERGY_THREAD_SLEEP_US);
2762 
2763         /*
2764          * Retrieve all packages power plane energy counter
2765          * Calculate the delta of all packages
2766          */
2767         for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2768             for (int j = 0; j < num_threads; j++) {
2769                 /*
2770                  * Use the first thread we found that ran on the CPU
2771                  * of the package to read the packages energy counter
2772                  */
2773                 if (thd_stat[j].pkg_id == i) {
2774                     pkg_stat[i].e_end =
2775                     vmsr_read_msr(MSR_PKG_ENERGY_STATUS,
2776                                   thd_stat[j].cpu_id,
2777                                   thd_stat[j].thread_id,
2778                                   s->msr_energy.sioc);
2779                     /*
2780                      * Prevent the case we have migrate the VM
2781                      * during the sleep period or any other cases
2782                      * were energy counter might be lower after
2783                      * the sleep period.
2784                      */
2785                     if (pkg_stat[i].e_end > pkg_stat[i].e_start) {
2786                         pkg_stat[i].e_delta =
2787                             pkg_stat[i].e_end - pkg_stat[i].e_start;
2788                     } else {
2789                         pkg_stat[i].e_delta = 0;
2790                     }
2791                     break;
2792                 }
2793             }
2794         }
2795 
2796         /* Delta of ticks spend by each thread between the sample */
2797         for (int i = 0; i < num_threads; i++) {
2798             vmsr_read_thread_stat(vmsr->pid,
2799                                   thd_stat[i].thread_id,
2800                                   &thd_stat[i].utime[1],
2801                                   &thd_stat[i].stime[1],
2802                                   &thd_stat[i].cpu_id);
2803 
2804             if (vmsr->pid < 0) {
2805                 /*
2806                  * We don't count the dead thread
2807                  * i.e threads that existed before the sleep
2808                  * and not anymore
2809                  */
2810                 thd_stat[i].delta_ticks = 0;
2811             } else {
2812                 vmsr_delta_ticks(thd_stat, i);
2813             }
2814         }
2815 
2816         /*
2817          * Identify the vcpu threads
2818          * Calculate the number of vcpu per package
2819          */
2820         CPU_FOREACH(cpu) {
2821             for (int i = 0; i < num_threads; i++) {
2822                 if (cpu->thread_id == thd_stat[i].thread_id) {
2823                     thd_stat[i].is_vcpu = true;
2824                     thd_stat[i].vcpu_id = cpu->cpu_index;
2825                     pkg_stat[thd_stat[i].pkg_id].nb_vcpu++;
2826                     thd_stat[i].acpi_id = kvm_arch_vcpu_id(cpu);
2827                     break;
2828                 }
2829             }
2830         }
2831 
2832         /* Retrieve the virtual package number of each vCPU */
2833         for (int i = 0; i < vmsr->guest_cpu_list->len; i++) {
2834             for (int j = 0; j < num_threads; j++) {
2835                 if ((thd_stat[j].acpi_id ==
2836                         vmsr->guest_cpu_list->cpus[i].arch_id)
2837                     && (thd_stat[j].is_vcpu == true)) {
2838                     x86_topo_ids_from_apicid(thd_stat[j].acpi_id,
2839                         &vmsr->guest_topo_info, &topo_ids);
2840                     thd_stat[j].vpkg_id = topo_ids.pkg_id;
2841                 }
2842             }
2843         }
2844 
2845         /* Calculate the total energy of all non-vCPU thread */
2846         for (int i = 0; i < num_threads; i++) {
2847             if ((thd_stat[i].is_vcpu != true) &&
2848                 (thd_stat[i].delta_ticks > 0)) {
2849                 double temp;
2850                 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta,
2851                     thd_stat[i].delta_ticks,
2852                     vmsr->host_topo.maxticks[thd_stat[i].pkg_id]);
2853                 pkg_stat[thd_stat[i].pkg_id].e_ratio
2854                     += (uint64_t)lround(temp);
2855             }
2856         }
2857 
2858         /* Calculate the ratio per non-vCPU thread of each package */
2859         for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2860             if (pkg_stat[i].nb_vcpu > 0) {
2861                 pkg_stat[i].e_ratio = pkg_stat[i].e_ratio / pkg_stat[i].nb_vcpu;
2862             }
2863         }
2864 
2865         /*
2866          * Calculate the energy for each Package:
2867          * Energy Package = sum of each vCPU energy that belongs to the package
2868          */
2869         for (int i = 0; i < num_threads; i++) {
2870             if ((thd_stat[i].is_vcpu == true) && \
2871                     (thd_stat[i].delta_ticks > 0)) {
2872                 double temp;
2873                 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta,
2874                     thd_stat[i].delta_ticks,
2875                     vmsr->host_topo.maxticks[thd_stat[i].pkg_id]);
2876                 vpkgs_energy_stat[thd_stat[i].vpkg_id] +=
2877                     (uint64_t)lround(temp);
2878                 vpkgs_energy_stat[thd_stat[i].vpkg_id] +=
2879                     pkg_stat[thd_stat[i].pkg_id].e_ratio;
2880             }
2881         }
2882 
2883         /*
2884          * Finally populate the vmsr register of each vCPU with the total
2885          * package value to emulate the real hardware where each CPU return the
2886          * value of the package it belongs.
2887          */
2888         for (int i = 0; i < num_threads; i++) {
2889             if ((thd_stat[i].is_vcpu == true) && \
2890                     (thd_stat[i].delta_ticks > 0)) {
2891                 vmsr->msr_value[thd_stat[i].vcpu_id] = \
2892                                         vpkgs_energy_stat[thd_stat[i].vpkg_id];
2893           }
2894         }
2895 
2896         /* Freeing memory before zeroing the pointer */
2897         for (int i = 0; i < num_threads; i++) {
2898             g_free(thd_stat[i].utime);
2899             g_free(thd_stat[i].stime);
2900         }
2901    }
2902 
2903 clean:
2904     rcu_unregister_thread();
2905     return NULL;
2906 }
2907 
2908 static int kvm_msr_energy_thread_init(KVMState *s, MachineState *ms)
2909 {
2910     MachineClass *mc = MACHINE_GET_CLASS(ms);
2911     struct KVMMsrEnergy *r = &s->msr_energy;
2912     int ret = 0;
2913 
2914     /*
2915      * Sanity check
2916      * 1. Host cpu must be Intel cpu
2917      * 2. RAPL must be enabled on the Host
2918      */
2919     if (!is_host_cpu_intel()) {
2920         error_report("The RAPL feature can only be enabled on hosts "
2921                      "with Intel CPU models");
2922         ret = 1;
2923         goto out;
2924     }
2925 
2926     if (!is_rapl_enabled()) {
2927         ret = 1;
2928         goto out;
2929     }
2930 
2931     /* Retrieve the virtual topology */
2932     vmsr_init_topo_info(&r->guest_topo_info, ms);
2933 
2934     /* Retrieve the number of vcpu */
2935     r->guest_vcpus = ms->smp.cpus;
2936 
2937     /* Retrieve the number of virtual sockets */
2938     r->guest_vsockets = ms->smp.sockets;
2939 
2940     /* Allocate register memory (MSR_PKG_STATUS) for each vcpu */
2941     r->msr_value = g_new0(uint64_t, r->guest_vcpus);
2942 
2943     /* Retrieve the CPUArchIDlist */
2944     r->guest_cpu_list = mc->possible_cpu_arch_ids(ms);
2945 
2946     /* Max number of cpus on the Host */
2947     r->host_topo.maxcpus = vmsr_get_maxcpus();
2948     if (r->host_topo.maxcpus == 0) {
2949         error_report("host max cpus = 0");
2950         ret = 1;
2951         goto out;
2952     }
2953 
2954     /* Max number of packages on the host */
2955     r->host_topo.maxpkgs = vmsr_get_max_physical_package(r->host_topo.maxcpus);
2956     if (r->host_topo.maxpkgs == 0) {
2957         error_report("host max pkgs = 0");
2958         ret = 1;
2959         goto out;
2960     }
2961 
2962     /* Allocate memory for each package on the host */
2963     r->host_topo.pkg_cpu_count = g_new0(unsigned int, r->host_topo.maxpkgs);
2964     r->host_topo.maxticks = g_new0(unsigned int, r->host_topo.maxpkgs);
2965 
2966     vmsr_count_cpus_per_package(r->host_topo.pkg_cpu_count,
2967                                 r->host_topo.maxpkgs);
2968     for (int i = 0; i < r->host_topo.maxpkgs; i++) {
2969         if (r->host_topo.pkg_cpu_count[i] == 0) {
2970             error_report("cpu per packages = 0 on package_%d", i);
2971             ret = 1;
2972             goto out;
2973         }
2974     }
2975 
2976     /* Get QEMU PID*/
2977     r->pid = getpid();
2978 
2979     /* Compute the socket path if necessary */
2980     if (s->msr_energy.socket_path == NULL) {
2981         s->msr_energy.socket_path = vmsr_compute_default_paths();
2982     }
2983 
2984     /* Open socket with vmsr helper */
2985     s->msr_energy.sioc = vmsr_open_socket(s->msr_energy.socket_path);
2986 
2987     if (s->msr_energy.sioc == NULL) {
2988         error_report("vmsr socket opening failed");
2989         ret = 1;
2990         goto out;
2991     }
2992 
2993     /* Those MSR values should not change */
2994     r->msr_unit  = vmsr_read_msr(MSR_RAPL_POWER_UNIT, 0, r->pid,
2995                                     s->msr_energy.sioc);
2996     r->msr_limit = vmsr_read_msr(MSR_PKG_POWER_LIMIT, 0, r->pid,
2997                                     s->msr_energy.sioc);
2998     r->msr_info  = vmsr_read_msr(MSR_PKG_POWER_INFO, 0, r->pid,
2999                                     s->msr_energy.sioc);
3000     if (r->msr_unit == 0 || r->msr_limit == 0 || r->msr_info == 0) {
3001         error_report("can't read any virtual msr");
3002         ret = 1;
3003         goto out;
3004     }
3005 
3006     qemu_thread_create(&r->msr_thr, "kvm-msr",
3007                        kvm_msr_energy_thread,
3008                        s, QEMU_THREAD_JOINABLE);
3009 out:
3010     return ret;
3011 }
3012 
3013 int kvm_arch_get_default_type(MachineState *ms)
3014 {
3015     return 0;
3016 }
3017 
3018 static int kvm_vm_enable_exception_payload(KVMState *s)
3019 {
3020     int ret = 0;
3021     has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
3022     if (has_exception_payload) {
3023         ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
3024         if (ret < 0) {
3025             error_report("kvm: Failed to enable exception payload cap: %s",
3026                          strerror(-ret));
3027         }
3028     }
3029 
3030     return ret;
3031 }
3032 
3033 static int kvm_vm_enable_triple_fault_event(KVMState *s)
3034 {
3035     int ret = 0;
3036     has_triple_fault_event = \
3037         kvm_check_extension(s,
3038                             KVM_CAP_X86_TRIPLE_FAULT_EVENT);
3039     if (has_triple_fault_event) {
3040         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true);
3041         if (ret < 0) {
3042             error_report("kvm: Failed to enable triple fault event cap: %s",
3043                          strerror(-ret));
3044         }
3045     }
3046     return ret;
3047 }
3048 
3049 static int kvm_vm_set_identity_map_addr(KVMState *s, uint64_t identity_base)
3050 {
3051     return kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
3052 }
3053 
3054 static int kvm_vm_set_nr_mmu_pages(KVMState *s)
3055 {
3056     uint64_t shadow_mem;
3057     int ret = 0;
3058     shadow_mem = object_property_get_int(OBJECT(s),
3059                                          "kvm-shadow-mem",
3060                                          &error_abort);
3061     if (shadow_mem != -1) {
3062         shadow_mem /= 4096;
3063         ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
3064     }
3065     return ret;
3066 }
3067 
3068 static int kvm_vm_set_tss_addr(KVMState *s, uint64_t tss_base)
3069 {
3070     return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, tss_base);
3071 }
3072 
3073 static int kvm_vm_enable_disable_exits(KVMState *s)
3074 {
3075     int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
3076 /* Work around for kernel header with a typo. TODO: fix header and drop. */
3077 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
3078 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
3079 #endif
3080     if (disable_exits) {
3081         disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
3082                           KVM_X86_DISABLE_EXITS_HLT |
3083                           KVM_X86_DISABLE_EXITS_PAUSE |
3084                           KVM_X86_DISABLE_EXITS_CSTATE);
3085     }
3086 
3087     return kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
3088                              disable_exits);
3089 }
3090 
3091 static int kvm_vm_enable_bus_lock_exit(KVMState *s)
3092 {
3093     int ret = 0;
3094     ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
3095     if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
3096         error_report("kvm: bus lock detection unsupported");
3097         return -ENOTSUP;
3098     }
3099     ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
3100                             KVM_BUS_LOCK_DETECTION_EXIT);
3101     if (ret < 0) {
3102         error_report("kvm: Failed to enable bus lock detection cap: %s",
3103                      strerror(-ret));
3104     }
3105 
3106     return ret;
3107 }
3108 
3109 static int kvm_vm_enable_notify_vmexit(KVMState *s)
3110 {
3111     int ret = 0;
3112     if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE) {
3113         uint64_t notify_window_flags =
3114             ((uint64_t)s->notify_window << 32) |
3115             KVM_X86_NOTIFY_VMEXIT_ENABLED |
3116             KVM_X86_NOTIFY_VMEXIT_USER;
3117         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0,
3118                                 notify_window_flags);
3119         if (ret < 0) {
3120             error_report("kvm: Failed to enable notify vmexit cap: %s",
3121                          strerror(-ret));
3122         }
3123     }
3124     return ret;
3125 }
3126 
3127 static int kvm_vm_enable_userspace_msr(KVMState *s)
3128 {
3129     int ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0,
3130                                 KVM_MSR_EXIT_REASON_FILTER);
3131     if (ret < 0) {
3132         error_report("Could not enable user space MSRs: %s",
3133                      strerror(-ret));
3134         exit(1);
3135     }
3136 
3137     if (!kvm_filter_msr(s, MSR_CORE_THREAD_COUNT,
3138                         kvm_rdmsr_core_thread_count, NULL)) {
3139         error_report("Could not install MSR_CORE_THREAD_COUNT handler!");
3140         exit(1);
3141     }
3142 
3143     return 0;
3144 }
3145 
3146 static void kvm_vm_enable_energy_msrs(KVMState *s)
3147 {
3148     bool r;
3149     if (s->msr_energy.enable == true) {
3150         r = kvm_filter_msr(s, MSR_RAPL_POWER_UNIT,
3151                            kvm_rdmsr_rapl_power_unit, NULL);
3152         if (!r) {
3153             error_report("Could not install MSR_RAPL_POWER_UNIT \
3154                                 handler");
3155             exit(1);
3156         }
3157 
3158         r = kvm_filter_msr(s, MSR_PKG_POWER_LIMIT,
3159                            kvm_rdmsr_pkg_power_limit, NULL);
3160         if (!r) {
3161             error_report("Could not install MSR_PKG_POWER_LIMIT \
3162                                 handler");
3163             exit(1);
3164         }
3165 
3166         r = kvm_filter_msr(s, MSR_PKG_POWER_INFO,
3167                            kvm_rdmsr_pkg_power_info, NULL);
3168         if (!r) {
3169             error_report("Could not install MSR_PKG_POWER_INFO \
3170                                 handler");
3171             exit(1);
3172         }
3173         r = kvm_filter_msr(s, MSR_PKG_ENERGY_STATUS,
3174                            kvm_rdmsr_pkg_energy_status, NULL);
3175         if (!r) {
3176             error_report("Could not install MSR_PKG_ENERGY_STATUS \
3177                                 handler");
3178             exit(1);
3179         }
3180     }
3181     return;
3182 }
3183 
3184 int kvm_arch_init(MachineState *ms, KVMState *s)
3185 {
3186     int ret;
3187     struct utsname utsname;
3188     Error *local_err = NULL;
3189 
3190     /*
3191      * Initialize SEV context, if required
3192      *
3193      * If no memory encryption is requested (ms->cgs == NULL) this is
3194      * a no-op.
