1 /* 2 * QEMU KVM support 3 * 4 * Copyright (C) 2006-2008 Qumranet Technologies 5 * Copyright IBM, Corp. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or later. 11 * See the COPYING file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qapi/qapi-events-run-state.h" 17 #include "qapi/error.h" 18 #include <sys/ioctl.h> 19 #include <sys/utsname.h> 20 21 #include <linux/kvm.h> 22 #include "standard-headers/asm-x86/kvm_para.h" 23 24 #include "cpu.h" 25 #include "sysemu/sysemu.h" 26 #include "sysemu/hw_accel.h" 27 #include "sysemu/kvm_int.h" 28 #include "sysemu/runstate.h" 29 #include "kvm_i386.h" 30 #include "sev_i386.h" 31 #include "hyperv.h" 32 #include "hyperv-proto.h" 33 34 #include "exec/gdbstub.h" 35 #include "qemu/host-utils.h" 36 #include "qemu/main-loop.h" 37 #include "qemu/config-file.h" 38 #include "qemu/error-report.h" 39 #include "hw/i386/x86.h" 40 #include "hw/i386/apic.h" 41 #include "hw/i386/apic_internal.h" 42 #include "hw/i386/apic-msidef.h" 43 #include "hw/i386/intel_iommu.h" 44 #include "hw/i386/x86-iommu.h" 45 #include "hw/i386/e820_memory_layout.h" 46 #include "sysemu/sev.h" 47 48 #include "hw/pci/pci.h" 49 #include "hw/pci/msi.h" 50 #include "hw/pci/msix.h" 51 #include "migration/blocker.h" 52 #include "exec/memattrs.h" 53 #include "trace.h" 54 55 //#define DEBUG_KVM 56 57 #ifdef DEBUG_KVM 58 #define DPRINTF(fmt, ...) \ 59 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 60 #else 61 #define DPRINTF(fmt, ...) \ 62 do { } while (0) 63 #endif 64 65 /* From arch/x86/kvm/lapic.h */ 66 #define KVM_APIC_BUS_CYCLE_NS 1 67 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS) 68 69 #define MSR_KVM_WALL_CLOCK 0x11 70 #define MSR_KVM_SYSTEM_TIME 0x12 71 72 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus 73 * 255 kvm_msr_entry structs */ 74 #define MSR_BUF_SIZE 4096 75 76 static void kvm_init_msrs(X86CPU *cpu); 77 78 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 79 KVM_CAP_INFO(SET_TSS_ADDR), 80 KVM_CAP_INFO(EXT_CPUID), 81 KVM_CAP_INFO(MP_STATE), 82 KVM_CAP_LAST_INFO 83 }; 84 85 static bool has_msr_star; 86 static bool has_msr_hsave_pa; 87 static bool has_msr_tsc_aux; 88 static bool has_msr_tsc_adjust; 89 static bool has_msr_tsc_deadline; 90 static bool has_msr_feature_control; 91 static bool has_msr_misc_enable; 92 static bool has_msr_smbase; 93 static bool has_msr_bndcfgs; 94 static int lm_capable_kernel; 95 static bool has_msr_hv_hypercall; 96 static bool has_msr_hv_crash; 97 static bool has_msr_hv_reset; 98 static bool has_msr_hv_vpindex; 99 static bool hv_vpindex_settable; 100 static bool has_msr_hv_runtime; 101 static bool has_msr_hv_synic; 102 static bool has_msr_hv_stimer; 103 static bool has_msr_hv_frequencies; 104 static bool has_msr_hv_reenlightenment; 105 static bool has_msr_xss; 106 static bool has_msr_umwait; 107 static bool has_msr_spec_ctrl; 108 static bool has_msr_tsx_ctrl; 109 static bool has_msr_virt_ssbd; 110 static bool has_msr_smi_count; 111 static bool has_msr_arch_capabs; 112 static bool has_msr_core_capabs; 113 static bool has_msr_vmx_vmfunc; 114 static bool has_msr_ucode_rev; 115 static bool has_msr_vmx_procbased_ctls2; 116 static bool has_msr_perf_capabs; 117 static bool has_msr_pkrs; 118 119 static uint32_t has_architectural_pmu_version; 120 static uint32_t num_architectural_pmu_gp_counters; 121 static uint32_t num_architectural_pmu_fixed_counters; 122 123 static int has_xsave; 124 static int has_xcrs; 125 static int has_pit_state2; 126 static int has_exception_payload; 127 128 static bool has_msr_mcg_ext_ctl; 129 130 static struct kvm_cpuid2 *cpuid_cache; 131 static struct kvm_msr_list *kvm_feature_msrs; 132 133 int kvm_has_pit_state2(void) 134 { 135 return has_pit_state2; 136 } 137 138 bool kvm_has_smm(void) 139 { 140 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM); 141 } 142 143 bool kvm_has_adjust_clock_stable(void) 144 { 145 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); 146 147 return (ret == KVM_CLOCK_TSC_STABLE); 148 } 149 150 bool kvm_has_adjust_clock(void) 151 { 152 return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); 153 } 154 155 bool kvm_has_exception_payload(void) 156 { 157 return has_exception_payload; 158 } 159 160 static bool kvm_x2apic_api_set_flags(uint64_t flags) 161 { 162 KVMState *s = KVM_STATE(current_accel()); 163 164 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); 165 } 166 167 #define MEMORIZE(fn, _result) \ 168 ({ \ 169 static bool _memorized; \ 170 \ 171 if (_memorized) { \ 172 return _result; \ 173 } \ 174 _memorized = true; \ 175 _result = fn; \ 176 }) 177 178 static bool has_x2apic_api; 179 180 bool kvm_has_x2apic_api(void) 181 { 182 return has_x2apic_api; 183 } 184 185 bool kvm_enable_x2apic(void) 186 { 187 return MEMORIZE( 188 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | 189 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), 190 has_x2apic_api); 191 } 192 193 bool kvm_hv_vpindex_settable(void) 194 { 195 return hv_vpindex_settable; 196 } 197 198 static int kvm_get_tsc(CPUState *cs) 199 { 200 X86CPU *cpu = X86_CPU(cs); 201 CPUX86State *env = &cpu->env; 202 struct { 203 struct kvm_msrs info; 204 struct kvm_msr_entry entries[1]; 205 } msr_data = {}; 206 int ret; 207 208 if (env->tsc_valid) { 209 return 0; 210 } 211 212 memset(&msr_data, 0, sizeof(msr_data)); 213 msr_data.info.nmsrs = 1; 214 msr_data.entries[0].index = MSR_IA32_TSC; 215 env->tsc_valid = !runstate_is_running(); 216 217 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); 218 if (ret < 0) { 219 return ret; 220 } 221 222 assert(ret == 1); 223 env->tsc = msr_data.entries[0].data; 224 return 0; 225 } 226 227 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) 228 { 229 kvm_get_tsc(cpu); 230 } 231 232 void kvm_synchronize_all_tsc(void) 233 { 234 CPUState *cpu; 235 236 if (kvm_enabled()) { 237 CPU_FOREACH(cpu) { 238 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); 239 } 240 } 241 } 242 243 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) 244 { 245 struct kvm_cpuid2 *cpuid; 246 int r, size; 247 248 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 249 cpuid = g_malloc0(size); 250 cpuid->nent = max; 251 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); 252 if (r == 0 && cpuid->nent >= max) { 253 r = -E2BIG; 254 } 255 if (r < 0) { 256 if (r == -E2BIG) { 257 g_free(cpuid); 258 return NULL; 259 } else { 260 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", 261 strerror(-r)); 262 exit(1); 263 } 264 } 265 return cpuid; 266 } 267 268 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough 269 * for all entries. 270 */ 271 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) 272 { 273 struct kvm_cpuid2 *cpuid; 274 int max = 1; 275 276 if (cpuid_cache != NULL) { 277 return cpuid_cache; 278 } 279 while ((cpuid = try_get_cpuid(s, max)) == NULL) { 280 max *= 2; 281 } 282 cpuid_cache = cpuid; 283 return cpuid; 284 } 285 286 static bool host_tsx_broken(void) 287 { 288 int family, model, stepping;\ 289 char vendor[CPUID_VENDOR_SZ + 1]; 290 291 host_vendor_fms(vendor, &family, &model, &stepping); 292 293 /* Check if we are running on a Haswell host known to have broken TSX */ 294 return !strcmp(vendor, CPUID_VENDOR_INTEL) && 295 (family == 6) && 296 ((model == 63 && stepping < 4) || 297 model == 60 || model == 69 || model == 70); 298 } 299 300 /* Returns the value for a specific register on the cpuid entry 301 */ 302 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) 303 { 304 uint32_t ret = 0; 305 switch (reg) { 306 case R_EAX: 307 ret = entry->eax; 308 break; 309 case R_EBX: 310 ret = entry->ebx; 311 break; 312 case R_ECX: 313 ret = entry->ecx; 314 break; 315 case R_EDX: 316 ret = entry->edx; 317 break; 318 } 319 return ret; 320 } 321 322 /* Find matching entry for function/index on kvm_cpuid2 struct 323 */ 324 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, 325 uint32_t function, 326 uint32_t index) 327 { 328 int i; 329 for (i = 0; i < cpuid->nent; ++i) { 330 if (cpuid->entries[i].function == function && 331 cpuid->entries[i].index == index) { 332 return &cpuid->entries[i]; 333 } 334 } 335 /* not found: */ 336 return NULL; 337 } 338 339 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, 340 uint32_t index, int reg) 341 { 342 struct kvm_cpuid2 *cpuid; 343 uint32_t ret = 0; 344 uint32_t cpuid_1_edx; 345 346 cpuid = get_supported_cpuid(s); 347 348 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); 349 if (entry) { 350 ret = cpuid_entry_get_reg(entry, reg); 351 } 352 353 /* Fixups for the data returned by KVM, below */ 354 355 if (function == 1 && reg == R_EDX) { 356 /* KVM before 2.6.30 misreports the following features */ 357 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; 358 } else if (function == 1 && reg == R_ECX) { 359 /* We can set the hypervisor flag, even if KVM does not return it on 360 * GET_SUPPORTED_CPUID 361 */ 362 ret |= CPUID_EXT_HYPERVISOR; 363 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it 364 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, 365 * and the irqchip is in the kernel. 366 */ 367 if (kvm_irqchip_in_kernel() && 368 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { 369 ret |= CPUID_EXT_TSC_DEADLINE_TIMER; 370 } 371 372 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled 373 * without the in-kernel irqchip 374 */ 375 if (!kvm_irqchip_in_kernel()) { 376 ret &= ~CPUID_EXT_X2APIC; 377 } 378 379 if (enable_cpu_pm) { 380 int disable_exits = kvm_check_extension(s, 381 KVM_CAP_X86_DISABLE_EXITS); 382 383 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) { 384 ret |= CPUID_EXT_MONITOR; 385 } 386 } 387 } else if (function == 6 && reg == R_EAX) { 388 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ 389 } else if (function == 7 && index == 0 && reg == R_EBX) { 390 if (host_tsx_broken()) { 391 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); 392 } 393 } else if (function == 7 && index == 0 && reg == R_EDX) { 394 /* 395 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts. 396 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is 397 * returned by KVM_GET_MSR_INDEX_LIST. 398 */ 399 if (!has_msr_arch_capabs) { 400 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES; 401 } 402 } else if (function == 0x80000001 && reg == R_ECX) { 403 /* 404 * It's safe to enable TOPOEXT even if it's not returned by 405 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows 406 * us to keep CPU models including TOPOEXT runnable on older kernels. 407 */ 408 ret |= CPUID_EXT3_TOPOEXT; 409 } else if (function == 0x80000001 && reg == R_EDX) { 410 /* On Intel, kvm returns cpuid according to the Intel spec, 411 * so add missing bits according to the AMD spec: 412 */ 413 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); 414 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; 415 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { 416 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't 417 * be enabled without the in-kernel irqchip 418 */ 419 if (!kvm_irqchip_in_kernel()) { 420 ret &= ~(1U << KVM_FEATURE_PV_UNHALT); 421 } 422 if (kvm_irqchip_is_split()) { 423 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID; 424 } 425 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) { 426 ret |= 1U << KVM_HINTS_REALTIME; 427 } 428 429 return ret; 430 } 431 432 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index) 433 { 434 struct { 435 struct kvm_msrs info; 436 struct kvm_msr_entry entries[1]; 437 } msr_data = {}; 438 uint64_t value; 439 uint32_t ret, can_be_one, must_be_one; 440 441 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */ 442 return 0; 443 } 444 445 /* Check if requested MSR is supported feature MSR */ 446 int i; 447 for (i = 0; i < kvm_feature_msrs->nmsrs; i++) 448 if (kvm_feature_msrs->indices[i] == index) { 449 break; 450 } 451 if (i == kvm_feature_msrs->nmsrs) { 452 return 0; /* if the feature MSR is not supported, simply return 0 */ 453 } 454 455 msr_data.info.nmsrs = 1; 456 msr_data.entries[0].index = index; 457 458 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data); 459 if (ret != 1) { 460 error_report("KVM get MSR (index=0x%x) feature failed, %s", 461 index, strerror(-ret)); 462 exit(1); 463 } 464 465 value = msr_data.entries[0].data; 466 switch (index) { 467 case MSR_IA32_VMX_PROCBASED_CTLS2: 468 if (!has_msr_vmx_procbased_ctls2) { 469 /* KVM forgot to add these bits for some time, do this ourselves. */ 470 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) & 471 CPUID_XSAVE_XSAVES) { 472 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32; 473 } 474 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) & 475 CPUID_EXT_RDRAND) { 476 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32; 477 } 478 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 479 CPUID_7_0_EBX_INVPCID) { 480 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32; 481 } 482 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 483 CPUID_7_0_EBX_RDSEED) { 484 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32; 485 } 486 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) & 487 CPUID_EXT2_RDTSCP) { 488 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32; 489 } 490 } 491 /* fall through */ 492 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 493 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 494 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 495 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 496 /* 497 * Return true for bits that can be one, but do not have to be one. 498 * The SDM tells us which bits could have a "must be one" setting, 499 * so we can do the opposite transformation in make_vmx_msr_value. 500 */ 501 must_be_one = (uint32_t)value; 502 can_be_one = (uint32_t)(value >> 32); 503 return can_be_one & ~must_be_one; 504 505 default: 506 return value; 507 } 508 } 509 510 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, 511 int *max_banks) 512 { 513 int r; 514 515 r = kvm_check_extension(s, KVM_CAP_MCE); 516 if (r > 0) { 517 *max_banks = r; 518 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); 519 } 520 return -ENOSYS; 521 } 522 523 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) 524 { 525 CPUState *cs = CPU(cpu); 526 CPUX86State *env = &cpu->env; 527 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | 528 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; 529 uint64_t mcg_status = MCG_STATUS_MCIP; 530 int flags = 0; 531 532 if (code == BUS_MCEERR_AR) { 533 status |= MCI_STATUS_AR | 0x134; 534 mcg_status |= MCG_STATUS_EIPV; 535 } else { 536 status |= 0xc0; 537 mcg_status |= MCG_STATUS_RIPV; 538 } 539 540 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; 541 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the 542 * guest kernel back into env->mcg_ext_ctl. 543 */ 544 cpu_synchronize_state(cs); 545 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { 546 mcg_status |= MCG_STATUS_LMCE; 547 flags = 0; 548 } 549 550 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, 551 (MCM_ADDR_PHYS << 6) | 0xc, flags); 552 } 553 554 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar) 555 { 556 MemoryFailureFlags mff = {.action_required = ar, .recursive = false}; 557 558 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action, 559 &mff); 560 } 561 562 static void hardware_memory_error(void *host_addr) 563 { 564 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true); 565 error_report("QEMU got Hardware memory error at addr %p", host_addr); 566 exit(1); 567 } 568 569 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) 570 { 571 X86CPU *cpu = X86_CPU(c); 572 CPUX86State *env = &cpu->env; 573 ram_addr_t ram_addr; 574 hwaddr paddr; 575 576 /* If we get an action required MCE, it has been injected by KVM 577 * while the VM was running. An action optional MCE instead should 578 * be coming from the main thread, which qemu_init_sigbus identifies 579 * as the "early kill" thread. 580 */ 581 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); 582 583 if ((env->mcg_cap & MCG_SER_P) && addr) { 584 ram_addr = qemu_ram_addr_from_host(addr); 585 if (ram_addr != RAM_ADDR_INVALID && 586 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { 587 kvm_hwpoison_page_add(ram_addr); 588 kvm_mce_inject(cpu, paddr, code); 589 590 /* 591 * Use different logging severity based on error type. 592 * If there is additional MCE reporting on the hypervisor, QEMU VA 593 * could be another source to identify the PA and MCE details. 594 */ 595 if (code == BUS_MCEERR_AR) { 596 error_report("Guest MCE Memory Error at QEMU addr %p and " 597 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 598 addr, paddr, "BUS_MCEERR_AR"); 599 } else { 600 warn_report("Guest MCE Memory Error at QEMU addr %p and " 601 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 602 addr, paddr, "BUS_MCEERR_AO"); 603 } 604 605 return; 606 } 607 608 if (code == BUS_MCEERR_AO) { 609 warn_report("Hardware memory error at addr %p of type %s " 610 "for memory used by QEMU itself instead of guest system!", 611 addr, "BUS_MCEERR_AO"); 612 } 613 } 614 615 if (code == BUS_MCEERR_AR) { 616 hardware_memory_error(addr); 617 } 618 619 /* Hope we are lucky for AO MCE, just notify a event */ 620 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false); 621 } 622 623 static void kvm_reset_exception(CPUX86State *env) 624 { 625 env->exception_nr = -1; 626 env->exception_pending = 0; 627 env->exception_injected = 0; 628 env->exception_has_payload = false; 629 env->exception_payload = 0; 630 } 631 632 static void kvm_queue_exception(CPUX86State *env, 633 int32_t exception_nr, 634 uint8_t exception_has_payload, 635 uint64_t exception_payload) 636 { 637 assert(env->exception_nr == -1); 638 assert(!env->exception_pending); 639 assert(!env->exception_injected); 640 assert(!env->exception_has_payload); 641 642 env->exception_nr = exception_nr; 643 644 if (has_exception_payload) { 645 env->exception_pending = 1; 646 647 env->exception_has_payload = exception_has_payload; 648 env->exception_payload = exception_payload; 649 } else { 650 env->exception_injected = 1; 651 652 if (exception_nr == EXCP01_DB) { 653 assert(exception_has_payload); 654 env->dr[6] = exception_payload; 655 } else if (exception_nr == EXCP0E_PAGE) { 656 assert(exception_has_payload); 657 env->cr[2] = exception_payload; 658 } else { 659 assert(!exception_has_payload); 660 } 661 } 662 } 663 664 static int kvm_inject_mce_oldstyle(X86CPU *cpu) 665 { 666 CPUX86State *env = &cpu->env; 667 668 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) { 669 unsigned int bank, bank_num = env->mcg_cap & 0xff; 670 struct kvm_x86_mce mce; 671 672 kvm_reset_exception(env); 673 674 /* 675 * There must be at least one bank in use if an MCE is pending. 