1 /* 2 * QEMU KVM support 3 * 4 * Copyright (C) 2006-2008 Qumranet Technologies 5 * Copyright IBM, Corp. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or later. 11 * See the COPYING file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qapi/qapi-events-run-state.h" 17 #include "qapi/error.h" 18 #include <sys/ioctl.h> 19 #include <sys/utsname.h> 20 #include <sys/syscall.h> 21 22 #include <linux/kvm.h> 23 #include "standard-headers/asm-x86/kvm_para.h" 24 25 #include "cpu.h" 26 #include "host-cpu.h" 27 #include "sysemu/sysemu.h" 28 #include "sysemu/hw_accel.h" 29 #include "sysemu/kvm_int.h" 30 #include "sysemu/runstate.h" 31 #include "kvm_i386.h" 32 #include "sev.h" 33 #include "hyperv.h" 34 #include "hyperv-proto.h" 35 36 #include "exec/gdbstub.h" 37 #include "qemu/host-utils.h" 38 #include "qemu/main-loop.h" 39 #include "qemu/config-file.h" 40 #include "qemu/error-report.h" 41 #include "qemu/memalign.h" 42 #include "hw/i386/x86.h" 43 #include "hw/i386/apic.h" 44 #include "hw/i386/apic_internal.h" 45 #include "hw/i386/apic-msidef.h" 46 #include "hw/i386/intel_iommu.h" 47 #include "hw/i386/x86-iommu.h" 48 #include "hw/i386/e820_memory_layout.h" 49 50 #include "hw/pci/pci.h" 51 #include "hw/pci/msi.h" 52 #include "hw/pci/msix.h" 53 #include "migration/blocker.h" 54 #include "exec/memattrs.h" 55 #include "trace.h" 56 57 #include CONFIG_DEVICES 58 59 //#define DEBUG_KVM 60 61 #ifdef DEBUG_KVM 62 #define DPRINTF(fmt, ...) \ 63 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 64 #else 65 #define DPRINTF(fmt, ...) \ 66 do { } while (0) 67 #endif 68 69 /* From arch/x86/kvm/lapic.h */ 70 #define KVM_APIC_BUS_CYCLE_NS 1 71 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS) 72 73 #define MSR_KVM_WALL_CLOCK 0x11 74 #define MSR_KVM_SYSTEM_TIME 0x12 75 76 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus 77 * 255 kvm_msr_entry structs */ 78 #define MSR_BUF_SIZE 4096 79 80 static void kvm_init_msrs(X86CPU *cpu); 81 82 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 83 KVM_CAP_INFO(SET_TSS_ADDR), 84 KVM_CAP_INFO(EXT_CPUID), 85 KVM_CAP_INFO(MP_STATE), 86 KVM_CAP_LAST_INFO 87 }; 88 89 static bool has_msr_star; 90 static bool has_msr_hsave_pa; 91 static bool has_msr_tsc_aux; 92 static bool has_msr_tsc_adjust; 93 static bool has_msr_tsc_deadline; 94 static bool has_msr_feature_control; 95 static bool has_msr_misc_enable; 96 static bool has_msr_smbase; 97 static bool has_msr_bndcfgs; 98 static int lm_capable_kernel; 99 static bool has_msr_hv_hypercall; 100 static bool has_msr_hv_crash; 101 static bool has_msr_hv_reset; 102 static bool has_msr_hv_vpindex; 103 static bool hv_vpindex_settable; 104 static bool has_msr_hv_runtime; 105 static bool has_msr_hv_synic; 106 static bool has_msr_hv_stimer; 107 static bool has_msr_hv_frequencies; 108 static bool has_msr_hv_reenlightenment; 109 static bool has_msr_hv_syndbg_options; 110 static bool has_msr_xss; 111 static bool has_msr_umwait; 112 static bool has_msr_spec_ctrl; 113 static bool has_tsc_scale_msr; 114 static bool has_msr_tsx_ctrl; 115 static bool has_msr_virt_ssbd; 116 static bool has_msr_smi_count; 117 static bool has_msr_arch_capabs; 118 static bool has_msr_core_capabs; 119 static bool has_msr_vmx_vmfunc; 120 static bool has_msr_ucode_rev; 121 static bool has_msr_vmx_procbased_ctls2; 122 static bool has_msr_perf_capabs; 123 static bool has_msr_pkrs; 124 125 static uint32_t has_architectural_pmu_version; 126 static uint32_t num_architectural_pmu_gp_counters; 127 static uint32_t num_architectural_pmu_fixed_counters; 128 129 static int has_xsave; 130 static int has_xsave2; 131 static int has_xcrs; 132 static int has_pit_state2; 133 static int has_sregs2; 134 static int has_exception_payload; 135 136 static bool has_msr_mcg_ext_ctl; 137 138 static struct kvm_cpuid2 *cpuid_cache; 139 static struct kvm_cpuid2 *hv_cpuid_cache; 140 static struct kvm_msr_list *kvm_feature_msrs; 141 142 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */ 143 static RateLimit bus_lock_ratelimit_ctrl; 144 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value); 145 146 int kvm_has_pit_state2(void) 147 { 148 return has_pit_state2; 149 } 150 151 bool kvm_has_smm(void) 152 { 153 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM); 154 } 155 156 bool kvm_has_adjust_clock_stable(void) 157 { 158 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); 159 160 return (ret & KVM_CLOCK_TSC_STABLE); 161 } 162 163 bool kvm_has_adjust_clock(void) 164 { 165 return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); 166 } 167 168 bool kvm_has_exception_payload(void) 169 { 170 return has_exception_payload; 171 } 172 173 static bool kvm_x2apic_api_set_flags(uint64_t flags) 174 { 175 KVMState *s = KVM_STATE(current_accel()); 176 177 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); 178 } 179 180 #define MEMORIZE(fn, _result) \ 181 ({ \ 182 static bool _memorized; \ 183 \ 184 if (_memorized) { \ 185 return _result; \ 186 } \ 187 _memorized = true; \ 188 _result = fn; \ 189 }) 190 191 static bool has_x2apic_api; 192 193 bool kvm_has_x2apic_api(void) 194 { 195 return has_x2apic_api; 196 } 197 198 bool kvm_enable_x2apic(void) 199 { 200 return MEMORIZE( 201 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | 202 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), 203 has_x2apic_api); 204 } 205 206 bool kvm_hv_vpindex_settable(void) 207 { 208 return hv_vpindex_settable; 209 } 210 211 static int kvm_get_tsc(CPUState *cs) 212 { 213 X86CPU *cpu = X86_CPU(cs); 214 CPUX86State *env = &cpu->env; 215 uint64_t value; 216 int ret; 217 218 if (env->tsc_valid) { 219 return 0; 220 } 221 222 env->tsc_valid = !runstate_is_running(); 223 224 ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value); 225 if (ret < 0) { 226 return ret; 227 } 228 229 env->tsc = value; 230 return 0; 231 } 232 233 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) 234 { 235 kvm_get_tsc(cpu); 236 } 237 238 void kvm_synchronize_all_tsc(void) 239 { 240 CPUState *cpu; 241 242 if (kvm_enabled()) { 243 CPU_FOREACH(cpu) { 244 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); 245 } 246 } 247 } 248 249 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) 250 { 251 struct kvm_cpuid2 *cpuid; 252 int r, size; 253 254 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 255 cpuid = g_malloc0(size); 256 cpuid->nent = max; 257 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); 258 if (r == 0 && cpuid->nent >= max) { 259 r = -E2BIG; 260 } 261 if (r < 0) { 262 if (r == -E2BIG) { 263 g_free(cpuid); 264 return NULL; 265 } else { 266 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", 267 strerror(-r)); 268 exit(1); 269 } 270 } 271 return cpuid; 272 } 273 274 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough 275 * for all entries. 276 */ 277 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) 278 { 279 struct kvm_cpuid2 *cpuid; 280 int max = 1; 281 282 if (cpuid_cache != NULL) { 283 return cpuid_cache; 284 } 285 while ((cpuid = try_get_cpuid(s, max)) == NULL) { 286 max *= 2; 287 } 288 cpuid_cache = cpuid; 289 return cpuid; 290 } 291 292 static bool host_tsx_broken(void) 293 { 294 int family, model, stepping;\ 295 char vendor[CPUID_VENDOR_SZ + 1]; 296 297 host_cpu_vendor_fms(vendor, &family, &model, &stepping); 298 299 /* Check if we are running on a Haswell host known to have broken TSX */ 300 return !strcmp(vendor, CPUID_VENDOR_INTEL) && 301 (family == 6) && 302 ((model == 63 && stepping < 4) || 303 model == 60 || model == 69 || model == 70); 304 } 305 306 /* Returns the value for a specific register on the cpuid entry 307 */ 308 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) 309 { 310 uint32_t ret = 0; 311 switch (reg) { 312 case R_EAX: 313 ret = entry->eax; 314 break; 315 case R_EBX: 316 ret = entry->ebx; 317 break; 318 case R_ECX: 319 ret = entry->ecx; 320 break; 321 case R_EDX: 322 ret = entry->edx; 323 break; 324 } 325 return ret; 326 } 327 328 /* Find matching entry for function/index on kvm_cpuid2 struct 329 */ 330 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, 331 uint32_t function, 332 uint32_t index) 333 { 334 int i; 335 for (i = 0; i < cpuid->nent; ++i) { 336 if (cpuid->entries[i].function == function && 337 cpuid->entries[i].index == index) { 338 return &cpuid->entries[i]; 339 } 340 } 341 /* not found: */ 342 return NULL; 343 } 344 345 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, 346 uint32_t index, int reg) 347 { 348 struct kvm_cpuid2 *cpuid; 349 uint32_t ret = 0; 350 uint32_t cpuid_1_edx; 351 uint64_t bitmask; 352 353 cpuid = get_supported_cpuid(s); 354 355 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); 356 if (entry) { 357 ret = cpuid_entry_get_reg(entry, reg); 358 } 359 360 /* Fixups for the data returned by KVM, below */ 361 362 if (function == 1 && reg == R_EDX) { 363 /* KVM before 2.6.30 misreports the following features */ 364 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; 365 } else if (function == 1 && reg == R_ECX) { 366 /* We can set the hypervisor flag, even if KVM does not return it on 367 * GET_SUPPORTED_CPUID 368 */ 369 ret |= CPUID_EXT_HYPERVISOR; 370 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it 371 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, 372 * and the irqchip is in the kernel. 373 */ 374 if (kvm_irqchip_in_kernel() && 375 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { 376 ret |= CPUID_EXT_TSC_DEADLINE_TIMER; 377 } 378 379 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled 380 * without the in-kernel irqchip 381 */ 382 if (!kvm_irqchip_in_kernel()) { 383 ret &= ~CPUID_EXT_X2APIC; 384 } 385 386 if (enable_cpu_pm) { 387 int disable_exits = kvm_check_extension(s, 388 KVM_CAP_X86_DISABLE_EXITS); 389 390 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) { 391 ret |= CPUID_EXT_MONITOR; 392 } 393 } 394 } else if (function == 6 && reg == R_EAX) { 395 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ 396 } else if (function == 7 && index == 0 && reg == R_EBX) { 397 if (host_tsx_broken()) { 398 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); 399 } 400 } else if (function == 7 && index == 0 && reg == R_EDX) { 401 /* 402 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts. 403 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is 404 * returned by KVM_GET_MSR_INDEX_LIST. 405 */ 406 if (!has_msr_arch_capabs) { 407 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES; 408 } 409 } else if (function == 0xd && index == 0 && 410 (reg == R_EAX || reg == R_EDX)) { 411 /* 412 * The value returned by KVM_GET_SUPPORTED_CPUID does not include 413 * features that still have to be enabled with the arch_prctl 414 * system call. QEMU needs the full value, which is retrieved 415 * with KVM_GET_DEVICE_ATTR. 416 */ 417 struct kvm_device_attr attr = { 418 .group = 0, 419 .attr = KVM_X86_XCOMP_GUEST_SUPP, 420 .addr = (unsigned long) &bitmask 421 }; 422 423 bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES); 424 if (!sys_attr) { 425 return ret; 426 } 427 428 int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr); 429 if (rc < 0) { 430 if (rc != -ENXIO) { 431 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) " 432 "error: %d", rc); 433 } 434 return ret; 435 } 436 ret = (reg == R_EAX) ? bitmask : bitmask >> 32; 437 } else if (function == 0x80000001 && reg == R_ECX) { 438 /* 439 * It's safe to enable TOPOEXT even if it's not returned by 440 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows 441 * us to keep CPU models including TOPOEXT runnable on older kernels. 442 */ 443 ret |= CPUID_EXT3_TOPOEXT; 444 } else if (function == 0x80000001 && reg == R_EDX) { 445 /* On Intel, kvm returns cpuid according to the Intel spec, 446 * so add missing bits according to the AMD spec: 447 */ 448 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); 449 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; 450 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { 451 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't 452 * be enabled without the in-kernel irqchip 453 */ 454 if (!kvm_irqchip_in_kernel()) { 455 ret &= ~(1U << KVM_FEATURE_PV_UNHALT); 456 } 457 if (kvm_irqchip_is_split()) { 458 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID; 459 } 460 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) { 461 ret |= 1U << KVM_HINTS_REALTIME; 462 } 463 464 return ret; 465 } 466 467 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index) 468 { 469 struct { 470 struct kvm_msrs info; 471 struct kvm_msr_entry entries[1]; 472 } msr_data = {}; 473 uint64_t value; 474 uint32_t ret, can_be_one, must_be_one; 475 476 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */ 477 return 0; 478 } 479 480 /* Check if requested MSR is supported feature MSR */ 481 int i; 482 for (i = 0; i < kvm_feature_msrs->nmsrs; i++) 483 if (kvm_feature_msrs->indices[i] == index) { 484 break; 485 } 486 if (i == kvm_feature_msrs->nmsrs) { 487 return 0; /* if the feature MSR is not supported, simply return 0 */ 488 } 489 490 msr_data.info.nmsrs = 1; 491 msr_data.entries[0].index = index; 492 493 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data); 494 if (ret != 1) { 495 error_report("KVM get MSR (index=0x%x) feature failed, %s", 496 index, strerror(-ret)); 497 exit(1); 498 } 499 500 value = msr_data.entries[0].data; 501 switch (index) { 502 case MSR_IA32_VMX_PROCBASED_CTLS2: 503 if (!has_msr_vmx_procbased_ctls2) { 504 /* KVM forgot to add these bits for some time, do this ourselves. */ 505 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) & 506 CPUID_XSAVE_XSAVES) { 507 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32; 508 } 509 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) & 510 CPUID_EXT_RDRAND) { 511 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32; 512 } 513 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 514 CPUID_7_0_EBX_INVPCID) { 515 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32; 516 } 517 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 518 CPUID_7_0_EBX_RDSEED) { 519 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32; 520 } 521 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) & 522 CPUID_EXT2_RDTSCP) { 523 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32; 524 } 525 } 526 /* fall through */ 527 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 528 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 529 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 530 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 531 /* 532 * Return true for bits that can be one, but do not have to be one. 533 * The SDM tells us which bits could have a "must be one" setting, 534 * so we can do the opposite transformation in make_vmx_msr_value. 535 */ 536 must_be_one = (uint32_t)value; 537 can_be_one = (uint32_t)(value >> 32); 538 return can_be_one & ~must_be_one; 539 540 default: 541 return value; 542 } 543 } 544 545 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, 546 int *max_banks) 547 { 548 int r; 549 550 r = kvm_check_extension(s, KVM_CAP_MCE); 551 if (r > 0) { 552 *max_banks = r; 553 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); 554 } 555 return -ENOSYS; 556 } 557 558 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) 559 { 560 CPUState *cs = CPU(cpu); 561 CPUX86State *env = &cpu->env; 562 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | 563 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; 564 uint64_t mcg_status = MCG_STATUS_MCIP; 565 int flags = 0; 566 567 if (code == BUS_MCEERR_AR) { 568 status |= MCI_STATUS_AR | 0x134; 569 mcg_status |= MCG_STATUS_RIPV | MCG_STATUS_EIPV; 570 } else { 571 status |= 0xc0; 572 mcg_status |= MCG_STATUS_RIPV; 573 } 574 575 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; 576 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the 577 * guest kernel back into env->mcg_ext_ctl. 578 */ 579 cpu_synchronize_state(cs); 580 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { 581 mcg_status |= MCG_STATUS_LMCE; 582 flags = 0; 583 } 584 585 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, 586 (MCM_ADDR_PHYS << 6) | 0xc, flags); 587 } 588 589 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar) 590 { 591 MemoryFailureFlags mff = {.action_required = ar, .recursive = false}; 592 593 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action, 594 &mff); 595 } 596 597 static void hardware_memory_error(void *host_addr) 598 { 599 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true); 600 error_report("QEMU got Hardware memory error at addr %p", host_addr); 601 exit(1); 602 } 603 604 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) 605 { 606 X86CPU *cpu = X86_CPU(c); 607 CPUX86State *env = &cpu->env; 608 ram_addr_t ram_addr; 609 hwaddr paddr; 610 611 /* If we get an action required MCE, it has been injected by KVM 612 * while the VM was running. An action optional MCE instead should 613 * be coming from the main thread, which qemu_init_sigbus identifies 614 * as the "early kill" thread. 615 */ 616 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); 617 618 if ((env->mcg_cap & MCG_SER_P) && addr) { 619 ram_addr = qemu_ram_addr_from_host(addr); 620 if (ram_addr != RAM_ADDR_INVALID && 621 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { 622 kvm_hwpoison_page_add(ram_addr); 623 kvm_mce_inject(cpu, paddr, code); 624 625 /* 626 * Use different logging severity based on error type. 627 * If there is additional MCE reporting on the hypervisor, QEMU VA 628 * could be another source to identify the PA and MCE details. 629 */ 630 if (code == BUS_MCEERR_AR) { 631 error_report("Guest MCE Memory Error at QEMU addr %p and " 632 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 633 addr, paddr, "BUS_MCEERR_AR"); 634 } else { 635 warn_report("Guest MCE Memory Error at QEMU addr %p and " 636 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 637 addr, paddr, "BUS_MCEERR_AO"); 638 } 639 640 return; 641 } 642 643 if (code == BUS_MCEERR_AO) { 644 warn_report("Hardware memory error at addr %p of type %s " 645 "for memory used by QEMU itself instead of guest system!", 646 addr, "BUS_MCEERR_AO"); 647 } 648 } 649 650 if (code == BUS_MCEERR_AR) { 651 hardware_memory_error(addr); 652 } 653 654 /* Hope we are lucky for AO MCE, just notify a event */ 655 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false); 656 } 657 658 static void kvm_reset_exception(CPUX86State *env) 659 { 660 env->exception_nr = -1; 661 env->exception_pending = 0; 662 env->exception_injected = 0; 663 env->exception_has_payload = false; 664 env->exception_payload = 0; 665 } 666 667 static void kvm_queue_exception(CPUX86State *env, 668 int32_t exception_nr, 669 uint8_t exception_has_payload, 670 uint64_t exception_payload) 671 { 672 assert(env->exception_nr == -1); 673 assert(!env->exception_pending); 674 assert(!env->exception_injected); 675 assert(!env->exception_has_payload); 676 677 env->exception_nr = exception_nr; 678 679 if (has_exception_payload) { 680 env->exception_pending = 1; 681 682 env->exception_has_payload = exception_has_payload; 683 env->exception_payload = exception_payload; 684 } else { 685 env->exception_injected = 1; 686 687 if (exception_nr == EXCP01_DB) { 688 assert(exception_has_payload); 689 env->dr[6] = exception_payload; 690 } else if (exception_nr == EXCP0E_PAGE) { 691 assert(exception_has_payload); 692 env->cr[2] = exception_payload; 693 } else { 694 assert(!exception_has_payload); 695 } 696 } 697 } 698 699 static int kvm_inject_mce_oldstyle(X86CPU *cpu) 700 { 701 CPUX86State *env = &cpu->env; 702 703 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) { 704 unsigned int bank, bank_num = env->mcg_cap & 0xff; 705 struct kvm_x86_mce mce; 706 707 kvm_reset_exception(env); 708 709 /* 710 * There must be at least one bank in use if an MCE is pending. 711 * Find it and use its values for the event injection. 