1 /* 2 * QEMU KVM support 3 * 4 * Copyright (C) 2006-2008 Qumranet Technologies 5 * Copyright IBM, Corp. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or later. 11 * See the COPYING file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qapi/qapi-events-run-state.h" 17 #include "qapi/error.h" 18 #include "qapi/visitor.h" 19 #include <sys/ioctl.h> 20 #include <sys/utsname.h> 21 #include <sys/syscall.h> 22 23 #include <linux/kvm.h> 24 #include "standard-headers/asm-x86/kvm_para.h" 25 26 #include "cpu.h" 27 #include "host-cpu.h" 28 #include "sysemu/sysemu.h" 29 #include "sysemu/hw_accel.h" 30 #include "sysemu/kvm_int.h" 31 #include "sysemu/runstate.h" 32 #include "kvm_i386.h" 33 #include "sev.h" 34 #include "hyperv.h" 35 #include "hyperv-proto.h" 36 37 #include "exec/gdbstub.h" 38 #include "qemu/host-utils.h" 39 #include "qemu/main-loop.h" 40 #include "qemu/config-file.h" 41 #include "qemu/error-report.h" 42 #include "qemu/memalign.h" 43 #include "hw/i386/x86.h" 44 #include "hw/i386/apic.h" 45 #include "hw/i386/apic_internal.h" 46 #include "hw/i386/apic-msidef.h" 47 #include "hw/i386/intel_iommu.h" 48 #include "hw/i386/x86-iommu.h" 49 #include "hw/i386/e820_memory_layout.h" 50 51 #include "hw/pci/pci.h" 52 #include "hw/pci/msi.h" 53 #include "hw/pci/msix.h" 54 #include "migration/blocker.h" 55 #include "exec/memattrs.h" 56 #include "trace.h" 57 58 #include CONFIG_DEVICES 59 60 //#define DEBUG_KVM 61 62 #ifdef DEBUG_KVM 63 #define DPRINTF(fmt, ...) \ 64 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 65 #else 66 #define DPRINTF(fmt, ...) \ 67 do { } while (0) 68 #endif 69 70 /* From arch/x86/kvm/lapic.h */ 71 #define KVM_APIC_BUS_CYCLE_NS 1 72 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS) 73 74 #define MSR_KVM_WALL_CLOCK 0x11 75 #define MSR_KVM_SYSTEM_TIME 0x12 76 77 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus 78 * 255 kvm_msr_entry structs */ 79 #define MSR_BUF_SIZE 4096 80 81 static void kvm_init_msrs(X86CPU *cpu); 82 83 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 84 KVM_CAP_INFO(SET_TSS_ADDR), 85 KVM_CAP_INFO(EXT_CPUID), 86 KVM_CAP_INFO(MP_STATE), 87 KVM_CAP_LAST_INFO 88 }; 89 90 static bool has_msr_star; 91 static bool has_msr_hsave_pa; 92 static bool has_msr_tsc_aux; 93 static bool has_msr_tsc_adjust; 94 static bool has_msr_tsc_deadline; 95 static bool has_msr_feature_control; 96 static bool has_msr_misc_enable; 97 static bool has_msr_smbase; 98 static bool has_msr_bndcfgs; 99 static int lm_capable_kernel; 100 static bool has_msr_hv_hypercall; 101 static bool has_msr_hv_crash; 102 static bool has_msr_hv_reset; 103 static bool has_msr_hv_vpindex; 104 static bool hv_vpindex_settable; 105 static bool has_msr_hv_runtime; 106 static bool has_msr_hv_synic; 107 static bool has_msr_hv_stimer; 108 static bool has_msr_hv_frequencies; 109 static bool has_msr_hv_reenlightenment; 110 static bool has_msr_hv_syndbg_options; 111 static bool has_msr_xss; 112 static bool has_msr_umwait; 113 static bool has_msr_spec_ctrl; 114 static bool has_tsc_scale_msr; 115 static bool has_msr_tsx_ctrl; 116 static bool has_msr_virt_ssbd; 117 static bool has_msr_smi_count; 118 static bool has_msr_arch_capabs; 119 static bool has_msr_core_capabs; 120 static bool has_msr_vmx_vmfunc; 121 static bool has_msr_ucode_rev; 122 static bool has_msr_vmx_procbased_ctls2; 123 static bool has_msr_perf_capabs; 124 static bool has_msr_pkrs; 125 126 static uint32_t has_architectural_pmu_version; 127 static uint32_t num_architectural_pmu_gp_counters; 128 static uint32_t num_architectural_pmu_fixed_counters; 129 130 static int has_xsave; 131 static int has_xsave2; 132 static int has_xcrs; 133 static int has_pit_state2; 134 static int has_sregs2; 135 static int has_exception_payload; 136 static int has_triple_fault_event; 137 138 static bool has_msr_mcg_ext_ctl; 139 140 static struct kvm_cpuid2 *cpuid_cache; 141 static struct kvm_cpuid2 *hv_cpuid_cache; 142 static struct kvm_msr_list *kvm_feature_msrs; 143 144 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES]; 145 146 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */ 147 static RateLimit bus_lock_ratelimit_ctrl; 148 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value); 149 150 int kvm_has_pit_state2(void) 151 { 152 return has_pit_state2; 153 } 154 155 bool kvm_has_smm(void) 156 { 157 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM); 158 } 159 160 bool kvm_has_adjust_clock_stable(void) 161 { 162 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); 163 164 return (ret & KVM_CLOCK_TSC_STABLE); 165 } 166 167 bool kvm_has_adjust_clock(void) 168 { 169 return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); 170 } 171 172 bool kvm_has_exception_payload(void) 173 { 174 return has_exception_payload; 175 } 176 177 static bool kvm_x2apic_api_set_flags(uint64_t flags) 178 { 179 KVMState *s = KVM_STATE(current_accel()); 180 181 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); 182 } 183 184 #define MEMORIZE(fn, _result) \ 185 ({ \ 186 static bool _memorized; \ 187 \ 188 if (_memorized) { \ 189 return _result; \ 190 } \ 191 _memorized = true; \ 192 _result = fn; \ 193 }) 194 195 static bool has_x2apic_api; 196 197 bool kvm_has_x2apic_api(void) 198 { 199 return has_x2apic_api; 200 } 201 202 bool kvm_enable_x2apic(void) 203 { 204 return MEMORIZE( 205 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | 206 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), 207 has_x2apic_api); 208 } 209 210 bool kvm_hv_vpindex_settable(void) 211 { 212 return hv_vpindex_settable; 213 } 214 215 static int kvm_get_tsc(CPUState *cs) 216 { 217 X86CPU *cpu = X86_CPU(cs); 218 CPUX86State *env = &cpu->env; 219 uint64_t value; 220 int ret; 221 222 if (env->tsc_valid) { 223 return 0; 224 } 225 226 env->tsc_valid = !runstate_is_running(); 227 228 ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value); 229 if (ret < 0) { 230 return ret; 231 } 232 233 env->tsc = value; 234 return 0; 235 } 236 237 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) 238 { 239 kvm_get_tsc(cpu); 240 } 241 242 void kvm_synchronize_all_tsc(void) 243 { 244 CPUState *cpu; 245 246 if (kvm_enabled()) { 247 CPU_FOREACH(cpu) { 248 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); 249 } 250 } 251 } 252 253 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) 254 { 255 struct kvm_cpuid2 *cpuid; 256 int r, size; 257 258 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 259 cpuid = g_malloc0(size); 260 cpuid->nent = max; 261 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); 262 if (r == 0 && cpuid->nent >= max) { 263 r = -E2BIG; 264 } 265 if (r < 0) { 266 if (r == -E2BIG) { 267 g_free(cpuid); 268 return NULL; 269 } else { 270 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", 271 strerror(-r)); 272 exit(1); 273 } 274 } 275 return cpuid; 276 } 277 278 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough 279 * for all entries. 280 */ 281 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) 282 { 283 struct kvm_cpuid2 *cpuid; 284 int max = 1; 285 286 if (cpuid_cache != NULL) { 287 return cpuid_cache; 288 } 289 while ((cpuid = try_get_cpuid(s, max)) == NULL) { 290 max *= 2; 291 } 292 cpuid_cache = cpuid; 293 return cpuid; 294 } 295 296 static bool host_tsx_broken(void) 297 { 298 int family, model, stepping;\ 299 char vendor[CPUID_VENDOR_SZ + 1]; 300 301 host_cpu_vendor_fms(vendor, &family, &model, &stepping); 302 303 /* Check if we are running on a Haswell host known to have broken TSX */ 304 return !strcmp(vendor, CPUID_VENDOR_INTEL) && 305 (family == 6) && 306 ((model == 63 && stepping < 4) || 307 model == 60 || model == 69 || model == 70); 308 } 309 310 /* Returns the value for a specific register on the cpuid entry 311 */ 312 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) 313 { 314 uint32_t ret = 0; 315 switch (reg) { 316 case R_EAX: 317 ret = entry->eax; 318 break; 319 case R_EBX: 320 ret = entry->ebx; 321 break; 322 case R_ECX: 323 ret = entry->ecx; 324 break; 325 case R_EDX: 326 ret = entry->edx; 327 break; 328 } 329 return ret; 330 } 331 332 /* Find matching entry for function/index on kvm_cpuid2 struct 333 */ 334 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, 335 uint32_t function, 336 uint32_t index) 337 { 338 int i; 339 for (i = 0; i < cpuid->nent; ++i) { 340 if (cpuid->entries[i].function == function && 341 cpuid->entries[i].index == index) { 342 return &cpuid->entries[i]; 343 } 344 } 345 /* not found: */ 346 return NULL; 347 } 348 349 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, 350 uint32_t index, int reg) 351 { 352 struct kvm_cpuid2 *cpuid; 353 uint32_t ret = 0; 354 uint32_t cpuid_1_edx; 355 uint64_t bitmask; 356 357 cpuid = get_supported_cpuid(s); 358 359 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); 360 if (entry) { 361 ret = cpuid_entry_get_reg(entry, reg); 362 } 363 364 /* Fixups for the data returned by KVM, below */ 365 366 if (function == 1 && reg == R_EDX) { 367 /* KVM before 2.6.30 misreports the following features */ 368 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; 369 } else if (function == 1 && reg == R_ECX) { 370 /* We can set the hypervisor flag, even if KVM does not return it on 371 * GET_SUPPORTED_CPUID 372 */ 373 ret |= CPUID_EXT_HYPERVISOR; 374 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it 375 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, 376 * and the irqchip is in the kernel. 377 */ 378 if (kvm_irqchip_in_kernel() && 379 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { 380 ret |= CPUID_EXT_TSC_DEADLINE_TIMER; 381 } 382 383 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled 384 * without the in-kernel irqchip 385 */ 386 if (!kvm_irqchip_in_kernel()) { 387 ret &= ~CPUID_EXT_X2APIC; 388 } 389 390 if (enable_cpu_pm) { 391 int disable_exits = kvm_check_extension(s, 392 KVM_CAP_X86_DISABLE_EXITS); 393 394 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) { 395 ret |= CPUID_EXT_MONITOR; 396 } 397 } 398 } else if (function == 6 && reg == R_EAX) { 399 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ 400 } else if (function == 7 && index == 0 && reg == R_EBX) { 401 if (host_tsx_broken()) { 402 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); 403 } 404 } else if (function == 7 && index == 0 && reg == R_EDX) { 405 /* 406 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts. 407 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is 408 * returned by KVM_GET_MSR_INDEX_LIST. 409 */ 410 if (!has_msr_arch_capabs) { 411 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES; 412 } 413 } else if (function == 0xd && index == 0 && 414 (reg == R_EAX || reg == R_EDX)) { 415 /* 416 * The value returned by KVM_GET_SUPPORTED_CPUID does not include 417 * features that still have to be enabled with the arch_prctl 418 * system call. QEMU needs the full value, which is retrieved 419 * with KVM_GET_DEVICE_ATTR. 420 */ 421 struct kvm_device_attr attr = { 422 .group = 0, 423 .attr = KVM_X86_XCOMP_GUEST_SUPP, 424 .addr = (unsigned long) &bitmask 425 }; 426 427 bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES); 428 if (!sys_attr) { 429 return ret; 430 } 431 432 int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr); 433 if (rc < 0) { 434 if (rc != -ENXIO) { 435 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) " 436 "error: %d", rc); 437 } 438 return ret; 439 } 440 ret = (reg == R_EAX) ? bitmask : bitmask >> 32; 441 } else if (function == 0x80000001 && reg == R_ECX) { 442 /* 443 * It's safe to enable TOPOEXT even if it's not returned by 444 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows 445 * us to keep CPU models including TOPOEXT runnable on older kernels. 446 */ 447 ret |= CPUID_EXT3_TOPOEXT; 448 } else if (function == 0x80000001 && reg == R_EDX) { 449 /* On Intel, kvm returns cpuid according to the Intel spec, 450 * so add missing bits according to the AMD spec: 451 */ 452 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); 453 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; 454 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { 455 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't 456 * be enabled without the in-kernel irqchip 457 */ 458 if (!kvm_irqchip_in_kernel()) { 459 ret &= ~(1U << KVM_FEATURE_PV_UNHALT); 460 } 461 if (kvm_irqchip_is_split()) { 462 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID; 463 } 464 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) { 465 ret |= 1U << KVM_HINTS_REALTIME; 466 } 467 468 return ret; 469 } 470 471 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index) 472 { 473 struct { 474 struct kvm_msrs info; 475 struct kvm_msr_entry entries[1]; 476 } msr_data = {}; 477 uint64_t value; 478 uint32_t ret, can_be_one, must_be_one; 479 480 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */ 481 return 0; 482 } 483 484 /* Check if requested MSR is supported feature MSR */ 485 int i; 486 for (i = 0; i < kvm_feature_msrs->nmsrs; i++) 487 if (kvm_feature_msrs->indices[i] == index) { 488 break; 489 } 490 if (i == kvm_feature_msrs->nmsrs) { 491 return 0; /* if the feature MSR is not supported, simply return 0 */ 492 } 493 494 msr_data.info.nmsrs = 1; 495 msr_data.entries[0].index = index; 496 497 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data); 498 if (ret != 1) { 499 error_report("KVM get MSR (index=0x%x) feature failed, %s", 500 index, strerror(-ret)); 501 exit(1); 502 } 503 504 value = msr_data.entries[0].data; 505 switch (index) { 506 case MSR_IA32_VMX_PROCBASED_CTLS2: 507 if (!has_msr_vmx_procbased_ctls2) { 508 /* KVM forgot to add these bits for some time, do this ourselves. */ 509 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) & 510 CPUID_XSAVE_XSAVES) { 511 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32; 512 } 513 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) & 514 CPUID_EXT_RDRAND) { 515 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32; 516 } 517 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 518 CPUID_7_0_EBX_INVPCID) { 519 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32; 520 } 521 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 522 CPUID_7_0_EBX_RDSEED) { 523 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32; 524 } 525 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) & 526 CPUID_EXT2_RDTSCP) { 527 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32; 528 } 529 } 530 /* fall through */ 531 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 532 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 533 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 534 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 535 /* 536 * Return true for bits that can be one, but do not have to be one. 537 * The SDM tells us which bits could have a "must be one" setting, 538 * so we can do the opposite transformation in make_vmx_msr_value. 539 */ 540 must_be_one = (uint32_t)value; 541 can_be_one = (uint32_t)(value >> 32); 542 return can_be_one & ~must_be_one; 543 544 default: 545 return value; 546 } 547 } 548 549 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, 550 int *max_banks) 551 { 552 int r; 553 554 r = kvm_check_extension(s, KVM_CAP_MCE); 555 if (r > 0) { 556 *max_banks = r; 557 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); 558 } 559 return -ENOSYS; 560 } 561 562 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) 563 { 564 CPUState *cs = CPU(cpu); 565 CPUX86State *env = &cpu->env; 566 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | 567 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; 568 uint64_t mcg_status = MCG_STATUS_MCIP; 569 int flags = 0; 570 571 if (code == BUS_MCEERR_AR) { 572 status |= MCI_STATUS_AR | 0x134; 573 mcg_status |= MCG_STATUS_RIPV | MCG_STATUS_EIPV; 574 } else { 575 status |= 0xc0; 576 mcg_status |= MCG_STATUS_RIPV; 577 } 578 579 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; 580 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the 581 * guest kernel back into env->mcg_ext_ctl. 582 */ 583 cpu_synchronize_state(cs); 584 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { 585 mcg_status |= MCG_STATUS_LMCE; 586 flags = 0; 587 } 588 589 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, 590 (MCM_ADDR_PHYS << 6) | 0xc, flags); 591 } 592 593 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar) 594 { 595 MemoryFailureFlags mff = {.action_required = ar, .recursive = false}; 596 597 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action, 598 &mff); 599 } 600 601 static void hardware_memory_error(void *host_addr) 602 { 603 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true); 604 error_report("QEMU got Hardware memory error at addr %p", host_addr); 605 exit(1); 606 } 607 608 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) 609 { 610 X86CPU *cpu = X86_CPU(c); 611 CPUX86State *env = &cpu->env; 612 ram_addr_t ram_addr; 613 hwaddr paddr; 614 615 /* If we get an action required MCE, it has been injected by KVM 616 * while the VM was running. An action optional MCE instead should 617 * be coming from the main thread, which qemu_init_sigbus identifies 618 * as the "early kill" thread. 619 */ 620 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); 621 622 if ((env->mcg_cap & MCG_SER_P) && addr) { 623 ram_addr = qemu_ram_addr_from_host(addr); 624 if (ram_addr != RAM_ADDR_INVALID && 625 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { 626 kvm_hwpoison_page_add(ram_addr); 627 kvm_mce_inject(cpu, paddr, code); 628 629 /* 630 * Use different logging severity based on error type. 631 * If there is additional MCE reporting on the hypervisor, QEMU VA 632 * could be another source to identify the PA and MCE details. 633 */ 634 if (code == BUS_MCEERR_AR) { 635 error_report("Guest MCE Memory Error at QEMU addr %p and " 636 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 637 addr, paddr, "BUS_MCEERR_AR"); 638 } else { 639 warn_report("Guest MCE Memory Error at QEMU addr %p and " 640 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 641 addr, paddr, "BUS_MCEERR_AO"); 642 } 643 644 return; 645 } 646 647 if (code == BUS_MCEERR_AO) { 648 warn_report("Hardware memory error at addr %p of type %s " 649 "for memory used by QEMU itself instead of guest system!", 650 addr, "BUS_MCEERR_AO"); 651 } 652 } 653 654 if (code == BUS_MCEERR_AR) { 655 hardware_memory_error(addr); 656 } 657 658 /* Hope we are lucky for AO MCE, just notify a event */ 659 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false); 660 } 661 662 static void kvm_reset_exception(CPUX86State *env) 663 { 664 env->exception_nr = -1; 665 env->exception_pending = 0; 666 env->exception_injected = 0; 667 env->exception_has_payload = false; 668 env->exception_payload = 0; 669 } 670 671 static void kvm_queue_exception(CPUX86State *env, 672 int32_t exception_nr, 673 uint8_t exception_has_payload, 674 uint64_t exception_payload) 675 { 676 assert(env->exception_nr == -1); 677 assert(!env->exception_pending); 678 assert(!env->exception_injected); 679 assert(!env->exception_has_payload); 680 681 env->exception_nr = exception_nr; 682 683 if (has_exception_payload) { 684 env->exception_pending = 1; 685 686 env->exception_has_payload = exception_has_payload; 687 env->exception_payload = exception_payload; 688 } else { 689 env->exception_injected = 1; 690 691 if (exception_nr == EXCP01_DB) { 692 assert(exception_has_payload); 693 env->dr[6] = exception_payload; 694 } else if (exception_nr == EXCP0E_PAGE) { 695 assert(exception_has_payload); 696 env->cr[2] = exception_payload; 697 } else { 698 assert(!exception_has_payload); 699 } 700 } 701 } 702 703 static int kvm_inject_mce_oldstyle(X86CPU *cpu) 704 { 705 CPUX86State *env = &cpu->env; 706 707 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) { 708 unsigned int bank, bank_num = env->mcg_cap & 0xff; 709 struct kvm_x86_mce mce; 710 711 kvm_reset_exception(env); 712 713 /* 714 * There must be at least one bank in use if an MCE is pending. 715 * Find it and use its values for the event injection. 716 */ 717 for (bank = 0; bank < bank_num; bank++) { 718 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { 719 break; 720 } 721 } 722 assert(bank < bank_num); 723 724 mce.bank = bank; 725 mce.status = env->mce_banks[bank * 4 + 1]; 726 mce.mcg_status = env->mcg_status; 727 mce.addr = env->mce_banks[bank * 4 + 2]; 728 mce.misc = env->mce_banks[bank * 4 + 3]; 729 730 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); 731 } 732 return 0; 733 } 734 735 static void cpu_update_state(void *opaque, bool running, RunState state) 736 { 737 CPUX86State *env = opaque; 738 739 if (running) { 740 env->tsc_valid = false; 741 } 742 } 743 744 unsigned long kvm_arch_vcpu_id(CPUState *cs) 745 { 746 X86CPU *cpu = X86_CPU(cs); 747 return cpu->apic_id; 748 } 749 750 #ifndef KVM_CPUID_SIGNATURE_NEXT 751 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 752 #endif 753 754 static bool hyperv_enabled(X86CPU *cpu) 755 { 756 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 && 757 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) || 758 cpu->hyperv_features || cpu->hyperv_passthrough); 759 } 760 761 /* 762 * Check whether target_freq is within conservative 763 * ntp correctable bounds (250ppm) of freq 764 */ 765 static inline bool freq_within_bounds(int freq, int target_freq) 766 { 767 int max_freq = freq + (freq * 250 / 1000000); 768 int min_freq = freq - (freq * 250 / 1000000); 769 770 if (target_freq >= min_freq && target_freq <= max_freq) { 771 return true; 772 } 773 774 return false; 775 } 776 777 static int kvm_arch_set_tsc_khz(CPUState *cs) 778 { 779 X86CPU *cpu = X86_CPU(cs); 780 CPUX86State *env = &cpu->env; 781 int r, cur_freq; 782 bool set_ioctl = false; 783 784 if (!env->tsc_khz) { 785 return 0; 786 } 787 788 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 789 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP; 790 791 /* 792 * If TSC scaling is supported, attempt to set TSC frequency. 