676 * Find it and use its values for the event injection. 677 */ 678 for (bank = 0; bank < bank_num; bank++) { 679 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { 680 break; 681 } 682 } 683 assert(bank < bank_num); 684 685 mce.bank = bank; 686 mce.status = env->mce_banks[bank * 4 + 1]; 687 mce.mcg_status = env->mcg_status; 688 mce.addr = env->mce_banks[bank * 4 + 2]; 689 mce.misc = env->mce_banks[bank * 4 + 3]; 690 691 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); 692 } 693 return 0; 694 } 695 696 static void cpu_update_state(void *opaque, int running, RunState state) 697 { 698 CPUX86State *env = opaque; 699 700 if (running) { 701 env->tsc_valid = false; 702 } 703 } 704 705 unsigned long kvm_arch_vcpu_id(CPUState *cs) 706 { 707 X86CPU *cpu = X86_CPU(cs); 708 return cpu->apic_id; 709 } 710 711 #ifndef KVM_CPUID_SIGNATURE_NEXT 712 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 713 #endif 714 715 static bool hyperv_enabled(X86CPU *cpu) 716 { 717 CPUState *cs = CPU(cpu); 718 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 && 719 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) || 720 cpu->hyperv_features || cpu->hyperv_passthrough); 721 } 722 723 /* 724 * Check whether target_freq is within conservative 725 * ntp correctable bounds (250ppm) of freq 726 */ 727 static inline bool freq_within_bounds(int freq, int target_freq) 728 { 729 int max_freq = freq + (freq * 250 / 1000000); 730 int min_freq = freq - (freq * 250 / 1000000); 731 732 if (target_freq >= min_freq && target_freq <= max_freq) { 733 return true; 734 } 735 736 return false; 737 } 738 739 static int kvm_arch_set_tsc_khz(CPUState *cs) 740 { 741 X86CPU *cpu = X86_CPU(cs); 742 CPUX86State *env = &cpu->env; 743 int r, cur_freq; 744 bool set_ioctl = false; 745 746 if (!env->tsc_khz) { 747 return 0; 748 } 749 750 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 751 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP; 752 753 /* 754 * If TSC scaling is supported, attempt to set TSC frequency. 755 */ 756 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) { 757 set_ioctl = true; 758 } 759 760 /* 761 * If desired TSC frequency is within bounds of NTP correction, 762 * attempt to set TSC frequency. 763 */ 764 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) { 765 set_ioctl = true; 766 } 767 768 r = set_ioctl ? 769 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : 770 -ENOTSUP; 771 772 if (r < 0) { 773 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current 774 * TSC frequency doesn't match the one we want. 775 */ 776 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 777 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 778 -ENOTSUP; 779 if (cur_freq <= 0 || cur_freq != env->tsc_khz) { 780 warn_report("TSC frequency mismatch between " 781 "VM (%" PRId64 " kHz) and host (%d kHz), " 782 "and TSC scaling unavailable", 783 env->tsc_khz, cur_freq); 784 return r; 785 } 786 } 787 788 return 0; 789 } 790 791 static bool tsc_is_stable_and_known(CPUX86State *env) 792 { 793 if (!env->tsc_khz) { 794 return false; 795 } 796 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) 797 || env->user_tsc_khz; 798 } 799 800 static struct { 801 const char *desc; 802 struct { 803 uint32_t fw; 804 uint32_t bits; 805 } flags[2]; 806 uint64_t dependencies; 807 } kvm_hyperv_properties[] = { 808 [HYPERV_FEAT_RELAXED] = { 809 .desc = "relaxed timing (hv-relaxed)", 810 .flags = { 811 {.fw = FEAT_HYPERV_EAX, 812 .bits = HV_HYPERCALL_AVAILABLE}, 813 {.fw = FEAT_HV_RECOMM_EAX, 814 .bits = HV_RELAXED_TIMING_RECOMMENDED} 815 } 816 }, 817 [HYPERV_FEAT_VAPIC] = { 818 .desc = "virtual APIC (hv-vapic)", 819 .flags = { 820 {.fw = FEAT_HYPERV_EAX, 821 .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE}, 822 {.fw = FEAT_HV_RECOMM_EAX, 823 .bits = HV_APIC_ACCESS_RECOMMENDED} 824 } 825 }, 826 [HYPERV_FEAT_TIME] = { 827 .desc = "clocksources (hv-time)", 828 .flags = { 829 {.fw = FEAT_HYPERV_EAX, 830 .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE | 831 HV_REFERENCE_TSC_AVAILABLE} 832 } 833 }, 834 [HYPERV_FEAT_CRASH] = { 835 .desc = "crash MSRs (hv-crash)", 836 .flags = { 837 {.fw = FEAT_HYPERV_EDX, 838 .bits = HV_GUEST_CRASH_MSR_AVAILABLE} 839 } 840 }, 841 [HYPERV_FEAT_RESET] = { 842 .desc = "reset MSR (hv-reset)", 843 .flags = { 844 {.fw = FEAT_HYPERV_EAX, 845 .bits = HV_RESET_AVAILABLE} 846 } 847 }, 848 [HYPERV_FEAT_VPINDEX] = { 849 .desc = "VP_INDEX MSR (hv-vpindex)", 850 .flags = { 851 {.fw = FEAT_HYPERV_EAX, 852 .bits = HV_VP_INDEX_AVAILABLE} 853 } 854 }, 855 [HYPERV_FEAT_RUNTIME] = { 856 .desc = "VP_RUNTIME MSR (hv-runtime)", 857 .flags = { 858 {.fw = FEAT_HYPERV_EAX, 859 .bits = HV_VP_RUNTIME_AVAILABLE} 860 } 861 }, 862 [HYPERV_FEAT_SYNIC] = { 863 .desc = "synthetic interrupt controller (hv-synic)", 864 .flags = { 865 {.fw = FEAT_HYPERV_EAX, 866 .bits = HV_SYNIC_AVAILABLE} 867 } 868 }, 869 [HYPERV_FEAT_STIMER] = { 870 .desc = "synthetic timers (hv-stimer)", 871 .flags = { 872 {.fw = FEAT_HYPERV_EAX, 873 .bits = HV_SYNTIMERS_AVAILABLE} 874 }, 875 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME) 876 }, 877 [HYPERV_FEAT_FREQUENCIES] = { 878 .desc = "frequency MSRs (hv-frequencies)", 879 .flags = { 880 {.fw = FEAT_HYPERV_EAX, 881 .bits = HV_ACCESS_FREQUENCY_MSRS}, 882 {.fw = FEAT_HYPERV_EDX, 883 .bits = HV_FREQUENCY_MSRS_AVAILABLE} 884 } 885 }, 886 [HYPERV_FEAT_REENLIGHTENMENT] = { 887 .desc = "reenlightenment MSRs (hv-reenlightenment)", 888 .flags = { 889 {.fw = FEAT_HYPERV_EAX, 890 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL} 891 } 892 }, 893 [HYPERV_FEAT_TLBFLUSH] = { 894 .desc = "paravirtualized TLB flush (hv-tlbflush)", 895 .flags = { 896 {.fw = FEAT_HV_RECOMM_EAX, 897 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED | 898 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 899 }, 900 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 901 }, 902 [HYPERV_FEAT_EVMCS] = { 903 .desc = "enlightened VMCS (hv-evmcs)", 904 .flags = { 905 {.fw = FEAT_HV_RECOMM_EAX, 906 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED} 907 }, 908 .dependencies = BIT(HYPERV_FEAT_VAPIC) 909 }, 910 [HYPERV_FEAT_IPI] = { 911 .desc = "paravirtualized IPI (hv-ipi)", 912 .flags = { 913 {.fw = FEAT_HV_RECOMM_EAX, 914 .bits = HV_CLUSTER_IPI_RECOMMENDED | 915 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 916 }, 917 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 918 }, 919 [HYPERV_FEAT_STIMER_DIRECT] = { 920 .desc = "direct mode synthetic timers (hv-stimer-direct)", 921 .flags = { 922 {.fw = FEAT_HYPERV_EDX, 923 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE} 924 }, 925 .dependencies = BIT(HYPERV_FEAT_STIMER) 926 }, 927 }; 928 929 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max) 930 { 931 struct kvm_cpuid2 *cpuid; 932 int r, size; 933 934 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 935 cpuid = g_malloc0(size); 936 cpuid->nent = max; 937 938 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 939 if (r == 0 && cpuid->nent >= max) { 940 r = -E2BIG; 941 } 942 if (r < 0) { 943 if (r == -E2BIG) { 944 g_free(cpuid); 945 return NULL; 946 } else { 947 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n", 948 strerror(-r)); 949 exit(1); 950 } 951 } 952 return cpuid; 953 } 954 955 /* 956 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough 957 * for all entries. 958 */ 959 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs) 960 { 961 struct kvm_cpuid2 *cpuid; 962 int max = 7; /* 0x40000000..0x40000005, 0x4000000A */ 963 964 /* 965 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with 966 * -E2BIG, however, it doesn't report back the right size. Keep increasing 967 * it and re-trying until we succeed. 968 */ 969 while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) { 970 max++; 971 } 972 return cpuid; 973 } 974 975 /* 976 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature 977 * leaves from KVM_CAP_HYPERV* and present MSRs data. 978 */ 979 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs) 980 { 981 X86CPU *cpu = X86_CPU(cs); 982 struct kvm_cpuid2 *cpuid; 983 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm; 984 985 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */ 986 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries)); 987 cpuid->nent = 2; 988 989 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */ 990 entry_feat = &cpuid->entries[0]; 991 entry_feat->function = HV_CPUID_FEATURES; 992 993 entry_recomm = &cpuid->entries[1]; 994 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO; 995 entry_recomm->ebx = cpu->hyperv_spinlock_attempts; 996 997 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) { 998 entry_feat->eax |= HV_HYPERCALL_AVAILABLE; 999 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE; 1000 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1001 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED; 1002 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED; 1003 } 1004 1005 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { 1006 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE; 1007 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE; 1008 } 1009 1010 if (has_msr_hv_frequencies) { 1011 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS; 1012 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE; 1013 } 1014 1015 if (has_msr_hv_crash) { 1016 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE; 1017 } 1018 1019 if (has_msr_hv_reenlightenment) { 1020 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL; 1021 } 1022 1023 if (has_msr_hv_reset) { 1024 entry_feat->eax |= HV_RESET_AVAILABLE; 1025 } 1026 1027 if (has_msr_hv_vpindex) { 1028 entry_feat->eax |= HV_VP_INDEX_AVAILABLE; 1029 } 1030 1031 if (has_msr_hv_runtime) { 1032 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE; 1033 } 1034 1035 if (has_msr_hv_synic) { 1036 unsigned int cap = cpu->hyperv_synic_kvm_only ? 1037 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1038 1039 if (kvm_check_extension(cs->kvm_state, cap) > 0) { 1040 entry_feat->eax |= HV_SYNIC_AVAILABLE; 1041 } 1042 } 1043 1044 if (has_msr_hv_stimer) { 1045 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE; 1046 } 1047 1048 if (kvm_check_extension(cs->kvm_state, 1049 KVM_CAP_HYPERV_TLBFLUSH) > 0) { 1050 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED; 1051 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1052 } 1053 1054 if (kvm_check_extension(cs->kvm_state, 1055 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1056 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1057 } 1058 1059 if (kvm_check_extension(cs->kvm_state, 1060 KVM_CAP_HYPERV_SEND_IPI) > 0) { 1061 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED; 1062 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1063 } 1064 1065 return cpuid; 1066 } 1067 1068 static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r) 1069 { 1070 struct kvm_cpuid_entry2 *entry; 1071 uint32_t func; 1072 int reg; 1073 1074 switch (fw) { 1075 case FEAT_HYPERV_EAX: 1076 reg = R_EAX; 1077 func = HV_CPUID_FEATURES; 1078 break; 1079 case FEAT_HYPERV_EDX: 1080 reg = R_EDX; 1081 func = HV_CPUID_FEATURES; 1082 break; 1083 case FEAT_HV_RECOMM_EAX: 1084 reg = R_EAX; 1085 func = HV_CPUID_ENLIGHTMENT_INFO; 1086 break; 1087 default: 1088 return -EINVAL; 1089 } 1090 1091 entry = cpuid_find_entry(cpuid, func, 0); 1092 if (!entry) { 1093 return -ENOENT; 1094 } 1095 1096 switch (reg) { 1097 case R_EAX: 1098 *r = entry->eax; 1099 break; 1100 case R_EDX: 1101 *r = entry->edx; 1102 break; 1103 default: 1104 return -EINVAL; 1105 } 1106 1107 return 0; 1108 } 1109 1110 static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid, 1111 int feature) 1112 { 1113 X86CPU *cpu = X86_CPU(cs); 1114 CPUX86State *env = &cpu->env; 1115 uint32_t r, fw, bits; 1116 uint64_t deps; 1117 int i, dep_feat; 1118 1119 if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) { 1120 return 0; 1121 } 1122 1123 deps = kvm_hyperv_properties[feature].dependencies; 1124 while (deps) { 1125 dep_feat = ctz64(deps); 1126 if (!(hyperv_feat_enabled(cpu, dep_feat))) { 1127 fprintf(stderr, 1128 "Hyper-V %s requires Hyper-V %s\n", 1129 kvm_hyperv_properties[feature].desc, 1130 kvm_hyperv_properties[dep_feat].desc); 1131 return 1; 1132 } 1133 deps &= ~(1ull << dep_feat); 1134 } 1135 1136 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) { 1137 fw = kvm_hyperv_properties[feature].flags[i].fw; 1138 bits = kvm_hyperv_properties[feature].flags[i].bits; 1139 1140 if (!fw) { 1141 continue; 1142 } 1143 1144 if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) { 1145 if (hyperv_feat_enabled(cpu, feature)) { 1146 fprintf(stderr, 1147 "Hyper-V %s is not supported by kernel\n", 1148 kvm_hyperv_properties[feature].desc); 1149 return 1; 1150 } else { 1151 return 0; 1152 } 1153 } 1154 1155 env->features[fw] |= bits; 1156 } 1157 1158 if (cpu->hyperv_passthrough) { 1159 cpu->hyperv_features |= BIT(feature); 1160 } 1161 1162 return 0; 1163 } 1164 1165 /* 1166 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in 1167 * case of success, errno < 0 in case of failure and 0 when no Hyper-V 1168 * extentions are enabled. 1169 */ 1170 static int hyperv_handle_properties(CPUState *cs, 1171 struct kvm_cpuid_entry2 *cpuid_ent) 1172 { 1173 X86CPU *cpu = X86_CPU(cs); 1174 CPUX86State *env = &cpu->env; 1175 struct kvm_cpuid2 *cpuid; 1176 struct kvm_cpuid_entry2 *c; 1177 uint32_t cpuid_i = 0; 1178 int r; 1179 1180 if (!hyperv_enabled(cpu)) 1181 return 0; 1182 1183 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) || 1184 cpu->hyperv_passthrough) { 1185 uint16_t evmcs_version; 1186 1187 r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0, 1188 (uintptr_t)&evmcs_version); 1189 1190 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) { 1191 fprintf(stderr, "Hyper-V %s is not supported by kernel\n", 1192 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc); 1193 return -ENOSYS; 1194 } 1195 1196 if (!r) { 1197 env->features[FEAT_HV_RECOMM_EAX] |= 1198 HV_ENLIGHTENED_VMCS_RECOMMENDED; 1199 env->features[FEAT_HV_NESTED_EAX] = evmcs_version; 1200 } 1201 } 1202 1203 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) { 1204 cpuid = get_supported_hv_cpuid(cs); 1205 } else { 1206 cpuid = get_supported_hv_cpuid_legacy(cs); 1207 } 1208 1209 if (cpu->hyperv_passthrough) { 1210 memcpy(cpuid_ent, &cpuid->entries[0], 1211 cpuid->nent * sizeof(cpuid->entries[0])); 1212 1213 c = cpuid_find_entry(cpuid, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, 0); 1214 if (c) { 1215 cpu->hyperv_vendor_id[0] = c->ebx; 1216 cpu->hyperv_vendor_id[1] = c->ecx; 1217 cpu->hyperv_vendor_id[2] = c->edx; 1218 } 1219 1220 c = cpuid_find_entry(cpuid, HV_CPUID_INTERFACE, 0); 1221 if (c) { 1222 cpu->hyperv_interface_id[0] = c->eax; 1223 cpu->hyperv_interface_id[1] = c->ebx; 1224 cpu->hyperv_interface_id[2] = c->ecx; 1225 cpu->hyperv_interface_id[3] = c->edx; 1226 } 1227 1228 c = cpuid_find_entry(cpuid, HV_CPUID_VERSION, 0); 1229 if (c) { 1230 cpu->hyperv_version_id[0] = c->eax; 1231 cpu->hyperv_version_id[1] = c->ebx; 1232 cpu->hyperv_version_id[2] = c->ecx; 1233 cpu->hyperv_version_id[3] = c->edx; 1234 } 1235 1236 c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0); 1237 if (c) { 1238 env->features[FEAT_HYPERV_EAX] = c->eax; 1239 env->features[FEAT_HYPERV_EBX] = c->ebx; 1240 env->features[FEAT_HYPERV_EDX] = c->edx; 1241 } 1242 1243 c = cpuid_find_entry(cpuid, HV_CPUID_IMPLEMENT_LIMITS, 0); 1244 if (c) { 1245 cpu->hv_max_vps = c->eax; 1246 cpu->hyperv_limits[0] = c->ebx; 1247 cpu->hyperv_limits[1] = c->ecx; 1248 cpu->hyperv_limits[2] = c->edx; 1249 } 1250 1251 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0); 1252 if (c) { 1253 env->features[FEAT_HV_RECOMM_EAX] = c->eax; 1254 1255 /* hv-spinlocks may have been overriden */ 1256 if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) { 1257 c->ebx = cpu->hyperv_spinlock_attempts; 1258 } 1259 } 1260 c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0); 1261 if (c) { 1262 env->features[FEAT_HV_NESTED_EAX] = c->eax; 1263 } 1264 } 1265 1266 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) { 1267 env->features[FEAT_HV_RECOMM_EAX] |= HV_NO_NONARCH_CORESHARING; 1268 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) { 1269 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0); 1270 if (c) { 1271 env->features[FEAT_HV_RECOMM_EAX] |= 1272 c->eax & HV_NO_NONARCH_CORESHARING; 1273 } 1274 } 1275 1276 /* Features */ 1277 r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED); 1278 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC); 1279 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME); 1280 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH); 1281 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET); 1282 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX); 1283 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME); 1284 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC); 1285 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER); 1286 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES); 1287 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT); 1288 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH); 1289 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS); 1290 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI); 1291 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT); 1292 1293 /* Additional dependencies not covered by kvm_hyperv_properties[] */ 1294 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1295 !cpu->hyperv_synic_kvm_only && 1296 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) { 1297 fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n", 1298 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc, 1299 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc); 1300 r |= 1; 1301 } 1302 1303 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */ 1304 env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1305 1306 if (r) { 1307 r = -ENOSYS; 1308 goto free; 1309 } 1310 1311 if (cpu->hyperv_passthrough) { 1312 /* We already copied all feature words from KVM as is */ 1313 r = cpuid->nent; 1314 goto free; 1315 } 1316 1317 c = &cpuid_ent[cpuid_i++]; 1318 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS; 1319 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ? 