712 */ 713 for (bank = 0; bank < bank_num; bank++) { 714 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { 715 break; 716 } 717 } 718 assert(bank < bank_num); 719 720 mce.bank = bank; 721 mce.status = env->mce_banks[bank * 4 + 1]; 722 mce.mcg_status = env->mcg_status; 723 mce.addr = env->mce_banks[bank * 4 + 2]; 724 mce.misc = env->mce_banks[bank * 4 + 3]; 725 726 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); 727 } 728 return 0; 729 } 730 731 static void cpu_update_state(void *opaque, bool running, RunState state) 732 { 733 CPUX86State *env = opaque; 734 735 if (running) { 736 env->tsc_valid = false; 737 } 738 } 739 740 unsigned long kvm_arch_vcpu_id(CPUState *cs) 741 { 742 X86CPU *cpu = X86_CPU(cs); 743 return cpu->apic_id; 744 } 745 746 #ifndef KVM_CPUID_SIGNATURE_NEXT 747 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 748 #endif 749 750 static bool hyperv_enabled(X86CPU *cpu) 751 { 752 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 && 753 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) || 754 cpu->hyperv_features || cpu->hyperv_passthrough); 755 } 756 757 /* 758 * Check whether target_freq is within conservative 759 * ntp correctable bounds (250ppm) of freq 760 */ 761 static inline bool freq_within_bounds(int freq, int target_freq) 762 { 763 int max_freq = freq + (freq * 250 / 1000000); 764 int min_freq = freq - (freq * 250 / 1000000); 765 766 if (target_freq >= min_freq && target_freq <= max_freq) { 767 return true; 768 } 769 770 return false; 771 } 772 773 static int kvm_arch_set_tsc_khz(CPUState *cs) 774 { 775 X86CPU *cpu = X86_CPU(cs); 776 CPUX86State *env = &cpu->env; 777 int r, cur_freq; 778 bool set_ioctl = false; 779 780 if (!env->tsc_khz) { 781 return 0; 782 } 783 784 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 785 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP; 786 787 /* 788 * If TSC scaling is supported, attempt to set TSC frequency. 789 */ 790 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) { 791 set_ioctl = true; 792 } 793 794 /* 795 * If desired TSC frequency is within bounds of NTP correction, 796 * attempt to set TSC frequency. 797 */ 798 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) { 799 set_ioctl = true; 800 } 801 802 r = set_ioctl ? 803 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : 804 -ENOTSUP; 805 806 if (r < 0) { 807 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current 808 * TSC frequency doesn't match the one we want. 809 */ 810 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 811 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 812 -ENOTSUP; 813 if (cur_freq <= 0 || cur_freq != env->tsc_khz) { 814 warn_report("TSC frequency mismatch between " 815 "VM (%" PRId64 " kHz) and host (%d kHz), " 816 "and TSC scaling unavailable", 817 env->tsc_khz, cur_freq); 818 return r; 819 } 820 } 821 822 return 0; 823 } 824 825 static bool tsc_is_stable_and_known(CPUX86State *env) 826 { 827 if (!env->tsc_khz) { 828 return false; 829 } 830 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) 831 || env->user_tsc_khz; 832 } 833 834 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1) 835 836 static struct { 837 const char *desc; 838 struct { 839 uint32_t func; 840 int reg; 841 uint32_t bits; 842 } flags[2]; 843 uint64_t dependencies; 844 } kvm_hyperv_properties[] = { 845 [HYPERV_FEAT_RELAXED] = { 846 .desc = "relaxed timing (hv-relaxed)", 847 .flags = { 848 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 849 .bits = HV_RELAXED_TIMING_RECOMMENDED} 850 } 851 }, 852 [HYPERV_FEAT_VAPIC] = { 853 .desc = "virtual APIC (hv-vapic)", 854 .flags = { 855 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 856 .bits = HV_APIC_ACCESS_AVAILABLE} 857 } 858 }, 859 [HYPERV_FEAT_TIME] = { 860 .desc = "clocksources (hv-time)", 861 .flags = { 862 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 863 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE} 864 } 865 }, 866 [HYPERV_FEAT_CRASH] = { 867 .desc = "crash MSRs (hv-crash)", 868 .flags = { 869 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 870 .bits = HV_GUEST_CRASH_MSR_AVAILABLE} 871 } 872 }, 873 [HYPERV_FEAT_RESET] = { 874 .desc = "reset MSR (hv-reset)", 875 .flags = { 876 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 877 .bits = HV_RESET_AVAILABLE} 878 } 879 }, 880 [HYPERV_FEAT_VPINDEX] = { 881 .desc = "VP_INDEX MSR (hv-vpindex)", 882 .flags = { 883 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 884 .bits = HV_VP_INDEX_AVAILABLE} 885 } 886 }, 887 [HYPERV_FEAT_RUNTIME] = { 888 .desc = "VP_RUNTIME MSR (hv-runtime)", 889 .flags = { 890 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 891 .bits = HV_VP_RUNTIME_AVAILABLE} 892 } 893 }, 894 [HYPERV_FEAT_SYNIC] = { 895 .desc = "synthetic interrupt controller (hv-synic)", 896 .flags = { 897 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 898 .bits = HV_SYNIC_AVAILABLE} 899 } 900 }, 901 [HYPERV_FEAT_STIMER] = { 902 .desc = "synthetic timers (hv-stimer)", 903 .flags = { 904 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 905 .bits = HV_SYNTIMERS_AVAILABLE} 906 }, 907 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME) 908 }, 909 [HYPERV_FEAT_FREQUENCIES] = { 910 .desc = "frequency MSRs (hv-frequencies)", 911 .flags = { 912 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 913 .bits = HV_ACCESS_FREQUENCY_MSRS}, 914 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 915 .bits = HV_FREQUENCY_MSRS_AVAILABLE} 916 } 917 }, 918 [HYPERV_FEAT_REENLIGHTENMENT] = { 919 .desc = "reenlightenment MSRs (hv-reenlightenment)", 920 .flags = { 921 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 922 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL} 923 } 924 }, 925 [HYPERV_FEAT_TLBFLUSH] = { 926 .desc = "paravirtualized TLB flush (hv-tlbflush)", 927 .flags = { 928 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 929 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED | 930 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 931 }, 932 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 933 }, 934 [HYPERV_FEAT_EVMCS] = { 935 .desc = "enlightened VMCS (hv-evmcs)", 936 .flags = { 937 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 938 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED} 939 }, 940 .dependencies = BIT(HYPERV_FEAT_VAPIC) 941 }, 942 [HYPERV_FEAT_IPI] = { 943 .desc = "paravirtualized IPI (hv-ipi)", 944 .flags = { 945 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 946 .bits = HV_CLUSTER_IPI_RECOMMENDED | 947 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 948 }, 949 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 950 }, 951 [HYPERV_FEAT_STIMER_DIRECT] = { 952 .desc = "direct mode synthetic timers (hv-stimer-direct)", 953 .flags = { 954 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 955 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE} 956 }, 957 .dependencies = BIT(HYPERV_FEAT_STIMER) 958 }, 959 [HYPERV_FEAT_AVIC] = { 960 .desc = "AVIC/APICv support (hv-avic/hv-apicv)", 961 .flags = { 962 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 963 .bits = HV_DEPRECATING_AEOI_RECOMMENDED} 964 } 965 }, 966 #ifdef CONFIG_SYNDBG 967 [HYPERV_FEAT_SYNDBG] = { 968 .desc = "Enable synthetic kernel debugger channel (hv-syndbg)", 969 .flags = { 970 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 971 .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE} 972 }, 973 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED) 974 }, 975 #endif 976 [HYPERV_FEAT_MSR_BITMAP] = { 977 .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)", 978 .flags = { 979 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX, 980 .bits = HV_NESTED_MSR_BITMAP} 981 } 982 }, 983 [HYPERV_FEAT_XMM_INPUT] = { 984 .desc = "XMM fast hypercall input (hv-xmm-input)", 985 .flags = { 986 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 987 .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE} 988 } 989 }, 990 [HYPERV_FEAT_TLBFLUSH_EXT] = { 991 .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)", 992 .flags = { 993 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 994 .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE} 995 }, 996 .dependencies = BIT(HYPERV_FEAT_TLBFLUSH) 997 }, 998 [HYPERV_FEAT_TLBFLUSH_DIRECT] = { 999 .desc = "direct TLB flush (hv-tlbflush-direct)", 1000 .flags = { 1001 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX, 1002 .bits = HV_NESTED_DIRECT_FLUSH} 1003 }, 1004 .dependencies = BIT(HYPERV_FEAT_VAPIC) 1005 }, 1006 }; 1007 1008 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max, 1009 bool do_sys_ioctl) 1010 { 1011 struct kvm_cpuid2 *cpuid; 1012 int r, size; 1013 1014 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 1015 cpuid = g_malloc0(size); 1016 cpuid->nent = max; 1017 1018 if (do_sys_ioctl) { 1019 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1020 } else { 1021 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1022 } 1023 if (r == 0 && cpuid->nent >= max) { 1024 r = -E2BIG; 1025 } 1026 if (r < 0) { 1027 if (r == -E2BIG) { 1028 g_free(cpuid); 1029 return NULL; 1030 } else { 1031 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n", 1032 strerror(-r)); 1033 exit(1); 1034 } 1035 } 1036 return cpuid; 1037 } 1038 1039 /* 1040 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough 1041 * for all entries. 1042 */ 1043 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs) 1044 { 1045 struct kvm_cpuid2 *cpuid; 1046 /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */ 1047 int max = 11; 1048 int i; 1049 bool do_sys_ioctl; 1050 1051 do_sys_ioctl = 1052 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0; 1053 1054 /* 1055 * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is 1056 * unsupported, kvm_hyperv_expand_features() checks for that. 1057 */ 1058 assert(do_sys_ioctl || cs->kvm_state); 1059 1060 /* 1061 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with 1062 * -E2BIG, however, it doesn't report back the right size. Keep increasing 1063 * it and re-trying until we succeed. 1064 */ 1065 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) { 1066 max++; 1067 } 1068 1069 /* 1070 * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before 1071 * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the 1072 * information early, just check for the capability and set the bit 1073 * manually. 1074 */ 1075 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state, 1076 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1077 for (i = 0; i < cpuid->nent; i++) { 1078 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) { 1079 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1080 } 1081 } 1082 } 1083 1084 return cpuid; 1085 } 1086 1087 /* 1088 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature 1089 * leaves from KVM_CAP_HYPERV* and present MSRs data. 1090 */ 1091 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs) 1092 { 1093 X86CPU *cpu = X86_CPU(cs); 1094 struct kvm_cpuid2 *cpuid; 1095 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm; 1096 1097 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */ 1098 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries)); 1099 cpuid->nent = 2; 1100 1101 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */ 1102 entry_feat = &cpuid->entries[0]; 1103 entry_feat->function = HV_CPUID_FEATURES; 1104 1105 entry_recomm = &cpuid->entries[1]; 1106 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO; 1107 entry_recomm->ebx = cpu->hyperv_spinlock_attempts; 1108 1109 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) { 1110 entry_feat->eax |= HV_HYPERCALL_AVAILABLE; 1111 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE; 1112 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1113 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED; 1114 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED; 1115 } 1116 1117 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { 1118 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE; 1119 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE; 1120 } 1121 1122 if (has_msr_hv_frequencies) { 1123 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS; 1124 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE; 1125 } 1126 1127 if (has_msr_hv_crash) { 1128 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE; 1129 } 1130 1131 if (has_msr_hv_reenlightenment) { 1132 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL; 1133 } 1134 1135 if (has_msr_hv_reset) { 1136 entry_feat->eax |= HV_RESET_AVAILABLE; 1137 } 1138 1139 if (has_msr_hv_vpindex) { 1140 entry_feat->eax |= HV_VP_INDEX_AVAILABLE; 1141 } 1142 1143 if (has_msr_hv_runtime) { 1144 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE; 1145 } 1146 1147 if (has_msr_hv_synic) { 1148 unsigned int cap = cpu->hyperv_synic_kvm_only ? 1149 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1150 1151 if (kvm_check_extension(cs->kvm_state, cap) > 0) { 1152 entry_feat->eax |= HV_SYNIC_AVAILABLE; 1153 } 1154 } 1155 1156 if (has_msr_hv_stimer) { 1157 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE; 1158 } 1159 1160 if (has_msr_hv_syndbg_options) { 1161 entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE; 1162 entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE; 1163 entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED; 1164 } 1165 1166 if (kvm_check_extension(cs->kvm_state, 1167 KVM_CAP_HYPERV_TLBFLUSH) > 0) { 1168 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED; 1169 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1170 } 1171 1172 if (kvm_check_extension(cs->kvm_state, 1173 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1174 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1175 } 1176 1177 if (kvm_check_extension(cs->kvm_state, 1178 KVM_CAP_HYPERV_SEND_IPI) > 0) { 1179 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED; 1180 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1181 } 1182 1183 return cpuid; 1184 } 1185 1186 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg) 1187 { 1188 struct kvm_cpuid_entry2 *entry; 1189 struct kvm_cpuid2 *cpuid; 1190 1191 if (hv_cpuid_cache) { 1192 cpuid = hv_cpuid_cache; 1193 } else { 1194 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) { 1195 cpuid = get_supported_hv_cpuid(cs); 1196 } else { 1197 /* 1198 * 'cs->kvm_state' may be NULL when Hyper-V features are expanded 1199 * before KVM context is created but this is only done when 1200 * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies 1201 * KVM_CAP_HYPERV_CPUID. 1202 */ 1203 assert(cs->kvm_state); 1204 1205 cpuid = get_supported_hv_cpuid_legacy(cs); 1206 } 1207 hv_cpuid_cache = cpuid; 1208 } 1209 1210 if (!cpuid) { 1211 return 0; 1212 } 1213 1214 entry = cpuid_find_entry(cpuid, func, 0); 1215 if (!entry) { 1216 return 0; 1217 } 1218 1219 return cpuid_entry_get_reg(entry, reg); 1220 } 1221 1222 static bool hyperv_feature_supported(CPUState *cs, int feature) 1223 { 1224 uint32_t func, bits; 1225 int i, reg; 1226 1227 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) { 1228 1229 func = kvm_hyperv_properties[feature].flags[i].func; 1230 reg = kvm_hyperv_properties[feature].flags[i].reg; 1231 bits = kvm_hyperv_properties[feature].flags[i].bits; 1232 1233 if (!func) { 1234 continue; 1235 } 1236 1237 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) { 1238 return false; 1239 } 1240 } 1241 1242 return true; 1243 } 1244 1245 /* Checks that all feature dependencies are enabled */ 1246 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp) 1247 { 1248 uint64_t deps; 1249 int dep_feat; 1250 1251 deps = kvm_hyperv_properties[feature].dependencies; 1252 while (deps) { 1253 dep_feat = ctz64(deps); 1254 if (!(hyperv_feat_enabled(cpu, dep_feat))) { 1255 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1256 kvm_hyperv_properties[feature].desc, 1257 kvm_hyperv_properties[dep_feat].desc); 1258 return false; 1259 } 1260 deps &= ~(1ull << dep_feat); 1261 } 1262 1263 return true; 1264 } 1265 1266 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg) 1267 { 1268 X86CPU *cpu = X86_CPU(cs); 1269 uint32_t r = 0; 1270 int i, j; 1271 1272 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) { 1273 if (!hyperv_feat_enabled(cpu, i)) { 1274 continue; 1275 } 1276 1277 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) { 1278 if (kvm_hyperv_properties[i].flags[j].func != func) { 1279 continue; 1280 } 1281 if (kvm_hyperv_properties[i].flags[j].reg != reg) { 1282 continue; 1283 } 1284 1285 r |= kvm_hyperv_properties[i].flags[j].bits; 1286 } 1287 } 1288 1289 /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */ 1290 if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) { 1291 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1292 r |= DEFAULT_EVMCS_VERSION; 1293 } 1294 } 1295 1296 return r; 1297 } 1298 1299 /* 1300 * Expand Hyper-V CPU features. In partucular, check that all the requested 1301 * features are supported by the host and the sanity of the configuration 1302 * (that all the required dependencies are included). Also, this takes care 1303 * of 'hv_passthrough' mode and fills the environment with all supported 1304 * Hyper-V features. 1305 */ 1306 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp) 1307 { 1308 CPUState *cs = CPU(cpu); 1309 Error *local_err = NULL; 1310 int feat; 1311 1312 if (!hyperv_enabled(cpu)) 1313 return true; 1314 1315 /* 1316 * When kvm_hyperv_expand_features is called at CPU feature expansion 1317 * time per-CPU kvm_state is not available yet so we can only proceed 1318 * when KVM_CAP_SYS_HYPERV_CPUID is supported. 1319 */ 1320 if (!cs->kvm_state && 1321 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID)) 1322 return true; 1323 1324 if (cpu->hyperv_passthrough) { 1325 cpu->hyperv_vendor_id[0] = 1326 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX); 1327 cpu->hyperv_vendor_id[1] = 1328 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX); 1329 cpu->hyperv_vendor_id[2] = 1330 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX); 1331 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor, 1332 sizeof(cpu->hyperv_vendor_id) + 1); 1333 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id, 1334 sizeof(cpu->hyperv_vendor_id)); 1335 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0; 1336 1337 cpu->hyperv_interface_id[0] = 1338 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX); 1339 cpu->hyperv_interface_id[1] = 1340 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX); 1341 cpu->hyperv_interface_id[2] = 1342 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX); 1343 cpu->hyperv_interface_id[3] = 1344 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX); 1345 1346 cpu->hyperv_ver_id_build = 1347 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX); 1348 cpu->hyperv_ver_id_major = 1349 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16; 1350 cpu->hyperv_ver_id_minor = 1351 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff; 1352 cpu->hyperv_ver_id_sp = 1353 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX); 1354 cpu->hyperv_ver_id_sb = 1355 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24; 1356 cpu->hyperv_ver_id_sn = 1357 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff; 1358 1359 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, 1360 R_EAX); 1361 cpu->hyperv_limits[0] = 1362 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX); 1363 cpu->hyperv_limits[1] = 1364 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX); 1365 cpu->hyperv_limits[2] = 1366 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX); 1367 1368 cpu->hyperv_spinlock_attempts = 1369 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX); 1370 1371 /* 1372 * Mark feature as enabled in 'cpu->hyperv_features' as 1373 * hv_build_cpuid_leaf() uses this info to build guest CPUIDs. 