793 */ 794 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) { 795 set_ioctl = true; 796 } 797 798 /* 799 * If desired TSC frequency is within bounds of NTP correction, 800 * attempt to set TSC frequency. 801 */ 802 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) { 803 set_ioctl = true; 804 } 805 806 r = set_ioctl ? 807 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : 808 -ENOTSUP; 809 810 if (r < 0) { 811 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current 812 * TSC frequency doesn't match the one we want. 813 */ 814 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 815 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 816 -ENOTSUP; 817 if (cur_freq <= 0 || cur_freq != env->tsc_khz) { 818 warn_report("TSC frequency mismatch between " 819 "VM (%" PRId64 " kHz) and host (%d kHz), " 820 "and TSC scaling unavailable", 821 env->tsc_khz, cur_freq); 822 return r; 823 } 824 } 825 826 return 0; 827 } 828 829 static bool tsc_is_stable_and_known(CPUX86State *env) 830 { 831 if (!env->tsc_khz) { 832 return false; 833 } 834 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) 835 || env->user_tsc_khz; 836 } 837 838 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1) 839 840 static struct { 841 const char *desc; 842 struct { 843 uint32_t func; 844 int reg; 845 uint32_t bits; 846 } flags[2]; 847 uint64_t dependencies; 848 } kvm_hyperv_properties[] = { 849 [HYPERV_FEAT_RELAXED] = { 850 .desc = "relaxed timing (hv-relaxed)", 851 .flags = { 852 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 853 .bits = HV_RELAXED_TIMING_RECOMMENDED} 854 } 855 }, 856 [HYPERV_FEAT_VAPIC] = { 857 .desc = "virtual APIC (hv-vapic)", 858 .flags = { 859 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 860 .bits = HV_APIC_ACCESS_AVAILABLE} 861 } 862 }, 863 [HYPERV_FEAT_TIME] = { 864 .desc = "clocksources (hv-time)", 865 .flags = { 866 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 867 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE} 868 } 869 }, 870 [HYPERV_FEAT_CRASH] = { 871 .desc = "crash MSRs (hv-crash)", 872 .flags = { 873 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 874 .bits = HV_GUEST_CRASH_MSR_AVAILABLE} 875 } 876 }, 877 [HYPERV_FEAT_RESET] = { 878 .desc = "reset MSR (hv-reset)", 879 .flags = { 880 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 881 .bits = HV_RESET_AVAILABLE} 882 } 883 }, 884 [HYPERV_FEAT_VPINDEX] = { 885 .desc = "VP_INDEX MSR (hv-vpindex)", 886 .flags = { 887 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 888 .bits = HV_VP_INDEX_AVAILABLE} 889 } 890 }, 891 [HYPERV_FEAT_RUNTIME] = { 892 .desc = "VP_RUNTIME MSR (hv-runtime)", 893 .flags = { 894 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 895 .bits = HV_VP_RUNTIME_AVAILABLE} 896 } 897 }, 898 [HYPERV_FEAT_SYNIC] = { 899 .desc = "synthetic interrupt controller (hv-synic)", 900 .flags = { 901 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 902 .bits = HV_SYNIC_AVAILABLE} 903 } 904 }, 905 [HYPERV_FEAT_STIMER] = { 906 .desc = "synthetic timers (hv-stimer)", 907 .flags = { 908 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 909 .bits = HV_SYNTIMERS_AVAILABLE} 910 }, 911 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME) 912 }, 913 [HYPERV_FEAT_FREQUENCIES] = { 914 .desc = "frequency MSRs (hv-frequencies)", 915 .flags = { 916 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 917 .bits = HV_ACCESS_FREQUENCY_MSRS}, 918 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 919 .bits = HV_FREQUENCY_MSRS_AVAILABLE} 920 } 921 }, 922 [HYPERV_FEAT_REENLIGHTENMENT] = { 923 .desc = "reenlightenment MSRs (hv-reenlightenment)", 924 .flags = { 925 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 926 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL} 927 } 928 }, 929 [HYPERV_FEAT_TLBFLUSH] = { 930 .desc = "paravirtualized TLB flush (hv-tlbflush)", 931 .flags = { 932 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 933 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED | 934 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 935 }, 936 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 937 }, 938 [HYPERV_FEAT_EVMCS] = { 939 .desc = "enlightened VMCS (hv-evmcs)", 940 .flags = { 941 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 942 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED} 943 }, 944 .dependencies = BIT(HYPERV_FEAT_VAPIC) 945 }, 946 [HYPERV_FEAT_IPI] = { 947 .desc = "paravirtualized IPI (hv-ipi)", 948 .flags = { 949 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 950 .bits = HV_CLUSTER_IPI_RECOMMENDED | 951 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 952 }, 953 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 954 }, 955 [HYPERV_FEAT_STIMER_DIRECT] = { 956 .desc = "direct mode synthetic timers (hv-stimer-direct)", 957 .flags = { 958 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 959 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE} 960 }, 961 .dependencies = BIT(HYPERV_FEAT_STIMER) 962 }, 963 [HYPERV_FEAT_AVIC] = { 964 .desc = "AVIC/APICv support (hv-avic/hv-apicv)", 965 .flags = { 966 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 967 .bits = HV_DEPRECATING_AEOI_RECOMMENDED} 968 } 969 }, 970 #ifdef CONFIG_SYNDBG 971 [HYPERV_FEAT_SYNDBG] = { 972 .desc = "Enable synthetic kernel debugger channel (hv-syndbg)", 973 .flags = { 974 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 975 .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE} 976 }, 977 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED) 978 }, 979 #endif 980 [HYPERV_FEAT_MSR_BITMAP] = { 981 .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)", 982 .flags = { 983 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX, 984 .bits = HV_NESTED_MSR_BITMAP} 985 } 986 }, 987 [HYPERV_FEAT_XMM_INPUT] = { 988 .desc = "XMM fast hypercall input (hv-xmm-input)", 989 .flags = { 990 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 991 .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE} 992 } 993 }, 994 [HYPERV_FEAT_TLBFLUSH_EXT] = { 995 .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)", 996 .flags = { 997 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 998 .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE} 999 }, 1000 .dependencies = BIT(HYPERV_FEAT_TLBFLUSH) 1001 }, 1002 [HYPERV_FEAT_TLBFLUSH_DIRECT] = { 1003 .desc = "direct TLB flush (hv-tlbflush-direct)", 1004 .flags = { 1005 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX, 1006 .bits = HV_NESTED_DIRECT_FLUSH} 1007 }, 1008 .dependencies = BIT(HYPERV_FEAT_VAPIC) 1009 }, 1010 }; 1011 1012 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max, 1013 bool do_sys_ioctl) 1014 { 1015 struct kvm_cpuid2 *cpuid; 1016 int r, size; 1017 1018 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 1019 cpuid = g_malloc0(size); 1020 cpuid->nent = max; 1021 1022 if (do_sys_ioctl) { 1023 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1024 } else { 1025 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1026 } 1027 if (r == 0 && cpuid->nent >= max) { 1028 r = -E2BIG; 1029 } 1030 if (r < 0) { 1031 if (r == -E2BIG) { 1032 g_free(cpuid); 1033 return NULL; 1034 } else { 1035 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n", 1036 strerror(-r)); 1037 exit(1); 1038 } 1039 } 1040 return cpuid; 1041 } 1042 1043 /* 1044 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough 1045 * for all entries. 1046 */ 1047 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs) 1048 { 1049 struct kvm_cpuid2 *cpuid; 1050 /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */ 1051 int max = 11; 1052 int i; 1053 bool do_sys_ioctl; 1054 1055 do_sys_ioctl = 1056 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0; 1057 1058 /* 1059 * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is 1060 * unsupported, kvm_hyperv_expand_features() checks for that. 1061 */ 1062 assert(do_sys_ioctl || cs->kvm_state); 1063 1064 /* 1065 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with 1066 * -E2BIG, however, it doesn't report back the right size. Keep increasing 1067 * it and re-trying until we succeed. 1068 */ 1069 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) { 1070 max++; 1071 } 1072 1073 /* 1074 * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before 1075 * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the 1076 * information early, just check for the capability and set the bit 1077 * manually. 1078 */ 1079 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state, 1080 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1081 for (i = 0; i < cpuid->nent; i++) { 1082 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) { 1083 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1084 } 1085 } 1086 } 1087 1088 return cpuid; 1089 } 1090 1091 /* 1092 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature 1093 * leaves from KVM_CAP_HYPERV* and present MSRs data. 1094 */ 1095 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs) 1096 { 1097 X86CPU *cpu = X86_CPU(cs); 1098 struct kvm_cpuid2 *cpuid; 1099 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm; 1100 1101 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */ 1102 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries)); 1103 cpuid->nent = 2; 1104 1105 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */ 1106 entry_feat = &cpuid->entries[0]; 1107 entry_feat->function = HV_CPUID_FEATURES; 1108 1109 entry_recomm = &cpuid->entries[1]; 1110 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO; 1111 entry_recomm->ebx = cpu->hyperv_spinlock_attempts; 1112 1113 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) { 1114 entry_feat->eax |= HV_HYPERCALL_AVAILABLE; 1115 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE; 1116 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1117 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED; 1118 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED; 1119 } 1120 1121 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { 1122 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE; 1123 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE; 1124 } 1125 1126 if (has_msr_hv_frequencies) { 1127 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS; 1128 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE; 1129 } 1130 1131 if (has_msr_hv_crash) { 1132 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE; 1133 } 1134 1135 if (has_msr_hv_reenlightenment) { 1136 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL; 1137 } 1138 1139 if (has_msr_hv_reset) { 1140 entry_feat->eax |= HV_RESET_AVAILABLE; 1141 } 1142 1143 if (has_msr_hv_vpindex) { 1144 entry_feat->eax |= HV_VP_INDEX_AVAILABLE; 1145 } 1146 1147 if (has_msr_hv_runtime) { 1148 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE; 1149 } 1150 1151 if (has_msr_hv_synic) { 1152 unsigned int cap = cpu->hyperv_synic_kvm_only ? 1153 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1154 1155 if (kvm_check_extension(cs->kvm_state, cap) > 0) { 1156 entry_feat->eax |= HV_SYNIC_AVAILABLE; 1157 } 1158 } 1159 1160 if (has_msr_hv_stimer) { 1161 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE; 1162 } 1163 1164 if (has_msr_hv_syndbg_options) { 1165 entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE; 1166 entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE; 1167 entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED; 1168 } 1169 1170 if (kvm_check_extension(cs->kvm_state, 1171 KVM_CAP_HYPERV_TLBFLUSH) > 0) { 1172 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED; 1173 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1174 } 1175 1176 if (kvm_check_extension(cs->kvm_state, 1177 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1178 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1179 } 1180 1181 if (kvm_check_extension(cs->kvm_state, 1182 KVM_CAP_HYPERV_SEND_IPI) > 0) { 1183 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED; 1184 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1185 } 1186 1187 return cpuid; 1188 } 1189 1190 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg) 1191 { 1192 struct kvm_cpuid_entry2 *entry; 1193 struct kvm_cpuid2 *cpuid; 1194 1195 if (hv_cpuid_cache) { 1196 cpuid = hv_cpuid_cache; 1197 } else { 1198 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) { 1199 cpuid = get_supported_hv_cpuid(cs); 1200 } else { 1201 /* 1202 * 'cs->kvm_state' may be NULL when Hyper-V features are expanded 1203 * before KVM context is created but this is only done when 1204 * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies 1205 * KVM_CAP_HYPERV_CPUID. 1206 */ 1207 assert(cs->kvm_state); 1208 1209 cpuid = get_supported_hv_cpuid_legacy(cs); 1210 } 1211 hv_cpuid_cache = cpuid; 1212 } 1213 1214 if (!cpuid) { 1215 return 0; 1216 } 1217 1218 entry = cpuid_find_entry(cpuid, func, 0); 1219 if (!entry) { 1220 return 0; 1221 } 1222 1223 return cpuid_entry_get_reg(entry, reg); 1224 } 1225 1226 static bool hyperv_feature_supported(CPUState *cs, int feature) 1227 { 1228 uint32_t func, bits; 1229 int i, reg; 1230 1231 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) { 1232 1233 func = kvm_hyperv_properties[feature].flags[i].func; 1234 reg = kvm_hyperv_properties[feature].flags[i].reg; 1235 bits = kvm_hyperv_properties[feature].flags[i].bits; 1236 1237 if (!func) { 1238 continue; 1239 } 1240 1241 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) { 1242 return false; 1243 } 1244 } 1245 1246 return true; 1247 } 1248 1249 /* Checks that all feature dependencies are enabled */ 1250 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp) 1251 { 1252 uint64_t deps; 1253 int dep_feat; 1254 1255 deps = kvm_hyperv_properties[feature].dependencies; 1256 while (deps) { 1257 dep_feat = ctz64(deps); 1258 if (!(hyperv_feat_enabled(cpu, dep_feat))) { 1259 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1260 kvm_hyperv_properties[feature].desc, 1261 kvm_hyperv_properties[dep_feat].desc); 1262 return false; 1263 } 1264 deps &= ~(1ull << dep_feat); 1265 } 1266 1267 return true; 1268 } 1269 1270 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg) 1271 { 1272 X86CPU *cpu = X86_CPU(cs); 1273 uint32_t r = 0; 1274 int i, j; 1275 1276 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) { 1277 if (!hyperv_feat_enabled(cpu, i)) { 1278 continue; 1279 } 1280 1281 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) { 1282 if (kvm_hyperv_properties[i].flags[j].func != func) { 1283 continue; 1284 } 1285 if (kvm_hyperv_properties[i].flags[j].reg != reg) { 1286 continue; 1287 } 1288 1289 r |= kvm_hyperv_properties[i].flags[j].bits; 1290 } 1291 } 1292 1293 /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */ 1294 if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) { 1295 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1296 r |= DEFAULT_EVMCS_VERSION; 1297 } 1298 } 1299 1300 return r; 1301 } 1302 1303 /* 1304 * Expand Hyper-V CPU features. In partucular, check that all the requested 1305 * features are supported by the host and the sanity of the configuration 1306 * (that all the required dependencies are included). Also, this takes care 1307 * of 'hv_passthrough' mode and fills the environment with all supported 1308 * Hyper-V features. 1309 */ 1310 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp) 1311 { 1312 CPUState *cs = CPU(cpu); 1313 Error *local_err = NULL; 1314 int feat; 1315 1316 if (!hyperv_enabled(cpu)) 1317 return true; 1318 1319 /* 1320 * When kvm_hyperv_expand_features is called at CPU feature expansion 1321 * time per-CPU kvm_state is not available yet so we can only proceed 1322 * when KVM_CAP_SYS_HYPERV_CPUID is supported. 1323 */ 1324 if (!cs->kvm_state && 1325 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID)) 1326 return true; 1327 1328 if (cpu->hyperv_passthrough) { 1329 cpu->hyperv_vendor_id[0] = 1330 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX); 1331 cpu->hyperv_vendor_id[1] = 1332 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX); 1333 cpu->hyperv_vendor_id[2] = 1334 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX); 1335 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor, 1336 sizeof(cpu->hyperv_vendor_id) + 1); 1337 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id, 1338 sizeof(cpu->hyperv_vendor_id)); 1339 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0; 1340 1341 cpu->hyperv_interface_id[0] = 1342 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX); 1343 cpu->hyperv_interface_id[1] = 1344 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX); 1345 cpu->hyperv_interface_id[2] = 1346 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX); 1347 cpu->hyperv_interface_id[3] = 1348 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX); 1349 1350 cpu->hyperv_ver_id_build = 1351 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX); 1352 cpu->hyperv_ver_id_major = 1353 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16; 1354 cpu->hyperv_ver_id_minor = 1355 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff; 1356 cpu->hyperv_ver_id_sp = 1357 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX); 1358 cpu->hyperv_ver_id_sb = 1359 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24; 1360 cpu->hyperv_ver_id_sn = 1361 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff; 1362 1363 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, 1364 R_EAX); 1365 cpu->hyperv_limits[0] = 1366 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX); 1367 cpu->hyperv_limits[1] = 1368 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX); 1369 cpu->hyperv_limits[2] = 1370 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX); 1371 1372 cpu->hyperv_spinlock_attempts = 1373 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX); 1374 1375 /* 1376 * Mark feature as enabled in 'cpu->hyperv_features' as 1377 * hv_build_cpuid_leaf() uses this info to build guest CPUIDs. 1378 */ 1379 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1380 if (hyperv_feature_supported(cs, feat)) { 1381 cpu->hyperv_features |= BIT(feat); 1382 } 1383 } 1384 } else { 1385 /* Check features availability and dependencies */ 1386 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1387 /* If the feature was not requested skip it. */ 1388 if (!hyperv_feat_enabled(cpu, feat)) { 1389 continue; 1390 } 1391 1392 /* Check if the feature is supported by KVM */ 1393 if (!hyperv_feature_supported(cs, feat)) { 1394 error_setg(errp, "Hyper-V %s is not supported by kernel", 1395 kvm_hyperv_properties[feat].desc); 1396 return false; 1397 } 1398 1399 /* Check dependencies */ 1400 if (!hv_feature_check_deps(cpu, feat, &local_err)) { 1401 error_propagate(errp, local_err); 1402 return false; 1403 } 1404 } 1405 } 1406 1407 /* Additional dependencies not covered by kvm_hyperv_properties[] */ 1408 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1409 !cpu->hyperv_synic_kvm_only && 1410 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) { 1411 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1412 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc, 1413 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc); 1414 return false; 1415 } 1416 1417 return true; 1418 } 1419 1420 /* 1421 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent. 1422 */ 1423 static int hyperv_fill_cpuids(CPUState *cs, 1424 struct kvm_cpuid_entry2 *cpuid_ent) 1425 { 1426 X86CPU *cpu = X86_CPU(cs); 1427 struct kvm_cpuid_entry2 *c; 1428 uint32_t signature[3]; 1429 uint32_t cpuid_i = 0, max_cpuid_leaf = 0; 1430 uint32_t nested_eax = 1431 hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX); 1432 1433 max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES : 1434 HV_CPUID_IMPLEMENT_LIMITS; 1435 1436 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) { 1437 max_cpuid_leaf = 1438 MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES); 1439 } 1440 1441 c = &cpuid_ent[cpuid_i++]; 1442 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS; 1443 c->eax = max_cpuid_leaf; 1444 c->ebx = cpu->hyperv_vendor_id[0]; 1445 c->ecx = cpu->hyperv_vendor_id[1]; 1446 c->edx = cpu->hyperv_vendor_id[2]; 1447 1448 c = &cpuid_ent[cpuid_i++]; 1449 c->function = HV_CPUID_INTERFACE; 1450 c->eax = cpu->hyperv_interface_id[0]; 1451 c->ebx = cpu->hyperv_interface_id[1]; 1452 c->ecx = cpu->hyperv_interface_id[2]; 1453 c->edx = cpu->hyperv_interface_id[3]; 1454 1455 c = &cpuid_ent[cpuid_i++]; 1456 c->function = HV_CPUID_VERSION; 1457 c->eax = cpu->hyperv_ver_id_build; 1458 c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 | 1459 cpu->hyperv_ver_id_minor; 1460 c->ecx = cpu->hyperv_ver_id_sp; 1461 c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 | 1462 (cpu->hyperv_ver_id_sn & 0xffffff); 1463 1464 c = &cpuid_ent[cpuid_i++]; 1465 c->function = HV_CPUID_FEATURES; 1466 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX); 1467 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX); 1468 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX); 1469 1470 /* Unconditionally required with any Hyper-V enlightenment */ 1471 c->eax |= HV_HYPERCALL_AVAILABLE; 1472 1473 /* SynIC and Vmbus devices require messages/signals hypercalls */ 1474 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1475 !cpu->hyperv_synic_kvm_only) { 1476 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS; 1477 } 1478 1479 1480 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */ 1481 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1482 1483 c = &cpuid_ent[cpuid_i++]; 1484 c->function = HV_CPUID_ENLIGHTMENT_INFO; 1485 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX); 1486 c->ebx = cpu->hyperv_spinlock_attempts; 1487 1488 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) && 1489 !