1 /* 2 * QEMU KVM support 3 * 4 * Copyright (C) 2006-2008 Qumranet Technologies 5 * Copyright IBM, Corp. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or later. 11 * See the COPYING file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qapi/qapi-events-run-state.h" 17 #include "qapi/error.h" 18 #include "qapi/visitor.h" 19 #include <math.h> 20 #include <sys/ioctl.h> 21 #include <sys/utsname.h> 22 #include <sys/syscall.h> 23 #include <sys/resource.h> 24 #include <sys/time.h> 25 26 #include <linux/kvm.h> 27 #include <linux/kvm_para.h> 28 #include "standard-headers/asm-x86/kvm_para.h" 29 #include "hw/xen/interface/arch-x86/cpuid.h" 30 31 #include "cpu.h" 32 #include "host-cpu.h" 33 #include "vmsr_energy.h" 34 #include "system/system.h" 35 #include "system/hw_accel.h" 36 #include "system/kvm_int.h" 37 #include "system/runstate.h" 38 #include "kvm_i386.h" 39 #include "../confidential-guest.h" 40 #include "sev.h" 41 #include "tdx.h" 42 #include "xen-emu.h" 43 #include "hyperv.h" 44 #include "hyperv-proto.h" 45 46 #include "gdbstub/enums.h" 47 #include "qemu/host-utils.h" 48 #include "qemu/main-loop.h" 49 #include "qemu/ratelimit.h" 50 #include "qemu/config-file.h" 51 #include "qemu/error-report.h" 52 #include "qemu/memalign.h" 53 #include "hw/i386/x86.h" 54 #include "hw/i386/kvm/xen_evtchn.h" 55 #include "hw/i386/pc.h" 56 #include "hw/i386/apic.h" 57 #include "hw/i386/apic_internal.h" 58 #include "hw/i386/apic-msidef.h" 59 #include "hw/i386/intel_iommu.h" 60 #include "hw/i386/topology.h" 61 #include "hw/i386/x86-iommu.h" 62 #include "hw/i386/e820_memory_layout.h" 63 64 #include "hw/xen/xen.h" 65 66 #include "hw/pci/pci.h" 67 #include "hw/pci/msi.h" 68 #include "hw/pci/msix.h" 69 #include "migration/blocker.h" 70 #include "exec/memattrs.h" 71 #include "exec/target_page.h" 72 #include "trace.h" 73 74 #include CONFIG_DEVICES 75 76 //#define DEBUG_KVM 77 78 #ifdef DEBUG_KVM 79 #define DPRINTF(fmt, ...) \ 80 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 81 #else 82 #define DPRINTF(fmt, ...) \ 83 do { } while (0) 84 #endif 85 86 /* 87 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. 88 * In order to use vm86 mode, an EPT identity map and a TSS are needed. 89 * Since these must be part of guest physical memory, we need to allocate 90 * them, both by setting their start addresses in the kernel and by 91 * creating a corresponding e820 entry. We need 4 pages before the BIOS, 92 * so this value allows up to 16M BIOSes. 93 */ 94 #define KVM_IDENTITY_BASE 0xfeffc000 95 96 /* From arch/x86/kvm/lapic.h */ 97 #define KVM_APIC_BUS_CYCLE_NS 1 98 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS) 99 100 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus 101 * 255 kvm_msr_entry structs */ 102 #define MSR_BUF_SIZE 4096 103 104 typedef bool QEMURDMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t *val); 105 typedef bool QEMUWRMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t val); 106 typedef struct { 107 uint32_t msr; 108 QEMURDMSRHandler *rdmsr; 109 QEMUWRMSRHandler *wrmsr; 110 } KVMMSRHandlers; 111 112 static void kvm_init_msrs(X86CPU *cpu); 113 static int kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr, 114 QEMUWRMSRHandler *wrmsr); 115 116 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 117 KVM_CAP_INFO(SET_TSS_ADDR), 118 KVM_CAP_INFO(EXT_CPUID), 119 KVM_CAP_INFO(MP_STATE), 120 KVM_CAP_INFO(SIGNAL_MSI), 121 KVM_CAP_INFO(IRQ_ROUTING), 122 KVM_CAP_INFO(DEBUGREGS), 123 KVM_CAP_INFO(XSAVE), 124 KVM_CAP_INFO(VCPU_EVENTS), 125 KVM_CAP_INFO(X86_ROBUST_SINGLESTEP), 126 KVM_CAP_INFO(MCE), 127 KVM_CAP_INFO(ADJUST_CLOCK), 128 KVM_CAP_INFO(SET_IDENTITY_MAP_ADDR), 129 KVM_CAP_LAST_INFO 130 }; 131 132 static bool has_msr_star; 133 static bool has_msr_hsave_pa; 134 static bool has_msr_tsc_aux; 135 static bool has_msr_tsc_adjust; 136 static bool has_msr_tsc_deadline; 137 static bool has_msr_feature_control; 138 static bool has_msr_misc_enable; 139 static bool has_msr_smbase; 140 static bool has_msr_bndcfgs; 141 static int lm_capable_kernel; 142 static bool has_msr_hv_hypercall; 143 static bool has_msr_hv_crash; 144 static bool has_msr_hv_reset; 145 static bool has_msr_hv_vpindex; 146 static bool hv_vpindex_settable; 147 static bool has_msr_hv_runtime; 148 static bool has_msr_hv_synic; 149 static bool has_msr_hv_stimer; 150 static bool has_msr_hv_frequencies; 151 static bool has_msr_hv_reenlightenment; 152 static bool has_msr_hv_syndbg_options; 153 static bool has_msr_xss; 154 static bool has_msr_umwait; 155 static bool has_msr_spec_ctrl; 156 static bool has_tsc_scale_msr; 157 static bool has_msr_tsx_ctrl; 158 static bool has_msr_virt_ssbd; 159 static bool has_msr_smi_count; 160 static bool has_msr_arch_capabs; 161 static bool has_msr_core_capabs; 162 static bool has_msr_vmx_vmfunc; 163 static bool has_msr_ucode_rev; 164 static bool has_msr_vmx_procbased_ctls2; 165 static bool has_msr_perf_capabs; 166 static bool has_msr_pkrs; 167 static bool has_msr_hwcr; 168 169 static uint32_t has_architectural_pmu_version; 170 static uint32_t num_architectural_pmu_gp_counters; 171 static uint32_t num_architectural_pmu_fixed_counters; 172 173 static int has_xsave2; 174 static int has_xcrs; 175 static int has_sregs2; 176 static int has_exception_payload; 177 static int has_triple_fault_event; 178 179 static bool has_msr_mcg_ext_ctl; 180 181 static struct kvm_cpuid2 *cpuid_cache; 182 static struct kvm_cpuid2 *hv_cpuid_cache; 183 static struct kvm_msr_list *kvm_feature_msrs; 184 185 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES]; 186 187 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */ 188 static RateLimit bus_lock_ratelimit_ctrl; 189 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value); 190 191 static const char *vm_type_name[] = { 192 [KVM_X86_DEFAULT_VM] = "default", 193 [KVM_X86_SEV_VM] = "SEV", 194 [KVM_X86_SEV_ES_VM] = "SEV-ES", 195 [KVM_X86_SNP_VM] = "SEV-SNP", 196 [KVM_X86_TDX_VM] = "TDX", 197 }; 198 199 bool kvm_is_vm_type_supported(int type) 200 { 201 uint32_t machine_types; 202 203 /* 204 * old KVM doesn't support KVM_CAP_VM_TYPES but KVM_X86_DEFAULT_VM 205 * is always supported 206 */ 207 if (type == KVM_X86_DEFAULT_VM) { 208 return true; 209 } 210 211 machine_types = kvm_check_extension(KVM_STATE(current_machine->accelerator), 212 KVM_CAP_VM_TYPES); 213 return !!(machine_types & BIT(type)); 214 } 215 216 int kvm_get_vm_type(MachineState *ms) 217 { 218 int kvm_type = KVM_X86_DEFAULT_VM; 219 220 if (ms->cgs) { 221 if (!object_dynamic_cast(OBJECT(ms->cgs), TYPE_X86_CONFIDENTIAL_GUEST)) { 222 error_report("configuration type %s not supported for x86 guests", 223 object_get_typename(OBJECT(ms->cgs))); 224 exit(1); 225 } 226 kvm_type = x86_confidential_guest_kvm_type( 227 X86_CONFIDENTIAL_GUEST(ms->cgs)); 228 } 229 230 if (!kvm_is_vm_type_supported(kvm_type)) { 231 error_report("vm-type %s not supported by KVM", vm_type_name[kvm_type]); 232 exit(1); 233 } 234 235 return kvm_type; 236 } 237 238 bool kvm_enable_hypercall(uint64_t enable_mask) 239 { 240 KVMState *s = KVM_STATE(current_accel()); 241 242 return !kvm_vm_enable_cap(s, KVM_CAP_EXIT_HYPERCALL, 0, enable_mask); 243 } 244 245 bool kvm_has_smm(void) 246 { 247 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM); 248 } 249 250 bool kvm_has_adjust_clock_stable(void) 251 { 252 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); 253 254 return (ret & KVM_CLOCK_TSC_STABLE); 255 } 256 257 bool kvm_has_exception_payload(void) 258 { 259 return has_exception_payload; 260 } 261 262 static bool kvm_x2apic_api_set_flags(uint64_t flags) 263 { 264 KVMState *s = KVM_STATE(current_accel()); 265 266 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); 267 } 268 269 #define MEMORIZE(fn, _result) \ 270 ({ \ 271 static bool _memorized; \ 272 \ 273 if (_memorized) { \ 274 return _result; \ 275 } \ 276 _memorized = true; \ 277 _result = fn; \ 278 }) 279 280 static bool has_x2apic_api; 281 282 bool kvm_has_x2apic_api(void) 283 { 284 return has_x2apic_api; 285 } 286 287 bool kvm_enable_x2apic(void) 288 { 289 return MEMORIZE( 290 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | 291 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), 292 has_x2apic_api); 293 } 294 295 bool kvm_hv_vpindex_settable(void) 296 { 297 return hv_vpindex_settable; 298 } 299 300 static int kvm_get_tsc(CPUState *cs) 301 { 302 X86CPU *cpu = X86_CPU(cs); 303 CPUX86State *env = &cpu->env; 304 uint64_t value; 305 int ret; 306 307 if (env->tsc_valid) { 308 return 0; 309 } 310 311 env->tsc_valid = !runstate_is_running(); 312 313 ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value); 314 if (ret < 0) { 315 return ret; 316 } 317 318 env->tsc = value; 319 return 0; 320 } 321 322 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) 323 { 324 kvm_get_tsc(cpu); 325 } 326 327 void kvm_synchronize_all_tsc(void) 328 { 329 CPUState *cpu; 330 331 if (kvm_enabled()) { 332 CPU_FOREACH(cpu) { 333 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); 334 } 335 } 336 } 337 338 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) 339 { 340 struct kvm_cpuid2 *cpuid; 341 int r, size; 342 343 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 344 cpuid = g_malloc0(size); 345 cpuid->nent = max; 346 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); 347 if (r == 0 && cpuid->nent >= max) { 348 r = -E2BIG; 349 } 350 if (r < 0) { 351 if (r == -E2BIG) { 352 g_free(cpuid); 353 return NULL; 354 } else { 355 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", 356 strerror(-r)); 357 exit(1); 358 } 359 } 360 return cpuid; 361 } 362 363 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough 364 * for all entries. 365 */ 366 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) 367 { 368 struct kvm_cpuid2 *cpuid; 369 int max = 1; 370 371 if (cpuid_cache != NULL) { 372 return cpuid_cache; 373 } 374 while ((cpuid = try_get_cpuid(s, max)) == NULL) { 375 max *= 2; 376 } 377 cpuid_cache = cpuid; 378 return cpuid; 379 } 380 381 static bool host_tsx_broken(void) 382 { 383 int family, model, stepping;\ 384 char vendor[CPUID_VENDOR_SZ + 1]; 385 386 host_cpu_vendor_fms(vendor, &family, &model, &stepping); 387 388 /* Check if we are running on a Haswell host known to have broken TSX */ 389 return !strcmp(vendor, CPUID_VENDOR_INTEL) && 390 (family == 6) && 391 ((model == 63 && stepping < 4) || 392 model == 60 || model == 69 || model == 70); 393 } 394 395 /* Returns the value for a specific register on the cpuid entry 396 */ 397 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) 398 { 399 uint32_t ret = 0; 400 switch (reg) { 401 case R_EAX: 402 ret = entry->eax; 403 break; 404 case R_EBX: 405 ret = entry->ebx; 406 break; 407 case R_ECX: 408 ret = entry->ecx; 409 break; 410 case R_EDX: 411 ret = entry->edx; 412 break; 413 } 414 return ret; 415 } 416 417 /* Find matching entry for function/index on kvm_cpuid2 struct 418 */ 419 struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, 420 uint32_t function, 421 uint32_t index) 422 { 423 int i; 424 for (i = 0; i < cpuid->nent; ++i) { 425 if (cpuid->entries[i].function == function && 426 cpuid->entries[i].index == index) { 427 return &cpuid->entries[i]; 428 } 429 } 430 /* not found: */ 431 return NULL; 432 } 433 434 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, 435 uint32_t index, int reg) 436 { 437 struct kvm_cpuid2 *cpuid; 438 uint32_t ret = 0; 439 uint32_t cpuid_1_edx, unused; 440 uint64_t bitmask; 441 442 cpuid = get_supported_cpuid(s); 443 444 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); 445 if (entry) { 446 ret = cpuid_entry_get_reg(entry, reg); 447 } 448 449 /* Fixups for the data returned by KVM, below */ 450 451 if (function == 1 && reg == R_EDX) { 452 /* KVM before 2.6.30 misreports the following features */ 453 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; 454 /* KVM never reports CPUID_HT but QEMU can support when vcpus > 1 */ 455 ret |= CPUID_HT; 456 } else if (function == 1 && reg == R_ECX) { 457 /* We can set the hypervisor flag, even if KVM does not return it on 458 * GET_SUPPORTED_CPUID 459 */ 460 ret |= CPUID_EXT_HYPERVISOR; 461 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it 462 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, 463 * and the irqchip is in the kernel. 464 */ 465 if (kvm_irqchip_in_kernel() && 466 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { 467 ret |= CPUID_EXT_TSC_DEADLINE_TIMER; 468 } 469 470 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled 471 * without the in-kernel irqchip 472 */ 473 if (!kvm_irqchip_in_kernel()) { 474 ret &= ~CPUID_EXT_X2APIC; 475 } 476 477 if (enable_cpu_pm) { 478 int disable_exits = kvm_check_extension(s, 479 KVM_CAP_X86_DISABLE_EXITS); 480 481 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) { 482 ret |= CPUID_EXT_MONITOR; 483 } 484 } 485 } else if (function == 6 && reg == R_EAX) { 486 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ 487 } else if (function == 7 && index == 0 && reg == R_EBX) { 488 /* Not new instructions, just an optimization. */ 489 uint32_t ebx; 490 host_cpuid(7, 0, &unused, &ebx, &unused, &unused); 491 ret |= ebx & CPUID_7_0_EBX_ERMS; 492 493 if (host_tsx_broken()) { 494 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); 495 } 496 } else if (function == 7 && index == 0 && reg == R_EDX) { 497 /* Not new instructions, just an optimization. */ 498 uint32_t edx; 499 host_cpuid(7, 0, &unused, &unused, &unused, &edx); 500 ret |= edx & CPUID_7_0_EDX_FSRM; 501 502 /* 503 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts. 504 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is 505 * returned by KVM_GET_MSR_INDEX_LIST. 506 */ 507 if (!has_msr_arch_capabs) { 508 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES; 509 } 510 } else if (function == 7 && index == 1 && reg == R_EAX) { 511 /* Not new instructions, just an optimization. */ 512 uint32_t eax; 513 host_cpuid(7, 1, &eax, &unused, &unused, &unused); 514 ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC); 515 } else if (function == 7 && index == 2 && reg == R_EDX) { 516 uint32_t edx; 517 host_cpuid(7, 2, &unused, &unused, &unused, &edx); 518 ret |= edx & CPUID_7_2_EDX_MCDT_NO; 519 } else if (function == 0xd && index == 0 && 520 (reg == R_EAX || reg == R_EDX)) { 521 /* 522 * The value returned by KVM_GET_SUPPORTED_CPUID does not include 523 * features that still have to be enabled with the arch_prctl 524 * system call. QEMU needs the full value, which is retrieved 525 * with KVM_GET_DEVICE_ATTR. 526 */ 527 struct kvm_device_attr attr = { 528 .group = 0, 529 .attr = KVM_X86_XCOMP_GUEST_SUPP, 530 .addr = (unsigned long) &bitmask 531 }; 532 533 bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES); 534 if (!sys_attr) { 535 return ret; 536 } 537 538 int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr); 539 if (rc < 0) { 540 if (rc != -ENXIO) { 541 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) " 542 "error: %d", rc); 543 } 544 return ret; 545 } 546 ret = (reg == R_EAX) ? bitmask : bitmask >> 32; 547 } else if (function == 0x80000001 && reg == R_ECX) { 548 /* 549 * It's safe to enable TOPOEXT even if it's not returned by 550 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows 551 * us to keep CPU models including TOPOEXT runnable on older kernels. 