1374 */ 1375 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1376 if (hyperv_feature_supported(cs, feat)) { 1377 cpu->hyperv_features |= BIT(feat); 1378 } 1379 } 1380 } else { 1381 /* Check features availability and dependencies */ 1382 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1383 /* If the feature was not requested skip it. */ 1384 if (!hyperv_feat_enabled(cpu, feat)) { 1385 continue; 1386 } 1387 1388 /* Check if the feature is supported by KVM */ 1389 if (!hyperv_feature_supported(cs, feat)) { 1390 error_setg(errp, "Hyper-V %s is not supported by kernel", 1391 kvm_hyperv_properties[feat].desc); 1392 return false; 1393 } 1394 1395 /* Check dependencies */ 1396 if (!hv_feature_check_deps(cpu, feat, &local_err)) { 1397 error_propagate(errp, local_err); 1398 return false; 1399 } 1400 } 1401 } 1402 1403 /* Additional dependencies not covered by kvm_hyperv_properties[] */ 1404 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1405 !cpu->hyperv_synic_kvm_only && 1406 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) { 1407 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1408 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc, 1409 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc); 1410 return false; 1411 } 1412 1413 return true; 1414 } 1415 1416 /* 1417 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent. 1418 */ 1419 static int hyperv_fill_cpuids(CPUState *cs, 1420 struct kvm_cpuid_entry2 *cpuid_ent) 1421 { 1422 X86CPU *cpu = X86_CPU(cs); 1423 struct kvm_cpuid_entry2 *c; 1424 uint32_t signature[3]; 1425 uint32_t cpuid_i = 0, max_cpuid_leaf = 0; 1426 uint32_t nested_eax = 1427 hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX); 1428 1429 max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES : 1430 HV_CPUID_IMPLEMENT_LIMITS; 1431 1432 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) { 1433 max_cpuid_leaf = 1434 MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES); 1435 } 1436 1437 c = &cpuid_ent[cpuid_i++]; 1438 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS; 1439 c->eax = max_cpuid_leaf; 1440 c->ebx = cpu->hyperv_vendor_id[0]; 1441 c->ecx = cpu->hyperv_vendor_id[1]; 1442 c->edx = cpu->hyperv_vendor_id[2]; 1443 1444 c = &cpuid_ent[cpuid_i++]; 1445 c->function = HV_CPUID_INTERFACE; 1446 c->eax = cpu->hyperv_interface_id[0]; 1447 c->ebx = cpu->hyperv_interface_id[1]; 1448 c->ecx = cpu->hyperv_interface_id[2]; 1449 c->edx = cpu->hyperv_interface_id[3]; 1450 1451 c = &cpuid_ent[cpuid_i++]; 1452 c->function = HV_CPUID_VERSION; 1453 c->eax = cpu->hyperv_ver_id_build; 1454 c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 | 1455 cpu->hyperv_ver_id_minor; 1456 c->ecx = cpu->hyperv_ver_id_sp; 1457 c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 | 1458 (cpu->hyperv_ver_id_sn & 0xffffff); 1459 1460 c = &cpuid_ent[cpuid_i++]; 1461 c->function = HV_CPUID_FEATURES; 1462 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX); 1463 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX); 1464 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX); 1465 1466 /* Unconditionally required with any Hyper-V enlightenment */ 1467 c->eax |= HV_HYPERCALL_AVAILABLE; 1468 1469 /* SynIC and Vmbus devices require messages/signals hypercalls */ 1470 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1471 !cpu->hyperv_synic_kvm_only) { 1472 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS; 1473 } 1474 1475 1476 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */ 1477 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1478 1479 c = &cpuid_ent[cpuid_i++]; 1480 c->function = HV_CPUID_ENLIGHTMENT_INFO; 1481 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX); 1482 c->ebx = cpu->hyperv_spinlock_attempts; 1483 1484 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) && 1485 !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) { 1486 c->eax |= HV_APIC_ACCESS_RECOMMENDED; 1487 } 1488 1489 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) { 1490 c->eax |= HV_NO_NONARCH_CORESHARING; 1491 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) { 1492 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) & 1493 HV_NO_NONARCH_CORESHARING; 1494 } 1495 1496 c = &cpuid_ent[cpuid_i++]; 1497 c->function = HV_CPUID_IMPLEMENT_LIMITS; 1498 c->eax = cpu->hv_max_vps; 1499 c->ebx = cpu->hyperv_limits[0]; 1500 c->ecx = cpu->hyperv_limits[1]; 1501 c->edx = cpu->hyperv_limits[2]; 1502 1503 if (nested_eax) { 1504 uint32_t function; 1505 1506 /* Create zeroed 0x40000006..0x40000009 leaves */ 1507 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1; 1508 function < HV_CPUID_NESTED_FEATURES; function++) { 1509 c = &cpuid_ent[cpuid_i++]; 1510 c->function = function; 1511 } 1512 1513 c = &cpuid_ent[cpuid_i++]; 1514 c->function = HV_CPUID_NESTED_FEATURES; 1515 c->eax = nested_eax; 1516 } 1517 1518 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) { 1519 c = &cpuid_ent[cpuid_i++]; 1520 c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS; 1521 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ? 1522 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS; 1523 memcpy(signature, "Microsoft VS", 12); 1524 c->eax = 0; 1525 c->ebx = signature[0]; 1526 c->ecx = signature[1]; 1527 c->edx = signature[2]; 1528 1529 c = &cpuid_ent[cpuid_i++]; 1530 c->function = HV_CPUID_SYNDBG_INTERFACE; 1531 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12); 1532 c->eax = signature[0]; 1533 c->ebx = 0; 1534 c->ecx = 0; 1535 c->edx = 0; 1536 1537 c = &cpuid_ent[cpuid_i++]; 1538 c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES; 1539 c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING; 1540 c->ebx = 0; 1541 c->ecx = 0; 1542 c->edx = 0; 1543 } 1544 1545 return cpuid_i; 1546 } 1547 1548 static Error *hv_passthrough_mig_blocker; 1549 static Error *hv_no_nonarch_cs_mig_blocker; 1550 1551 /* Checks that the exposed eVMCS version range is supported by KVM */ 1552 static bool evmcs_version_supported(uint16_t evmcs_version, 1553 uint16_t supported_evmcs_version) 1554 { 1555 uint8_t min_version = evmcs_version & 0xff; 1556 uint8_t max_version = evmcs_version >> 8; 1557 uint8_t min_supported_version = supported_evmcs_version & 0xff; 1558 uint8_t max_supported_version = supported_evmcs_version >> 8; 1559 1560 return (min_version >= min_supported_version) && 1561 (max_version <= max_supported_version); 1562 } 1563 1564 static int hyperv_init_vcpu(X86CPU *cpu) 1565 { 1566 CPUState *cs = CPU(cpu); 1567 Error *local_err = NULL; 1568 int ret; 1569 1570 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) { 1571 error_setg(&hv_passthrough_mig_blocker, 1572 "'hv-passthrough' CPU flag prevents migration, use explicit" 1573 " set of hv-* flags instead"); 1574 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err); 1575 if (ret < 0) { 1576 error_report_err(local_err); 1577 return ret; 1578 } 1579 } 1580 1581 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO && 1582 hv_no_nonarch_cs_mig_blocker == NULL) { 1583 error_setg(&hv_no_nonarch_cs_mig_blocker, 1584 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration" 1585 " use explicit 'hv-no-nonarch-coresharing=on' instead (but" 1586 " make sure SMT is disabled and/or that vCPUs are properly" 1587 " pinned)"); 1588 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err); 1589 if (ret < 0) { 1590 error_report_err(local_err); 1591 return ret; 1592 } 1593 } 1594 1595 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) { 1596 /* 1597 * the kernel doesn't support setting vp_index; assert that its value 1598 * is in sync 1599 */ 1600 uint64_t value; 1601 1602 ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value); 1603 if (ret < 0) { 1604 return ret; 1605 } 1606 1607 if (value != hyperv_vp_index(CPU(cpu))) { 1608 error_report("kernel's vp_index != QEMU's vp_index"); 1609 return -ENXIO; 1610 } 1611 } 1612 1613 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 1614 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ? 1615 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1616 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0); 1617 if (ret < 0) { 1618 error_report("failed to turn on HyperV SynIC in KVM: %s", 1619 strerror(-ret)); 1620 return ret; 1621 } 1622 1623 if (!cpu->hyperv_synic_kvm_only) { 1624 ret = hyperv_x86_synic_add(cpu); 1625 if (ret < 0) { 1626 error_report("failed to create HyperV SynIC: %s", 1627 strerror(-ret)); 1628 return ret; 1629 } 1630 } 1631 } 1632 1633 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1634 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION; 1635 uint16_t supported_evmcs_version; 1636 1637 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0, 1638 (uintptr_t)&supported_evmcs_version); 1639 1640 /* 1641 * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs' 1642 * option sets. Note: we hardcode the maximum supported eVMCS version 1643 * to '1' as well so 'hv-evmcs' feature is migratable even when (and if) 1644 * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have 1645 * to be added. 1646 */ 1647 if (ret < 0) { 1648 error_report("Hyper-V %s is not supported by kernel", 1649 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc); 1650 return ret; 1651 } 1652 1653 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) { 1654 error_report("eVMCS version range [%d..%d] is not supported by " 1655 "kernel (supported: [%d..%d])", evmcs_version & 0xff, 1656 evmcs_version >> 8, supported_evmcs_version & 0xff, 1657 supported_evmcs_version >> 8); 1658 return -ENOTSUP; 1659 } 1660 } 1661 1662 if (cpu->hyperv_enforce_cpuid) { 1663 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1); 1664 if (ret < 0) { 1665 error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s", 1666 strerror(-ret)); 1667 return ret; 1668 } 1669 } 1670 1671 return 0; 1672 } 1673 1674 static Error *invtsc_mig_blocker; 1675 1676 #define KVM_MAX_CPUID_ENTRIES 100 1677 1678 static void kvm_init_xsave(CPUX86State *env) 1679 { 1680 if (has_xsave2) { 1681 env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096); 1682 } else if (has_xsave) { 1683 env->xsave_buf_len = sizeof(struct kvm_xsave); 1684 } else { 1685 return; 1686 } 1687 1688 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len); 1689 memset(env->xsave_buf, 0, env->xsave_buf_len); 1690 /* 1691 * The allocated storage must be large enough for all of the 1692 * possible XSAVE state components. 1693 */ 1694 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <= 1695 env->xsave_buf_len); 1696 } 1697 1698 static void kvm_init_nested_state(CPUX86State *env) 1699 { 1700 struct kvm_vmx_nested_state_hdr *vmx_hdr; 1701 uint32_t size; 1702 1703 if (!env->nested_state) { 1704 return; 1705 } 1706 1707 size = env->nested_state->size; 1708 1709 memset(env->nested_state, 0, size); 1710 env->nested_state->size = size; 1711 1712 if (cpu_has_vmx(env)) { 1713 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX; 1714 vmx_hdr = &env->nested_state->hdr.vmx; 1715 vmx_hdr->vmxon_pa = -1ull; 1716 vmx_hdr->vmcs12_pa = -1ull; 1717 } else if (cpu_has_svm(env)) { 1718 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM; 1719 } 1720 } 1721 1722 int kvm_arch_init_vcpu(CPUState *cs) 1723 { 1724 struct { 1725 struct kvm_cpuid2 cpuid; 1726 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; 1727 } cpuid_data; 1728 /* 1729 * The kernel defines these structs with padding fields so there 1730 * should be no extra padding in our cpuid_data struct. 1731 */ 1732 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) != 1733 sizeof(struct kvm_cpuid2) + 1734 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES); 1735 1736 X86CPU *cpu = X86_CPU(cs); 1737 CPUX86State *env = &cpu->env; 1738 uint32_t limit, i, j, cpuid_i; 1739 uint32_t unused; 1740 struct kvm_cpuid_entry2 *c; 1741 uint32_t signature[3]; 1742 int kvm_base = KVM_CPUID_SIGNATURE; 1743 int max_nested_state_len; 1744 int r; 1745 Error *local_err = NULL; 1746 1747 memset(&cpuid_data, 0, sizeof(cpuid_data)); 1748 1749 cpuid_i = 0; 1750 1751 has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2); 1752 1753 r = kvm_arch_set_tsc_khz(cs); 1754 if (r < 0) { 1755 return r; 1756 } 1757 1758 /* vcpu's TSC frequency is either specified by user, or following 1759 * the value used by KVM if the former is not present. In the 1760 * latter case, we query it from KVM and record in env->tsc_khz, 1761 * so that vcpu's TSC frequency can be migrated later via this field. 1762 */ 1763 if (!env->tsc_khz) { 1764 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 1765 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 1766 -ENOTSUP; 1767 if (r > 0) { 1768 env->tsc_khz = r; 1769 } 1770 } 1771 1772 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY; 1773 1774 /* 1775 * kvm_hyperv_expand_features() is called here for the second time in case 1776 * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle 1777 * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to 1778 * check which Hyper-V enlightenments are supported and which are not, we 1779 * can still proceed and check/expand Hyper-V enlightenments here so legacy 1780 * behavior is preserved. 1781 */ 1782 if (!kvm_hyperv_expand_features(cpu, &local_err)) { 1783 error_report_err(local_err); 1784 return -ENOSYS; 1785 } 1786 1787 if (hyperv_enabled(cpu)) { 1788 r = hyperv_init_vcpu(cpu); 1789 if (r) { 1790 return r; 1791 } 1792 1793 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries); 1794 kvm_base = KVM_CPUID_SIGNATURE_NEXT; 1795 has_msr_hv_hypercall = true; 1796 } 1797 1798 if (cpu->expose_kvm) { 1799 memcpy(signature, "KVMKVMKVM\0\0\0", 12); 1800 c = &cpuid_data.entries[cpuid_i++]; 1801 c->function = KVM_CPUID_SIGNATURE | kvm_base; 1802 c->eax = KVM_CPUID_FEATURES | kvm_base; 1803 c->ebx = signature[0]; 1804 c->ecx = signature[1]; 1805 c->edx = signature[2]; 1806 1807 c = &cpuid_data.entries[cpuid_i++]; 1808 c->function = KVM_CPUID_FEATURES | kvm_base; 1809 c->eax = env->features[FEAT_KVM]; 1810 c->edx = env->features[FEAT_KVM_HINTS]; 1811 } 1812 1813 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); 1814 1815 if (cpu->kvm_pv_enforce_cpuid) { 1816 r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1); 1817 if (r < 0) { 1818 fprintf(stderr, 1819 "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s", 1820 strerror(-r)); 1821 abort(); 1822 } 1823 } 1824 1825 for (i = 0; i <= limit; i++) { 1826 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1827 fprintf(stderr, "unsupported level value: 0x%x\n", limit); 1828 abort(); 1829 } 1830 c = &cpuid_data.entries[cpuid_i++]; 1831 1832 switch (i) { 1833 case 2: { 1834 /* Keep reading function 2 till all the input is received */ 1835 int times; 1836 1837 c->function = i; 1838 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | 1839 KVM_CPUID_FLAG_STATE_READ_NEXT; 1840 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1841 times = c->eax & 0xff; 1842 1843 for (j = 1; j < times; ++j) { 1844 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1845 fprintf(stderr, "cpuid_data is full, no space for " 1846 "cpuid(eax:2):eax & 0xf = 0x%x\n", times); 1847 abort(); 1848 } 1849 c = &cpuid_data.entries[cpuid_i++]; 1850 c->function = i; 1851 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; 1852 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1853 } 1854 break; 1855 } 1856 case 0x1f: 1857 if (env->nr_dies < 2) { 1858 break; 1859 } 1860 /* fallthrough */ 1861 case 4: 1862 case 0xb: 1863 case 0xd: 1864 for (j = 0; ; j++) { 1865 if (i == 0xd && j == 64) { 1866 break; 1867 } 1868 1869 if (i == 0x1f && j == 64) { 1870 break; 1871 } 1872 1873 c->function = i; 1874 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1875 c->index = j; 1876 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1877 1878 if (i == 4 && c->eax == 0) { 1879 break; 1880 } 1881 if (i == 0xb && !(c->ecx & 0xff00)) { 1882 break; 1883 } 1884 if (i == 0x1f && !(c->ecx & 0xff00)) { 1885 break; 1886 } 1887 if (i == 0xd && c->eax == 0) { 1888 continue; 1889 } 1890 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1891 fprintf(stderr, "cpuid_data is full, no space for " 1892 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 1893 abort(); 1894 } 1895 c = &cpuid_data.entries[cpuid_i++]; 1896 } 1897 break; 1898 case 0x7: 1899 case 0x12: 1900 for (j = 0; ; j++) { 1901 c->function = i; 1902 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1903 c->index = j; 1904 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1905 1906 if (j > 1 && (c->eax & 0xf) != 1) { 1907 break; 1908 } 1909 1910 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1911 fprintf(stderr, "cpuid_data is full, no space for " 1912 "cpuid(eax:0x12,ecx:0x%x)\n", j); 1913 abort(); 1914 } 1915 c = &cpuid_data.entries[cpuid_i++]; 1916 } 1917 break; 1918 case 0x14: 1919 case 0x1d: 1920 case 0x1e: { 1921 uint32_t times; 1922 1923 c->function = i; 1924 c->index = 0; 1925 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1926 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1927 times = c->eax; 1928 1929 for (j = 1; j <= times; ++j) { 1930 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1931 fprintf(stderr, "cpuid_data is full, no space for " 1932 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 1933 abort(); 1934 } 1935 c = &cpuid_data.entries[cpuid_i++]; 1936 c->function = i; 1937 c->index = j; 1938 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1939 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1940 } 1941 break; 1942 } 1943 default: 1944 c->function = i; 1945 c->flags = 0; 1946 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1947 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 1948 /* 1949 * KVM already returns all zeroes if a CPUID entry is missing, 1950 * so we can omit it and avoid hitting KVM's 80-entry limit. 1951 */ 1952 cpuid_i--; 1953 } 1954 break; 1955 } 1956 } 1957 1958 if (limit >= 0x0a) { 1959 uint32_t eax, edx; 1960 1961 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx); 1962 1963 has_architectural_pmu_version = eax & 0xff; 1964 if (has_architectural_pmu_version > 0) { 1965 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8; 1966 1967 /* Shouldn't be more than 32, since that's the number of bits 1968 * available in EBX to tell us _which_ counters are available. 1969 * Play it safe. 1970 */ 1971 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) { 1972 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS; 1973 } 1974 1975 if (has_architectural_pmu_version > 1) { 1976 num_architectural_pmu_fixed_counters = edx & 0x1f; 1977 1978 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) { 1979 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS; 1980 } 1981 } 1982 } 1983 } 1984 1985 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); 1986 1987 for (i = 0x80000000; i <= limit; i++) { 1988 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1989 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); 1990 abort(); 1991 } 1992 c = &cpuid_data.entries[cpuid_i++]; 1993 1994 switch (i) { 1995 case 0x8000001d: 1996 /* Query for all AMD cache information leaves */ 1997 for (j = 0; ; j++) { 1998 c->function = i; 1999 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 2000 c->index = j; 2001 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 2002 2003 if (c->eax == 0) { 2004 break; 2005 } 2006 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2007 fprintf(stderr, "cpuid_data is full, no space for " 2008 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 2009 abort(); 2010 } 2011 c = &cpuid_data.entries[cpuid_i++]; 2012 } 2013 break; 2014 default: 2015 c->function = i; 2016 c->flags = 0; 2017 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 2018 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 2019 /* 2020 * KVM already returns all zeroes if a CPUID entry is missing, 2021 * so we can omit it and avoid hitting KVM's 80-entry limit. 2022 */ 2023 cpuid_i--; 2024 } 2025 break; 2026 } 2027 } 2028 2029 /* Call Centaur's CPUID instructions they are supported. */ 2030 if (env->cpuid_xlevel2 > 0) { 2031 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); 2032 2033 for (i = 0xC0000000; i <= limit; i++) { 2034 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2035 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); 2036 abort(); 2037 } 2038 c = &cpuid_data.entries[cpuid_i++]; 2039 2040 c->function = i; 2041 c->flags = 0; 2042 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 2043 } 2044 } 2045 2046 cpuid_data.cpuid.nent = cpuid_i; 2047 2048 if (((env->cpuid_version >> 8)&0xF) >= 6 2049 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == 2050 (CPUID_MCE | CPUID_MCA) 2051 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { 2052 uint64_t mcg_cap, unsupported_caps; 2053 int banks; 2054 int ret; 2055 2056 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); 2057 if (ret < 0) { 2058 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); 2059 return ret; 2060 } 2061 2062 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { 2063 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", 2064 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); 2065 return -ENOTSUP; 2066 } 2067 2068 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); 2069 if (unsupported_caps) { 2070 if (unsupported_caps & MCG_LMCE_P) { 2071 error_report("kvm: LMCE not supported"); 2072 return -ENOTSUP; 2073 } 2074 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64, 2075 unsupported_caps); 2076 } 2077 2078 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; 2079 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); 2080 if (ret < 0) { 2081 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); 2082 return ret; 2083 } 2084 } 2085 2086 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env); 2087 2088 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); 2089 if (c) { 2090 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || 2091 !!