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) { 1490 c->eax |= HV_APIC_ACCESS_RECOMMENDED; 1491 } 1492 1493 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) { 1494 c->eax |= HV_NO_NONARCH_CORESHARING; 1495 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) { 1496 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) & 1497 HV_NO_NONARCH_CORESHARING; 1498 } 1499 1500 c = &cpuid_ent[cpuid_i++]; 1501 c->function = HV_CPUID_IMPLEMENT_LIMITS; 1502 c->eax = cpu->hv_max_vps; 1503 c->ebx = cpu->hyperv_limits[0]; 1504 c->ecx = cpu->hyperv_limits[1]; 1505 c->edx = cpu->hyperv_limits[2]; 1506 1507 if (nested_eax) { 1508 uint32_t function; 1509 1510 /* Create zeroed 0x40000006..0x40000009 leaves */ 1511 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1; 1512 function < HV_CPUID_NESTED_FEATURES; function++) { 1513 c = &cpuid_ent[cpuid_i++]; 1514 c->function = function; 1515 } 1516 1517 c = &cpuid_ent[cpuid_i++]; 1518 c->function = HV_CPUID_NESTED_FEATURES; 1519 c->eax = nested_eax; 1520 } 1521 1522 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) { 1523 c = &cpuid_ent[cpuid_i++]; 1524 c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS; 1525 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ? 1526 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS; 1527 memcpy(signature, "Microsoft VS", 12); 1528 c->eax = 0; 1529 c->ebx = signature[0]; 1530 c->ecx = signature[1]; 1531 c->edx = signature[2]; 1532 1533 c = &cpuid_ent[cpuid_i++]; 1534 c->function = HV_CPUID_SYNDBG_INTERFACE; 1535 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12); 1536 c->eax = signature[0]; 1537 c->ebx = 0; 1538 c->ecx = 0; 1539 c->edx = 0; 1540 1541 c = &cpuid_ent[cpuid_i++]; 1542 c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES; 1543 c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING; 1544 c->ebx = 0; 1545 c->ecx = 0; 1546 c->edx = 0; 1547 } 1548 1549 return cpuid_i; 1550 } 1551 1552 static Error *hv_passthrough_mig_blocker; 1553 static Error *hv_no_nonarch_cs_mig_blocker; 1554 1555 /* Checks that the exposed eVMCS version range is supported by KVM */ 1556 static bool evmcs_version_supported(uint16_t evmcs_version, 1557 uint16_t supported_evmcs_version) 1558 { 1559 uint8_t min_version = evmcs_version & 0xff; 1560 uint8_t max_version = evmcs_version >> 8; 1561 uint8_t min_supported_version = supported_evmcs_version & 0xff; 1562 uint8_t max_supported_version = supported_evmcs_version >> 8; 1563 1564 return (min_version >= min_supported_version) && 1565 (max_version <= max_supported_version); 1566 } 1567 1568 static int hyperv_init_vcpu(X86CPU *cpu) 1569 { 1570 CPUState *cs = CPU(cpu); 1571 Error *local_err = NULL; 1572 int ret; 1573 1574 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) { 1575 error_setg(&hv_passthrough_mig_blocker, 1576 "'hv-passthrough' CPU flag prevents migration, use explicit" 1577 " set of hv-* flags instead"); 1578 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err); 1579 if (ret < 0) { 1580 error_report_err(local_err); 1581 return ret; 1582 } 1583 } 1584 1585 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO && 1586 hv_no_nonarch_cs_mig_blocker == NULL) { 1587 error_setg(&hv_no_nonarch_cs_mig_blocker, 1588 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration" 1589 " use explicit 'hv-no-nonarch-coresharing=on' instead (but" 1590 " make sure SMT is disabled and/or that vCPUs are properly" 1591 " pinned)"); 1592 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err); 1593 if (ret < 0) { 1594 error_report_err(local_err); 1595 return ret; 1596 } 1597 } 1598 1599 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) { 1600 /* 1601 * the kernel doesn't support setting vp_index; assert that its value 1602 * is in sync 1603 */ 1604 uint64_t value; 1605 1606 ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value); 1607 if (ret < 0) { 1608 return ret; 1609 } 1610 1611 if (value != hyperv_vp_index(CPU(cpu))) { 1612 error_report("kernel's vp_index != QEMU's vp_index"); 1613 return -ENXIO; 1614 } 1615 } 1616 1617 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 1618 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ? 1619 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1620 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0); 1621 if (ret < 0) { 1622 error_report("failed to turn on HyperV SynIC in KVM: %s", 1623 strerror(-ret)); 1624 return ret; 1625 } 1626 1627 if (!cpu->hyperv_synic_kvm_only) { 1628 ret = hyperv_x86_synic_add(cpu); 1629 if (ret < 0) { 1630 error_report("failed to create HyperV SynIC: %s", 1631 strerror(-ret)); 1632 return ret; 1633 } 1634 } 1635 } 1636 1637 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1638 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION; 1639 uint16_t supported_evmcs_version; 1640 1641 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0, 1642 (uintptr_t)&supported_evmcs_version); 1643 1644 /* 1645 * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs' 1646 * option sets. Note: we hardcode the maximum supported eVMCS version 1647 * to '1' as well so 'hv-evmcs' feature is migratable even when (and if) 1648 * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have 1649 * to be added. 1650 */ 1651 if (ret < 0) { 1652 error_report("Hyper-V %s is not supported by kernel", 1653 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc); 1654 return ret; 1655 } 1656 1657 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) { 1658 error_report("eVMCS version range [%d..%d] is not supported by " 1659 "kernel (supported: [%d..%d])", evmcs_version & 0xff, 1660 evmcs_version >> 8, supported_evmcs_version & 0xff, 1661 supported_evmcs_version >> 8); 1662 return -ENOTSUP; 1663 } 1664 } 1665 1666 if (cpu->hyperv_enforce_cpuid) { 1667 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1); 1668 if (ret < 0) { 1669 error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s", 1670 strerror(-ret)); 1671 return ret; 1672 } 1673 } 1674 1675 return 0; 1676 } 1677 1678 static Error *invtsc_mig_blocker; 1679 1680 #define KVM_MAX_CPUID_ENTRIES 100 1681 1682 static void kvm_init_xsave(CPUX86State *env) 1683 { 1684 if (has_xsave2) { 1685 env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096); 1686 } else if (has_xsave) { 1687 env->xsave_buf_len = sizeof(struct kvm_xsave); 1688 } else { 1689 return; 1690 } 1691 1692 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len); 1693 memset(env->xsave_buf, 0, env->xsave_buf_len); 1694 /* 1695 * The allocated storage must be large enough for all of the 1696 * possible XSAVE state components. 1697 */ 1698 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <= 1699 env->xsave_buf_len); 1700 } 1701 1702 static void kvm_init_nested_state(CPUX86State *env) 1703 { 1704 struct kvm_vmx_nested_state_hdr *vmx_hdr; 1705 uint32_t size; 1706 1707 if (!env->nested_state) { 1708 return; 1709 } 1710 1711 size = env->nested_state->size; 1712 1713 memset(env->nested_state, 0, size); 1714 env->nested_state->size = size; 1715 1716 if (cpu_has_vmx(env)) { 1717 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX; 1718 vmx_hdr = &env->nested_state->hdr.vmx; 1719 vmx_hdr->vmxon_pa = -1ull; 1720 vmx_hdr->vmcs12_pa = -1ull; 1721 } else if (cpu_has_svm(env)) { 1722 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM; 1723 } 1724 } 1725 1726 int kvm_arch_init_vcpu(CPUState *cs) 1727 { 1728 struct { 1729 struct kvm_cpuid2 cpuid; 1730 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; 1731 } cpuid_data; 1732 /* 1733 * The kernel defines these structs with padding fields so there 1734 * should be no extra padding in our cpuid_data struct. 1735 */ 1736 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) != 1737 sizeof(struct kvm_cpuid2) + 1738 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES); 1739 1740 X86CPU *cpu = X86_CPU(cs); 1741 CPUX86State *env = &cpu->env; 1742 uint32_t limit, i, j, cpuid_i; 1743 uint32_t unused; 1744 struct kvm_cpuid_entry2 *c; 1745 uint32_t signature[3]; 1746 int kvm_base = KVM_CPUID_SIGNATURE; 1747 int max_nested_state_len; 1748 int r; 1749 Error *local_err = NULL; 1750 1751 memset(&cpuid_data, 0, sizeof(cpuid_data)); 1752 1753 cpuid_i = 0; 1754 1755 has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2); 1756 1757 r = kvm_arch_set_tsc_khz(cs); 1758 if (r < 0) { 1759 return r; 1760 } 1761 1762 /* vcpu's TSC frequency is either specified by user, or following 1763 * the value used by KVM if the former is not present. In the 1764 * latter case, we query it from KVM and record in env->tsc_khz, 1765 * so that vcpu's TSC frequency can be migrated later via this field. 1766 */ 1767 if (!env->tsc_khz) { 1768 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 1769 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 1770 -ENOTSUP; 1771 if (r > 0) { 1772 env->tsc_khz = r; 1773 } 1774 } 1775 1776 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY; 1777 1778 /* 1779 * kvm_hyperv_expand_features() is called here for the second time in case 1780 * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle 1781 * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to 1782 * check which Hyper-V enlightenments are supported and which are not, we 1783 * can still proceed and check/expand Hyper-V enlightenments here so legacy 1784 * behavior is preserved. 1785 */ 1786 if (!kvm_hyperv_expand_features(cpu, &local_err)) { 1787 error_report_err(local_err); 1788 return -ENOSYS; 1789 } 1790 1791 if (hyperv_enabled(cpu)) { 1792 r = hyperv_init_vcpu(cpu); 1793 if (r) { 1794 return r; 1795 } 1796 1797 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries); 1798 kvm_base = KVM_CPUID_SIGNATURE_NEXT; 1799 has_msr_hv_hypercall = true; 1800 } 1801 1802 if (cpu->expose_kvm) { 1803 memcpy(signature, "KVMKVMKVM\0\0\0", 12); 1804 c = &cpuid_data.entries[cpuid_i++]; 1805 c->function = KVM_CPUID_SIGNATURE | kvm_base; 1806 c->eax = KVM_CPUID_FEATURES | kvm_base; 1807 c->ebx = signature[0]; 1808 c->ecx = signature[1]; 1809 c->edx = signature[2]; 1810 1811 c = &cpuid_data.entries[cpuid_i++]; 1812 c->function = KVM_CPUID_FEATURES | kvm_base; 1813 c->eax = env->features[FEAT_KVM]; 1814 c->edx = env->features[FEAT_KVM_HINTS]; 1815 } 1816 1817 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); 1818 1819 if (cpu->kvm_pv_enforce_cpuid) { 1820 r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1); 1821 if (r < 0) { 1822 fprintf(stderr, 1823 "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s", 1824 strerror(-r)); 1825 abort(); 1826 } 1827 } 1828 1829 for (i = 0; i <= limit; i++) { 1830 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1831 fprintf(stderr, "unsupported level value: 0x%x\n", limit); 1832 abort(); 1833 } 1834 c = &cpuid_data.entries[cpuid_i++]; 1835 1836 switch (i) { 1837 case 2: { 1838 /* Keep reading function 2 till all the input is received */ 1839 int times; 1840 1841 c->function = i; 1842 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | 1843 KVM_CPUID_FLAG_STATE_READ_NEXT; 1844 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1845 times = c->eax & 0xff; 1846 1847 for (j = 1; j < times; ++j) { 1848 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1849 fprintf(stderr, "cpuid_data is full, no space for " 1850 "cpuid(eax:2):eax & 0xf = 0x%x\n", times); 1851 abort(); 1852 } 1853 c = &cpuid_data.entries[cpuid_i++]; 1854 c->function = i; 1855 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; 1856 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1857 } 1858 break; 1859 } 1860 case 0x1f: 1861 if (env->nr_dies < 2) { 1862 break; 1863 } 1864 /* fallthrough */ 1865 case 4: 1866 case 0xb: 1867 case 0xd: 1868 for (j = 0; ; j++) { 1869 if (i == 0xd && j == 64) { 1870 break; 1871 } 1872 1873 if (i == 0x1f && j == 64) { 1874 break; 1875 } 1876 1877 c->function = i; 1878 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1879 c->index = j; 1880 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1881 1882 if (i == 4 && c->eax == 0) { 1883 break; 1884 } 1885 if (i == 0xb && !(c->ecx & 0xff00)) { 1886 break; 1887 } 1888 if (i == 0x1f && !(c->ecx & 0xff00)) { 1889 break; 1890 } 1891 if (i == 0xd && c->eax == 0) { 1892 continue; 1893 } 1894 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1895 fprintf(stderr, "cpuid_data is full, no space for " 1896 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 1897 abort(); 1898 } 1899 c = &cpuid_data.entries[cpuid_i++]; 1900 } 1901 break; 1902 case 0x7: 1903 case 0x12: 1904 for (j = 0; ; j++) { 1905 c->function = i; 1906 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1907 c->index = j; 1908 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1909 1910 if (j > 1 && (c->eax & 0xf) != 1) { 1911 break; 1912 } 1913 1914 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1915 fprintf(stderr, "cpuid_data is full, no space for " 1916 "cpuid(eax:0x12,ecx:0x%x)\n", j); 1917 abort(); 1918 } 1919 c = &cpuid_data.entries[cpuid_i++]; 1920 } 1921 break; 1922 case 0x14: 1923 case 0x1d: 1924 case 0x1e: { 1925 uint32_t times; 1926 1927 c->function = i; 1928 c->index = 0; 1929 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1930 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1931 times = c->eax; 1932 1933 for (j = 1; j <= times; ++j) { 1934 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1935 fprintf(stderr, "cpuid_data is full, no space for " 1936 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 1937 abort(); 1938 } 1939 c = &cpuid_data.entries[cpuid_i++]; 1940 c->function = i; 1941 c->index = j; 1942 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1943 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1944 } 1945 break; 1946 } 1947 default: 1948 c->function = i; 1949 c->flags = 0; 1950 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1951 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 1952 /* 1953 * KVM already returns all zeroes if a CPUID entry is missing, 1954 * so we can omit it and avoid hitting KVM's 80-entry limit. 1955 */ 1956 cpuid_i--; 1957 } 1958 break; 1959 } 1960 } 1961 1962 if (limit >= 0x0a) { 1963 uint32_t eax, edx; 1964 1965 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx); 1966 1967 has_architectural_pmu_version = eax & 0xff; 1968 if (has_architectural_pmu_version > 0) { 1969 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8; 1970 1971 /* Shouldn't be more than 32, since that's the number of bits 1972 * available in EBX to tell us _which_ counters are available. 1973 * Play it safe. 1974 */ 1975 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) { 1976 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS; 1977 } 1978 1979 if (has_architectural_pmu_version > 1) { 1980 num_architectural_pmu_fixed_counters = edx & 0x1f; 1981 1982 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) { 1983 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS; 1984 } 1985 } 1986 } 1987 } 1988 1989 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); 1990 1991 for (i = 0x80000000; i <= limit; i++) { 1992 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1993 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); 1994 abort(); 1995 } 1996 c = &cpuid_data.entries[cpuid_i++]; 1997 1998 switch (i) { 1999 case 0x8000001d: 2000 /* Query for all AMD cache information leaves */ 2001 for (j = 0; ; j++) { 2002 c->function = i; 2003 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 2004 c->index = j; 2005 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 2006 2007 if (c->eax == 0) { 2008 break; 2009 } 2010 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2011 fprintf(stderr, "cpuid_data is full, no space for " 2012 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 2013 abort(); 2014 } 2015 c = &cpuid_data.entries[cpuid_i++]; 2016 } 2017 break; 2018 default: 2019 c->function = i; 2020 c->flags = 0; 2021 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 2022 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 2023 /* 2024 * KVM already returns all zeroes if a CPUID entry is missing, 2025 * so we can omit it and avoid hitting KVM's 80-entry limit. 2026 */ 2027 cpuid_i--; 2028 } 2029 break; 2030 } 2031 } 2032 2033 /* Call Centaur's CPUID instructions they are supported. */ 2034 if (env->cpuid_xlevel2 > 0) { 2035 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); 2036 2037 for (i = 0xC0000000; i <= limit; i++) { 2038 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2039 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); 2040 abort(); 2041 } 2042 c = &cpuid_data.entries[cpuid_i++]; 2043 2044 c->function = i; 2045 c->flags = 0; 2046 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 2047 } 2048 } 2049 2050 cpuid_data.cpuid.nent = cpuid_i; 2051 2052 if (((env->cpuid_version >> 8)&0xF) >= 6 2053 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == 2054 (CPUID_MCE | CPUID_MCA) 2055 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { 2056 uint64_t mcg_cap, unsupported_caps; 2057 int banks; 2058 int ret; 2059 2060 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); 2061 if (ret < 0) { 2062 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); 2063 return ret; 2064 } 2065 2066 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { 2067 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", 2068 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); 2069 return -ENOTSUP; 2070 } 2071 2072 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); 2073 if (unsupported_caps) { 2074 if (unsupported_caps & MCG_LMCE_P) { 2075 error_report("kvm: LMCE not supported"); 2076 return -ENOTSUP; 2077 } 2078 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64, 2079 unsupported_caps); 2080 } 2081 2082 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; 2083 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); 2084 if (ret < 0) { 2085 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); 2086 return ret; 2087 } 2088 } 2089 2090 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env); 2091 2092 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); 2093 if (c) { 2094 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || 2095 !!(c->ecx & CPUID_EXT_SMX); 2096 } 2097 2098 c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0); 2099 if (c && (c->ebx & CPUID_7_0_EBX_SGX)) { 2100 has_msr_feature_control = true; 2101 } 2102 2103 if (env->mcg_cap & MCG_LMCE_P) { 2104 has_msr_mcg_ext_ctl = has_msr_feature_control = true; 2105 } 2106 2107 if (!env->user_tsc_khz) { 2108 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && 2109 invtsc_mig_blocker == NULL) { 2110 error_setg(&invtsc_mig_blocker, 2111 "State blocked by non-migratable CPU device" 2112 " (invtsc flag)"); 2113 r = migrate_add_blocker(invtsc_mig_blocker, &local_err); 2114 if (r < 0) { 2115 error_report_err(local_err); 2116 return r; 2117 } 2118 } 2119 } 2120 2121 if (cpu->vmware_cpuid_freq 2122 /* Guests depend on 0x40000000 to detect this feature, so only expose 2123 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ 2124 && cpu->expose_kvm 2125 && kvm_base == KVM_CPUID_SIGNATURE 2126 /* TSC clock must be stable and known for this feature. */ 2127 && tsc_is_stable_and_known(env)) { 2128 2129 c = &cpuid_data.entries[cpuid_i++]; 2130 c->function = KVM_CPUID_SIGNATURE | 0x10; 2131 c->eax = env->tsc_khz; 2132 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */ 2133 c->ecx = c->edx = 0; 2134 2135 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); 2136 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); 2137 } 2138 2139 cpuid_data.cpuid.nent = cpuid_i; 2140 2141 cpuid_data.cpuid.padding = 0; 2142 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); 2143 if (r) { 2144 goto fail; 2145 } 2146 kvm_init_xsave(env); 2147 2148 max_nested_state_len = kvm_max_nested_state_length(); 2149 if (max_nested_state_len > 0) { 2150 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data)); 2151 2152 if (cpu_has_vmx(env) || cpu_has_svm(env)) { 2153 env->nested_state = g_malloc0(max_nested_state_len); 2154 env->nested_state->size = max_nested_state_len; 2155 2156 kvm_init_nested_state(env); 2157 } 2158 } 2159 2160 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); 2161 2162 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { 2163 has_msr_tsc_aux = false; 2164 } 2165 2166 kvm_init_msrs(cpu); 2167 2168 return 0; 2169 2170 fail: 2171 migrate_del_blocker(invtsc_mig_blocker); 2172 2173 return r; 2174 } 2175 2176 int kvm_arch_destroy_vcpu(CPUState *cs) 2177 { 2178 X86CPU *cpu = X86_CPU(cs); 2179 CPUX86State *env = &cpu->env; 2180 2181 g_free(env->xsave_buf); 2182 2183 g_free(cpu->kvm_msr_buf); 2184 cpu->kvm_msr_buf = NULL; 2185 2186 g_free(env->nested_state); 2187 env->nested_state = NULL; 2188 2189 qemu_del_vm_change_state_handler(cpu->vmsentry); 2190 2191 return 0; 2192 } 2193 2194 void kvm_arch_reset_vcpu(X86CPU *cpu) 2195 { 2196 CPUX86State *env = &cpu->env; 2197 2198 env->xcr0 = 1; 2199 if (kvm_irqchip_in_kernel()) { 2200 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : 2201 KVM_MP_STATE_UNINITIALIZED; 2202 } else { 2203 env->mp_state = KVM_MP_STATE_RUNNABLE; 2204 } 2205 2206 /* enabled by default */ 2207 env->poll_control_msr = 1; 2208 2209 kvm_init_nested_state(env); 2210 2211 sev_es_set_reset_vector(CPU(cpu)); 2212 } 2213 2214 void kvm_arch_after_reset_vcpu(X86CPU *cpu) 2215 { 2216 CPUX86State *env = &cpu->env; 2217 int i; 2218 2219 /* 2220 * Reset SynIC after all other devices have been reset to let them remove 2221 * their SINT routes first. 