1320 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS; 1321 c->ebx = cpu->hyperv_vendor_id[0]; 1322 c->ecx = cpu->hyperv_vendor_id[1]; 1323 c->edx = cpu->hyperv_vendor_id[2]; 1324 1325 c = &cpuid_ent[cpuid_i++]; 1326 c->function = HV_CPUID_INTERFACE; 1327 c->eax = cpu->hyperv_interface_id[0]; 1328 c->ebx = cpu->hyperv_interface_id[1]; 1329 c->ecx = cpu->hyperv_interface_id[2]; 1330 c->edx = cpu->hyperv_interface_id[3]; 1331 1332 c = &cpuid_ent[cpuid_i++]; 1333 c->function = HV_CPUID_VERSION; 1334 c->eax = cpu->hyperv_version_id[0]; 1335 c->ebx = cpu->hyperv_version_id[1]; 1336 c->ecx = cpu->hyperv_version_id[2]; 1337 c->edx = cpu->hyperv_version_id[3]; 1338 1339 c = &cpuid_ent[cpuid_i++]; 1340 c->function = HV_CPUID_FEATURES; 1341 c->eax = env->features[FEAT_HYPERV_EAX]; 1342 c->ebx = env->features[FEAT_HYPERV_EBX]; 1343 c->edx = env->features[FEAT_HYPERV_EDX]; 1344 1345 c = &cpuid_ent[cpuid_i++]; 1346 c->function = HV_CPUID_ENLIGHTMENT_INFO; 1347 c->eax = env->features[FEAT_HV_RECOMM_EAX]; 1348 c->ebx = cpu->hyperv_spinlock_attempts; 1349 1350 c = &cpuid_ent[cpuid_i++]; 1351 c->function = HV_CPUID_IMPLEMENT_LIMITS; 1352 c->eax = cpu->hv_max_vps; 1353 c->ebx = cpu->hyperv_limits[0]; 1354 c->ecx = cpu->hyperv_limits[1]; 1355 c->edx = cpu->hyperv_limits[2]; 1356 1357 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1358 __u32 function; 1359 1360 /* Create zeroed 0x40000006..0x40000009 leaves */ 1361 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1; 1362 function < HV_CPUID_NESTED_FEATURES; function++) { 1363 c = &cpuid_ent[cpuid_i++]; 1364 c->function = function; 1365 } 1366 1367 c = &cpuid_ent[cpuid_i++]; 1368 c->function = HV_CPUID_NESTED_FEATURES; 1369 c->eax = env->features[FEAT_HV_NESTED_EAX]; 1370 } 1371 r = cpuid_i; 1372 1373 free: 1374 g_free(cpuid); 1375 1376 return r; 1377 } 1378 1379 static Error *hv_passthrough_mig_blocker; 1380 static Error *hv_no_nonarch_cs_mig_blocker; 1381 1382 static int hyperv_init_vcpu(X86CPU *cpu) 1383 { 1384 CPUState *cs = CPU(cpu); 1385 Error *local_err = NULL; 1386 int ret; 1387 1388 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) { 1389 error_setg(&hv_passthrough_mig_blocker, 1390 "'hv-passthrough' CPU flag prevents migration, use explicit" 1391 " set of hv-* flags instead"); 1392 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err); 1393 if (local_err) { 1394 error_report_err(local_err); 1395 error_free(hv_passthrough_mig_blocker); 1396 return ret; 1397 } 1398 } 1399 1400 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO && 1401 hv_no_nonarch_cs_mig_blocker == NULL) { 1402 error_setg(&hv_no_nonarch_cs_mig_blocker, 1403 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration" 1404 " use explicit 'hv-no-nonarch-coresharing=on' instead (but" 1405 " make sure SMT is disabled and/or that vCPUs are properly" 1406 " pinned)"); 1407 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err); 1408 if (local_err) { 1409 error_report_err(local_err); 1410 error_free(hv_no_nonarch_cs_mig_blocker); 1411 return ret; 1412 } 1413 } 1414 1415 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) { 1416 /* 1417 * the kernel doesn't support setting vp_index; assert that its value 1418 * is in sync 1419 */ 1420 struct { 1421 struct kvm_msrs info; 1422 struct kvm_msr_entry entries[1]; 1423 } msr_data = { 1424 .info.nmsrs = 1, 1425 .entries[0].index = HV_X64_MSR_VP_INDEX, 1426 }; 1427 1428 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data); 1429 if (ret < 0) { 1430 return ret; 1431 } 1432 assert(ret == 1); 1433 1434 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) { 1435 error_report("kernel's vp_index != QEMU's vp_index"); 1436 return -ENXIO; 1437 } 1438 } 1439 1440 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 1441 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ? 1442 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1443 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0); 1444 if (ret < 0) { 1445 error_report("failed to turn on HyperV SynIC in KVM: %s", 1446 strerror(-ret)); 1447 return ret; 1448 } 1449 1450 if (!cpu->hyperv_synic_kvm_only) { 1451 ret = hyperv_x86_synic_add(cpu); 1452 if (ret < 0) { 1453 error_report("failed to create HyperV SynIC: %s", 1454 strerror(-ret)); 1455 return ret; 1456 } 1457 } 1458 } 1459 1460 return 0; 1461 } 1462 1463 static Error *invtsc_mig_blocker; 1464 1465 #define KVM_MAX_CPUID_ENTRIES 100 1466 1467 int kvm_arch_init_vcpu(CPUState *cs) 1468 { 1469 struct { 1470 struct kvm_cpuid2 cpuid; 1471 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; 1472 } cpuid_data; 1473 /* 1474 * The kernel defines these structs with padding fields so there 1475 * should be no extra padding in our cpuid_data struct. 1476 */ 1477 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) != 1478 sizeof(struct kvm_cpuid2) + 1479 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES); 1480 1481 X86CPU *cpu = X86_CPU(cs); 1482 CPUX86State *env = &cpu->env; 1483 uint32_t limit, i, j, cpuid_i; 1484 uint32_t unused; 1485 struct kvm_cpuid_entry2 *c; 1486 uint32_t signature[3]; 1487 int kvm_base = KVM_CPUID_SIGNATURE; 1488 int max_nested_state_len; 1489 int r; 1490 Error *local_err = NULL; 1491 1492 memset(&cpuid_data, 0, sizeof(cpuid_data)); 1493 1494 cpuid_i = 0; 1495 1496 r = kvm_arch_set_tsc_khz(cs); 1497 if (r < 0) { 1498 return r; 1499 } 1500 1501 /* vcpu's TSC frequency is either specified by user, or following 1502 * the value used by KVM if the former is not present. In the 1503 * latter case, we query it from KVM and record in env->tsc_khz, 1504 * so that vcpu's TSC frequency can be migrated later via this field. 1505 */ 1506 if (!env->tsc_khz) { 1507 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 1508 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 1509 -ENOTSUP; 1510 if (r > 0) { 1511 env->tsc_khz = r; 1512 } 1513 } 1514 1515 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY; 1516 1517 /* Paravirtualization CPUIDs */ 1518 r = hyperv_handle_properties(cs, cpuid_data.entries); 1519 if (r < 0) { 1520 return r; 1521 } else if (r > 0) { 1522 cpuid_i = r; 1523 kvm_base = KVM_CPUID_SIGNATURE_NEXT; 1524 has_msr_hv_hypercall = true; 1525 } 1526 1527 if (cpu->expose_kvm) { 1528 memcpy(signature, "KVMKVMKVM\0\0\0", 12); 1529 c = &cpuid_data.entries[cpuid_i++]; 1530 c->function = KVM_CPUID_SIGNATURE | kvm_base; 1531 c->eax = KVM_CPUID_FEATURES | kvm_base; 1532 c->ebx = signature[0]; 1533 c->ecx = signature[1]; 1534 c->edx = signature[2]; 1535 1536 c = &cpuid_data.entries[cpuid_i++]; 1537 c->function = KVM_CPUID_FEATURES | kvm_base; 1538 c->eax = env->features[FEAT_KVM]; 1539 c->edx = env->features[FEAT_KVM_HINTS]; 1540 } 1541 1542 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); 1543 1544 for (i = 0; i <= limit; i++) { 1545 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1546 fprintf(stderr, "unsupported level value: 0x%x\n", limit); 1547 abort(); 1548 } 1549 c = &cpuid_data.entries[cpuid_i++]; 1550 1551 switch (i) { 1552 case 2: { 1553 /* Keep reading function 2 till all the input is received */ 1554 int times; 1555 1556 c->function = i; 1557 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | 1558 KVM_CPUID_FLAG_STATE_READ_NEXT; 1559 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1560 times = c->eax & 0xff; 1561 1562 for (j = 1; j < times; ++j) { 1563 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1564 fprintf(stderr, "cpuid_data is full, no space for " 1565 "cpuid(eax:2):eax & 0xf = 0x%x\n", times); 1566 abort(); 1567 } 1568 c = &cpuid_data.entries[cpuid_i++]; 1569 c->function = i; 1570 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; 1571 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1572 } 1573 break; 1574 } 1575 case 0x1f: 1576 if (env->nr_dies < 2) { 1577 break; 1578 } 1579 /* fallthrough */ 1580 case 4: 1581 case 0xb: 1582 case 0xd: 1583 for (j = 0; ; j++) { 1584 if (i == 0xd && j == 64) { 1585 break; 1586 } 1587 1588 if (i == 0x1f && j == 64) { 1589 break; 1590 } 1591 1592 c->function = i; 1593 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1594 c->index = j; 1595 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1596 1597 if (i == 4 && c->eax == 0) { 1598 break; 1599 } 1600 if (i == 0xb && !(c->ecx & 0xff00)) { 1601 break; 1602 } 1603 if (i == 0x1f && !(c->ecx & 0xff00)) { 1604 break; 1605 } 1606 if (i == 0xd && c->eax == 0) { 1607 continue; 1608 } 1609 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1610 fprintf(stderr, "cpuid_data is full, no space for " 1611 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 1612 abort(); 1613 } 1614 c = &cpuid_data.entries[cpuid_i++]; 1615 } 1616 break; 1617 case 0x7: 1618 case 0x14: { 1619 uint32_t times; 1620 1621 c->function = i; 1622 c->index = 0; 1623 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1624 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1625 times = c->eax; 1626 1627 for (j = 1; j <= times; ++j) { 1628 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1629 fprintf(stderr, "cpuid_data is full, no space for " 1630 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 1631 abort(); 1632 } 1633 c = &cpuid_data.entries[cpuid_i++]; 1634 c->function = i; 1635 c->index = j; 1636 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1637 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1638 } 1639 break; 1640 } 1641 default: 1642 c->function = i; 1643 c->flags = 0; 1644 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1645 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 1646 /* 1647 * KVM already returns all zeroes if a CPUID entry is missing, 1648 * so we can omit it and avoid hitting KVM's 80-entry limit. 1649 */ 1650 cpuid_i--; 1651 } 1652 break; 1653 } 1654 } 1655 1656 if (limit >= 0x0a) { 1657 uint32_t eax, edx; 1658 1659 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx); 1660 1661 has_architectural_pmu_version = eax & 0xff; 1662 if (has_architectural_pmu_version > 0) { 1663 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8; 1664 1665 /* Shouldn't be more than 32, since that's the number of bits 1666 * available in EBX to tell us _which_ counters are available. 1667 * Play it safe. 1668 */ 1669 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) { 1670 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS; 1671 } 1672 1673 if (has_architectural_pmu_version > 1) { 1674 num_architectural_pmu_fixed_counters = edx & 0x1f; 1675 1676 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) { 1677 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS; 1678 } 1679 } 1680 } 1681 } 1682 1683 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); 1684 1685 for (i = 0x80000000; i <= limit; i++) { 1686 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1687 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); 1688 abort(); 1689 } 1690 c = &cpuid_data.entries[cpuid_i++]; 1691 1692 switch (i) { 1693 case 0x8000001d: 1694 /* Query for all AMD cache information leaves */ 1695 for (j = 0; ; j++) { 1696 c->function = i; 1697 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1698 c->index = j; 1699 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1700 1701 if (c->eax == 0) { 1702 break; 1703 } 1704 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1705 fprintf(stderr, "cpuid_data is full, no space for " 1706 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 1707 abort(); 1708 } 1709 c = &cpuid_data.entries[cpuid_i++]; 1710 } 1711 break; 1712 default: 1713 c->function = i; 1714 c->flags = 0; 1715 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1716 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 1717 /* 1718 * KVM already returns all zeroes if a CPUID entry is missing, 1719 * so we can omit it and avoid hitting KVM's 80-entry limit. 1720 */ 1721 cpuid_i--; 1722 } 1723 break; 1724 } 1725 } 1726 1727 /* Call Centaur's CPUID instructions they are supported. */ 1728 if (env->cpuid_xlevel2 > 0) { 1729 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); 1730 1731 for (i = 0xC0000000; i <= limit; i++) { 1732 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1733 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); 1734 abort(); 1735 } 1736 c = &cpuid_data.entries[cpuid_i++]; 1737 1738 c->function = i; 1739 c->flags = 0; 1740 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1741 } 1742 } 1743 1744 cpuid_data.cpuid.nent = cpuid_i; 1745 1746 if (((env->cpuid_version >> 8)&0xF) >= 6 1747 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == 1748 (CPUID_MCE | CPUID_MCA) 1749 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { 1750 uint64_t mcg_cap, unsupported_caps; 1751 int banks; 1752 int ret; 1753 1754 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); 1755 if (ret < 0) { 1756 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); 1757 return ret; 1758 } 1759 1760 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { 1761 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", 1762 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); 1763 return -ENOTSUP; 1764 } 1765 1766 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); 1767 if (unsupported_caps) { 1768 if (unsupported_caps & MCG_LMCE_P) { 1769 error_report("kvm: LMCE not supported"); 1770 return -ENOTSUP; 1771 } 1772 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64, 1773 unsupported_caps); 1774 } 1775 1776 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; 1777 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); 1778 if (ret < 0) { 1779 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); 1780 return ret; 1781 } 1782 } 1783 1784 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env); 1785 1786 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); 1787 if (c) { 1788 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || 1789 !!