(c->ecx & CPUID_EXT_SMX); 2092 } 2093 2094 c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0); 2095 if (c && (c->ebx & CPUID_7_0_EBX_SGX)) { 2096 has_msr_feature_control = true; 2097 } 2098 2099 if (env->mcg_cap & MCG_LMCE_P) { 2100 has_msr_mcg_ext_ctl = has_msr_feature_control = true; 2101 } 2102 2103 if (!env->user_tsc_khz) { 2104 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && 2105 invtsc_mig_blocker == NULL) { 2106 error_setg(&invtsc_mig_blocker, 2107 "State blocked by non-migratable CPU device" 2108 " (invtsc flag)"); 2109 r = migrate_add_blocker(invtsc_mig_blocker, &local_err); 2110 if (r < 0) { 2111 error_report_err(local_err); 2112 return r; 2113 } 2114 } 2115 } 2116 2117 if (cpu->vmware_cpuid_freq 2118 /* Guests depend on 0x40000000 to detect this feature, so only expose 2119 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ 2120 && cpu->expose_kvm 2121 && kvm_base == KVM_CPUID_SIGNATURE 2122 /* TSC clock must be stable and known for this feature. */ 2123 && tsc_is_stable_and_known(env)) { 2124 2125 c = &cpuid_data.entries[cpuid_i++]; 2126 c->function = KVM_CPUID_SIGNATURE | 0x10; 2127 c->eax = env->tsc_khz; 2128 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */ 2129 c->ecx = c->edx = 0; 2130 2131 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); 2132 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); 2133 } 2134 2135 cpuid_data.cpuid.nent = cpuid_i; 2136 2137 cpuid_data.cpuid.padding = 0; 2138 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); 2139 if (r) { 2140 goto fail; 2141 } 2142 kvm_init_xsave(env); 2143 2144 max_nested_state_len = kvm_max_nested_state_length(); 2145 if (max_nested_state_len > 0) { 2146 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data)); 2147 2148 if (cpu_has_vmx(env) || cpu_has_svm(env)) { 2149 env->nested_state = g_malloc0(max_nested_state_len); 2150 env->nested_state->size = max_nested_state_len; 2151 2152 kvm_init_nested_state(env); 2153 } 2154 } 2155 2156 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); 2157 2158 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { 2159 has_msr_tsc_aux = false; 2160 } 2161 2162 kvm_init_msrs(cpu); 2163 2164 return 0; 2165 2166 fail: 2167 migrate_del_blocker(invtsc_mig_blocker); 2168 2169 return r; 2170 } 2171 2172 int kvm_arch_destroy_vcpu(CPUState *cs) 2173 { 2174 X86CPU *cpu = X86_CPU(cs); 2175 CPUX86State *env = &cpu->env; 2176 2177 g_free(env->xsave_buf); 2178 2179 g_free(cpu->kvm_msr_buf); 2180 cpu->kvm_msr_buf = NULL; 2181 2182 g_free(env->nested_state); 2183 env->nested_state = NULL; 2184 2185 qemu_del_vm_change_state_handler(cpu->vmsentry); 2186 2187 return 0; 2188 } 2189 2190 void kvm_arch_reset_vcpu(X86CPU *cpu) 2191 { 2192 CPUX86State *env = &cpu->env; 2193 2194 env->xcr0 = 1; 2195 if (kvm_irqchip_in_kernel()) { 2196 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : 2197 KVM_MP_STATE_UNINITIALIZED; 2198 } else { 2199 env->mp_state = KVM_MP_STATE_RUNNABLE; 2200 } 2201 2202 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 2203 int i; 2204 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { 2205 env->msr_hv_synic_sint[i] = HV_SINT_MASKED; 2206 } 2207 2208 hyperv_x86_synic_reset(cpu); 2209 } 2210 /* enabled by default */ 2211 env->poll_control_msr = 1; 2212 2213 kvm_init_nested_state(env); 2214 2215 sev_es_set_reset_vector(CPU(cpu)); 2216 } 2217 2218 void kvm_arch_do_init_vcpu(X86CPU *cpu) 2219 { 2220 CPUX86State *env = &cpu->env; 2221 2222 /* APs get directly into wait-for-SIPI state. */ 2223 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { 2224 env->mp_state = KVM_MP_STATE_INIT_RECEIVED; 2225 } 2226 } 2227 2228 static int kvm_get_supported_feature_msrs(KVMState *s) 2229 { 2230 int ret = 0; 2231 2232 if (kvm_feature_msrs != NULL) { 2233 return 0; 2234 } 2235 2236 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) { 2237 return 0; 2238 } 2239 2240 struct kvm_msr_list msr_list; 2241 2242 msr_list.nmsrs = 0; 2243 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list); 2244 if (ret < 0 && ret != -E2BIG) { 2245 error_report("Fetch KVM feature MSR list failed: %s", 2246 strerror(-ret)); 2247 return ret; 2248 } 2249 2250 assert(msr_list.nmsrs > 0); 2251 kvm_feature_msrs = (struct kvm_msr_list *) \ 2252 g_malloc0(sizeof(msr_list) + 2253 msr_list.nmsrs * sizeof(msr_list.indices[0])); 2254 2255 kvm_feature_msrs->nmsrs = msr_list.nmsrs; 2256 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs); 2257 2258 if (ret < 0) { 2259 error_report("Fetch KVM feature MSR list failed: %s", 2260 strerror(-ret)); 2261 g_free(kvm_feature_msrs); 2262 kvm_feature_msrs = NULL; 2263 return ret; 2264 } 2265 2266 return 0; 2267 } 2268 2269 static int kvm_get_supported_msrs(KVMState *s) 2270 { 2271 int ret = 0; 2272 struct kvm_msr_list msr_list, *kvm_msr_list; 2273 2274 /* 2275 * Obtain MSR list from KVM. These are the MSRs that we must 2276 * save/restore. 2277 */ 2278 msr_list.nmsrs = 0; 2279 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); 2280 if (ret < 0 && ret != -E2BIG) { 2281 return ret; 2282 } 2283 /* 2284 * Old kernel modules had a bug and could write beyond the provided 2285 * memory. Allocate at least a safe amount of 1K. 2286 */ 2287 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + 2288 msr_list.nmsrs * 2289 sizeof(msr_list.indices[0]))); 2290 2291 kvm_msr_list->nmsrs = msr_list.nmsrs; 2292 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); 2293 if (ret >= 0) { 2294 int i; 2295 2296 for (i = 0; i < kvm_msr_list->nmsrs; i++) { 2297 switch (kvm_msr_list->indices[i]) { 2298 case MSR_STAR: 2299 has_msr_star = true; 2300 break; 2301 case MSR_VM_HSAVE_PA: 2302 has_msr_hsave_pa = true; 2303 break; 2304 case MSR_TSC_AUX: 2305 has_msr_tsc_aux = true; 2306 break; 2307 case MSR_TSC_ADJUST: 2308 has_msr_tsc_adjust = true; 2309 break; 2310 case MSR_IA32_TSCDEADLINE: 2311 has_msr_tsc_deadline = true; 2312 break; 2313 case MSR_IA32_SMBASE: 2314 has_msr_smbase = true; 2315 break; 2316 case MSR_SMI_COUNT: 2317 has_msr_smi_count = true; 2318 break; 2319 case MSR_IA32_MISC_ENABLE: 2320 has_msr_misc_enable = true; 2321 break; 2322 case MSR_IA32_BNDCFGS: 2323 has_msr_bndcfgs = true; 2324 break; 2325 case MSR_IA32_XSS: 2326 has_msr_xss = true; 2327 break; 2328 case MSR_IA32_UMWAIT_CONTROL: 2329 has_msr_umwait = true; 2330 break; 2331 case HV_X64_MSR_CRASH_CTL: 2332 has_msr_hv_crash = true; 2333 break; 2334 case HV_X64_MSR_RESET: 2335 has_msr_hv_reset = true; 2336 break; 2337 case HV_X64_MSR_VP_INDEX: 2338 has_msr_hv_vpindex = true; 2339 break; 2340 case HV_X64_MSR_VP_RUNTIME: 2341 has_msr_hv_runtime = true; 2342 break; 2343 case HV_X64_MSR_SCONTROL: 2344 has_msr_hv_synic = true; 2345 break; 2346 case HV_X64_MSR_STIMER0_CONFIG: 2347 has_msr_hv_stimer = true; 2348 break; 2349 case HV_X64_MSR_TSC_FREQUENCY: 2350 has_msr_hv_frequencies = true; 2351 break; 2352 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 2353 has_msr_hv_reenlightenment = true; 2354 break; 2355 case HV_X64_MSR_SYNDBG_OPTIONS: 2356 has_msr_hv_syndbg_options = true; 2357 break; 2358 case MSR_IA32_SPEC_CTRL: 2359 has_msr_spec_ctrl = true; 2360 break; 2361 case MSR_AMD64_TSC_RATIO: 2362 has_tsc_scale_msr = true; 2363 break; 2364 case MSR_IA32_TSX_CTRL: 2365 has_msr_tsx_ctrl = true; 2366 break; 2367 case MSR_VIRT_SSBD: 2368 has_msr_virt_ssbd = true; 2369 break; 2370 case MSR_IA32_ARCH_CAPABILITIES: 2371 has_msr_arch_capabs = true; 2372 break; 2373 case MSR_IA32_CORE_CAPABILITY: 2374 has_msr_core_capabs = true; 2375 break; 2376 case MSR_IA32_PERF_CAPABILITIES: 2377 has_msr_perf_capabs = true; 2378 break; 2379 case MSR_IA32_VMX_VMFUNC: 2380 has_msr_vmx_vmfunc = true; 2381 break; 2382 case MSR_IA32_UCODE_REV: 2383 has_msr_ucode_rev = true; 2384 break; 2385 case MSR_IA32_VMX_PROCBASED_CTLS2: 2386 has_msr_vmx_procbased_ctls2 = true; 2387 break; 2388 case MSR_IA32_PKRS: 2389 has_msr_pkrs = true; 2390 break; 2391 } 2392 } 2393 } 2394 2395 g_free(kvm_msr_list); 2396 2397 return ret; 2398 } 2399 2400 static Notifier smram_machine_done; 2401 static KVMMemoryListener smram_listener; 2402 static AddressSpace smram_address_space; 2403 static MemoryRegion smram_as_root; 2404 static MemoryRegion smram_as_mem; 2405 2406 static void register_smram_listener(Notifier *n, void *unused) 2407 { 2408 MemoryRegion *smram = 2409 (MemoryRegion *) object_resolve_path("/machine/smram", NULL); 2410 2411 /* Outer container... */ 2412 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); 2413 memory_region_set_enabled(&smram_as_root, true); 2414 2415 /* ... with two regions inside: normal system memory with low 2416 * priority, and... 2417 */ 2418 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", 2419 get_system_memory(), 0, ~0ull); 2420 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); 2421 memory_region_set_enabled(&smram_as_mem, true); 2422 2423 if (smram) { 2424 /* ... SMRAM with higher priority */ 2425 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); 2426 memory_region_set_enabled(smram, true); 2427 } 2428 2429 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); 2430 kvm_memory_listener_register(kvm_state, &smram_listener, 2431 &smram_address_space, 1, "kvm-smram"); 2432 } 2433 2434 int kvm_arch_init(MachineState *ms, KVMState *s) 2435 { 2436 uint64_t identity_base = 0xfffbc000; 2437 uint64_t shadow_mem; 2438 int ret; 2439 struct utsname utsname; 2440 Error *local_err = NULL; 2441 2442 /* 2443 * Initialize SEV context, if required 2444 * 2445 * If no memory encryption is requested (ms->cgs == NULL) this is 2446 * a no-op. 2447 * 2448 * It's also a no-op if a non-SEV confidential guest support 2449 * mechanism is selected. SEV is the only mechanism available to 2450 * select on x86 at present, so this doesn't arise, but if new 2451 * mechanisms are supported in future (e.g. TDX), they'll need 2452 * their own initialization either here or elsewhere. 2453 */ 2454 ret = sev_kvm_init(ms->cgs, &local_err); 2455 if (ret < 0) { 2456 error_report_err(local_err); 2457 return ret; 2458 } 2459 2460 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { 2461 error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM"); 2462 return -ENOTSUP; 2463 } 2464 2465 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE); 2466 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); 2467 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); 2468 has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0; 2469 2470 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX); 2471 2472 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD); 2473 if (has_exception_payload) { 2474 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true); 2475 if (ret < 0) { 2476 error_report("kvm: Failed to enable exception payload cap: %s", 2477 strerror(-ret)); 2478 return ret; 2479 } 2480 } 2481 2482 ret = kvm_get_supported_msrs(s); 2483 if (ret < 0) { 2484 return ret; 2485 } 2486 2487 kvm_get_supported_feature_msrs(s); 2488 2489 uname(&utsname); 2490 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; 2491 2492 /* 2493 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. 2494 * In order to use vm86 mode, an EPT identity map and a TSS are needed. 2495 * Since these must be part of guest physical memory, we need to allocate 2496 * them, both by setting their start addresses in the kernel and by 2497 * creating a corresponding e820 entry. We need 4 pages before the BIOS. 2498 * 2499 * Older KVM versions may not support setting the identity map base. In 2500 * that case we need to stick with the default, i.e. a 256K maximum BIOS 2501 * size. 2502 */ 2503 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { 2504 /* Allows up to 16M BIOSes. */ 2505 identity_base = 0xfeffc000; 2506 2507 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); 2508 if (ret < 0) { 2509 return ret; 2510 } 2511 } 2512 2513 /* Set TSS base one page after EPT identity map. */ 2514 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); 2515 if (ret < 0) { 2516 return ret; 2517 } 2518 2519 /* Tell fw_cfg to notify the BIOS to reserve the range. */ 2520 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); 2521 if (ret < 0) { 2522 fprintf(stderr, "e820_add_entry() table is full\n"); 2523 return ret; 2524 } 2525 2526 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort); 2527 if (shadow_mem != -1) { 2528 shadow_mem /= 4096; 2529 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); 2530 if (ret < 0) { 2531 return ret; 2532 } 2533 } 2534 2535 if (kvm_check_extension(s, KVM_CAP_X86_SMM) && 2536 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) && 2537 x86_machine_is_smm_enabled(X86_MACHINE(ms))) { 2538 smram_machine_done.notify = register_smram_listener; 2539 qemu_add_machine_init_done_notifier(&smram_machine_done); 2540 } 2541 2542 if (enable_cpu_pm) { 2543 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS); 2544 int ret; 2545 2546 /* Work around for kernel header with a typo. TODO: fix header and drop. */ 2547 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT) 2548 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL 2549 #endif 2550 if (disable_exits) { 2551 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT | 2552 KVM_X86_DISABLE_EXITS_HLT | 2553 KVM_X86_DISABLE_EXITS_PAUSE | 2554 KVM_X86_DISABLE_EXITS_CSTATE); 2555 } 2556 2557 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0, 2558 disable_exits); 2559 if (ret < 0) { 2560 error_report("kvm: guest stopping CPU not supported: %s", 2561 strerror(-ret)); 2562 } 2563 } 2564 2565 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) { 2566 X86MachineState *x86ms = X86_MACHINE(ms); 2567 2568 if (x86ms->bus_lock_ratelimit > 0) { 2569 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT); 2570 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) { 2571 error_report("kvm: bus lock detection unsupported"); 2572 return -ENOTSUP; 2573 } 2574 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0, 2575 KVM_BUS_LOCK_DETECTION_EXIT); 2576 if (ret < 0) { 2577 error_report("kvm: Failed to enable bus lock detection cap: %s", 2578 strerror(-ret)); 2579 return ret; 2580 } 2581 ratelimit_init(&bus_lock_ratelimit_ctrl); 2582 ratelimit_set_speed(&bus_lock_ratelimit_ctrl, 2583 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME); 2584 } 2585 } 2586 2587 return 0; 2588 } 2589 2590 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 2591 { 2592 lhs->selector = rhs->selector; 2593 lhs->base = rhs->base; 2594 lhs->limit = rhs->limit; 2595 lhs->type = 3; 2596 lhs->present = 1; 2597 lhs->dpl = 3; 2598 lhs->db = 0; 2599 lhs->s = 1; 2600 lhs->l = 0; 2601 lhs->g = 0; 2602 lhs->avl = 0; 2603 lhs->unusable = 0; 2604 } 2605 2606 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 2607 { 2608 unsigned flags = rhs->flags; 2609 lhs->selector = rhs->selector; 2610 lhs->base = rhs->base; 2611 lhs->limit = rhs->limit; 2612 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; 2613 lhs->present = (flags & DESC_P_MASK) != 0; 2614 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; 2615 lhs->db = (flags >> DESC_B_SHIFT) & 1; 2616 lhs->s = (flags & DESC_S_MASK) != 0; 2617 lhs->l = (flags >> DESC_L_SHIFT) & 1; 2618 lhs->g = (flags & DESC_G_MASK) != 0; 2619 lhs->avl = (flags & DESC_AVL_MASK) != 0; 2620 lhs->unusable = !lhs->present; 2621 lhs->padding = 0; 2622 } 2623 2624 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) 2625 { 2626 lhs->selector = rhs->selector; 2627 lhs->base = rhs->base; 2628 lhs->limit = rhs->limit; 2629 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | 2630 ((rhs->present && !rhs->unusable) * DESC_P_MASK) | 2631 (rhs->dpl << DESC_DPL_SHIFT) | 2632 (rhs->db << DESC_B_SHIFT) | 2633 (rhs->s * DESC_S_MASK) | 2634 (rhs->l << DESC_L_SHIFT) | 2635 (rhs->g * DESC_G_MASK) | 2636 (rhs->avl * DESC_AVL_MASK); 2637 } 2638 2639 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) 2640 { 2641 if (set) { 2642 *kvm_reg = *qemu_reg; 2643 } else { 2644 *qemu_reg = *kvm_reg; 2645 } 2646 } 2647 2648 static int kvm_getput_regs(X86CPU *cpu, int set) 2649 { 2650 CPUX86State *env = &cpu->env; 2651 struct kvm_regs regs; 2652 int ret = 0; 2653 2654 if (!set) { 2655 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); 2656 if (ret < 0) { 2657 return ret; 2658 } 2659 } 2660 2661 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); 2662 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); 2663 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); 2664 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); 2665 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); 2666 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); 2667 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); 2668 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); 2669 #ifdef TARGET_X86_64 2670 kvm_getput_reg(®s.r8, &env->regs[8], set); 2671 kvm_getput_reg(®s.r9, &env->regs[9], set); 2672 kvm_getput_reg(®s.r10, &env->regs[10], set); 2673 kvm_getput_reg(®s.r11, &env->regs[11], set); 2674 kvm_getput_reg(®s.r12, &env->regs[12], set); 2675 kvm_getput_reg(®s.r13, &env->regs[13], set); 2676 kvm_getput_reg(®s.r14, &env->regs[14], set); 2677 kvm_getput_reg(®s.r15, &env->regs[15], set); 2678 #endif 2679 2680 kvm_getput_reg(®s.rflags, &env->eflags, set); 2681 kvm_getput_reg(®s.rip, &env->eip, set); 2682 2683 if (set) { 2684 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); 2685 } 2686 2687 return ret; 2688 } 2689 2690 static int kvm_put_fpu(X86CPU *cpu) 2691 { 2692 CPUX86State *env = &cpu->env; 2693 struct kvm_fpu fpu; 2694 int i; 2695 2696 memset(&fpu, 0, sizeof fpu); 2697 fpu.fsw = env->fpus & ~(7 << 11); 2698 fpu.fsw |= (env->fpstt & 7) << 11; 2699 fpu.fcw = env->fpuc; 2700 fpu.last_opcode = env->fpop; 2701 fpu.last_ip = env->fpip; 2702 fpu.last_dp = env->fpdp; 2703 for (i = 0; i < 8; ++i) { 2704 fpu.ftwx |= (!env->fptags[i]) << i; 2705 } 2706 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); 2707 for (i = 0; i < CPU_NB_REGS; i++) { 2708 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0)); 2709 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1)); 2710 } 2711 fpu.mxcsr = env->mxcsr; 2712 2713 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); 2714 } 2715 2716 static int kvm_put_xsave(X86CPU *cpu) 2717 { 2718 CPUX86State *env = &cpu->env; 2719 void *xsave = env->xsave_buf; 2720 2721 if (!has_xsave) { 2722 return kvm_put_fpu(cpu); 2723 } 2724 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len); 2725 2726 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); 2727 } 2728 2729 static int kvm_put_xcrs(X86CPU *cpu) 2730 { 2731 CPUX86State *env = &cpu->env; 2732 struct kvm_xcrs xcrs = {}; 2733 2734 if (!has_xcrs) { 2735 return 0; 2736 } 2737 2738 xcrs.nr_xcrs = 1; 2739 xcrs.flags = 0; 2740 xcrs.xcrs[0].xcr = 0; 2741 xcrs.xcrs[0].value = env->xcr0; 2742 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); 2743 } 2744 2745 static int kvm_put_sregs(X86CPU *cpu) 2746 { 2747 CPUX86State *env = &cpu->env; 2748 struct kvm_sregs sregs; 2749 2750 /* 2751 * The interrupt_bitmap is ignored because KVM_SET_SREGS is 2752 * always followed by KVM_SET_VCPU_EVENTS. 