552 */ 553 ret |= CPUID_EXT3_TOPOEXT; 554 } else if (function == 0x80000001 && reg == R_EDX) { 555 /* On Intel, kvm returns cpuid according to the Intel spec, 556 * so add missing bits according to the AMD spec: 557 */ 558 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); 559 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; 560 } else if (function == 0x80000007 && reg == R_EBX) { 561 ret |= CPUID_8000_0007_EBX_OVERFLOW_RECOV | CPUID_8000_0007_EBX_SUCCOR; 562 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { 563 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't 564 * be enabled without the in-kernel irqchip 565 */ 566 if (!kvm_irqchip_in_kernel()) { 567 ret &= ~CPUID_KVM_PV_UNHALT; 568 } 569 if (kvm_irqchip_is_split()) { 570 ret |= CPUID_KVM_MSI_EXT_DEST_ID; 571 } 572 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) { 573 ret |= CPUID_KVM_HINTS_REALTIME; 574 } 575 576 if (current_machine->cgs) { 577 ret = x86_confidential_guest_mask_cpuid_features( 578 X86_CONFIDENTIAL_GUEST(current_machine->cgs), 579 function, index, reg, ret); 580 } 581 return ret; 582 } 583 584 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index) 585 { 586 struct { 587 struct kvm_msrs info; 588 struct kvm_msr_entry entries[1]; 589 } msr_data = {}; 590 uint64_t value; 591 uint32_t ret, can_be_one, must_be_one; 592 593 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */ 594 return 0; 595 } 596 597 /* Check if requested MSR is supported feature MSR */ 598 int i; 599 for (i = 0; i < kvm_feature_msrs->nmsrs; i++) 600 if (kvm_feature_msrs->indices[i] == index) { 601 break; 602 } 603 if (i == kvm_feature_msrs->nmsrs) { 604 return 0; /* if the feature MSR is not supported, simply return 0 */ 605 } 606 607 msr_data.info.nmsrs = 1; 608 msr_data.entries[0].index = index; 609 610 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data); 611 if (ret != 1) { 612 error_report("KVM get MSR (index=0x%x) feature failed, %s", 613 index, strerror(-ret)); 614 exit(1); 615 } 616 617 value = msr_data.entries[0].data; 618 switch (index) { 619 case MSR_IA32_VMX_PROCBASED_CTLS2: 620 if (!has_msr_vmx_procbased_ctls2) { 621 /* KVM forgot to add these bits for some time, do this ourselves. */ 622 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) & 623 CPUID_XSAVE_XSAVES) { 624 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32; 625 } 626 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) & 627 CPUID_EXT_RDRAND) { 628 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32; 629 } 630 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 631 CPUID_7_0_EBX_INVPCID) { 632 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32; 633 } 634 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 635 CPUID_7_0_EBX_RDSEED) { 636 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32; 637 } 638 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) & 639 CPUID_EXT2_RDTSCP) { 640 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32; 641 } 642 } 643 /* fall through */ 644 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 645 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 646 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 647 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 648 /* 649 * Return true for bits that can be one, but do not have to be one. 650 * The SDM tells us which bits could have a "must be one" setting, 651 * so we can do the opposite transformation in make_vmx_msr_value. 652 */ 653 must_be_one = (uint32_t)value; 654 can_be_one = (uint32_t)(value >> 32); 655 return can_be_one & ~must_be_one; 656 657 default: 658 return value; 659 } 660 } 661 662 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, 663 int *max_banks) 664 { 665 *max_banks = kvm_check_extension(s, KVM_CAP_MCE); 666 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); 667 } 668 669 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) 670 { 671 CPUState *cs = CPU(cpu); 672 CPUX86State *env = &cpu->env; 673 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_EN | MCI_STATUS_MISCV | 674 MCI_STATUS_ADDRV; 675 uint64_t mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV; 676 int flags = 0; 677 678 if (!IS_AMD_CPU(env)) { 679 status |= MCI_STATUS_S | MCI_STATUS_UC; 680 if (code == BUS_MCEERR_AR) { 681 status |= MCI_STATUS_AR | 0x134; 682 mcg_status |= MCG_STATUS_EIPV; 683 } else { 684 status |= 0xc0; 685 } 686 } else { 687 if (code == BUS_MCEERR_AR) { 688 status |= MCI_STATUS_UC | MCI_STATUS_POISON; 689 mcg_status |= MCG_STATUS_EIPV; 690 } else { 691 /* Setting the POISON bit for deferred errors indicates to the 692 * guest kernel that the address provided by the MCE is valid 693 * and usable which will ensure that the guest kernel will send 694 * a SIGBUS_AO signal to the guest process. This allows for 695 * more desirable behavior in the case that the guest process 696 * with poisoned memory has set the MCE_KILL_EARLY prctl flag 697 * which indicates that the process would prefer to handle or 698 * shutdown due to the poisoned memory condition before the 699 * memory has been accessed. 700 * 701 * While the POISON bit would not be set in a deferred error 702 * sent from hardware, the bit is not meaningful for deferred 703 * errors and can be reused in this scenario. 704 */ 705 status |= MCI_STATUS_DEFERRED | MCI_STATUS_POISON; 706 } 707 } 708 709 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; 710 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the 711 * guest kernel back into env->mcg_ext_ctl. 712 */ 713 cpu_synchronize_state(cs); 714 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { 715 mcg_status |= MCG_STATUS_LMCE; 716 flags = 0; 717 } 718 719 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, 720 (MCM_ADDR_PHYS << 6) | 0xc, flags); 721 } 722 723 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar) 724 { 725 MemoryFailureFlags mff = {.action_required = ar, .recursive = false}; 726 727 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action, 728 &mff); 729 } 730 731 static void hardware_memory_error(void *host_addr) 732 { 733 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true); 734 error_report("QEMU got Hardware memory error at addr %p", host_addr); 735 exit(1); 736 } 737 738 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) 739 { 740 X86CPU *cpu = X86_CPU(c); 741 CPUX86State *env = &cpu->env; 742 ram_addr_t ram_addr; 743 hwaddr paddr; 744 745 /* If we get an action required MCE, it has been injected by KVM 746 * while the VM was running. An action optional MCE instead should 747 * be coming from the main thread, which qemu_init_sigbus identifies 748 * as the "early kill" thread. 749 */ 750 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); 751 752 if ((env->mcg_cap & MCG_SER_P) && addr) { 753 ram_addr = qemu_ram_addr_from_host(addr); 754 if (ram_addr != RAM_ADDR_INVALID && 755 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { 756 kvm_hwpoison_page_add(ram_addr); 757 kvm_mce_inject(cpu, paddr, code); 758 759 /* 760 * Use different logging severity based on error type. 761 * If there is additional MCE reporting on the hypervisor, QEMU VA 762 * could be another source to identify the PA and MCE details. 763 */ 764 if (code == BUS_MCEERR_AR) { 765 error_report("Guest MCE Memory Error at QEMU addr %p and " 766 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 767 addr, paddr, "BUS_MCEERR_AR"); 768 } else { 769 warn_report("Guest MCE Memory Error at QEMU addr %p and " 770 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 771 addr, paddr, "BUS_MCEERR_AO"); 772 } 773 774 return; 775 } 776 777 if (code == BUS_MCEERR_AO) { 778 warn_report("Hardware memory error at addr %p of type %s " 779 "for memory used by QEMU itself instead of guest system!", 780 addr, "BUS_MCEERR_AO"); 781 } 782 } 783 784 if (code == BUS_MCEERR_AR) { 785 hardware_memory_error(addr); 786 } 787 788 /* Hope we are lucky for AO MCE, just notify a event */ 789 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false); 790 } 791 792 static void kvm_queue_exception(CPUX86State *env, 793 int32_t exception_nr, 794 uint8_t exception_has_payload, 795 uint64_t exception_payload) 796 { 797 assert(env->exception_nr == -1); 798 assert(!env->exception_pending); 799 assert(!env->exception_injected); 800 assert(!env->exception_has_payload); 801 802 env->exception_nr = exception_nr; 803 804 if (has_exception_payload) { 805 env->exception_pending = 1; 806 807 env->exception_has_payload = exception_has_payload; 808 env->exception_payload = exception_payload; 809 } else { 810 env->exception_injected = 1; 811 812 if (exception_nr == EXCP01_DB) { 813 assert(exception_has_payload); 814 env->dr[6] = exception_payload; 815 } else if (exception_nr == EXCP0E_PAGE) { 816 assert(exception_has_payload); 817 env->cr[2] = exception_payload; 818 } else { 819 assert(!exception_has_payload); 820 } 821 } 822 } 823 824 static void cpu_update_state(void *opaque, bool running, RunState state) 825 { 826 CPUX86State *env = opaque; 827 828 if (running) { 829 env->tsc_valid = false; 830 } 831 } 832 833 unsigned long kvm_arch_vcpu_id(CPUState *cs) 834 { 835 X86CPU *cpu = X86_CPU(cs); 836 return cpu->apic_id; 837 } 838 839 #ifndef KVM_CPUID_SIGNATURE_NEXT 840 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 841 #endif 842 843 static bool hyperv_enabled(X86CPU *cpu) 844 { 845 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 && 846 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) || 847 cpu->hyperv_features || cpu->hyperv_passthrough); 848 } 849 850 /* 851 * Check whether target_freq is within conservative 852 * ntp correctable bounds (250ppm) of freq 853 */ 854 static inline bool freq_within_bounds(int freq, int target_freq) 855 { 856 int max_freq = freq + (freq * 250 / 1000000); 857 int min_freq = freq - (freq * 250 / 1000000); 858 859 if (target_freq >= min_freq && target_freq <= max_freq) { 860 return true; 861 } 862 863 return false; 864 } 865 866 static int kvm_arch_set_tsc_khz(CPUState *cs) 867 { 868 X86CPU *cpu = X86_CPU(cs); 869 CPUX86State *env = &cpu->env; 870 int r, cur_freq; 871 bool set_ioctl = false; 872 873 /* 874 * TSC of TD vcpu is immutable, it cannot be set/changed via vcpu scope 875 * VM_SET_TSC_KHZ, but only be initialized via VM scope VM_SET_TSC_KHZ 876 * before ioctl KVM_TDX_INIT_VM in tdx_pre_create_vcpu() 877 */ 878 if (is_tdx_vm()) { 879 return 0; 880 } 881 882 if (!env->tsc_khz) { 883 return 0; 884 } 885 886 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 887 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP; 888 889 /* 890 * If TSC scaling is supported, attempt to set TSC frequency. 891 */ 892 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) { 893 set_ioctl = true; 894 } 895 896 /* 897 * If desired TSC frequency is within bounds of NTP correction, 898 * attempt to set TSC frequency. 899 */ 900 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) { 901 set_ioctl = true; 902 } 903 904 r = set_ioctl ? 905 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : 906 -ENOTSUP; 907 908 if (r < 0) { 909 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current 910 * TSC frequency doesn't match the one we want. 911 */ 912 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 913 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 914 -ENOTSUP; 915 if (cur_freq <= 0 || cur_freq != env->tsc_khz) { 916 warn_report("TSC frequency mismatch between " 917 "VM (%" PRId64 " kHz) and host (%d kHz), " 918 "and TSC scaling unavailable", 919 env->tsc_khz, cur_freq); 920 return r; 921 } 922 } 923 924 return 0; 925 } 926 927 static bool tsc_is_stable_and_known(CPUX86State *env) 928 { 929 if (!env->tsc_khz) { 930 return false; 931 } 932 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) 933 || env->user_tsc_khz; 934 } 935 936 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1) 937 938 static struct { 939 const char *desc; 940 struct { 941 uint32_t func; 942 int reg; 943 uint32_t bits; 944 } flags[2]; 945 uint64_t dependencies; 946 bool skip_passthrough; 947 } kvm_hyperv_properties[] = { 948 [HYPERV_FEAT_RELAXED] = { 949 .desc = "relaxed timing (hv-relaxed)", 950 .flags = { 951 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 952 .bits = HV_RELAXED_TIMING_RECOMMENDED} 953 } 954 }, 955 [HYPERV_FEAT_VAPIC] = { 956 .desc = "virtual APIC (hv-vapic)", 957 .flags = { 958 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 959 .bits = HV_APIC_ACCESS_AVAILABLE} 960 } 961 }, 962 [HYPERV_FEAT_TIME] = { 963 .desc = "clocksources (hv-time)", 964 .flags = { 965 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 966 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE} 967 } 968 }, 969 [HYPERV_FEAT_CRASH] = { 970 .desc = "crash MSRs (hv-crash)", 971 .flags = { 972 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 973 .bits = HV_GUEST_CRASH_MSR_AVAILABLE} 974 } 975 }, 976 [HYPERV_FEAT_RESET] = { 977 .desc = "reset MSR (hv-reset)", 978 .flags = { 979 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 980 .bits = HV_RESET_AVAILABLE} 981 } 982 }, 983 [HYPERV_FEAT_VPINDEX] = { 984 .desc = "VP_INDEX MSR (hv-vpindex)", 985 .flags = { 986 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 987 .bits = HV_VP_INDEX_AVAILABLE} 988 } 989 }, 990 [HYPERV_FEAT_RUNTIME] = { 991 .desc = "VP_RUNTIME MSR (hv-runtime)", 992 .flags = { 993 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 994 .bits = HV_VP_RUNTIME_AVAILABLE} 995 } 996 }, 997 [HYPERV_FEAT_SYNIC] = { 998 .desc = "synthetic interrupt controller (hv-synic)", 999 .flags = { 1000 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 1001 .bits = HV_SYNIC_AVAILABLE} 1002 } 1003 }, 1004 [HYPERV_FEAT_STIMER] = { 1005 .desc = "synthetic timers (hv-stimer)", 1006 .flags = { 1007 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 1008 .bits = HV_SYNTIMERS_AVAILABLE} 1009 }, 1010 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME) 1011 }, 1012 [HYPERV_FEAT_FREQUENCIES] = { 1013 .desc = "frequency MSRs (hv-frequencies)", 1014 .flags = { 1015 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 1016 .bits = HV_ACCESS_FREQUENCY_MSRS}, 1017 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1018 .bits = HV_FREQUENCY_MSRS_AVAILABLE} 1019 } 1020 }, 1021 [HYPERV_FEAT_REENLIGHTENMENT] = { 1022 .desc = "reenlightenment MSRs (hv-reenlightenment)", 1023 .flags = { 1024 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 1025 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL} 1026 } 1027 }, 1028 [HYPERV_FEAT_TLBFLUSH] = { 1029 .desc = "paravirtualized TLB flush (hv-tlbflush)", 1030 .flags = { 1031 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1032 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED | 1033 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 1034 }, 1035 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 1036 }, 1037 [HYPERV_FEAT_EVMCS] = { 1038 .desc = "enlightened VMCS (hv-evmcs)", 1039 .flags = { 1040 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1041 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED} 1042 }, 1043 .dependencies = BIT(HYPERV_FEAT_VAPIC) 1044 }, 1045 [HYPERV_FEAT_IPI] = { 1046 .desc = "paravirtualized IPI (hv-ipi)", 1047 .flags = { 1048 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1049 .bits = HV_CLUSTER_IPI_RECOMMENDED | 1050 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 1051 }, 1052 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 1053 }, 1054 [HYPERV_FEAT_STIMER_DIRECT] = { 1055 .desc = "direct mode synthetic timers (hv-stimer-direct)", 1056 .flags = { 1057 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1058 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE} 1059 }, 1060 .dependencies = BIT(HYPERV_FEAT_STIMER) 1061 }, 1062 [HYPERV_FEAT_AVIC] = { 1063 .desc = "AVIC/APICv support (hv-avic/hv-apicv)", 1064 .flags = { 1065 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1066 .bits = HV_DEPRECATING_AEOI_RECOMMENDED} 1067 } 1068 }, 1069 [HYPERV_FEAT_SYNDBG] = { 1070 .desc = "Enable synthetic kernel debugger channel (hv-syndbg)", 1071 .flags = { 1072 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1073 .