2222 */ 2223 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 2224 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { 2225 env->msr_hv_synic_sint[i] = HV_SINT_MASKED; 2226 } 2227 2228 hyperv_x86_synic_reset(cpu); 2229 } 2230 } 2231 2232 void kvm_arch_do_init_vcpu(X86CPU *cpu) 2233 { 2234 CPUX86State *env = &cpu->env; 2235 2236 /* APs get directly into wait-for-SIPI state. */ 2237 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { 2238 env->mp_state = KVM_MP_STATE_INIT_RECEIVED; 2239 } 2240 } 2241 2242 static int kvm_get_supported_feature_msrs(KVMState *s) 2243 { 2244 int ret = 0; 2245 2246 if (kvm_feature_msrs != NULL) { 2247 return 0; 2248 } 2249 2250 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) { 2251 return 0; 2252 } 2253 2254 struct kvm_msr_list msr_list; 2255 2256 msr_list.nmsrs = 0; 2257 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list); 2258 if (ret < 0 && ret != -E2BIG) { 2259 error_report("Fetch KVM feature MSR list failed: %s", 2260 strerror(-ret)); 2261 return ret; 2262 } 2263 2264 assert(msr_list.nmsrs > 0); 2265 kvm_feature_msrs = g_malloc0(sizeof(msr_list) + 2266 msr_list.nmsrs * sizeof(msr_list.indices[0])); 2267 2268 kvm_feature_msrs->nmsrs = msr_list.nmsrs; 2269 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs); 2270 2271 if (ret < 0) { 2272 error_report("Fetch KVM feature MSR list failed: %s", 2273 strerror(-ret)); 2274 g_free(kvm_feature_msrs); 2275 kvm_feature_msrs = NULL; 2276 return ret; 2277 } 2278 2279 return 0; 2280 } 2281 2282 static int kvm_get_supported_msrs(KVMState *s) 2283 { 2284 int ret = 0; 2285 struct kvm_msr_list msr_list, *kvm_msr_list; 2286 2287 /* 2288 * Obtain MSR list from KVM. These are the MSRs that we must 2289 * save/restore. 2290 */ 2291 msr_list.nmsrs = 0; 2292 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); 2293 if (ret < 0 && ret != -E2BIG) { 2294 return ret; 2295 } 2296 /* 2297 * Old kernel modules had a bug and could write beyond the provided 2298 * memory. Allocate at least a safe amount of 1K. 2299 */ 2300 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + 2301 msr_list.nmsrs * 2302 sizeof(msr_list.indices[0]))); 2303 2304 kvm_msr_list->nmsrs = msr_list.nmsrs; 2305 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); 2306 if (ret >= 0) { 2307 int i; 2308 2309 for (i = 0; i < kvm_msr_list->nmsrs; i++) { 2310 switch (kvm_msr_list->indices[i]) { 2311 case MSR_STAR: 2312 has_msr_star = true; 2313 break; 2314 case MSR_VM_HSAVE_PA: 2315 has_msr_hsave_pa = true; 2316 break; 2317 case MSR_TSC_AUX: 2318 has_msr_tsc_aux = true; 2319 break; 2320 case MSR_TSC_ADJUST: 2321 has_msr_tsc_adjust = true; 2322 break; 2323 case MSR_IA32_TSCDEADLINE: 2324 has_msr_tsc_deadline = true; 2325 break; 2326 case MSR_IA32_SMBASE: 2327 has_msr_smbase = true; 2328 break; 2329 case MSR_SMI_COUNT: 2330 has_msr_smi_count = true; 2331 break; 2332 case MSR_IA32_MISC_ENABLE: 2333 has_msr_misc_enable = true; 2334 break; 2335 case MSR_IA32_BNDCFGS: 2336 has_msr_bndcfgs = true; 2337 break; 2338 case MSR_IA32_XSS: 2339 has_msr_xss = true; 2340 break; 2341 case MSR_IA32_UMWAIT_CONTROL: 2342 has_msr_umwait = true; 2343 break; 2344 case HV_X64_MSR_CRASH_CTL: 2345 has_msr_hv_crash = true; 2346 break; 2347 case HV_X64_MSR_RESET: 2348 has_msr_hv_reset = true; 2349 break; 2350 case HV_X64_MSR_VP_INDEX: 2351 has_msr_hv_vpindex = true; 2352 break; 2353 case HV_X64_MSR_VP_RUNTIME: 2354 has_msr_hv_runtime = true; 2355 break; 2356 case HV_X64_MSR_SCONTROL: 2357 has_msr_hv_synic = true; 2358 break; 2359 case HV_X64_MSR_STIMER0_CONFIG: 2360 has_msr_hv_stimer = true; 2361 break; 2362 case HV_X64_MSR_TSC_FREQUENCY: 2363 has_msr_hv_frequencies = true; 2364 break; 2365 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 2366 has_msr_hv_reenlightenment = true; 2367 break; 2368 case HV_X64_MSR_SYNDBG_OPTIONS: 2369 has_msr_hv_syndbg_options = true; 2370 break; 2371 case MSR_IA32_SPEC_CTRL: 2372 has_msr_spec_ctrl = true; 2373 break; 2374 case MSR_AMD64_TSC_RATIO: 2375 has_tsc_scale_msr = true; 2376 break; 2377 case MSR_IA32_TSX_CTRL: 2378 has_msr_tsx_ctrl = true; 2379 break; 2380 case MSR_VIRT_SSBD: 2381 has_msr_virt_ssbd = true; 2382 break; 2383 case MSR_IA32_ARCH_CAPABILITIES: 2384 has_msr_arch_capabs = true; 2385 break; 2386 case MSR_IA32_CORE_CAPABILITY: 2387 has_msr_core_capabs = true; 2388 break; 2389 case MSR_IA32_PERF_CAPABILITIES: 2390 has_msr_perf_capabs = true; 2391 break; 2392 case MSR_IA32_VMX_VMFUNC: 2393 has_msr_vmx_vmfunc = true; 2394 break; 2395 case MSR_IA32_UCODE_REV: 2396 has_msr_ucode_rev = true; 2397 break; 2398 case MSR_IA32_VMX_PROCBASED_CTLS2: 2399 has_msr_vmx_procbased_ctls2 = true; 2400 break; 2401 case MSR_IA32_PKRS: 2402 has_msr_pkrs = true; 2403 break; 2404 } 2405 } 2406 } 2407 2408 g_free(kvm_msr_list); 2409 2410 return ret; 2411 } 2412 2413 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu, uint32_t msr, 2414 uint64_t *val) 2415 { 2416 CPUState *cs = CPU(cpu); 2417 2418 *val = cs->nr_threads * cs->nr_cores; /* thread count, bits 15..0 */ 2419 *val |= ((uint32_t)cs->nr_cores << 16); /* core count, bits 31..16 */ 2420 2421 return true; 2422 } 2423 2424 static Notifier smram_machine_done; 2425 static KVMMemoryListener smram_listener; 2426 static AddressSpace smram_address_space; 2427 static MemoryRegion smram_as_root; 2428 static MemoryRegion smram_as_mem; 2429 2430 static void register_smram_listener(Notifier *n, void *unused) 2431 { 2432 MemoryRegion *smram = 2433 (MemoryRegion *) object_resolve_path("/machine/smram", NULL); 2434 2435 /* Outer container... */ 2436 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); 2437 memory_region_set_enabled(&smram_as_root, true); 2438 2439 /* ... with two regions inside: normal system memory with low 2440 * priority, and... 2441 */ 2442 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", 2443 get_system_memory(), 0, ~0ull); 2444 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); 2445 memory_region_set_enabled(&smram_as_mem, true); 2446 2447 if (smram) { 2448 /* ... SMRAM with higher priority */ 2449 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); 2450 memory_region_set_enabled(smram, true); 2451 } 2452 2453 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); 2454 kvm_memory_listener_register(kvm_state, &smram_listener, 2455 &smram_address_space, 1, "kvm-smram"); 2456 } 2457 2458 int kvm_arch_init(MachineState *ms, KVMState *s) 2459 { 2460 uint64_t identity_base = 0xfffbc000; 2461 uint64_t shadow_mem; 2462 int ret; 2463 struct utsname utsname; 2464 Error *local_err = NULL; 2465 2466 /* 2467 * Initialize SEV context, if required 2468 * 2469 * If no memory encryption is requested (ms->cgs == NULL) this is 2470 * a no-op. 2471 * 2472 * It's also a no-op if a non-SEV confidential guest support 2473 * mechanism is selected. SEV is the only mechanism available to 2474 * select on x86 at present, so this doesn't arise, but if new 2475 * mechanisms are supported in future (e.g. TDX), they'll need 2476 * their own initialization either here or elsewhere. 2477 */ 2478 ret = sev_kvm_init(ms->cgs, &local_err); 2479 if (ret < 0) { 2480 error_report_err(local_err); 2481 return ret; 2482 } 2483 2484 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { 2485 error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM"); 2486 return -ENOTSUP; 2487 } 2488 2489 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE); 2490 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); 2491 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); 2492 has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0; 2493 2494 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX); 2495 2496 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD); 2497 if (has_exception_payload) { 2498 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true); 2499 if (ret < 0) { 2500 error_report("kvm: Failed to enable exception payload cap: %s", 2501 strerror(-ret)); 2502 return ret; 2503 } 2504 } 2505 2506 has_triple_fault_event = kvm_check_extension(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT); 2507 if (has_triple_fault_event) { 2508 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true); 2509 if (ret < 0) { 2510 error_report("kvm: Failed to enable triple fault event cap: %s", 2511 strerror(-ret)); 2512 return ret; 2513 } 2514 } 2515 2516 ret = kvm_get_supported_msrs(s); 2517 if (ret < 0) { 2518 return ret; 2519 } 2520 2521 kvm_get_supported_feature_msrs(s); 2522 2523 uname(&utsname); 2524 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; 2525 2526 /* 2527 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. 2528 * In order to use vm86 mode, an EPT identity map and a TSS are needed. 2529 * Since these must be part of guest physical memory, we need to allocate 2530 * them, both by setting their start addresses in the kernel and by 2531 * creating a corresponding e820 entry. We need 4 pages before the BIOS. 2532 * 2533 * Older KVM versions may not support setting the identity map base. In 2534 * that case we need to stick with the default, i.e. a 256K maximum BIOS 2535 * size. 2536 */ 2537 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { 2538 /* Allows up to 16M BIOSes. */ 2539 identity_base = 0xfeffc000; 2540 2541 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); 2542 if (ret < 0) { 2543 return ret; 2544 } 2545 } 2546 2547 /* Set TSS base one page after EPT identity map. */ 2548 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); 2549 if (ret < 0) { 2550 return ret; 2551 } 2552 2553 /* Tell fw_cfg to notify the BIOS to reserve the range. */ 2554 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); 2555 if (ret < 0) { 2556 fprintf(stderr, "e820_add_entry() table is full\n"); 2557 return ret; 2558 } 2559 2560 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort); 2561 if (shadow_mem != -1) { 2562 shadow_mem /= 4096; 2563 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); 2564 if (ret < 0) { 2565 return ret; 2566 } 2567 } 2568 2569 if (kvm_check_extension(s, KVM_CAP_X86_SMM) && 2570 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) && 2571 x86_machine_is_smm_enabled(X86_MACHINE(ms))) { 2572 smram_machine_done.notify = register_smram_listener; 2573 qemu_add_machine_init_done_notifier(&smram_machine_done); 2574 } 2575 2576 if (enable_cpu_pm) { 2577 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS); 2578 int ret; 2579 2580 /* Work around for kernel header with a typo. TODO: fix header and drop. */ 2581 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT) 2582 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL 2583 #endif 2584 if (disable_exits) { 2585 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT | 2586 KVM_X86_DISABLE_EXITS_HLT | 2587 KVM_X86_DISABLE_EXITS_PAUSE | 2588 KVM_X86_DISABLE_EXITS_CSTATE); 2589 } 2590 2591 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0, 2592 disable_exits); 2593 if (ret < 0) { 2594 error_report("kvm: guest stopping CPU not supported: %s", 2595 strerror(-ret)); 2596 } 2597 } 2598 2599 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) { 2600 X86MachineState *x86ms = X86_MACHINE(ms); 2601 2602 if (x86ms->bus_lock_ratelimit > 0) { 2603 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT); 2604 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) { 2605 error_report("kvm: bus lock detection unsupported"); 2606 return -ENOTSUP; 2607 } 2608 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0, 2609 KVM_BUS_LOCK_DETECTION_EXIT); 2610 if (ret < 0) { 2611 error_report("kvm: Failed to enable bus lock detection cap: %s", 2612 strerror(-ret)); 2613 return ret; 2614 } 2615 ratelimit_init(&bus_lock_ratelimit_ctrl); 2616 ratelimit_set_speed(&bus_lock_ratelimit_ctrl, 2617 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME); 2618 } 2619 } 2620 2621 if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE && 2622 kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) { 2623 uint64_t notify_window_flags = 2624 ((uint64_t)s->notify_window << 32) | 2625 KVM_X86_NOTIFY_VMEXIT_ENABLED | 2626 KVM_X86_NOTIFY_VMEXIT_USER; 2627 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0, 2628 notify_window_flags); 2629 if (ret < 0) { 2630 error_report("kvm: Failed to enable notify vmexit cap: %s", 2631 strerror(-ret)); 2632 return ret; 2633 } 2634 } 2635 if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) { 2636 bool r; 2637 2638 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0, 2639 KVM_MSR_EXIT_REASON_FILTER); 2640 if (ret) { 2641 error_report("Could not enable user space MSRs: %s", 2642 strerror(-ret)); 2643 exit(1); 2644 } 2645 2646 r = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT, 2647 kvm_rdmsr_core_thread_count, NULL); 2648 if (!r) { 2649 error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s", 2650 strerror(-ret)); 2651 exit(1); 2652 } 2653 } 2654 2655 return 0; 2656 } 2657 2658 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 2659 { 2660 lhs->selector = rhs->selector; 2661 lhs->base = rhs->base; 2662 lhs->limit = rhs->limit; 2663 lhs->type = 3; 2664 lhs->present = 1; 2665 lhs->dpl = 3; 2666 lhs->db = 0; 2667 lhs->s = 1; 2668 lhs->l = 0; 2669 lhs->g = 0; 2670 lhs->avl = 0; 2671 lhs->unusable = 0; 2672 } 2673 2674 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 2675 { 2676 unsigned flags = rhs->flags; 2677 lhs->selector = rhs->selector; 2678 lhs->base = rhs->base; 2679 lhs->limit = rhs->limit; 2680 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; 2681 lhs->present = (flags & DESC_P_MASK) != 0; 2682 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; 2683 lhs->db = (flags >> DESC_B_SHIFT) & 1; 2684 lhs->s = (flags & DESC_S_MASK) != 0; 2685 lhs->l = (flags >> DESC_L_SHIFT) & 1; 2686 lhs->g = (flags & DESC_G_MASK) != 0; 2687 lhs->avl = (flags & DESC_AVL_MASK) != 0; 2688 lhs->unusable = !lhs->present; 2689 lhs->padding = 0; 2690 } 2691 2692 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) 2693 { 2694 lhs->selector = rhs->selector; 2695 lhs->base = rhs->base; 2696 lhs->limit = rhs->limit; 2697 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | 2698 ((rhs->present && !rhs->unusable) * DESC_P_MASK) | 2699 (rhs->dpl << DESC_DPL_SHIFT) | 2700 (rhs->db << DESC_B_SHIFT) | 2701 (rhs->s * DESC_S_MASK) | 2702 (rhs->l << DESC_L_SHIFT) | 2703 (rhs->g * DESC_G_MASK) | 2704 (rhs->avl * DESC_AVL_MASK); 2705 } 2706 2707 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) 2708 { 2709 if (set) { 2710 *kvm_reg = *qemu_reg; 2711 } else { 2712 *qemu_reg = *kvm_reg; 2713 } 2714 } 2715 2716 static int kvm_getput_regs(X86CPU *cpu, int set) 2717 { 2718 CPUX86State *env = &cpu->env; 2719 struct kvm_regs regs; 2720 int ret = 0; 2721 2722 if (!set) { 2723 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); 2724 if (ret < 0) { 2725 return ret; 2726 } 2727 } 2728 2729 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); 2730 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); 2731 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); 2732 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); 2733 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); 2734 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); 2735 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); 2736 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); 2737 #ifdef TARGET_X86_64 2738 kvm_getput_reg(®s.r8, &env->regs[8], set); 2739 kvm_getput_reg(®s.r9, &env->regs[9], set); 2740 kvm_getput_reg(®s.r10, &env->regs[10], set); 2741 kvm_getput_reg(®s.r11, &env->regs[11], set); 2742 kvm_getput_reg(®s.r12, &env->regs[12], set); 2743 kvm_getput_reg(®s.r13, &env->regs[13], set); 2744 kvm_getput_reg(®s.r14, &env->regs[14], set); 2745 kvm_getput_reg(®s.r15, &env->regs[15], set); 2746 #endif 2747 2748 kvm_getput_reg(®s.rflags, &env->eflags, set); 2749 kvm_getput_reg(®s.rip, &env->eip, set); 2750 2751 if (set) { 2752 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); 2753 } 2754 2755 return ret; 2756 } 2757 2758 static int kvm_put_fpu(X86CPU *cpu) 2759 { 2760 CPUX86State *env = &cpu->env; 2761 struct kvm_fpu fpu; 2762 int i; 2763 2764 memset(&fpu, 0, sizeof fpu); 2765 fpu.fsw = env->fpus & ~(7 << 11); 2766 fpu.fsw |= (env->fpstt & 7) << 11; 2767 fpu.fcw = env->fpuc; 2768 fpu.last_opcode = env->fpop; 2769 fpu.last_ip = env->fpip; 2770 fpu.last_dp = env->fpdp; 2771 for (i = 0; i < 8; ++i) { 2772 fpu.ftwx |= (!env->fptags[i]) << i; 2773 } 2774 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); 2775 for (i = 0; i < CPU_NB_REGS; i++) { 2776 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0)); 2777 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1)); 2778 } 2779 fpu.mxcsr = env->mxcsr; 2780 2781 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); 2782 } 2783 2784 static int kvm_put_xsave(X86CPU *cpu) 2785 { 2786 CPUX86State *env = &cpu->env; 2787 void *xsave = env->xsave_buf; 2788 2789 if (!has_xsave) { 2790 return kvm_put_fpu(cpu); 2791 } 2792 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len); 2793 2794 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); 2795 } 2796 2797 static int kvm_put_xcrs(X86CPU *cpu) 2798 { 2799 CPUX86State *env = &cpu->env; 2800 struct kvm_xcrs xcrs = {}; 2801 2802 if (!has_xcrs) { 2803 return 0; 2804 } 2805 2806 xcrs.nr_xcrs = 1; 2807 xcrs.flags = 0; 2808 xcrs.xcrs[0].xcr = 0; 2809 xcrs.xcrs[0].value = env->xcr0; 2810 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); 2811 } 2812 2813 static int kvm_put_sregs(X86CPU *cpu) 2814 { 2815 CPUX86State *env = &cpu->env; 2816 struct kvm_sregs sregs; 2817 2818 /* 2819 * The interrupt_bitmap is ignored because KVM_SET_SREGS is 2820 * always followed by KVM_SET_VCPU_EVENTS. 