3195      *
3196      * It's also a no-op if a non-SEV confidential guest support
3197      * mechanism is selected.  SEV is the only mechanism available to
3198      * select on x86 at present, so this doesn't arise, but if new
3199      * mechanisms are supported in future (e.g. TDX), they'll need
3200      * their own initialization either here or elsewhere.
3201      */
3202     if (ms->cgs) {
3203         ret = confidential_guest_kvm_init(ms->cgs, &local_err);
3204         if (ret < 0) {
3205             error_report_err(local_err);
3206             return ret;
3207         }
3208     }
3209 
3210     has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
3211     has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
3212 
3213     hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
3214 
3215     ret = kvm_vm_enable_exception_payload(s);
3216     if (ret < 0) {
3217         return ret;
3218     }
3219 
3220     ret = kvm_vm_enable_triple_fault_event(s);
3221     if (ret < 0) {
3222         return ret;
3223     }
3224 
3225     if (s->xen_version) {
3226 #ifdef CONFIG_XEN_EMU
3227         if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) {
3228             error_report("kvm: Xen support only available in PC machine");
3229             return -ENOTSUP;
3230         }
3231         /* hyperv_enabled() doesn't work yet. */
3232         uint32_t msr = XEN_HYPERCALL_MSR;
3233         ret = kvm_xen_init(s, msr);
3234         if (ret < 0) {
3235             return ret;
3236         }
3237 #else
3238         error_report("kvm: Xen support not enabled in qemu");
3239         return -ENOTSUP;
3240 #endif
3241     }
3242 
3243     ret = kvm_get_supported_msrs(s);
3244     if (ret < 0) {
3245         return ret;
3246     }
3247 
3248     kvm_get_supported_feature_msrs(s);
3249 
3250     uname(&utsname);
3251     lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
3252 
3253     ret = kvm_vm_set_identity_map_addr(s, KVM_IDENTITY_BASE);
3254     if (ret < 0) {
3255         return ret;
3256     }
3257 
3258     /* Set TSS base one page after EPT identity map. */
3259     ret = kvm_vm_set_tss_addr(s, KVM_IDENTITY_BASE + 0x1000);
3260     if (ret < 0) {
3261         return ret;
3262     }
3263 
3264     /* Tell fw_cfg to notify the BIOS to reserve the range. */
3265     e820_add_entry(KVM_IDENTITY_BASE, 0x4000, E820_RESERVED);
3266 
3267     ret = kvm_vm_set_nr_mmu_pages(s);
3268     if (ret < 0) {
3269         return ret;
3270     }
3271 
3272     if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
3273         object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
3274         x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
3275         smram_machine_done.notify = register_smram_listener;
3276         qemu_add_machine_init_done_notifier(&smram_machine_done);
3277     }
3278 
3279     if (enable_cpu_pm) {
3280         ret = kvm_vm_enable_disable_exits(s);
3281         if (ret < 0) {
3282             error_report("kvm: guest stopping CPU not supported: %s",
3283                          strerror(-ret));
3284         }
3285     }
3286 
3287     if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
3288         X86MachineState *x86ms = X86_MACHINE(ms);
3289 
3290         if (x86ms->bus_lock_ratelimit > 0) {
3291             ret = kvm_vm_enable_bus_lock_exit(s);
3292             if (ret < 0) {
3293                 return ret;
3294             }
3295             ratelimit_init(&bus_lock_ratelimit_ctrl);
3296             ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
3297                                 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
3298         }
3299     }
3300 
3301     if (kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) {
3302         ret = kvm_vm_enable_notify_vmexit(s);
3303         if (ret < 0) {
3304             return ret;
3305         }
3306     }
3307 
3308     if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) {
3309         ret = kvm_vm_enable_userspace_msr(s);
3310         if (ret < 0) {
3311             return ret;
3312         }
3313 
3314         if (s->msr_energy.enable == true) {
3315             kvm_vm_enable_energy_msrs(s);
3316             if (kvm_msr_energy_thread_init(s, ms)) {
3317                 error_report("kvm : error RAPL feature requirement not met");
3318                 exit(1);
3319             }
3320         }
3321     }
3322 
3323     return 0;
3324 }
3325 
3326 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
3327 {
3328     lhs->selector = rhs->selector;
3329     lhs->base = rhs->base;
3330     lhs->limit = rhs->limit;
3331     lhs->type = 3;
3332     lhs->present = 1;
3333     lhs->dpl = 3;
3334     lhs->db = 0;
3335     lhs->s = 1;
3336     lhs->l = 0;
3337     lhs->g = 0;
3338     lhs->avl = 0;
3339     lhs->unusable = 0;
3340 }
3341 
3342 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
3343 {
3344     unsigned flags = rhs->flags;
3345     lhs->selector = rhs->selector;
3346     lhs->base = rhs->base;
3347     lhs->limit = rhs->limit;
3348     lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
3349     lhs->present = (flags & DESC_P_MASK) != 0;
3350     lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
3351     lhs->db = (flags >> DESC_B_SHIFT) & 1;
3352     lhs->s = (flags & DESC_S_MASK) != 0;
3353     lhs->l = (flags >> DESC_L_SHIFT) & 1;
3354     lhs->g = (flags & DESC_G_MASK) != 0;
3355     lhs->avl = (flags & DESC_AVL_MASK) != 0;
3356     lhs->unusable = !lhs->present;
3357     lhs->padding = 0;
3358 }
3359 
3360 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
3361 {
3362     lhs->selector = rhs->selector;
3363     lhs->base = rhs->base;
3364     lhs->limit = rhs->limit;
3365     lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
3366                  ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
3367                  (rhs->dpl << DESC_DPL_SHIFT) |
3368                  (rhs->db << DESC_B_SHIFT) |
3369                  (rhs->s * DESC_S_MASK) |
3370                  (rhs->l << DESC_L_SHIFT) |
3371                  (rhs->g * DESC_G_MASK) |
3372                  (rhs->avl * DESC_AVL_MASK);
3373 }
3374 
3375 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
3376 {
3377     if (set) {
3378         *kvm_reg = *qemu_reg;
3379     } else {
3380         *qemu_reg = *kvm_reg;
3381     }
3382 }
3383 
3384 static int kvm_getput_regs(X86CPU *cpu, int set)
3385 {
3386     CPUX86State *env = &cpu->env;
3387     struct kvm_regs regs;
3388     int ret = 0;
3389 
3390     if (!set) {
3391         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
3392         if (ret < 0) {
3393             return ret;
3394         }
3395     }
3396 
3397     kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
3398     kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
3399     kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
3400     kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
3401     kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
3402     kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
3403     kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
3404     kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
3405 #ifdef TARGET_X86_64
3406     kvm_getput_reg(&regs.r8, &env->regs[8], set);
3407     kvm_getput_reg(&regs.r9, &env->regs[9], set);
3408     kvm_getput_reg(&regs.r10, &env->regs[10], set);
3409     kvm_getput_reg(&regs.r11, &env->regs[11], set);
3410     kvm_getput_reg(&regs.r12, &env->regs[12], set);
3411     kvm_getput_reg(&regs.r13, &env->regs[13], set);
3412     kvm_getput_reg(&regs.r14, &env->regs[14], set);
3413     kvm_getput_reg(&regs.r15, &env->regs[15], set);
3414 #endif
3415 
3416     kvm_getput_reg(&regs.rflags, &env->eflags, set);
3417     kvm_getput_reg(&regs.rip, &env->eip, set);
3418 
3419     if (set) {
3420         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
3421     }
3422 
3423     return ret;
3424 }
3425 
3426 static int kvm_put_xsave(X86CPU *cpu)
3427 {
3428     CPUX86State *env = &cpu->env;
3429     void *xsave = env->xsave_buf;
3430 
3431     x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
3432 
3433     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
3434 }
3435 
3436 static int kvm_put_xcrs(X86CPU *cpu)
3437 {
3438     CPUX86State *env = &cpu->env;
3439     struct kvm_xcrs xcrs = {};
3440 
3441     if (!has_xcrs) {
3442         return 0;
3443     }
3444 
3445     xcrs.nr_xcrs = 1;
3446     xcrs.flags = 0;
3447     xcrs.xcrs[0].xcr = 0;
3448     xcrs.xcrs[0].value = env->xcr0;
3449     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
3450 }
3451 
3452 static int kvm_put_sregs(X86CPU *cpu)
3453 {
3454     CPUX86State *env = &cpu->env;
3455     struct kvm_sregs sregs;
3456 
3457     /*
3458      * The interrupt_bitmap is ignored because KVM_SET_SREGS is
3459      * always followed by KVM_SET_VCPU_EVENTS.
3460      */
3461     memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
3462 
3463     if ((env->eflags & VM_MASK)) {
3464         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
3465         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
3466         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
3467         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
3468         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
3469         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
3470     } else {
3471         set_seg(&sregs.cs, &env->segs[R_CS]);
3472         set_seg(&sregs.ds, &env->segs[R_DS]);
3473         set_seg(&sregs.es, &env->segs[R_ES]);
3474         set_seg(&sregs.fs, &env->segs[R_FS]);
3475         set_seg(&sregs.gs, &env->segs[R_GS]);
3476         set_seg(&sregs.ss, &env->segs[R_SS]);
3477     }
3478 
3479     set_seg(&sregs.tr, &env->tr);
3480     set_seg(&sregs.ldt, &env->ldt);
3481 
3482     sregs.idt.limit = env->idt.limit;
3483     sregs.idt.base = env->idt.base;
3484     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
3485     sregs.gdt.limit = env->gdt.limit;
3486     sregs.gdt.base = env->gdt.base;
3487     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
3488 
3489     sregs.cr0 = env->cr[0];
3490     sregs.cr2 = env->cr[2];
3491     sregs.cr3 = env->cr[3];
3492     sregs.cr4 = env->cr[4];
3493 
3494     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
3495     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
3496 
3497     sregs.efer = env->efer;
3498 
3499     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
3500 }
3501 
3502 static int kvm_put_sregs2(X86CPU *cpu)
3503 {
3504     CPUX86State *env = &cpu->env;
3505     struct kvm_sregs2 sregs;
3506     int i;
3507 
3508     sregs.flags = 0;
3509 
3510     if ((env->eflags & VM_MASK)) {
3511         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
3512         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
3513         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
3514         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
3515         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
3516         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
3517     } else {
3518         set_seg(&sregs.cs, &env->segs[R_CS]);
3519         set_seg(&sregs.ds, &env->segs[R_DS]);
3520         set_seg(&sregs.es, &env->segs[R_ES]);
3521         set_seg(&sregs.fs, &env->segs[R_FS]);
3522         set_seg(&sregs.gs, &env->segs[R_GS]);
3523         set_seg(&sregs.ss, &env->segs[R_SS]);
3524     }
3525 
3526     set_seg(&sregs.tr, &env->tr);
3527     set_seg(&sregs.ldt, &env->ldt);
3528 
3529     sregs.idt.limit = env->idt.limit;
3530     sregs.idt.base = env->idt.base;
3531     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
3532     sregs.gdt.limit = env->gdt.limit;
3533     sregs.gdt.base = env->gdt.base;
3534     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
3535 
3536     sregs.cr0 = env->cr[0];
3537     sregs.cr2 = env->cr[2];
3538     sregs.cr3 = env->cr[3];
3539     sregs.cr4 = env->cr[4];
3540 
3541     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
3542     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
3543 
3544     sregs.efer = env->efer;
3545 
3546     if (env->pdptrs_valid) {
3547         for (i = 0; i < 4; i++) {
3548             sregs.pdptrs[i] = env->pdptrs[i];
3549         }
3550         sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
3551     }
3552 
3553     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
3554 }
3555 
3556 
3557 static void kvm_msr_buf_reset(X86CPU *cpu)
3558 {
3559     memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
3560 }
3561 
3562 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
3563 {
3564     struct kvm_msrs *msrs = cpu->kvm_msr_buf;
3565     void *limit = ((void *)msrs) + MSR_BUF_SIZE;
3566     struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
3567 
3568     assert((void *)(entry + 1) <= limit);
3569 
3570     entry->index = index;
3571     entry->reserved = 0;
3572     entry->data = value;
3573     msrs->nmsrs++;
3574 }
3575 
3576 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
3577 {
3578     kvm_msr_buf_reset(cpu);
3579     kvm_msr_entry_add(cpu, index, value);
3580 
3581     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3582 }
3583 
3584 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value)
3585 {
3586     int ret;
3587     struct {
3588         struct kvm_msrs info;
3589         struct kvm_msr_entry entries[1];
3590     } msr_data = {
3591         .info.nmsrs = 1,
3592         .entries[0].index = index,
3593     };
3594 
3595     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
3596     if (ret < 0) {
3597         return ret;
3598     }
3599     assert(ret == 1);
3600     *value = msr_data.entries[0].data;
3601     return ret;
3602 }
3603 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
3604 {
3605     int ret;
3606 
3607     ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
3608     assert(ret == 1);
3609 }
3610 
3611 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
3612 {
3613     CPUX86State *env = &cpu->env;
3614     int ret;
3615 
3616     if (!has_msr_tsc_deadline) {
3617         return 0;
3618     }
3619 
3620     ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
3621     if (ret < 0) {
3622         return ret;
3623     }
3624 
3625     assert(ret == 1);
3626     return 0;
3627 }
3628 
3629 /*
3630  * Provide a separate write service for the feature control MSR in order to
3631  * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
3632  * before writing any other state because forcibly leaving nested mode
3633  * invalidates the VCPU state.