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE} 1074 }, 1075 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED), 1076 .skip_passthrough = true, 1077 }, 1078 [HYPERV_FEAT_MSR_BITMAP] = { 1079 .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)", 1080 .flags = { 1081 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX, 1082 .bits = HV_NESTED_MSR_BITMAP} 1083 } 1084 }, 1085 [HYPERV_FEAT_XMM_INPUT] = { 1086 .desc = "XMM fast hypercall input (hv-xmm-input)", 1087 .flags = { 1088 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1089 .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE} 1090 } 1091 }, 1092 [HYPERV_FEAT_TLBFLUSH_EXT] = { 1093 .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)", 1094 .flags = { 1095 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1096 .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE} 1097 }, 1098 .dependencies = BIT(HYPERV_FEAT_TLBFLUSH) 1099 }, 1100 [HYPERV_FEAT_TLBFLUSH_DIRECT] = { 1101 .desc = "direct TLB flush (hv-tlbflush-direct)", 1102 .flags = { 1103 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX, 1104 .bits = HV_NESTED_DIRECT_FLUSH} 1105 }, 1106 .dependencies = BIT(HYPERV_FEAT_VAPIC) 1107 }, 1108 }; 1109 1110 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max, 1111 bool do_sys_ioctl) 1112 { 1113 struct kvm_cpuid2 *cpuid; 1114 int r, size; 1115 1116 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 1117 cpuid = g_malloc0(size); 1118 cpuid->nent = max; 1119 1120 if (do_sys_ioctl) { 1121 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1122 } else { 1123 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1124 } 1125 if (r == 0 && cpuid->nent >= max) { 1126 r = -E2BIG; 1127 } 1128 if (r < 0) { 1129 if (r == -E2BIG) { 1130 g_free(cpuid); 1131 return NULL; 1132 } else { 1133 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n", 1134 strerror(-r)); 1135 exit(1); 1136 } 1137 } 1138 return cpuid; 1139 } 1140 1141 /* 1142 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough 1143 * for all entries. 1144 */ 1145 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs) 1146 { 1147 struct kvm_cpuid2 *cpuid; 1148 /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */ 1149 int max = 11; 1150 int i; 1151 bool do_sys_ioctl; 1152 1153 do_sys_ioctl = 1154 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0; 1155 1156 /* 1157 * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is 1158 * unsupported, kvm_hyperv_expand_features() checks for that. 1159 */ 1160 assert(do_sys_ioctl || cs->kvm_state); 1161 1162 /* 1163 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with 1164 * -E2BIG, however, it doesn't report back the right size. Keep increasing 1165 * it and re-trying until we succeed. 1166 */ 1167 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) { 1168 max++; 1169 } 1170 1171 /* 1172 * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before 1173 * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the 1174 * information early, just check for the capability and set the bit 1175 * manually. 1176 */ 1177 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state, 1178 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1179 for (i = 0; i < cpuid->nent; i++) { 1180 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) { 1181 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1182 } 1183 } 1184 } 1185 1186 return cpuid; 1187 } 1188 1189 /* 1190 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature 1191 * leaves from KVM_CAP_HYPERV* and present MSRs data. 1192 */ 1193 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs) 1194 { 1195 X86CPU *cpu = X86_CPU(cs); 1196 struct kvm_cpuid2 *cpuid; 1197 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm; 1198 1199 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */ 1200 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries)); 1201 cpuid->nent = 2; 1202 1203 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */ 1204 entry_feat = &cpuid->entries[0]; 1205 entry_feat->function = HV_CPUID_FEATURES; 1206 1207 entry_recomm = &cpuid->entries[1]; 1208 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO; 1209 entry_recomm->ebx = cpu->hyperv_spinlock_attempts; 1210 1211 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) { 1212 entry_feat->eax |= HV_HYPERCALL_AVAILABLE; 1213 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE; 1214 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1215 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED; 1216 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED; 1217 } 1218 1219 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { 1220 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE; 1221 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE; 1222 } 1223 1224 if (has_msr_hv_frequencies) { 1225 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS; 1226 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE; 1227 } 1228 1229 if (has_msr_hv_crash) { 1230 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE; 1231 } 1232 1233 if (has_msr_hv_reenlightenment) { 1234 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL; 1235 } 1236 1237 if (has_msr_hv_reset) { 1238 entry_feat->eax |= HV_RESET_AVAILABLE; 1239 } 1240 1241 if (has_msr_hv_vpindex) { 1242 entry_feat->eax |= HV_VP_INDEX_AVAILABLE; 1243 } 1244 1245 if (has_msr_hv_runtime) { 1246 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE; 1247 } 1248 1249 if (has_msr_hv_synic) { 1250 unsigned int cap = cpu->hyperv_synic_kvm_only ? 1251 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1252 1253 if (kvm_check_extension(cs->kvm_state, cap) > 0) { 1254 entry_feat->eax |= HV_SYNIC_AVAILABLE; 1255 } 1256 } 1257 1258 if (has_msr_hv_stimer) { 1259 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE; 1260 } 1261 1262 if (has_msr_hv_syndbg_options) { 1263 entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE; 1264 entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE; 1265 entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED; 1266 } 1267 1268 if (kvm_check_extension(cs->kvm_state, 1269 KVM_CAP_HYPERV_TLBFLUSH) > 0) { 1270 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED; 1271 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1272 } 1273 1274 if (kvm_check_extension(cs->kvm_state, 1275 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1276 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1277 } 1278 1279 if (kvm_check_extension(cs->kvm_state, 1280 KVM_CAP_HYPERV_SEND_IPI) > 0) { 1281 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED; 1282 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1283 } 1284 1285 return cpuid; 1286 } 1287 1288 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg) 1289 { 1290 struct kvm_cpuid_entry2 *entry; 1291 struct kvm_cpuid2 *cpuid; 1292 1293 if (hv_cpuid_cache) { 1294 cpuid = hv_cpuid_cache; 1295 } else { 1296 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) { 1297 cpuid = get_supported_hv_cpuid(cs); 1298 } else { 1299 /* 1300 * 'cs->kvm_state' may be NULL when Hyper-V features are expanded 1301 * before KVM context is created but this is only done when 1302 * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies 1303 * KVM_CAP_HYPERV_CPUID. 1304 */ 1305 assert(cs->kvm_state); 1306 1307 cpuid = get_supported_hv_cpuid_legacy(cs); 1308 } 1309 hv_cpuid_cache = cpuid; 1310 } 1311 1312 if (!cpuid) { 1313 return 0; 1314 } 1315 1316 entry = cpuid_find_entry(cpuid, func, 0); 1317 if (!entry) { 1318 return 0; 1319 } 1320 1321 return cpuid_entry_get_reg(entry, reg); 1322 } 1323 1324 static bool hyperv_feature_supported(CPUState *cs, int feature) 1325 { 1326 uint32_t func, bits; 1327 int i, reg; 1328 1329 /* 1330 * kvm_hyperv_properties needs to define at least one CPUID flag which 1331 * must be used to detect the feature, it's hard to say whether it is 1332 * supported or not otherwise. 1333 */ 1334 assert(kvm_hyperv_properties[feature].flags[0].func); 1335 1336 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) { 1337 1338 func = kvm_hyperv_properties[feature].flags[i].func; 1339 reg = kvm_hyperv_properties[feature].flags[i].reg; 1340 bits = kvm_hyperv_properties[feature].flags[i].bits; 1341 1342 if (!func) { 1343 continue; 1344 } 1345 1346 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) { 1347 return false; 1348 } 1349 } 1350 1351 return true; 1352 } 1353 1354 /* Checks that all feature dependencies are enabled */ 1355 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp) 1356 { 1357 uint64_t deps; 1358 int dep_feat; 1359 1360 deps = kvm_hyperv_properties[feature].dependencies; 1361 while (deps) { 1362 dep_feat = ctz64(deps); 1363 if (!(hyperv_feat_enabled(cpu, dep_feat))) { 1364 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1365 kvm_hyperv_properties[feature].desc, 1366 kvm_hyperv_properties[dep_feat].desc); 1367 return false; 1368 } 1369 deps &= ~(1ull << dep_feat); 1370 } 1371 1372 return true; 1373 } 1374 1375 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg) 1376 { 1377 X86CPU *cpu = X86_CPU(cs); 1378 uint32_t r = 0; 1379 int i, j; 1380 1381 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) { 1382 if (!hyperv_feat_enabled(cpu, i)) { 1383 continue; 1384 } 1385 1386 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) { 1387 if (kvm_hyperv_properties[i].flags[j].func != func) { 1388 continue; 1389 } 1390 if (kvm_hyperv_properties[i].flags[j].reg != reg) { 1391 continue; 1392 } 1393 1394 r |= kvm_hyperv_properties[i].flags[j].bits; 1395 } 1396 } 1397 1398 /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */ 1399 if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) { 1400 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1401 r |= DEFAULT_EVMCS_VERSION; 1402 } 1403 } 1404 1405 return r; 1406 } 1407 1408 /* 1409 * Expand Hyper-V CPU features. In partucular, check that all the requested 1410 * features are supported by the host and the sanity of the configuration 1411 * (that all the required dependencies are included). Also, this takes care 1412 * of 'hv_passthrough' mode and fills the environment with all supported 1413 * Hyper-V features. 1414 */ 1415 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp) 1416 { 1417 CPUState *cs = CPU(cpu); 1418 Error *local_err = NULL; 1419 int feat; 1420 1421 if (!hyperv_enabled(cpu)) 1422 return true; 1423 1424 /* 1425 * When kvm_hyperv_expand_features is called at CPU feature expansion 1426 * time per-CPU kvm_state is not available yet so we can only proceed 1427 * when KVM_CAP_SYS_HYPERV_CPUID is supported. 1428 */ 1429 if (!cs->kvm_state && 1430 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID)) 1431 return true; 1432 1433 if (cpu->hyperv_passthrough) { 1434 cpu->hyperv_vendor_id[0] = 1435 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX); 1436 cpu->hyperv_vendor_id[1] = 1437 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX); 1438 cpu->hyperv_vendor_id[2] = 1439 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX); 1440 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor, 1441 sizeof(cpu->hyperv_vendor_id) + 1); 1442 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id, 1443 sizeof(cpu->hyperv_vendor_id)); 1444 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0; 1445 1446 cpu->hyperv_interface_id[0] = 1447 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX); 1448 cpu->hyperv_interface_id[1] = 1449 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX); 1450 cpu->hyperv_interface_id[2] = 1451 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX); 1452 cpu->hyperv_interface_id[3] = 1453 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX); 1454 1455 cpu->hyperv_ver_id_build = 1456 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX); 1457 cpu->hyperv_ver_id_major = 1458 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16; 1459 cpu->hyperv_ver_id_minor = 1460 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff; 1461 cpu->hyperv_ver_id_sp = 1462 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX); 1463 cpu->hyperv_ver_id_sb = 1464 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24; 1465 cpu->hyperv_ver_id_sn = 1466 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff; 1467 1468 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, 1469 R_EAX); 1470 cpu->hyperv_limits[0] = 1471 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX); 1472 cpu->hyperv_limits[1] = 1473 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX); 1474 cpu->hyperv_limits[2] = 1475 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX); 1476 1477 cpu->hyperv_spinlock_attempts = 1478 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX); 1479 1480 /* 1481 * Mark feature as enabled in 'cpu->hyperv_features' as 1482 * hv_build_cpuid_leaf() uses this info to build guest CPUIDs. 