2821 */ 2822 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); 2823 2824 if ((env->eflags & VM_MASK)) { 2825 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 2826 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 2827 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 2828 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 2829 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 2830 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 2831 } else { 2832 set_seg(&sregs.cs, &env->segs[R_CS]); 2833 set_seg(&sregs.ds, &env->segs[R_DS]); 2834 set_seg(&sregs.es, &env->segs[R_ES]); 2835 set_seg(&sregs.fs, &env->segs[R_FS]); 2836 set_seg(&sregs.gs, &env->segs[R_GS]); 2837 set_seg(&sregs.ss, &env->segs[R_SS]); 2838 } 2839 2840 set_seg(&sregs.tr, &env->tr); 2841 set_seg(&sregs.ldt, &env->ldt); 2842 2843 sregs.idt.limit = env->idt.limit; 2844 sregs.idt.base = env->idt.base; 2845 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 2846 sregs.gdt.limit = env->gdt.limit; 2847 sregs.gdt.base = env->gdt.base; 2848 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 2849 2850 sregs.cr0 = env->cr[0]; 2851 sregs.cr2 = env->cr[2]; 2852 sregs.cr3 = env->cr[3]; 2853 sregs.cr4 = env->cr[4]; 2854 2855 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 2856 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 2857 2858 sregs.efer = env->efer; 2859 2860 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); 2861 } 2862 2863 static int kvm_put_sregs2(X86CPU *cpu) 2864 { 2865 CPUX86State *env = &cpu->env; 2866 struct kvm_sregs2 sregs; 2867 int i; 2868 2869 sregs.flags = 0; 2870 2871 if ((env->eflags & VM_MASK)) { 2872 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 2873 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 2874 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 2875 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 2876 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 2877 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 2878 } else { 2879 set_seg(&sregs.cs, &env->segs[R_CS]); 2880 set_seg(&sregs.ds, &env->segs[R_DS]); 2881 set_seg(&sregs.es, &env->segs[R_ES]); 2882 set_seg(&sregs.fs, &env->segs[R_FS]); 2883 set_seg(&sregs.gs, &env->segs[R_GS]); 2884 set_seg(&sregs.ss, &env->segs[R_SS]); 2885 } 2886 2887 set_seg(&sregs.tr, &env->tr); 2888 set_seg(&sregs.ldt, &env->ldt); 2889 2890 sregs.idt.limit = env->idt.limit; 2891 sregs.idt.base = env->idt.base; 2892 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 2893 sregs.gdt.limit = env->gdt.limit; 2894 sregs.gdt.base = env->gdt.base; 2895 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 2896 2897 sregs.cr0 = env->cr[0]; 2898 sregs.cr2 = env->cr[2]; 2899 sregs.cr3 = env->cr[3]; 2900 sregs.cr4 = env->cr[4]; 2901 2902 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 2903 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 2904 2905 sregs.efer = env->efer; 2906 2907 if (env->pdptrs_valid) { 2908 for (i = 0; i < 4; i++) { 2909 sregs.pdptrs[i] = env->pdptrs[i]; 2910 } 2911 sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 2912 } 2913 2914 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs); 2915 } 2916 2917 2918 static void kvm_msr_buf_reset(X86CPU *cpu) 2919 { 2920 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); 2921 } 2922 2923 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) 2924 { 2925 struct kvm_msrs *msrs = cpu->kvm_msr_buf; 2926 void *limit = ((void *)msrs) + MSR_BUF_SIZE; 2927 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; 2928 2929 assert((void *)(entry + 1) <= limit); 2930 2931 entry->index = index; 2932 entry->reserved = 0; 2933 entry->data = value; 2934 msrs->nmsrs++; 2935 } 2936 2937 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) 2938 { 2939 kvm_msr_buf_reset(cpu); 2940 kvm_msr_entry_add(cpu, index, value); 2941 2942 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 2943 } 2944 2945 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value) 2946 { 2947 int ret; 2948 struct { 2949 struct kvm_msrs info; 2950 struct kvm_msr_entry entries[1]; 2951 } msr_data = { 2952 .info.nmsrs = 1, 2953 .entries[0].index = index, 2954 }; 2955 2956 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); 2957 if (ret < 0) { 2958 return ret; 2959 } 2960 assert(ret == 1); 2961 *value = msr_data.entries[0].data; 2962 return ret; 2963 } 2964 void kvm_put_apicbase(X86CPU *cpu, uint64_t value) 2965 { 2966 int ret; 2967 2968 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); 2969 assert(ret == 1); 2970 } 2971 2972 static int kvm_put_tscdeadline_msr(X86CPU *cpu) 2973 { 2974 CPUX86State *env = &cpu->env; 2975 int ret; 2976 2977 if (!has_msr_tsc_deadline) { 2978 return 0; 2979 } 2980 2981 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); 2982 if (ret < 0) { 2983 return ret; 2984 } 2985 2986 assert(ret == 1); 2987 return 0; 2988 } 2989 2990 /* 2991 * Provide a separate write service for the feature control MSR in order to 2992 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done 2993 * before writing any other state because forcibly leaving nested mode 2994 * invalidates the VCPU state. 2995 */ 2996 static int kvm_put_msr_feature_control(X86CPU *cpu) 2997 { 2998 int ret; 2999 3000 if (!has_msr_feature_control) { 3001 return 0; 3002 } 3003 3004 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, 3005 cpu->env.msr_ia32_feature_control); 3006 if (ret < 0) { 3007 return ret; 3008 } 3009 3010 assert(ret == 1); 3011 return 0; 3012 } 3013 3014 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features) 3015 { 3016 uint32_t default1, can_be_one, can_be_zero; 3017 uint32_t must_be_one; 3018 3019 switch (index) { 3020 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 3021 default1 = 0x00000016; 3022 break; 3023 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 3024 default1 = 0x0401e172; 3025 break; 3026 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 3027 default1 = 0x000011ff; 3028 break; 3029 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 3030 default1 = 0x00036dff; 3031 break; 3032 case MSR_IA32_VMX_PROCBASED_CTLS2: 3033 default1 = 0; 3034 break; 3035 default: 3036 abort(); 3037 } 3038 3039 /* If a feature bit is set, the control can be either set or clear. 3040 * Otherwise the value is limited to either 0 or 1 by default1. 3041 */ 3042 can_be_one = features | default1; 3043 can_be_zero = features | ~default1; 3044 must_be_one = ~can_be_zero; 3045 3046 /* 3047 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one). 3048 * Bit 32:63 -> 1 if the control bit can be one. 3049 */ 3050 return must_be_one | (((uint64_t)can_be_one) << 32); 3051 } 3052 3053 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f) 3054 { 3055 uint64_t kvm_vmx_basic = 3056 kvm_arch_get_supported_msr_feature(kvm_state, 3057 MSR_IA32_VMX_BASIC); 3058 3059 if (!kvm_vmx_basic) { 3060 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0), 3061 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail. 3062 */ 3063 return; 3064 } 3065 3066 uint64_t kvm_vmx_misc = 3067 kvm_arch_get_supported_msr_feature(kvm_state, 3068 MSR_IA32_VMX_MISC); 3069 uint64_t kvm_vmx_ept_vpid = 3070 kvm_arch_get_supported_msr_feature(kvm_state, 3071 MSR_IA32_VMX_EPT_VPID_CAP); 3072 3073 /* 3074 * If the guest is 64-bit, a value of 1 is allowed for the host address 3075 * space size vmexit control. 3076 */ 3077 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM 3078 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0; 3079 3080 /* 3081 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should 3082 * not change them for backwards compatibility. 3083 */ 3084 uint64_t fixed_vmx_basic = kvm_vmx_basic & 3085 (MSR_VMX_BASIC_VMCS_REVISION_MASK | 3086 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK | 3087 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK); 3088 3089 /* 3090 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can 3091 * change in the future but are always zero for now, clear them to be 3092 * future proof. Bits 32-63 in theory could change, though KVM does 3093 * not support dual-monitor treatment and probably never will; mask 3094 * them out as well. 3095 */ 3096 uint64_t fixed_vmx_misc = kvm_vmx_misc & 3097 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK | 3098 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK); 3099 3100 /* 3101 * EPT memory types should not change either, so we do not bother 3102 * adding features for them. 3103 */ 3104 uint64_t fixed_vmx_ept_mask = 3105 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ? 3106 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0); 3107 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask; 3108 3109 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 3110 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 3111 f[FEAT_VMX_PROCBASED_CTLS])); 3112 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS, 3113 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS, 3114 f[FEAT_VMX_PINBASED_CTLS])); 3115 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS, 3116 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS, 3117 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit); 3118 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS, 3119 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS, 3120 f[FEAT_VMX_ENTRY_CTLS])); 3121 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2, 3122 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2, 3123 f[FEAT_VMX_SECONDARY_CTLS])); 3124 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP, 3125 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid); 3126 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC, 3127 f[FEAT_VMX_BASIC] | fixed_vmx_basic); 3128 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC, 3129 f[FEAT_VMX_MISC] | fixed_vmx_misc); 3130 if (has_msr_vmx_vmfunc) { 3131 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]); 3132 } 3133 3134 /* 3135 * Just to be safe, write these with constant values. The CRn_FIXED1 3136 * MSRs are generated by KVM based on the vCPU's CPUID. 3137 */ 3138 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0, 3139 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK); 3140 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0, 3141 CR4_VMXE_MASK); 3142 3143 if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) { 3144 /* TSC multiplier (0x2032). */ 3145 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32); 3146 } else { 3147 /* Preemption timer (0x482E). */ 3148 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E); 3149 } 3150 } 3151 3152 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f) 3153 { 3154 uint64_t kvm_perf_cap = 3155 kvm_arch_get_supported_msr_feature(kvm_state, 3156 MSR_IA32_PERF_CAPABILITIES); 3157 3158 if (kvm_perf_cap) { 3159 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES, 3160 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]); 3161 } 3162 } 3163 3164 static int kvm_buf_set_msrs(X86CPU *cpu) 3165 { 3166 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 3167 if (ret < 0) { 3168 return ret; 3169 } 3170 3171 if (ret < cpu->kvm_msr_buf->nmsrs) { 3172 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 3173 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, 3174 (uint32_t)e->index, (uint64_t)e->data); 3175 } 3176 3177 assert(ret == cpu->kvm_msr_buf->nmsrs); 3178 return 0; 3179 } 3180 3181 static void kvm_init_msrs(X86CPU *cpu) 3182 { 3183 CPUX86State *env = &cpu->env; 3184 3185 kvm_msr_buf_reset(cpu); 3186 if (has_msr_arch_capabs) { 3187 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES, 3188 env->features[FEAT_ARCH_CAPABILITIES]); 3189 } 3190 3191 if (has_msr_core_capabs) { 3192 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY, 3193 env->features[FEAT_CORE_CAPABILITY]); 3194 } 3195 3196 if (has_msr_perf_capabs && cpu->enable_pmu) { 3197 kvm_msr_entry_add_perf(cpu, env->features); 3198 } 3199 3200 if (has_msr_ucode_rev) { 3201 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev); 3202 } 3203 3204 /* 3205 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but 3206 * all kernels with MSR features should have them. 3207 */ 3208 if (kvm_feature_msrs && cpu_has_vmx(env)) { 3209 kvm_msr_entry_add_vmx(cpu, env->features); 3210 } 3211 3212 assert(kvm_buf_set_msrs(cpu) == 0); 3213 } 3214 3215 static int kvm_put_msrs(X86CPU *cpu, int level) 3216 { 3217 CPUX86State *env = &cpu->env; 3218 int i; 3219 3220 kvm_msr_buf_reset(cpu); 3221 3222 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); 3223 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); 3224 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); 3225 kvm_msr_entry_add(cpu, MSR_PAT, env->pat); 3226 if (has_msr_star) { 3227 kvm_msr_entry_add(cpu, MSR_STAR, env->star); 3228 } 3229 if (has_msr_hsave_pa) { 3230 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); 3231 } 3232 if (has_msr_tsc_aux) { 3233 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); 3234 } 3235 if (has_msr_tsc_adjust) { 3236 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); 3237 } 3238 if (has_msr_misc_enable) { 3239 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 3240 env->msr_ia32_misc_enable); 3241 } 3242 if (has_msr_smbase) { 3243 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); 3244 } 3245 if (has_msr_smi_count) { 3246 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count); 3247 } 3248 if (has_msr_pkrs) { 3249 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs); 3250 } 3251 if (has_msr_bndcfgs) { 3252 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); 3253 } 3254 if (has_msr_xss) { 3255 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); 3256 } 3257 if (has_msr_umwait) { 3258 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait); 3259 } 3260 if (has_msr_spec_ctrl) { 3261 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl); 3262 } 3263 if (has_tsc_scale_msr) { 3264 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr); 3265 } 3266 3267 if (has_msr_tsx_ctrl) { 3268 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl); 3269 } 3270 if (has_msr_virt_ssbd) { 3271 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd); 3272 } 3273 3274 #ifdef TARGET_X86_64 3275 if (lm_capable_kernel) { 3276 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); 3277 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); 3278 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); 3279 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); 3280 } 3281 #endif 3282 3283 /* 3284 * The following MSRs have side effects on the guest or are too heavy 3285 * for normal writeback. Limit them to reset or full state updates. 3286 */ 3287 if (level >= KVM_PUT_RESET_STATE) { 3288 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); 3289 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); 3290 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); 3291 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { 3292 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr); 3293 } 3294 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { 3295 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); 3296 } 3297 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { 3298 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); 3299 } 3300 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { 3301 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); 3302 } 3303 3304 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { 3305 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr); 3306 } 3307 3308 if (has_architectural_pmu_version > 0) { 3309 if (has_architectural_pmu_version > 1) { 3310 /* Stop the counter. */ 3311 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 3312 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 3313 } 3314 3315 /* Set the counter values. */ 3316 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 3317 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 3318 env->msr_fixed_counters[i]); 3319 } 3320 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 3321 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 3322 env->msr_gp_counters[i]); 3323 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 3324 env->msr_gp_evtsel[i]); 3325 } 3326 if (has_architectural_pmu_version > 1) { 3327 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 3328 env->msr_global_status); 3329 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 3330 env->msr_global_ovf_ctrl); 3331 3332 /* Now start the PMU. */ 3333 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 3334 env->msr_fixed_ctr_ctrl); 3335 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 3336 env->msr_global_ctrl); 3337 } 3338 } 3339 /* 3340 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add, 3341 * only sync them to KVM on the first cpu 3342 */ 3343 if (current_cpu == first_cpu) { 3344 if (has_msr_hv_hypercall) { 3345 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 3346 env->msr_hv_guest_os_id); 3347 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 3348 env->msr_hv_hypercall); 3349 } 3350 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 3351 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 3352 env->msr_hv_tsc); 3353 } 3354 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 3355 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 3356 env->msr_hv_reenlightenment_control); 3357 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 3358 env->msr_hv_tsc_emulation_control); 3359 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 3360 env->msr_hv_tsc_emulation_status); 3361 } 3362 #ifdef CONFIG_SYNDBG 3363 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) && 3364 has_msr_hv_syndbg_options) { 3365 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 3366 hyperv_syndbg_query_options()); 3367 } 3368 #endif 3369 } 3370 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 3371 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 3372 env->msr_hv_vapic); 3373 } 3374 if (has_msr_hv_crash) { 3375 int j; 3376 3377 for (j = 0; j < HV_CRASH_PARAMS; j++) 3378 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 3379 env->msr_hv_crash_params[j]); 3380 3381 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY); 3382 } 3383 if (has_msr_hv_runtime) { 3384 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); 3385 } 3386 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) 3387 && hv_vpindex_settable) { 3388 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX, 3389 hyperv_vp_index(CPU(cpu))); 3390 } 3391 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 3392 int j; 3393 3394 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION); 3395 3396 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 3397 env->msr_hv_synic_control); 3398 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 3399 env->msr_hv_synic_evt_page); 3400 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 3401 env->msr_hv_synic_msg_page); 3402 3403 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { 3404 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, 3405 env->msr_hv_synic_sint[j]); 3406 } 3407 } 3408 if (has_msr_hv_stimer) { 3409 int j; 3410 3411 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { 3412 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, 3413 env->msr_hv_stimer_config[j]); 3414 } 3415 3416 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { 3417 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, 3418 env->msr_hv_stimer_count[j]); 3419 } 3420 } 3421 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 3422 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); 3423 3424 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); 3425 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); 3426 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); 3427 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); 3428 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); 3429 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); 3430 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); 3431 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); 3432 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); 3433 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); 3434 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); 3435 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); 3436 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 3437 /* The CPU GPs if we write to a bit above the physical limit of 3438 * the host CPU (and KVM emulates that) 3439 */ 3440 uint64_t mask = env->mtrr_var[i].mask; 3441 mask &= phys_mask; 3442 3443 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 3444 env->mtrr_var[i].base); 3445 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); 3446 } 3447 } 3448 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 3449 int addr_num = kvm_arch_get_supported_cpuid(kvm_state, 3450 0x14, 1, R_EAX) & 0x7; 3451 3452 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 3453 env->msr_rtit_ctrl); 3454 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 3455 env->msr_rtit_status); 3456 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 3457 env->msr_rtit_output_base); 3458 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 3459 env->msr_rtit_output_mask); 3460 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 3461 env->msr_rtit_cr3_match); 3462 for (i = 0; i < addr_num; i++) { 3463 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 3464 env->msr_rtit_addrs[i]); 3465 } 3466 } 3467 3468 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 3469 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 3470 env->msr_ia32_sgxlepubkeyhash[0]); 3471 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 3472 env->msr_ia32_sgxlepubkeyhash[1]); 3473 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 3474 env->msr_ia32_sgxlepubkeyhash[2]); 3475 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 3476 env->msr_ia32_sgxlepubkeyhash[3]); 3477 } 3478 3479 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) { 3480 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 3481 env->msr_xfd); 3482 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 3483 env->msr_xfd_err); 3484 } 3485 3486 if (kvm_enabled() && cpu->enable_pmu && 3487 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) { 3488 uint64_t depth; 3489 int i, ret; 3490 3491 /* 3492 * Only migrate Arch LBR states when the host Arch LBR depth 3493 * equals that of source guest's, this is to avoid mismatch 3494 * of guest/host config for the msr hence avoid unexpected 3495 * misbehavior. 