3634  */
3635 static int kvm_put_msr_feature_control(X86CPU *cpu)
3636 {
3637     int ret;
3638 
3639     if (!has_msr_feature_control) {
3640         return 0;
3641     }
3642 
3643     ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
3644                           cpu->env.msr_ia32_feature_control);
3645     if (ret < 0) {
3646         return ret;
3647     }
3648 
3649     assert(ret == 1);
3650     return 0;
3651 }
3652 
3653 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
3654 {
3655     uint32_t default1, can_be_one, can_be_zero;
3656     uint32_t must_be_one;
3657 
3658     switch (index) {
3659     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3660         default1 = 0x00000016;
3661         break;
3662     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3663         default1 = 0x0401e172;
3664         break;
3665     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3666         default1 = 0x000011ff;
3667         break;
3668     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3669         default1 = 0x00036dff;
3670         break;
3671     case MSR_IA32_VMX_PROCBASED_CTLS2:
3672         default1 = 0;
3673         break;
3674     default:
3675         abort();
3676     }
3677 
3678     /* If a feature bit is set, the control can be either set or clear.
3679      * Otherwise the value is limited to either 0 or 1 by default1.
3680      */
3681     can_be_one = features | default1;
3682     can_be_zero = features | ~default1;
3683     must_be_one = ~can_be_zero;
3684 
3685     /*
3686      * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
3687      * Bit 32:63 -> 1 if the control bit can be one.
3688      */
3689     return must_be_one | (((uint64_t)can_be_one) << 32);
3690 }
3691 
3692 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
3693 {
3694     uint64_t kvm_vmx_basic =
3695         kvm_arch_get_supported_msr_feature(kvm_state,
3696                                            MSR_IA32_VMX_BASIC);
3697 
3698     if (!kvm_vmx_basic) {
3699         /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
3700          * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
3701          */
3702         return;
3703     }
3704 
3705     uint64_t kvm_vmx_misc =
3706         kvm_arch_get_supported_msr_feature(kvm_state,
3707                                            MSR_IA32_VMX_MISC);
3708     uint64_t kvm_vmx_ept_vpid =
3709         kvm_arch_get_supported_msr_feature(kvm_state,
3710                                            MSR_IA32_VMX_EPT_VPID_CAP);
3711 
3712     /*
3713      * If the guest is 64-bit, a value of 1 is allowed for the host address
3714      * space size vmexit control.
3715      */
3716     uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
3717         ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
3718 
3719     /*
3720      * Bits 0-30, 32-44 and 50-53 come from the host.  KVM should
3721      * not change them for backwards compatibility.
3722      */
3723     uint64_t fixed_vmx_basic = kvm_vmx_basic &
3724         (MSR_VMX_BASIC_VMCS_REVISION_MASK |
3725          MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
3726          MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
3727 
3728     /*
3729      * Same for bits 0-4 and 25-27.  Bits 16-24 (CR3 target count) can
3730      * change in the future but are always zero for now, clear them to be
3731      * future proof.  Bits 32-63 in theory could change, though KVM does
3732      * not support dual-monitor treatment and probably never will; mask
3733      * them out as well.
3734      */
3735     uint64_t fixed_vmx_misc = kvm_vmx_misc &
3736         (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
3737          MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
3738 
3739     /*
3740      * EPT memory types should not change either, so we do not bother
3741      * adding features for them.
3742      */
3743     uint64_t fixed_vmx_ept_mask =
3744             (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
3745              MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
3746     uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
3747 
3748     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3749                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3750                                          f[FEAT_VMX_PROCBASED_CTLS]));
3751     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3752                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3753                                          f[FEAT_VMX_PINBASED_CTLS]));
3754     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3755                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
3756                                          f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
3757     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3758                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3759                                          f[FEAT_VMX_ENTRY_CTLS]));
3760     kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
3761                       make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
3762                                          f[FEAT_VMX_SECONDARY_CTLS]));
3763     kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
3764                       f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
3765     kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
3766                       f[FEAT_VMX_BASIC] | fixed_vmx_basic);
3767     kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
3768                       f[FEAT_VMX_MISC] | fixed_vmx_misc);
3769     if (has_msr_vmx_vmfunc) {
3770         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
3771     }
3772 
3773     /*
3774      * Just to be safe, write these with constant values.  The CRn_FIXED1
3775      * MSRs are generated by KVM based on the vCPU's CPUID.
3776      */
3777     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
3778                       CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
3779     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
3780                       CR4_VMXE_MASK);
3781 
3782     if (f[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) {
3783         /* FRED injected-event data (0x2052).  */
3784         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x52);
3785     } else if (f[FEAT_VMX_EXIT_CTLS] &
3786                VMX_VM_EXIT_ACTIVATE_SECONDARY_CONTROLS) {
3787         /* Secondary VM-exit controls (0x2044).  */
3788         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x44);
3789     } else if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
3790         /* TSC multiplier (0x2032).  */
3791         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
3792     } else {
3793         /* Preemption timer (0x482E).  */
3794         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
3795     }
3796 }
3797 
3798 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
3799 {
3800     uint64_t kvm_perf_cap =
3801         kvm_arch_get_supported_msr_feature(kvm_state,
3802                                            MSR_IA32_PERF_CAPABILITIES);
3803 
3804     if (kvm_perf_cap) {
3805         kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
3806                         kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
3807     }
3808 }
3809 
3810 static int kvm_buf_set_msrs(X86CPU *cpu)
3811 {
3812     int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3813     if (ret < 0) {
3814         return ret;
3815     }
3816 
3817     if (ret < cpu->kvm_msr_buf->nmsrs) {
3818         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3819         error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
3820                      (uint32_t)e->index, (uint64_t)e->data);
3821     }
3822 
3823     assert(ret == cpu->kvm_msr_buf->nmsrs);
3824     return 0;
3825 }
3826 
3827 static void kvm_init_msrs(X86CPU *cpu)
3828 {
3829     CPUX86State *env = &cpu->env;
3830 
3831     kvm_msr_buf_reset(cpu);
3832     if (has_msr_arch_capabs) {
3833         kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3834                           env->features[FEAT_ARCH_CAPABILITIES]);
3835     }
3836 
3837     if (has_msr_core_capabs) {
3838         kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3839                           env->features[FEAT_CORE_CAPABILITY]);
3840     }
3841 
3842     if (has_msr_perf_capabs && cpu->enable_pmu) {
3843         kvm_msr_entry_add_perf(cpu, env->features);
3844     }
3845 
3846     if (has_msr_ucode_rev) {
3847         kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3848     }
3849 
3850     /*
3851      * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3852      * all kernels with MSR features should have them.
3853      */
3854     if (kvm_feature_msrs && cpu_has_vmx(env)) {
3855         kvm_msr_entry_add_vmx(cpu, env->features);
3856     }
3857 
3858     assert(kvm_buf_set_msrs(cpu) == 0);
3859 }
3860 
3861 static int kvm_put_msrs(X86CPU *cpu, int level)
3862 {
3863     CPUX86State *env = &cpu->env;
3864     int i;
3865 
3866     kvm_msr_buf_reset(cpu);
3867 
3868     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3869     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3870     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3871     kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3872     if (has_msr_star) {
3873         kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3874     }
3875     if (has_msr_hsave_pa) {
3876         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3877     }
3878     if (has_msr_tsc_aux) {
3879         kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3880     }
3881     if (has_msr_tsc_adjust) {
3882         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3883     }
3884     if (has_msr_misc_enable) {
3885         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3886                           env->msr_ia32_misc_enable);
3887     }
3888     if (has_msr_smbase) {
3889         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3890     }
3891     if (has_msr_smi_count) {
3892         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3893     }
3894     if (has_msr_pkrs) {
3895         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3896     }
3897     if (has_msr_bndcfgs) {
3898         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3899     }
3900     if (has_msr_xss) {
3901         kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3902     }
3903     if (has_msr_umwait) {
3904         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3905     }
3906     if (has_msr_spec_ctrl) {
3907         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3908     }
3909     if (has_tsc_scale_msr) {
3910         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3911     }
3912 
3913     if (has_msr_tsx_ctrl) {
3914         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3915     }
3916     if (has_msr_virt_ssbd) {
3917         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3918     }
3919 
3920 #ifdef TARGET_X86_64
3921     if (lm_capable_kernel) {
3922         kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3923         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3924         kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3925         kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3926         if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) {
3927             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, env->fred_rsp0);
3928             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, env->fred_rsp1);
3929             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, env->fred_rsp2);
3930             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, env->fred_rsp3);
3931             kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, env->fred_stklvls);
3932             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, env->fred_ssp1);
3933             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, env->fred_ssp2);
3934             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, env->fred_ssp3);
3935             kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, env->fred_config);
3936         }
3937     }
3938 #endif
3939 
3940     /*
3941      * The following MSRs have side effects on the guest or are too heavy
3942      * for normal writeback. Limit them to reset or full state updates.
3943      */
3944     if (level >= KVM_PUT_RESET_STATE) {
3945         kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3946         kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3947         kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3948         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3949             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3950         }
3951         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3952             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
3953         }
3954         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3955             kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
3956         }
3957         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3958             kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
3959         }
3960 
3961         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3962             kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3963         }
3964 
3965         if (has_architectural_pmu_version > 0) {
3966             if (has_architectural_pmu_version > 1) {
3967                 /* Stop the counter.  */
3968                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3969                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3970             }
3971 
3972             /* Set the counter values.  */
3973             for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3974                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
3975                                   env->msr_fixed_counters[i]);
3976             }
3977             for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3978                 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
3979                                   env->msr_gp_counters[i]);
3980                 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
3981                                   env->msr_gp_evtsel[i]);
3982             }
3983             if (has_architectural_pmu_version > 1) {
3984                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3985                                   env->msr_global_status);
3986                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3987                                   env->msr_global_ovf_ctrl);
3988 
3989                 /* Now start the PMU.  */
3990                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3991                                   env->msr_fixed_ctr_ctrl);
3992                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3993                                   env->msr_global_ctrl);
3994             }
3995         }
3996         /*
3997          * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3998          * only sync them to KVM on the first cpu
3999          */
4000         if (current_cpu == first_cpu) {
4001             if (has_msr_hv_hypercall) {
4002                 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
4003                                   env->msr_hv_guest_os_id);
4004                 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
4005                                   env->msr_hv_hypercall);
4006             }
4007             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
4008                 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
4009                                   env->msr_hv_tsc);
4010             }
4011             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
4012                 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
4013                                   env->msr_hv_reenlightenment_control);
4014                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
4015                                   env->msr_hv_tsc_emulation_control);
4016                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
4017                                   env->msr_hv_tsc_emulation_status);
4018             }
4019 #ifdef CONFIG_SYNDBG
4020             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) &&
4021                 has_msr_hv_syndbg_options) {
4022                 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS,
4023                                   hyperv_syndbg_query_options());
4024             }
4025 #endif
4026         }
4027         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
4028             kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
4029                               env->msr_hv_vapic);
4030         }
4031         if (has_msr_hv_crash) {
4032             int j;
4033 
4034             for (j = 0; j < HV_CRASH_PARAMS; j++)
4035                 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
4036                                   env->msr_hv_crash_params[j]);
4037 
4038             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
4039         }
4040         if (has_msr_hv_runtime) {
4041             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
4042         }
4043         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
4044             && hv_vpindex_settable) {
4045             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
4046                               hyperv_vp_index(CPU(cpu)));
4047         }
4048         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
4049             int j;
4050 
4051             kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
4052 
4053             kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
4054                               env->msr_hv_synic_control);
4055             kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
4056                               env->msr_hv_synic_evt_page);
4057             kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
4058                               env->msr_hv_synic_msg_page);
4059 
4060             for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
4061                 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
4062                                   env->msr_hv_synic_sint[j]);
4063             }
4064         }
4065         if (has_msr_hv_stimer) {
4066             int j;
4067 
4068             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
4069                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
4070                                 env->msr_hv_stimer_config[j]);
4071             }
4072 
4073             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
4074                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
4075                                 env->msr_hv_stimer_count[j]);
4076             }
4077         }
4078         if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
4079             uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
4080 
4081             kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
4082             kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
4083             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
4084             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
4085             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
4086             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
4087             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
4088             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
4089             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
4090             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
4091             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
4092             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
4093             for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
4094                 /* The CPU GPs if we write to a bit above the physical limit of
4095                  * the host CPU (and KVM emulates that)
4096                  */
4097                 uint64_t mask = env->mtrr_var[i].mask;
4098                 mask &= phys_mask;
4099 
4100                 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
4101                                   env->mtrr_var[i].base);
4102                 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
4103             }
4104         }
4105         if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
4106             int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
4107                                                     0x14, 1, R_EAX) & 0x7;
4108 
4109             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
4110                             env->msr_rtit_ctrl);
4111             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
4112                             env->msr_rtit_status);
4113             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
4114                             env->msr_rtit_output_base);
4115             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
4116                             env->msr_rtit_output_mask);
4117             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
4118                             env->msr_rtit_cr3_match);
4119             for (i = 0; i < addr_num; i++) {
4120                 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
4121                             env->msr_rtit_addrs[i]);
4122             }
4123         }
4124 
4125         if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
4126             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
4127                               env->msr_ia32_sgxlepubkeyhash[0]);
4128             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
4129                               env->msr_ia32_sgxlepubkeyhash[1]);
4130             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
4131                               env->msr_ia32_sgxlepubkeyhash[2]);
4132             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
4133                               env->msr_ia32_sgxlepubkeyhash[3]);
4134         }
4135 
4136         if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
4137             kvm_msr_entry_add(cpu, MSR_IA32_XFD,
4138                               env->msr_xfd);
4139             kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
4140                               env->msr_xfd_err);
4141         }
4142 
4143         if (kvm_enabled() && cpu->enable_pmu &&
4144             (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
4145             uint64_t depth;
4146             int ret;
4147 
4148             /*
4149              * Only migrate Arch LBR states when the host Arch LBR depth
4150              * equals that of source guest's, this is to avoid mismatch
4151              * of guest/host config for the msr hence avoid unexpected
4152              * misbehavior.