1483 */ 1484 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1485 if (hyperv_feature_supported(cs, feat) && 1486 !kvm_hyperv_properties[feat].skip_passthrough) { 1487 cpu->hyperv_features |= BIT(feat); 1488 } 1489 } 1490 } else { 1491 /* Check features availability and dependencies */ 1492 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1493 /* If the feature was not requested skip it. */ 1494 if (!hyperv_feat_enabled(cpu, feat)) { 1495 continue; 1496 } 1497 1498 /* Check if the feature is supported by KVM */ 1499 if (!hyperv_feature_supported(cs, feat)) { 1500 error_setg(errp, "Hyper-V %s is not supported by kernel", 1501 kvm_hyperv_properties[feat].desc); 1502 return false; 1503 } 1504 1505 /* Check dependencies */ 1506 if (!hv_feature_check_deps(cpu, feat, &local_err)) { 1507 error_propagate(errp, local_err); 1508 return false; 1509 } 1510 } 1511 } 1512 1513 /* Additional dependencies not covered by kvm_hyperv_properties[] */ 1514 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1515 !cpu->hyperv_synic_kvm_only && 1516 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) { 1517 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1518 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc, 1519 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc); 1520 return false; 1521 } 1522 1523 return true; 1524 } 1525 1526 /* 1527 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent. 1528 */ 1529 static int hyperv_fill_cpuids(CPUState *cs, 1530 struct kvm_cpuid_entry2 *cpuid_ent) 1531 { 1532 X86CPU *cpu = X86_CPU(cs); 1533 struct kvm_cpuid_entry2 *c; 1534 uint32_t signature[3]; 1535 uint32_t cpuid_i = 0, max_cpuid_leaf = 0; 1536 uint32_t nested_eax = 1537 hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX); 1538 1539 max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES : 1540 HV_CPUID_IMPLEMENT_LIMITS; 1541 1542 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) { 1543 max_cpuid_leaf = 1544 MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES); 1545 } 1546 1547 c = &cpuid_ent[cpuid_i++]; 1548 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS; 1549 c->eax = max_cpuid_leaf; 1550 c->ebx = cpu->hyperv_vendor_id[0]; 1551 c->ecx = cpu->hyperv_vendor_id[1]; 1552 c->edx = cpu->hyperv_vendor_id[2]; 1553 1554 c = &cpuid_ent[cpuid_i++]; 1555 c->function = HV_CPUID_INTERFACE; 1556 c->eax = cpu->hyperv_interface_id[0]; 1557 c->ebx = cpu->hyperv_interface_id[1]; 1558 c->ecx = cpu->hyperv_interface_id[2]; 1559 c->edx = cpu->hyperv_interface_id[3]; 1560 1561 c = &cpuid_ent[cpuid_i++]; 1562 c->function = HV_CPUID_VERSION; 1563 c->eax = cpu->hyperv_ver_id_build; 1564 c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 | 1565 cpu->hyperv_ver_id_minor; 1566 c->ecx = cpu->hyperv_ver_id_sp; 1567 c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 | 1568 (cpu->hyperv_ver_id_sn & 0xffffff); 1569 1570 c = &cpuid_ent[cpuid_i++]; 1571 c->function = HV_CPUID_FEATURES; 1572 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX); 1573 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX); 1574 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX); 1575 1576 /* Unconditionally required with any Hyper-V enlightenment */ 1577 c->eax |= HV_HYPERCALL_AVAILABLE; 1578 1579 /* SynIC and Vmbus devices require messages/signals hypercalls */ 1580 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1581 !cpu->hyperv_synic_kvm_only) { 1582 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS; 1583 } 1584 1585 1586 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */ 1587 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1588 1589 c = &cpuid_ent[cpuid_i++]; 1590 c->function = HV_CPUID_ENLIGHTMENT_INFO; 1591 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX); 1592 c->ebx = cpu->hyperv_spinlock_attempts; 1593 1594 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) && 1595 !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) { 1596 c->eax |= HV_APIC_ACCESS_RECOMMENDED; 1597 } 1598 1599 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) { 1600 c->eax |= HV_NO_NONARCH_CORESHARING; 1601 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) { 1602 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) & 1603 HV_NO_NONARCH_CORESHARING; 1604 } 1605 1606 c = &cpuid_ent[cpuid_i++]; 1607 c->function = HV_CPUID_IMPLEMENT_LIMITS; 1608 c->eax = cpu->hv_max_vps; 1609 c->ebx = cpu->hyperv_limits[0]; 1610 c->ecx = cpu->hyperv_limits[1]; 1611 c->edx = cpu->hyperv_limits[2]; 1612 1613 if (nested_eax) { 1614 uint32_t function; 1615 1616 /* Create zeroed 0x40000006..0x40000009 leaves */ 1617 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1; 1618 function < HV_CPUID_NESTED_FEATURES; function++) { 1619 c = &cpuid_ent[cpuid_i++]; 1620 c->function = function; 1621 } 1622 1623 c = &cpuid_ent[cpuid_i++]; 1624 c->function = HV_CPUID_NESTED_FEATURES; 1625 c->eax = nested_eax; 1626 } 1627 1628 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) { 1629 c = &cpuid_ent[cpuid_i++]; 1630 c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS; 1631 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ? 1632 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS; 1633 memcpy(signature, "Microsoft VS", 12); 1634 c->eax = 0; 1635 c->ebx = signature[0]; 1636 c->ecx = signature[1]; 1637 c->edx = signature[2]; 1638 1639 c = &cpuid_ent[cpuid_i++]; 1640 c->function = HV_CPUID_SYNDBG_INTERFACE; 1641 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12); 1642 c->eax = signature[0]; 1643 c->ebx = 0; 1644 c->ecx = 0; 1645 c->edx = 0; 1646 1647 c = &cpuid_ent[cpuid_i++]; 1648 c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES; 1649 c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING; 1650 c->ebx = 0; 1651 c->ecx = 0; 1652 c->edx = 0; 1653 } 1654 1655 return cpuid_i; 1656 } 1657 1658 static Error *hv_passthrough_mig_blocker; 1659 static Error *hv_no_nonarch_cs_mig_blocker; 1660 1661 /* Checks that the exposed eVMCS version range is supported by KVM */ 1662 static bool evmcs_version_supported(uint16_t evmcs_version, 1663 uint16_t supported_evmcs_version) 1664 { 1665 uint8_t min_version = evmcs_version & 0xff; 1666 uint8_t max_version = evmcs_version >> 8; 1667 uint8_t min_supported_version = supported_evmcs_version & 0xff; 1668 uint8_t max_supported_version = supported_evmcs_version >> 8; 1669 1670 return (min_version >= min_supported_version) && 1671 (max_version <= max_supported_version); 1672 } 1673 1674 static int hyperv_init_vcpu(X86CPU *cpu) 1675 { 1676 CPUState *cs = CPU(cpu); 1677 Error *local_err = NULL; 1678 int ret; 1679 1680 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) { 1681 error_setg(&hv_passthrough_mig_blocker, 1682 "'hv-passthrough' CPU flag prevents migration, use explicit" 1683 " set of hv-* flags instead"); 1684 ret = migrate_add_blocker(&hv_passthrough_mig_blocker, &local_err); 1685 if (ret < 0) { 1686 error_report_err(local_err); 1687 return ret; 1688 } 1689 } 1690 1691 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO && 1692 hv_no_nonarch_cs_mig_blocker == NULL) { 1693 error_setg(&hv_no_nonarch_cs_mig_blocker, 1694 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration" 1695 " use explicit 'hv-no-nonarch-coresharing=on' instead (but" 1696 " make sure SMT is disabled and/or that vCPUs are properly" 1697 " pinned)"); 1698 ret = migrate_add_blocker(&hv_no_nonarch_cs_mig_blocker, &local_err); 1699 if (ret < 0) { 1700 error_report_err(local_err); 1701 return ret; 1702 } 1703 } 1704 1705 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) { 1706 /* 1707 * the kernel doesn't support setting vp_index; assert that its value 1708 * is in sync 1709 */ 1710 uint64_t value; 1711 1712 ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value); 1713 if (ret < 0) { 1714 return ret; 1715 } 1716 1717 if (value != hyperv_vp_index(CPU(cpu))) { 1718 error_report("kernel's vp_index != QEMU's vp_index"); 1719 return -ENXIO; 1720 } 1721 } 1722 1723 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 1724 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ? 1725 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1726 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0); 1727 if (ret < 0) { 1728 error_report("failed to turn on HyperV SynIC in KVM: %s", 1729 strerror(-ret)); 1730 return ret; 1731 } 1732 1733 if (!cpu->hyperv_synic_kvm_only) { 1734 ret = hyperv_x86_synic_add(cpu); 1735 if (ret < 0) { 1736 error_report("failed to create HyperV SynIC: %s", 1737 strerror(-ret)); 1738 return ret; 1739 } 1740 } 1741 } 1742 1743 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1744 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION; 1745 uint16_t supported_evmcs_version; 1746 1747 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0, 1748 (uintptr_t)&supported_evmcs_version); 1749 1750 /* 1751 * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs' 1752 * option sets. Note: we hardcode the maximum supported eVMCS version 1753 * to '1' as well so 'hv-evmcs' feature is migratable even when (and if) 1754 * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have 1755 * to be added. 1756 */ 1757 if (ret < 0) { 1758 error_report("Hyper-V %s is not supported by kernel", 1759 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc); 1760 return ret; 1761 } 1762 1763 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) { 1764 error_report("eVMCS version range [%d..%d] is not supported by " 1765 "kernel (supported: [%d..%d])", evmcs_version & 0xff, 1766 evmcs_version >> 8, supported_evmcs_version & 0xff, 1767 supported_evmcs_version >> 8); 1768 return -ENOTSUP; 1769 } 1770 } 1771 1772 if (cpu->hyperv_enforce_cpuid) { 1773 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1); 1774 if (ret < 0) { 1775 error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s", 1776 strerror(-ret)); 1777 return ret; 1778 } 1779 } 1780 1781 /* Skip SynIC and VP_INDEX since they are hard deps already */ 1782 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_STIMER) && 1783 hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) && 1784 hyperv_feat_enabled(cpu, HYPERV_FEAT_RUNTIME)) { 1785 hyperv_x86_set_vmbus_recommended_features_enabled(); 1786 } 1787 1788 return 0; 1789 } 1790 1791 static Error *invtsc_mig_blocker; 1792 1793 static void kvm_init_xsave(CPUX86State *env) 1794 { 1795 if (has_xsave2) { 1796 env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096); 1797 } else { 1798 env->xsave_buf_len = sizeof(struct kvm_xsave); 1799 } 1800 1801 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len); 1802 memset(env->xsave_buf, 0, env->xsave_buf_len); 1803 /* 1804 * The allocated storage must be large enough for all of the 1805 * possible XSAVE state components. 1806 */ 1807 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <= 1808 env->xsave_buf_len); 1809 } 1810 1811 static void kvm_init_nested_state(CPUX86State *env) 1812 { 1813 struct kvm_vmx_nested_state_hdr *vmx_hdr; 1814 uint32_t size; 1815 1816 if (!env->nested_state) { 1817 return; 1818 } 1819 1820 size = env->nested_state->size; 1821 1822 memset(env->nested_state, 0, size); 1823 env->nested_state->size = size; 1824 1825 if (cpu_has_vmx(env)) { 1826 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX; 1827 vmx_hdr = &env->nested_state->hdr.vmx; 1828 vmx_hdr->vmxon_pa = -1ull; 1829 vmx_hdr->vmcs12_pa = -1ull; 1830 } else if (cpu_has_svm(env)) { 1831 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM; 1832 } 1833 } 1834 1835 uint32_t kvm_x86_build_cpuid(CPUX86State *env, struct kvm_cpuid_entry2 *entries, 1836 uint32_t cpuid_i) 1837 { 1838 uint32_t limit, i, j; 1839 uint32_t unused; 1840 struct kvm_cpuid_entry2 *c; 1841 1842 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); 1843 1844 for (i = 0; i <= limit; i++) { 1845 j = 0; 1846 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1847 goto full; 1848 } 1849 c = &entries[cpuid_i++]; 1850 switch (i) { 1851 case 2: { 1852 /* Keep reading function 2 till all the input is received */ 1853 int times; 1854 1855 c->function = i; 1856 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1857 times = c->eax & 0xff; 1858 if (times > 1) { 1859 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | 1860 KVM_CPUID_FLAG_STATE_READ_NEXT; 1861 } 1862 1863 for (j = 1; j < times; ++j) { 1864 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1865 goto full; 1866 } 1867 c = &entries[cpuid_i++]; 1868 c->function = i; 1869 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; 1870 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1871 } 1872 break; 1873 } 1874 case 0x1f: 1875 if (!x86_has_extended_topo(env->avail_cpu_topo)) { 1876 cpuid_i--; 1877 break; 1878 } 1879 /* fallthrough */ 1880 case 4: 1881 case 0xb: 1882 case 0xd: 1883 for (j = 0; ; j++) { 1884 c->function = i; 1885 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1886 c->index = j; 1887 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1888 1889 if (i == 4 && c->eax == 0) { 1890 break; 1891 } 1892 if (i == 0xb && !(c->ecx & 0xff00)) { 1893 break; 1894 } 1895 if (i == 0x1f && !(c->ecx & 0xff00)) { 1896 break; 1897 } 1898 if (i == 0xd && c->eax == 0) { 1899 if (j < 63) { 1900 continue; 1901 } else { 1902 cpuid_i--; 1903 break; 1904 } 1905 } 1906 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1907 goto full; 1908 } 1909 c = &entries[cpuid_i++]; 1910 } 1911 break; 1912 case 0x12: 1913 for (j = 0; ; j++) { 1914 c->function = i; 1915 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1916 c->index = j; 1917 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1918 1919 if (j > 1 && (c->eax & 0xf) != 1) { 1920 break; 1921 } 1922 1923 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1924 goto full; 1925 } 1926 c = &entries[cpuid_i++]; 1927 } 1928 break; 1929 case 0x7: 1930 case 0x14: 1931 case 0x1d: 1932 case 0x1e: 1933 case 0x24: { 1934 uint32_t times; 1935 1936 c->function = i; 1937 c->index = 0; 1938 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1939 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1940 times = c->eax; 1941 1942 for (j = 1; j <= times; ++j) { 1943 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1944 goto full; 1945 } 1946 c = &entries[cpuid_i++]; 1947 c->function = i; 1948 c->index = j; 1949 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1950 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1951 } 1952 break; 1953 } 1954 default: 1955 c->function = i; 1956 c->flags = 0; 1957 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1958 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 1959 /* 1960 * KVM already returns all zeroes if a CPUID entry is missing, 1961 * so we can omit it and avoid hitting KVM's 80-entry limit. 1962 */ 1963 cpuid_i--; 1964 } 1965 break; 1966 } 1967 } 1968 1969 if (limit >= 0x0a) { 1970 uint32_t eax, edx; 1971 1972 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx); 1973 1974 has_architectural_pmu_version = eax & 0xff; 1975 if (has_architectural_pmu_version > 0) { 1976 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8; 1977 1978 /* Shouldn't be more than 32, since that's the number of bits 1979 * available in EBX to tell us _which_ counters are available. 1980 * Play it safe. 1981 */ 1982 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) { 1983 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS; 1984 } 1985 1986 if (has_architectural_pmu_version > 1) { 1987 num_architectural_pmu_fixed_counters = edx & 0x1f; 1988 1989 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) { 1990 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS; 1991 } 1992 } 1993 } 1994 } 1995 1996 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); 1997 1998 for (i = 0x80000000; i <= limit; i++) { 1999 j = 0; 2000 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2001 goto full; 2002 } 2003 c = &entries[cpuid_i++]; 2004 2005 switch (i) { 2006 case 0x8000001d: 2007 /* Query for all AMD cache information leaves */ 2008 for (j = 0; ; j++) { 2009 c->function = i; 2010 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 2011 c->index = j; 2012 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 2013 2014 if (c->eax == 0) { 2015 break; 2016 } 2017 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2018 goto full; 2019 } 2020 c = &entries[cpuid_i++]; 2021 } 2022 break; 2023 default: 2024 c->function = i; 2025 c->flags = 0; 2026 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 2027 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 2028 /* 2029 * KVM already returns all zeroes if a CPUID entry is missing, 2030 * so we can omit it and avoid hitting KVM's 80-entry limit. 