3496 */ 3497 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth); 3498 3499 if (ret == 1 && !!depth && depth == env->msr_lbr_depth) { 3500 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl); 3501 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth); 3502 3503 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) { 3504 if (!env->lbr_records[i].from) { 3505 continue; 3506 } 3507 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 3508 env->lbr_records[i].from); 3509 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 3510 env->lbr_records[i].to); 3511 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 3512 env->lbr_records[i].info); 3513 } 3514 } 3515 } 3516 3517 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see 3518 * kvm_put_msr_feature_control. */ 3519 } 3520 3521 if (env->mcg_cap) { 3522 int i; 3523 3524 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); 3525 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); 3526 if (has_msr_mcg_ext_ctl) { 3527 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); 3528 } 3529 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 3530 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); 3531 } 3532 } 3533 3534 return kvm_buf_set_msrs(cpu); 3535 } 3536 3537 3538 static int kvm_get_fpu(X86CPU *cpu) 3539 { 3540 CPUX86State *env = &cpu->env; 3541 struct kvm_fpu fpu; 3542 int i, ret; 3543 3544 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); 3545 if (ret < 0) { 3546 return ret; 3547 } 3548 3549 env->fpstt = (fpu.fsw >> 11) & 7; 3550 env->fpus = fpu.fsw; 3551 env->fpuc = fpu.fcw; 3552 env->fpop = fpu.last_opcode; 3553 env->fpip = fpu.last_ip; 3554 env->fpdp = fpu.last_dp; 3555 for (i = 0; i < 8; ++i) { 3556 env->fptags[i] = !((fpu.ftwx >> i) & 1); 3557 } 3558 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); 3559 for (i = 0; i < CPU_NB_REGS; i++) { 3560 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]); 3561 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]); 3562 } 3563 env->mxcsr = fpu.mxcsr; 3564 3565 return 0; 3566 } 3567 3568 static int kvm_get_xsave(X86CPU *cpu) 3569 { 3570 CPUX86State *env = &cpu->env; 3571 void *xsave = env->xsave_buf; 3572 int type, ret; 3573 3574 if (!has_xsave) { 3575 return kvm_get_fpu(cpu); 3576 } 3577 3578 type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE; 3579 ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave); 3580 if (ret < 0) { 3581 return ret; 3582 } 3583 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len); 3584 3585 return 0; 3586 } 3587 3588 static int kvm_get_xcrs(X86CPU *cpu) 3589 { 3590 CPUX86State *env = &cpu->env; 3591 int i, ret; 3592 struct kvm_xcrs xcrs; 3593 3594 if (!has_xcrs) { 3595 return 0; 3596 } 3597 3598 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); 3599 if (ret < 0) { 3600 return ret; 3601 } 3602 3603 for (i = 0; i < xcrs.nr_xcrs; i++) { 3604 /* Only support xcr0 now */ 3605 if (xcrs.xcrs[i].xcr == 0) { 3606 env->xcr0 = xcrs.xcrs[i].value; 3607 break; 3608 } 3609 } 3610 return 0; 3611 } 3612 3613 static int kvm_get_sregs(X86CPU *cpu) 3614 { 3615 CPUX86State *env = &cpu->env; 3616 struct kvm_sregs sregs; 3617 int ret; 3618 3619 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); 3620 if (ret < 0) { 3621 return ret; 3622 } 3623 3624 /* 3625 * The interrupt_bitmap is ignored because KVM_GET_SREGS is 3626 * always preceded by KVM_GET_VCPU_EVENTS. 3627 */ 3628 3629 get_seg(&env->segs[R_CS], &sregs.cs); 3630 get_seg(&env->segs[R_DS], &sregs.ds); 3631 get_seg(&env->segs[R_ES], &sregs.es); 3632 get_seg(&env->segs[R_FS], &sregs.fs); 3633 get_seg(&env->segs[R_GS], &sregs.gs); 3634 get_seg(&env->segs[R_SS], &sregs.ss); 3635 3636 get_seg(&env->tr, &sregs.tr); 3637 get_seg(&env->ldt, &sregs.ldt); 3638 3639 env->idt.limit = sregs.idt.limit; 3640 env->idt.base = sregs.idt.base; 3641 env->gdt.limit = sregs.gdt.limit; 3642 env->gdt.base = sregs.gdt.base; 3643 3644 env->cr[0] = sregs.cr0; 3645 env->cr[2] = sregs.cr2; 3646 env->cr[3] = sregs.cr3; 3647 env->cr[4] = sregs.cr4; 3648 3649 env->efer = sregs.efer; 3650 3651 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 3652 x86_update_hflags(env); 3653 3654 return 0; 3655 } 3656 3657 static int kvm_get_sregs2(X86CPU *cpu) 3658 { 3659 CPUX86State *env = &cpu->env; 3660 struct kvm_sregs2 sregs; 3661 int i, ret; 3662 3663 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs); 3664 if (ret < 0) { 3665 return ret; 3666 } 3667 3668 get_seg(&env->segs[R_CS], &sregs.cs); 3669 get_seg(&env->segs[R_DS], &sregs.ds); 3670 get_seg(&env->segs[R_ES], &sregs.es); 3671 get_seg(&env->segs[R_FS], &sregs.fs); 3672 get_seg(&env->segs[R_GS], &sregs.gs); 3673 get_seg(&env->segs[R_SS], &sregs.ss); 3674 3675 get_seg(&env->tr, &sregs.tr); 3676 get_seg(&env->ldt, &sregs.ldt); 3677 3678 env->idt.limit = sregs.idt.limit; 3679 env->idt.base = sregs.idt.base; 3680 env->gdt.limit = sregs.gdt.limit; 3681 env->gdt.base = sregs.gdt.base; 3682 3683 env->cr[0] = sregs.cr0; 3684 env->cr[2] = sregs.cr2; 3685 env->cr[3] = sregs.cr3; 3686 env->cr[4] = sregs.cr4; 3687 3688 env->efer = sregs.efer; 3689 3690 env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 3691 3692 if (env->pdptrs_valid) { 3693 for (i = 0; i < 4; i++) { 3694 env->pdptrs[i] = sregs.pdptrs[i]; 3695 } 3696 } 3697 3698 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 3699 x86_update_hflags(env); 3700 3701 return 0; 3702 } 3703 3704 static int kvm_get_msrs(X86CPU *cpu) 3705 { 3706 CPUX86State *env = &cpu->env; 3707 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; 3708 int ret, i; 3709 uint64_t mtrr_top_bits; 3710 3711 kvm_msr_buf_reset(cpu); 3712 3713 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); 3714 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); 3715 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); 3716 kvm_msr_entry_add(cpu, MSR_PAT, 0); 3717 if (has_msr_star) { 3718 kvm_msr_entry_add(cpu, MSR_STAR, 0); 3719 } 3720 if (has_msr_hsave_pa) { 3721 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); 3722 } 3723 if (has_msr_tsc_aux) { 3724 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); 3725 } 3726 if (has_msr_tsc_adjust) { 3727 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); 3728 } 3729 if (has_msr_tsc_deadline) { 3730 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); 3731 } 3732 if (has_msr_misc_enable) { 3733 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); 3734 } 3735 if (has_msr_smbase) { 3736 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); 3737 } 3738 if (has_msr_smi_count) { 3739 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0); 3740 } 3741 if (has_msr_feature_control) { 3742 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); 3743 } 3744 if (has_msr_pkrs) { 3745 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0); 3746 } 3747 if (has_msr_bndcfgs) { 3748 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); 3749 } 3750 if (has_msr_xss) { 3751 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); 3752 } 3753 if (has_msr_umwait) { 3754 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0); 3755 } 3756 if (has_msr_spec_ctrl) { 3757 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0); 3758 } 3759 if (has_tsc_scale_msr) { 3760 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0); 3761 } 3762 3763 if (has_msr_tsx_ctrl) { 3764 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0); 3765 } 3766 if (has_msr_virt_ssbd) { 3767 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0); 3768 } 3769 if (!env->tsc_valid) { 3770 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); 3771 env->tsc_valid = !runstate_is_running(); 3772 } 3773 3774 #ifdef TARGET_X86_64 3775 if (lm_capable_kernel) { 3776 kvm_msr_entry_add(cpu, MSR_CSTAR, 0); 3777 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); 3778 kvm_msr_entry_add(cpu, MSR_FMASK, 0); 3779 kvm_msr_entry_add(cpu, MSR_LSTAR, 0); 3780 } 3781 #endif 3782 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); 3783 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); 3784 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { 3785 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0); 3786 } 3787 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { 3788 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); 3789 } 3790 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { 3791 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); 3792 } 3793 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { 3794 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); 3795 } 3796 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { 3797 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1); 3798 } 3799 if (has_architectural_pmu_version > 0) { 3800 if (has_architectural_pmu_version > 1) { 3801 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 3802 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 3803 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); 3804 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); 3805 } 3806 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 3807 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); 3808 } 3809 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 3810 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); 3811 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); 3812 } 3813 } 3814 3815 if (env->mcg_cap) { 3816 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); 3817 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); 3818 if (has_msr_mcg_ext_ctl) { 3819 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); 3820 } 3821 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 3822 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); 3823 } 3824 } 3825 3826 if (has_msr_hv_hypercall) { 3827 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); 3828 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); 3829 } 3830 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 3831 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); 3832 } 3833 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 3834 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); 3835 } 3836 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 3837 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0); 3838 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0); 3839 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0); 3840 } 3841 if (has_msr_hv_syndbg_options) { 3842 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0); 3843 } 3844 if (has_msr_hv_crash) { 3845 int j; 3846 3847 for (j = 0; j < HV_CRASH_PARAMS; j++) { 3848 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); 3849 } 3850 } 3851 if (has_msr_hv_runtime) { 3852 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); 3853 } 3854 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 3855 uint32_t msr; 3856 3857 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); 3858 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); 3859 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); 3860 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { 3861 kvm_msr_entry_add(cpu, msr, 0); 3862 } 3863 } 3864 if (has_msr_hv_stimer) { 3865 uint32_t msr; 3866 3867 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; 3868 msr++) { 3869 kvm_msr_entry_add(cpu, msr, 0); 3870 } 3871 } 3872 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 3873 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); 3874 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); 3875 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); 3876 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); 3877 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); 3878 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); 3879 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); 3880 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); 3881 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); 3882 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); 3883 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); 3884 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); 3885 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 3886 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); 3887 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); 3888 } 3889 } 3890 3891 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 3892 int addr_num = 3893 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7; 3894 3895 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0); 3896 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0); 3897 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0); 3898 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0); 3899 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0); 3900 for (i = 0; i < addr_num; i++) { 3901 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0); 3902 } 3903 } 3904 3905 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 3906 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0); 3907 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0); 3908 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0); 3909 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0); 3910 } 3911 3912 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) { 3913 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0); 3914 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0); 3915 } 3916 3917 if (kvm_enabled() && cpu->enable_pmu && 3918 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) { 3919 uint64_t depth; 3920 int i, ret; 3921 3922 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth); 3923 if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) { 3924 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0); 3925 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0); 3926 3927 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) { 3928 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0); 3929 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0); 3930 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0); 3931 } 3932 } 3933 } 3934 3935 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); 3936 if (ret < 0) { 3937 return ret; 3938 } 3939 3940 if (ret < cpu->kvm_msr_buf->nmsrs) { 3941 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 3942 error_report("error: failed to get MSR 0x%" PRIx32, 3943 (uint32_t)e->index); 3944 } 3945 3946 assert(ret == cpu->kvm_msr_buf->nmsrs); 3947 /* 3948 * MTRR masks: Each mask consists of 5 parts 3949 * a 10..0: must be zero 3950 * b 11 : valid bit 3951 * c n-1.12: actual mask bits 3952 * d 51..n: reserved must be zero 3953 * e 63.52: reserved must be zero 3954 * 3955 * 'n' is the number of physical bits supported by the CPU and is 3956 * apparently always <= 52. We know our 'n' but don't know what 3957 * the destinations 'n' is; it might be smaller, in which case 3958 * it masks (c) on loading. It might be larger, in which case 3959 * we fill 'd' so that d..c is consistent irrespetive of the 'n' 3960 * we're migrating to. 3961 */ 3962 3963 if (cpu->fill_mtrr_mask) { 3964 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); 3965 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); 3966 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); 3967 } else { 3968 mtrr_top_bits = 0; 3969 } 3970 3971 for (i = 0; i < ret; i++) { 3972 uint32_t index = msrs[i].index; 3973 switch (index) { 3974 case MSR_IA32_SYSENTER_CS: 3975 env->sysenter_cs = msrs[i].data; 3976 break; 3977 case MSR_IA32_SYSENTER_ESP: 3978 env->sysenter_esp = msrs[i].data; 3979 break; 3980 case MSR_IA32_SYSENTER_EIP: 3981 env->sysenter_eip = msrs[i].data; 3982 break; 3983 case MSR_PAT: 3984 env->pat = msrs[i].data; 3985 break; 3986 case MSR_STAR: 3987 env->star = msrs[i].data; 3988 break; 3989 #ifdef TARGET_X86_64 3990 case MSR_CSTAR: 3991 env->cstar = msrs[i].data; 3992 break; 3993 case MSR_KERNELGSBASE: 3994 env->kernelgsbase = msrs[i].data; 3995 break; 3996 case MSR_FMASK: 3997 env->fmask = msrs[i].data; 3998 break; 3999 case MSR_LSTAR: 4000 env->lstar = msrs[i].data; 4001 break; 4002 #endif 4003 case MSR_IA32_TSC: 4004 env->tsc = msrs[i].data; 4005 break; 4006 case MSR_TSC_AUX: 4007 env->tsc_aux = msrs[i].data; 4008 break; 4009 case MSR_TSC_ADJUST: 4010 env->tsc_adjust = msrs[i].data; 4011 break; 4012 case MSR_IA32_TSCDEADLINE: 4013 env->tsc_deadline = msrs[i].data; 4014 break; 4015 case MSR_VM_HSAVE_PA: 4016 env->vm_hsave = msrs[i].data; 4017 break; 4018 case MSR_KVM_SYSTEM_TIME: 4019 env->system_time_msr = msrs[i].data; 4020 break; 4021 case MSR_KVM_WALL_CLOCK: 4022 env->wall_clock_msr = msrs[i].data; 4023 break; 4024 case MSR_MCG_STATUS: 4025 env->mcg_status = msrs[i].data; 4026 break; 4027 case MSR_MCG_CTL: 4028 env->mcg_ctl = msrs[i].data; 4029 break; 4030 case MSR_MCG_EXT_CTL: 4031 env->mcg_ext_ctl = msrs[i].data; 4032 break; 4033 case MSR_IA32_MISC_ENABLE: 4034 env->msr_ia32_misc_enable = msrs[i].data; 4035 break; 4036 case MSR_IA32_SMBASE: 4037 env->smbase = msrs[i].data; 4038 break; 4039 case MSR_SMI_COUNT: 4040 env->msr_smi_count = msrs[i].data; 4041 break; 4042 case MSR_IA32_FEATURE_CONTROL: 4043 env->msr_ia32_feature_control = msrs[i].data; 4044 break; 4045 case MSR_IA32_BNDCFGS: 4046 env->msr_bndcfgs = msrs[i].data; 4047 break; 4048 case MSR_IA32_XSS: 4049 env->xss = msrs[i].data; 4050 break; 4051 case MSR_IA32_UMWAIT_CONTROL: 4052 env->umwait = msrs[i].data; 4053 break; 4054 case MSR_IA32_PKRS: 4055 env->pkrs = msrs[i].data; 4056 break; 4057 default: 4058 if (msrs[i].index >= MSR_MC0_CTL && 4059 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { 4060 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; 4061 } 4062 break; 4063 case MSR_KVM_ASYNC_PF_EN: 4064 env->async_pf_en_msr = msrs[i].data; 4065 break; 4066 case MSR_KVM_ASYNC_PF_INT: 4067 env->async_pf_int_msr = msrs[i].data; 4068 break; 4069 case MSR_KVM_PV_EOI_EN: 4070 env->pv_eoi_en_msr = msrs[i].data; 4071 break; 4072 case MSR_KVM_STEAL_TIME: 4073 env->steal_time_msr = msrs[i].data; 4074 break; 4075 case MSR_KVM_POLL_CONTROL: { 4076 env->poll_control_msr = msrs[i].data; 4077 break; 4078 } 4079 case MSR_CORE_PERF_FIXED_CTR_CTRL: 4080 env->msr_fixed_ctr_ctrl = msrs[i].data; 4081 break; 4082 case MSR_CORE_PERF_GLOBAL_CTRL: 4083 env->msr_global_ctrl = msrs[i].data; 4084 break; 4085 case MSR_CORE_PERF_GLOBAL_STATUS: 4086 env->msr_global_status = msrs[i].data; 4087 break; 4088 case MSR_CORE_PERF_GLOBAL_OVF_CTRL: 4089 env->msr_global_ovf_ctrl = msrs[i].data; 4090 break; 4091 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: 4092 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; 4093 break; 4094 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: 4095 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; 4096 break; 4097 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: 4098 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; 4099 break; 4100 case HV_X64_MSR_HYPERCALL: 4101 env->msr_hv_hypercall = msrs[i].data; 4102 break; 4103 case HV_X64_MSR_GUEST_OS_ID: 4104 env->msr_hv_guest_os_id = msrs[i].data; 4105 break; 4106 case HV_X64_MSR_APIC_ASSIST_PAGE: 4107 env->msr_hv_vapic = msrs[i].data; 4108 break; 4109 case HV_X64_MSR_REFERENCE_TSC: 4110 env->msr_hv_tsc = msrs[i].data; 4111 break; 4112 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4113 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; 4114 break; 4115 case HV_X64_MSR_VP_RUNTIME: 4116 env->msr_hv_runtime = msrs[i].data; 4117 break; 4118 case HV_X64_MSR_SCONTROL: 4119 env->msr_hv_synic_control = msrs[i].data; 4120 break; 4121 case HV_X64_MSR_SIEFP: 4122 env->msr_hv_synic_evt_page = msrs[i].data; 4123 break; 4124 case HV_X64_MSR_SIMP: 4125 env->msr_hv_synic_msg_page = msrs[i].data; 4126 break; 4127 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 4128 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; 4129 break; 4130 case HV_X64_MSR_STIMER0_CONFIG: 4131 case HV_X64_MSR_STIMER1_CONFIG: 4132 case HV_X64_MSR_STIMER2_CONFIG: 4133 case HV_X64_MSR_STIMER3_CONFIG: 4134 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = 4135 msrs[i].data; 4136 break; 4137 case HV_X64_MSR_STIMER0_COUNT: 4138 case HV_X64_MSR_STIMER1_COUNT: 4139 case HV_X64_MSR_STIMER2_COUNT: 4140 case HV_X64_MSR_STIMER3_COUNT: 4141 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = 4142 msrs[i].data; 4143 break; 4144 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4145 env->msr_hv_reenlightenment_control = msrs[i].data; 4146 break; 4147 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4148 env->msr_hv_tsc_emulation_control = msrs[i].data; 4149 break; 4150 case HV_X64_MSR_TSC_EMULATION_STATUS: 4151 env->msr_hv_tsc_emulation_status = msrs[i].data; 4152 break; 4153 case HV_X64_MSR_SYNDBG_OPTIONS: 4154 env->msr_hv_syndbg_options = msrs[i].data; 4155 break; 4156 case MSR_MTRRdefType: 4157 env->mtrr_deftype = msrs[i].data; 4158 break; 4159 case MSR_MTRRfix64K_00000: 4160 env->mtrr_fixed[0] = msrs[i].data; 4161 break; 4162 case MSR_MTRRfix16K_80000: 4163 env->mtrr_fixed[1] = msrs[i].data; 4164 break; 4165 case MSR_MTRRfix16K_A0000: 4166 env->mtrr_fixed[2] = msrs[i].data; 4167 break; 4168 case MSR_MTRRfix4K_C0000: 4169 env->mtrr_fixed[3] = msrs[i].data; 4170 break; 4171 case MSR_MTRRfix4K_C8000: 4172 env->mtrr_fixed[4] = msrs[i].data; 4173 break; 4174 case MSR_MTRRfix4K_D0000: 4175 env->mtrr_fixed[5] = msrs[i].data; 4176 break; 4177 case MSR_MTRRfix4K_D8000: 4178 env->mtrr_fixed[6] = msrs[i].data; 4179 break; 4180 case MSR_MTRRfix4K_E0000: 4181 env->mtrr_fixed[7] = msrs[i].data; 4182 break; 4183 case MSR_MTRRfix4K_E8000: 