4153              */
4154             ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
4155 
4156             if (ret == 1 && !!depth && depth == env->msr_lbr_depth) {
4157                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl);
4158                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth);
4159 
4160                 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
4161                     if (!env->lbr_records[i].from) {
4162                         continue;
4163                     }
4164                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i,
4165                                       env->lbr_records[i].from);
4166                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i,
4167                                       env->lbr_records[i].to);
4168                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i,
4169                                       env->lbr_records[i].info);
4170                 }
4171             }
4172         }
4173 
4174         /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
4175          *       kvm_put_msr_feature_control. */
4176     }
4177 
4178     if (env->mcg_cap) {
4179         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
4180         kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
4181         if (has_msr_mcg_ext_ctl) {
4182             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
4183         }
4184         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
4185             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
4186         }
4187     }
4188 
4189     return kvm_buf_set_msrs(cpu);
4190 }
4191 
4192 
4193 static int kvm_get_xsave(X86CPU *cpu)
4194 {
4195     CPUX86State *env = &cpu->env;
4196     void *xsave = env->xsave_buf;
4197     unsigned long type;
4198     int ret;
4199 
4200     type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
4201     ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
4202     if (ret < 0) {
4203         return ret;
4204     }
4205     x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
4206 
4207     return 0;
4208 }
4209 
4210 static int kvm_get_xcrs(X86CPU *cpu)
4211 {
4212     CPUX86State *env = &cpu->env;
4213     int i, ret;
4214     struct kvm_xcrs xcrs;
4215 
4216     if (!has_xcrs) {
4217         return 0;
4218     }
4219 
4220     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
4221     if (ret < 0) {
4222         return ret;
4223     }
4224 
4225     for (i = 0; i < xcrs.nr_xcrs; i++) {
4226         /* Only support xcr0 now */
4227         if (xcrs.xcrs[i].xcr == 0) {
4228             env->xcr0 = xcrs.xcrs[i].value;
4229             break;
4230         }
4231     }
4232     return 0;
4233 }
4234 
4235 static int kvm_get_sregs(X86CPU *cpu)
4236 {
4237     CPUX86State *env = &cpu->env;
4238     struct kvm_sregs sregs;
4239     int ret;
4240 
4241     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
4242     if (ret < 0) {
4243         return ret;
4244     }
4245 
4246     /*
4247      * The interrupt_bitmap is ignored because KVM_GET_SREGS is
4248      * always preceded by KVM_GET_VCPU_EVENTS.
4249      */
4250 
4251     get_seg(&env->segs[R_CS], &sregs.cs);
4252     get_seg(&env->segs[R_DS], &sregs.ds);
4253     get_seg(&env->segs[R_ES], &sregs.es);
4254     get_seg(&env->segs[R_FS], &sregs.fs);
4255     get_seg(&env->segs[R_GS], &sregs.gs);
4256     get_seg(&env->segs[R_SS], &sregs.ss);
4257 
4258     get_seg(&env->tr, &sregs.tr);
4259     get_seg(&env->ldt, &sregs.ldt);
4260 
4261     env->idt.limit = sregs.idt.limit;
4262     env->idt.base = sregs.idt.base;
4263     env->gdt.limit = sregs.gdt.limit;
4264     env->gdt.base = sregs.gdt.base;
4265 
4266     env->cr[0] = sregs.cr0;
4267     env->cr[2] = sregs.cr2;
4268     env->cr[3] = sregs.cr3;
4269     env->cr[4] = sregs.cr4;
4270 
4271     env->efer = sregs.efer;
4272     if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
4273         env->cr[0] & CR0_PG_MASK) {
4274         env->efer |= MSR_EFER_LMA;
4275     }
4276 
4277     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
4278     x86_update_hflags(env);
4279 
4280     return 0;
4281 }
4282 
4283 static int kvm_get_sregs2(X86CPU *cpu)
4284 {
4285     CPUX86State *env = &cpu->env;
4286     struct kvm_sregs2 sregs;
4287     int i, ret;
4288 
4289     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
4290     if (ret < 0) {
4291         return ret;
4292     }
4293 
4294     get_seg(&env->segs[R_CS], &sregs.cs);
4295     get_seg(&env->segs[R_DS], &sregs.ds);
4296     get_seg(&env->segs[R_ES], &sregs.es);
4297     get_seg(&env->segs[R_FS], &sregs.fs);
4298     get_seg(&env->segs[R_GS], &sregs.gs);
4299     get_seg(&env->segs[R_SS], &sregs.ss);
4300 
4301     get_seg(&env->tr, &sregs.tr);
4302     get_seg(&env->ldt, &sregs.ldt);
4303 
4304     env->idt.limit = sregs.idt.limit;
4305     env->idt.base = sregs.idt.base;
4306     env->gdt.limit = sregs.gdt.limit;
4307     env->gdt.base = sregs.gdt.base;
4308 
4309     env->cr[0] = sregs.cr0;
4310     env->cr[2] = sregs.cr2;
4311     env->cr[3] = sregs.cr3;
4312     env->cr[4] = sregs.cr4;
4313 
4314     env->efer = sregs.efer;
4315     if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
4316         env->cr[0] & CR0_PG_MASK) {
4317         env->efer |= MSR_EFER_LMA;
4318     }
4319 
4320     env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
4321 
4322     if (env->pdptrs_valid) {
4323         for (i = 0; i < 4; i++) {
4324             env->pdptrs[i] = sregs.pdptrs[i];
4325         }
4326     }
4327 
4328     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
4329     x86_update_hflags(env);
4330 
4331     return 0;
4332 }
4333 
4334 static int kvm_get_msrs(X86CPU *cpu)
4335 {
4336     CPUX86State *env = &cpu->env;
4337     struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
4338     int ret, i;
4339     uint64_t mtrr_top_bits;
4340 
4341     kvm_msr_buf_reset(cpu);
4342 
4343     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
4344     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
4345     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
4346     kvm_msr_entry_add(cpu, MSR_PAT, 0);
4347     if (has_msr_star) {
4348         kvm_msr_entry_add(cpu, MSR_STAR, 0);
4349     }
4350     if (has_msr_hsave_pa) {
4351         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
4352     }
4353     if (has_msr_tsc_aux) {
4354         kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
4355     }
4356     if (has_msr_tsc_adjust) {
4357         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
4358     }
4359     if (has_msr_tsc_deadline) {
4360         kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
4361     }
4362     if (has_msr_misc_enable) {
4363         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
4364     }
4365     if (has_msr_smbase) {
4366         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
4367     }
4368     if (has_msr_smi_count) {
4369         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
4370     }
4371     if (has_msr_feature_control) {
4372         kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
4373     }
4374     if (has_msr_pkrs) {
4375         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
4376     }
4377     if (has_msr_bndcfgs) {
4378         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
4379     }
4380     if (has_msr_xss) {
4381         kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
4382     }
4383     if (has_msr_umwait) {
4384         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
4385     }
4386     if (has_msr_spec_ctrl) {
4387         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
4388     }
4389     if (has_tsc_scale_msr) {
4390         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
4391     }
4392 
4393     if (has_msr_tsx_ctrl) {
4394         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
4395     }
4396     if (has_msr_virt_ssbd) {
4397         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
4398     }
4399     if (!env->tsc_valid) {
4400         kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
4401         env->tsc_valid = !runstate_is_running();
4402     }
4403 
4404 #ifdef TARGET_X86_64
4405     if (lm_capable_kernel) {
4406         kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
4407         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
4408         kvm_msr_entry_add(cpu, MSR_FMASK, 0);
4409         kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
4410         if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) {
4411             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, 0);
4412             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, 0);
4413             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, 0);
4414             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, 0);
4415             kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, 0);
4416             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, 0);
4417             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, 0);
4418             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, 0);
4419             kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, 0);
4420         }
4421     }
4422 #endif
4423     kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
4424     kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
4425     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
4426         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
4427     }
4428     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
4429         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
4430     }
4431     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
4432         kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
4433     }
4434     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
4435         kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
4436     }
4437     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
4438         kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
4439     }
4440     if (has_architectural_pmu_version > 0) {
4441         if (has_architectural_pmu_version > 1) {
4442             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
4443             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
4444             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
4445             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
4446         }
4447         for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
4448             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
4449         }
4450         for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
4451             kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
4452             kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
4453         }
4454     }
4455 
4456     if (env->mcg_cap) {
4457         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
4458         kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
4459         if (has_msr_mcg_ext_ctl) {
4460             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
4461         }
4462         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
4463             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
4464         }
4465     }
4466 
4467     if (has_msr_hv_hypercall) {
4468         kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
4469         kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
4470     }
4471     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
4472         kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
4473     }
4474     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
4475         kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
4476     }
4477     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
4478         kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
4479         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
4480         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
4481     }
4482     if (has_msr_hv_syndbg_options) {
4483         kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0);
4484     }
4485     if (has_msr_hv_crash) {
4486         int j;
4487 
4488         for (j = 0; j < HV_CRASH_PARAMS; j++) {
4489             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
4490         }
4491     }
4492     if (has_msr_hv_runtime) {
4493         kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
4494     }
4495     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
4496         uint32_t msr;
4497 
4498         kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
4499         kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
4500         kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
4501         for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
4502             kvm_msr_entry_add(cpu, msr, 0);
4503         }
4504     }
4505     if (has_msr_hv_stimer) {
4506         uint32_t msr;
4507 
4508         for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
4509              msr++) {
4510             kvm_msr_entry_add(cpu, msr, 0);
4511         }
4512     }
4513     if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
4514         kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
4515         kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
4516         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
4517         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
4518         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
4519         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
4520         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
4521         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
4522         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
4523         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
4524         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
4525         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
4526         for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
4527             kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
4528             kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
4529         }
4530     }
4531 
4532     if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
4533         int addr_num =
4534             kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
4535 
4536         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
4537         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
4538         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
4539         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
4540         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
4541         for (i = 0; i < addr_num; i++) {
4542             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
4543         }
4544     }
4545 
4546     if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
4547         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
4548         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
4549         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
4550         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
4551     }
4552 
4553     if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
4554         kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
4555         kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
4556     }
4557 
4558     if (kvm_enabled() && cpu->enable_pmu &&
4559         (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
4560         uint64_t depth;
4561 
4562         ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
4563         if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) {
4564             kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0);
4565             kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0);
4566 
4567             for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
4568                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0);
4569                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0);
4570                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0);
4571             }
4572         }
4573     }
4574 
4575     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
4576     if (ret < 0) {
4577         return ret;
4578     }
4579 
4580     if (ret < cpu->kvm_msr_buf->nmsrs) {
4581         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
4582         error_report("error: failed to get MSR 0x%" PRIx32,
4583                      (uint32_t)e->index);
4584     }
4585 
4586     assert(ret == cpu->kvm_msr_buf->nmsrs);
4587     /*
4588      * MTRR masks: Each mask consists of 5 parts
4589      * a  10..0: must be zero
4590      * b  11   : valid bit
4591      * c n-1.12: actual mask bits
4592      * d  51..n: reserved must be zero
4593      * e  63.52: reserved must be zero
4594      *
4595      * 'n' is the number of physical bits supported by the CPU and is
4596      * apparently always <= 52.   We know our 'n' but don't know what
4597      * the destinations 'n' is; it might be smaller, in which case
4598      * it masks (c) on loading. It might be larger, in which case
4599      * we fill 'd' so that d..c is consistent irrespetive of the 'n'
4600      * we're migrating to.