2753 */ 2754 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); 2755 2756 if ((env->eflags & VM_MASK)) { 2757 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 2758 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 2759 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 2760 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 2761 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 2762 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 2763 } else { 2764 set_seg(&sregs.cs, &env->segs[R_CS]); 2765 set_seg(&sregs.ds, &env->segs[R_DS]); 2766 set_seg(&sregs.es, &env->segs[R_ES]); 2767 set_seg(&sregs.fs, &env->segs[R_FS]); 2768 set_seg(&sregs.gs, &env->segs[R_GS]); 2769 set_seg(&sregs.ss, &env->segs[R_SS]); 2770 } 2771 2772 set_seg(&sregs.tr, &env->tr); 2773 set_seg(&sregs.ldt, &env->ldt); 2774 2775 sregs.idt.limit = env->idt.limit; 2776 sregs.idt.base = env->idt.base; 2777 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 2778 sregs.gdt.limit = env->gdt.limit; 2779 sregs.gdt.base = env->gdt.base; 2780 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 2781 2782 sregs.cr0 = env->cr[0]; 2783 sregs.cr2 = env->cr[2]; 2784 sregs.cr3 = env->cr[3]; 2785 sregs.cr4 = env->cr[4]; 2786 2787 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 2788 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 2789 2790 sregs.efer = env->efer; 2791 2792 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); 2793 } 2794 2795 static int kvm_put_sregs2(X86CPU *cpu) 2796 { 2797 CPUX86State *env = &cpu->env; 2798 struct kvm_sregs2 sregs; 2799 int i; 2800 2801 sregs.flags = 0; 2802 2803 if ((env->eflags & VM_MASK)) { 2804 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 2805 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 2806 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 2807 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 2808 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 2809 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 2810 } else { 2811 set_seg(&sregs.cs, &env->segs[R_CS]); 2812 set_seg(&sregs.ds, &env->segs[R_DS]); 2813 set_seg(&sregs.es, &env->segs[R_ES]); 2814 set_seg(&sregs.fs, &env->segs[R_FS]); 2815 set_seg(&sregs.gs, &env->segs[R_GS]); 2816 set_seg(&sregs.ss, &env->segs[R_SS]); 2817 } 2818 2819 set_seg(&sregs.tr, &env->tr); 2820 set_seg(&sregs.ldt, &env->ldt); 2821 2822 sregs.idt.limit = env->idt.limit; 2823 sregs.idt.base = env->idt.base; 2824 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 2825 sregs.gdt.limit = env->gdt.limit; 2826 sregs.gdt.base = env->gdt.base; 2827 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 2828 2829 sregs.cr0 = env->cr[0]; 2830 sregs.cr2 = env->cr[2]; 2831 sregs.cr3 = env->cr[3]; 2832 sregs.cr4 = env->cr[4]; 2833 2834 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 2835 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 2836 2837 sregs.efer = env->efer; 2838 2839 if (env->pdptrs_valid) { 2840 for (i = 0; i < 4; i++) { 2841 sregs.pdptrs[i] = env->pdptrs[i]; 2842 } 2843 sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 2844 } 2845 2846 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs); 2847 } 2848 2849 2850 static void kvm_msr_buf_reset(X86CPU *cpu) 2851 { 2852 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); 2853 } 2854 2855 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) 2856 { 2857 struct kvm_msrs *msrs = cpu->kvm_msr_buf; 2858 void *limit = ((void *)msrs) + MSR_BUF_SIZE; 2859 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; 2860 2861 assert((void *)(entry + 1) <= limit); 2862 2863 entry->index = index; 2864 entry->reserved = 0; 2865 entry->data = value; 2866 msrs->nmsrs++; 2867 } 2868 2869 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) 2870 { 2871 kvm_msr_buf_reset(cpu); 2872 kvm_msr_entry_add(cpu, index, value); 2873 2874 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 2875 } 2876 2877 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value) 2878 { 2879 int ret; 2880 struct { 2881 struct kvm_msrs info; 2882 struct kvm_msr_entry entries[1]; 2883 } msr_data = { 2884 .info.nmsrs = 1, 2885 .entries[0].index = index, 2886 }; 2887 2888 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); 2889 if (ret < 0) { 2890 return ret; 2891 } 2892 assert(ret == 1); 2893 *value = msr_data.entries[0].data; 2894 return ret; 2895 } 2896 void kvm_put_apicbase(X86CPU *cpu, uint64_t value) 2897 { 2898 int ret; 2899 2900 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); 2901 assert(ret == 1); 2902 } 2903 2904 static int kvm_put_tscdeadline_msr(X86CPU *cpu) 2905 { 2906 CPUX86State *env = &cpu->env; 2907 int ret; 2908 2909 if (!has_msr_tsc_deadline) { 2910 return 0; 2911 } 2912 2913 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); 2914 if (ret < 0) { 2915 return ret; 2916 } 2917 2918 assert(ret == 1); 2919 return 0; 2920 } 2921 2922 /* 2923 * Provide a separate write service for the feature control MSR in order to 2924 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done 2925 * before writing any other state because forcibly leaving nested mode 2926 * invalidates the VCPU state. 2927 */ 2928 static int kvm_put_msr_feature_control(X86CPU *cpu) 2929 { 2930 int ret; 2931 2932 if (!has_msr_feature_control) { 2933 return 0; 2934 } 2935 2936 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, 2937 cpu->env.msr_ia32_feature_control); 2938 if (ret < 0) { 2939 return ret; 2940 } 2941 2942 assert(ret == 1); 2943 return 0; 2944 } 2945 2946 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features) 2947 { 2948 uint32_t default1, can_be_one, can_be_zero; 2949 uint32_t must_be_one; 2950 2951 switch (index) { 2952 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 2953 default1 = 0x00000016; 2954 break; 2955 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 2956 default1 = 0x0401e172; 2957 break; 2958 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 2959 default1 = 0x000011ff; 2960 break; 2961 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 2962 default1 = 0x00036dff; 2963 break; 2964 case MSR_IA32_VMX_PROCBASED_CTLS2: 2965 default1 = 0; 2966 break; 2967 default: 2968 abort(); 2969 } 2970 2971 /* If a feature bit is set, the control can be either set or clear. 2972 * Otherwise the value is limited to either 0 or 1 by default1. 2973 */ 2974 can_be_one = features | default1; 2975 can_be_zero = features | ~default1; 2976 must_be_one = ~can_be_zero; 2977 2978 /* 2979 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one). 2980 * Bit 32:63 -> 1 if the control bit can be one. 2981 */ 2982 return must_be_one | (((uint64_t)can_be_one) << 32); 2983 } 2984 2985 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f) 2986 { 2987 uint64_t kvm_vmx_basic = 2988 kvm_arch_get_supported_msr_feature(kvm_state, 2989 MSR_IA32_VMX_BASIC); 2990 2991 if (!kvm_vmx_basic) { 2992 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0), 2993 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail. 2994 */ 2995 return; 2996 } 2997 2998 uint64_t kvm_vmx_misc = 2999 kvm_arch_get_supported_msr_feature(kvm_state, 3000 MSR_IA32_VMX_MISC); 3001 uint64_t kvm_vmx_ept_vpid = 3002 kvm_arch_get_supported_msr_feature(kvm_state, 3003 MSR_IA32_VMX_EPT_VPID_CAP); 3004 3005 /* 3006 * If the guest is 64-bit, a value of 1 is allowed for the host address 3007 * space size vmexit control. 3008 */ 3009 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM 3010 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0; 3011 3012 /* 3013 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should 3014 * not change them for backwards compatibility. 3015 */ 3016 uint64_t fixed_vmx_basic = kvm_vmx_basic & 3017 (MSR_VMX_BASIC_VMCS_REVISION_MASK | 3018 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK | 3019 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK); 3020 3021 /* 3022 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can 3023 * change in the future but are always zero for now, clear them to be 3024 * future proof. Bits 32-63 in theory could change, though KVM does 3025 * not support dual-monitor treatment and probably never will; mask 3026 * them out as well. 3027 */ 3028 uint64_t fixed_vmx_misc = kvm_vmx_misc & 3029 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK | 3030 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK); 3031 3032 /* 3033 * EPT memory types should not change either, so we do not bother 3034 * adding features for them. 3035 */ 3036 uint64_t fixed_vmx_ept_mask = 3037 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ? 3038 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0); 3039 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask; 3040 3041 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 3042 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 3043 f[FEAT_VMX_PROCBASED_CTLS])); 3044 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS, 3045 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS, 3046 f[FEAT_VMX_PINBASED_CTLS])); 3047 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS, 3048 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS, 3049 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit); 3050 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS, 3051 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS, 3052 f[FEAT_VMX_ENTRY_CTLS])); 3053 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2, 3054 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2, 3055 f[FEAT_VMX_SECONDARY_CTLS])); 3056 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP, 3057 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid); 3058 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC, 3059 f[FEAT_VMX_BASIC] | fixed_vmx_basic); 3060 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC, 3061 f[FEAT_VMX_MISC] | fixed_vmx_misc); 3062 if (has_msr_vmx_vmfunc) { 3063 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]); 3064 } 3065 3066 /* 3067 * Just to be safe, write these with constant values. The CRn_FIXED1 3068 * MSRs are generated by KVM based on the vCPU's CPUID. 3069 */ 3070 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0, 3071 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK); 3072 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0, 3073 CR4_VMXE_MASK); 3074 3075 if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) { 3076 /* TSC multiplier (0x2032). */ 3077 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32); 3078 } else { 3079 /* Preemption timer (0x482E). */ 3080 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E); 3081 } 3082 } 3083 3084 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f) 3085 { 3086 uint64_t kvm_perf_cap = 3087 kvm_arch_get_supported_msr_feature(kvm_state, 3088 MSR_IA32_PERF_CAPABILITIES); 3089 3090 if (kvm_perf_cap) { 3091 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES, 3092 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]); 3093 } 3094 } 3095 3096 static int kvm_buf_set_msrs(X86CPU *cpu) 3097 { 3098 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 3099 if (ret < 0) { 3100 return ret; 3101 } 3102 3103 if (ret < cpu->kvm_msr_buf->nmsrs) { 3104 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 3105 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, 3106 (uint32_t)e->index, (uint64_t)e->data); 3107 } 3108 3109 assert(ret == cpu->kvm_msr_buf->nmsrs); 3110 return 0; 3111 } 3112 3113 static void kvm_init_msrs(X86CPU *cpu) 3114 { 3115 CPUX86State *env = &cpu->env; 3116 3117 kvm_msr_buf_reset(cpu); 3118 if (has_msr_arch_capabs) { 3119 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES, 3120 env->features[FEAT_ARCH_CAPABILITIES]); 3121 } 3122 3123 if (has_msr_core_capabs) { 3124 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY, 3125 env->features[FEAT_CORE_CAPABILITY]); 3126 } 3127 3128 if (has_msr_perf_capabs && cpu->enable_pmu) { 3129 kvm_msr_entry_add_perf(cpu, env->features); 3130 } 3131 3132 if (has_msr_ucode_rev) { 3133 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev); 3134 } 3135 3136 /* 3137 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but 3138 * all kernels with MSR features should have them. 3139 */ 3140 if (kvm_feature_msrs && cpu_has_vmx(env)) { 3141 kvm_msr_entry_add_vmx(cpu, env->features); 3142 } 3143 3144 assert(kvm_buf_set_msrs(cpu) == 0); 3145 } 3146 3147 static int kvm_put_msrs(X86CPU *cpu, int level) 3148 { 3149 CPUX86State *env = &cpu->env; 3150 int i; 3151 3152 kvm_msr_buf_reset(cpu); 3153 3154 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); 3155 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); 3156 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); 3157 kvm_msr_entry_add(cpu, MSR_PAT, env->pat); 3158 if (has_msr_star) { 3159 kvm_msr_entry_add(cpu, MSR_STAR, env->star); 3160 } 3161 if (has_msr_hsave_pa) { 3162 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); 3163 } 3164 if (has_msr_tsc_aux) { 3165 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); 3166 } 3167 if (has_msr_tsc_adjust) { 3168 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); 3169 } 3170 if (has_msr_misc_enable) { 3171 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 3172 env->msr_ia32_misc_enable); 3173 } 3174 if (has_msr_smbase) { 3175 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); 3176 } 3177 if (has_msr_smi_count) { 3178 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count); 3179 } 3180 if (has_msr_pkrs) { 3181 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs); 3182 } 3183 if (has_msr_bndcfgs) { 3184 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); 3185 } 3186 if (has_msr_xss) { 3187 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); 3188 } 3189 if (has_msr_umwait) { 3190 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait); 3191 } 3192 if (has_msr_spec_ctrl) { 3193 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl); 3194 } 3195 if (has_tsc_scale_msr) { 3196 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr); 3197 } 3198 3199 if (has_msr_tsx_ctrl) { 3200 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl); 3201 } 3202 if (has_msr_virt_ssbd) { 3203 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd); 3204 } 3205 3206 #ifdef TARGET_X86_64 3207 if (lm_capable_kernel) { 3208 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); 3209 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); 3210 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); 3211 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); 3212 } 3213 #endif 3214 3215 /* 3216 * The following MSRs have side effects on the guest or are too heavy 3217 * for normal writeback. Limit them to reset or full state updates. 3218 */ 3219 if (level >= KVM_PUT_RESET_STATE) { 3220 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); 3221 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); 3222 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); 3223 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { 3224 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr); 3225 } 3226 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { 3227 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); 3228 } 3229 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { 3230 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); 3231 } 3232 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { 3233 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); 3234 } 3235 3236 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { 3237 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr); 3238 } 3239 3240 if (has_architectural_pmu_version > 0) { 3241 if (has_architectural_pmu_version > 1) { 3242 /* Stop the counter. */ 3243 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 3244 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 3245 } 3246 3247 /* Set the counter values. */ 3248 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 3249 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 3250 env->msr_fixed_counters[i]); 3251 } 3252 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 3253 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 3254 env->msr_gp_counters[i]); 3255 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 3256 env->msr_gp_evtsel[i]); 3257 } 3258 if (has_architectural_pmu_version > 1) { 3259 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 3260 env->msr_global_status); 3261 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 3262 env->msr_global_ovf_ctrl); 3263 3264 /* Now start the PMU. */ 3265 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 3266 env->msr_fixed_ctr_ctrl); 3267 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 3268 env->msr_global_ctrl); 3269 } 3270 } 3271 /* 3272 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add, 3273 * only sync them to KVM on the first cpu 3274 */ 3275 if (current_cpu == first_cpu) { 3276 if (has_msr_hv_hypercall) { 3277 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 3278 env->msr_hv_guest_os_id); 3279 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 3280 env->msr_hv_hypercall); 3281 } 3282 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 3283 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 3284 env->msr_hv_tsc); 3285 } 3286 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 3287 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 3288 env->msr_hv_reenlightenment_control); 3289 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 3290 env->msr_hv_tsc_emulation_control); 3291 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 3292 env->msr_hv_tsc_emulation_status); 3293 } 3294 #ifdef CONFIG_SYNDBG 3295 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) && 3296 has_msr_hv_syndbg_options) { 3297 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 3298 hyperv_syndbg_query_options()); 3299 } 3300 #endif 3301 } 3302 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 3303 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 3304 env->msr_hv_vapic); 3305 } 3306 if (has_msr_hv_crash) { 3307 int j; 3308 3309 for (j = 0; j < HV_CRASH_PARAMS; j++) 3310 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 3311 env->msr_hv_crash_params[j]); 3312 3313 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY); 3314 } 3315 if (has_msr_hv_runtime) { 3316 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); 3317 } 3318 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) 3319 && hv_vpindex_settable) { 3320 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX, 3321 hyperv_vp_index(CPU(cpu))); 3322 } 3323 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 3324 int j; 3325 3326 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION); 3327 3328 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 3329 env->msr_hv_synic_control); 3330 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 3331 env->msr_hv_synic_evt_page); 3332 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 3333 env->msr_hv_synic_msg_page); 3334 3335 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { 3336 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, 3337 env->msr_hv_synic_sint[j]); 3338 } 3339 } 3340 if (has_msr_hv_stimer) { 3341 int j; 3342 3343 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { 3344 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, 3345 env->msr_hv_stimer_config[j]); 3346 } 3347 3348 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { 3349 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, 3350 env->msr_hv_stimer_count[j]); 3351 } 3352 } 3353 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 3354 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); 3355 3356 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); 3357 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); 3358 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); 3359 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); 3360 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); 3361 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); 3362 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); 3363 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); 3364 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); 3365 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); 3366 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); 3367 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); 3368 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 3369 /* The CPU GPs if we write to a bit above the physical limit of 3370 * the host CPU (and KVM emulates that) 3371 */ 3372 uint64_t mask = env->mtrr_var[i].mask; 3373 mask &= phys_mask; 3374 3375 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 3376 env->mtrr_var[i].base); 3377 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); 3378 } 3379 } 3380 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 3381 int addr_num = kvm_arch_get_supported_cpuid(kvm_state, 3382 0x14, 1, R_EAX) & 0x7; 3383 3384 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 3385 env->msr_rtit_ctrl); 3386 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 3387 env->msr_rtit_status); 3388 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 3389 env->msr_rtit_output_base); 3390 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 3391 env->msr_rtit_output_mask); 3392 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 3393 env->msr_rtit_cr3_match); 3394 for (i = 0; i < addr_num; i++) { 3395 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 3396 env->msr_rtit_addrs[i]); 3397 } 3398 } 3399 3400 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 3401 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 3402 env->msr_ia32_sgxlepubkeyhash[0]); 3403 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 3404 env->msr_ia32_sgxlepubkeyhash[1]); 3405 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 3406 env->msr_ia32_sgxlepubkeyhash[2]); 3407 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 3408 env->msr_ia32_sgxlepubkeyhash[3]); 3409 } 3410 3411 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) { 3412 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 3413 env->msr_xfd); 3414 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 3415 env->msr_xfd_err); 3416 } 3417 3418 if (kvm_enabled() && cpu->enable_pmu && 3419 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) { 3420 uint64_t depth; 3421 int i, ret; 3422 3423 /* 3424 * Only migrate Arch LBR states when the host Arch LBR depth 3425 * equals that of source guest's, this is to avoid mismatch 3426 * of guest/host config for the msr hence avoid unexpected 3427 * misbehavior. 