4184 env->mtrr_fixed[8] = msrs[i].data; 4185 break; 4186 case MSR_MTRRfix4K_F0000: 4187 env->mtrr_fixed[9] = msrs[i].data; 4188 break; 4189 case MSR_MTRRfix4K_F8000: 4190 env->mtrr_fixed[10] = msrs[i].data; 4191 break; 4192 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): 4193 if (index & 1) { 4194 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | 4195 mtrr_top_bits; 4196 } else { 4197 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; 4198 } 4199 break; 4200 case MSR_IA32_SPEC_CTRL: 4201 env->spec_ctrl = msrs[i].data; 4202 break; 4203 case MSR_AMD64_TSC_RATIO: 4204 env->amd_tsc_scale_msr = msrs[i].data; 4205 break; 4206 case MSR_IA32_TSX_CTRL: 4207 env->tsx_ctrl = msrs[i].data; 4208 break; 4209 case MSR_VIRT_SSBD: 4210 env->virt_ssbd = msrs[i].data; 4211 break; 4212 case MSR_IA32_RTIT_CTL: 4213 env->msr_rtit_ctrl = msrs[i].data; 4214 break; 4215 case MSR_IA32_RTIT_STATUS: 4216 env->msr_rtit_status = msrs[i].data; 4217 break; 4218 case MSR_IA32_RTIT_OUTPUT_BASE: 4219 env->msr_rtit_output_base = msrs[i].data; 4220 break; 4221 case MSR_IA32_RTIT_OUTPUT_MASK: 4222 env->msr_rtit_output_mask = msrs[i].data; 4223 break; 4224 case MSR_IA32_RTIT_CR3_MATCH: 4225 env->msr_rtit_cr3_match = msrs[i].data; 4226 break; 4227 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 4228 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data; 4229 break; 4230 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 4231 env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] = 4232 msrs[i].data; 4233 break; 4234 case MSR_IA32_XFD: 4235 env->msr_xfd = msrs[i].data; 4236 break; 4237 case MSR_IA32_XFD_ERR: 4238 env->msr_xfd_err = msrs[i].data; 4239 break; 4240 case MSR_ARCH_LBR_CTL: 4241 env->msr_lbr_ctl = msrs[i].data; 4242 break; 4243 case MSR_ARCH_LBR_DEPTH: 4244 env->msr_lbr_depth = msrs[i].data; 4245 break; 4246 case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31: 4247 env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data; 4248 break; 4249 case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31: 4250 env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data; 4251 break; 4252 case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31: 4253 env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data; 4254 break; 4255 } 4256 } 4257 4258 return 0; 4259 } 4260 4261 static int kvm_put_mp_state(X86CPU *cpu) 4262 { 4263 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; 4264 4265 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 4266 } 4267 4268 static int kvm_get_mp_state(X86CPU *cpu) 4269 { 4270 CPUState *cs = CPU(cpu); 4271 CPUX86State *env = &cpu->env; 4272 struct kvm_mp_state mp_state; 4273 int ret; 4274 4275 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); 4276 if (ret < 0) { 4277 return ret; 4278 } 4279 env->mp_state = mp_state.mp_state; 4280 if (kvm_irqchip_in_kernel()) { 4281 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); 4282 } 4283 return 0; 4284 } 4285 4286 static int kvm_get_apic(X86CPU *cpu) 4287 { 4288 DeviceState *apic = cpu->apic_state; 4289 struct kvm_lapic_state kapic; 4290 int ret; 4291 4292 if (apic && kvm_irqchip_in_kernel()) { 4293 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); 4294 if (ret < 0) { 4295 return ret; 4296 } 4297 4298 kvm_get_apic_state(apic, &kapic); 4299 } 4300 return 0; 4301 } 4302 4303 static int kvm_put_vcpu_events(X86CPU *cpu, int level) 4304 { 4305 CPUState *cs = CPU(cpu); 4306 CPUX86State *env = &cpu->env; 4307 struct kvm_vcpu_events events = {}; 4308 4309 if (!kvm_has_vcpu_events()) { 4310 return 0; 4311 } 4312 4313 events.flags = 0; 4314 4315 if (has_exception_payload) { 4316 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 4317 events.exception.pending = env->exception_pending; 4318 events.exception_has_payload = env->exception_has_payload; 4319 events.exception_payload = env->exception_payload; 4320 } 4321 events.exception.nr = env->exception_nr; 4322 events.exception.injected = env->exception_injected; 4323 events.exception.has_error_code = env->has_error_code; 4324 events.exception.error_code = env->error_code; 4325 4326 events.interrupt.injected = (env->interrupt_injected >= 0); 4327 events.interrupt.nr = env->interrupt_injected; 4328 events.interrupt.soft = env->soft_interrupt; 4329 4330 events.nmi.injected = env->nmi_injected; 4331 events.nmi.pending = env->nmi_pending; 4332 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); 4333 4334 events.sipi_vector = env->sipi_vector; 4335 4336 if (has_msr_smbase) { 4337 events.smi.smm = !!(env->hflags & HF_SMM_MASK); 4338 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); 4339 if (kvm_irqchip_in_kernel()) { 4340 /* As soon as these are moved to the kernel, remove them 4341 * from cs->interrupt_request. 4342 */ 4343 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; 4344 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; 4345 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); 4346 } else { 4347 /* Keep these in cs->interrupt_request. */ 4348 events.smi.pending = 0; 4349 events.smi.latched_init = 0; 4350 } 4351 /* Stop SMI delivery on old machine types to avoid a reboot 4352 * on an inward migration of an old VM. 4353 */ 4354 if (!cpu->kvm_no_smi_migration) { 4355 events.flags |= KVM_VCPUEVENT_VALID_SMM; 4356 } 4357 } 4358 4359 if (level >= KVM_PUT_RESET_STATE) { 4360 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; 4361 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 4362 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR; 4363 } 4364 } 4365 4366 if (has_triple_fault_event) { 4367 events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 4368 events.triple_fault.pending = env->triple_fault_pending; 4369 } 4370 4371 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 4372 } 4373 4374 static int kvm_get_vcpu_events(X86CPU *cpu) 4375 { 4376 CPUX86State *env = &cpu->env; 4377 struct kvm_vcpu_events events; 4378 int ret; 4379 4380 if (!kvm_has_vcpu_events()) { 4381 return 0; 4382 } 4383 4384 memset(&events, 0, sizeof(events)); 4385 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 4386 if (ret < 0) { 4387 return ret; 4388 } 4389 4390 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 4391 env->exception_pending = events.exception.pending; 4392 env->exception_has_payload = events.exception_has_payload; 4393 env->exception_payload = events.exception_payload; 4394 } else { 4395 env->exception_pending = 0; 4396 env->exception_has_payload = false; 4397 } 4398 env->exception_injected = events.exception.injected; 4399 env->exception_nr = 4400 (env->exception_pending || env->exception_injected) ? 4401 events.exception.nr : -1; 4402 env->has_error_code = events.exception.has_error_code; 4403 env->error_code = events.exception.error_code; 4404 4405 env->interrupt_injected = 4406 events.interrupt.injected ? events.interrupt.nr : -1; 4407 env->soft_interrupt = events.interrupt.soft; 4408 4409 env->nmi_injected = events.nmi.injected; 4410 env->nmi_pending = events.nmi.pending; 4411 if (events.nmi.masked) { 4412 env->hflags2 |= HF2_NMI_MASK; 4413 } else { 4414 env->hflags2 &= ~HF2_NMI_MASK; 4415 } 4416 4417 if (events.flags & KVM_VCPUEVENT_VALID_SMM) { 4418 if (events.smi.smm) { 4419 env->hflags |= HF_SMM_MASK; 4420 } else { 4421 env->hflags &= ~HF_SMM_MASK; 4422 } 4423 if (events.smi.pending) { 4424 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 4425 } else { 4426 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 4427 } 4428 if (events.smi.smm_inside_nmi) { 4429 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; 4430 } else { 4431 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; 4432 } 4433 if (events.smi.latched_init) { 4434 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 4435 } else { 4436 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 4437 } 4438 } 4439 4440 if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 4441 env->triple_fault_pending = events.triple_fault.pending; 4442 } 4443 4444 env->sipi_vector = events.sipi_vector; 4445 4446 return 0; 4447 } 4448 4449 static int kvm_guest_debug_workarounds(X86CPU *cpu) 4450 { 4451 CPUState *cs = CPU(cpu); 4452 CPUX86State *env = &cpu->env; 4453 int ret = 0; 4454 unsigned long reinject_trap = 0; 4455 4456 if (!kvm_has_vcpu_events()) { 4457 if (env->exception_nr == EXCP01_DB) { 4458 reinject_trap = KVM_GUESTDBG_INJECT_DB; 4459 } else if (env->exception_injected == EXCP03_INT3) { 4460 reinject_trap = KVM_GUESTDBG_INJECT_BP; 4461 } 4462 kvm_reset_exception(env); 4463 } 4464 4465 /* 4466 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF 4467 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this 4468 * by updating the debug state once again if single-stepping is on. 4469 * Another reason to call kvm_update_guest_debug here is a pending debug 4470 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to 4471 * reinject them via SET_GUEST_DEBUG. 4472 */ 4473 if (reinject_trap || 4474 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { 4475 ret = kvm_update_guest_debug(cs, reinject_trap); 4476 } 4477 return ret; 4478 } 4479 4480 static int kvm_put_debugregs(X86CPU *cpu) 4481 { 4482 CPUX86State *env = &cpu->env; 4483 struct kvm_debugregs dbgregs; 4484 int i; 4485 4486 if (!kvm_has_debugregs()) { 4487 return 0; 4488 } 4489 4490 memset(&dbgregs, 0, sizeof(dbgregs)); 4491 for (i = 0; i < 4; i++) { 4492 dbgregs.db[i] = env->dr[i]; 4493 } 4494 dbgregs.dr6 = env->dr[6]; 4495 dbgregs.dr7 = env->dr[7]; 4496 dbgregs.flags = 0; 4497 4498 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); 4499 } 4500 4501 static int kvm_get_debugregs(X86CPU *cpu) 4502 { 4503 CPUX86State *env = &cpu->env; 4504 struct kvm_debugregs dbgregs; 4505 int i, ret; 4506 4507 if (!kvm_has_debugregs()) { 4508 return 0; 4509 } 4510 4511 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); 4512 if (ret < 0) { 4513 return ret; 4514 } 4515 for (i = 0; i < 4; i++) { 4516 env->dr[i] = dbgregs.db[i]; 4517 } 4518 env->dr[4] = env->dr[6] = dbgregs.dr6; 4519 env->dr[5] = env->dr[7] = dbgregs.dr7; 4520 4521 return 0; 4522 } 4523 4524 static int kvm_put_nested_state(X86CPU *cpu) 4525 { 4526 CPUX86State *env = &cpu->env; 4527 int max_nested_state_len = kvm_max_nested_state_length(); 4528 4529 if (!env->nested_state) { 4530 return 0; 4531 } 4532 4533 /* 4534 * Copy flags that are affected by reset from env->hflags and env->hflags2. 4535 */ 4536 if (env->hflags & HF_GUEST_MASK) { 4537 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE; 4538 } else { 4539 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE; 4540 } 4541 4542 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */ 4543 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) { 4544 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET; 4545 } else { 4546 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET; 4547 } 4548 4549 assert(env->nested_state->size <= max_nested_state_len); 4550 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state); 4551 } 4552 4553 static int kvm_get_nested_state(X86CPU *cpu) 4554 { 4555 CPUX86State *env = &cpu->env; 4556 int max_nested_state_len = kvm_max_nested_state_length(); 4557 int ret; 4558 4559 if (!env->nested_state) { 4560 return 0; 4561 } 4562 4563 /* 4564 * It is possible that migration restored a smaller size into 4565 * nested_state->hdr.size than what our kernel support. 4566 * We preserve migration origin nested_state->hdr.size for 4567 * call to KVM_SET_NESTED_STATE but wish that our next call 4568 * to KVM_GET_NESTED_STATE will use max size our kernel support. 4569 */ 4570 env->nested_state->size = max_nested_state_len; 4571 4572 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state); 4573 if (ret < 0) { 4574 return ret; 4575 } 4576 4577 /* 4578 * Copy flags that are affected by reset to env->hflags and env->hflags2. 4579 */ 4580 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) { 4581 env->hflags |= HF_GUEST_MASK; 4582 } else { 4583 env->hflags &= ~HF_GUEST_MASK; 4584 } 4585 4586 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */ 4587 if (cpu_has_svm(env)) { 4588 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) { 4589 env->hflags2 |= HF2_GIF_MASK; 4590 } else { 4591 env->hflags2 &= ~HF2_GIF_MASK; 4592 } 4593 } 4594 4595 return ret; 4596 } 4597 4598 int kvm_arch_put_registers(CPUState *cpu, int level) 4599 { 4600 X86CPU *x86_cpu = X86_CPU(cpu); 4601 int ret; 4602 4603 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); 4604 4605 /* 4606 * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX 4607 * root operation upon vCPU reset. kvm_put_msr_feature_control() should also 4608 * preceed kvm_put_nested_state() when 'real' nested state is set. 4609 */ 4610 if (level >= KVM_PUT_RESET_STATE) { 4611 ret = kvm_put_msr_feature_control(x86_cpu); 4612 if (ret < 0) { 4613 return ret; 4614 } 4615 } 4616 4617 /* must be before kvm_put_nested_state so that EFER.SVME is set */ 4618 ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu); 4619 if (ret < 0) { 4620 return ret; 4621 } 4622 4623 if (level >= KVM_PUT_RESET_STATE) { 4624 ret = kvm_put_nested_state(x86_cpu); 4625 if (ret < 0) { 4626 return ret; 4627 } 4628 } 4629 4630 if (level == KVM_PUT_FULL_STATE) { 4631 /* We don't check for kvm_arch_set_tsc_khz() errors here, 4632 * because TSC frequency mismatch shouldn't abort migration, 4633 * unless the user explicitly asked for a more strict TSC 4634 * setting (e.g. using an explicit "tsc-freq" option). 4635 */ 4636 kvm_arch_set_tsc_khz(cpu); 4637 } 4638 4639 ret = kvm_getput_regs(x86_cpu, 1); 4640 if (ret < 0) { 4641 return ret; 4642 } 4643 ret = kvm_put_xsave(x86_cpu); 4644 if (ret < 0) { 4645 return ret; 4646 } 4647 ret = kvm_put_xcrs(x86_cpu); 4648 if (ret < 0) { 4649 return ret; 4650 } 4651 /* must be before kvm_put_msrs */ 4652 ret = kvm_inject_mce_oldstyle(x86_cpu); 4653 if (ret < 0) { 4654 return ret; 4655 } 4656 ret = kvm_put_msrs(x86_cpu, level); 4657 if (ret < 0) { 4658 return ret; 4659 } 4660 ret = kvm_put_vcpu_events(x86_cpu, level); 4661 if (ret < 0) { 4662 return ret; 4663 } 4664 if (level >= KVM_PUT_RESET_STATE) { 4665 ret = kvm_put_mp_state(x86_cpu); 4666 if (ret < 0) { 4667 return ret; 4668 } 4669 } 4670 4671 ret = kvm_put_tscdeadline_msr(x86_cpu); 4672 if (ret < 0) { 4673 return ret; 4674 } 4675 ret = kvm_put_debugregs(x86_cpu); 4676 if (ret < 0) { 4677 return ret; 4678 } 4679 /* must be last */ 4680 ret = kvm_guest_debug_workarounds(x86_cpu); 4681 if (ret < 0) { 4682 return ret; 4683 } 4684 return 0; 4685 } 4686 4687 int kvm_arch_get_registers(CPUState *cs) 4688 { 4689 X86CPU *cpu = X86_CPU(cs); 4690 int ret; 4691 4692 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); 4693 4694 ret = kvm_get_vcpu_events(cpu); 4695 if (ret < 0) { 4696 goto out; 4697 } 4698 /* 4699 * KVM_GET_MPSTATE can modify CS and RIP, call it before 4700 * KVM_GET_REGS and KVM_GET_SREGS. 4701 */ 4702 ret = kvm_get_mp_state(cpu); 4703 if (ret < 0) { 4704 goto out; 4705 } 4706 ret = kvm_getput_regs(cpu, 0); 4707 if (ret < 0) { 4708 goto out; 4709 } 4710 ret = kvm_get_xsave(cpu); 4711 if (ret < 0) { 4712 goto out; 4713 } 4714 ret = kvm_get_xcrs(cpu); 4715 if (ret < 0) { 4716 goto out; 4717 } 4718 ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu); 4719 if (ret < 0) { 4720 goto out; 4721 } 4722 ret = kvm_get_msrs(cpu); 4723 if (ret < 0) { 4724 goto out; 4725 } 4726 ret = kvm_get_apic(cpu); 4727 if (ret < 0) { 4728 goto out; 4729 } 4730 ret = kvm_get_debugregs(cpu); 4731 if (ret < 0) { 4732 goto out; 4733 } 4734 ret = kvm_get_nested_state(cpu); 4735 if (ret < 0) { 4736 goto out; 4737 } 4738 ret = 0; 4739 out: 4740 cpu_sync_bndcs_hflags(&cpu->env); 4741 return ret; 4742 } 4743 4744 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 4745 { 4746 X86CPU *x86_cpu = X86_CPU(cpu); 4747 CPUX86State *env = &x86_cpu->env; 4748 int ret; 4749 4750 /* Inject NMI */ 4751 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { 4752 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { 4753 qemu_mutex_lock_iothread(); 4754 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; 4755 qemu_mutex_unlock_iothread(); 4756 DPRINTF("injected NMI\n"); 4757 ret = kvm_vcpu_ioctl(cpu, KVM_NMI); 4758 if (ret < 0) { 4759 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", 4760 strerror(-ret)); 4761 } 4762 } 4763 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { 4764 qemu_mutex_lock_iothread(); 4765 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; 4766 qemu_mutex_unlock_iothread(); 4767 DPRINTF("injected SMI\n"); 4768 ret = kvm_vcpu_ioctl(cpu, KVM_SMI); 4769 if (ret < 0) { 4770 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", 4771 strerror(-ret)); 4772 } 4773 } 4774 } 4775 4776 if (!kvm_pic_in_kernel()) { 4777 qemu_mutex_lock_iothread(); 4778 } 4779 4780 /* Force the VCPU out of its inner loop to process any INIT requests 4781 * or (for userspace APIC, but it is cheap to combine the checks here) 4782 * pending TPR access reports. 4783 */ 4784 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { 4785 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && 4786 !(env->hflags & HF_SMM_MASK)) { 4787 cpu->exit_request = 1; 4788 } 4789 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { 4790 cpu->exit_request = 1; 4791 } 4792 } 4793 4794 if (!kvm_pic_in_kernel()) { 4795 /* Try to inject an interrupt if the guest can accept it */ 4796 if (run->ready_for_interrupt_injection && 4797 (cpu->interrupt_request & CPU_INTERRUPT_HARD) && 4798 (env->eflags & IF_MASK)) { 4799 int irq; 4800 4801 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; 4802 irq = cpu_get_pic_interrupt(env); 4803 if (irq >= 0) { 4804 struct kvm_interrupt intr; 4805 4806 intr.irq = irq; 4807 DPRINTF("injected interrupt %d\n", irq); 4808 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); 4809 if (ret < 0) { 4810 fprintf(stderr, 4811 "KVM: injection failed, interrupt lost (%s)\n", 4812 strerror(-ret)); 4813 } 4814 } 4815 } 4816 4817 /* If we have an interrupt but the guest is not ready to receive an 4818 * interrupt, request an interrupt window exit. This will 4819 * cause a return to userspace as soon as the guest is ready to 4820 * receive interrupts. */ 4821 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { 4822 run->request_interrupt_window = 1; 4823 } else { 4824 run->request_interrupt_window = 0; 4825 } 4826 4827 DPRINTF("setting tpr\n"); 4828 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); 4829 4830 qemu_mutex_unlock_iothread(); 4831 } 4832 } 4833 4834 static void kvm_rate_limit_on_bus_lock(void) 4835 { 4836 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1); 4837 4838 if (delay_ns) { 4839 g_usleep(delay_ns / SCALE_US); 4840 } 4841 } 4842 4843 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) 4844 { 4845 X86CPU *x86_cpu = X86_CPU(cpu); 4846 CPUX86State *env = &x86_cpu->env; 4847 4848 if (run->flags & KVM_RUN_X86_SMM) { 4849 env->hflags |= HF_SMM_MASK; 4850 } else { 4851 env->hflags &= ~HF_SMM_MASK; 4852 } 4853 if (run->if_flag) { 4854 env->eflags |= IF_MASK; 4855 } else { 4856 env->eflags &= ~IF_MASK; 4857 } 4858 if (run->flags & KVM_RUN_X86_BUS_LOCK) { 4859 kvm_rate_limit_on_bus_lock(); 4860 } 4861 4862 /* We need to protect the apic state against concurrent accesses from 4863 * different threads in case the userspace irqchip is used. */ 4864 if (!kvm_irqchip_in_kernel()) { 4865 qemu_mutex_lock_iothread(); 4866 } 4867 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); 4868 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); 4869 if (!kvm_irqchip_in_kernel()) { 4870 qemu_mutex_unlock_iothread(); 4871 } 4872 return cpu_get_mem_attrs(env); 4873 } 4874 4875 int kvm_arch_process_async_events(CPUState *cs) 4876 { 4877 X86CPU *cpu = X86_CPU(cs); 4878 CPUX86State *env = &cpu->env; 4879 4880 if (cs->interrupt_request & CPU_INTERRUPT_MCE) { 4881 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ 4882 assert(env->mcg_cap); 4883 4884 cs->interrupt_request &= ~CPU_INTERRUPT_MCE; 4885 4886 kvm_cpu_synchronize_state(cs); 4887 4888 if (env->exception_nr == EXCP08_DBLE) { 4889 /* this means triple fault */ 4890 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 4891 cs->exit_request = 1; 4892 return 0; 4893 } 4894 kvm_queue_exception(env, EXCP12_MCHK, 0, 0); 4895 env->has_error_code = 0; 4896 4897 cs->halted = 0; 4898 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { 4899 env->mp_state = KVM_MP_STATE_RUNNABLE; 4900 } 4901 } 4902 4903 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && 4904 !