(c->ecx & CPUID_EXT_SMX); 1790 } 1791 1792 if (env->mcg_cap & MCG_LMCE_P) { 1793 has_msr_mcg_ext_ctl = has_msr_feature_control = true; 1794 } 1795 1796 if (!env->user_tsc_khz) { 1797 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && 1798 invtsc_mig_blocker == NULL) { 1799 error_setg(&invtsc_mig_blocker, 1800 "State blocked by non-migratable CPU device" 1801 " (invtsc flag)"); 1802 r = migrate_add_blocker(invtsc_mig_blocker, &local_err); 1803 if (local_err) { 1804 error_report_err(local_err); 1805 error_free(invtsc_mig_blocker); 1806 return r; 1807 } 1808 } 1809 } 1810 1811 if (cpu->vmware_cpuid_freq 1812 /* Guests depend on 0x40000000 to detect this feature, so only expose 1813 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ 1814 && cpu->expose_kvm 1815 && kvm_base == KVM_CPUID_SIGNATURE 1816 /* TSC clock must be stable and known for this feature. */ 1817 && tsc_is_stable_and_known(env)) { 1818 1819 c = &cpuid_data.entries[cpuid_i++]; 1820 c->function = KVM_CPUID_SIGNATURE | 0x10; 1821 c->eax = env->tsc_khz; 1822 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */ 1823 c->ecx = c->edx = 0; 1824 1825 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); 1826 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); 1827 } 1828 1829 cpuid_data.cpuid.nent = cpuid_i; 1830 1831 cpuid_data.cpuid.padding = 0; 1832 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); 1833 if (r) { 1834 goto fail; 1835 } 1836 1837 if (has_xsave) { 1838 env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); 1839 memset(env->xsave_buf, 0, sizeof(struct kvm_xsave)); 1840 } 1841 1842 max_nested_state_len = kvm_max_nested_state_length(); 1843 if (max_nested_state_len > 0) { 1844 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data)); 1845 1846 if (cpu_has_vmx(env) || cpu_has_svm(env)) { 1847 struct kvm_vmx_nested_state_hdr *vmx_hdr; 1848 1849 env->nested_state = g_malloc0(max_nested_state_len); 1850 env->nested_state->size = max_nested_state_len; 1851 1852 if (cpu_has_vmx(env)) { 1853 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX; 1854 vmx_hdr = &env->nested_state->hdr.vmx; 1855 vmx_hdr->vmxon_pa = -1ull; 1856 vmx_hdr->vmcs12_pa = -1ull; 1857 } else { 1858 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM; 1859 } 1860 } 1861 } 1862 1863 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); 1864 1865 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { 1866 has_msr_tsc_aux = false; 1867 } 1868 1869 kvm_init_msrs(cpu); 1870 1871 r = hyperv_init_vcpu(cpu); 1872 if (r) { 1873 goto fail; 1874 } 1875 1876 return 0; 1877 1878 fail: 1879 migrate_del_blocker(invtsc_mig_blocker); 1880 1881 return r; 1882 } 1883 1884 int kvm_arch_destroy_vcpu(CPUState *cs) 1885 { 1886 X86CPU *cpu = X86_CPU(cs); 1887 CPUX86State *env = &cpu->env; 1888 1889 if (cpu->kvm_msr_buf) { 1890 g_free(cpu->kvm_msr_buf); 1891 cpu->kvm_msr_buf = NULL; 1892 } 1893 1894 if (env->nested_state) { 1895 g_free(env->nested_state); 1896 env->nested_state = NULL; 1897 } 1898 1899 qemu_del_vm_change_state_handler(cpu->vmsentry); 1900 1901 return 0; 1902 } 1903 1904 void kvm_arch_reset_vcpu(X86CPU *cpu) 1905 { 1906 CPUX86State *env = &cpu->env; 1907 1908 env->xcr0 = 1; 1909 if (kvm_irqchip_in_kernel()) { 1910 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : 1911 KVM_MP_STATE_UNINITIALIZED; 1912 } else { 1913 env->mp_state = KVM_MP_STATE_RUNNABLE; 1914 } 1915 1916 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 1917 int i; 1918 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { 1919 env->msr_hv_synic_sint[i] = HV_SINT_MASKED; 1920 } 1921 1922 hyperv_x86_synic_reset(cpu); 1923 } 1924 /* enabled by default */ 1925 env->poll_control_msr = 1; 1926 1927 sev_es_set_reset_vector(CPU(cpu)); 1928 } 1929 1930 void kvm_arch_do_init_vcpu(X86CPU *cpu) 1931 { 1932 CPUX86State *env = &cpu->env; 1933 1934 /* APs get directly into wait-for-SIPI state. */ 1935 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { 1936 env->mp_state = KVM_MP_STATE_INIT_RECEIVED; 1937 } 1938 } 1939 1940 static int kvm_get_supported_feature_msrs(KVMState *s) 1941 { 1942 int ret = 0; 1943 1944 if (kvm_feature_msrs != NULL) { 1945 return 0; 1946 } 1947 1948 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) { 1949 return 0; 1950 } 1951 1952 struct kvm_msr_list msr_list; 1953 1954 msr_list.nmsrs = 0; 1955 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list); 1956 if (ret < 0 && ret != -E2BIG) { 1957 error_report("Fetch KVM feature MSR list failed: %s", 1958 strerror(-ret)); 1959 return ret; 1960 } 1961 1962 assert(msr_list.nmsrs > 0); 1963 kvm_feature_msrs = (struct kvm_msr_list *) \ 1964 g_malloc0(sizeof(msr_list) + 1965 msr_list.nmsrs * sizeof(msr_list.indices[0])); 1966 1967 kvm_feature_msrs->nmsrs = msr_list.nmsrs; 1968 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs); 1969 1970 if (ret < 0) { 1971 error_report("Fetch KVM feature MSR list failed: %s", 1972 strerror(-ret)); 1973 g_free(kvm_feature_msrs); 1974 kvm_feature_msrs = NULL; 1975 return ret; 1976 } 1977 1978 return 0; 1979 } 1980 1981 static int kvm_get_supported_msrs(KVMState *s) 1982 { 1983 int ret = 0; 1984 struct kvm_msr_list msr_list, *kvm_msr_list; 1985 1986 /* 1987 * Obtain MSR list from KVM. These are the MSRs that we must 1988 * save/restore. 1989 */ 1990 msr_list.nmsrs = 0; 1991 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); 1992 if (ret < 0 && ret != -E2BIG) { 1993 return ret; 1994 } 1995 /* 1996 * Old kernel modules had a bug and could write beyond the provided 1997 * memory. Allocate at least a safe amount of 1K. 1998 */ 1999 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + 2000 msr_list.nmsrs * 2001 sizeof(msr_list.indices[0]))); 2002 2003 kvm_msr_list->nmsrs = msr_list.nmsrs; 2004 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); 2005 if (ret >= 0) { 2006 int i; 2007 2008 for (i = 0; i < kvm_msr_list->nmsrs; i++) { 2009 switch (kvm_msr_list->indices[i]) { 2010 case MSR_STAR: 2011 has_msr_star = true; 2012 break; 2013 case MSR_VM_HSAVE_PA: 2014 has_msr_hsave_pa = true; 2015 break; 2016 case MSR_TSC_AUX: 2017 has_msr_tsc_aux = true; 2018 break; 2019 case MSR_TSC_ADJUST: 2020 has_msr_tsc_adjust = true; 2021 break; 2022 case MSR_IA32_TSCDEADLINE: 2023 has_msr_tsc_deadline = true; 2024 break; 2025 case MSR_IA32_SMBASE: 2026 has_msr_smbase = true; 2027 break; 2028 case MSR_SMI_COUNT: 2029 has_msr_smi_count = true; 2030 break; 2031 case MSR_IA32_MISC_ENABLE: 2032 has_msr_misc_enable = true; 2033 break; 2034 case MSR_IA32_BNDCFGS: 2035 has_msr_bndcfgs = true; 2036 break; 2037 case MSR_IA32_XSS: 2038 has_msr_xss = true; 2039 break; 2040 case MSR_IA32_UMWAIT_CONTROL: 2041 has_msr_umwait = true; 2042 break; 2043 case HV_X64_MSR_CRASH_CTL: 2044 has_msr_hv_crash = true; 2045 break; 2046 case HV_X64_MSR_RESET: 2047 has_msr_hv_reset = true; 2048 break; 2049 case HV_X64_MSR_VP_INDEX: 2050 has_msr_hv_vpindex = true; 2051 break; 2052 case HV_X64_MSR_VP_RUNTIME: 2053 has_msr_hv_runtime = true; 2054 break; 2055 case HV_X64_MSR_SCONTROL: 2056 has_msr_hv_synic = true; 2057 break; 2058 case HV_X64_MSR_STIMER0_CONFIG: 2059 has_msr_hv_stimer = true; 2060 break; 2061 case HV_X64_MSR_TSC_FREQUENCY: 2062 has_msr_hv_frequencies = true; 2063 break; 2064 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 2065 has_msr_hv_reenlightenment = true; 2066 break; 2067 case MSR_IA32_SPEC_CTRL: 2068 has_msr_spec_ctrl = true; 2069 break; 2070 case MSR_IA32_TSX_CTRL: 2071 has_msr_tsx_ctrl = true; 2072 break; 2073 case MSR_VIRT_SSBD: 2074 has_msr_virt_ssbd = true; 2075 break; 2076 case MSR_IA32_ARCH_CAPABILITIES: 2077 has_msr_arch_capabs = true; 2078 break; 2079 case MSR_IA32_CORE_CAPABILITY: 2080 has_msr_core_capabs = true; 2081 break; 2082 case MSR_IA32_PERF_CAPABILITIES: 2083 has_msr_perf_capabs = true; 2084 break; 2085 case MSR_IA32_VMX_VMFUNC: 2086 has_msr_vmx_vmfunc = true; 2087 break; 2088 case MSR_IA32_UCODE_REV: 2089 has_msr_ucode_rev = true; 2090 break; 2091 case MSR_IA32_VMX_PROCBASED_CTLS2: 2092 has_msr_vmx_procbased_ctls2 = true; 2093 break; 2094 case MSR_IA32_PKRS: 2095 has_msr_pkrs = true; 2096 break; 2097 } 2098 } 2099 } 2100 2101 g_free(kvm_msr_list); 2102 2103 return ret; 2104 } 2105 2106 static Notifier smram_machine_done; 2107 static KVMMemoryListener smram_listener; 2108 static AddressSpace smram_address_space; 2109 static MemoryRegion smram_as_root; 2110 static MemoryRegion smram_as_mem; 2111 2112 static void register_smram_listener(Notifier *n, void *unused) 2113 { 2114 MemoryRegion *smram = 2115 (MemoryRegion *) object_resolve_path("/machine/smram", NULL); 2116 2117 /* Outer container... */ 2118 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); 2119 memory_region_set_enabled(&smram_as_root, true); 2120 2121 /* ... with two regions inside: normal system memory with low 2122 * priority, and... 2123 */ 2124 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", 2125 get_system_memory(), 0, ~0ull); 2126 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); 2127 memory_region_set_enabled(&smram_as_mem, true); 2128 2129 if (smram) { 2130 /* ... SMRAM with higher priority */ 2131 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); 2132 memory_region_set_enabled(smram, true); 2133 } 2134 2135 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); 2136 kvm_memory_listener_register(kvm_state, &smram_listener, 2137 &smram_address_space, 1); 2138 } 2139 2140 int kvm_arch_init(MachineState *ms, KVMState *s) 2141 { 2142 uint64_t identity_base = 0xfffbc000; 2143 uint64_t shadow_mem; 2144 int ret; 2145 struct utsname utsname; 2146 Error *local_err = NULL; 2147 2148 /* 2149 * Initialize SEV context, if required 2150 * 2151 * If no memory encryption is requested (ms->cgs == NULL) this is 2152 * a no-op. 2153 * 2154 * It's also a no-op if a non-SEV confidential guest support 2155 * mechanism is selected. SEV is the only mechanism available to 2156 * select on x86 at present, so this doesn't arise, but if new 2157 * mechanisms are supported in future (e.g. TDX), they'll need 2158 * their own initialization either here or elsewhere. 2159 */ 2160 ret = sev_kvm_init(ms->cgs, &local_err); 2161 if (ret < 0) { 2162 error_report_err(local_err); 2163 return ret; 2164 } 2165 2166 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { 2167 error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM"); 2168 return -ENOTSUP; 2169 } 2170 2171 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE); 2172 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); 2173 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); 2174 2175 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX); 2176 2177 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD); 2178 if (has_exception_payload) { 2179 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true); 2180 if (ret < 0) { 2181 error_report("kvm: Failed to enable exception payload cap: %s", 2182 strerror(-ret)); 2183 return ret; 2184 } 2185 } 2186 2187 ret = kvm_get_supported_msrs(s); 2188 if (ret < 0) { 2189 return ret; 2190 } 2191 2192 kvm_get_supported_feature_msrs(s); 2193 2194 uname(&utsname); 2195 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; 2196 2197 /* 2198 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. 2199 * In order to use vm86 mode, an EPT identity map and a TSS are needed. 2200 * Since these must be part of guest physical memory, we need to allocate 2201 * them, both by setting their start addresses in the kernel and by 2202 * creating a corresponding e820 entry. We need 4 pages before the BIOS. 2203 * 2204 * Older KVM versions may not support setting the identity map base. In 2205 * that case we need to stick with the default, i.e. a 256K maximum BIOS 2206 * size. 2207 */ 2208 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { 2209 /* Allows up to 16M BIOSes. */ 2210 identity_base = 0xfeffc000; 2211 2212 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); 2213 if (ret < 0) { 2214 return ret; 2215 } 2216 } 2217 2218 /* Set TSS base one page after EPT identity map. */ 2219 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); 2220 if (ret < 0) { 2221 return ret; 2222 } 2223 2224 /* Tell fw_cfg to notify the BIOS to reserve the range. */ 2225 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); 2226 if (ret < 0) { 2227 fprintf(stderr, "e820_add_entry() table is full\n"); 2228 return ret; 2229 } 2230 2231 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort); 2232 if (shadow_mem != -1) { 2233 shadow_mem /= 4096; 2234 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); 2235 if (ret < 0) { 2236 return ret; 2237 } 2238 } 2239 2240 if (kvm_check_extension(s, KVM_CAP_X86_SMM) && 2241 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) && 2242 x86_machine_is_smm_enabled(X86_MACHINE(ms))) { 2243 smram_machine_done.notify = register_smram_listener; 2244 qemu_add_machine_init_done_notifier(&smram_machine_done); 2245 } 2246 2247 if (enable_cpu_pm) { 2248 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS); 2249 int ret; 2250 2251 /* Work around for kernel header with a typo. TODO: fix header and drop. */ 2252 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT) 2253 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL 2254 #endif 2255 if (disable_exits) { 2256 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT | 2257 KVM_X86_DISABLE_EXITS_HLT | 2258 KVM_X86_DISABLE_EXITS_PAUSE | 2259 KVM_X86_DISABLE_EXITS_CSTATE); 2260 } 2261 2262 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0, 2263 disable_exits); 2264 if (ret < 0) { 2265 error_report("kvm: guest stopping CPU not supported: %s", 2266 strerror(-ret)); 2267 } 2268 } 2269 2270 return 0; 2271 } 2272 2273 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 2274 { 2275 lhs->selector = rhs->selector; 2276 lhs->base = rhs->base; 2277 lhs->limit = rhs->limit; 2278 lhs->type = 3; 2279 lhs->present = 1; 2280 lhs->dpl = 3; 2281 lhs->db = 0; 2282 lhs->s = 1; 2283 lhs->l = 0; 2284 lhs->g = 0; 2285 lhs->avl = 0; 2286 lhs->unusable = 0; 2287 } 2288 2289 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 2290 { 2291 unsigned flags = rhs->flags; 2292 lhs->selector = rhs->selector; 2293 lhs->base = rhs->base; 2294 lhs->limit = rhs->limit; 2295 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; 2296 lhs->present = (flags & DESC_P_MASK) != 0; 2297 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; 2298 lhs->db = (flags >> DESC_B_SHIFT) & 1; 2299 lhs->s = (flags & DESC_S_MASK) != 0; 2300 lhs->l = (flags >> DESC_L_SHIFT) & 1; 2301 lhs->g = (flags & DESC_G_MASK) != 0; 2302 lhs->avl = (flags & DESC_AVL_MASK) != 0; 2303 lhs->unusable = !lhs->present; 2304 lhs->padding = 0; 2305 } 2306 2307 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) 2308 { 2309 lhs->selector = rhs->selector; 2310 lhs->base = rhs->base; 2311 lhs->limit = rhs->limit; 2312 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | 2313 ((rhs->present && !rhs->unusable) * DESC_P_MASK) | 2314 (rhs->dpl << DESC_DPL_SHIFT) | 2315 (rhs->db << DESC_B_SHIFT) | 2316 (rhs->s * DESC_S_MASK) | 2317 (rhs->l << DESC_L_SHIFT) | 2318 (rhs->g * DESC_G_MASK) | 2319 (rhs->avl * DESC_AVL_MASK); 2320 } 2321 2322 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) 2323 { 2324 if (set) { 2325 *kvm_reg = *qemu_reg; 2326 } else { 2327 *qemu_reg = *kvm_reg; 2328 } 2329 } 2330 2331 static int kvm_getput_regs(X86CPU *cpu, int set) 2332 { 2333 CPUX86State *env = &cpu->env; 2334 struct kvm_regs regs; 2335 int ret = 0; 2336 2337 if (!set) { 2338 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); 2339 if (ret < 0) { 2340 return ret; 2341 } 2342 } 2343 2344 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); 2345 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); 2346 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); 2347 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); 2348 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); 2349 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); 2350 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); 2351 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); 2352 #ifdef TARGET_X86_64 2353 kvm_getput_reg(®s.r8, &env->regs[8], set); 2354 kvm_getput_reg(®s.r9, &env->regs[9], set); 2355 kvm_getput_reg(®s.r10, &env->regs[10], set); 2356 kvm_getput_reg(®s.r11, &env->regs[11], set); 2357 kvm_getput_reg(®s.r12, &env->regs[12], set); 2358 kvm_getput_reg(®s.r13, &env->regs[13], set); 2359 kvm_getput_reg(®s.r14, &env->regs[14], set); 2360 kvm_getput_reg(®s.r15, &env->regs[15], set); 2361 #endif 2362 2363 kvm_getput_reg(®s.rflags, &env->eflags, set); 2364 kvm_getput_reg(®s.rip, &env->eip, set); 2365 2366 if (set) { 2367 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); 2368 } 2369 2370 return ret; 2371 } 2372 2373 static int kvm_put_fpu(X86CPU *cpu) 2374 { 2375 CPUX86State *env = &cpu->env; 2376 struct kvm_fpu fpu; 2377 int i; 2378 2379 memset(&fpu, 0, sizeof fpu); 2380 fpu.fsw = env->fpus & ~(7 << 11); 2381 fpu.fsw |= (env->fpstt & 7) << 11; 2382 fpu.fcw = env->fpuc; 2383 fpu.last_opcode = env->fpop; 2384 fpu.last_ip = env->fpip; 2385 fpu.last_dp = env->fpdp; 2386 for (i = 0; i < 8; ++i) { 2387 fpu.ftwx |= (!env->fptags[i]) << i; 2388 } 2389 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); 2390 for (i = 0; i < CPU_NB_REGS; i++) { 2391 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0)); 2392 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1)); 2393 } 2394 fpu.mxcsr = env->mxcsr; 2395 2396 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); 2397 } 2398 2399 #define XSAVE_FCW_FSW 0 2400 #define XSAVE_FTW_FOP 1 2401 #define XSAVE_CWD_RIP 2 2402 #define XSAVE_CWD_RDP 4 2403 #define XSAVE_MXCSR 6 2404 #define XSAVE_ST_SPACE 8 2405 #define XSAVE_XMM_SPACE 40 2406 #define XSAVE_XSTATE_BV 128 2407 #define XSAVE_YMMH_SPACE 144 2408 #define XSAVE_BNDREGS 240 2409 #define XSAVE_BNDCSR 256 2410 #define XSAVE_OPMASK 272 2411 #define XSAVE_ZMM_Hi256 288 2412 #define XSAVE_Hi16_ZMM 416 2413 #define XSAVE_PKRU 672 2414 2415 #define XSAVE_BYTE_OFFSET(word_offset) \ 2416 ((word_offset) * sizeof_field(struct kvm_xsave, region[0])) 2417 2418 #define ASSERT_OFFSET(word_offset, field) \ 2419 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \ 2420 offsetof(X86XSaveArea, field)) 2421 2422 ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw); 2423 ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw); 2424 ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip); 2425 ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp); 2426 ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr); 2427 ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs); 2428 ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs); 2429 ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv); 2430 ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state); 2431 ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state); 2432 ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state); 2433 ASSERT_OFFSET(XSAVE_OPMASK, opmask_state); 2434 ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state); 2435 ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state); 2436 ASSERT_OFFSET(XSAVE_PKRU, pkru_state); 2437 2438 static int kvm_put_xsave(X86CPU *cpu) 2439 { 2440 CPUX86State *env = &cpu->env; 2441 X86XSaveArea *xsave = env->xsave_buf; 2442 2443 if (!has_xsave) { 2444 return kvm_put_fpu(cpu); 2445 } 2446 x86_cpu_xsave_all_areas(cpu, xsave); 2447 2448 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); 2449 } 2450 2451 static int kvm_put_xcrs(X86CPU *cpu) 2452 { 2453 CPUX86State *env = &cpu->env; 2454 struct kvm_xcrs xcrs = {}; 2455 2456 if (!has_xcrs) { 2457 return 0; 2458 } 2459 2460 xcrs.nr_xcrs = 1; 2461 xcrs.flags = 0; 2462 xcrs.xcrs[0].xcr = 0; 2463 xcrs.xcrs[0].value = env->xcr0; 2464 