3428 */ 3429 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth); 3430 3431 if (ret == 1 && !!depth && depth == env->msr_lbr_depth) { 3432 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl); 3433 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth); 3434 3435 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) { 3436 if (!env->lbr_records[i].from) { 3437 continue; 3438 } 3439 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 3440 env->lbr_records[i].from); 3441 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 3442 env->lbr_records[i].to); 3443 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 3444 env->lbr_records[i].info); 3445 } 3446 } 3447 } 3448 3449 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see 3450 * kvm_put_msr_feature_control. */ 3451 } 3452 3453 if (env->mcg_cap) { 3454 int i; 3455 3456 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); 3457 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); 3458 if (has_msr_mcg_ext_ctl) { 3459 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); 3460 } 3461 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 3462 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); 3463 } 3464 } 3465 3466 return kvm_buf_set_msrs(cpu); 3467 } 3468 3469 3470 static int kvm_get_fpu(X86CPU *cpu) 3471 { 3472 CPUX86State *env = &cpu->env; 3473 struct kvm_fpu fpu; 3474 int i, ret; 3475 3476 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); 3477 if (ret < 0) { 3478 return ret; 3479 } 3480 3481 env->fpstt = (fpu.fsw >> 11) & 7; 3482 env->fpus = fpu.fsw; 3483 env->fpuc = fpu.fcw; 3484 env->fpop = fpu.last_opcode; 3485 env->fpip = fpu.last_ip; 3486 env->fpdp = fpu.last_dp; 3487 for (i = 0; i < 8; ++i) { 3488 env->fptags[i] = !((fpu.ftwx >> i) & 1); 3489 } 3490 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); 3491 for (i = 0; i < CPU_NB_REGS; i++) { 3492 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]); 3493 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]); 3494 } 3495 env->mxcsr = fpu.mxcsr; 3496 3497 return 0; 3498 } 3499 3500 static int kvm_get_xsave(X86CPU *cpu) 3501 { 3502 CPUX86State *env = &cpu->env; 3503 void *xsave = env->xsave_buf; 3504 int type, ret; 3505 3506 if (!has_xsave) { 3507 return kvm_get_fpu(cpu); 3508 } 3509 3510 type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE; 3511 ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave); 3512 if (ret < 0) { 3513 return ret; 3514 } 3515 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len); 3516 3517 return 0; 3518 } 3519 3520 static int kvm_get_xcrs(X86CPU *cpu) 3521 { 3522 CPUX86State *env = &cpu->env; 3523 int i, ret; 3524 struct kvm_xcrs xcrs; 3525 3526 if (!has_xcrs) { 3527 return 0; 3528 } 3529 3530 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); 3531 if (ret < 0) { 3532 return ret; 3533 } 3534 3535 for (i = 0; i < xcrs.nr_xcrs; i++) { 3536 /* Only support xcr0 now */ 3537 if (xcrs.xcrs[i].xcr == 0) { 3538 env->xcr0 = xcrs.xcrs[i].value; 3539 break; 3540 } 3541 } 3542 return 0; 3543 } 3544 3545 static int kvm_get_sregs(X86CPU *cpu) 3546 { 3547 CPUX86State *env = &cpu->env; 3548 struct kvm_sregs sregs; 3549 int ret; 3550 3551 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); 3552 if (ret < 0) { 3553 return ret; 3554 } 3555 3556 /* 3557 * The interrupt_bitmap is ignored because KVM_GET_SREGS is 3558 * always preceded by KVM_GET_VCPU_EVENTS. 3559 */ 3560 3561 get_seg(&env->segs[R_CS], &sregs.cs); 3562 get_seg(&env->segs[R_DS], &sregs.ds); 3563 get_seg(&env->segs[R_ES], &sregs.es); 3564 get_seg(&env->segs[R_FS], &sregs.fs); 3565 get_seg(&env->segs[R_GS], &sregs.gs); 3566 get_seg(&env->segs[R_SS], &sregs.ss); 3567 3568 get_seg(&env->tr, &sregs.tr); 3569 get_seg(&env->ldt, &sregs.ldt); 3570 3571 env->idt.limit = sregs.idt.limit; 3572 env->idt.base = sregs.idt.base; 3573 env->gdt.limit = sregs.gdt.limit; 3574 env->gdt.base = sregs.gdt.base; 3575 3576 env->cr[0] = sregs.cr0; 3577 env->cr[2] = sregs.cr2; 3578 env->cr[3] = sregs.cr3; 3579 env->cr[4] = sregs.cr4; 3580 3581 env->efer = sregs.efer; 3582 3583 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 3584 x86_update_hflags(env); 3585 3586 return 0; 3587 } 3588 3589 static int kvm_get_sregs2(X86CPU *cpu) 3590 { 3591 CPUX86State *env = &cpu->env; 3592 struct kvm_sregs2 sregs; 3593 int i, ret; 3594 3595 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs); 3596 if (ret < 0) { 3597 return ret; 3598 } 3599 3600 get_seg(&env->segs[R_CS], &sregs.cs); 3601 get_seg(&env->segs[R_DS], &sregs.ds); 3602 get_seg(&env->segs[R_ES], &sregs.es); 3603 get_seg(&env->segs[R_FS], &sregs.fs); 3604 get_seg(&env->segs[R_GS], &sregs.gs); 3605 get_seg(&env->segs[R_SS], &sregs.ss); 3606 3607 get_seg(&env->tr, &sregs.tr); 3608 get_seg(&env->ldt, &sregs.ldt); 3609 3610 env->idt.limit = sregs.idt.limit; 3611 env->idt.base = sregs.idt.base; 3612 env->gdt.limit = sregs.gdt.limit; 3613 env->gdt.base = sregs.gdt.base; 3614 3615 env->cr[0] = sregs.cr0; 3616 env->cr[2] = sregs.cr2; 3617 env->cr[3] = sregs.cr3; 3618 env->cr[4] = sregs.cr4; 3619 3620 env->efer = sregs.efer; 3621 3622 env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 3623 3624 if (env->pdptrs_valid) { 3625 for (i = 0; i < 4; i++) { 3626 env->pdptrs[i] = sregs.pdptrs[i]; 3627 } 3628 } 3629 3630 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 3631 x86_update_hflags(env); 3632 3633 return 0; 3634 } 3635 3636 static int kvm_get_msrs(X86CPU *cpu) 3637 { 3638 CPUX86State *env = &cpu->env; 3639 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; 3640 int ret, i; 3641 uint64_t mtrr_top_bits; 3642 3643 kvm_msr_buf_reset(cpu); 3644 3645 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); 3646 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); 3647 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); 3648 kvm_msr_entry_add(cpu, MSR_PAT, 0); 3649 if (has_msr_star) { 3650 kvm_msr_entry_add(cpu, MSR_STAR, 0); 3651 } 3652 if (has_msr_hsave_pa) { 3653 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); 3654 } 3655 if (has_msr_tsc_aux) { 3656 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); 3657 } 3658 if (has_msr_tsc_adjust) { 3659 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); 3660 } 3661 if (has_msr_tsc_deadline) { 3662 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); 3663 } 3664 if (has_msr_misc_enable) { 3665 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); 3666 } 3667 if (has_msr_smbase) { 3668 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); 3669 } 3670 if (has_msr_smi_count) { 3671 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0); 3672 } 3673 if (has_msr_feature_control) { 3674 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); 3675 } 3676 if (has_msr_pkrs) { 3677 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0); 3678 } 3679 if (has_msr_bndcfgs) { 3680 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); 3681 } 3682 if (has_msr_xss) { 3683 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); 3684 } 3685 if (has_msr_umwait) { 3686 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0); 3687 } 3688 if (has_msr_spec_ctrl) { 3689 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0); 3690 } 3691 if (has_tsc_scale_msr) { 3692 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0); 3693 } 3694 3695 if (has_msr_tsx_ctrl) { 3696 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0); 3697 } 3698 if (has_msr_virt_ssbd) { 3699 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0); 3700 } 3701 if (!env->tsc_valid) { 3702 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); 3703 env->tsc_valid = !runstate_is_running(); 3704 } 3705 3706 #ifdef TARGET_X86_64 3707 if (lm_capable_kernel) { 3708 kvm_msr_entry_add(cpu, MSR_CSTAR, 0); 3709 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); 3710 kvm_msr_entry_add(cpu, MSR_FMASK, 0); 3711 kvm_msr_entry_add(cpu, MSR_LSTAR, 0); 3712 } 3713 #endif 3714 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); 3715 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); 3716 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { 3717 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0); 3718 } 3719 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { 3720 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); 3721 } 3722 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { 3723 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); 3724 } 3725 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { 3726 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); 3727 } 3728 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { 3729 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1); 3730 } 3731 if (has_architectural_pmu_version > 0) { 3732 if (has_architectural_pmu_version > 1) { 3733 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 3734 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 3735 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); 3736 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); 3737 } 3738 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 3739 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); 3740 } 3741 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 3742 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); 3743 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); 3744 } 3745 } 3746 3747 if (env->mcg_cap) { 3748 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); 3749 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); 3750 if (has_msr_mcg_ext_ctl) { 3751 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); 3752 } 3753 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 3754 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); 3755 } 3756 } 3757 3758 if (has_msr_hv_hypercall) { 3759 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); 3760 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); 3761 } 3762 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 3763 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); 3764 } 3765 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 3766 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); 3767 } 3768 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 3769 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0); 3770 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0); 3771 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0); 3772 } 3773 if (has_msr_hv_syndbg_options) { 3774 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0); 3775 } 3776 if (has_msr_hv_crash) { 3777 int j; 3778 3779 for (j = 0; j < HV_CRASH_PARAMS; j++) { 3780 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); 3781 } 3782 } 3783 if (has_msr_hv_runtime) { 3784 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); 3785 } 3786 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 3787 uint32_t msr; 3788 3789 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); 3790 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); 3791 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); 3792 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { 3793 kvm_msr_entry_add(cpu, msr, 0); 3794 } 3795 } 3796 if (has_msr_hv_stimer) { 3797 uint32_t msr; 3798 3799 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; 3800 msr++) { 3801 kvm_msr_entry_add(cpu, msr, 0); 3802 } 3803 } 3804 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 3805 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); 3806 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); 3807 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); 3808 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); 3809 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); 3810 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); 3811 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); 3812 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); 3813 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); 3814 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); 3815 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); 3816 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); 3817 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 3818 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); 3819 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); 3820 } 3821 } 3822 3823 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 3824 int addr_num = 3825 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7; 3826 3827 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0); 3828 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0); 3829 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0); 3830 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0); 3831 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0); 3832 for (i = 0; i < addr_num; i++) { 3833 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0); 3834 } 3835 } 3836 3837 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 3838 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0); 3839 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0); 3840 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0); 3841 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0); 3842 } 3843 3844 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) { 3845 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0); 3846 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0); 3847 } 3848 3849 if (kvm_enabled() && cpu->enable_pmu && 3850 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) { 3851 uint64_t depth; 3852 int i, ret; 3853 3854 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth); 3855 if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) { 3856 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0); 3857 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0); 3858 3859 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) { 3860 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0); 3861 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0); 3862 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0); 3863 } 3864 } 3865 } 3866 3867 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); 3868 if (ret < 0) { 3869 return ret; 3870 } 3871 3872 if (ret < cpu->kvm_msr_buf->nmsrs) { 3873 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 3874 error_report("error: failed to get MSR 0x%" PRIx32, 3875 (uint32_t)e->index); 3876 } 3877 3878 assert(ret == cpu->kvm_msr_buf->nmsrs); 3879 /* 3880 * MTRR masks: Each mask consists of 5 parts 3881 * a 10..0: must be zero 3882 * b 11 : valid bit 3883 * c n-1.12: actual mask bits 3884 * d 51..n: reserved must be zero 3885 * e 63.52: reserved must be zero 3886 * 3887 * 'n' is the number of physical bits supported by the CPU and is 3888 * apparently always <= 52. We know our 'n' but don't know what 3889 * the destinations 'n' is; it might be smaller, in which case 3890 * it masks (c) on loading. It might be larger, in which case 3891 * we fill 'd' so that d..c is consistent irrespetive of the 'n' 3892 * we're migrating to. 3893 */ 3894 3895 if (cpu->fill_mtrr_mask) { 3896 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); 3897 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); 3898 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); 3899 } else { 3900 mtrr_top_bits = 0; 3901 } 3902 3903 for (i = 0; i < ret; i++) { 3904 uint32_t index = msrs[i].index; 3905 switch (index) { 3906 case MSR_IA32_SYSENTER_CS: 3907 env->sysenter_cs = msrs[i].data; 3908 break; 3909 case MSR_IA32_SYSENTER_ESP: 3910 env->sysenter_esp = msrs[i].data; 3911 break; 3912 case MSR_IA32_SYSENTER_EIP: 3913 env->sysenter_eip = msrs[i].data; 3914 break; 3915 case MSR_PAT: 3916 env->pat = msrs[i].data; 3917 break; 3918 case MSR_STAR: 3919 env->star = msrs[i].data; 3920 break; 3921 #ifdef TARGET_X86_64 3922 case MSR_CSTAR: 3923 env->cstar = msrs[i].data; 3924 break; 3925 case MSR_KERNELGSBASE: 3926 env->kernelgsbase = msrs[i].data; 3927 break; 3928 case MSR_FMASK: 3929 env->fmask = msrs[i].data; 3930 break; 3931 case MSR_LSTAR: 3932 env->lstar = msrs[i].data; 3933 break; 3934 #endif 3935 case MSR_IA32_TSC: 3936 env->tsc = msrs[i].data; 3937 break; 3938 case MSR_TSC_AUX: 3939 env->tsc_aux = msrs[i].data; 3940 break; 3941 case MSR_TSC_ADJUST: 3942 env->tsc_adjust = msrs[i].data; 3943 break; 3944 case MSR_IA32_TSCDEADLINE: 3945 env->tsc_deadline = msrs[i].data; 3946 break; 3947 case MSR_VM_HSAVE_PA: 3948 env->vm_hsave = msrs[i].data; 3949 break; 3950 case MSR_KVM_SYSTEM_TIME: 3951 env->system_time_msr = msrs[i].data; 3952 break; 3953 case MSR_KVM_WALL_CLOCK: 3954 env->wall_clock_msr = msrs[i].data; 3955 break; 3956 case MSR_MCG_STATUS: 3957 env->mcg_status = msrs[i].data; 3958 break; 3959 case MSR_MCG_CTL: 3960 env->mcg_ctl = msrs[i].data; 3961 break; 3962 case MSR_MCG_EXT_CTL: 3963 env->mcg_ext_ctl = msrs[i].data; 3964 break; 3965 case MSR_IA32_MISC_ENABLE: 3966 env->msr_ia32_misc_enable = msrs[i].data; 3967 break; 3968 case MSR_IA32_SMBASE: 3969 env->smbase = msrs[i].data; 3970 break; 3971 case MSR_SMI_COUNT: 3972 env->msr_smi_count = msrs[i].data; 3973 break; 3974 case MSR_IA32_FEATURE_CONTROL: 3975 env->msr_ia32_feature_control = msrs[i].data; 3976 break; 3977 case MSR_IA32_BNDCFGS: 3978 env->msr_bndcfgs = msrs[i].data; 3979 break; 3980 case MSR_IA32_XSS: 3981 env->xss = msrs[i].data; 3982 break; 3983 case MSR_IA32_UMWAIT_CONTROL: 3984 env->umwait = msrs[i].data; 3985 break; 3986 case MSR_IA32_PKRS: 3987 env->pkrs = msrs[i].data; 3988 break; 3989 default: 3990 if (msrs[i].index >= MSR_MC0_CTL && 3991 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { 3992 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; 3993 } 3994 break; 3995 case MSR_KVM_ASYNC_PF_EN: 3996 env->async_pf_en_msr = msrs[i].data; 3997 break; 3998 case MSR_KVM_ASYNC_PF_INT: 3999 env->async_pf_int_msr = msrs[i].data; 4000 break; 4001 case MSR_KVM_PV_EOI_EN: 4002 env->pv_eoi_en_msr = msrs[i].data; 4003 break; 4004 case