4601      */
4602 
4603     if (cpu->fill_mtrr_mask) {
4604         QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
4605         assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
4606         mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
4607     } else {
4608         mtrr_top_bits = 0;
4609     }
4610 
4611     for (i = 0; i < ret; i++) {
4612         uint32_t index = msrs[i].index;
4613         switch (index) {
4614         case MSR_IA32_SYSENTER_CS:
4615             env->sysenter_cs = msrs[i].data;
4616             break;
4617         case MSR_IA32_SYSENTER_ESP:
4618             env->sysenter_esp = msrs[i].data;
4619             break;
4620         case MSR_IA32_SYSENTER_EIP:
4621             env->sysenter_eip = msrs[i].data;
4622             break;
4623         case MSR_PAT:
4624             env->pat = msrs[i].data;
4625             break;
4626         case MSR_STAR:
4627             env->star = msrs[i].data;
4628             break;
4629 #ifdef TARGET_X86_64
4630         case MSR_CSTAR:
4631             env->cstar = msrs[i].data;
4632             break;
4633         case MSR_KERNELGSBASE:
4634             env->kernelgsbase = msrs[i].data;
4635             break;
4636         case MSR_FMASK:
4637             env->fmask = msrs[i].data;
4638             break;
4639         case MSR_LSTAR:
4640             env->lstar = msrs[i].data;
4641             break;
4642         case MSR_IA32_FRED_RSP0:
4643             env->fred_rsp0 = msrs[i].data;
4644             break;
4645         case MSR_IA32_FRED_RSP1:
4646             env->fred_rsp1 = msrs[i].data;
4647             break;
4648         case MSR_IA32_FRED_RSP2:
4649             env->fred_rsp2 = msrs[i].data;
4650             break;
4651         case MSR_IA32_FRED_RSP3:
4652             env->fred_rsp3 = msrs[i].data;
4653             break;
4654         case MSR_IA32_FRED_STKLVLS:
4655             env->fred_stklvls = msrs[i].data;
4656             break;
4657         case MSR_IA32_FRED_SSP1:
4658             env->fred_ssp1 = msrs[i].data;
4659             break;
4660         case MSR_IA32_FRED_SSP2:
4661             env->fred_ssp2 = msrs[i].data;
4662             break;
4663         case MSR_IA32_FRED_SSP3:
4664             env->fred_ssp3 = msrs[i].data;
4665             break;
4666         case MSR_IA32_FRED_CONFIG:
4667             env->fred_config = msrs[i].data;
4668             break;
4669 #endif
4670         case MSR_IA32_TSC:
4671             env->tsc = msrs[i].data;
4672             break;
4673         case MSR_TSC_AUX:
4674             env->tsc_aux = msrs[i].data;
4675             break;
4676         case MSR_TSC_ADJUST:
4677             env->tsc_adjust = msrs[i].data;
4678             break;
4679         case MSR_IA32_TSCDEADLINE:
4680             env->tsc_deadline = msrs[i].data;
4681             break;
4682         case MSR_VM_HSAVE_PA:
4683             env->vm_hsave = msrs[i].data;
4684             break;
4685         case MSR_KVM_SYSTEM_TIME:
4686             env->system_time_msr = msrs[i].data;
4687             break;
4688         case MSR_KVM_WALL_CLOCK:
4689             env->wall_clock_msr = msrs[i].data;
4690             break;
4691         case MSR_MCG_STATUS:
4692             env->mcg_status = msrs[i].data;
4693             break;
4694         case MSR_MCG_CTL:
4695             env->mcg_ctl = msrs[i].data;
4696             break;
4697         case MSR_MCG_EXT_CTL:
4698             env->mcg_ext_ctl = msrs[i].data;
4699             break;
4700         case MSR_IA32_MISC_ENABLE:
4701             env->msr_ia32_misc_enable = msrs[i].data;
4702             break;
4703         case MSR_IA32_SMBASE:
4704             env->smbase = msrs[i].data;
4705             break;
4706         case MSR_SMI_COUNT:
4707             env->msr_smi_count = msrs[i].data;
4708             break;
4709         case MSR_IA32_FEATURE_CONTROL:
4710             env->msr_ia32_feature_control = msrs[i].data;
4711             break;
4712         case MSR_IA32_BNDCFGS:
4713             env->msr_bndcfgs = msrs[i].data;
4714             break;
4715         case MSR_IA32_XSS:
4716             env->xss = msrs[i].data;
4717             break;
4718         case MSR_IA32_UMWAIT_CONTROL:
4719             env->umwait = msrs[i].data;
4720             break;
4721         case MSR_IA32_PKRS:
4722             env->pkrs = msrs[i].data;
4723             break;
4724         default:
4725             if (msrs[i].index >= MSR_MC0_CTL &&
4726                 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
4727                 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
4728             }
4729             break;
4730         case MSR_KVM_ASYNC_PF_EN:
4731             env->async_pf_en_msr = msrs[i].data;
4732             break;
4733         case MSR_KVM_ASYNC_PF_INT:
4734             env->async_pf_int_msr = msrs[i].data;
4735             break;
4736         case MSR_KVM_PV_EOI_EN:
4737             env->pv_eoi_en_msr = msrs[i].data;
4738             break;
4739         case MSR_KVM_STEAL_TIME:
4740             env->steal_time_msr = msrs[i].data;
4741             break;
4742         case MSR_KVM_POLL_CONTROL: {
4743             env->poll_control_msr = msrs[i].data;
4744             break;
4745         }
4746         case MSR_CORE_PERF_FIXED_CTR_CTRL:
4747             env->msr_fixed_ctr_ctrl = msrs[i].data;
4748             break;
4749         case MSR_CORE_PERF_GLOBAL_CTRL:
4750             env->msr_global_ctrl = msrs[i].data;
4751             break;
4752         case MSR_CORE_PERF_GLOBAL_STATUS:
4753             env->msr_global_status = msrs[i].data;
4754             break;
4755         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
4756             env->msr_global_ovf_ctrl = msrs[i].data;
4757             break;
4758         case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
4759             env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
4760             break;
4761         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
4762             env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
4763             break;
4764         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
4765             env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
4766             break;
4767         case HV_X64_MSR_HYPERCALL:
4768             env->msr_hv_hypercall = msrs[i].data;
4769             break;
4770         case HV_X64_MSR_GUEST_OS_ID:
4771             env->msr_hv_guest_os_id = msrs[i].data;
4772             break;
4773         case HV_X64_MSR_APIC_ASSIST_PAGE:
4774             env->msr_hv_vapic = msrs[i].data;
4775             break;
4776         case HV_X64_MSR_REFERENCE_TSC:
4777             env->msr_hv_tsc = msrs[i].data;
4778             break;
4779         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4780             env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
4781             break;
4782         case HV_X64_MSR_VP_RUNTIME:
4783             env->msr_hv_runtime = msrs[i].data;
4784             break;
4785         case HV_X64_MSR_SCONTROL:
4786             env->msr_hv_synic_control = msrs[i].data;
4787             break;
4788         case HV_X64_MSR_SIEFP:
4789             env->msr_hv_synic_evt_page = msrs[i].data;
4790             break;
4791         case HV_X64_MSR_SIMP:
4792             env->msr_hv_synic_msg_page = msrs[i].data;
4793             break;
4794         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
4795             env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
4796             break;
4797         case HV_X64_MSR_STIMER0_CONFIG:
4798         case HV_X64_MSR_STIMER1_CONFIG:
4799         case HV_X64_MSR_STIMER2_CONFIG:
4800         case HV_X64_MSR_STIMER3_CONFIG:
4801             env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
4802                                 msrs[i].data;
4803             break;
4804         case HV_X64_MSR_STIMER0_COUNT:
4805         case HV_X64_MSR_STIMER1_COUNT:
4806         case HV_X64_MSR_STIMER2_COUNT:
4807         case HV_X64_MSR_STIMER3_COUNT:
4808             env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
4809                                 msrs[i].data;
4810             break;
4811         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4812             env->msr_hv_reenlightenment_control = msrs[i].data;
4813             break;
4814         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4815             env->msr_hv_tsc_emulation_control = msrs[i].data;
4816             break;
4817         case HV_X64_MSR_TSC_EMULATION_STATUS:
4818             env->msr_hv_tsc_emulation_status = msrs[i].data;
4819             break;
4820         case HV_X64_MSR_SYNDBG_OPTIONS:
4821             env->msr_hv_syndbg_options = msrs[i].data;
4822             break;
4823         case MSR_MTRRdefType:
4824             env->mtrr_deftype = msrs[i].data;
4825             break;
4826         case MSR_MTRRfix64K_00000:
4827             env->mtrr_fixed[0] = msrs[i].data;
4828             break;
4829         case MSR_MTRRfix16K_80000:
4830             env->mtrr_fixed[1] = msrs[i].data;
4831             break;
4832         case MSR_MTRRfix16K_A0000:
4833             env->mtrr_fixed[2] = msrs[i].data;
4834             break;
4835         case MSR_MTRRfix4K_C0000:
4836             env->mtrr_fixed[3] = msrs[i].data;
4837             break;
4838         case MSR_MTRRfix4K_C8000:
4839             env->mtrr_fixed[4] = msrs[i].data;
4840             break;
4841         case MSR_MTRRfix4K_D0000:
4842             env->mtrr_fixed[5] = msrs[i].data;
4843             break;
4844         case MSR_MTRRfix4K_D8000:
4845             env->mtrr_fixed[6] = msrs[i].data;
4846             break;
4847         case MSR_MTRRfix4K_E0000:
4848             env->mtrr_fixed[7] = msrs[i].data;
4849             break;
4850         case MSR_MTRRfix4K_E8000:
4851             env->mtrr_fixed[8] = msrs[i].data;
4852             break;
4853         case MSR_MTRRfix4K_F0000:
4854             env->mtrr_fixed[9] = msrs[i].data;
4855             break;
4856         case MSR_MTRRfix4K_F8000:
4857             env->mtrr_fixed[10] = msrs[i].data;
4858             break;
4859         case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
4860             if (index & 1) {
4861                 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
4862                                                                mtrr_top_bits;
4863             } else {
4864                 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
4865             }
4866             break;
4867         case MSR_IA32_SPEC_CTRL:
4868             env->spec_ctrl = msrs[i].data;
4869             break;
4870         case MSR_AMD64_TSC_RATIO:
4871             env->amd_tsc_scale_msr = msrs[i].data;
4872             break;
4873         case MSR_IA32_TSX_CTRL:
4874             env->tsx_ctrl = msrs[i].data;
4875             break;
4876         case MSR_VIRT_SSBD:
4877             env->virt_ssbd = msrs[i].data;
4878             break;
4879         case MSR_IA32_RTIT_CTL:
4880             env->msr_rtit_ctrl = msrs[i].data;
4881             break;
4882         case MSR_IA32_RTIT_STATUS:
4883             env->msr_rtit_status = msrs[i].data;
4884             break;
4885         case MSR_IA32_RTIT_OUTPUT_BASE:
4886             env->msr_rtit_output_base = msrs[i].data;
4887             break;
4888         case MSR_IA32_RTIT_OUTPUT_MASK:
4889             env->msr_rtit_output_mask = msrs[i].data;
4890             break;
4891         case MSR_IA32_RTIT_CR3_MATCH:
4892             env->msr_rtit_cr3_match = msrs[i].data;
4893             break;
4894         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
4895             env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
4896             break;
4897         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
4898             env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
4899                            msrs[i].data;
4900             break;
4901         case MSR_IA32_XFD:
4902             env->msr_xfd = msrs[i].data;
4903             break;
4904         case MSR_IA32_XFD_ERR:
4905             env->msr_xfd_err = msrs[i].data;
4906             break;
4907         case MSR_ARCH_LBR_CTL:
4908             env->msr_lbr_ctl = msrs[i].data;
4909             break;
4910         case MSR_ARCH_LBR_DEPTH:
4911             env->msr_lbr_depth = msrs[i].data;
4912             break;
4913         case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31:
4914             env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data;
4915             break;
4916         case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31:
4917             env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data;
4918             break;
4919         case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31:
4920             env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data;
4921             break;
4922         }
4923     }
4924 
4925     return 0;
4926 }
4927 
4928 static int kvm_put_mp_state(X86CPU *cpu)
4929 {
4930     struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4931 
4932     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4933 }
4934 
4935 static int kvm_get_mp_state(X86CPU *cpu)
4936 {
4937     CPUState *cs = CPU(cpu);
4938     CPUX86State *env = &cpu->env;
4939     struct kvm_mp_state mp_state;
4940     int ret;
4941 
4942     ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
4943     if (ret < 0) {
4944         return ret;
4945     }
4946     env->mp_state = mp_state.mp_state;
4947     if (kvm_irqchip_in_kernel()) {
4948         cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
4949     }
4950     return 0;
4951 }
4952 
4953 static int kvm_get_apic(X86CPU *cpu)
4954 {
4955     DeviceState *apic = cpu->apic_state;
4956     struct kvm_lapic_state kapic;
4957     int ret;
4958 
4959     if (apic && kvm_irqchip_in_kernel()) {
4960         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
4961         if (ret < 0) {
4962             return ret;
4963         }
4964 
4965         kvm_get_apic_state(apic, &kapic);
4966     }
4967     return 0;
4968 }
4969 
4970 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
4971 {
4972     CPUState *cs = CPU(cpu);
4973     CPUX86State *env = &cpu->env;
4974     struct kvm_vcpu_events events = {};
4975 
4976     events.flags = 0;
4977 
4978     if (has_exception_payload) {
4979         events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4980         events.exception.pending = env->exception_pending;
4981         events.exception_has_payload = env->exception_has_payload;
4982         events.exception_payload = env->exception_payload;
4983     }
4984     events.exception.nr = env->exception_nr;
4985     events.exception.injected = env->exception_injected;
4986     events.exception.has_error_code = env->has_error_code;
4987     events.exception.error_code = env->error_code;
4988 
4989     events.interrupt.injected = (env->interrupt_injected >= 0);
4990     events.interrupt.nr = env->interrupt_injected;
4991     events.interrupt.soft = env->soft_interrupt;
4992 
4993     events.nmi.injected = env->nmi_injected;
4994     events.nmi.pending = env->nmi_pending;
4995     events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
4996 
4997     events.sipi_vector = env->sipi_vector;
4998 
4999     if (has_msr_smbase) {
5000         events.flags |= KVM_VCPUEVENT_VALID_SMM;
5001         events.smi.smm = !!(env->hflags & HF_SMM_MASK);
5002         events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
5003         if (kvm_irqchip_in_kernel()) {
5004             /* As soon as these are moved to the kernel, remove them
5005              * from cs->interrupt_request.
5006              */
5007             events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
5008             events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
5009             cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
5010         } else {
5011             /* Keep these in cs->interrupt_request.  */
5012             events.smi.pending = 0;
5013             events.smi.latched_init = 0;
5014         }
5015     }
5016 
5017     if (level >= KVM_PUT_RESET_STATE) {
5018         events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
5019         if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
5020             events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
5021         }
5022     }
5023 
5024     if (has_triple_fault_event) {
5025         events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5026         events.triple_fault.pending = env->triple_fault_pending;
5027     }
5028 
5029     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
5030 }
5031 
5032 static int kvm_get_vcpu_events(X86CPU *cpu)
5033 {
5034     CPUX86State *env = &cpu->env;
5035     struct kvm_vcpu_events events;
5036     int ret;
5037 
5038     memset(&events, 0, sizeof(events));
5039     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
5040     if (ret < 0) {
5041        return ret;
5042     }
5043 
5044     if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5045         env->exception_pending = events.exception.pending;
5046         env->exception_has_payload = events.exception_has_payload;
5047         env->exception_payload = events.exception_payload;
5048     } else {
5049         env->exception_pending = 0;
5050         env->exception_has_payload = false;
5051     }
5052     env->exception_injected = events.exception.injected;
5053     env->exception_nr =
5054         (env->exception_pending || env->exception_injected) ?
5055         events.exception.nr : -1;
5056     env->has_error_code = events.exception.has_error_code;
5057     env->error_code = events.exception.error_code;
5058 
5059     env->interrupt_injected =
5060         events.interrupt.injected ? events.interrupt.nr : -1;
5061     env->soft_interrupt = events.interrupt.soft;
5062 
5063     env->nmi_injected = events.nmi.injected;
5064     env->nmi_pending = events.nmi.pending;
5065     if (events.nmi.masked) {
5066         env->hflags2 |= HF2_NMI_MASK;
5067     } else {
5068         env->hflags2 &= ~HF2_NMI_MASK;
5069     }
5070 
5071     if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
5072         if (events.smi.smm) {
5073             env->hflags |= HF_SMM_MASK;
5074         } else {
5075             env->hflags &= ~HF_SMM_MASK;
5076         }
5077         if (events.smi.pending) {
5078             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
5079         } else {
5080             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
5081         }
5082         if (events.smi.smm_inside_nmi) {
5083             env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
5084         } else {
5085             env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
5086         }
5087         if (events.smi.latched_init) {
5088             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
5089         } else {
5090             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
5091         }
5092     }
5093 
5094     if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5095         env->triple_fault_pending = events.triple_fault.pending;
5096     }
5097 
5098     env->sipi_vector = events.sipi_vector;
5099 
5100     return 0;
5101 }
5102 
5103 static int kvm_put_debugregs(X86CPU *cpu)
5104 {
5105     CPUX86State *env = &cpu->env;
5106     struct kvm_debugregs dbgregs;
5107     int i;
5108 
5109     memset(&dbgregs, 0, sizeof(dbgregs));
5110     for (i = 0; i < 4; i++) {
5111         dbgregs.db[i] = env->dr[i];
5112     }
5113     dbgregs.dr6 = env->dr[6];
5114     dbgregs.dr7 = env->dr[7];
5115     dbgregs.flags = 0;
5116 
5117     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
5118 }
5119 
5120 static int kvm_get_debugregs(X86CPU *cpu)
5121 {
5122     CPUX86State *env = &cpu->env;
5123     struct kvm_debugregs dbgregs;
5124     int i, ret;
5125 
5126     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
5127     if (ret < 0) {
5128         return ret;
5129     }
5130     for (i = 0; i < 4; i++) {
5131         env->dr[i] = dbgregs.db[i];
5132     }
5133     env->dr[4] = env->dr[6] = dbgregs.dr6;
5134     env->dr[5] = env->dr[7] = dbgregs.dr7;
5135 
5136     return 0;
5137 }
5138 
5139 static int kvm_put_nested_state(X86CPU *cpu)
5140 {
5141     CPUX86State *env = &cpu->env;
5142     int max_nested_state_len = kvm_max_nested_state_length();
5143 
5144     if (!env->nested_state) {
5145         return 0;
5146     }
5147 
5148     /*
5149      * Copy flags that are affected by reset from env->hflags and env->hflags2.