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); 2465 } 2466 2467 static int kvm_put_sregs(X86CPU *cpu) 2468 { 2469 CPUX86State *env = &cpu->env; 2470 struct kvm_sregs sregs; 2471 2472 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); 2473 if (env->interrupt_injected >= 0) { 2474 sregs.interrupt_bitmap[env->interrupt_injected / 64] |= 2475 (uint64_t)1 << (env->interrupt_injected % 64); 2476 } 2477 2478 if ((env->eflags & VM_MASK)) { 2479 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 2480 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 2481 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 2482 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 2483 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 2484 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 2485 } else { 2486 set_seg(&sregs.cs, &env->segs[R_CS]); 2487 set_seg(&sregs.ds, &env->segs[R_DS]); 2488 set_seg(&sregs.es, &env->segs[R_ES]); 2489 set_seg(&sregs.fs, &env->segs[R_FS]); 2490 set_seg(&sregs.gs, &env->segs[R_GS]); 2491 set_seg(&sregs.ss, &env->segs[R_SS]); 2492 } 2493 2494 set_seg(&sregs.tr, &env->tr); 2495 set_seg(&sregs.ldt, &env->ldt); 2496 2497 sregs.idt.limit = env->idt.limit; 2498 sregs.idt.base = env->idt.base; 2499 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 2500 sregs.gdt.limit = env->gdt.limit; 2501 sregs.gdt.base = env->gdt.base; 2502 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 2503 2504 sregs.cr0 = env->cr[0]; 2505 sregs.cr2 = env->cr[2]; 2506 sregs.cr3 = env->cr[3]; 2507 sregs.cr4 = env->cr[4]; 2508 2509 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 2510 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 2511 2512 sregs.efer = env->efer; 2513 2514 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); 2515 } 2516 2517 static void kvm_msr_buf_reset(X86CPU *cpu) 2518 { 2519 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); 2520 } 2521 2522 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) 2523 { 2524 struct kvm_msrs *msrs = cpu->kvm_msr_buf; 2525 void *limit = ((void *)msrs) + MSR_BUF_SIZE; 2526 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; 2527 2528 assert((void *)(entry + 1) <= limit); 2529 2530 entry->index = index; 2531 entry->reserved = 0; 2532 entry->data = value; 2533 msrs->nmsrs++; 2534 } 2535 2536 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) 2537 { 2538 kvm_msr_buf_reset(cpu); 2539 kvm_msr_entry_add(cpu, index, value); 2540 2541 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 2542 } 2543 2544 void kvm_put_apicbase(X86CPU *cpu, uint64_t value) 2545 { 2546 int ret; 2547 2548 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); 2549 assert(ret == 1); 2550 } 2551 2552 static int kvm_put_tscdeadline_msr(X86CPU *cpu) 2553 { 2554 CPUX86State *env = &cpu->env; 2555 int ret; 2556 2557 if (!has_msr_tsc_deadline) { 2558 return 0; 2559 } 2560 2561 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); 2562 if (ret < 0) { 2563 return ret; 2564 } 2565 2566 assert(ret == 1); 2567 return 0; 2568 } 2569 2570 /* 2571 * Provide a separate write service for the feature control MSR in order to 2572 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done 2573 * before writing any other state because forcibly leaving nested mode 2574 * invalidates the VCPU state. 2575 */ 2576 static int kvm_put_msr_feature_control(X86CPU *cpu) 2577 { 2578 int ret; 2579 2580 if (!has_msr_feature_control) { 2581 return 0; 2582 } 2583 2584 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, 2585 cpu->env.msr_ia32_feature_control); 2586 if (ret < 0) { 2587 return ret; 2588 } 2589 2590 assert(ret == 1); 2591 return 0; 2592 } 2593 2594 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features) 2595 { 2596 uint32_t default1, can_be_one, can_be_zero; 2597 uint32_t must_be_one; 2598 2599 switch (index) { 2600 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 2601 default1 = 0x00000016; 2602 break; 2603 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 2604 default1 = 0x0401e172; 2605 break; 2606 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 2607 default1 = 0x000011ff; 2608 break; 2609 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 2610 default1 = 0x00036dff; 2611 break; 2612 case MSR_IA32_VMX_PROCBASED_CTLS2: 2613 default1 = 0; 2614 break; 2615 default: 2616 abort(); 2617 } 2618 2619 /* If a feature bit is set, the control can be either set or clear. 2620 * Otherwise the value is limited to either 0 or 1 by default1. 2621 */ 2622 can_be_one = features | default1; 2623 can_be_zero = features | ~default1; 2624 must_be_one = ~can_be_zero; 2625 2626 /* 2627 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one). 2628 * Bit 32:63 -> 1 if the control bit can be one. 2629 */ 2630 return must_be_one | (((uint64_t)can_be_one) << 32); 2631 } 2632 2633 #define VMCS12_MAX_FIELD_INDEX (0x17) 2634 2635 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f) 2636 { 2637 uint64_t kvm_vmx_basic = 2638 kvm_arch_get_supported_msr_feature(kvm_state, 2639 MSR_IA32_VMX_BASIC); 2640 2641 if (!kvm_vmx_basic) { 2642 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0), 2643 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail. 2644 */ 2645 return; 2646 } 2647 2648 uint64_t kvm_vmx_misc = 2649 kvm_arch_get_supported_msr_feature(kvm_state, 2650 MSR_IA32_VMX_MISC); 2651 uint64_t kvm_vmx_ept_vpid = 2652 kvm_arch_get_supported_msr_feature(kvm_state, 2653 MSR_IA32_VMX_EPT_VPID_CAP); 2654 2655 /* 2656 * If the guest is 64-bit, a value of 1 is allowed for the host address 2657 * space size vmexit control. 2658 */ 2659 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM 2660 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0; 2661 2662 /* 2663 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should 2664 * not change them for backwards compatibility. 2665 */ 2666 uint64_t fixed_vmx_basic = kvm_vmx_basic & 2667 (MSR_VMX_BASIC_VMCS_REVISION_MASK | 2668 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK | 2669 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK); 2670 2671 /* 2672 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can 2673 * change in the future but are always zero for now, clear them to be 2674 * future proof. Bits 32-63 in theory could change, though KVM does 2675 * not support dual-monitor treatment and probably never will; mask 2676 * them out as well. 2677 */ 2678 uint64_t fixed_vmx_misc = kvm_vmx_misc & 2679 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK | 2680 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK); 2681 2682 /* 2683 * EPT memory types should not change either, so we do not bother 2684 * adding features for them. 2685 */ 2686 uint64_t fixed_vmx_ept_mask = 2687 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ? 2688 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0); 2689 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask; 2690 2691 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 2692 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 2693 f[FEAT_VMX_PROCBASED_CTLS])); 2694 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS, 2695 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS, 2696 f[FEAT_VMX_PINBASED_CTLS])); 2697 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS, 2698 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS, 2699 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit); 2700 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS, 2701 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS, 2702 f[FEAT_VMX_ENTRY_CTLS])); 2703 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2, 2704 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2, 2705 f[FEAT_VMX_SECONDARY_CTLS])); 2706 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP, 2707 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid); 2708 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC, 2709 f[FEAT_VMX_BASIC] | fixed_vmx_basic); 2710 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC, 2711 f[FEAT_VMX_MISC] | fixed_vmx_misc); 2712 if (has_msr_vmx_vmfunc) { 2713 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]); 2714 } 2715 2716 /* 2717 * Just to be safe, write these with constant values. The CRn_FIXED1 2718 * MSRs are generated by KVM based on the vCPU's CPUID. 2719 */ 2720 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0, 2721 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK); 2722 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0, 2723 CR4_VMXE_MASK); 2724 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 2725 VMCS12_MAX_FIELD_INDEX << 1); 2726 } 2727 2728 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f) 2729 { 2730 uint64_t kvm_perf_cap = 2731 kvm_arch_get_supported_msr_feature(kvm_state, 2732 MSR_IA32_PERF_CAPABILITIES); 2733 2734 if (kvm_perf_cap) { 2735 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES, 2736 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]); 2737 } 2738 } 2739 2740 static int kvm_buf_set_msrs(X86CPU *cpu) 2741 { 2742 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 2743 if (ret < 0) { 2744 return ret; 2745 } 2746 2747 if (ret < cpu->kvm_msr_buf->nmsrs) { 2748 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 2749 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, 2750 (uint32_t)e->index, (uint64_t)e->data); 2751 } 2752 2753 assert(ret == cpu->kvm_msr_buf->nmsrs); 2754 return 0; 2755 } 2756 2757 static void kvm_init_msrs(X86CPU *cpu) 2758 { 2759 CPUX86State *env = &cpu->env; 2760 2761 kvm_msr_buf_reset(cpu); 2762 if (has_msr_arch_capabs) { 2763 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES, 2764 env->features[FEAT_ARCH_CAPABILITIES]); 2765 } 2766 2767 if (has_msr_core_capabs) { 2768 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY, 2769 env->features[FEAT_CORE_CAPABILITY]); 2770 } 2771 2772 if (has_msr_perf_capabs && cpu->enable_pmu) { 2773 kvm_msr_entry_add_perf(cpu, env->features); 2774 } 2775 2776 if (has_msr_ucode_rev) { 2777 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev); 2778 } 2779 2780 /* 2781 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but 2782 * all kernels with MSR features should have them. 2783 */ 2784 if (kvm_feature_msrs && cpu_has_vmx(env)) { 2785 kvm_msr_entry_add_vmx(cpu, env->features); 2786 } 2787 2788 assert(kvm_buf_set_msrs(cpu) == 0); 2789 } 2790 2791 static int kvm_put_msrs(X86CPU *cpu, int level) 2792 { 2793 CPUX86State *env = &cpu->env; 2794 int i; 2795 2796 kvm_msr_buf_reset(cpu); 2797 2798 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); 2799 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); 2800 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); 2801 kvm_msr_entry_add(cpu, MSR_PAT, env->pat); 2802 if (has_msr_star) { 2803 kvm_msr_entry_add(cpu, MSR_STAR, env->star); 2804 } 2805 if (has_msr_hsave_pa) { 2806 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); 2807 } 2808 if (has_msr_tsc_aux) { 2809 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); 2810 } 2811 if (has_msr_tsc_adjust) { 2812 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); 2813 } 2814 if (has_msr_misc_enable) { 2815 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 2816 env->msr_ia32_misc_enable); 2817 } 2818 if (has_msr_smbase) { 2819 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); 2820 } 2821 if (has_msr_smi_count) { 2822 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count); 2823 } 2824 if (has_msr_pkrs) { 2825 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs); 2826 } 2827 if (has_msr_bndcfgs) { 2828 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); 2829 } 2830 if (has_msr_xss) { 2831 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); 2832 } 2833 if (has_msr_umwait) { 2834 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait); 2835 } 2836 if (has_msr_spec_ctrl) { 2837 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl); 2838 } 2839 if (has_msr_tsx_ctrl) { 2840 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl); 2841 } 2842 if (has_msr_virt_ssbd) { 2843 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd); 2844 } 2845 2846 #ifdef TARGET_X86_64 2847 if (lm_capable_kernel) { 2848 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); 2849 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); 2850 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); 2851 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); 2852 } 2853 #endif 2854 2855 /* 2856 * The following MSRs have side effects on the guest or are too heavy 2857 * for normal writeback. Limit them to reset or full state updates. 2858 */ 2859 if (level >= KVM_PUT_RESET_STATE) { 2860 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); 2861 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); 2862 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); 2863 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { 2864 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr); 2865 } 2866 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { 2867 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); 2868 } 2869 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { 2870 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); 2871 } 2872 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { 2873 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); 2874 } 2875 2876 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { 2877 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr); 2878 } 2879 2880 if (has_architectural_pmu_version > 0) { 2881 if (has_architectural_pmu_version > 1) { 2882 /* Stop the counter. */ 2883 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 2884 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 2885 } 2886 2887 /* Set the counter values. */ 2888 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 2889 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 2890 env->msr_fixed_counters[i]); 2891 } 2892 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 2893 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 2894 env->msr_gp_counters[i]); 2895 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 2896 env->msr_gp_evtsel[i]); 2897 } 2898 if (has_architectural_pmu_version > 1) { 2899 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 2900 env->msr_global_status); 2901 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 2902 env->msr_global_ovf_ctrl); 2903 2904 /* Now start the PMU. */ 2905 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 2906 env->msr_fixed_ctr_ctrl); 2907 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 2908 env->msr_global_ctrl); 2909 } 2910 } 2911 /* 2912 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add, 2913 * only sync them to KVM on the first cpu 2914 */ 2915 if (current_cpu == first_cpu) { 2916 if (has_msr_hv_hypercall) { 2917 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 2918 env->msr_hv_guest_os_id); 2919 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 2920 env->msr_hv_hypercall); 2921 } 2922 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 2923 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 2924 env->msr_hv_tsc); 2925 } 2926 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 2927 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 2928 env->msr_hv_reenlightenment_control); 2929 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 2930 env->msr_hv_tsc_emulation_control); 2931 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 2932 env->msr_hv_tsc_emulation_status); 2933 } 2934 } 2935 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 2936 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 2937 env->msr_hv_vapic); 2938 } 2939 if (has_msr_hv_crash) { 2940 int j; 2941 2942 for (j = 0; j < HV_CRASH_PARAMS; j++) 2943 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 2944 env->msr_hv_crash_params[j]); 2945 2946 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY); 2947 } 2948 if (has_msr_hv_runtime) { 2949 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); 2950 } 2951 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) 2952 && hv_vpindex_settable) { 2953 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX, 2954 hyperv_vp_index(CPU(cpu))); 2955 } 2956 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 2957 int j; 2958 2959 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION); 2960 2961 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 2962 env->msr_hv_synic_control); 2963 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 2964 env->msr_hv_synic_evt_page); 2965 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 2966 env->msr_hv_synic_msg_page); 2967 2968 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { 2969 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, 2970 env->msr_hv_synic_sint[j]); 2971 } 2972 } 2973 if (has_msr_hv_stimer) { 2974 int j; 2975 2976 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { 2977 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, 2978 env->msr_hv_stimer_config[j]); 2979 } 2980 2981 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { 2982 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, 2983 env->msr_hv_stimer_count[j]); 2984 } 2985 } 2986 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 2987 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); 2988 2989 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); 2990 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); 2991 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); 2992 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); 2993 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); 2994 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); 2995 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); 2996 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); 2997 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); 2998 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); 2999 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); 3000 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); 3001 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 3002 /* The CPU GPs if we write to a bit above the physical limit of 3003 * the host CPU (and KVM emulates that) 3004 */ 3005 uint64_t mask = env->mtrr_var[i].mask; 3006 mask &= phys_mask; 3007 3008 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 3009 env->mtrr_var[i].base); 3010 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); 3011 } 3012 } 3013 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 3014 int addr_num = kvm_arch_get_supported_cpuid(kvm_state, 3015 0x14, 1, R_EAX) & 0x7; 3016 3017 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 3018 env->msr_rtit_ctrl); 3019 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 3020 env->msr_rtit_status); 3021 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 3022 env->msr_rtit_output_base); 3023 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 3024 env->msr_rtit_output_mask); 3025 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 3026 env->msr_rtit_cr3_match); 3027 for (i = 0; i < addr_num; i++) { 3028 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 3029 env->msr_rtit_addrs[i]); 3030 } 3031 } 3032 3033 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see 3034 * kvm_put_msr_feature_control. */ 3035 } 3036 3037 if (env->mcg_cap) { 3038 int i; 3039 3040 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); 3041 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); 3042 if (has_msr_mcg_ext_ctl) { 3043 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); 3044 } 3045 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 3046 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); 3047 } 3048 } 3049 3050 return kvm_buf_set_msrs(cpu); 3051 } 3052 3053 3054 static int kvm_get_fpu(X86CPU *cpu) 3055 { 3056 CPUX86State *env = &cpu->env; 3057 struct kvm_fpu fpu; 3058 int i, ret; 3059 3060 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); 3061 if (ret < 0) { 3062 return ret; 3063 } 3064 3065 env->fpstt = (fpu.fsw >> 11) & 7; 3066 env->fpus = fpu.fsw; 3067 env->fpuc = fpu.fcw; 3068 env->fpop = fpu.last_opcode; 3069 env->fpip = fpu.last_ip; 3070 env->fpdp = fpu.last_dp; 3071 for (i = 0; i < 8; ++i) { 3072 env->fptags[i] = !