MSR_KVM_STEAL_TIME: 4005 env->steal_time_msr = msrs[i].data; 4006 break; 4007 case MSR_KVM_POLL_CONTROL: { 4008 env->poll_control_msr = msrs[i].data; 4009 break; 4010 } 4011 case MSR_CORE_PERF_FIXED_CTR_CTRL: 4012 env->msr_fixed_ctr_ctrl = msrs[i].data; 4013 break; 4014 case MSR_CORE_PERF_GLOBAL_CTRL: 4015 env->msr_global_ctrl = msrs[i].data; 4016 break; 4017 case MSR_CORE_PERF_GLOBAL_STATUS: 4018 env->msr_global_status = msrs[i].data; 4019 break; 4020 case MSR_CORE_PERF_GLOBAL_OVF_CTRL: 4021 env->msr_global_ovf_ctrl = msrs[i].data; 4022 break; 4023 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: 4024 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; 4025 break; 4026 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: 4027 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; 4028 break; 4029 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: 4030 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; 4031 break; 4032 case HV_X64_MSR_HYPERCALL: 4033 env->msr_hv_hypercall = msrs[i].data; 4034 break; 4035 case HV_X64_MSR_GUEST_OS_ID: 4036 env->msr_hv_guest_os_id = msrs[i].data; 4037 break; 4038 case HV_X64_MSR_APIC_ASSIST_PAGE: 4039 env->msr_hv_vapic = msrs[i].data; 4040 break; 4041 case HV_X64_MSR_REFERENCE_TSC: 4042 env->msr_hv_tsc = msrs[i].data; 4043 break; 4044 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4045 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; 4046 break; 4047 case HV_X64_MSR_VP_RUNTIME: 4048 env->msr_hv_runtime = msrs[i].data; 4049 break; 4050 case HV_X64_MSR_SCONTROL: 4051 env->msr_hv_synic_control = msrs[i].data; 4052 break; 4053 case HV_X64_MSR_SIEFP: 4054 env->msr_hv_synic_evt_page = msrs[i].data; 4055 break; 4056 case HV_X64_MSR_SIMP: 4057 env->msr_hv_synic_msg_page = msrs[i].data; 4058 break; 4059 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 4060 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; 4061 break; 4062 case HV_X64_MSR_STIMER0_CONFIG: 4063 case HV_X64_MSR_STIMER1_CONFIG: 4064 case HV_X64_MSR_STIMER2_CONFIG: 4065 case HV_X64_MSR_STIMER3_CONFIG: 4066 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = 4067 msrs[i].data; 4068 break; 4069 case HV_X64_MSR_STIMER0_COUNT: 4070 case HV_X64_MSR_STIMER1_COUNT: 4071 case HV_X64_MSR_STIMER2_COUNT: 4072 case HV_X64_MSR_STIMER3_COUNT: 4073 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = 4074 msrs[i].data; 4075 break; 4076 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4077 env->msr_hv_reenlightenment_control = msrs[i].data; 4078 break; 4079 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4080 env->msr_hv_tsc_emulation_control = msrs[i].data; 4081 break; 4082 case HV_X64_MSR_TSC_EMULATION_STATUS: 4083 env->msr_hv_tsc_emulation_status = msrs[i].data; 4084 break; 4085 case HV_X64_MSR_SYNDBG_OPTIONS: 4086 env->msr_hv_syndbg_options = msrs[i].data; 4087 break; 4088 case MSR_MTRRdefType: 4089 env->mtrr_deftype = msrs[i].data; 4090 break; 4091 case MSR_MTRRfix64K_00000: 4092 env->mtrr_fixed[0] = msrs[i].data; 4093 break; 4094 case MSR_MTRRfix16K_80000: 4095 env->mtrr_fixed[1] = msrs[i].data; 4096 break; 4097 case MSR_MTRRfix16K_A0000: 4098 env->mtrr_fixed[2] = msrs[i].data; 4099 break; 4100 case MSR_MTRRfix4K_C0000: 4101 env->mtrr_fixed[3] = msrs[i].data; 4102 break; 4103 case MSR_MTRRfix4K_C8000: 4104 env->mtrr_fixed[4] = msrs[i].data; 4105 break; 4106 case MSR_MTRRfix4K_D0000: 4107 env->mtrr_fixed[5] = msrs[i].data; 4108 break; 4109 case MSR_MTRRfix4K_D8000: 4110 env->mtrr_fixed[6] = msrs[i].data; 4111 break; 4112 case MSR_MTRRfix4K_E0000: 4113 env->mtrr_fixed[7] = msrs[i].data; 4114 break; 4115 case MSR_MTRRfix4K_E8000: 4116 env->mtrr_fixed[8] = msrs[i].data; 4117 break; 4118 case MSR_MTRRfix4K_F0000: 4119 env->mtrr_fixed[9] = msrs[i].data; 4120 break; 4121 case MSR_MTRRfix4K_F8000: 4122 env->mtrr_fixed[10] = msrs[i].data; 4123 break; 4124 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): 4125 if (index & 1) { 4126 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | 4127 mtrr_top_bits; 4128 } else { 4129 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; 4130 } 4131 break; 4132 case MSR_IA32_SPEC_CTRL: 4133 env->spec_ctrl = msrs[i].data; 4134 break; 4135 case MSR_AMD64_TSC_RATIO: 4136 env->amd_tsc_scale_msr = msrs[i].data; 4137 break; 4138 case MSR_IA32_TSX_CTRL: 4139 env->tsx_ctrl = msrs[i].data; 4140 break; 4141 case MSR_VIRT_SSBD: 4142 env->virt_ssbd = msrs[i].data; 4143 break; 4144 case MSR_IA32_RTIT_CTL: 4145 env->msr_rtit_ctrl = msrs[i].data; 4146 break; 4147 case MSR_IA32_RTIT_STATUS: 4148 env->msr_rtit_status = msrs[i].data; 4149 break; 4150 case MSR_IA32_RTIT_OUTPUT_BASE: 4151 env->msr_rtit_output_base = msrs[i].data; 4152 break; 4153 case MSR_IA32_RTIT_OUTPUT_MASK: 4154 env->msr_rtit_output_mask = msrs[i].data; 4155 break; 4156 case MSR_IA32_RTIT_CR3_MATCH: 4157 env->msr_rtit_cr3_match = msrs[i].data; 4158 break; 4159 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 4160 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data; 4161 break; 4162 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 4163 env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] = 4164 msrs[i].data; 4165 break; 4166 case MSR_IA32_XFD: 4167 env->msr_xfd = msrs[i].data; 4168 break; 4169 case MSR_IA32_XFD_ERR: 4170 env->msr_xfd_err = msrs[i].data; 4171 break; 4172 case MSR_ARCH_LBR_CTL: 4173 env->msr_lbr_ctl = msrs[i].data; 4174 break; 4175 case MSR_ARCH_LBR_DEPTH: 4176 env->msr_lbr_depth = msrs[i].data; 4177 break; 4178 case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31: 4179 env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data; 4180 break; 4181 case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31: 4182 env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data; 4183 break; 4184 case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31: 4185 env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data; 4186 break; 4187 } 4188 } 4189 4190 return 0; 4191 } 4192 4193 static int kvm_put_mp_state(X86CPU *cpu) 4194 { 4195 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; 4196 4197 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 4198 } 4199 4200 static int kvm_get_mp_state(X86CPU *cpu) 4201 { 4202 CPUState *cs = CPU(cpu); 4203 CPUX86State *env = &cpu->env; 4204 struct kvm_mp_state mp_state; 4205 int ret; 4206 4207 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); 4208 if (ret < 0) { 4209 return ret; 4210 } 4211 env->mp_state = mp_state.mp_state; 4212 if (kvm_irqchip_in_kernel()) { 4213 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); 4214 } 4215 return 0; 4216 } 4217 4218 static int kvm_get_apic(X86CPU *cpu) 4219 { 4220 DeviceState *apic = cpu->apic_state; 4221 struct kvm_lapic_state kapic; 4222 int ret; 4223 4224 if (apic && kvm_irqchip_in_kernel()) { 4225 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); 4226 if (ret < 0) { 4227 return ret; 4228 } 4229 4230 kvm_get_apic_state(apic, &kapic); 4231 } 4232 return 0; 4233 } 4234 4235 static int kvm_put_vcpu_events(X86CPU *cpu, int level) 4236 { 4237 CPUState *cs = CPU(cpu); 4238 CPUX86State *env = &cpu->env; 4239 struct kvm_vcpu_events events = {}; 4240 4241 if (!kvm_has_vcpu_events()) { 4242 return 0; 4243 } 4244 4245 events.flags = 0; 4246 4247 if (has_exception_payload) { 4248 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 4249 events.exception.pending = env->exception_pending; 4250 events.exception_has_payload = env->exception_has_payload; 4251 events.exception_payload = env->exception_payload; 4252 } 4253 events.exception.nr = env->exception_nr; 4254 events.exception.injected = env->exception_injected; 4255 events.exception.has_error_code = env->has_error_code; 4256 events.exception.error_code = env->error_code; 4257 4258 events.interrupt.injected = (env->interrupt_injected >= 0); 4259 events.interrupt.nr = env->interrupt_injected; 4260 events.interrupt.soft = env->soft_interrupt; 4261 4262 events.nmi.injected = env->nmi_injected; 4263 events.nmi.pending = env->nmi_pending; 4264 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); 4265 4266 events.sipi_vector = env->sipi_vector; 4267 4268 if (has_msr_smbase) { 4269 events.smi.smm = !!(env->hflags & HF_SMM_MASK); 4270 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); 4271 if (kvm_irqchip_in_kernel()) { 4272 /* As soon as these are moved to the kernel, remove them 4273 * from cs->interrupt_request. 4274 */ 4275 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; 4276 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; 4277 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); 4278 } else { 4279 /* Keep these in cs->interrupt_request. */ 4280 events.smi.pending = 0; 4281 events.smi.latched_init = 0; 4282 } 4283 /* Stop SMI delivery on old machine types to avoid a reboot 4284 * on an inward migration of an old VM. 4285 */ 4286 if (!cpu->kvm_no_smi_migration) { 4287 events.flags |= KVM_VCPUEVENT_VALID_SMM; 4288 } 4289 } 4290 4291 if (level >= KVM_PUT_RESET_STATE) { 4292 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; 4293 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 4294 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR; 4295 } 4296 } 4297 4298 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 4299 } 4300 4301 static int kvm_get_vcpu_events(X86CPU *cpu) 4302 { 4303 CPUX86State *env = &cpu->env; 4304 struct kvm_vcpu_events events; 4305 int ret; 4306 4307 if (!kvm_has_vcpu_events()) { 4308 return 0; 4309 } 4310 4311 memset(&events, 0, sizeof(events)); 4312 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 4313 if (ret < 0) { 4314 return ret; 4315 } 4316 4317 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 4318 env->exception_pending = events.exception.pending; 4319 env->exception_has_payload = events.exception_has_payload; 4320 env->exception_payload = events.exception_payload; 4321 } else { 4322 env->exception_pending = 0; 4323 env->exception_has_payload = false; 4324 } 4325 env->exception_injected = events.exception.injected; 4326 env->exception_nr = 4327 (env->exception_pending || env->exception_injected) ? 4328 events.exception.nr : -1; 4329 env->has_error_code = events.exception.has_error_code; 4330 env->error_code = events.exception.error_code; 4331 4332 env->interrupt_injected = 4333 events.interrupt.injected ? events.interrupt.nr : -1; 4334 env->soft_interrupt = events.interrupt.soft; 4335 4336 env->nmi_injected = events.nmi.injected; 4337 env->nmi_pending = events.nmi.pending; 4338 if (events.nmi.masked) { 4339 env->hflags2 |= HF2_NMI_MASK; 4340 } else { 4341 env->hflags2 &= ~HF2_NMI_MASK; 4342 } 4343 4344 if (events.flags & KVM_VCPUEVENT_VALID_SMM) { 4345 if (events.smi.smm) { 4346 env->hflags |= HF_SMM_MASK; 4347 } else { 4348 env->hflags &= ~HF_SMM_MASK; 4349 } 4350 if (events.smi.pending) { 4351 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 4352 } else { 4353 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 4354 } 4355 if (events.smi.smm_inside_nmi) { 4356 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; 4357 } else { 4358 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; 4359 } 4360 if (events.smi.latched_init) { 4361 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 4362 } else { 4363 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 4364 } 4365 } 4366 4367 env->sipi_vector = events.sipi_vector; 4368 4369 return 0; 4370 } 4371 4372 static int kvm_guest_debug_workarounds(X86CPU *cpu) 4373 { 4374 CPUState *cs = CPU(cpu); 4375 CPUX86State *env = &cpu->env; 4376 int ret = 0; 4377 unsigned long reinject_trap = 0; 4378 4379 if (!kvm_has_vcpu_events()) { 4380 if (env->exception_nr == EXCP01_DB) { 4381 reinject_trap = KVM_GUESTDBG_INJECT_DB; 4382 } else if (env->exception_injected == EXCP03_INT3) { 4383 reinject_trap = KVM_GUESTDBG_INJECT_BP; 4384 } 4385 kvm_reset_exception(env); 4386 } 4387 4388 /* 4389 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF 4390 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this 4391 * by updating the debug state once again if single-stepping is on. 4392 * Another reason to call kvm_update_guest_debug here is a pending debug 4393 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to 4394 * reinject them via SET_GUEST_DEBUG. 4395 */ 4396 if (reinject_trap || 4397 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { 4398 ret = kvm_update_guest_debug(cs, reinject_trap); 4399 } 4400 return ret; 4401 } 4402 4403 static int kvm_put_debugregs(X86CPU *cpu) 4404 { 4405 CPUX86State *env = &cpu->env; 4406 struct kvm_debugregs dbgregs; 4407 int i; 4408 4409 if (!kvm_has_debugregs()) { 4410 return 0; 4411 } 4412 4413 memset(&dbgregs, 0, sizeof(dbgregs)); 4414 for (i = 0; i < 4; i++) { 4415 dbgregs.db[i] = env->dr[i]; 4416 } 4417 dbgregs.dr6 = env->dr[6]; 4418 dbgregs.dr7 = env->dr[7]; 4419 dbgregs.flags = 0; 4420 4421 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); 4422 } 4423 4424 static int kvm_get_debugregs(X86CPU *cpu) 4425 { 4426 CPUX86State *env = &cpu->env; 4427 struct kvm_debugregs dbgregs; 4428 int i, ret; 4429 4430 if (!kvm_has_debugregs()) { 4431 return 0; 4432 } 4433 4434 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); 4435 if (ret < 0) { 4436 return ret; 4437 } 4438 for (i = 0; i < 4; i++) { 4439 env->dr[i] = dbgregs.db[i]; 4440 } 4441 env->dr[4] = env->dr[6] = dbgregs.dr6; 4442 env->dr[5] = env->dr[7] = dbgregs.dr7; 4443 4444 return 0; 4445 } 4446 4447 static int kvm_put_nested_state(X86CPU *cpu) 4448 { 4449 CPUX86State *env = &cpu->env; 4450 int max_nested_state_len = kvm_max_nested_state_length(); 4451 4452 if (!env->nested_state) { 4453 return 0; 4454 } 4455 4456 /* 4457 * Copy flags that are affected by reset from env->hflags and env->hflags2. 4458 */ 4459 if (env->hflags & HF_GUEST_MASK) { 4460 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE; 4461 } else { 4462 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE; 4463 } 4464 4465 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */ 4466 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) { 4467 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET; 4468 } else { 4469 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET; 4470 } 4471 4472 assert(env->nested_state->size <= max_nested_state_len); 4473 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state); 4474 } 4475 4476 static int kvm_get_nested_state(X86CPU *cpu) 4477 { 4478 CPUX86State *env = &cpu->env; 4479 int max_nested_state_len = kvm_max_nested_state_length(); 4480 int ret; 4481 4482 if (!env->nested_state) { 4483 return 0; 4484 } 4485 4486 /* 4487 * It is possible that migration restored a smaller size into 4488 * nested_state->hdr.size than what our kernel support. 4489 * We preserve migration origin nested_state->hdr.size for 4490 * call to KVM_SET_NESTED_STATE but wish that our next call 4491 * to KVM_GET_NESTED_STATE will use max size our kernel support. 4492 */ 4493 env->nested_state->size = max_nested_state_len; 4494 4495 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state); 4496 if (ret < 0) { 4497 return ret; 4498 } 4499 4500 /* 4501 * Copy flags that are affected by reset to env->hflags and env->hflags2. 4502 */ 4503 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) { 4504 env->hflags |= HF_GUEST_MASK; 4505 } else { 4506 env->hflags &= ~HF_GUEST_MASK; 4507 } 4508 4509 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */ 4510 if (cpu_has_svm(env)) { 4511 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) { 4512 env->hflags2 |= HF2_GIF_MASK; 4513 } else { 4514 env->hflags2 &= ~HF2_GIF_MASK; 4515 } 4516 } 4517 4518 return ret; 4519 } 4520 4521 int kvm_arch_put_registers(CPUState *cpu, int level) 4522 { 4523 X86CPU *x86_cpu = X86_CPU(cpu); 4524 int ret; 4525 4526 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); 4527 4528 /* 4529 * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX 4530 * root operation upon vCPU reset. kvm_put_msr_feature_control() should also 4531 * preceed kvm_put_nested_state() when 'real' nested state is set. 4532 */ 4533 if (level >= KVM_PUT_RESET_STATE) { 4534 ret = kvm_put_msr_feature_control(x86_cpu); 4535 if (ret < 0) { 4536 return ret; 4537 } 4538 } 4539 4540 /* must be before kvm_put_nested_state so that EFER.SVME is set */ 4541 ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu); 4542 if (ret < 0) { 4543 return ret; 4544 } 4545 4546 if (level >= KVM_PUT_RESET_STATE) { 4547 ret = kvm_put_nested_state(x86_cpu); 4548 if (ret < 0) { 4549 return ret; 4550 } 4551 } 4552 4553 if (level == KVM_PUT_FULL_STATE) { 4554 /* We don't check for kvm_arch_set_tsc_khz() errors here, 4555 * because TSC frequency mismatch shouldn't abort migration, 4556 * unless the user explicitly asked for a more strict TSC 4557 * setting (e.g. using an explicit "tsc-freq" option). 4558 */ 4559 kvm_arch_set_tsc_khz(cpu); 4560 } 4561 4562 ret = kvm_getput_regs(x86_cpu, 1); 4563 if (ret < 0) { 4564 return ret; 4565 } 4566 ret = kvm_put_xsave(x86_cpu); 4567 if (ret < 0) { 4568 return ret; 4569 } 4570 ret = kvm_put_xcrs(x86_cpu); 4571 if (ret < 0) { 4572 return ret; 4573 } 4574 /* must be before kvm_put_msrs */ 4575 ret = kvm_inject_mce_oldstyle(x86_cpu); 4576 if (ret < 0) { 4577 return ret; 4578 } 4579 ret = kvm_put_msrs(x86_cpu, level); 4580 if (ret < 0) { 4581 return ret; 4582 } 4583 ret = kvm_put_vcpu_events(x86_cpu, level); 4584 if (ret < 0) { 4585 return ret; 4586 } 4587 if (level >= KVM_PUT_RESET_STATE) { 4588 ret = kvm_put_mp_state(x86_cpu); 4589 if (ret < 0) { 4590 return ret; 4591 } 4592 } 4593 4594 ret = kvm_put_tscdeadline_msr(x86_cpu); 4595 if (ret < 0) { 4596 return ret; 4597 } 4598 ret = kvm_put_debugregs(x86_cpu); 4599 if (ret < 0) { 4600 return ret; 4601 } 4602 /* must be last */ 4603 ret = kvm_guest_debug_workarounds(x86_cpu); 4604 if (ret < 0) { 4605 return ret; 4606 } 4607 return 0; 4608 } 4609 4610 int kvm_arch_get_registers(CPUState *cs) 4611 { 4612 X86CPU *cpu = X86_CPU(cs); 4613 int ret; 4614 4615 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); 4616 4617 ret = kvm_get_vcpu_events(cpu); 4618 if (ret < 0) { 4619 goto out; 4620 } 4621 /* 4622 * KVM_GET_MPSTATE can modify CS and RIP, call it before 4623 * KVM_GET_REGS and KVM_GET_SREGS. 4624 */ 4625 ret = kvm_get_mp_state(cpu); 4626 if (ret < 0) { 4627 goto out; 4628 } 4629 ret = kvm_getput_regs(cpu, 0); 4630 if (ret < 0) { 4631 goto out; 4632 } 4633 ret = kvm_get_xsave(cpu); 4634 if (ret < 0) { 4635 goto out; 4636 } 4637 ret = kvm_get_xcrs(cpu); 4638 if (ret < 0) { 4639 goto out; 4640 } 4641 ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu); 4642 if (ret < 0) { 4643 goto out; 4644 } 4645 ret = kvm_get_msrs(cpu); 4646 if (ret < 0) { 4647 goto out; 4648 } 4649 ret = kvm_get_apic(cpu); 4650 if (ret < 0) { 4651 goto out; 4652 } 4653 ret = kvm_get_debugregs(cpu); 4654 if (ret < 0) { 4655 goto out; 4656 } 4657 ret = kvm_get_nested_state(cpu); 4658 if (ret < 0) { 4659 goto out; 4660 } 4661 ret = 0; 4662 out: 4663 cpu_sync_bndcs_hflags(&cpu->env); 4664 return ret; 4665 } 4666 4667 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 4668 { 4669 X86CPU *x86_cpu = X86_CPU(cpu); 4670 CPUX86State *env = &x86_cpu->env; 4671 int ret; 4672 4673 /* Inject NMI */ 4674 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { 4675 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { 4676 qemu_mutex_lock_iothread(); 4677 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; 4678 qemu_mutex_unlock_iothread(); 4679 DPRINTF("injected NMI\n"); 4680 ret = kvm_vcpu_ioctl(cpu, KVM_NMI); 4681 if (ret < 0) { 4682 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", 4683 strerror(-ret)); 4684 } 4685 } 4686 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { 4687 qemu_mutex_lock_iothread(); 4688 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; 4689 qemu_mutex_unlock_iothread(); 4690 DPRINTF("injected SMI\n"); 4691 ret = kvm_vcpu_ioctl(cpu, KVM_SMI); 4692 if (ret < 0) { 4693 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", 4694 strerror(-ret)); 4695 } 4696 } 4697 } 4698 4699 if (!kvm_pic_in_kernel()) { 4700 qemu_mutex_lock_iothread(); 4701 } 4702 4703 /* Force the VCPU out of its inner loop to process any INIT requests 4704 * or (for userspace APIC, but it is cheap to combine the checks here) 4705 * pending TPR access reports. 