5150      */
5151     if (env->hflags & HF_GUEST_MASK) {
5152         env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
5153     } else {
5154         env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
5155     }
5156 
5157     /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
5158     if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
5159         env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
5160     } else {
5161         env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
5162     }
5163 
5164     assert(env->nested_state->size <= max_nested_state_len);
5165     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
5166 }
5167 
5168 static int kvm_get_nested_state(X86CPU *cpu)
5169 {
5170     CPUX86State *env = &cpu->env;
5171     int max_nested_state_len = kvm_max_nested_state_length();
5172     int ret;
5173 
5174     if (!env->nested_state) {
5175         return 0;
5176     }
5177 
5178     /*
5179      * It is possible that migration restored a smaller size into
5180      * nested_state->hdr.size than what our kernel support.
5181      * We preserve migration origin nested_state->hdr.size for
5182      * call to KVM_SET_NESTED_STATE but wish that our next call
5183      * to KVM_GET_NESTED_STATE will use max size our kernel support.
5184      */
5185     env->nested_state->size = max_nested_state_len;
5186 
5187     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
5188     if (ret < 0) {
5189         return ret;
5190     }
5191 
5192     /*
5193      * Copy flags that are affected by reset to env->hflags and env->hflags2.
5194      */
5195     if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
5196         env->hflags |= HF_GUEST_MASK;
5197     } else {
5198         env->hflags &= ~HF_GUEST_MASK;
5199     }
5200 
5201     /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
5202     if (cpu_has_svm(env)) {
5203         if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
5204             env->hflags2 |= HF2_GIF_MASK;
5205         } else {
5206             env->hflags2 &= ~HF2_GIF_MASK;
5207         }
5208     }
5209 
5210     return ret;
5211 }
5212 
5213 int kvm_arch_put_registers(CPUState *cpu, int level, Error **errp)
5214 {
5215     X86CPU *x86_cpu = X86_CPU(cpu);
5216     int ret;
5217 
5218     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
5219 
5220     /*
5221      * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX
5222      * root operation upon vCPU reset. kvm_put_msr_feature_control() should also
5223      * precede kvm_put_nested_state() when 'real' nested state is set.
5224      */
5225     if (level >= KVM_PUT_RESET_STATE) {
5226         ret = kvm_put_msr_feature_control(x86_cpu);
5227         if (ret < 0) {
5228             error_setg_errno(errp, -ret, "Failed to set feature control MSR");
5229             return ret;
5230         }
5231     }
5232 
5233     /* must be before kvm_put_nested_state so that EFER.SVME is set */
5234     ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
5235     if (ret < 0) {
5236         error_setg_errno(errp, -ret, "Failed to set special registers");
5237         return ret;
5238     }
5239 
5240     if (level >= KVM_PUT_RESET_STATE) {
5241         ret = kvm_put_nested_state(x86_cpu);
5242         if (ret < 0) {
5243             error_setg_errno(errp, -ret, "Failed to set nested state");
5244             return ret;
5245         }
5246     }
5247 
5248     if (level == KVM_PUT_FULL_STATE) {
5249         /* We don't check for kvm_arch_set_tsc_khz() errors here,
5250          * because TSC frequency mismatch shouldn't abort migration,
5251          * unless the user explicitly asked for a more strict TSC
5252          * setting (e.g. using an explicit "tsc-freq" option).
5253          */
5254         kvm_arch_set_tsc_khz(cpu);
5255     }
5256 
5257 #ifdef CONFIG_XEN_EMU
5258     if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) {
5259         ret = kvm_put_xen_state(cpu);
5260         if (ret < 0) {
5261             error_setg_errno(errp, -ret, "Failed to set Xen state");
5262             return ret;
5263         }
5264     }
5265 #endif
5266 
5267     ret = kvm_getput_regs(x86_cpu, 1);
5268     if (ret < 0) {
5269         error_setg_errno(errp, -ret, "Failed to set general purpose registers");
5270         return ret;
5271     }
5272     ret = kvm_put_xsave(x86_cpu);
5273     if (ret < 0) {
5274         error_setg_errno(errp, -ret, "Failed to set XSAVE");
5275         return ret;
5276     }
5277     ret = kvm_put_xcrs(x86_cpu);
5278     if (ret < 0) {
5279         error_setg_errno(errp, -ret, "Failed to set XCRs");
5280         return ret;
5281     }
5282     ret = kvm_put_msrs(x86_cpu, level);
5283     if (ret < 0) {
5284         error_setg_errno(errp, -ret, "Failed to set MSRs");
5285         return ret;
5286     }
5287     ret = kvm_put_vcpu_events(x86_cpu, level);
5288     if (ret < 0) {
5289         error_setg_errno(errp, -ret, "Failed to set vCPU events");
5290         return ret;
5291     }
5292     if (level >= KVM_PUT_RESET_STATE) {
5293         ret = kvm_put_mp_state(x86_cpu);
5294         if (ret < 0) {
5295             error_setg_errno(errp, -ret, "Failed to set MP state");
5296             return ret;
5297         }
5298     }
5299 
5300     ret = kvm_put_tscdeadline_msr(x86_cpu);
5301     if (ret < 0) {
5302         error_setg_errno(errp, -ret, "Failed to set TSC deadline MSR");
5303         return ret;
5304     }
5305     ret = kvm_put_debugregs(x86_cpu);
5306     if (ret < 0) {
5307         error_setg_errno(errp, -ret, "Failed to set debug registers");
5308         return ret;
5309     }
5310     return 0;
5311 }
5312 
5313 int kvm_arch_get_registers(CPUState *cs, Error **errp)
5314 {
5315     X86CPU *cpu = X86_CPU(cs);
5316     int ret;
5317 
5318     assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
5319 
5320     ret = kvm_get_vcpu_events(cpu);
5321     if (ret < 0) {
5322         error_setg_errno(errp, -ret, "Failed to get vCPU events");
5323         goto out;
5324     }
5325     /*
5326      * KVM_GET_MPSTATE can modify CS and RIP, call it before
5327      * KVM_GET_REGS and KVM_GET_SREGS.
5328      */
5329     ret = kvm_get_mp_state(cpu);
5330     if (ret < 0) {
5331         error_setg_errno(errp, -ret, "Failed to get MP state");
5332         goto out;
5333     }
5334     ret = kvm_getput_regs(cpu, 0);
5335     if (ret < 0) {
5336         error_setg_errno(errp, -ret, "Failed to get general purpose registers");
5337         goto out;
5338     }
5339     ret = kvm_get_xsave(cpu);
5340     if (ret < 0) {
5341         error_setg_errno(errp, -ret, "Failed to get XSAVE");
5342         goto out;
5343     }
5344     ret = kvm_get_xcrs(cpu);
5345     if (ret < 0) {
5346         error_setg_errno(errp, -ret, "Failed to get XCRs");
5347         goto out;
5348     }
5349     ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
5350     if (ret < 0) {
5351         error_setg_errno(errp, -ret, "Failed to get special registers");
5352         goto out;
5353     }
5354     ret = kvm_get_msrs(cpu);
5355     if (ret < 0) {
5356         error_setg_errno(errp, -ret, "Failed to get MSRs");
5357         goto out;
5358     }
5359     ret = kvm_get_apic(cpu);
5360     if (ret < 0) {
5361         error_setg_errno(errp, -ret, "Failed to get APIC");
5362         goto out;
5363     }
5364     ret = kvm_get_debugregs(cpu);
5365     if (ret < 0) {
5366         error_setg_errno(errp, -ret, "Failed to get debug registers");
5367         goto out;
5368     }
5369     ret = kvm_get_nested_state(cpu);
5370     if (ret < 0) {
5371         error_setg_errno(errp, -ret, "Failed to get nested state");
5372         goto out;
5373     }
5374 #ifdef CONFIG_XEN_EMU
5375     if (xen_mode == XEN_EMULATE) {
5376         ret = kvm_get_xen_state(cs);
5377         if (ret < 0) {
5378             error_setg_errno(errp, -ret, "Failed to get Xen state");
5379             goto out;
5380         }
5381     }
5382 #endif
5383     ret = 0;
5384  out:
5385     cpu_sync_bndcs_hflags(&cpu->env);
5386     return ret;
5387 }
5388 
5389 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
5390 {
5391     X86CPU *x86_cpu = X86_CPU(cpu);
5392     CPUX86State *env = &x86_cpu->env;
5393     int ret;
5394 
5395     /* Inject NMI */
5396     if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
5397         if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
5398             bql_lock();
5399             cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
5400             bql_unlock();
5401             DPRINTF("injected NMI\n");
5402             ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
5403             if (ret < 0) {
5404                 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
5405                         strerror(-ret));
5406             }
5407         }
5408         if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
5409             bql_lock();
5410             cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
5411             bql_unlock();
5412             DPRINTF("injected SMI\n");
5413             ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
5414             if (ret < 0) {
5415                 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
5416                         strerror(-ret));
5417             }
5418         }
5419     }
5420 
5421     if (!kvm_pic_in_kernel()) {
5422         bql_lock();
5423     }
5424 
5425     /* Force the VCPU out of its inner loop to process any INIT requests
5426      * or (for userspace APIC, but it is cheap to combine the checks here)
5427      * pending TPR access reports.
5428      */
5429     if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
5430         if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
5431             !(env->hflags & HF_SMM_MASK)) {
5432             cpu->exit_request = 1;
5433         }
5434         if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
5435             cpu->exit_request = 1;
5436         }
5437     }
5438 
5439     if (!kvm_pic_in_kernel()) {
5440         /* Try to inject an interrupt if the guest can accept it */
5441         if (run->ready_for_interrupt_injection &&
5442             (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
5443             (env->eflags & IF_MASK)) {
5444             int irq;
5445 
5446             cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
5447             irq = cpu_get_pic_interrupt(env);
5448             if (irq >= 0) {
5449                 struct kvm_interrupt intr;
5450 
5451                 intr.irq = irq;
5452                 DPRINTF("injected interrupt %d\n", irq);
5453                 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
5454                 if (ret < 0) {
5455                     fprintf(stderr,
5456                             "KVM: injection failed, interrupt lost (%s)\n",
5457                             strerror(-ret));
5458                 }
5459             }
5460         }
5461 
5462         /* If we have an interrupt but the guest is not ready to receive an
5463          * interrupt, request an interrupt window exit.  This will
5464          * cause a return to userspace as soon as the guest is ready to
5465          * receive interrupts. */
5466         if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
5467             run->request_interrupt_window = 1;
5468         } else {
5469             run->request_interrupt_window = 0;
5470         }
5471 
5472         DPRINTF("setting tpr\n");
5473         run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
5474 
5475         bql_unlock();
5476     }
5477 }
5478 
5479 static void kvm_rate_limit_on_bus_lock(void)
5480 {
5481     uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
5482 
5483     if (delay_ns) {
5484         g_usleep(delay_ns / SCALE_US);
5485     }
5486 }
5487 
5488 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
5489 {
5490     X86CPU *x86_cpu = X86_CPU(cpu);
5491     CPUX86State *env = &x86_cpu->env;
5492 
5493     if (run->flags & KVM_RUN_X86_SMM) {
5494         env->hflags |= HF_SMM_MASK;
5495     } else {
5496         env->hflags &= ~HF_SMM_MASK;
5497     }
5498     if (run->if_flag) {
5499         env->eflags |= IF_MASK;
5500     } else {
5501         env->eflags &= ~IF_MASK;
5502     }
5503     if (run->flags & KVM_RUN_X86_BUS_LOCK) {
5504         kvm_rate_limit_on_bus_lock();
5505     }
5506 
5507 #ifdef CONFIG_XEN_EMU
5508     /*
5509      * If the callback is asserted as a GSI (or PCI INTx) then check if
5510      * vcpu_info->evtchn_upcall_pending has been cleared, and deassert
5511      * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC
5512      * EOI and only resample then, exactly how the VFIO eventfd pairs
5513      * are designed to work for level triggered interrupts.