((fpu.ftwx >> i) & 1); 3073 } 3074 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); 3075 for (i = 0; i < CPU_NB_REGS; i++) { 3076 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]); 3077 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]); 3078 } 3079 env->mxcsr = fpu.mxcsr; 3080 3081 return 0; 3082 } 3083 3084 static int kvm_get_xsave(X86CPU *cpu) 3085 { 3086 CPUX86State *env = &cpu->env; 3087 X86XSaveArea *xsave = env->xsave_buf; 3088 int ret; 3089 3090 if (!has_xsave) { 3091 return kvm_get_fpu(cpu); 3092 } 3093 3094 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave); 3095 if (ret < 0) { 3096 return ret; 3097 } 3098 x86_cpu_xrstor_all_areas(cpu, xsave); 3099 3100 return 0; 3101 } 3102 3103 static int kvm_get_xcrs(X86CPU *cpu) 3104 { 3105 CPUX86State *env = &cpu->env; 3106 int i, ret; 3107 struct kvm_xcrs xcrs; 3108 3109 if (!has_xcrs) { 3110 return 0; 3111 } 3112 3113 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); 3114 if (ret < 0) { 3115 return ret; 3116 } 3117 3118 for (i = 0; i < xcrs.nr_xcrs; i++) { 3119 /* Only support xcr0 now */ 3120 if (xcrs.xcrs[i].xcr == 0) { 3121 env->xcr0 = xcrs.xcrs[i].value; 3122 break; 3123 } 3124 } 3125 return 0; 3126 } 3127 3128 static int kvm_get_sregs(X86CPU *cpu) 3129 { 3130 CPUX86State *env = &cpu->env; 3131 struct kvm_sregs sregs; 3132 int bit, i, ret; 3133 3134 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); 3135 if (ret < 0) { 3136 return ret; 3137 } 3138 3139 /* There can only be one pending IRQ set in the bitmap at a time, so try 3140 to find it and save its number instead (-1 for none). */ 3141 env->interrupt_injected = -1; 3142 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { 3143 if (sregs.interrupt_bitmap[i]) { 3144 bit = ctz64(sregs.interrupt_bitmap[i]); 3145 env->interrupt_injected = i * 64 + bit; 3146 break; 3147 } 3148 } 3149 3150 get_seg(&env->segs[R_CS], &sregs.cs); 3151 get_seg(&env->segs[R_DS], &sregs.ds); 3152 get_seg(&env->segs[R_ES], &sregs.es); 3153 get_seg(&env->segs[R_FS], &sregs.fs); 3154 get_seg(&env->segs[R_GS], &sregs.gs); 3155 get_seg(&env->segs[R_SS], &sregs.ss); 3156 3157 get_seg(&env->tr, &sregs.tr); 3158 get_seg(&env->ldt, &sregs.ldt); 3159 3160 env->idt.limit = sregs.idt.limit; 3161 env->idt.base = sregs.idt.base; 3162 env->gdt.limit = sregs.gdt.limit; 3163 env->gdt.base = sregs.gdt.base; 3164 3165 env->cr[0] = sregs.cr0; 3166 env->cr[2] = sregs.cr2; 3167 env->cr[3] = sregs.cr3; 3168 env->cr[4] = sregs.cr4; 3169 3170 env->efer = sregs.efer; 3171 3172 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 3173 x86_update_hflags(env); 3174 3175 return 0; 3176 } 3177 3178 static int kvm_get_msrs(X86CPU *cpu) 3179 { 3180 CPUX86State *env = &cpu->env; 3181 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; 3182 int ret, i; 3183 uint64_t mtrr_top_bits; 3184 3185 kvm_msr_buf_reset(cpu); 3186 3187 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); 3188 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); 3189 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); 3190 kvm_msr_entry_add(cpu, MSR_PAT, 0); 3191 if (has_msr_star) { 3192 kvm_msr_entry_add(cpu, MSR_STAR, 0); 3193 } 3194 if (has_msr_hsave_pa) { 3195 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); 3196 } 3197 if (has_msr_tsc_aux) { 3198 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); 3199 } 3200 if (has_msr_tsc_adjust) { 3201 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); 3202 } 3203 if (has_msr_tsc_deadline) { 3204 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); 3205 } 3206 if (has_msr_misc_enable) { 3207 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); 3208 } 3209 if (has_msr_smbase) { 3210 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); 3211 } 3212 if (has_msr_smi_count) { 3213 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0); 3214 } 3215 if (has_msr_feature_control) { 3216 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); 3217 } 3218 if (has_msr_pkrs) { 3219 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0); 3220 } 3221 if (has_msr_bndcfgs) { 3222 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); 3223 } 3224 if (has_msr_xss) { 3225 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); 3226 } 3227 if (has_msr_umwait) { 3228 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0); 3229 } 3230 if (has_msr_spec_ctrl) { 3231 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0); 3232 } 3233 if (has_msr_tsx_ctrl) { 3234 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0); 3235 } 3236 if (has_msr_virt_ssbd) { 3237 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0); 3238 } 3239 if (!env->tsc_valid) { 3240 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); 3241 env->tsc_valid = !runstate_is_running(); 3242 } 3243 3244 #ifdef TARGET_X86_64 3245 if (lm_capable_kernel) { 3246 kvm_msr_entry_add(cpu, MSR_CSTAR, 0); 3247 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); 3248 kvm_msr_entry_add(cpu, MSR_FMASK, 0); 3249 kvm_msr_entry_add(cpu, MSR_LSTAR, 0); 3250 } 3251 #endif 3252 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); 3253 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); 3254 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { 3255 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0); 3256 } 3257 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { 3258 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); 3259 } 3260 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { 3261 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); 3262 } 3263 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { 3264 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); 3265 } 3266 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { 3267 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1); 3268 } 3269 if (has_architectural_pmu_version > 0) { 3270 if (has_architectural_pmu_version > 1) { 3271 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 3272 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 3273 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); 3274 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); 3275 } 3276 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 3277 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); 3278 } 3279 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 3280 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); 3281 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); 3282 } 3283 } 3284 3285 if (env->mcg_cap) { 3286 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); 3287 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); 3288 if (has_msr_mcg_ext_ctl) { 3289 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); 3290 } 3291 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 3292 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); 3293 } 3294 } 3295 3296 if (has_msr_hv_hypercall) { 3297 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); 3298 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); 3299 } 3300 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 3301 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); 3302 } 3303 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 3304 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); 3305 } 3306 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 3307 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0); 3308 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0); 3309 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0); 3310 } 3311 if (has_msr_hv_crash) { 3312 int j; 3313 3314 for (j = 0; j < HV_CRASH_PARAMS; j++) { 3315 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); 3316 } 3317 } 3318 if (has_msr_hv_runtime) { 3319 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); 3320 } 3321 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 3322 uint32_t msr; 3323 3324 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); 3325 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); 3326 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); 3327 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { 3328 kvm_msr_entry_add(cpu, msr, 0); 3329 } 3330 } 3331 if (has_msr_hv_stimer) { 3332 uint32_t msr; 3333 3334 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; 3335 msr++) { 3336 kvm_msr_entry_add(cpu, msr, 0); 3337 } 3338 } 3339 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 3340 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); 3341 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); 3342 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); 3343 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); 3344 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); 3345 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); 3346 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); 3347 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); 3348 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); 3349 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); 3350 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); 3351 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); 3352 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 3353 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); 3354 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); 3355 } 3356 } 3357 3358 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 3359 int addr_num = 3360 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7; 3361 3362 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0); 3363 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0); 3364 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0); 3365 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0); 3366 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0); 3367 for (i = 0; i < addr_num; i++) { 3368 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0); 3369 } 3370 } 3371 3372 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); 3373 if (ret < 0) { 3374 return ret; 3375 } 3376 3377 if (ret < cpu->kvm_msr_buf->nmsrs) { 3378 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 3379 error_report("error: failed to get MSR 0x%" PRIx32, 3380 (uint32_t)e->index); 3381 } 3382 3383 assert(ret == cpu->kvm_msr_buf->nmsrs); 3384 /* 3385 * MTRR masks: Each mask consists of 5 parts 3386 * a 10..0: must be zero 3387 * b 11 : valid bit 3388 * c n-1.12: actual mask bits 3389 * d 51..n: reserved must be zero 3390 * e 63.52: reserved must be zero 3391 * 3392 * 'n' is the number of physical bits supported by the CPU and is 3393 * apparently always <= 52. We know our 'n' but don't know what 3394 * the destinations 'n' is; it might be smaller, in which case 3395 * it masks (c) on loading. It might be larger, in which case 3396 * we fill 'd' so that d..c is consistent irrespetive of the 'n' 3397 * we're migrating to. 3398 */ 3399 3400 if (cpu->fill_mtrr_mask) { 3401 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); 3402 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); 3403 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); 3404 } else { 3405 mtrr_top_bits = 0; 3406 } 3407 3408 for (i = 0; i < ret; i++) { 3409 uint32_t index = msrs[i].index; 3410 switch (index) { 3411 case MSR_IA32_SYSENTER_CS: 3412 env->sysenter_cs = msrs[i].data; 3413 break; 3414 case MSR_IA32_SYSENTER_ESP: 3415 env->sysenter_esp = msrs[i].data; 3416 break; 3417 case MSR_IA32_SYSENTER_EIP: 3418 env->sysenter_eip = msrs[i].data; 3419 break; 3420 case MSR_PAT: 3421 env->pat = msrs[i].data; 3422 break; 3423 case MSR_STAR: 3424 env->star = msrs[i].data; 3425 break; 3426 #ifdef TARGET_X86_64 3427 case MSR_CSTAR: 3428 env->cstar = msrs[i].data; 3429 break; 3430 case MSR_KERNELGSBASE: 3431 env->kernelgsbase = msrs[i].data; 3432 break; 3433 case MSR_FMASK: 3434 env->fmask = msrs[i].data; 3435 break; 3436 case MSR_LSTAR: 3437 env->lstar = msrs[i].data; 3438 break; 3439 #endif 3440 case MSR_IA32_TSC: 3441 env->tsc = msrs[i].data; 3442 break; 3443 case MSR_TSC_AUX: 3444 env->tsc_aux = msrs[i].data; 3445 break; 3446 case MSR_TSC_ADJUST: 3447 env->tsc_adjust = msrs[i].data; 3448 break; 3449 case MSR_IA32_TSCDEADLINE: 3450 env->tsc_deadline = msrs[i].data; 3451 break; 3452 case MSR_VM_HSAVE_PA: 3453 env->vm_hsave = msrs[i].data; 3454 break; 3455 case MSR_KVM_SYSTEM_TIME: 3456 env->system_time_msr = msrs[i].data; 3457 break; 3458 case MSR_KVM_WALL_CLOCK: 3459 env->wall_clock_msr = msrs[i].data; 3460 break; 3461 case MSR_MCG_STATUS: 3462 env->mcg_status = msrs[i].data; 3463 break; 3464 case MSR_MCG_CTL: 3465 env->mcg_ctl = msrs[i].data; 3466 break; 3467 case MSR_MCG_EXT_CTL: 3468 env->mcg_ext_ctl = msrs[i].data; 3469 break; 3470 case MSR_IA32_MISC_ENABLE: 3471 env->msr_ia32_misc_enable = msrs[i].data; 3472 break; 3473 case MSR_IA32_SMBASE: 3474 env->smbase = msrs[i].data; 3475 break; 3476 case MSR_SMI_COUNT: 3477 env->msr_smi_count = msrs[i].data; 3478 break; 3479 case MSR_IA32_FEATURE_CONTROL: 3480 env->msr_ia32_feature_control = msrs[i].data; 3481 break; 3482 case MSR_IA32_BNDCFGS: 3483 env->msr_bndcfgs = msrs[i].data; 3484 break; 3485 case MSR_IA32_XSS: 3486 env->xss = msrs[i].data; 3487 break; 3488 case MSR_IA32_UMWAIT_CONTROL: 3489 env->umwait = msrs[i].data; 3490 break; 3491 case MSR_IA32_PKRS: 3492 env->pkrs = msrs[i].data; 3493 break; 3494 default: 3495 if (msrs[i].index >= MSR_MC0_CTL && 3496 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { 3497 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; 3498 } 3499 break; 3500 case MSR_KVM_ASYNC_PF_EN: 3501 env->async_pf_en_msr = msrs[i].data; 3502 break; 3503 case MSR_KVM_ASYNC_PF_INT: 3504 env->async_pf_int_msr = msrs[i].data; 3505 break; 3506 case MSR_KVM_PV_EOI_EN: 3507 env->pv_eoi_en_msr = msrs[i].data; 3508 break; 3509 case MSR_KVM_STEAL_TIME: 3510 env->steal_time_msr = msrs[i].data; 3511 break; 3512 case MSR_KVM_POLL_CONTROL: { 3513 env->poll_control_msr = msrs[i].data; 3514 break; 3515 } 3516 case MSR_CORE_PERF_FIXED_CTR_CTRL: 3517 env->msr_fixed_ctr_ctrl = msrs[i].data; 3518 break; 3519 case MSR_CORE_PERF_GLOBAL_CTRL: 3520 env->msr_global_ctrl = msrs[i].data; 3521 break; 3522 case MSR_CORE_PERF_GLOBAL_STATUS: 3523 env->msr_global_status = msrs[i].data; 3524 break; 3525 case MSR_CORE_PERF_GLOBAL_OVF_CTRL: 3526 env->msr_global_ovf_ctrl = msrs[i].data; 3527 break; 3528 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: 3529 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; 3530 break; 3531 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: 3532 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; 3533 break; 3534 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: 3535 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; 3536 break; 3537 case HV_X64_MSR_HYPERCALL: 3538 env->msr_hv_hypercall = msrs[i].data; 3539 break; 3540 case HV_X64_MSR_GUEST_OS_ID: 3541 env->msr_hv_guest_os_id = msrs[i].data; 3542 break; 3543 case HV_X64_MSR_APIC_ASSIST_PAGE: 3544 env->msr_hv_vapic = msrs[i].data; 3545 break; 3546 case HV_X64_MSR_REFERENCE_TSC: 3547 env->msr_hv_tsc = msrs[i].data; 3548 break; 3549 