4706 */ 4707 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { 4708 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && 4709 !(env->hflags & HF_SMM_MASK)) { 4710 cpu->exit_request = 1; 4711 } 4712 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { 4713 cpu->exit_request = 1; 4714 } 4715 } 4716 4717 if (!kvm_pic_in_kernel()) { 4718 /* Try to inject an interrupt if the guest can accept it */ 4719 if (run->ready_for_interrupt_injection && 4720 (cpu->interrupt_request & CPU_INTERRUPT_HARD) && 4721 (env->eflags & IF_MASK)) { 4722 int irq; 4723 4724 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; 4725 irq = cpu_get_pic_interrupt(env); 4726 if (irq >= 0) { 4727 struct kvm_interrupt intr; 4728 4729 intr.irq = irq; 4730 DPRINTF("injected interrupt %d\n", irq); 4731 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); 4732 if (ret < 0) { 4733 fprintf(stderr, 4734 "KVM: injection failed, interrupt lost (%s)\n", 4735 strerror(-ret)); 4736 } 4737 } 4738 } 4739 4740 /* If we have an interrupt but the guest is not ready to receive an 4741 * interrupt, request an interrupt window exit. This will 4742 * cause a return to userspace as soon as the guest is ready to 4743 * receive interrupts. */ 4744 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { 4745 run->request_interrupt_window = 1; 4746 } else { 4747 run->request_interrupt_window = 0; 4748 } 4749 4750 DPRINTF("setting tpr\n"); 4751 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); 4752 4753 qemu_mutex_unlock_iothread(); 4754 } 4755 } 4756 4757 static void kvm_rate_limit_on_bus_lock(void) 4758 { 4759 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1); 4760 4761 if (delay_ns) { 4762 g_usleep(delay_ns / SCALE_US); 4763 } 4764 } 4765 4766 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) 4767 { 4768 X86CPU *x86_cpu = X86_CPU(cpu); 4769 CPUX86State *env = &x86_cpu->env; 4770 4771 if (run->flags & KVM_RUN_X86_SMM) { 4772 env->hflags |= HF_SMM_MASK; 4773 } else { 4774 env->hflags &= ~HF_SMM_MASK; 4775 } 4776 if (run->if_flag) { 4777 env->eflags |= IF_MASK; 4778 } else { 4779 env->eflags &= ~IF_MASK; 4780 } 4781 if (run->flags & KVM_RUN_X86_BUS_LOCK) { 4782 kvm_rate_limit_on_bus_lock(); 4783 } 4784 4785 /* We need to protect the apic state against concurrent accesses from 4786 * different threads in case the userspace irqchip is used. */ 4787 if (!kvm_irqchip_in_kernel()) { 4788 qemu_mutex_lock_iothread(); 4789 } 4790 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); 4791 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); 4792 if (!kvm_irqchip_in_kernel()) { 4793 qemu_mutex_unlock_iothread(); 4794 } 4795 return cpu_get_mem_attrs(env); 4796 } 4797 4798 int kvm_arch_process_async_events(CPUState *cs) 4799 { 4800 X86CPU *cpu = X86_CPU(cs); 4801 CPUX86State *env = &cpu->env; 4802 4803 if (cs->interrupt_request & CPU_INTERRUPT_MCE) { 4804 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ 4805 assert(env->mcg_cap); 4806 4807 cs->interrupt_request &= ~CPU_INTERRUPT_MCE; 4808 4809 kvm_cpu_synchronize_state(cs); 4810 4811 if (env->exception_nr == EXCP08_DBLE) { 4812 /* this means triple fault */ 4813 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 4814 cs->exit_request = 1; 4815 return 0; 4816 } 4817 kvm_queue_exception(env, EXCP12_MCHK, 0, 0); 4818 env->has_error_code = 0; 4819 4820 cs->halted = 0; 4821 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { 4822 env->mp_state = KVM_MP_STATE_RUNNABLE; 4823 } 4824 } 4825 4826 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && 4827 !(env->hflags & HF_SMM_MASK)) { 4828 kvm_cpu_synchronize_state(cs); 4829 do_cpu_init(cpu); 4830 } 4831 4832 if (kvm_irqchip_in_kernel()) { 4833 return 0; 4834 } 4835 4836 if (cs->interrupt_request & CPU_INTERRUPT_POLL) { 4837 cs->interrupt_request &= ~CPU_INTERRUPT_POLL; 4838 apic_poll_irq(cpu->apic_state); 4839 } 4840 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && 4841 (env->eflags & IF_MASK)) || 4842 (cs->interrupt_request & CPU_INTERRUPT_NMI)) { 4843 cs->halted = 0; 4844 } 4845 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { 4846 kvm_cpu_synchronize_state(cs); 4847 do_cpu_sipi(cpu); 4848 } 4849 if (cs->interrupt_request & CPU_INTERRUPT_TPR) { 4850 cs->interrupt_request &= ~CPU_INTERRUPT_TPR; 4851 kvm_cpu_synchronize_state(cs); 4852 apic_handle_tpr_access_report(cpu->apic_state, env->eip, 4853 env->tpr_access_type); 4854 } 4855 4856 return cs->halted; 4857 } 4858 4859 static int kvm_handle_halt(X86CPU *cpu) 4860 { 4861 CPUState *cs = CPU(cpu); 4862 CPUX86State *env = &cpu->env; 4863 4864 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && 4865 (env->eflags & IF_MASK)) && 4866 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { 4867 cs->halted = 1; 4868 return EXCP_HLT; 4869 } 4870 4871 return 0; 4872 } 4873 4874 static int kvm_handle_tpr_access(X86CPU *cpu) 4875 { 4876 CPUState *cs = CPU(cpu); 4877 struct kvm_run *run = cs->kvm_run; 4878 4879 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, 4880 run->tpr_access.is_write ? TPR_ACCESS_WRITE 4881 : TPR_ACCESS_READ); 4882 return 1; 4883 } 4884 4885 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 4886 { 4887 static const uint8_t int3 = 0xcc; 4888 4889 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || 4890 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { 4891 return -EINVAL; 4892 } 4893 return 0; 4894 } 4895 4896 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 4897 { 4898 uint8_t int3; 4899 4900 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) { 4901 return -EINVAL; 4902 } 4903 if (int3 != 0xcc) { 4904 return 0; 4905 } 4906 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { 4907 return -EINVAL; 4908 } 4909 return 0; 4910 } 4911 4912 static struct { 4913 target_ulong addr; 4914 int len; 4915 int type; 4916 } hw_breakpoint[4]; 4917 4918 static int nb_hw_breakpoint; 4919 4920 static int find_hw_breakpoint(target_ulong addr, int len, int type) 4921 { 4922 int n; 4923 4924 for (n = 0; n < nb_hw_breakpoint; n++) { 4925 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && 4926 (hw_breakpoint[n].len == len || len == -1)) { 4927 return n; 4928 } 4929 } 4930 return -1; 4931 } 4932 4933 int kvm_arch_insert_hw_breakpoint(target_ulong addr, 4934 target_ulong len, int type) 4935 { 4936 switch (type) { 4937 case GDB_BREAKPOINT_HW: 4938 len = 1; 4939 break; 4940 case GDB_WATCHPOINT_WRITE: 4941 case GDB_WATCHPOINT_ACCESS: 4942 switch (len) { 4943 case 1: 4944 break; 4945 case 2: 4946 case 4: 4947 case 8: 4948 if (addr & (len - 1)) { 4949 return -EINVAL; 4950 } 4951 break; 4952 default: 4953 return -EINVAL; 4954 } 4955 break; 4956 default: 4957 return -ENOSYS; 4958 } 4959 4960 if (nb_hw_breakpoint == 4) { 4961 return -ENOBUFS; 4962 } 4963 if (find_hw_breakpoint(addr, len, type) >= 0) { 4964 return -EEXIST; 4965 } 4966 hw_breakpoint[nb_hw_breakpoint].addr = addr; 4967 hw_breakpoint[nb_hw_breakpoint].len = len; 4968 hw_breakpoint[nb_hw_breakpoint].type = type; 4969 nb_hw_breakpoint++; 4970 4971 return 0; 4972 } 4973 4974 int kvm_arch_remove_hw_breakpoint(target_ulong addr, 4975 target_ulong len, int type) 4976 { 4977 int n; 4978 4979 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); 4980 if (n < 0) { 4981 return -ENOENT; 4982 } 4983 nb_hw_breakpoint--; 4984 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; 4985 4986 return 0; 4987 } 4988 4989 void kvm_arch_remove_all_hw_breakpoints(void) 4990 { 4991 nb_hw_breakpoint = 0; 4992 } 4993 4994 static CPUWatchpoint hw_watchpoint; 4995 4996 static int kvm_handle_debug(X86CPU *cpu, 4997 struct kvm_debug_exit_arch *arch_info) 4998 { 4999 CPUState *cs = CPU(cpu); 5000 CPUX86State *env = &cpu->env; 5001 int ret = 0; 5002 int n; 5003 5004 if (arch_info->exception == EXCP01_DB) { 5005 if (arch_info->dr6 & DR6_BS) { 5006 if (cs->singlestep_enabled) { 5007 ret = EXCP_DEBUG; 5008 } 5009 } else { 5010 for (n = 0; n < 4; n++) { 5011 if (arch_info->dr6 & (1 << n)) { 5012 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { 5013 case 0x0: 5014 ret = EXCP_DEBUG; 5015 break; 5016 case 0x1: 5017 ret = EXCP_DEBUG; 5018 cs->watchpoint_hit = &hw_watchpoint; 5019 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 5020 hw_watchpoint.flags = BP_MEM_WRITE; 5021 break; 5022 case 0x3: 5023 ret = EXCP_DEBUG; 5024 cs->watchpoint_hit = &hw_watchpoint; 5025 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 5026 hw_watchpoint.flags = BP_MEM_ACCESS; 5027 break; 5028 } 5029 } 5030 } 5031 } 5032 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { 5033 ret = EXCP_DEBUG; 5034 } 5035 if (ret == 0) { 5036 cpu_synchronize_state(cs); 5037 assert(env->exception_nr == -1); 5038 5039 /* pass to guest */ 5040 kvm_queue_exception(env, arch_info->exception, 5041 arch_info->exception == EXCP01_DB, 5042 arch_info->dr6); 5043 env->has_error_code = 0; 5044 } 5045 5046 return ret; 5047 } 5048 5049 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 5050 { 5051 const uint8_t type_code[] = { 5052 [GDB_BREAKPOINT_HW] = 0x0, 5053 [GDB_WATCHPOINT_WRITE] = 0x1, 5054 [GDB_WATCHPOINT_ACCESS] = 0x3 5055 }; 5056 const uint8_t len_code[] = { 5057 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 5058 }; 5059 int n; 5060 5061 if (kvm_sw_breakpoints_active(cpu)) { 5062 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 5063 } 5064 if (nb_hw_breakpoint > 0) { 5065 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 5066 dbg->arch.debugreg[7] = 0x0600; 5067 for (n = 0; n < nb_hw_breakpoint; n++) { 5068 dbg->arch.debugreg[n] = hw_breakpoint[n].addr; 5069 dbg->arch.debugreg[7] |= (2 << (n * 2)) | 5070 (type_code[hw_breakpoint[n].type] << (16 + n*4)) | 5071 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); 5072 } 5073 } 5074 } 5075 5076 static bool has_sgx_provisioning; 5077 5078 static bool __kvm_enable_sgx_provisioning(KVMState *s) 5079 { 5080 int fd, ret; 5081 5082 if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) { 5083 return false; 5084 } 5085 5086 fd = qemu_open_old("/dev/sgx_provision", O_RDONLY); 5087 if (fd < 0) { 5088 return false; 5089 } 5090 5091 ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd); 5092 if (ret) { 5093 error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret)); 5094 exit(1); 5095 } 5096 close(fd); 5097 return true; 5098 } 5099 5100 bool kvm_enable_sgx_provisioning(KVMState *s) 5101 { 5102 return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning); 5103 } 5104 5105 static bool host_supports_vmx(void) 5106 { 5107 uint32_t ecx, unused; 5108 5109 host_cpuid(1, 0, &unused, &unused, &ecx, &unused); 5110 return ecx & CPUID_EXT_VMX; 5111 } 5112 5113 #define VMX_INVALID_GUEST_STATE 0x80000021 5114 5115 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 5116 { 5117 X86CPU *cpu = X86_CPU(cs); 5118 uint64_t code; 5119 int ret; 5120 5121 switch (run->exit_reason) { 5122 case KVM_EXIT_HLT: 5123 DPRINTF("handle_hlt\n"); 5124 qemu_mutex_lock_iothread(); 5125 ret = kvm_handle_halt(cpu); 5126 qemu_mutex_unlock_iothread(); 5127 break; 5128 case KVM_EXIT_SET_TPR: 5129 ret = 0; 5130 break; 5131 case KVM_EXIT_TPR_ACCESS: 5132 qemu_mutex_lock_iothread(); 5133 ret = kvm_handle_tpr_access(cpu); 5134 qemu_mutex_unlock_iothread(); 5135 break; 5136 case KVM_EXIT_FAIL_ENTRY: 5137 code = run->fail_entry.hardware_entry_failure_reason; 5138 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", 5139 code); 5140 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { 5141 fprintf(stderr, 5142 "\nIf you're running a guest on an Intel machine without " 5143 "unrestricted mode\n" 5144 "support, the failure can be most likely due to the guest " 5145 "entering an invalid\n" 5146 "state for Intel VT. For example, the guest maybe running " 5147 "in big real mode\n" 5148 "which is not supported on less recent Intel processors." 5149 "\n\n"); 5150 } 5151 ret = -1; 5152 break; 5153 case KVM_EXIT_EXCEPTION: 5154 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", 5155 run->ex.exception, run->ex.error_code); 5156 ret = -1; 5157 break; 5158 case KVM_EXIT_DEBUG: 5159 DPRINTF("kvm_exit_debug\n"); 5160 qemu_mutex_lock_iothread(); 5161 ret = kvm_handle_debug(cpu, &run->debug.arch); 5162 qemu_mutex_unlock_iothread(); 5163 break; 5164 case KVM_EXIT_HYPERV: 5165 ret = kvm_hv_handle_exit(cpu, &run->hyperv); 5166 break; 5167 case KVM_EXIT_IOAPIC_EOI: 5168 ioapic_eoi_broadcast(run->eoi.vector); 5169 ret = 0; 5170 break; 5171 case KVM_EXIT_X86_BUS_LOCK: 5172 /* already handled in kvm_arch_post_run */ 5173 ret = 0; 5174 break; 5175 default: 5176 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); 5177 ret = -1; 5178 break; 5179 } 5180 5181 return ret; 5182 } 5183 5184 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 5185 { 5186 X86CPU *cpu = X86_CPU(cs); 5187 CPUX86State *env = &cpu->env; 5188 5189 kvm_cpu_synchronize_state(cs); 5190 return !(env->cr[0] & CR0_PE_MASK) || 5191 ((env->segs[R_CS].selector & 3) != 3); 5192 } 5193 5194 void kvm_arch_init_irq_routing(KVMState *s) 5195 { 5196 /* We know at this point that we're using the in-kernel 5197 * irqchip, so we can use irqfds, and on x86 we know 5198 * we can use msi via irqfd and GSI routing. 5199 */ 5200 kvm_msi_via_irqfd_allowed = true; 5201 kvm_gsi_routing_allowed = true; 5202 5203 if (kvm_irqchip_is_split()) { 5204 KVMRouteChange c = kvm_irqchip_begin_route_changes(s); 5205 int i; 5206 5207 /* If the ioapic is in QEMU and the lapics are in KVM, reserve 5208 MSI routes for signaling interrupts to the local apics. */ 5209 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 5210 if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) { 5211 error_report("Could not enable split IRQ mode."); 5212 exit(1); 5213 } 5214 } 5215 kvm_irqchip_commit_route_changes(&c); 5216 } 5217 } 5218 5219 int kvm_arch_irqchip_create(KVMState *s) 5220 { 5221 int ret; 5222 if (kvm_kernel_irqchip_split()) { 5223 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); 5224 if (ret) { 5225 error_report("Could not enable split irqchip mode: %s", 5226 strerror(-ret)); 5227 exit(1); 5228 } else { 5229 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); 5230 kvm_split_irqchip = true; 5231 return 1; 5232 } 5233 } else { 5234 return 0; 5235 } 5236 } 5237 5238 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address) 5239 { 5240 CPUX86State *env; 5241 uint64_t ext_id; 5242 5243 if (!first_cpu) { 5244 return address; 5245 } 5246 env = &X86_CPU(first_cpu)->env; 5247 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) { 5248 return address; 5249 } 5250 5251 /* 5252 * If the remappable format bit is set, or the upper bits are 5253 * already set in address_hi, or the low extended bits aren't 5254 * there anyway, do nothing. 5255 */ 5256 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT); 5257 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) { 5258 return address; 5259 } 5260 5261 address &= ~ext_id; 5262 address |= ext_id << 35; 5263 return address; 5264 } 5265 5266 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 5267 uint64_t address, uint32_t data, PCIDevice *dev) 5268 { 5269 X86IOMMUState *iommu = x86_iommu_get_default(); 5270 5271 if (iommu) { 5272 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu); 5273 5274 if (class->int_remap) { 5275 int ret; 5276 MSIMessage src, dst; 5277 5278 src.address = route->u.msi.address_hi; 5279 src.address <<= VTD_MSI_ADDR_HI_SHIFT; 5280 src.address |= route->u.msi.address_lo; 5281 src.data = route->u.msi.data; 5282 5283 ret = class->int_remap(iommu, &src, &dst, dev ? \ 5284 pci_requester_id(dev) : \ 5285 X86_IOMMU_SID_INVALID); 5286 if (ret) { 5287 trace_kvm_x86_fixup_msi_error(route->gsi); 5288 return 1; 5289 } 5290 5291 /* 5292 * Handled untranslated compatibilty format interrupt with 5293 * extended destination ID in the low bits 11-5. */ 5294 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address); 5295 5296 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; 5297 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; 5298 route->u.msi.data = dst.data; 5299 return 0; 5300 } 5301 } 5302 5303 address = kvm_swizzle_msi_ext_dest_id(address); 5304 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT; 5305 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK; 5306 return 0; 5307 } 5308 5309 typedef struct MSIRouteEntry MSIRouteEntry; 5310 5311 struct MSIRouteEntry { 5312 PCIDevice *dev; /* Device pointer */ 5313 int vector; /* MSI/MSIX vector index */ 5314 int virq; /* Virtual IRQ index */ 5315 QLIST_ENTRY(MSIRouteEntry) list; 5316 }; 5317 5318 /* List of used GSI routes */ 5319 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ 5320 QLIST_HEAD_INITIALIZER(msi_route_list); 5321 5322 static void kvm_update_msi_routes_all(void *private, bool global, 5323 uint32_t index, uint32_t mask) 5324 { 5325 int cnt = 0, vector; 5326 MSIRouteEntry *entry; 5327 MSIMessage msg; 5328 PCIDevice *dev; 5329 5330 /* TODO: explicit route update */ 5331 QLIST_FOREACH(entry, &msi_route_list, list) { 5332 cnt++; 5333 vector = entry->vector; 5334 dev = entry->dev; 5335 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) { 5336 msg = msix_get_message(dev, vector); 5337 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) { 5338 msg = msi_get_message(dev, vector); 5339 } else { 5340 /* 5341 * Either MSI/MSIX is disabled for the device, or the 5342 * specific message was masked out. Skip this one. 5343 */ 5344 continue; 5345 } 5346 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); 5347 } 5348 kvm_irqchip_commit_routes(kvm_state); 5349 trace_kvm_x86_update_msi_routes(cnt); 5350 } 5351 5352 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 5353 int vector, PCIDevice *dev) 5354 { 5355 static bool notify_list_inited = false; 5356 MSIRouteEntry *entry; 5357 5358 if (!dev) { 5359 /* These are (possibly) IOAPIC routes only used for split 5360 * kernel irqchip mode, while what we are housekeeping are 5361 * PCI devices only. */ 5362 return 0; 5363 } 5364 5365 entry = g_new0(MSIRouteEntry, 1); 5366 entry->dev = dev; 5367 entry->vector = vector; 5368 entry->virq = route->gsi; 5369 QLIST_INSERT_HEAD(&msi_route_list, entry, list); 5370 5371 trace_kvm_x86_add_msi_route(route->gsi); 5372 5373 if (!notify_list_inited) { 5374 /* For the first time we do add route, add ourselves into 5375 * IOMMU's IEC notify list if needed. */ 5376 X86IOMMUState *iommu = x86_iommu_get_default(); 5377 if (iommu) { 5378 x86_iommu_iec_register_notifier(iommu, 5379 kvm_update_msi_routes_all, 5380 NULL); 5381 } 5382 notify_list_inited = true; 5383 } 5384 return 0; 5385 } 5386 5387 int kvm_arch_release_virq_post(int virq) 5388 { 5389 MSIRouteEntry *entry, *next; 5390 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { 5391 if (entry->virq == virq) { 5392 trace_kvm_x86_remove_msi_route(virq); 5393 QLIST_REMOVE(entry, list); 5394 g_free(entry); 5395 break; 5396 } 5397 } 5398 return 0; 5399 } 5400 5401 int kvm_arch_msi_data_to_gsi(uint32_t data) 5402 { 5403 abort(); 5404 } 5405 5406 bool kvm_has_waitpkg(void) 5407 { 5408 return has_msr_umwait; 5409 } 5410 5411 bool kvm_arch_cpu_check_are_resettable(void) 5412 { 5413 return !sev_es_enabled(); 5414 } 5415 5416 #define ARCH_REQ_XCOMP_GUEST_PERM 0x1025 5417 5418 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask) 5419 { 5420 KVMState *s = kvm_state; 5421 uint64_t supported; 5422 5423 mask &= XSTATE_DYNAMIC_MASK; 5424 if (!mask) { 5425 return; 5426 } 5427 /* 5428 * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0]. 5429 * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned 5430 * about them already because they are not supported features. 5431 */ 5432 supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX); 5433 supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32; 5434 mask &= supported; 5435 5436 while (mask) { 5437 int bit = ctz64(mask); 5438 int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit); 5439 if (rc) { 5440 /* 5441 * Older kernel version (<5.17) do not support 5442 * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return 5443 * any dynamic feature from kvm_arch_get_supported_cpuid. 5444 */ 5445 warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure " 5446 "for feature bit %d", bit); 5447 } 5448 mask &= ~BIT_ULL(bit); 5449 } 5450 } 5451