(env->hflags & HF_SMM_MASK)) { 4905 kvm_cpu_synchronize_state(cs); 4906 do_cpu_init(cpu); 4907 } 4908 4909 if (kvm_irqchip_in_kernel()) { 4910 return 0; 4911 } 4912 4913 if (cs->interrupt_request & CPU_INTERRUPT_POLL) { 4914 cs->interrupt_request &= ~CPU_INTERRUPT_POLL; 4915 apic_poll_irq(cpu->apic_state); 4916 } 4917 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && 4918 (env->eflags & IF_MASK)) || 4919 (cs->interrupt_request & CPU_INTERRUPT_NMI)) { 4920 cs->halted = 0; 4921 } 4922 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { 4923 kvm_cpu_synchronize_state(cs); 4924 do_cpu_sipi(cpu); 4925 } 4926 if (cs->interrupt_request & CPU_INTERRUPT_TPR) { 4927 cs->interrupt_request &= ~CPU_INTERRUPT_TPR; 4928 kvm_cpu_synchronize_state(cs); 4929 apic_handle_tpr_access_report(cpu->apic_state, env->eip, 4930 env->tpr_access_type); 4931 } 4932 4933 return cs->halted; 4934 } 4935 4936 static int kvm_handle_halt(X86CPU *cpu) 4937 { 4938 CPUState *cs = CPU(cpu); 4939 CPUX86State *env = &cpu->env; 4940 4941 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && 4942 (env->eflags & IF_MASK)) && 4943 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { 4944 cs->halted = 1; 4945 return EXCP_HLT; 4946 } 4947 4948 return 0; 4949 } 4950 4951 static int kvm_handle_tpr_access(X86CPU *cpu) 4952 { 4953 CPUState *cs = CPU(cpu); 4954 struct kvm_run *run = cs->kvm_run; 4955 4956 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, 4957 run->tpr_access.is_write ? TPR_ACCESS_WRITE 4958 : TPR_ACCESS_READ); 4959 return 1; 4960 } 4961 4962 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 4963 { 4964 static const uint8_t int3 = 0xcc; 4965 4966 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || 4967 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { 4968 return -EINVAL; 4969 } 4970 return 0; 4971 } 4972 4973 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 4974 { 4975 uint8_t int3; 4976 4977 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) { 4978 return -EINVAL; 4979 } 4980 if (int3 != 0xcc) { 4981 return 0; 4982 } 4983 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { 4984 return -EINVAL; 4985 } 4986 return 0; 4987 } 4988 4989 static struct { 4990 target_ulong addr; 4991 int len; 4992 int type; 4993 } hw_breakpoint[4]; 4994 4995 static int nb_hw_breakpoint; 4996 4997 static int find_hw_breakpoint(target_ulong addr, int len, int type) 4998 { 4999 int n; 5000 5001 for (n = 0; n < nb_hw_breakpoint; n++) { 5002 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && 5003 (hw_breakpoint[n].len == len || len == -1)) { 5004 return n; 5005 } 5006 } 5007 return -1; 5008 } 5009 5010 int kvm_arch_insert_hw_breakpoint(target_ulong addr, 5011 target_ulong len, int type) 5012 { 5013 switch (type) { 5014 case GDB_BREAKPOINT_HW: 5015 len = 1; 5016 break; 5017 case GDB_WATCHPOINT_WRITE: 5018 case GDB_WATCHPOINT_ACCESS: 5019 switch (len) { 5020 case 1: 5021 break; 5022 case 2: 5023 case 4: 5024 case 8: 5025 if (addr & (len - 1)) { 5026 return -EINVAL; 5027 } 5028 break; 5029 default: 5030 return -EINVAL; 5031 } 5032 break; 5033 default: 5034 return -ENOSYS; 5035 } 5036 5037 if (nb_hw_breakpoint == 4) { 5038 return -ENOBUFS; 5039 } 5040 if (find_hw_breakpoint(addr, len, type) >= 0) { 5041 return -EEXIST; 5042 } 5043 hw_breakpoint[nb_hw_breakpoint].addr = addr; 5044 hw_breakpoint[nb_hw_breakpoint].len = len; 5045 hw_breakpoint[nb_hw_breakpoint].type = type; 5046 nb_hw_breakpoint++; 5047 5048 return 0; 5049 } 5050 5051 int kvm_arch_remove_hw_breakpoint(target_ulong addr, 5052 target_ulong len, int type) 5053 { 5054 int n; 5055 5056 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); 5057 if (n < 0) { 5058 return -ENOENT; 5059 } 5060 nb_hw_breakpoint--; 5061 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; 5062 5063 return 0; 5064 } 5065 5066 void kvm_arch_remove_all_hw_breakpoints(void) 5067 { 5068 nb_hw_breakpoint = 0; 5069 } 5070 5071 static CPUWatchpoint hw_watchpoint; 5072 5073 static int kvm_handle_debug(X86CPU *cpu, 5074 struct kvm_debug_exit_arch *arch_info) 5075 { 5076 CPUState *cs = CPU(cpu); 5077 CPUX86State *env = &cpu->env; 5078 int ret = 0; 5079 int n; 5080 5081 if (arch_info->exception == EXCP01_DB) { 5082 if (arch_info->dr6 & DR6_BS) { 5083 if (cs->singlestep_enabled) { 5084 ret = EXCP_DEBUG; 5085 } 5086 } else { 5087 for (n = 0; n < 4; n++) { 5088 if (arch_info->dr6 & (1 << n)) { 5089 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { 5090 case 0x0: 5091 ret = EXCP_DEBUG; 5092 break; 5093 case 0x1: 5094 ret = EXCP_DEBUG; 5095 cs->watchpoint_hit = &hw_watchpoint; 5096 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 5097 hw_watchpoint.flags = BP_MEM_WRITE; 5098 break; 5099 case 0x3: 5100 ret = EXCP_DEBUG; 5101 cs->watchpoint_hit = &hw_watchpoint; 5102 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 5103 hw_watchpoint.flags = BP_MEM_ACCESS; 5104 break; 5105 } 5106 } 5107 } 5108 } 5109 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { 5110 ret = EXCP_DEBUG; 5111 } 5112 if (ret == 0) { 5113 cpu_synchronize_state(cs); 5114 assert(env->exception_nr == -1); 5115 5116 /* pass to guest */ 5117 kvm_queue_exception(env, arch_info->exception, 5118 arch_info->exception == EXCP01_DB, 5119 arch_info->dr6); 5120 env->has_error_code = 0; 5121 } 5122 5123 return ret; 5124 } 5125 5126 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 5127 { 5128 const uint8_t type_code[] = { 5129 [GDB_BREAKPOINT_HW] = 0x0, 5130 [GDB_WATCHPOINT_WRITE] = 0x1, 5131 [GDB_WATCHPOINT_ACCESS] = 0x3 5132 }; 5133 const uint8_t len_code[] = { 5134 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 5135 }; 5136 int n; 5137 5138 if (kvm_sw_breakpoints_active(cpu)) { 5139 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 5140 } 5141 if (nb_hw_breakpoint > 0) { 5142 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 5143 dbg->arch.debugreg[7] = 0x0600; 5144 for (n = 0; n < nb_hw_breakpoint; n++) { 5145 dbg->arch.debugreg[n] = hw_breakpoint[n].addr; 5146 dbg->arch.debugreg[7] |= (2 << (n * 2)) | 5147 (type_code[hw_breakpoint[n].type] << (16 + n*4)) | 5148 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); 5149 } 5150 } 5151 } 5152 5153 static bool kvm_install_msr_filters(KVMState *s) 5154 { 5155 uint64_t zero = 0; 5156 struct kvm_msr_filter filter = { 5157 .flags = KVM_MSR_FILTER_DEFAULT_ALLOW, 5158 }; 5159 int r, i, j = 0; 5160 5161 for (i = 0; i < KVM_MSR_FILTER_MAX_RANGES; i++) { 5162 KVMMSRHandlers *handler = &msr_handlers[i]; 5163 if (handler->msr) { 5164 struct kvm_msr_filter_range *range = &filter.ranges[j++]; 5165 5166 *range = (struct kvm_msr_filter_range) { 5167 .flags = 0, 5168 .nmsrs = 1, 5169 .base = handler->msr, 5170 .bitmap = (__u8 *)&zero, 5171 }; 5172 5173 if (handler->rdmsr) { 5174 range->flags |= KVM_MSR_FILTER_READ; 5175 } 5176 5177 if (handler->wrmsr) { 5178 range->flags |= KVM_MSR_FILTER_WRITE; 5179 } 5180 } 5181 } 5182 5183 r = kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter); 5184 if (r) { 5185 return false; 5186 } 5187 5188 return true; 5189 } 5190 5191 bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr, 5192 QEMUWRMSRHandler *wrmsr) 5193 { 5194 int i; 5195 5196 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5197 if (!msr_handlers[i].msr) { 5198 msr_handlers[i] = (KVMMSRHandlers) { 5199 .msr = msr, 5200 .rdmsr = rdmsr, 5201 .wrmsr = wrmsr, 5202 }; 5203 5204 if (!kvm_install_msr_filters(s)) { 5205 msr_handlers[i] = (KVMMSRHandlers) { }; 5206 return false; 5207 } 5208 5209 return true; 5210 } 5211 } 5212 5213 return false; 5214 } 5215 5216 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run) 5217 { 5218 int i; 5219 bool r; 5220 5221 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5222 KVMMSRHandlers *handler = &msr_handlers[i]; 5223 if (run->msr.index == handler->msr) { 5224 if (handler->rdmsr) { 5225 r = handler->rdmsr(cpu, handler->msr, 5226 (uint64_t *)&run->msr.data); 5227 run->msr.error = r ? 0 : 1; 5228 return 0; 5229 } 5230 } 5231 } 5232 5233 assert(false); 5234 } 5235 5236 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run) 5237 { 5238 int i; 5239 bool r; 5240 5241 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5242 KVMMSRHandlers *handler = &msr_handlers[i]; 5243 if (run->msr.index == handler->msr) { 5244 if (handler->wrmsr) { 5245 r = handler->wrmsr(cpu, handler->msr, run->msr.data); 5246 run->msr.error = r ? 0 : 1; 5247 return 0; 5248 } 5249 } 5250 } 5251 5252 assert(false); 5253 } 5254 5255 static bool has_sgx_provisioning; 5256 5257 static bool __kvm_enable_sgx_provisioning(KVMState *s) 5258 { 5259 int fd, ret; 5260 5261 if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) { 5262 return false; 5263 } 5264 5265 fd = qemu_open_old("/dev/sgx_provision", O_RDONLY); 5266 if (fd < 0) { 5267 return false; 5268 } 5269 5270 ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd); 5271 if (ret) { 5272 error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret)); 5273 exit(1); 5274 } 5275 close(fd); 5276 return true; 5277 } 5278 5279 bool kvm_enable_sgx_provisioning(KVMState *s) 5280 { 5281 return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning); 5282 } 5283 5284 static bool host_supports_vmx(void) 5285 { 5286 uint32_t ecx, unused; 5287 5288 host_cpuid(1, 0, &unused, &unused, &ecx, &unused); 5289 return ecx & CPUID_EXT_VMX; 5290 } 5291 5292 #define VMX_INVALID_GUEST_STATE 0x80000021 5293 5294 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 5295 { 5296 X86CPU *cpu = X86_CPU(cs); 5297 uint64_t code; 5298 int ret; 5299 bool ctx_invalid; 5300 char str[256]; 5301 KVMState *state; 5302 5303 switch (run->exit_reason) { 5304 case KVM_EXIT_HLT: 5305 DPRINTF("handle_hlt\n"); 5306 qemu_mutex_lock_iothread(); 5307 ret = kvm_handle_halt(cpu); 5308 qemu_mutex_unlock_iothread(); 5309 break; 5310 case KVM_EXIT_SET_TPR: 5311 ret = 0; 5312 break; 5313 case KVM_EXIT_TPR_ACCESS: 5314 qemu_mutex_lock_iothread(); 5315 ret = kvm_handle_tpr_access(cpu); 5316 qemu_mutex_unlock_iothread(); 5317 break; 5318 case KVM_EXIT_FAIL_ENTRY: 5319 code = run->fail_entry.hardware_entry_failure_reason; 5320 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", 5321 code); 5322 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { 5323 fprintf(stderr, 5324 "\nIf you're running a guest on an Intel machine without " 5325 "unrestricted mode\n" 5326 "support, the failure can be most likely due to the guest " 5327 "entering an invalid\n" 5328 "state for Intel VT. For example, the guest maybe running " 5329 "in big real mode\n" 5330 "which is not supported on less recent Intel processors." 5331 "\n\n"); 5332 } 5333 ret = -1; 5334 break; 5335 case KVM_EXIT_EXCEPTION: 5336 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", 5337 run->ex.exception, run->ex.error_code); 5338 ret = -1; 5339 break; 5340 case KVM_EXIT_DEBUG: 5341 DPRINTF("kvm_exit_debug\n"); 5342 qemu_mutex_lock_iothread(); 5343 ret = kvm_handle_debug(cpu, &run->debug.arch); 5344 qemu_mutex_unlock_iothread(); 5345 break; 5346 case KVM_EXIT_HYPERV: 5347 ret = kvm_hv_handle_exit(cpu, &run->hyperv); 5348 break; 5349 case KVM_EXIT_IOAPIC_EOI: 5350 ioapic_eoi_broadcast(run->eoi.vector); 5351 ret = 0; 5352 break; 5353 case KVM_EXIT_X86_BUS_LOCK: 5354 /* already handled in kvm_arch_post_run */ 5355 ret = 0; 5356 break; 5357 case KVM_EXIT_NOTIFY: 5358 ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID); 5359 state = KVM_STATE(current_accel()); 5360 sprintf(str, "Encounter a notify exit with %svalid context in" 5361 " guest. There can be possible misbehaves in guest." 5362 " Please have a look.", ctx_invalid ? "in" : ""); 5363 if (ctx_invalid || 5364 state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) { 5365 warn_report("KVM internal error: %s", str); 5366 ret = -1; 5367 } else { 5368 warn_report_once("KVM: %s", str); 5369 ret = 0; 5370 } 5371 break; 5372 case KVM_EXIT_X86_RDMSR: 5373 /* We only enable MSR filtering, any other exit is bogus */ 5374 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER); 5375 ret = kvm_handle_rdmsr(cpu, run); 5376 break; 5377 case KVM_EXIT_X86_WRMSR: 5378 /* We only enable MSR filtering, any other exit is bogus */ 5379 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER); 5380 ret = kvm_handle_wrmsr(cpu, run); 5381 break; 5382 default: 5383 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); 5384 ret = -1; 5385 break; 5386 } 5387 5388 return ret; 5389 } 5390 5391 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 5392 { 5393 X86CPU *cpu = X86_CPU(cs); 5394 CPUX86State *env = &cpu->env; 5395 5396 kvm_cpu_synchronize_state(cs); 5397 return !(env->cr[0] & CR0_PE_MASK) || 5398 ((env->segs[R_CS].selector & 3) != 3); 5399 } 5400 5401 void kvm_arch_init_irq_routing(KVMState *s) 5402 { 5403 /* We know at this point that we're using the in-kernel 5404 * irqchip, so we can use irqfds, and on x86 we know 5405 * we can use msi via irqfd and GSI routing. 5406 */ 5407 kvm_msi_via_irqfd_allowed = true; 5408 kvm_gsi_routing_allowed = true; 5409 5410 if (kvm_irqchip_is_split()) { 5411 KVMRouteChange c = kvm_irqchip_begin_route_changes(s); 5412 int i; 5413 5414 /* If the ioapic is in QEMU and the lapics are in KVM, reserve 5415 MSI routes for signaling interrupts to the local apics. */ 5416 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 5417 if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) { 5418 error_report("Could not enable split IRQ mode."); 5419 exit(1); 5420 } 5421 } 5422 kvm_irqchip_commit_route_changes(&c); 5423 } 5424 } 5425 5426 int kvm_arch_irqchip_create(KVMState *s) 5427 { 5428 int ret; 5429 if (kvm_kernel_irqchip_split()) { 5430 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); 5431 if (ret) { 5432 error_report("Could not enable split irqchip mode: %s", 5433 strerror(-ret)); 5434 exit(1); 5435 } else { 5436 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); 5437 kvm_split_irqchip = true; 5438 return 1; 5439 } 5440 } else { 5441 return 0; 5442 } 5443 } 5444 5445 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address) 5446 { 5447 CPUX86State *env; 5448 uint64_t ext_id; 5449 5450 if (!first_cpu) { 5451 return address; 5452 } 5453 env = &X86_CPU(first_cpu)->env; 5454 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) { 5455 return address; 5456 } 5457 5458 /* 5459 * If the remappable format bit is set, or the upper bits are 5460 * already set in address_hi, or the low extended bits aren't 5461 * there anyway, do nothing. 5462 */ 5463 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT); 5464 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) { 5465 return address; 5466 } 5467 5468 address &= ~ext_id; 5469 address |= ext_id << 35; 5470 return address; 5471 } 5472 5473 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 5474 uint64_t address, uint32_t data, PCIDevice *dev) 5475 { 5476 X86IOMMUState *iommu = x86_iommu_get_default(); 5477 5478 if (iommu) { 5479 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu); 5480 5481 if (class->int_remap) { 5482 int ret; 5483 MSIMessage src, dst; 5484 5485 src.address = route->u.msi.address_hi; 5486 src.address <<= VTD_MSI_ADDR_HI_SHIFT; 5487 src.address |= route->u.msi.address_lo; 5488 src.data = route->u.msi.data; 5489 5490 ret = class->int_remap(iommu, &src, &dst, dev ? \ 5491 pci_requester_id(dev) : \ 5492 X86_IOMMU_SID_INVALID); 5493 if (ret) { 5494 trace_kvm_x86_fixup_msi_error(route->gsi); 5495 return 1; 5496 } 5497 5498 /* 5499 * Handled untranslated compatibilty format interrupt with 5500 * extended destination ID in the low bits 11-5. */ 5501 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address); 5502 5503 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; 5504 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; 5505 route->u.msi.data = dst.data; 5506 return 0; 5507 } 5508 } 5509 5510 address = kvm_swizzle_msi_ext_dest_id(address); 5511 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT; 5512 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK; 5513 return 0; 5514 } 5515 5516 typedef struct MSIRouteEntry MSIRouteEntry; 5517 5518 struct MSIRouteEntry { 5519 PCIDevice *dev; /* Device pointer */ 5520 int vector; /* MSI/MSIX vector index */ 5521 int virq; /* Virtual IRQ index */ 5522 QLIST_ENTRY(MSIRouteEntry) list; 5523 }; 5524 5525 /* List of used GSI routes */ 5526 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ 5527 QLIST_HEAD_INITIALIZER(msi_route_list); 5528 5529 static void kvm_update_msi_routes_all(void *private, bool global, 5530 uint32_t index, uint32_t mask) 5531 { 5532 int cnt = 0, vector; 5533 MSIRouteEntry *entry; 5534 MSIMessage msg; 5535 PCIDevice *dev; 5536 5537 /* TODO: explicit route update */ 5538 QLIST_FOREACH(entry, &msi_route_list, list) { 5539 cnt++; 5540 vector = entry->vector; 5541 dev = entry->dev; 5542 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) { 5543 msg = msix_get_message(dev, vector); 5544 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) { 5545 msg = msi_get_message(dev, vector); 5546 } else { 5547 /* 5548 * Either MSI/MSIX is disabled for the device, or the 5549 * specific message was masked out. Skip this one. 5550 */ 5551 continue; 5552 } 5553 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); 5554 } 5555 kvm_irqchip_commit_routes(kvm_state); 5556 trace_kvm_x86_update_msi_routes(cnt); 5557 } 5558 5559 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 5560 int vector, PCIDevice *dev) 5561 { 5562 static bool notify_list_inited = false; 5563 MSIRouteEntry *entry; 5564 5565 if (!dev) { 5566 /* These are (possibly) IOAPIC routes only used for split 5567 * kernel irqchip mode, while what we are housekeeping are 5568 * PCI devices only. */ 5569 return 0; 5570 } 5571 5572 entry = g_new0(MSIRouteEntry, 1); 5573 entry->dev = dev; 5574 entry->vector = vector; 5575 entry->virq = route->gsi; 5576 QLIST_INSERT_HEAD(&msi_route_list, entry, list); 5577 5578 trace_kvm_x86_add_msi_route(route->gsi); 5579 5580 if (!notify_list_inited) { 5581 /* For the first time we do add route, add ourselves into 5582 * IOMMU's IEC notify list if needed. */ 5583 X86IOMMUState *iommu = x86_iommu_get_default(); 5584 if (iommu) { 5585 x86_iommu_iec_register_notifier(iommu, 5586 kvm_update_msi_routes_all, 5587 NULL); 5588 } 5589 notify_list_inited = true; 5590 } 5591 return 0; 5592 } 5593 5594 int kvm_arch_release_virq_post(int virq) 5595 { 5596 MSIRouteEntry *entry, *next; 5597 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { 5598 if (entry->virq == virq) { 5599 trace_kvm_x86_remove_msi_route(virq); 5600 QLIST_REMOVE(entry, list); 5601 g_free(entry); 5602 break; 5603 } 5604 } 5605 return 0; 5606 } 5607 5608 int kvm_arch_msi_data_to_gsi(uint32_t data) 5609 { 5610 abort(); 5611 } 5612 5613 bool kvm_has_waitpkg(void) 5614 { 5615 return has_msr_umwait; 5616 } 5617 5618 bool kvm_arch_cpu_check_are_resettable(void) 5619 { 5620 return !sev_es_enabled(); 5621 } 5622 5623 #define ARCH_REQ_XCOMP_GUEST_PERM 0x1025 5624 5625 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask) 5626 { 5627 KVMState *s = kvm_state; 5628 uint64_t supported; 5629 5630 mask &= XSTATE_DYNAMIC_MASK; 5631 if (!mask) { 5632 return; 5633 } 5634 /* 5635 * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0]. 5636 * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned 5637 * about them already because they are not supported features. 5638 */ 5639 supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX); 5640 supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32; 5641 mask &= supported; 5642 5643 while (mask) { 5644 int bit = ctz64(mask); 5645 int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit); 5646 if (rc) { 5647 /* 5648 * Older kernel version (<5.17) do not support 5649 * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return 5650 * any dynamic feature from kvm_arch_get_supported_cpuid. 5651 */ 5652 warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure " 5653 "for feature bit %d", bit); 5654 } 5655 mask &= ~BIT_ULL(bit); 5656 } 5657 } 5658 5659 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp) 5660 { 5661 KVMState *s = KVM_STATE(obj); 5662 return s->notify_vmexit; 5663 } 5664 5665 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp) 5666 { 5667 KVMState *s = KVM_STATE(obj); 5668 5669 if (s->fd != -1) { 5670 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 5671 return; 5672 } 5673 5674 s->notify_vmexit = value; 5675 } 5676 5677 static void kvm_arch_get_notify_window(Object *obj, Visitor *v, 5678 const char *name, void *opaque, 5679 Error **errp) 5680 { 5681 KVMState *s = KVM_STATE(obj); 5682 uint32_t value = s->notify_window; 5683 5684 visit_type_uint32(v, name, &value, errp); 5685 } 5686 5687 static void kvm_arch_set_notify_window(Object *obj, Visitor *v, 5688 const char *name, void *opaque, 5689 Error **errp) 5690 { 5691 KVMState *s = KVM_STATE(obj); 5692 uint32_t value; 5693 5694 if (s->fd != -1) { 5695 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 5696 return; 5697 } 5698 5699 if (!visit_type_uint32(v, name, &value, errp)) { 5700 return; 5701 } 5702 5703 s->notify_window = value; 5704 } 5705 5706 void kvm_arch_accel_class_init(ObjectClass *oc) 5707 { 5708 object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption", 5709 &NotifyVmexitOption_lookup, 5710 kvm_arch_get_notify_vmexit, 5711 kvm_arch_set_notify_vmexit); 5712 object_class_property_set_description(oc, "notify-vmexit", 5713 "Enable notify VM exit"); 5714 5715 object_class_property_add(oc, "notify-window", "uint32", 5716 kvm_arch_get_notify_window, 5717 kvm_arch_set_notify_window, 5718 NULL, NULL); 5719 object_class_property_set_description(oc, "notify-window", 5720 "Clock cycles without an event window " 5721 "after which a notification VM exit occurs"); 5722 } 5723 5724 void kvm_set_max_apic_id(uint32_t max_apic_id) 5725 { 5726 kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id); 5727 } 5728