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3550 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; 3551 break; 3552 case HV_X64_MSR_VP_RUNTIME: 3553 env->msr_hv_runtime = msrs[i].data; 3554 break; 3555 case HV_X64_MSR_SCONTROL: 3556 env->msr_hv_synic_control = msrs[i].data; 3557 break; 3558 case HV_X64_MSR_SIEFP: 3559 env->msr_hv_synic_evt_page = msrs[i].data; 3560 break; 3561 case HV_X64_MSR_SIMP: 3562 env->msr_hv_synic_msg_page = msrs[i].data; 3563 break; 3564 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 3565 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; 3566 break; 3567 case HV_X64_MSR_STIMER0_CONFIG: 3568 case HV_X64_MSR_STIMER1_CONFIG: 3569 case HV_X64_MSR_STIMER2_CONFIG: 3570 case HV_X64_MSR_STIMER3_CONFIG: 3571 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = 3572 msrs[i].data; 3573 break; 3574 case HV_X64_MSR_STIMER0_COUNT: 3575 case HV_X64_MSR_STIMER1_COUNT: 3576 case HV_X64_MSR_STIMER2_COUNT: 3577 case HV_X64_MSR_STIMER3_COUNT: 3578 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = 3579 msrs[i].data; 3580 break; 3581 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3582 env->msr_hv_reenlightenment_control = msrs[i].data; 3583 break; 3584 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3585 env->msr_hv_tsc_emulation_control = msrs[i].data; 3586 break; 3587 case HV_X64_MSR_TSC_EMULATION_STATUS: 3588 env->msr_hv_tsc_emulation_status = msrs[i].data; 3589 break; 3590 case MSR_MTRRdefType: 3591 env->mtrr_deftype = msrs[i].data; 3592 break; 3593 case MSR_MTRRfix64K_00000: 3594 env->mtrr_fixed[0] = msrs[i].data; 3595 break; 3596 case MSR_MTRRfix16K_80000: 3597 env->mtrr_fixed[1] = msrs[i].data; 3598 break; 3599 case MSR_MTRRfix16K_A0000: 3600 env->mtrr_fixed[2] = msrs[i].data; 3601 break; 3602 case MSR_MTRRfix4K_C0000: 3603 env->mtrr_fixed[3] = msrs[i].data; 3604 break; 3605 case MSR_MTRRfix4K_C8000: 3606 env->mtrr_fixed[4] = msrs[i].data; 3607 break; 3608 case MSR_MTRRfix4K_D0000: 3609 env->mtrr_fixed[5] = msrs[i].data; 3610 break; 3611 case MSR_MTRRfix4K_D8000: 3612 env->mtrr_fixed[6] = msrs[i].data; 3613 break; 3614 case MSR_MTRRfix4K_E0000: 3615 env->mtrr_fixed[7] = msrs[i].data; 3616 break; 3617 case MSR_MTRRfix4K_E8000: 3618 env->mtrr_fixed[8] = msrs[i].data; 3619 break; 3620 case MSR_MTRRfix4K_F0000: 3621 env->mtrr_fixed[9] = msrs[i].data; 3622 break; 3623 case MSR_MTRRfix4K_F8000: 3624 env->mtrr_fixed[10] = msrs[i].data; 3625 break; 3626 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): 3627 if (index & 1) { 3628 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | 3629 mtrr_top_bits; 3630 } else { 3631 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; 3632 } 3633 break; 3634 case MSR_IA32_SPEC_CTRL: 3635 env->spec_ctrl = msrs[i].data; 3636 break; 3637 case MSR_IA32_TSX_CTRL: 3638 env->tsx_ctrl = msrs[i].data; 3639 break; 3640 case MSR_VIRT_SSBD: 3641 env->virt_ssbd = msrs[i].data; 3642 break; 3643 case MSR_IA32_RTIT_CTL: 3644 env->msr_rtit_ctrl = msrs[i].data; 3645 break; 3646 case MSR_IA32_RTIT_STATUS: 3647 env->msr_rtit_status = msrs[i].data; 3648 break; 3649 case MSR_IA32_RTIT_OUTPUT_BASE: 3650 env->msr_rtit_output_base = msrs[i].data; 3651 break; 3652 case MSR_IA32_RTIT_OUTPUT_MASK: 3653 env->msr_rtit_output_mask = msrs[i].data; 3654 break; 3655 case MSR_IA32_RTIT_CR3_MATCH: 3656 env->msr_rtit_cr3_match = msrs[i].data; 3657 break; 3658 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 3659 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data; 3660 break; 3661 } 3662 } 3663 3664 return 0; 3665 } 3666 3667 static int kvm_put_mp_state(X86CPU *cpu) 3668 { 3669 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; 3670 3671 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 3672 } 3673 3674 static int kvm_get_mp_state(X86CPU *cpu) 3675 { 3676 CPUState *cs = CPU(cpu); 3677 CPUX86State *env = &cpu->env; 3678 struct kvm_mp_state mp_state; 3679 int ret; 3680 3681 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); 3682 if (ret < 0) { 3683 return ret; 3684 } 3685 env->mp_state = mp_state.mp_state; 3686 if (kvm_irqchip_in_kernel()) { 3687 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); 3688 } 3689 return 0; 3690 } 3691 3692 static int kvm_get_apic(X86CPU *cpu) 3693 { 3694 DeviceState *apic = cpu->apic_state; 3695 struct kvm_lapic_state kapic; 3696 int ret; 3697 3698 if (apic && kvm_irqchip_in_kernel()) { 3699 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); 3700 if (ret < 0) { 3701 return ret; 3702 } 3703 3704 kvm_get_apic_state(apic, &kapic); 3705 } 3706 return 0; 3707 } 3708 3709 static int kvm_put_vcpu_events(X86CPU *cpu, int level) 3710 { 3711 CPUState *cs = CPU(cpu); 3712 CPUX86State *env = &cpu->env; 3713 struct kvm_vcpu_events events = {}; 3714 3715 if (!kvm_has_vcpu_events()) { 3716 return 0; 3717 } 3718 3719 events.flags = 0; 3720 3721 if (has_exception_payload) { 3722 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 3723 events.exception.pending = env->exception_pending; 3724 events.exception_has_payload = env->exception_has_payload; 3725 events.exception_payload = env->exception_payload; 3726 } 3727 events.exception.nr = env->exception_nr; 3728 events.exception.injected = env->exception_injected; 3729 events.exception.has_error_code = env->has_error_code; 3730 events.exception.error_code = env->error_code; 3731 3732 events.interrupt.injected = (env->interrupt_injected >= 0); 3733 events.interrupt.nr = env->interrupt_injected; 3734 events.interrupt.soft = env->soft_interrupt; 3735 3736 events.nmi.injected = env->nmi_injected; 3737 events.nmi.pending = env->nmi_pending; 3738 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); 3739 3740 events.sipi_vector = env->sipi_vector; 3741 3742 if (has_msr_smbase) { 3743 events.smi.smm = !!(env->hflags & HF_SMM_MASK); 3744 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); 3745 if (kvm_irqchip_in_kernel()) { 3746 /* As soon as these are moved to the kernel, remove them 3747 * from cs->interrupt_request. 3748 */ 3749 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; 3750 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; 3751 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); 3752 } else { 3753 /* Keep these in cs->interrupt_request. */ 3754 events.smi.pending = 0; 3755 events.smi.latched_init = 0; 3756 } 3757 /* Stop SMI delivery on old machine types to avoid a reboot 3758 * on an inward migration of an old VM. 3759 */ 3760 if (!cpu->kvm_no_smi_migration) { 3761 events.flags |= KVM_VCPUEVENT_VALID_SMM; 3762 } 3763 } 3764 3765 if (level >= KVM_PUT_RESET_STATE) { 3766 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; 3767 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 3768 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR; 3769 } 3770 } 3771 3772 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 3773 } 3774 3775 static int kvm_get_vcpu_events(X86CPU *cpu) 3776 { 3777 CPUX86State *env = &cpu->env; 3778 struct kvm_vcpu_events events; 3779 int ret; 3780 3781 if (!kvm_has_vcpu_events()) { 3782 return 0; 3783 } 3784 3785 memset(&events, 0, sizeof(events)); 3786 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 3787 if (ret < 0) { 3788 return ret; 3789 } 3790 3791 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 3792 env->exception_pending = events.exception.pending; 3793 env->exception_has_payload = events.exception_has_payload; 3794 env->exception_payload = events.exception_payload; 3795 } else { 3796 env->exception_pending = 0; 3797 env->exception_has_payload = false; 3798 } 3799 env->exception_injected = events.exception.injected; 3800 env->exception_nr = 3801 (env->exception_pending || env->exception_injected) ? 3802 events.exception.nr : -1; 3803 env->has_error_code = events.exception.has_error_code; 3804 env->error_code = events.exception.error_code; 3805 3806 env->interrupt_injected = 3807 events.interrupt.injected ? events.interrupt.nr : -1; 3808 env->soft_interrupt = events.interrupt.soft; 3809 3810 env->nmi_injected = events.nmi.injected; 3811 env->nmi_pending = events.nmi.pending; 3812 if (events.nmi.masked) { 3813 env->hflags2 |= HF2_NMI_MASK; 3814 } else { 3815 env->hflags2 &= ~HF2_NMI_MASK; 3816 } 3817 3818 if (events.flags & KVM_VCPUEVENT_VALID_SMM) { 3819 if (events.smi.smm) { 3820 env->hflags |= HF_SMM_MASK; 3821 } else { 3822 env->hflags &= ~HF_SMM_MASK; 3823 } 3824 if (events.smi.pending) { 3825 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 3826 } else { 3827 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 3828 } 3829 if (events.smi.smm_inside_nmi) { 3830 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; 3831 } else { 3832 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; 3833 } 3834 if (events.smi.latched_init) { 3835 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 3836 } else { 3837 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 3838 } 3839 } 3840 3841 env->sipi_vector = events.sipi_vector; 3842 3843 return 0; 3844 } 3845 3846 static int kvm_guest_debug_workarounds(X86CPU *cpu) 3847 { 3848 CPUState *cs = CPU(cpu); 3849 CPUX86State *env = &cpu->env; 3850 int ret = 0; 3851 unsigned long reinject_trap = 0; 3852 3853 if (!kvm_has_vcpu_events()) { 3854 if (env->exception_nr == EXCP01_DB) { 3855 reinject_trap = KVM_GUESTDBG_INJECT_DB; 3856 } else if (env->exception_injected == EXCP03_INT3) { 3857 reinject_trap = KVM_GUESTDBG_INJECT_BP; 3858 } 3859 kvm_reset_exception(env); 3860 } 3861 3862 /* 3863 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF 3864 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this 3865 * by updating the debug state once again if single-stepping is on. 3866 * Another reason to call kvm_update_guest_debug here is a pending debug 3867 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to 3868 * reinject them via SET_GUEST_DEBUG. 3869 */ 3870 if (reinject_trap || 3871 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { 3872 ret = kvm_update_guest_debug(cs, reinject_trap); 3873 } 3874 return ret; 3875 } 3876 3877 static int kvm_put_debugregs(X86CPU *cpu) 3878 { 3879 CPUX86State *env = &cpu->env; 3880 struct kvm_debugregs dbgregs; 3881 int i; 3882 3883 if (!kvm_has_debugregs()) { 3884 return 0; 3885 } 3886 3887 memset(&dbgregs, 0, sizeof(dbgregs)); 3888 for (i = 0; i < 4; i++) { 3889 dbgregs.db[i] = env->dr[i]; 3890 } 3891 dbgregs.dr6 = env->dr[6]; 3892 dbgregs.dr7 = env->dr[7]; 3893 dbgregs.flags = 0; 3894 3895 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); 3896 } 3897 3898 static int kvm_get_debugregs(X86CPU *cpu) 3899 { 3900 CPUX86State *env = &cpu->env; 3901 struct kvm_debugregs dbgregs; 3902 int i, ret; 3903 3904 if (!kvm_has_debugregs()) { 3905 return 0; 3906 } 3907 3908 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); 3909 if (ret < 0) { 3910 return ret; 3911 } 3912 for (i = 0; i < 4; i++) { 3913 env->dr[i] = dbgregs.db[i]; 3914 } 3915 env->dr[4] = env->dr[6] = dbgregs.dr6; 3916 env->dr[5] = env->dr[7] = dbgregs.dr7; 3917 3918 return 0; 3919 } 3920 3921 static int kvm_put_nested_state(X86CPU *cpu) 3922 { 3923 CPUX86State *env = &cpu->env; 3924 int max_nested_state_len = kvm_max_nested_state_length(); 3925 3926 if (!env->nested_state) { 3927 return 0; 3928 } 3929 3930 /* 3931 * Copy flags that are affected by reset from env->hflags and env->hflags2. 3932 */ 3933 if (env->hflags & HF_GUEST_MASK) { 3934 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE; 3935 } else { 3936 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE; 3937 } 3938 3939 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */ 3940 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) { 3941 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET; 3942 } else { 3943 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET; 3944 } 3945 3946 assert(env->nested_state->size <= max_nested_state_len); 3947 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state); 3948 } 3949 3950 static int kvm_get_nested_state(X86CPU *cpu) 3951 { 3952 CPUX86State *env = &cpu->env; 3953 int max_nested_state_len = kvm_max_nested_state_length(); 3954 int ret; 3955 3956 if (!env->nested_state) { 3957 return 0; 3958 } 3959 3960 /* 3961 * It is possible that migration restored a smaller size into 3962 * nested_state->hdr.size than what our kernel support. 3963 * We preserve migration origin nested_state->hdr.size for 3964 * call to KVM_SET_NESTED_STATE but wish that our next call 3965 * to KVM_GET_NESTED_STATE will use max size our kernel support. 3966 */ 3967 env->nested_state->size = max_nested_state_len; 3968 3969 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state); 3970 if (ret < 0) { 3971 return ret; 3972 } 3973 3974 /* 3975 * Copy flags that are affected by reset to env->hflags and env->hflags2. 3976 */ 3977 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) { 3978 env->hflags |= HF_GUEST_MASK; 3979 } else { 3980 env->hflags &= ~HF_GUEST_MASK; 3981 } 3982 3983 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */ 3984 if (cpu_has_svm(env)) { 3985 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) { 3986 env->hflags2 |= HF2_GIF_MASK; 3987 } else { 3988 env->hflags2 &= ~HF2_GIF_MASK; 3989 } 3990 } 3991 3992 return ret; 3993 } 3994 3995 int kvm_arch_put_registers(CPUState *cpu, int level) 3996 { 3997 X86CPU *x86_cpu = X86_CPU(cpu); 3998 int ret; 3999 4000 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); 4001 4002 /* must be before kvm_put_nested_state so that EFER.SVME is set */ 4003 ret = kvm_put_sregs(x86_cpu); 4004 if (ret < 0) { 4005 return ret; 4006 } 4007 4008 if (level >= KVM_PUT_RESET_STATE) { 4009 ret = kvm_put_nested_state(x86_cpu); 4010 if (ret < 0) { 4011 return ret; 4012 } 4013 4014 ret = kvm_put_msr_feature_control(x86_cpu); 4015 if (ret < 0) { 4016 return ret; 4017 } 4018 } 4019 4020 if (level == KVM_PUT_FULL_STATE) { 4021 /* We don't check for kvm_arch_set_tsc_khz() errors here, 4022 * because TSC frequency mismatch shouldn't abort migration, 4023 * unless the user explicitly asked for a more strict TSC 4024 * setting (e.g. using an explicit "tsc-freq" option). 4025 */ 4026 kvm_arch_set_tsc_khz(cpu); 4027 } 4028 4029 ret = kvm_getput_regs(x86_cpu, 1); 4030 if (ret < 0) { 4031 return ret; 4032 } 4033 ret = kvm_put_xsave(x86_cpu); 4034 if (ret < 0) { 4035 return ret; 4036 } 4037 ret = kvm_put_xcrs(x86_cpu); 4038 if (ret < 0) { 4039 return ret; 4040 } 4041 /* must be before kvm_put_msrs */ 4042 ret = kvm_inject_mce_oldstyle(x86_cpu); 4043 if (ret < 0) { 4044 return ret; 4045 } 4046 ret = kvm_put_msrs(x86_cpu, level); 4047 if (ret < 0) { 4048 return ret; 4049 } 4050 ret = kvm_put_vcpu_events(x86_cpu, level); 4051 if (ret < 0) { 4052 return ret; 4053 } 4054 if (level >= KVM_PUT_RESET_STATE) { 4055 ret = kvm_put_mp_state(x86_cpu); 4056 if (ret < 0) { 4057 return ret; 4058 } 4059 } 4060 4061 ret = kvm_put_tscdeadline_msr(x86_cpu); 4062 if (ret < 0) { 4063 return ret; 4064 } 4065 ret = kvm_put_debugregs(x86_cpu); 4066 if (ret < 0) { 4067 return ret; 4068 } 4069 /* must be last */ 4070 ret = kvm_guest_debug_workarounds(x86_cpu); 4071 if (ret < 0) { 4072 return ret; 4073 } 4074 return 0; 4075 } 4076 4077 int kvm_arch_get_registers(CPUState *cs) 4078 { 4079 X86CPU *cpu = X86_CPU(cs); 4080 int ret; 4081 4082 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); 4083 4084 ret = kvm_get_vcpu_events(cpu); 4085 if (ret < 0) { 4086 goto out; 4087 } 4088 /* 4089 * KVM_GET_MPSTATE can modify CS and RIP, call it before 4090 * KVM_GET_REGS and KVM_GET_SREGS. 4091 */ 4092 ret = kvm_get_mp_state(cpu); 4093 if (ret < 0) { 4094 goto out; 4095 } 4096 ret = kvm_getput_regs(cpu, 0); 4097 if (ret < 0) { 4098 goto out; 4099 } 4100 ret = kvm_get_xsave(cpu); 4101 if (ret < 0) { 4102 goto out; 4103 } 4104 ret = kvm_get_xcrs(cpu); 4105 if (ret < 0) { 4106 goto out; 4107 } 4108 ret = kvm_get_sregs(cpu); 4109 if (ret < 0) { 4110 goto out; 4111 } 4112 ret = kvm_get_msrs(cpu); 4113 if (ret < 0) { 4114 goto out; 4115 } 4116 ret = kvm_get_apic(cpu); 4117 if (ret < 0) { 4118 goto out; 4119 } 4120 ret = kvm_get_debugregs(cpu); 4121 if (ret < 0) { 4122 goto out; 4123 } 4124 ret = kvm_get_nested_state(cpu); 4125 if (ret < 0) { 4126 goto out; 4127 } 4128 ret = 0; 4129 out: 4130 cpu_sync_bndcs_hflags(&cpu->env); 4131 return ret; 4132 } 4133 4134 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 4135 { 4136 X86CPU *x86_cpu = X86_CPU(cpu); 4137 CPUX86State *env = &x86_cpu->env; 4138 int ret; 4139 4140 /* Inject NMI */ 4141 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { 4142 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { 4143 qemu_mutex_lock_iothread(); 4144 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; 4145 qemu_mutex_unlock_iothread(); 4146 DPRINTF("injected NMI\n"); 4147 ret = kvm_vcpu_ioctl(cpu, KVM_NMI); 4148 if (ret < 0) { 4149 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", 4150 strerror(-ret)); 4151 } 4152 } 4153 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { 4154 qemu_mutex_lock_iothread(); 4155 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; 4156 qemu_mutex_unlock_iothread(); 4157 DPRINTF("injected SMI\n"); 4158 ret = kvm_vcpu_ioctl(cpu, KVM_SMI); 4159 if (ret < 0) { 4160 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", 4161 strerror(-ret)); 4162 } 4163 } 4164 } 4165 4166 if (!kvm_pic_in_kernel()) { 4167 qemu_mutex_lock_iothread(); 4168 } 4169 4170 /* Force the VCPU out of its inner loop to process any INIT requests 4171 * or (for userspace APIC, but it is cheap to combine the checks here) 4172 * pending TPR access reports. 4173 */ 4174 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { 4175 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && 4176 !