2031 */ 2032 cpuid_i--; 2033 } 2034 break; 2035 } 2036 } 2037 2038 /* Call Centaur's CPUID instructions they are supported. */ 2039 if (env->cpuid_xlevel2 > 0) { 2040 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); 2041 2042 for (i = 0xC0000000; i <= limit; i++) { 2043 j = 0; 2044 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2045 goto full; 2046 } 2047 c = &entries[cpuid_i++]; 2048 2049 c->function = i; 2050 c->flags = 0; 2051 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 2052 } 2053 } 2054 2055 return cpuid_i; 2056 2057 full: 2058 fprintf(stderr, "cpuid_data is full, no space for " 2059 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 2060 abort(); 2061 } 2062 2063 int kvm_arch_pre_create_vcpu(CPUState *cpu, Error **errp) 2064 { 2065 if (is_tdx_vm()) { 2066 return tdx_pre_create_vcpu(cpu, errp); 2067 } 2068 2069 return 0; 2070 } 2071 2072 int kvm_arch_init_vcpu(CPUState *cs) 2073 { 2074 struct { 2075 struct kvm_cpuid2 cpuid; 2076 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; 2077 } cpuid_data; 2078 /* 2079 * The kernel defines these structs with padding fields so there 2080 * should be no extra padding in our cpuid_data struct. 2081 */ 2082 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) != 2083 sizeof(struct kvm_cpuid2) + 2084 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES); 2085 2086 X86CPU *cpu = X86_CPU(cs); 2087 CPUX86State *env = &cpu->env; 2088 uint32_t cpuid_i; 2089 struct kvm_cpuid_entry2 *c; 2090 uint32_t signature[3]; 2091 int kvm_base = KVM_CPUID_SIGNATURE; 2092 int max_nested_state_len; 2093 int r; 2094 Error *local_err = NULL; 2095 2096 memset(&cpuid_data, 0, sizeof(cpuid_data)); 2097 2098 cpuid_i = 0; 2099 2100 has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2); 2101 2102 r = kvm_arch_set_tsc_khz(cs); 2103 if (r < 0) { 2104 return r; 2105 } 2106 2107 /* vcpu's TSC frequency is either specified by user, or following 2108 * the value used by KVM if the former is not present. In the 2109 * latter case, we query it from KVM and record in env->tsc_khz, 2110 * so that vcpu's TSC frequency can be migrated later via this field. 2111 */ 2112 if (!env->tsc_khz) { 2113 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 2114 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 2115 -ENOTSUP; 2116 if (r > 0) { 2117 env->tsc_khz = r; 2118 } 2119 } 2120 2121 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY; 2122 2123 /* 2124 * kvm_hyperv_expand_features() is called here for the second time in case 2125 * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle 2126 * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to 2127 * check which Hyper-V enlightenments are supported and which are not, we 2128 * can still proceed and check/expand Hyper-V enlightenments here so legacy 2129 * behavior is preserved. 2130 */ 2131 if (!kvm_hyperv_expand_features(cpu, &local_err)) { 2132 error_report_err(local_err); 2133 return -ENOSYS; 2134 } 2135 2136 if (hyperv_enabled(cpu)) { 2137 r = hyperv_init_vcpu(cpu); 2138 if (r) { 2139 return r; 2140 } 2141 2142 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries); 2143 kvm_base = KVM_CPUID_SIGNATURE_NEXT; 2144 has_msr_hv_hypercall = true; 2145 } 2146 2147 if (cs->kvm_state->xen_version) { 2148 #ifdef CONFIG_XEN_EMU 2149 struct kvm_cpuid_entry2 *xen_max_leaf; 2150 2151 memcpy(signature, "XenVMMXenVMM", 12); 2152 2153 xen_max_leaf = c = &cpuid_data.entries[cpuid_i++]; 2154 c->function = kvm_base + XEN_CPUID_SIGNATURE; 2155 c->eax = kvm_base + XEN_CPUID_TIME; 2156 c->ebx = signature[0]; 2157 c->ecx = signature[1]; 2158 c->edx = signature[2]; 2159 2160 c = &cpuid_data.entries[cpuid_i++]; 2161 c->function = kvm_base + XEN_CPUID_VENDOR; 2162 c->eax = cs->kvm_state->xen_version; 2163 c->ebx = 0; 2164 c->ecx = 0; 2165 c->edx = 0; 2166 2167 c = &cpuid_data.entries[cpuid_i++]; 2168 c->function = kvm_base + XEN_CPUID_HVM_MSR; 2169 /* Number of hypercall-transfer pages */ 2170 c->eax = 1; 2171 /* Hypercall MSR base address */ 2172 if (hyperv_enabled(cpu)) { 2173 c->ebx = XEN_HYPERCALL_MSR_HYPERV; 2174 kvm_xen_init(cs->kvm_state, c->ebx); 2175 } else { 2176 c->ebx = XEN_HYPERCALL_MSR; 2177 } 2178 c->ecx = 0; 2179 c->edx = 0; 2180 2181 c = &cpuid_data.entries[cpuid_i++]; 2182 c->function = kvm_base + XEN_CPUID_TIME; 2183 c->eax = ((!!tsc_is_stable_and_known(env) << 1) | 2184 (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2)); 2185 /* default=0 (emulate if necessary) */ 2186 c->ebx = 0; 2187 /* guest tsc frequency */ 2188 c->ecx = env->user_tsc_khz; 2189 /* guest tsc incarnation (migration count) */ 2190 c->edx = 0; 2191 2192 c = &cpuid_data.entries[cpuid_i++]; 2193 c->function = kvm_base + XEN_CPUID_HVM; 2194 xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM; 2195 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) { 2196 c->function = kvm_base + XEN_CPUID_HVM; 2197 2198 if (cpu->xen_vapic) { 2199 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT; 2200 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT; 2201 } 2202 2203 c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS; 2204 2205 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) { 2206 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT; 2207 c->ebx = cs->cpu_index; 2208 } 2209 2210 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 17)) { 2211 c->eax |= XEN_HVM_CPUID_UPCALL_VECTOR; 2212 } 2213 } 2214 2215 r = kvm_xen_init_vcpu(cs); 2216 if (r) { 2217 return r; 2218 } 2219 2220 kvm_base += 0x100; 2221 #else /* CONFIG_XEN_EMU */ 2222 /* This should never happen as kvm_arch_init() would have died first. */ 2223 fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n"); 2224 abort(); 2225 #endif 2226 } else if (cpu->expose_kvm) { 2227 memcpy(signature, "KVMKVMKVM\0\0\0", 12); 2228 c = &cpuid_data.entries[cpuid_i++]; 2229 c->function = KVM_CPUID_SIGNATURE | kvm_base; 2230 c->eax = KVM_CPUID_FEATURES | kvm_base; 2231 c->ebx = signature[0]; 2232 c->ecx = signature[1]; 2233 c->edx = signature[2]; 2234 2235 c = &cpuid_data.entries[cpuid_i++]; 2236 c->function = KVM_CPUID_FEATURES | kvm_base; 2237 c->eax = env->features[FEAT_KVM]; 2238 c->edx = env->features[FEAT_KVM_HINTS]; 2239 } 2240 2241 if (cpu->kvm_pv_enforce_cpuid) { 2242 r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1); 2243 if (r < 0) { 2244 fprintf(stderr, 2245 "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s", 2246 strerror(-r)); 2247 abort(); 2248 } 2249 } 2250 2251 cpuid_i = kvm_x86_build_cpuid(env, cpuid_data.entries, cpuid_i); 2252 cpuid_data.cpuid.nent = cpuid_i; 2253 2254 if (((env->cpuid_version >> 8)&0xF) >= 6 2255 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == 2256 (CPUID_MCE | CPUID_MCA)) { 2257 uint64_t mcg_cap, unsupported_caps; 2258 int banks; 2259 int ret; 2260 2261 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); 2262 if (ret < 0) { 2263 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); 2264 return ret; 2265 } 2266 2267 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { 2268 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", 2269 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); 2270 return -ENOTSUP; 2271 } 2272 2273 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); 2274 if (unsupported_caps) { 2275 if (unsupported_caps & MCG_LMCE_P) { 2276 error_report("kvm: LMCE not supported"); 2277 return -ENOTSUP; 2278 } 2279 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64, 2280 unsupported_caps); 2281 } 2282 2283 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; 2284 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); 2285 if (ret < 0) { 2286 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); 2287 return ret; 2288 } 2289 } 2290 2291 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env); 2292 2293 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); 2294 if (c) { 2295 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || 2296 !!(c->ecx & CPUID_EXT_SMX); 2297 } 2298 2299 c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0); 2300 if (c && (c->ebx & CPUID_7_0_EBX_SGX)) { 2301 has_msr_feature_control = true; 2302 } 2303 2304 if (env->mcg_cap & MCG_LMCE_P) { 2305 has_msr_mcg_ext_ctl = has_msr_feature_control = true; 2306 } 2307 2308 if (!env->user_tsc_khz) { 2309 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && 2310 invtsc_mig_blocker == NULL) { 2311 error_setg(&invtsc_mig_blocker, 2312 "State blocked by non-migratable CPU device" 2313 " (invtsc flag)"); 2314 r = migrate_add_blocker(&invtsc_mig_blocker, &local_err); 2315 if (r < 0) { 2316 error_report_err(local_err); 2317 return r; 2318 } 2319 } 2320 } 2321 2322 if (cpu->vmware_cpuid_freq 2323 /* Guests depend on 0x40000000 to detect this feature, so only expose 2324 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ 2325 && cpu->expose_kvm 2326 && kvm_base == KVM_CPUID_SIGNATURE 2327 /* TSC clock must be stable and known for this feature. */ 2328 && tsc_is_stable_and_known(env)) { 2329 2330 c = &cpuid_data.entries[cpuid_i++]; 2331 c->function = KVM_CPUID_SIGNATURE | 0x10; 2332 c->eax = env->tsc_khz; 2333 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */ 2334 c->ecx = c->edx = 0; 2335 2336 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); 2337 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); 2338 } 2339 2340 cpuid_data.cpuid.nent = cpuid_i; 2341 2342 cpuid_data.cpuid.padding = 0; 2343 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); 2344 if (r) { 2345 goto fail; 2346 } 2347 kvm_init_xsave(env); 2348 2349 max_nested_state_len = kvm_max_nested_state_length(); 2350 if (max_nested_state_len > 0) { 2351 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data)); 2352 2353 if (cpu_has_vmx(env) || cpu_has_svm(env)) { 2354 env->nested_state = g_malloc0(max_nested_state_len); 2355 env->nested_state->size = max_nested_state_len; 2356 2357 kvm_init_nested_state(env); 2358 } 2359 } 2360 2361 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); 2362 2363 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { 2364 has_msr_tsc_aux = false; 2365 } 2366 2367 kvm_init_msrs(cpu); 2368 2369 return 0; 2370 2371 fail: 2372 migrate_del_blocker(&invtsc_mig_blocker); 2373 2374 return r; 2375 } 2376 2377 int kvm_arch_destroy_vcpu(CPUState *cs) 2378 { 2379 X86CPU *cpu = X86_CPU(cs); 2380 CPUX86State *env = &cpu->env; 2381 2382 g_free(env->xsave_buf); 2383 2384 g_free(cpu->kvm_msr_buf); 2385 cpu->kvm_msr_buf = NULL; 2386 2387 g_free(env->nested_state); 2388 env->nested_state = NULL; 2389 2390 qemu_del_vm_change_state_handler(cpu->vmsentry); 2391 2392 return 0; 2393 } 2394 2395 void kvm_arch_reset_vcpu(X86CPU *cpu) 2396 { 2397 CPUX86State *env = &cpu->env; 2398 2399 env->xcr0 = 1; 2400 if (kvm_irqchip_in_kernel()) { 2401 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : 2402 KVM_MP_STATE_UNINITIALIZED; 2403 } else { 2404 env->mp_state = KVM_MP_STATE_RUNNABLE; 2405 } 2406 2407 /* enabled by default */ 2408 env->poll_control_msr = 1; 2409 2410 kvm_init_nested_state(env); 2411 2412 sev_es_set_reset_vector(CPU(cpu)); 2413 } 2414 2415 void kvm_arch_after_reset_vcpu(X86CPU *cpu) 2416 { 2417 CPUX86State *env = &cpu->env; 2418 int i; 2419 2420 /* 2421 * Reset SynIC after all other devices have been reset to let them remove 2422 * their SINT routes first. 2423 */ 2424 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 2425 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { 2426 env->msr_hv_synic_sint[i] = HV_SINT_MASKED; 2427 } 2428 2429 hyperv_x86_synic_reset(cpu); 2430 } 2431 } 2432 2433 void kvm_arch_reset_parked_vcpu(unsigned long vcpu_id, int kvm_fd) 2434 { 2435 g_autofree struct kvm_msrs *msrs = NULL; 2436 2437 msrs = g_malloc0(sizeof(*msrs) + sizeof(msrs->entries[0])); 2438 msrs->entries[0].index = MSR_IA32_TSC; 2439 msrs->entries[0].data = 1; /* match the value in x86_cpu_reset() */ 2440 msrs->nmsrs++; 2441 2442 if (ioctl(kvm_fd, KVM_SET_MSRS, msrs) != 1) { 2443 warn_report("parked vCPU %lu TSC reset failed: %d", 2444 vcpu_id, errno); 2445 } 2446 } 2447 2448 void kvm_arch_do_init_vcpu(X86CPU *cpu) 2449 { 2450 CPUX86State *env = &cpu->env; 2451 2452 /* APs get directly into wait-for-SIPI state. */ 2453 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { 2454 env->mp_state = KVM_MP_STATE_INIT_RECEIVED; 2455 } 2456 } 2457 2458 static int kvm_get_supported_feature_msrs(KVMState *s) 2459 { 2460 int ret = 0; 2461 2462 if (kvm_feature_msrs != NULL) { 2463 return 0; 2464 } 2465 2466 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) { 2467 return 0; 2468 } 2469 2470 struct kvm_msr_list msr_list; 2471 2472 msr_list.nmsrs = 0; 2473 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list); 2474 if (ret < 0 && ret != -E2BIG) { 2475 error_report("Fetch KVM feature MSR list failed: %s", 2476 strerror(-ret)); 2477 return ret; 2478 } 2479 2480 assert(msr_list.nmsrs > 0); 2481 kvm_feature_msrs = g_malloc0(sizeof(msr_list) + 2482 msr_list.nmsrs * sizeof(msr_list.indices[0])); 2483 2484 kvm_feature_msrs->nmsrs = msr_list.nmsrs; 2485 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs); 2486 2487 if (ret < 0) { 2488 error_report("Fetch KVM feature MSR list failed: %s", 2489 strerror(-ret)); 2490 g_free(kvm_feature_msrs); 2491 kvm_feature_msrs = NULL; 2492 return ret; 2493 } 2494 2495 return 0; 2496 } 2497 2498 static int kvm_get_supported_msrs(KVMState *s) 2499 { 2500 int ret = 0; 2501 struct kvm_msr_list msr_list, *kvm_msr_list; 2502 2503 /* 2504 * Obtain MSR list from KVM. These are the MSRs that we must 2505 * save/restore. 