5514      */
5515     if (x86_cpu->env.xen_callback_asserted) {
5516         kvm_xen_maybe_deassert_callback(cpu);
5517     }
5518 #endif
5519 
5520     /* We need to protect the apic state against concurrent accesses from
5521      * different threads in case the userspace irqchip is used. */
5522     if (!kvm_irqchip_in_kernel()) {
5523         bql_lock();
5524     }
5525     cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
5526     cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
5527     if (!kvm_irqchip_in_kernel()) {
5528         bql_unlock();
5529     }
5530     return cpu_get_mem_attrs(env);
5531 }
5532 
5533 int kvm_arch_process_async_events(CPUState *cs)
5534 {
5535     X86CPU *cpu = X86_CPU(cs);
5536     CPUX86State *env = &cpu->env;
5537 
5538     if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
5539         /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
5540         assert(env->mcg_cap);
5541 
5542         cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
5543 
5544         kvm_cpu_synchronize_state(cs);
5545 
5546         if (env->exception_nr == EXCP08_DBLE) {
5547             /* this means triple fault */
5548             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
5549             cs->exit_request = 1;
5550             return 0;
5551         }
5552         kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
5553         env->has_error_code = 0;
5554 
5555         cs->halted = 0;
5556         if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
5557             env->mp_state = KVM_MP_STATE_RUNNABLE;
5558         }
5559     }
5560 
5561     if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
5562         !(env->hflags & HF_SMM_MASK)) {
5563         kvm_cpu_synchronize_state(cs);
5564         do_cpu_init(cpu);
5565     }
5566 
5567     if (kvm_irqchip_in_kernel()) {
5568         return 0;
5569     }
5570 
5571     if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
5572         cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
5573         apic_poll_irq(cpu->apic_state);
5574     }
5575     if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5576          (env->eflags & IF_MASK)) ||
5577         (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5578         cs->halted = 0;
5579     }
5580     if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
5581         kvm_cpu_synchronize_state(cs);
5582         do_cpu_sipi(cpu);
5583     }
5584     if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
5585         cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
5586         kvm_cpu_synchronize_state(cs);
5587         apic_handle_tpr_access_report(cpu->apic_state, env->eip,
5588                                       env->tpr_access_type);
5589     }
5590 
5591     return cs->halted;
5592 }
5593 
5594 static int kvm_handle_halt(X86CPU *cpu)
5595 {
5596     CPUState *cs = CPU(cpu);
5597     CPUX86State *env = &cpu->env;
5598 
5599     if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5600           (env->eflags & IF_MASK)) &&
5601         !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5602         cs->halted = 1;
5603         return EXCP_HLT;
5604     }
5605 
5606     return 0;
5607 }
5608 
5609 static int kvm_handle_tpr_access(X86CPU *cpu)
5610 {
5611     CPUState *cs = CPU(cpu);
5612     struct kvm_run *run = cs->kvm_run;
5613 
5614     apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
5615                                   run->tpr_access.is_write ? TPR_ACCESS_WRITE
5616                                                            : TPR_ACCESS_READ);
5617     return 1;
5618 }
5619 
5620 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5621 {
5622     static const uint8_t int3 = 0xcc;
5623 
5624     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
5625         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
5626         return -EINVAL;
5627     }
5628     return 0;
5629 }
5630 
5631 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5632 {
5633     uint8_t int3;
5634 
5635     if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
5636         return -EINVAL;
5637     }
5638     if (int3 != 0xcc) {
5639         return 0;
5640     }
5641     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
5642         return -EINVAL;
5643     }
5644     return 0;
5645 }
5646 
5647 static struct {
5648     target_ulong addr;
5649     int len;
5650     int type;
5651 } hw_breakpoint[4];
5652 
5653 static int nb_hw_breakpoint;
5654 
5655 static int find_hw_breakpoint(target_ulong addr, int len, int type)
5656 {
5657     int n;
5658 
5659     for (n = 0; n < nb_hw_breakpoint; n++) {
5660         if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
5661             (hw_breakpoint[n].len == len || len == -1)) {
5662             return n;
5663         }
5664     }
5665     return -1;
5666 }
5667 
5668 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
5669 {
5670     switch (type) {
5671     case GDB_BREAKPOINT_HW:
5672         len = 1;
5673         break;
5674     case GDB_WATCHPOINT_WRITE:
5675     case GDB_WATCHPOINT_ACCESS:
5676         switch (len) {
5677         case 1:
5678             break;
5679         case 2:
5680         case 4:
5681         case 8:
5682             if (addr & (len - 1)) {
5683                 return -EINVAL;
5684             }
5685             break;
5686         default:
5687             return -EINVAL;
5688         }
5689         break;
5690     default:
5691         return -ENOSYS;
5692     }
5693 
5694     if (nb_hw_breakpoint == 4) {
5695         return -ENOBUFS;
5696     }
5697     if (find_hw_breakpoint(addr, len, type) >= 0) {
5698         return -EEXIST;
5699     }
5700     hw_breakpoint[nb_hw_breakpoint].addr = addr;
5701     hw_breakpoint[nb_hw_breakpoint].len = len;
5702     hw_breakpoint[nb_hw_breakpoint].type = type;
5703     nb_hw_breakpoint++;
5704 
5705     return 0;
5706 }
5707 
5708 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
5709 {
5710     int n;
5711 
5712     n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
5713     if (n < 0) {
5714         return -ENOENT;
5715     }
5716     nb_hw_breakpoint--;
5717     hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
5718 
5719     return 0;
5720 }
5721 
5722 void kvm_arch_remove_all_hw_breakpoints(void)
5723 {
5724     nb_hw_breakpoint = 0;
5725 }
5726 
5727 static CPUWatchpoint hw_watchpoint;
5728 
5729 static int kvm_handle_debug(X86CPU *cpu,
5730                             struct kvm_debug_exit_arch *arch_info)
5731 {
5732     CPUState *cs = CPU(cpu);
5733     CPUX86State *env = &cpu->env;
5734     int ret = 0;
5735     int n;
5736 
5737     if (arch_info->exception == EXCP01_DB) {
5738         if (arch_info->dr6 & DR6_BS) {
5739             if (cs->singlestep_enabled) {
5740                 ret = EXCP_DEBUG;
5741             }
5742         } else {
5743             for (n = 0; n < 4; n++) {
5744                 if (arch_info->dr6 & (1 << n)) {
5745                     switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
5746                     case 0x0:
5747                         ret = EXCP_DEBUG;
5748                         break;
5749                     case 0x1:
5750                         ret = EXCP_DEBUG;
5751                         cs->watchpoint_hit = &hw_watchpoint;
5752                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5753                         hw_watchpoint.flags = BP_MEM_WRITE;
5754                         break;
5755                     case 0x3:
5756                         ret = EXCP_DEBUG;
5757                         cs->watchpoint_hit = &hw_watchpoint;
5758                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5759                         hw_watchpoint.flags = BP_MEM_ACCESS;
5760                         break;
5761                     }
5762                 }
5763             }
5764         }
5765     } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
5766         ret = EXCP_DEBUG;
5767     }
5768     if (ret == 0) {
5769         cpu_synchronize_state(cs);
5770         assert(env->exception_nr == -1);
5771 
5772         /* pass to guest */
5773         kvm_queue_exception(env, arch_info->exception,
5774                             arch_info->exception == EXCP01_DB,
5775                             arch_info->dr6);
5776         env->has_error_code = 0;
5777     }
5778 
5779     return ret;
5780 }
5781 
5782 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
5783 {
5784     const uint8_t type_code[] = {
5785         [GDB_BREAKPOINT_HW] = 0x0,
5786         [GDB_WATCHPOINT_WRITE] = 0x1,
5787         [GDB_WATCHPOINT_ACCESS] = 0x3
5788     };
5789     const uint8_t len_code[] = {
5790         [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
5791     };
5792     int n;
5793 
5794     if (kvm_sw_breakpoints_active(cpu)) {
5795         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
5796     }
5797     if (nb_hw_breakpoint > 0) {
5798         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
5799         dbg->arch.debugreg[7] = 0x0600;
5800         for (n = 0; n < nb_hw_breakpoint; n++) {
5801             dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
5802             dbg->arch.debugreg[7] |= (2 << (n * 2)) |
5803                 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
5804                 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
5805         }
5806     }
5807 }
5808 
5809 static bool kvm_install_msr_filters(KVMState *s)
5810 {
5811     uint64_t zero = 0;
5812     struct kvm_msr_filter filter = {
5813         .flags = KVM_MSR_FILTER_DEFAULT_ALLOW,
5814     };
5815     int r, i, j = 0;
5816 
5817     for (i = 0; i < KVM_MSR_FILTER_MAX_RANGES; i++) {
5818         KVMMSRHandlers *handler = &msr_handlers[i];
5819         if (handler->msr) {
5820             struct kvm_msr_filter_range *range = &filter.ranges[j++];
5821 
5822             *range = (struct kvm_msr_filter_range) {
5823                 .flags = 0,
5824                 .nmsrs = 1,
5825                 .base = handler->msr,
5826                 .bitmap = (__u8 *)&zero,
5827             };
5828 
5829             if (handler->rdmsr) {
5830                 range->flags |= KVM_MSR_FILTER_READ;
5831             }
5832 
5833             if (handler->wrmsr) {
5834                 range->flags |= KVM_MSR_FILTER_WRITE;
5835             }
5836         }
5837     }
5838 
5839     r = kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter);
5840     if (r) {
5841         return false;
5842     }
5843 
5844     return true;
5845 }
5846 
5847 static bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
5848                     QEMUWRMSRHandler *wrmsr)
5849 {
5850     int i;
5851 
5852     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5853         if (!msr_handlers[i].msr) {
5854             msr_handlers[i] = (KVMMSRHandlers) {
5855                 .msr = msr,
5856                 .rdmsr = rdmsr,
5857                 .wrmsr = wrmsr,
5858             };
5859 
5860             if (!kvm_install_msr_filters(s)) {
5861                 msr_handlers[i] = (KVMMSRHandlers) { };
5862                 return false;
5863             }
5864 
5865             return true;
5866         }
5867     }
5868 
5869     return false;
5870 }
5871 
5872 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run)
5873 {
5874     int i;
5875     bool r;
5876 
5877     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5878         KVMMSRHandlers *handler = &msr_handlers[i];
5879         if (run->msr.index == handler->msr) {
5880             if (handler->rdmsr) {
5881                 r = handler->rdmsr(cpu, handler->msr,
5882                                    (uint64_t *)&run->msr.data);
5883                 run->msr.error = r ? 0 : 1;
5884                 return 0;
5885             }
5886         }
5887     }
5888 
5889     g_assert_not_reached();
5890 }
5891 
5892 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run)
5893 {
5894     int i;
5895     bool r;
5896 
5897     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5898         KVMMSRHandlers *handler = &msr_handlers[i];
5899         if (run->msr.index == handler->msr) {
5900             if (handler->wrmsr) {
5901                 r = handler->wrmsr(cpu, handler->msr, run->msr.data);
5902                 run->msr.error = r ? 0 : 1;
5903                 return 0;
5904             }
5905         }
5906     }
5907 
5908     g_assert_not_reached();
5909 }
5910 
5911 static bool has_sgx_provisioning;
5912 
5913 static bool __kvm_enable_sgx_provisioning(KVMState *s)
5914 {
5915     int fd, ret;
5916 
5917     if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
5918         return false;
5919     }
5920 
5921     fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
5922     if (fd < 0) {
5923         return false;
5924     }
5925 
5926     ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
5927     if (ret) {
5928         error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
5929         exit(1);
5930     }
5931     close(fd);
5932     return true;
5933 }
5934 
5935 bool kvm_enable_sgx_provisioning(KVMState *s)
5936 {
5937     return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
5938 }
5939 
5940 static bool host_supports_vmx(void)
5941 {
5942     uint32_t ecx, unused;
5943 
5944     host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
5945     return ecx & CPUID_EXT_VMX;
5946 }
5947 
5948 /*
5949  * Currently the handling here only supports use of KVM_HC_MAP_GPA_RANGE
5950  * to service guest-initiated memory attribute update requests so that
5951  * KVM_SET_MEMORY_ATTRIBUTES can update whether or not a page should be
5952  * backed by the private memory pool provided by guest_memfd, and as such
5953  * is only applicable to guest_memfd-backed guests (e.g. SNP/TDX).
5954  *
5955  * Other other use-cases for KVM_HC_MAP_GPA_RANGE, such as for SEV live
5956  * migration, are not implemented here currently.
5957  *
5958  * For the guest_memfd use-case, these exits will generally be synthesized
5959  * by KVM based on platform-specific hypercalls, like GHCB requests in the
5960  * case of SEV-SNP, and not issued directly within the guest though the
5961  * KVM_HC_MAP_GPA_RANGE hypercall. So in this case, KVM_HC_MAP_GPA_RANGE is
5962  * not actually advertised to guests via the KVM CPUID feature bit, as
5963  * opposed to SEV live migration where it would be. Since it is unlikely the
5964  * SEV live migration use-case would be useful for guest-memfd backed guests,
5965  * because private/shared page tracking is already provided through other
5966  * means, these 2 use-cases should be treated as being mutually-exclusive.
5967  */
5968 static int kvm_handle_hc_map_gpa_range(struct kvm_run *run)
5969 {
5970     uint64_t gpa, size, attributes;
5971 
5972     if (!machine_require_guest_memfd(current_machine))
5973         return -EINVAL;
5974 
5975     gpa = run->hypercall.args[0];
5976     size = run->hypercall.args[1] * TARGET_PAGE_SIZE;
5977     attributes = run->hypercall.args[2];
5978 
5979     trace_kvm_hc_map_gpa_range(gpa, size, attributes, run->hypercall.flags);
5980 
5981     return kvm_convert_memory(gpa, size, attributes & KVM_MAP_GPA_RANGE_ENCRYPTED);
5982 }
5983 
5984 static int kvm_handle_hypercall(struct kvm_run *run)
5985 {
5986     if (run->hypercall.nr == KVM_HC_MAP_GPA_RANGE)
5987         return kvm_handle_hc_map_gpa_range(run);
5988 
5989     return -EINVAL;
5990 }
5991 
5992 #define VMX_INVALID_GUEST_STATE 0x80000021
5993 
5994 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
5995 {
5996     X86CPU *cpu = X86_CPU(cs);
5997     uint64_t code;
5998     int ret;
5999     bool ctx_invalid;
6000     KVMState *state;
6001 
6002     switch (run->exit_reason) {
6003     case KVM_EXIT_HLT:
6004         DPRINTF("handle_hlt\n");
6005         bql_lock();
6006         ret = kvm_handle_halt(cpu);
6007         bql_unlock();
6008         break;
6009     case KVM_EXIT_SET_TPR:
6010         ret = 0;
6011         break;
6012     case KVM_EXIT_TPR_ACCESS:
6013         bql_lock();
6014         ret = kvm_handle_tpr_access(cpu);
6015         bql_unlock();
6016         break;
6017     case KVM_EXIT_FAIL_ENTRY:
6018         code = run->fail_entry.hardware_entry_failure_reason;
6019         fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
6020                 code);
6021         if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
6022             fprintf(stderr,
6023                     "\nIf you're running a guest on an Intel machine without "
6024                         "unrestricted mode\n"
6025                     "support, the failure can be most likely due to the guest "
6026                         "entering an invalid\n"
6027                     "state for Intel VT. For example, the guest maybe running "
6028                         "in big real mode\n"
6029                     "which is not supported on less recent Intel processors."
6030                         "\n\n");
6031         }
6032         ret = -1;
6033         break;
6034     case KVM_EXIT_EXCEPTION:
6035         fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
6036                 run->ex.exception, run->ex.error_code);
6037         ret = -1;
6038         break;
6039     case KVM_EXIT_DEBUG:
6040         DPRINTF("kvm_exit_debug\n");
6041         bql_lock();
6042         ret = kvm_handle_debug(cpu, &run->debug.arch);
6043         bql_unlock();
6044         break;
6045     case KVM_EXIT_HYPERV:
6046         ret = kvm_hv_handle_exit(cpu, &run->hyperv);
6047         break;
6048     case KVM_EXIT_IOAPIC_EOI:
6049         ioapic_eoi_broadcast(run->eoi.vector);
6050         ret = 0;
6051         break;
6052     case KVM_EXIT_X86_BUS_LOCK:
6053         /* already handled in kvm_arch_post_run */
6054         ret = 0;
6055         break;
6056     case KVM_EXIT_NOTIFY:
6057         ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID);
6058         state = KVM_STATE(current_accel());
6059         if (ctx_invalid ||
6060             state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) {
6061             warn_report("KVM internal error: Encountered a notify exit "
6062                         "with invalid context in guest.");
6063             ret = -1;
6064         } else {
6065             warn_report_once("KVM: Encountered a notify exit with valid "
6066                              "context in guest. "
6067                              "The guest could be misbehaving.");
6068             ret = 0;
6069         }
6070         break;
6071     case KVM_EXIT_X86_RDMSR:
6072         /* We only enable MSR filtering, any other exit is bogus */
6073         assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
6074         ret = kvm_handle_rdmsr(cpu, run);
6075         break;
6076     case KVM_EXIT_X86_WRMSR:
6077         /* We only enable MSR filtering, any other exit is bogus */
6078         assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
6079         ret = kvm_handle_wrmsr(cpu, run);
6080         break;
6081 #ifdef CONFIG_XEN_EMU
6082     case KVM_EXIT_XEN:
6083         ret = kvm_xen_handle_exit(cpu, &run->xen);
6084         break;
6085 #endif
6086     case KVM_EXIT_HYPERCALL:
6087         ret = kvm_handle_hypercall(run);
6088         break;
6089     default:
6090         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
6091         ret = -1;
6092         break;
6093     }
6094 
6095     return ret;
6096 }
6097 
6098 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
6099 {
6100     X86CPU *cpu = X86_CPU(cs);
6101     CPUX86State *env = &cpu->env;
6102 
6103     kvm_cpu_synchronize_state(cs);
6104     return !(env->cr[0] & CR0_PE_MASK) ||
6105            ((env->segs[R_CS].selector  & 3) != 3);
6106 }
6107 
6108 void kvm_arch_init_irq_routing(KVMState *s)
6109 {
6110     /* We know at this point that we're using the in-kernel
6111      * irqchip, so we can use irqfds, and on x86 we know
6112      * we can use msi via irqfd and GSI routing.