(env->hflags & HF_SMM_MASK)) { 4177 cpu->exit_request = 1; 4178 } 4179 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { 4180 cpu->exit_request = 1; 4181 } 4182 } 4183 4184 if (!kvm_pic_in_kernel()) { 4185 /* Try to inject an interrupt if the guest can accept it */ 4186 if (run->ready_for_interrupt_injection && 4187 (cpu->interrupt_request & CPU_INTERRUPT_HARD) && 4188 (env->eflags & IF_MASK)) { 4189 int irq; 4190 4191 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; 4192 irq = cpu_get_pic_interrupt(env); 4193 if (irq >= 0) { 4194 struct kvm_interrupt intr; 4195 4196 intr.irq = irq; 4197 DPRINTF("injected interrupt %d\n", irq); 4198 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); 4199 if (ret < 0) { 4200 fprintf(stderr, 4201 "KVM: injection failed, interrupt lost (%s)\n", 4202 strerror(-ret)); 4203 } 4204 } 4205 } 4206 4207 /* If we have an interrupt but the guest is not ready to receive an 4208 * interrupt, request an interrupt window exit. This will 4209 * cause a return to userspace as soon as the guest is ready to 4210 * receive interrupts. */ 4211 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { 4212 run->request_interrupt_window = 1; 4213 } else { 4214 run->request_interrupt_window = 0; 4215 } 4216 4217 DPRINTF("setting tpr\n"); 4218 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); 4219 4220 qemu_mutex_unlock_iothread(); 4221 } 4222 } 4223 4224 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) 4225 { 4226 X86CPU *x86_cpu = X86_CPU(cpu); 4227 CPUX86State *env = &x86_cpu->env; 4228 4229 if (run->flags & KVM_RUN_X86_SMM) { 4230 env->hflags |= HF_SMM_MASK; 4231 } else { 4232 env->hflags &= ~HF_SMM_MASK; 4233 } 4234 if (run->if_flag) { 4235 env->eflags |= IF_MASK; 4236 } else { 4237 env->eflags &= ~IF_MASK; 4238 } 4239 4240 /* We need to protect the apic state against concurrent accesses from 4241 * different threads in case the userspace irqchip is used. */ 4242 if (!kvm_irqchip_in_kernel()) { 4243 qemu_mutex_lock_iothread(); 4244 } 4245 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); 4246 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); 4247 if (!kvm_irqchip_in_kernel()) { 4248 qemu_mutex_unlock_iothread(); 4249 } 4250 return cpu_get_mem_attrs(env); 4251 } 4252 4253 int kvm_arch_process_async_events(CPUState *cs) 4254 { 4255 X86CPU *cpu = X86_CPU(cs); 4256 CPUX86State *env = &cpu->env; 4257 4258 if (cs->interrupt_request & CPU_INTERRUPT_MCE) { 4259 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ 4260 assert(env->mcg_cap); 4261 4262 cs->interrupt_request &= ~CPU_INTERRUPT_MCE; 4263 4264 kvm_cpu_synchronize_state(cs); 4265 4266 if (env->exception_nr == EXCP08_DBLE) { 4267 /* this means triple fault */ 4268 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 4269 cs->exit_request = 1; 4270 return 0; 4271 } 4272 kvm_queue_exception(env, EXCP12_MCHK, 0, 0); 4273 env->has_error_code = 0; 4274 4275 cs->halted = 0; 4276 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { 4277 env->mp_state = KVM_MP_STATE_RUNNABLE; 4278 } 4279 } 4280 4281 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && 4282 !(env->hflags & HF_SMM_MASK)) { 4283 kvm_cpu_synchronize_state(cs); 4284 do_cpu_init(cpu); 4285 } 4286 4287 if (kvm_irqchip_in_kernel()) { 4288 return 0; 4289 } 4290 4291 if (cs->interrupt_request & CPU_INTERRUPT_POLL) { 4292 cs->interrupt_request &= ~CPU_INTERRUPT_POLL; 4293 apic_poll_irq(cpu->apic_state); 4294 } 4295 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && 4296 (env->eflags & IF_MASK)) || 4297 (cs->interrupt_request & CPU_INTERRUPT_NMI)) { 4298 cs->halted = 0; 4299 } 4300 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { 4301 kvm_cpu_synchronize_state(cs); 4302 do_cpu_sipi(cpu); 4303 } 4304 if (cs->interrupt_request & CPU_INTERRUPT_TPR) { 4305 cs->interrupt_request &= ~CPU_INTERRUPT_TPR; 4306 kvm_cpu_synchronize_state(cs); 4307 apic_handle_tpr_access_report(cpu->apic_state, env->eip, 4308 env->tpr_access_type); 4309 } 4310 4311 return cs->halted; 4312 } 4313 4314 static int kvm_handle_halt(X86CPU *cpu) 4315 { 4316 CPUState *cs = CPU(cpu); 4317 CPUX86State *env = &cpu->env; 4318 4319 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && 4320 (env->eflags & IF_MASK)) && 4321 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { 4322 cs->halted = 1; 4323 return EXCP_HLT; 4324 } 4325 4326 return 0; 4327 } 4328 4329 static int kvm_handle_tpr_access(X86CPU *cpu) 4330 { 4331 CPUState *cs = CPU(cpu); 4332 struct kvm_run *run = cs->kvm_run; 4333 4334 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, 4335 run->tpr_access.is_write ? TPR_ACCESS_WRITE 4336 : TPR_ACCESS_READ); 4337 return 1; 4338 } 4339 4340 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 4341 { 4342 static const uint8_t int3 = 0xcc; 4343 4344 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || 4345 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { 4346 return -EINVAL; 4347 } 4348 return 0; 4349 } 4350 4351 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 4352 { 4353 uint8_t int3; 4354 4355 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc || 4356 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { 4357 return -EINVAL; 4358 } 4359 return 0; 4360 } 4361 4362 static struct { 4363 target_ulong addr; 4364 int len; 4365 int type; 4366 } hw_breakpoint[4]; 4367 4368 static int nb_hw_breakpoint; 4369 4370 static int find_hw_breakpoint(target_ulong addr, int len, int type) 4371 { 4372 int n; 4373 4374 for (n = 0; n < nb_hw_breakpoint; n++) { 4375 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && 4376 (hw_breakpoint[n].len == len || len == -1)) { 4377 return n; 4378 } 4379 } 4380 return -1; 4381 } 4382 4383 int kvm_arch_insert_hw_breakpoint(target_ulong addr, 4384 target_ulong len, int type) 4385 { 4386 switch (type) { 4387 case GDB_BREAKPOINT_HW: 4388 len = 1; 4389 break; 4390 case GDB_WATCHPOINT_WRITE: 4391 case GDB_WATCHPOINT_ACCESS: 4392 switch (len) { 4393 case 1: 4394 break; 4395 case 2: 4396 case 4: 4397 case 8: 4398 if (addr & (len - 1)) { 4399 return -EINVAL; 4400 } 4401 break; 4402 default: 4403 return -EINVAL; 4404 } 4405 break; 4406 default: 4407 return -ENOSYS; 4408 } 4409 4410 if (nb_hw_breakpoint == 4) { 4411 return -ENOBUFS; 4412 } 4413 if (find_hw_breakpoint(addr, len, type) >= 0) { 4414 return -EEXIST; 4415 } 4416 hw_breakpoint[nb_hw_breakpoint].addr = addr; 4417 hw_breakpoint[nb_hw_breakpoint].len = len; 4418 hw_breakpoint[nb_hw_breakpoint].type = type; 4419 nb_hw_breakpoint++; 4420 4421 return 0; 4422 } 4423 4424 int kvm_arch_remove_hw_breakpoint(target_ulong addr, 4425 target_ulong len, int type) 4426 { 4427 int n; 4428 4429 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); 4430 if (n < 0) { 4431 return -ENOENT; 4432 } 4433 nb_hw_breakpoint--; 4434 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; 4435 4436 return 0; 4437 } 4438 4439 void kvm_arch_remove_all_hw_breakpoints(void) 4440 { 4441 nb_hw_breakpoint = 0; 4442 } 4443 4444 static CPUWatchpoint hw_watchpoint; 4445 4446 static int kvm_handle_debug(X86CPU *cpu, 4447 struct kvm_debug_exit_arch *arch_info) 4448 { 4449 CPUState *cs = CPU(cpu); 4450 CPUX86State *env = &cpu->env; 4451 int ret = 0; 4452 int n; 4453 4454 if (arch_info->exception == EXCP01_DB) { 4455 if (arch_info->dr6 & DR6_BS) { 4456 if (cs->singlestep_enabled) { 4457 ret = EXCP_DEBUG; 4458 } 4459 } else { 4460 for (n = 0; n < 4; n++) { 4461 if (arch_info->dr6 & (1 << n)) { 4462 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { 4463 case 0x0: 4464 ret = EXCP_DEBUG; 4465 break; 4466 case 0x1: 4467 ret = EXCP_DEBUG; 4468 cs->watchpoint_hit = &hw_watchpoint; 4469 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 4470 hw_watchpoint.flags = BP_MEM_WRITE; 4471 break; 4472 case 0x3: 4473 ret = EXCP_DEBUG; 4474 cs->watchpoint_hit = &hw_watchpoint; 4475 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 4476 hw_watchpoint.flags = BP_MEM_ACCESS; 4477 break; 4478 } 4479 } 4480 } 4481 } 4482 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { 4483 ret = EXCP_DEBUG; 4484 } 4485 if (ret == 0) { 4486 cpu_synchronize_state(cs); 4487 assert(env->exception_nr == -1); 4488 4489 /* pass to guest */ 4490 kvm_queue_exception(env, arch_info->exception, 4491 arch_info->exception == EXCP01_DB, 4492 arch_info->dr6); 4493 env->has_error_code = 0; 4494 } 4495 4496 return ret; 4497 } 4498 4499 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 4500 { 4501 const uint8_t type_code[] = { 4502 [GDB_BREAKPOINT_HW] = 0x0, 4503 [GDB_WATCHPOINT_WRITE] = 0x1, 4504 [GDB_WATCHPOINT_ACCESS] = 0x3 4505 }; 4506 const uint8_t len_code[] = { 4507 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 4508 }; 4509 int n; 4510 4511 if (kvm_sw_breakpoints_active(cpu)) { 4512 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 4513 } 4514 if (nb_hw_breakpoint > 0) { 4515 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 4516 dbg->arch.debugreg[7] = 0x0600; 4517 for (n = 0; n < nb_hw_breakpoint; n++) { 4518 dbg->arch.debugreg[n] = hw_breakpoint[n].addr; 4519 dbg->arch.debugreg[7] |= (2 << (n * 2)) | 4520 (type_code[hw_breakpoint[n].type] << (16 + n*4)) | 4521 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); 4522 } 4523 } 4524 } 4525 4526 static bool host_supports_vmx(void) 4527 { 4528 uint32_t ecx, unused; 4529 4530 host_cpuid(1, 0, &unused, &unused, &ecx, &unused); 4531 return ecx & CPUID_EXT_VMX; 4532 } 4533 4534 #define VMX_INVALID_GUEST_STATE 0x80000021 4535 4536 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 4537 { 4538 X86CPU *cpu = X86_CPU(cs); 4539 uint64_t code; 4540 int ret; 4541 4542 switch (run->exit_reason) { 4543 case KVM_EXIT_HLT: 4544 DPRINTF("handle_hlt\n"); 4545 qemu_mutex_lock_iothread(); 4546 ret = kvm_handle_halt(cpu); 4547 qemu_mutex_unlock_iothread(); 4548 break; 4549 case KVM_EXIT_SET_TPR: 4550 ret = 0; 4551 break; 4552 case KVM_EXIT_TPR_ACCESS: 4553 qemu_mutex_lock_iothread(); 4554 ret = kvm_handle_tpr_access(cpu); 4555 qemu_mutex_unlock_iothread(); 4556 break; 4557 case KVM_EXIT_FAIL_ENTRY: 4558 code = run->fail_entry.hardware_entry_failure_reason; 4559 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", 4560 code); 4561 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { 4562 fprintf(stderr, 4563 "\nIf you're running a guest on an Intel machine without " 4564 "unrestricted mode\n" 4565 "support, the failure can be most likely due to the guest " 4566 "entering an invalid\n" 4567 "state for Intel VT. For example, the guest maybe running " 4568 "in big real mode\n" 4569 "which is not supported on less recent Intel processors." 4570 "\n\n"); 4571 } 4572 ret = -1; 4573 break; 4574 case KVM_EXIT_EXCEPTION: 4575 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", 4576 run->ex.exception, run->ex.error_code); 4577 ret = -1; 4578 break; 4579 case KVM_EXIT_DEBUG: 4580 DPRINTF("kvm_exit_debug\n"); 4581 qemu_mutex_lock_iothread(); 4582 ret = kvm_handle_debug(cpu, &run->debug.arch); 4583 qemu_mutex_unlock_iothread(); 4584 break; 4585 case KVM_EXIT_HYPERV: 4586 ret = kvm_hv_handle_exit(cpu, &run->hyperv); 4587 break; 4588 case KVM_EXIT_IOAPIC_EOI: 4589 ioapic_eoi_broadcast(run->eoi.vector); 4590 ret = 0; 4591 break; 4592 default: 4593 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); 4594 ret = -1; 4595 break; 4596 } 4597 4598 return ret; 4599 } 4600 4601 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 4602 { 4603 X86CPU *cpu = X86_CPU(cs); 4604 CPUX86State *env = &cpu->env; 4605 4606 kvm_cpu_synchronize_state(cs); 4607 return !(env->cr[0] & CR0_PE_MASK) || 4608 ((env->segs[R_CS].selector & 3) != 3); 4609 } 4610 4611 void kvm_arch_init_irq_routing(KVMState *s) 4612 { 4613 /* We know at this point that we're using the in-kernel 4614 * irqchip, so we can use irqfds, and on x86 we know 4615 * we can use msi via irqfd and GSI routing. 4616 */ 4617 kvm_msi_via_irqfd_allowed = true; 4618 kvm_gsi_routing_allowed = true; 4619 4620 if (kvm_irqchip_is_split()) { 4621 int i; 4622 4623 /* If the ioapic is in QEMU and the lapics are in KVM, reserve 4624 MSI routes for signaling interrupts to the local apics. */ 4625 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 4626 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) { 4627 error_report("Could not enable split IRQ mode."); 4628 exit(1); 4629 } 4630 } 4631 } 4632 } 4633 4634 int kvm_arch_irqchip_create(KVMState *s) 4635 { 4636 int ret; 4637 if (kvm_kernel_irqchip_split()) { 4638 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); 4639 if (ret) { 4640 error_report("Could not enable split irqchip mode: %s", 4641 strerror(-ret)); 4642 exit(1); 4643 } else { 4644 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); 4645 kvm_split_irqchip = true; 4646 return 1; 4647 } 4648 } else { 4649 return 0; 4650 } 4651 } 4652 4653 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address) 4654 { 4655 CPUX86State *env; 4656 uint64_t ext_id; 4657 4658 if (!first_cpu) { 4659 return address; 4660 } 4661 env = &X86_CPU(first_cpu)->env; 4662 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) { 4663 return address; 4664 } 4665 4666 /* 4667 * If the remappable format bit is set, or the upper bits are 4668 * already set in address_hi, or the low extended bits aren't 4669 * there anyway, do nothing. 4670 */ 4671 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT); 4672 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) { 4673 return address; 4674 } 4675 4676 address &= ~ext_id; 4677 address |= ext_id << 35; 4678 return address; 4679 } 4680 4681 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 4682 uint64_t address, uint32_t data, PCIDevice *dev) 4683 { 4684 X86IOMMUState *iommu = x86_iommu_get_default(); 4685 4686 if (iommu) { 4687 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu); 4688 4689 if (class->int_remap) { 4690 int ret; 4691 MSIMessage src, dst; 4692 4693 src.address = route->u.msi.address_hi; 4694 src.address <<= VTD_MSI_ADDR_HI_SHIFT; 4695 src.address |= route->u.msi.address_lo; 4696 src.data = route->u.msi.data; 4697 4698 ret = class->int_remap(iommu, &src, &dst, dev ? \ 4699 pci_requester_id(dev) : \ 4700 X86_IOMMU_SID_INVALID); 4701 if (ret) { 4702 trace_kvm_x86_fixup_msi_error(route->gsi); 4703 return 1; 4704 } 4705 4706 /* 4707 * Handled untranslated compatibilty format interrupt with 4708 * extended destination ID in the low bits 11-5. */ 4709 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address); 4710 4711 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; 4712 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; 4713 route->u.msi.data = dst.data; 4714 return 0; 4715 } 4716 } 4717 4718 address = kvm_swizzle_msi_ext_dest_id(address); 4719 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT; 4720 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK; 4721 return 0; 4722 } 4723 4724 typedef struct MSIRouteEntry MSIRouteEntry; 4725 4726 struct MSIRouteEntry { 4727 PCIDevice *dev; /* Device pointer */ 4728 int vector; /* MSI/MSIX vector index */ 4729 int virq; /* Virtual IRQ index */ 4730 QLIST_ENTRY(MSIRouteEntry) list; 4731 }; 4732 4733 /* List of used GSI routes */ 4734 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ 4735 QLIST_HEAD_INITIALIZER(msi_route_list); 4736 4737 static void kvm_update_msi_routes_all(void *private, bool global, 4738 uint32_t index, uint32_t mask) 4739 { 4740 int cnt = 0, vector; 4741 MSIRouteEntry *entry; 4742 MSIMessage msg; 4743 PCIDevice *dev; 4744 4745 /* TODO: explicit route update */ 4746 QLIST_FOREACH(entry, &msi_route_list, list) { 4747 cnt++; 4748 vector = entry->vector; 4749 dev = entry->dev; 4750 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) { 4751 msg = msix_get_message(dev, vector); 4752 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) { 4753 msg = msi_get_message(dev, vector); 4754 } else { 4755 /* 4756 * Either MSI/MSIX is disabled for the device, or the 4757 * specific message was masked out. Skip this one. 4758 */ 4759 continue; 4760 } 4761 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); 4762 } 4763 kvm_irqchip_commit_routes(kvm_state); 4764 trace_kvm_x86_update_msi_routes(cnt); 4765 } 4766 4767 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 4768 int vector, PCIDevice *dev) 4769 { 4770 static bool notify_list_inited = false; 4771 MSIRouteEntry *entry; 4772 4773 if (!dev) { 4774 /* These are (possibly) IOAPIC routes only used for split 4775 * kernel irqchip mode, while what we are housekeeping are 4776 * PCI devices only. */ 4777 return 0; 4778 } 4779 4780 entry = g_new0(MSIRouteEntry, 1); 4781 entry->dev = dev; 4782 entry->vector = vector; 4783 entry->virq = route->gsi; 4784 QLIST_INSERT_HEAD(&msi_route_list, entry, list); 4785 4786 trace_kvm_x86_add_msi_route(route->gsi); 4787 4788 if (!notify_list_inited) { 4789 /* For the first time we do add route, add ourselves into 4790 * IOMMU's IEC notify list if needed. */ 4791 X86IOMMUState *iommu = x86_iommu_get_default(); 4792 if (iommu) { 4793 x86_iommu_iec_register_notifier(iommu, 4794 kvm_update_msi_routes_all, 4795 NULL); 4796 } 4797 notify_list_inited = true; 4798 } 4799 return 0; 4800 } 4801 4802 int kvm_arch_release_virq_post(int virq) 4803 { 4804 MSIRouteEntry *entry, *next; 4805 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { 4806 if (entry->virq == virq) { 4807 trace_kvm_x86_remove_msi_route(virq); 4808 QLIST_REMOVE(entry, list); 4809 g_free(entry); 4810 break; 4811 } 4812 } 4813 return 0; 4814 } 4815 4816 int kvm_arch_msi_data_to_gsi(uint32_t data) 4817 { 4818 abort(); 4819 } 4820 4821 bool kvm_has_waitpkg(void) 4822 { 4823 return has_msr_umwait; 4824 } 4825 4826 bool kvm_arch_cpu_check_are_resettable(void) 4827 { 4828 return !sev_es_enabled(); 4829 } 4830