2506 */ 2507 msr_list.nmsrs = 0; 2508 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); 2509 if (ret < 0 && ret != -E2BIG) { 2510 return ret; 2511 } 2512 /* 2513 * Old kernel modules had a bug and could write beyond the provided 2514 * memory. Allocate at least a safe amount of 1K. 2515 */ 2516 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + 2517 msr_list.nmsrs * 2518 sizeof(msr_list.indices[0]))); 2519 2520 kvm_msr_list->nmsrs = msr_list.nmsrs; 2521 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); 2522 if (ret >= 0) { 2523 int i; 2524 2525 for (i = 0; i < kvm_msr_list->nmsrs; i++) { 2526 switch (kvm_msr_list->indices[i]) { 2527 case MSR_STAR: 2528 has_msr_star = true; 2529 break; 2530 case MSR_VM_HSAVE_PA: 2531 has_msr_hsave_pa = true; 2532 break; 2533 case MSR_TSC_AUX: 2534 has_msr_tsc_aux = true; 2535 break; 2536 case MSR_TSC_ADJUST: 2537 has_msr_tsc_adjust = true; 2538 break; 2539 case MSR_IA32_TSCDEADLINE: 2540 has_msr_tsc_deadline = true; 2541 break; 2542 case MSR_IA32_SMBASE: 2543 has_msr_smbase = true; 2544 break; 2545 case MSR_SMI_COUNT: 2546 has_msr_smi_count = true; 2547 break; 2548 case MSR_IA32_MISC_ENABLE: 2549 has_msr_misc_enable = true; 2550 break; 2551 case MSR_IA32_BNDCFGS: 2552 has_msr_bndcfgs = true; 2553 break; 2554 case MSR_IA32_XSS: 2555 has_msr_xss = true; 2556 break; 2557 case MSR_IA32_UMWAIT_CONTROL: 2558 has_msr_umwait = true; 2559 break; 2560 case HV_X64_MSR_CRASH_CTL: 2561 has_msr_hv_crash = true; 2562 break; 2563 case HV_X64_MSR_RESET: 2564 has_msr_hv_reset = true; 2565 break; 2566 case HV_X64_MSR_VP_INDEX: 2567 has_msr_hv_vpindex = true; 2568 break; 2569 case HV_X64_MSR_VP_RUNTIME: 2570 has_msr_hv_runtime = true; 2571 break; 2572 case HV_X64_MSR_SCONTROL: 2573 has_msr_hv_synic = true; 2574 break; 2575 case HV_X64_MSR_STIMER0_CONFIG: 2576 has_msr_hv_stimer = true; 2577 break; 2578 case HV_X64_MSR_TSC_FREQUENCY: 2579 has_msr_hv_frequencies = true; 2580 break; 2581 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 2582 has_msr_hv_reenlightenment = true; 2583 break; 2584 case HV_X64_MSR_SYNDBG_OPTIONS: 2585 has_msr_hv_syndbg_options = true; 2586 break; 2587 case MSR_IA32_SPEC_CTRL: 2588 has_msr_spec_ctrl = true; 2589 break; 2590 case MSR_AMD64_TSC_RATIO: 2591 has_tsc_scale_msr = true; 2592 break; 2593 case MSR_IA32_TSX_CTRL: 2594 has_msr_tsx_ctrl = true; 2595 break; 2596 case MSR_VIRT_SSBD: 2597 has_msr_virt_ssbd = true; 2598 break; 2599 case MSR_IA32_ARCH_CAPABILITIES: 2600 has_msr_arch_capabs = true; 2601 break; 2602 case MSR_IA32_CORE_CAPABILITY: 2603 has_msr_core_capabs = true; 2604 break; 2605 case MSR_IA32_PERF_CAPABILITIES: 2606 has_msr_perf_capabs = true; 2607 break; 2608 case MSR_IA32_VMX_VMFUNC: 2609 has_msr_vmx_vmfunc = true; 2610 break; 2611 case MSR_IA32_UCODE_REV: 2612 has_msr_ucode_rev = true; 2613 break; 2614 case MSR_IA32_VMX_PROCBASED_CTLS2: 2615 has_msr_vmx_procbased_ctls2 = true; 2616 break; 2617 case MSR_IA32_PKRS: 2618 has_msr_pkrs = true; 2619 break; 2620 case MSR_K7_HWCR: 2621 has_msr_hwcr = true; 2622 } 2623 } 2624 } 2625 2626 g_free(kvm_msr_list); 2627 2628 return ret; 2629 } 2630 2631 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu, 2632 uint32_t msr, 2633 uint64_t *val) 2634 { 2635 *val = cpu_x86_get_msr_core_thread_count(cpu); 2636 2637 return true; 2638 } 2639 2640 static bool kvm_rdmsr_rapl_power_unit(X86CPU *cpu, 2641 uint32_t msr, 2642 uint64_t *val) 2643 { 2644 2645 CPUState *cs = CPU(cpu); 2646 2647 *val = cs->kvm_state->msr_energy.msr_unit; 2648 2649 return true; 2650 } 2651 2652 static bool kvm_rdmsr_pkg_power_limit(X86CPU *cpu, 2653 uint32_t msr, 2654 uint64_t *val) 2655 { 2656 2657 CPUState *cs = CPU(cpu); 2658 2659 *val = cs->kvm_state->msr_energy.msr_limit; 2660 2661 return true; 2662 } 2663 2664 static bool kvm_rdmsr_pkg_power_info(X86CPU *cpu, 2665 uint32_t msr, 2666 uint64_t *val) 2667 { 2668 2669 CPUState *cs = CPU(cpu); 2670 2671 *val = cs->kvm_state->msr_energy.msr_info; 2672 2673 return true; 2674 } 2675 2676 static bool kvm_rdmsr_pkg_energy_status(X86CPU *cpu, 2677 uint32_t msr, 2678 uint64_t *val) 2679 { 2680 2681 CPUState *cs = CPU(cpu); 2682 *val = cs->kvm_state->msr_energy.msr_value[cs->cpu_index]; 2683 2684 return true; 2685 } 2686 2687 static Notifier smram_machine_done; 2688 static KVMMemoryListener smram_listener; 2689 static AddressSpace smram_address_space; 2690 static MemoryRegion smram_as_root; 2691 static MemoryRegion smram_as_mem; 2692 2693 static void register_smram_listener(Notifier *n, void *unused) 2694 { 2695 MemoryRegion *smram = 2696 (MemoryRegion *) object_resolve_path("/machine/smram", NULL); 2697 2698 /* Outer container... */ 2699 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); 2700 memory_region_set_enabled(&smram_as_root, true); 2701 2702 /* ... with two regions inside: normal system memory with low 2703 * priority, and... 2704 */ 2705 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", 2706 get_system_memory(), 0, ~0ull); 2707 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); 2708 memory_region_set_enabled(&smram_as_mem, true); 2709 2710 if (smram) { 2711 /* ... SMRAM with higher priority */ 2712 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); 2713 memory_region_set_enabled(smram, true); 2714 } 2715 2716 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); 2717 kvm_memory_listener_register(kvm_state, &smram_listener, 2718 &smram_address_space, 1, "kvm-smram"); 2719 } 2720 2721 static void *kvm_msr_energy_thread(void *data) 2722 { 2723 KVMState *s = data; 2724 struct KVMMsrEnergy *vmsr = &s->msr_energy; 2725 2726 g_autofree vmsr_package_energy_stat *pkg_stat = NULL; 2727 g_autofree vmsr_thread_stat *thd_stat = NULL; 2728 g_autofree CPUState *cpu = NULL; 2729 g_autofree unsigned int *vpkgs_energy_stat = NULL; 2730 unsigned int num_threads = 0; 2731 2732 X86CPUTopoIDs topo_ids; 2733 2734 rcu_register_thread(); 2735 2736 /* Allocate memory for each package energy status */ 2737 pkg_stat = g_new0(vmsr_package_energy_stat, vmsr->host_topo.maxpkgs); 2738 2739 /* Allocate memory for thread stats */ 2740 thd_stat = g_new0(vmsr_thread_stat, 1); 2741 2742 /* Allocate memory for holding virtual package energy counter */ 2743 vpkgs_energy_stat = g_new0(unsigned int, vmsr->guest_vsockets); 2744 2745 /* Populate the max tick of each packages */ 2746 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) { 2747 /* 2748 * Max numbers of ticks per package 2749 * Time in second * Number of ticks/second * Number of cores/package 2750 * ex: 100 ticks/second/CPU, 12 CPUs per Package gives 1200 ticks max 2751 */ 2752 vmsr->host_topo.maxticks[i] = (MSR_ENERGY_THREAD_SLEEP_US / 1000000) 2753 * sysconf(_SC_CLK_TCK) 2754 * vmsr->host_topo.pkg_cpu_count[i]; 2755 } 2756 2757 while (true) { 2758 /* Get all qemu threads id */ 2759 g_autofree pid_t *thread_ids 2760 = vmsr_get_thread_ids(vmsr->pid, &num_threads); 2761 2762 if (thread_ids == NULL) { 2763 goto clean; 2764 } 2765 2766 thd_stat = g_renew(vmsr_thread_stat, thd_stat, num_threads); 2767 /* Unlike g_new0, g_renew0 function doesn't exist yet... */ 2768 memset(thd_stat, 0, num_threads * sizeof(vmsr_thread_stat)); 2769 2770 /* Populate all the thread stats */ 2771 for (int i = 0; i < num_threads; i++) { 2772 thd_stat[i].utime = g_new0(unsigned long long, 2); 2773 thd_stat[i].stime = g_new0(unsigned long long, 2); 2774 thd_stat[i].thread_id = thread_ids[i]; 2775 vmsr_read_thread_stat(vmsr->pid, 2776 thd_stat[i].thread_id, 2777 &thd_stat[i].utime[0], 2778 &thd_stat[i].stime[0], 2779 &thd_stat[i].cpu_id); 2780 thd_stat[i].pkg_id = 2781 vmsr_get_physical_package_id(thd_stat[i].cpu_id); 2782 } 2783 2784 /* Retrieve all packages power plane energy counter */ 2785 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) { 2786 for (int j = 0; j < num_threads; j++) { 2787 /* 2788 * Use the first thread we found that ran on the CPU 2789 * of the package to read the packages energy counter 2790 */ 2791 if (thd_stat[j].pkg_id == i) { 2792 pkg_stat[i].e_start = 2793 vmsr_read_msr(MSR_PKG_ENERGY_STATUS, 2794 thd_stat[j].cpu_id, 2795 thd_stat[j].thread_id, 2796 s->msr_energy.sioc); 2797 break; 2798 } 2799 } 2800 } 2801 2802 /* Sleep a short period while the other threads are working */ 2803 usleep(MSR_ENERGY_THREAD_SLEEP_US); 2804 2805 /* 2806 * Retrieve all packages power plane energy counter 2807 * Calculate the delta of all packages 2808 */ 2809 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) { 2810 for (int j = 0; j < num_threads; j++) { 2811 /* 2812 * Use the first thread we found that ran on the CPU 2813 * of the package to read the packages energy counter 2814 */ 2815 if (thd_stat[j].pkg_id == i) { 2816 pkg_stat[i].e_end = 2817 vmsr_read_msr(MSR_PKG_ENERGY_STATUS, 2818 thd_stat[j].cpu_id, 2819 thd_stat[j].thread_id, 2820 s->msr_energy.sioc); 2821 /* 2822 * Prevent the case we have migrate the VM 2823 * during the sleep period or any other cases 2824 * were energy counter might be lower after 2825 * the sleep period. 2826 */ 2827 if (pkg_stat[i].e_end > pkg_stat[i].e_start) { 2828 pkg_stat[i].e_delta = 2829 pkg_stat[i].e_end - pkg_stat[i].e_start; 2830 } else { 2831 pkg_stat[i].e_delta = 0; 2832 } 2833 break; 2834 } 2835 } 2836 } 2837 2838 /* Delta of ticks spend by each thread between the sample */ 2839 for (int i = 0; i < num_threads; i++) { 2840 vmsr_read_thread_stat(vmsr->pid, 2841 thd_stat[i].thread_id, 2842 &thd_stat[i].utime[1], 2843 &thd_stat[i].stime[1], 2844 &thd_stat[i].cpu_id); 2845 2846 if (vmsr->pid < 0) { 2847 /* 2848 * We don't count the dead thread 2849 * i.e threads that existed before the sleep 2850 * and not anymore 2851 */ 2852 thd_stat[i].delta_ticks = 0; 2853 } else { 2854 vmsr_delta_ticks(thd_stat, i); 2855 } 2856 } 2857 2858 /* 2859 * Identify the vcpu threads 2860 * Calculate the number of vcpu per package 2861 */ 2862 CPU_FOREACH(cpu) { 2863 for (int i = 0; i < num_threads; i++) { 2864 if (cpu->thread_id == thd_stat[i].thread_id) { 2865 thd_stat[i].is_vcpu = true; 2866 thd_stat[i].vcpu_id = cpu->cpu_index; 2867 pkg_stat[thd_stat[i].pkg_id].nb_vcpu++; 2868 thd_stat[i].acpi_id = kvm_arch_vcpu_id(cpu); 2869 break; 2870 } 2871 } 2872 } 2873 2874 /* Retrieve the virtual package number of each vCPU */ 2875 for (int i = 0; i < vmsr->guest_cpu_list->len; i++) { 2876 for (int j = 0; j < num_threads; j++) { 2877 if ((thd_stat[j].acpi_id == 2878 vmsr->guest_cpu_list->cpus[i].arch_id) 2879 && (thd_stat[j].is_vcpu == true)) { 2880 x86_topo_ids_from_apicid(thd_stat[j].acpi_id, 2881 &vmsr->guest_topo_info, &topo_ids); 2882 thd_stat[j].vpkg_id = topo_ids.pkg_id; 2883 } 2884 } 2885 } 2886 2887 /* Calculate the total energy of all non-vCPU thread */ 2888 for (int i = 0; i < num_threads; i++) { 2889 if ((thd_stat[i].is_vcpu != true) && 2890 (thd_stat[i].delta_ticks > 0)) { 2891 double temp; 2892 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta, 2893 thd_stat[i].delta_ticks, 2894 vmsr->host_topo.maxticks[thd_stat[i].pkg_id]); 2895 pkg_stat[thd_stat[i].pkg_id].e_ratio 2896 += (uint64_t)lround(temp); 2897 } 2898 } 2899 2900 /* Calculate the ratio per non-vCPU thread of each package */ 2901 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) { 2902 if (pkg_stat[i].nb_vcpu > 0) { 2903 pkg_stat[i].e_ratio = pkg_stat[i].e_ratio / pkg_stat[i].nb_vcpu; 2904 } 2905 } 2906 2907 /* 2908 * Calculate the energy for each Package: 2909 * Energy Package = sum of each vCPU energy that belongs to the package 2910 */ 2911 for (int i = 0; i < num_threads; i++) { 2912 if ((thd_stat[i].is_vcpu == true) && \ 2913 (thd_stat[i].delta_ticks > 0)) { 2914 double temp; 2915 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta, 2916 thd_stat[i].delta_ticks, 2917 vmsr->host_topo.maxticks[thd_stat[i].pkg_id]); 2918 vpkgs_energy_stat[thd_stat[i].vpkg_id] += 2919 (uint64_t)lround(temp); 2920 vpkgs_energy_stat[thd_stat[i].vpkg_id] += 2921 pkg_stat[thd_stat[i].pkg_id].e_ratio; 2922 } 2923 } 2924 2925 /* 2926 * Finally populate the vmsr register of each vCPU with the total 2927 * package value to emulate the real hardware where each CPU return the 2928 * value of the package it belongs. 2929 */ 2930 for (int i = 0; i < num_threads; i++) { 2931 if ((thd_stat[i].is_vcpu == true) && \ 2932 (thd_stat[i].delta_ticks > 0)) { 2933 vmsr->msr_value[thd_stat[i].vcpu_id] = \ 2934 vpkgs_energy_stat[thd_stat[i].vpkg_id]; 2935 } 2936 } 2937 2938 /* Freeing memory before zeroing the pointer */ 2939 for (int i = 0; i < num_threads; i++) { 2940 g_free(thd_stat[i].utime); 2941 g_free(thd_stat[i].stime); 2942 } 2943 } 2944 2945 clean: 2946 rcu_unregister_thread(); 2947 return NULL; 2948 } 2949 2950 static int kvm_msr_energy_thread_init(KVMState *s, MachineState *ms) 2951 { 2952 MachineClass *mc = MACHINE_GET_CLASS(ms); 2953 struct KVMMsrEnergy *r = &s->msr_energy; 2954 2955 /* 2956 * Sanity check 2957 * 1. Host cpu must be Intel cpu 2958 * 2. RAPL must be enabled on the Host 2959 */ 2960 if (!is_host_cpu_intel()) { 2961 error_report("The RAPL feature can only be enabled on hosts " 2962 "with Intel CPU models"); 2963 return -1; 2964 } 2965 2966 if (!is_rapl_enabled()) { 2967 return -1; 2968 } 2969 2970 /* Retrieve the virtual topology */ 2971 vmsr_init_topo_info(&r->guest_topo_info, ms); 2972 2973 /* Retrieve the number of vcpu */ 2974 r->guest_vcpus = ms->smp.cpus; 2975 2976 /* Retrieve the number of virtual sockets */ 2977 r->guest_vsockets = ms->smp.sockets; 2978 2979 /* Allocate register memory (MSR_PKG_STATUS) for each vcpu */ 2980 r->msr_value = g_new0(uint64_t, r->guest_vcpus); 2981 2982 /* Retrieve the CPUArchIDlist */ 2983 r->guest_cpu_list = mc->possible_cpu_arch_ids(ms); 2984 2985 /* Max number of cpus on the Host */ 2986 r->host_topo.maxcpus = vmsr_get_maxcpus(); 2987 if (r->host_topo.maxcpus == 0) { 2988 error_report("host max cpus = 0"); 2989 return -1; 2990 } 2991 2992 /* Max number of packages on the host */ 2993 r->host_topo.maxpkgs = vmsr_get_max_physical_package(r->host_topo.maxcpus); 2994 if (r->host_topo.maxpkgs == 0) { 2995 error_report("host max pkgs = 0"); 2996 return -1; 2997 } 2998 2999 /* Allocate memory for each package on the host */ 3000 r->host_topo.pkg_cpu_count = g_new0(unsigned int, r->host_topo.maxpkgs); 3001 r->host_topo.maxticks = g_new0(unsigned int, r->host_topo.maxpkgs); 3002 3003 vmsr_count_cpus_per_package(r->host_topo.pkg_cpu_count, 3004 r->host_topo.maxpkgs); 3005 for (int i = 0; i < r->host_topo.maxpkgs; i++) { 3006 if (r->host_topo.pkg_cpu_count[i] == 0) { 3007 error_report("cpu per packages = 0 on package_%d", i); 3008 return -1; 3009 } 3010 } 3011 3012 /* Get QEMU PID*/ 3013 r->pid = getpid(); 3014 3015 /* Compute the socket path if necessary */ 3016 if (s->msr_energy.socket_path == NULL) { 3017 s->msr_energy.socket_path = vmsr_compute_default_paths(); 3018 } 3019 3020 /* Open socket with vmsr helper */ 3021 s->msr_energy.sioc = vmsr_open_socket(s->msr_energy.socket_path); 3022 3023 if (s->msr_energy.sioc == NULL) { 3024 error_report("vmsr socket opening failed"); 3025 return -1; 3026 } 3027 3028 /* Those MSR values should not change */ 3029 r->msr_unit = vmsr_read_msr(MSR_RAPL_POWER_UNIT, 0, r->pid, 3030 s->msr_energy.sioc); 3031 r->msr_limit = vmsr_read_msr(MSR_PKG_POWER_LIMIT, 0, r->pid, 3032 s->msr_energy.sioc); 3033 r->msr_info = vmsr_read_msr(MSR_PKG_POWER_INFO, 0, r->pid, 3034 s->msr_energy.sioc); 3035 if (r->msr_unit == 0 || r->msr_limit == 0 || r->msr_info == 0) { 3036 error_report("can't read any virtual msr"); 3037 return -1; 3038 } 3039 3040 qemu_thread_create(&r->msr_thr, "kvm-msr", 3041 kvm_msr_energy_thread, 3042 s, QEMU_THREAD_JOINABLE); 3043 return 0; 3044 } 3045 3046 int kvm_arch_get_default_type(MachineState *ms) 3047 { 3048 return 0; 3049 } 3050 3051 static int kvm_vm_enable_exception_payload(KVMState *s) 3052 { 3053 int ret = 0; 3054 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD); 3055 if (has_exception_payload) { 3056 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true); 3057 if (ret < 0) { 3058 error_report("kvm: Failed to enable exception payload cap: %s", 3059 strerror(-ret)); 3060 } 3061 } 3062 3063 return ret; 3064 } 3065 3066 static int kvm_vm_enable_triple_fault_event(KVMState *s) 3067 { 3068 int ret = 0; 3069 has_triple_fault_event = \ 3070 kvm_check_extension(s, 3071 KVM_CAP_X86_TRIPLE_FAULT_EVENT); 3072 if (has_triple_fault_event) { 3073 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true); 3074 if (ret < 0) { 3075 error_report("kvm: Failed to enable triple fault event cap: %s", 3076 strerror(-ret)); 3077 } 3078 } 3079 return ret; 3080 } 3081 3082 static int kvm_vm_set_identity_map_addr(KVMState *s, uint64_t identity_base) 3083 { 3084 return kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); 3085 } 3086 3087 static int kvm_vm_set_nr_mmu_pages(KVMState *s) 3088 { 3089 uint64_t shadow_mem; 3090 int ret = 0; 3091 shadow_mem = object_property_get_int(OBJECT(s), 3092 "kvm-shadow-mem", 3093 &error_abort); 3094 if (shadow_mem != -1) { 3095 shadow_mem /= 4096; 3096 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); 3097 } 3098 return ret; 3099 } 3100 3101 static int kvm_vm_set_tss_addr(KVMState *s, uint64_t tss_base) 3102 { 3103 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, tss_base); 3104 } 3105 3106 static int kvm_vm_enable_disable_exits(KVMState *s) 3107 { 3108 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS); 3109 3110 if (disable_exits) { 3111 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT | 3112 KVM_X86_DISABLE_EXITS_HLT | 3113 KVM_X86_DISABLE_EXITS_PAUSE | 3114 KVM_X86_DISABLE_EXITS_CSTATE); 3115 } 3116 3117 return kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0, 3118 disable_exits); 3119 } 3120 3121 static int kvm_vm_enable_bus_lock_exit(KVMState *s) 3122 { 3123 int ret = 0; 3124 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT); 3125 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) { 3126 error_report("kvm: bus lock detection unsupported"); 3127 return -ENOTSUP; 3128 } 3129 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0, 3130 KVM_BUS_LOCK_DETECTION_EXIT); 3131 if (ret < 0) { 3132 error_report("kvm: Failed to enable bus lock detection cap: %s", 3133 strerror(-ret)); 3134 } 3135 3136 return ret; 3137 } 3138 3139 static int kvm_vm_enable_notify_vmexit(KVMState *s) 3140 { 3141 int ret = 0; 3142 if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE) { 3143 uint64_t notify_window_flags = 3144 ((uint64_t)s->notify_window << 32) | 3145 KVM_X86_NOTIFY_VMEXIT_ENABLED | 3146 KVM_X86_NOTIFY_VMEXIT_USER; 3147 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0, 3148 notify_window_flags); 3149 if (ret < 0) { 3150 error_report("kvm: Failed to enable notify vmexit cap: %s", 3151 strerror(-ret)); 3152 } 3153 } 3154 return ret; 3155 } 3156 3157 static int kvm_vm_enable_userspace_msr(KVMState *s) 3158 { 3159 int ret; 3160 3161 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0, 3162 KVM_MSR_EXIT_REASON_FILTER); 3163 if (ret < 0) { 3164 error_report("Could not enable user space MSRs: %s", 3165 strerror(-ret)); 3166 exit(1); 3167 } 3168 3169 ret = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT, 3170 kvm_rdmsr_core_thread_count, NULL); 3171 if (ret < 0) { 3172 error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s", 3173 strerror(-ret)); 3174 exit(1); 3175 } 3176 3177 return 0; 3178 } 3179 3180 static int kvm_vm_enable_energy_msrs(KVMState *s) 3181 { 3182 int ret; 3183 3184 if (s->msr_energy.enable == true) { 3185 ret = kvm_filter_msr(s, MSR_RAPL_POWER_UNIT, 3186 kvm_rdmsr_rapl_power_unit, NULL); 3187 if (ret < 0) { 3188 error_report("Could not install MSR_RAPL_POWER_UNIT handler: %s", 3189 strerror(-ret)); 3190 return ret; 3191 } 3192 3193 ret = kvm_filter_msr(s, MSR_PKG_POWER_LIMIT, 3194 kvm_rdmsr_pkg_power_limit, NULL); 3195 if (ret < 0) { 3196 error_report("Could not install MSR_PKG_POWER_LIMIT handler: %s", 3197 strerror(-ret)); 3198 return ret; 3199 } 3200 3201 ret = kvm_filter_msr(s, MSR_PKG_POWER_INFO, 3202 kvm_rdmsr_pkg_power_info, NULL); 3203 if (ret < 0) { 3204 error_report("Could not install MSR_PKG_POWER_INFO handler: %s", 3205 strerror(-ret)); 3206 return ret; 3207 } 3208 ret = kvm_filter_msr(s, MSR_PKG_ENERGY_STATUS, 3209 kvm_rdmsr_pkg_energy_status, NULL); 3210 if (ret < 0) { 3211 error_report("Could not install MSR_PKG_ENERGY_STATUS handler: %s", 3212 strerror(-ret)); 3213 return ret; 3214 } 3215 } 3216 return 0; 3217 } 3218 3219 int kvm_arch_init(MachineState *ms, KVMState *s) 3220 { 3221 int ret; 3222 struct utsname utsname; 3223 Error *local_err = NULL; 3224 3225 /* 3226 * Initialize confidential guest (SEV/TDX) context, if required 3227 */ 3228 if (ms->cgs) { 3229 ret = confidential_guest_kvm_init(ms->cgs, &local_err); 3230 if (ret < 0) { 3231 error_report_err(local_err); 3232 return ret; 3233 } 3234 } 3235 3236 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); 3237 has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0; 3238 3239 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX); 3240 3241 ret = kvm_vm_enable_exception_payload(s); 3242 if (ret < 0) { 3243 return ret; 3244 } 3245 3246 ret = kvm_vm_enable_triple_fault_event(s); 3247 if (ret < 0) { 3248 return ret; 3249 } 3250 3251 if (s->xen_version) { 3252 #ifdef CONFIG_XEN_EMU 3253 if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) { 3254 error_report("kvm: Xen support only available in PC machine"); 3255 return -ENOTSUP; 3256 } 3257 /* hyperv_enabled() doesn't work yet. */ 3258 uint32_t msr = XEN_HYPERCALL_MSR; 3259 ret = kvm_xen_init(s, msr); 3260 if (ret < 0) { 3261 return ret; 3262 } 3263 #else 3264 error_report("kvm: Xen support not enabled in qemu"); 3265 return -ENOTSUP; 3266 #endif 3267 } 3268 3269 ret = kvm_get_supported_msrs(s); 3270 if (ret < 0) { 3271 return ret; 3272 } 3273 3274 ret = kvm_get_supported_feature_msrs(s); 3275 if (ret < 0) { 3276 return ret; 3277 } 3278 3279 uname(&utsname); 3280 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; 3281 3282 ret = kvm_vm_set_identity_map_addr(s, KVM_IDENTITY_BASE); 3283 if (ret < 0) { 3284 return ret; 3285 } 3286 3287 /* Set TSS base one page after EPT identity map. */ 3288 ret = kvm_vm_set_tss_addr(s, KVM_IDENTITY_BASE + 0x1000); 3289 if (ret < 0) { 3290 return ret; 3291 } 3292 3293 /* Tell fw_cfg to notify the BIOS to reserve the range. */ 3294 e820_add_entry(KVM_IDENTITY_BASE, 0x4000, E820_RESERVED); 3295 3296 ret = kvm_vm_set_nr_mmu_pages(s); 3297 if (ret < 0) { 3298 return ret; 3299 } 3300 3301 if (kvm_check_extension(s, KVM_CAP_X86_SMM) && 3302 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) && 3303 x86_machine_is_smm_enabled(X86_MACHINE(ms))) { 3304 smram_machine_done.notify = register_smram_listener; 3305 qemu_add_machine_init_done_notifier(&smram_machine_done); 3306 } 3307 3308 if (enable_cpu_pm) { 3309 ret = kvm_vm_enable_disable_exits(s); 3310 if (ret < 0) { 3311 error_report("kvm: guest stopping CPU not supported: %s", 3312 strerror(-ret)); 3313 return ret; 3314 } 3315 } 3316 3317 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) { 3318 X86MachineState *x86ms = X86_MACHINE(ms); 3319 3320 if (x86ms->bus_lock_ratelimit > 0) { 3321 ret = kvm_vm_enable_bus_lock_exit(s); 3322 if (ret < 0) { 3323 return ret; 3324 } 3325 ratelimit_init(&bus_lock_ratelimit_ctrl); 3326 ratelimit_set_speed(&bus_lock_ratelimit_ctrl, 3327 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME); 3328 } 3329 } 3330 3331 if (kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) { 3332 ret = kvm_vm_enable_notify_vmexit(s); 3333 if (ret < 0) { 3334 return ret; 3335 } 3336 } 3337 3338 if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) { 3339 ret = kvm_vm_enable_userspace_msr(s); 3340 if (ret < 0) { 3341 return ret; 3342 } 3343 3344 if (s->msr_energy.enable == true) { 3345 ret = kvm_vm_enable_energy_msrs(s); 3346 if (ret < 0) { 3347 return ret; 3348 } 3349 3350 ret = kvm_msr_energy_thread_init(s, ms); 3351 if (ret < 0) { 3352 error_report("kvm : error RAPL feature requirement not met"); 3353 return ret; 3354 } 3355 } 3356 } 3357 3358 return 0; 3359 } 3360 3361 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 3362 { 3363 lhs->selector = rhs->selector; 3364 lhs->base = rhs->base; 3365 lhs->limit = rhs->limit; 3366 lhs->type = 3; 3367 lhs->present = 1; 3368 lhs->dpl = 3; 3369 lhs->db = 0; 3370 lhs->s = 1; 3371 lhs->l = 0; 3372 lhs->g = 0; 3373 lhs->avl = 0; 3374 lhs->unusable = 0; 3375 } 3376 3377 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 3378 { 3379 unsigned flags = rhs->flags; 3380 lhs->selector = rhs->selector; 3381 lhs->base = rhs->base; 3382 lhs->limit = rhs->limit; 3383 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; 3384 lhs->present = (flags & DESC_P_MASK) != 0; 3385 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; 3386 lhs->db = (flags >> DESC_B_SHIFT) & 1; 3387 lhs->s = (flags & DESC_S_MASK) != 0; 3388 lhs->l = (flags >> DESC_L_SHIFT) & 1; 3389 lhs->g = (flags & DESC_G_MASK) != 0; 3390 lhs->avl = (flags & DESC_AVL_MASK) != 0; 3391 lhs->unusable = !lhs->present; 3392 lhs->padding = 0; 3393 } 3394 3395 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) 3396 { 3397 lhs->selector = rhs->selector; 3398 lhs->base = rhs->base; 3399 lhs->limit = rhs->limit; 3400 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | 3401 ((rhs->present && !rhs->unusable) * DESC_P_MASK) | 3402 (rhs->dpl << DESC_DPL_SHIFT) | 3403 (rhs->db << DESC_B_SHIFT) | 3404 (rhs->s * DESC_S_MASK) | 3405 (rhs->l << DESC_L_SHIFT) | 3406 (rhs->g * DESC_G_MASK) | 3407 (rhs->avl * DESC_AVL_MASK); 3408 } 3409 3410 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) 3411 { 3412 if (set) { 3413 *kvm_reg = *qemu_reg; 3414 } else { 3415 *qemu_reg = *kvm_reg; 3416 } 3417 } 3418 3419 static int kvm_getput_regs(X86CPU *cpu, int set) 3420 { 3421 CPUX86State *env = &cpu->env; 3422 struct kvm_regs regs; 3423 int ret = 0; 3424 3425 if (!set) { 3426 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); 3427 if (ret < 0) { 3428 return ret; 3429 } 3430 } 3431 3432 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); 3433 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); 3434 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); 3435 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); 3436 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); 3437 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); 3438 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); 3439 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); 3440 #ifdef TARGET_X86_64 3441 kvm_getput_reg(®s.r8, &env->regs[8], set); 3442 kvm_getput_reg(®s.r9, &env->regs[9], set); 3443 kvm_getput_reg(®s.r10, &env->regs[10], set); 3444 kvm_getput_reg(®s.r11, &env->regs[11], set); 3445 kvm_getput_reg(®s.r12, &env->regs[12], set); 3446 kvm_getput_reg(®s.r13, &env->regs[13], set); 3447 kvm_getput_reg(®s.r14, &env->regs[14], set); 3448 kvm_getput_reg(®s.r15, &env->regs[15], set); 3449 #endif 3450 3451 kvm_getput_reg(®s.rflags, &env->eflags, set); 3452 kvm_getput_reg(®s.rip, &env->eip, set); 3453 3454 if (set) { 3455 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); 3456 } 3457 3458 return ret; 3459 } 3460 3461 static int kvm_put_xsave(X86CPU *cpu) 3462 { 3463 CPUX86State *env = &cpu->env; 3464 void *xsave = env->xsave_buf; 3465 3466 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len); 3467 3468 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); 3469 } 3470 3471 static int kvm_put_xcrs(X86CPU *cpu) 3472 { 3473 CPUX86State *env = &cpu->env; 3474 struct kvm_xcrs xcrs = {}; 3475 3476 if (!has_xcrs) { 3477 return 0; 3478 } 3479 3480 xcrs.nr_xcrs = 1; 3481 xcrs.flags = 0; 3482 xcrs.xcrs[0].xcr = 0; 3483 xcrs.xcrs[0].value = env->xcr0; 3484 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); 3485 } 3486 3487 static int kvm_put_sregs(X86CPU *cpu) 3488 { 3489 CPUX86State *env = &cpu->env; 3490 struct kvm_sregs sregs; 3491 3492 /* 3493 * The interrupt_bitmap is ignored because KVM_SET_SREGS is 3494 * always followed by KVM_SET_VCPU_EVENTS. 3495 */ 3496 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); 3497 3498 if ((env->eflags & VM_MASK)) { 3499 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 3500 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 3501 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 3502 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 3503 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 3504 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 3505 } else { 3506 set_seg(&sregs.cs, &env->segs[R_CS]); 3507 set_seg(&sregs.ds, &env->segs[R_DS]); 3508 set_seg(&sregs.es, &env->segs[R_ES]); 3509 set_seg(&sregs.fs, &env->segs[R_FS]); 3510 set_seg(&sregs.gs, &env->segs[R_GS]); 3511 set_seg(&sregs.ss, &env->segs[R_SS]); 3512 } 3513 3514 set_seg(&sregs.tr, &env->tr); 3515 set_seg(&sregs.ldt, &env->ldt); 3516 3517 sregs.idt.limit = env->idt.limit; 3518 sregs.idt.base = env->idt.base; 3519 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 3520 sregs.gdt.limit = env->gdt.limit; 3521 sregs.gdt.base = env->gdt.base; 3522 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 3523 3524 sregs.cr0 = env->cr[0]; 3525 sregs.cr2 = env->cr[2]; 3526 sregs.cr3 = env->cr[3]; 3527 sregs.cr4 = env->cr[4]; 3528 3529 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 3530 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 3531 3532 sregs.efer = env->efer; 3533 3534 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); 3535 } 3536 3537 static int kvm_put_sregs2(X86CPU *cpu) 3538 { 3539 CPUX86State *env = &cpu->env; 3540 struct kvm_sregs2 sregs; 3541 int i; 3542 3543 sregs.flags = 0; 3544 3545 if ((env->eflags & VM_MASK)) { 3546 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 3547 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 3548 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 3549 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 3550 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 3551 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 3552 } else { 3553 set_seg(&sregs.cs, &env->segs[R_CS]); 3554 set_seg(&sregs.ds, &env->segs[R_DS]); 3555 set_seg(&sregs.es, &env->segs[R_ES]); 3556 set_seg(&sregs.fs, &env->segs[R_FS]); 3557 set_seg(&sregs.gs, &env->segs[R_GS]); 3558 set_seg(&sregs.ss, &env->segs[R_SS]); 3559 } 3560 3561 set_seg(&sregs.tr, &env->tr); 3562 set_seg(&sregs.ldt, &env->ldt); 3563 3564 sregs.idt.limit = env->idt.limit; 3565 sregs.idt.base = env->idt.base; 3566 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 3567 sregs.gdt.limit = env->gdt.limit; 3568 sregs.gdt.base = env->gdt.base; 3569 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 3570 3571 sregs.cr0 = env->cr[0]; 3572 sregs.cr2 = env->cr[2]; 3573 sregs.cr3 = env->cr[3]; 3574 sregs.cr4 = env->cr[4]; 3575 3576 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 3577 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 3578 3579 sregs.efer = env->efer; 3580 3581 if (env->pdptrs_valid) { 3582 for (i = 0; i < 4; i++) { 3583 sregs.pdptrs[i] = env->pdptrs[i]; 3584 } 3585 sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 3586 } 3587 3588 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs); 3589 } 3590 3591 3592 static void kvm_msr_buf_reset(X86CPU *cpu) 3593 { 3594 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); 3595 } 3596 3597 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) 3598 { 3599 struct kvm_msrs *msrs = cpu->kvm_msr_buf; 3600 void *limit = ((void *)msrs) + MSR_BUF_SIZE; 3601 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; 3602 3603 assert((void *)(entry + 1) <= limit); 3604 3605 entry->index = index; 3606 entry->reserved = 0; 3607 entry->data = value; 3608 msrs->nmsrs++; 3609 } 3610 3611 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) 3612 { 3613 kvm_msr_buf_reset(cpu); 3614 kvm_msr_entry_add(cpu, index, value); 3615 3616 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 3617 } 3618 3619 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value) 3620 { 3621 int ret; 3622 struct { 3623 struct kvm_msrs info; 3624 struct kvm_msr_entry entries[1]; 3625 } msr_data = { 3626 .info.nmsrs = 1, 3627 .entries[0].index = index, 3628 }; 3629 3630 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); 3631 if (ret < 0) { 3632 return ret; 3633 } 3634 assert(ret == 1); 3635 *value = msr_data.entries[0].data; 3636 return ret; 3637 } 3638 void kvm_put_apicbase(X86CPU *cpu, uint64_t value) 3639 { 3640 int ret; 3641 3642 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); 3643 assert(ret == 1); 3644 } 3645 3646 static int kvm_put_tscdeadline_msr(X86CPU *cpu) 3647 { 3648 CPUX86State *env = &cpu->env; 3649 int ret; 3650 3651 if (!has_msr_tsc_deadline) { 3652 return 0; 3653 } 3654 3655 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); 3656 if (ret < 0) { 3657 return ret; 3658 } 3659 3660 assert(ret == 1); 3661 return 0; 3662 } 3663 3664 /* 3665 * Provide a separate write service for the feature control MSR in order to 3666 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done 3667 * before writing any other state because forcibly leaving nested mode 3668 * invalidates the VCPU state. 