6113      */
6114     kvm_msi_via_irqfd_allowed = true;
6115     kvm_gsi_routing_allowed = true;
6116 
6117     if (kvm_irqchip_is_split()) {
6118         KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
6119         int i;
6120 
6121         /* If the ioapic is in QEMU and the lapics are in KVM, reserve
6122            MSI routes for signaling interrupts to the local apics. */
6123         for (i = 0; i < IOAPIC_NUM_PINS; i++) {
6124             if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
6125                 error_report("Could not enable split IRQ mode.");
6126                 exit(1);
6127             }
6128         }
6129         kvm_irqchip_commit_route_changes(&c);
6130     }
6131 }
6132 
6133 int kvm_arch_irqchip_create(KVMState *s)
6134 {
6135     int ret;
6136     if (kvm_kernel_irqchip_split()) {
6137         ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
6138         if (ret) {
6139             error_report("Could not enable split irqchip mode: %s",
6140                          strerror(-ret));
6141             exit(1);
6142         } else {
6143             DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
6144             kvm_split_irqchip = true;
6145             return 1;
6146         }
6147     } else {
6148         return 0;
6149     }
6150 }
6151 
6152 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
6153 {
6154     CPUX86State *env;
6155     uint64_t ext_id;
6156 
6157     if (!first_cpu) {
6158         return address;
6159     }
6160     env = &X86_CPU(first_cpu)->env;
6161     if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
6162         return address;
6163     }
6164 
6165     /*
6166      * If the remappable format bit is set, or the upper bits are
6167      * already set in address_hi, or the low extended bits aren't
6168      * there anyway, do nothing.
6169      */
6170     ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
6171     if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
6172         return address;
6173     }
6174 
6175     address &= ~ext_id;
6176     address |= ext_id << 35;
6177     return address;
6178 }
6179 
6180 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
6181                              uint64_t address, uint32_t data, PCIDevice *dev)
6182 {
6183     X86IOMMUState *iommu = x86_iommu_get_default();
6184 
6185     if (iommu) {
6186         X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
6187 
6188         if (class->int_remap) {
6189             int ret;
6190             MSIMessage src, dst;
6191 
6192             src.address = route->u.msi.address_hi;
6193             src.address <<= VTD_MSI_ADDR_HI_SHIFT;
6194             src.address |= route->u.msi.address_lo;
6195             src.data = route->u.msi.data;
6196 
6197             ret = class->int_remap(iommu, &src, &dst, dev ?     \
6198                                    pci_requester_id(dev) :      \
6199                                    X86_IOMMU_SID_INVALID);
6200             if (ret) {
6201                 trace_kvm_x86_fixup_msi_error(route->gsi);
6202                 return 1;
6203             }
6204 
6205             /*
6206              * Handled untranslated compatibility format interrupt with
6207              * extended destination ID in the low bits 11-5. */
6208             dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
6209 
6210             route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
6211             route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
6212             route->u.msi.data = dst.data;
6213             return 0;
6214         }
6215     }
6216 
6217 #ifdef CONFIG_XEN_EMU
6218     if (xen_mode == XEN_EMULATE) {
6219         int handled = xen_evtchn_translate_pirq_msi(route, address, data);
6220 
6221         /*
6222          * If it was a PIRQ and successfully routed (handled == 0) or it was
6223          * an error (handled < 0), return. If it wasn't a PIRQ, keep going.
6224          */
6225         if (handled <= 0) {
6226             return handled;
6227         }
6228     }
6229 #endif
6230 
6231     address = kvm_swizzle_msi_ext_dest_id(address);
6232     route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
6233     route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
6234     return 0;
6235 }
6236 
6237 typedef struct MSIRouteEntry MSIRouteEntry;
6238 
6239 struct MSIRouteEntry {
6240     PCIDevice *dev;             /* Device pointer */
6241     int vector;                 /* MSI/MSIX vector index */
6242     int virq;                   /* Virtual IRQ index */
6243     QLIST_ENTRY(MSIRouteEntry) list;
6244 };
6245 
6246 /* List of used GSI routes */
6247 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
6248     QLIST_HEAD_INITIALIZER(msi_route_list);
6249 
6250 void kvm_update_msi_routes_all(void *private, bool global,
6251                                uint32_t index, uint32_t mask)
6252 {
6253     int cnt = 0, vector;
6254     MSIRouteEntry *entry;
6255     MSIMessage msg;
6256     PCIDevice *dev;
6257 
6258     /* TODO: explicit route update */
6259     QLIST_FOREACH(entry, &msi_route_list, list) {
6260         cnt++;
6261         vector = entry->vector;
6262         dev = entry->dev;
6263         if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
6264             msg = msix_get_message(dev, vector);
6265         } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
6266             msg = msi_get_message(dev, vector);
6267         } else {
6268             /*
6269              * Either MSI/MSIX is disabled for the device, or the
6270              * specific message was masked out.  Skip this one.
6271              */
6272             continue;
6273         }
6274         kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
6275     }
6276     kvm_irqchip_commit_routes(kvm_state);
6277     trace_kvm_x86_update_msi_routes(cnt);
6278 }
6279 
6280 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
6281                                 int vector, PCIDevice *dev)
6282 {
6283     static bool notify_list_inited = false;
6284     MSIRouteEntry *entry;
6285 
6286     if (!dev) {
6287         /* These are (possibly) IOAPIC routes only used for split
6288          * kernel irqchip mode, while what we are housekeeping are
6289          * PCI devices only. */
6290         return 0;
6291     }
6292 
6293     entry = g_new0(MSIRouteEntry, 1);
6294     entry->dev = dev;
6295     entry->vector = vector;
6296     entry->virq = route->gsi;
6297     QLIST_INSERT_HEAD(&msi_route_list, entry, list);
6298 
6299     trace_kvm_x86_add_msi_route(route->gsi);
6300 
6301     if (!notify_list_inited) {
6302         /* For the first time we do add route, add ourselves into
6303          * IOMMU's IEC notify list if needed. */
6304         X86IOMMUState *iommu = x86_iommu_get_default();
6305         if (iommu) {
6306             x86_iommu_iec_register_notifier(iommu,
6307                                             kvm_update_msi_routes_all,
6308                                             NULL);
6309         }
6310         notify_list_inited = true;
6311     }
6312     return 0;
6313 }
6314 
6315 int kvm_arch_release_virq_post(int virq)
6316 {
6317     MSIRouteEntry *entry, *next;
6318     QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
6319         if (entry->virq == virq) {
6320             trace_kvm_x86_remove_msi_route(virq);
6321             QLIST_REMOVE(entry, list);
6322             g_free(entry);
6323             break;
6324         }
6325     }
6326     return 0;
6327 }
6328 
6329 int kvm_arch_msi_data_to_gsi(uint32_t data)
6330 {
6331     abort();
6332 }
6333 
6334 bool kvm_has_waitpkg(void)
6335 {
6336     return has_msr_umwait;
6337 }
6338 
6339 #define ARCH_REQ_XCOMP_GUEST_PERM       0x1025
6340 
6341 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
6342 {
6343     KVMState *s = kvm_state;
6344     uint64_t supported;
6345 
6346     mask &= XSTATE_DYNAMIC_MASK;
6347     if (!mask) {
6348         return;
6349     }
6350     /*
6351      * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
6352      * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
6353      * about them already because they are not supported features.
6354      */
6355     supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
6356     supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
6357     mask &= supported;
6358 
6359     while (mask) {
6360         int bit = ctz64(mask);
6361         int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
6362         if (rc) {
6363             /*
6364              * Older kernel version (<5.17) do not support
6365              * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
6366              * any dynamic feature from kvm_arch_get_supported_cpuid.
6367              */
6368             warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
6369                         "for feature bit %d", bit);
6370         }
6371         mask &= ~BIT_ULL(bit);
6372     }
6373 }
6374 
6375 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp)
6376 {
6377     KVMState *s = KVM_STATE(obj);
6378     return s->notify_vmexit;
6379 }
6380 
6381 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp)
6382 {
6383     KVMState *s = KVM_STATE(obj);
6384 
6385     if (s->fd != -1) {
6386         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
6387         return;
6388     }
6389 
6390     s->notify_vmexit = value;
6391 }
6392 
6393 static void kvm_arch_get_notify_window(Object *obj, Visitor *v,
6394                                        const char *name, void *opaque,
6395                                        Error **errp)
6396 {
6397     KVMState *s = KVM_STATE(obj);
6398     uint32_t value = s->notify_window;
6399 
6400     visit_type_uint32(v, name, &value, errp);
6401 }
6402 
6403 static void kvm_arch_set_notify_window(Object *obj, Visitor *v,
6404                                        const char *name, void *opaque,
6405                                        Error **errp)
6406 {
6407     KVMState *s = KVM_STATE(obj);
6408     uint32_t value;
6409 
6410     if (s->fd != -1) {
6411         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
6412         return;
6413     }
6414 
6415     if (!visit_type_uint32(v, name, &value, errp)) {
6416         return;
6417     }
6418 
6419     s->notify_window = value;
6420 }
6421 
6422 static void kvm_arch_get_xen_version(Object *obj, Visitor *v,
6423                                      const char *name, void *opaque,
6424                                      Error **errp)
6425 {
6426     KVMState *s = KVM_STATE(obj);
6427     uint32_t value = s->xen_version;
6428 
6429     visit_type_uint32(v, name, &value, errp);
6430 }
6431 
6432 static void kvm_arch_set_xen_version(Object *obj, Visitor *v,
6433                                      const char *name, void *opaque,
6434                                      Error **errp)
6435 {
6436     KVMState *s = KVM_STATE(obj);
6437     Error *error = NULL;
6438     uint32_t value;
6439 
6440     visit_type_uint32(v, name, &value, &error);
6441     if (error) {
6442         error_propagate(errp, error);
6443         return;
6444     }
6445 
6446     s->xen_version = value;
6447     if (value && xen_mode == XEN_DISABLED) {
6448         xen_mode = XEN_EMULATE;
6449     }
6450 }
6451 
6452 static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v,
6453                                                const char *name, void *opaque,
6454                                                Error **errp)
6455 {
6456     KVMState *s = KVM_STATE(obj);
6457     uint16_t value = s->xen_gnttab_max_frames;
6458 
6459     visit_type_uint16(v, name, &value, errp);
6460 }
6461 
6462 static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v,
6463                                                const char *name, void *opaque,
6464                                                Error **errp)
6465 {
6466     KVMState *s = KVM_STATE(obj);
6467     Error *error = NULL;
6468     uint16_t value;
6469 
6470     visit_type_uint16(v, name, &value, &error);
6471     if (error) {
6472         error_propagate(errp, error);
6473         return;
6474     }
6475 
6476     s->xen_gnttab_max_frames = value;
6477 }
6478 
6479 static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v,
6480                                              const char *name, void *opaque,
6481                                              Error **errp)
6482 {
6483     KVMState *s = KVM_STATE(obj);
6484     uint16_t value = s->xen_evtchn_max_pirq;
6485 
6486     visit_type_uint16(v, name, &value, errp);
6487 }
6488 
6489 static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v,
6490                                              const char *name, void *opaque,
6491                                              Error **errp)
6492 {
6493     KVMState *s = KVM_STATE(obj);
6494     Error *error = NULL;
6495     uint16_t value;
6496 
6497     visit_type_uint16(v, name, &value, &error);
6498     if (error) {
6499         error_propagate(errp, error);
6500         return;
6501     }
6502 
6503     s->xen_evtchn_max_pirq = value;
6504 }
6505 
6506 void kvm_arch_accel_class_init(ObjectClass *oc)
6507 {
6508     object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption",
6509                                    &NotifyVmexitOption_lookup,
6510                                    kvm_arch_get_notify_vmexit,
6511                                    kvm_arch_set_notify_vmexit);
6512     object_class_property_set_description(oc, "notify-vmexit",
6513                                           "Enable notify VM exit");
6514 
6515     object_class_property_add(oc, "notify-window", "uint32",
6516                               kvm_arch_get_notify_window,
6517                               kvm_arch_set_notify_window,
6518                               NULL, NULL);
6519     object_class_property_set_description(oc, "notify-window",
6520                                           "Clock cycles without an event window "
6521                                           "after which a notification VM exit occurs");
6522 
6523     object_class_property_add(oc, "xen-version", "uint32",
6524                               kvm_arch_get_xen_version,
6525                               kvm_arch_set_xen_version,
6526                               NULL, NULL);
6527     object_class_property_set_description(oc, "xen-version",
6528                                           "Xen version to be emulated "
6529                                           "(in XENVER_version form "
6530                                           "e.g. 0x4000a for 4.10)");
6531 
6532     object_class_property_add(oc, "xen-gnttab-max-frames", "uint16",
6533                               kvm_arch_get_xen_gnttab_max_frames,
6534                               kvm_arch_set_xen_gnttab_max_frames,
6535                               NULL, NULL);
6536     object_class_property_set_description(oc, "xen-gnttab-max-frames",
6537                                           "Maximum number of grant table frames");
6538 
6539     object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16",
6540                               kvm_arch_get_xen_evtchn_max_pirq,
6541                               kvm_arch_set_xen_evtchn_max_pirq,
6542                               NULL, NULL);
6543     object_class_property_set_description(oc, "xen-evtchn-max-pirq",
6544                                           "Maximum number of Xen PIRQs");
6545 }
6546 
6547 void kvm_set_max_apic_id(uint32_t max_apic_id)
6548 {
6549     kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id);
6550 }
6551