3669 */ 3670 static int kvm_put_msr_feature_control(X86CPU *cpu) 3671 { 3672 int ret; 3673 3674 if (!has_msr_feature_control) { 3675 return 0; 3676 } 3677 3678 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, 3679 cpu->env.msr_ia32_feature_control); 3680 if (ret < 0) { 3681 return ret; 3682 } 3683 3684 assert(ret == 1); 3685 return 0; 3686 } 3687 3688 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features) 3689 { 3690 uint32_t default1, can_be_one, can_be_zero; 3691 uint32_t must_be_one; 3692 3693 switch (index) { 3694 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 3695 default1 = 0x00000016; 3696 break; 3697 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 3698 default1 = 0x0401e172; 3699 break; 3700 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 3701 default1 = 0x000011ff; 3702 break; 3703 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 3704 default1 = 0x00036dff; 3705 break; 3706 case MSR_IA32_VMX_PROCBASED_CTLS2: 3707 default1 = 0; 3708 break; 3709 default: 3710 abort(); 3711 } 3712 3713 /* If a feature bit is set, the control can be either set or clear. 3714 * Otherwise the value is limited to either 0 or 1 by default1. 3715 */ 3716 can_be_one = features | default1; 3717 can_be_zero = features | ~default1; 3718 must_be_one = ~can_be_zero; 3719 3720 /* 3721 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one). 3722 * Bit 32:63 -> 1 if the control bit can be one. 3723 */ 3724 return must_be_one | (((uint64_t)can_be_one) << 32); 3725 } 3726 3727 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f) 3728 { 3729 uint64_t kvm_vmx_basic = 3730 kvm_arch_get_supported_msr_feature(kvm_state, 3731 MSR_IA32_VMX_BASIC); 3732 3733 if (!kvm_vmx_basic) { 3734 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0), 3735 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail. 3736 */ 3737 return; 3738 } 3739 3740 uint64_t kvm_vmx_misc = 3741 kvm_arch_get_supported_msr_feature(kvm_state, 3742 MSR_IA32_VMX_MISC); 3743 uint64_t kvm_vmx_ept_vpid = 3744 kvm_arch_get_supported_msr_feature(kvm_state, 3745 MSR_IA32_VMX_EPT_VPID_CAP); 3746 3747 /* 3748 * If the guest is 64-bit, a value of 1 is allowed for the host address 3749 * space size vmexit control. 3750 */ 3751 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM 3752 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0; 3753 3754 /* 3755 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should 3756 * not change them for backwards compatibility. 3757 */ 3758 uint64_t fixed_vmx_basic = kvm_vmx_basic & 3759 (MSR_VMX_BASIC_VMCS_REVISION_MASK | 3760 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK | 3761 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK); 3762 3763 /* 3764 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can 3765 * change in the future but are always zero for now, clear them to be 3766 * future proof. Bits 32-63 in theory could change, though KVM does 3767 * not support dual-monitor treatment and probably never will; mask 3768 * them out as well. 3769 */ 3770 uint64_t fixed_vmx_misc = kvm_vmx_misc & 3771 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK | 3772 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK); 3773 3774 /* 3775 * EPT memory types should not change either, so we do not bother 3776 * adding features for them. 3777 */ 3778 uint64_t fixed_vmx_ept_mask = 3779 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ? 3780 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0); 3781 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask; 3782 3783 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 3784 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 3785 f[FEAT_VMX_PROCBASED_CTLS])); 3786 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS, 3787 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS, 3788 f[FEAT_VMX_PINBASED_CTLS])); 3789 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS, 3790 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS, 3791 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit); 3792 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS, 3793 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS, 3794 f[FEAT_VMX_ENTRY_CTLS])); 3795 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2, 3796 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2, 3797 f[FEAT_VMX_SECONDARY_CTLS])); 3798 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP, 3799 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid); 3800 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC, 3801 f[FEAT_VMX_BASIC] | fixed_vmx_basic); 3802 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC, 3803 f[FEAT_VMX_MISC] | fixed_vmx_misc); 3804 if (has_msr_vmx_vmfunc) { 3805 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]); 3806 } 3807 3808 /* 3809 * Just to be safe, write these with constant values. The CRn_FIXED1 3810 * MSRs are generated by KVM based on the vCPU's CPUID. 3811 */ 3812 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0, 3813 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK); 3814 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0, 3815 CR4_VMXE_MASK); 3816 3817 if (f[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) { 3818 /* FRED injected-event data (0x2052). */ 3819 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x52); 3820 } else if (f[FEAT_VMX_EXIT_CTLS] & 3821 VMX_VM_EXIT_ACTIVATE_SECONDARY_CONTROLS) { 3822 /* Secondary VM-exit controls (0x2044). */ 3823 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x44); 3824 } else if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) { 3825 /* TSC multiplier (0x2032). */ 3826 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32); 3827 } else { 3828 /* Preemption timer (0x482E). */ 3829 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E); 3830 } 3831 } 3832 3833 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f) 3834 { 3835 uint64_t kvm_perf_cap = 3836 kvm_arch_get_supported_msr_feature(kvm_state, 3837 MSR_IA32_PERF_CAPABILITIES); 3838 3839 if (kvm_perf_cap) { 3840 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES, 3841 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]); 3842 } 3843 } 3844 3845 static int kvm_buf_set_msrs(X86CPU *cpu) 3846 { 3847 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 3848 if (ret < 0) { 3849 return ret; 3850 } 3851 3852 if (ret < cpu->kvm_msr_buf->nmsrs) { 3853 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 3854 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, 3855 (uint32_t)e->index, (uint64_t)e->data); 3856 } 3857 3858 assert(ret == cpu->kvm_msr_buf->nmsrs); 3859 return 0; 3860 } 3861 3862 static void kvm_init_msrs(X86CPU *cpu) 3863 { 3864 CPUX86State *env = &cpu->env; 3865 3866 kvm_msr_buf_reset(cpu); 3867 if (has_msr_arch_capabs) { 3868 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES, 3869 env->features[FEAT_ARCH_CAPABILITIES]); 3870 } 3871 3872 if (has_msr_core_capabs) { 3873 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY, 3874 env->features[FEAT_CORE_CAPABILITY]); 3875 } 3876 3877 if (has_msr_perf_capabs && cpu->enable_pmu) { 3878 kvm_msr_entry_add_perf(cpu, env->features); 3879 } 3880 3881 if (has_msr_ucode_rev) { 3882 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev); 3883 } 3884 3885 /* 3886 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but 3887 * all kernels with MSR features should have them. 3888 */ 3889 if (kvm_feature_msrs && cpu_has_vmx(env)) { 3890 kvm_msr_entry_add_vmx(cpu, env->features); 3891 } 3892 3893 assert(kvm_buf_set_msrs(cpu) == 0); 3894 } 3895 3896 static int kvm_put_msrs(X86CPU *cpu, int level) 3897 { 3898 CPUX86State *env = &cpu->env; 3899 int i; 3900 3901 kvm_msr_buf_reset(cpu); 3902 3903 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); 3904 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); 3905 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); 3906 kvm_msr_entry_add(cpu, MSR_PAT, env->pat); 3907 if (has_msr_star) { 3908 kvm_msr_entry_add(cpu, MSR_STAR, env->star); 3909 } 3910 if (has_msr_hsave_pa) { 3911 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); 3912 } 3913 if (has_msr_tsc_aux) { 3914 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); 3915 } 3916 if (has_msr_tsc_adjust) { 3917 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); 3918 } 3919 if (has_msr_misc_enable) { 3920 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 3921 env->msr_ia32_misc_enable); 3922 } 3923 if (has_msr_smbase) { 3924 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); 3925 } 3926 if (has_msr_smi_count) { 3927 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count); 3928 } 3929 if (has_msr_pkrs) { 3930 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs); 3931 } 3932 if (has_msr_bndcfgs) { 3933 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); 3934 } 3935 if (has_msr_xss) { 3936 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); 3937 } 3938 if (has_msr_umwait) { 3939 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait); 3940 } 3941 if (has_msr_spec_ctrl) { 3942 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl); 3943 } 3944 if (has_tsc_scale_msr) { 3945 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr); 3946 } 3947 3948 if (has_msr_tsx_ctrl) { 3949 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl); 3950 } 3951 if (has_msr_virt_ssbd) { 3952 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd); 3953 } 3954 if (has_msr_hwcr) { 3955 kvm_msr_entry_add(cpu, MSR_K7_HWCR, env->msr_hwcr); 3956 } 3957 3958 #ifdef TARGET_X86_64 3959 if (lm_capable_kernel) { 3960 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); 3961 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); 3962 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); 3963 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); 3964 if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) { 3965 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, env->fred_rsp0); 3966 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, env->fred_rsp1); 3967 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, env->fred_rsp2); 3968 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, env->fred_rsp3); 3969 kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, env->fred_stklvls); 3970 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, env->fred_ssp1); 3971 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, env->fred_ssp2); 3972 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, env->fred_ssp3); 3973 kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, env->fred_config); 3974 } 3975 } 3976 #endif 3977 3978 /* 3979 * The following MSRs have side effects on the guest or are too heavy 3980 * for normal writeback. Limit them to reset or full state updates. 3981 */ 3982 if (level >= KVM_PUT_RESET_STATE) { 3983 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); 3984 if (env->features[FEAT_KVM] & (CPUID_KVM_CLOCK | CPUID_KVM_CLOCK2)) { 3985 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); 3986 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); 3987 } 3988 if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF_INT) { 3989 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr); 3990 } 3991 if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF) { 3992 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); 3993 } 3994 if (env->features[FEAT_KVM] & CPUID_KVM_PV_EOI) { 3995 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); 3996 } 3997 if (env->features[FEAT_KVM] & CPUID_KVM_STEAL_TIME) { 3998 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); 3999 } 4000 4001 if (env->features[FEAT_KVM] & CPUID_KVM_POLL_CONTROL) { 4002 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr); 4003 } 4004 4005 if (has_architectural_pmu_version > 0) { 4006 if (has_architectural_pmu_version > 1) { 4007 /* Stop the counter. */ 4008 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 4009 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 4010 } 4011 4012 /* Set the counter values. */ 4013 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 4014 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 4015 env->msr_fixed_counters[i]); 4016 } 4017 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 4018 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 4019 env->msr_gp_counters[i]); 4020 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 4021 env->msr_gp_evtsel[i]); 4022 } 4023 if (has_architectural_pmu_version > 1) { 4024 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 4025 env->msr_global_status); 4026 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 4027 env->msr_global_ovf_ctrl); 4028 4029 /* Now start the PMU. */ 4030 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 4031 env->msr_fixed_ctr_ctrl); 4032 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 4033 env->msr_global_ctrl); 4034 } 4035 } 4036 /* 4037 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add, 4038 * only sync them to KVM on the first cpu 4039 */ 4040 if (current_cpu == first_cpu) { 4041 if (has_msr_hv_hypercall) { 4042 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 4043 env->msr_hv_guest_os_id); 4044 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 4045 env->msr_hv_hypercall); 4046 } 4047 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 4048 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 4049 env->msr_hv_tsc); 4050 } 4051 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 4052 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 4053 env->msr_hv_reenlightenment_control); 4054 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 4055 env->msr_hv_tsc_emulation_control); 4056 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 4057 env->msr_hv_tsc_emulation_status); 4058 } 4059 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) && 4060 has_msr_hv_syndbg_options) { 4061 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 4062 hyperv_syndbg_query_options()); 4063 } 4064 } 4065 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 4066 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 4067 env->msr_hv_vapic); 4068 } 4069 if (has_msr_hv_crash) { 4070 int j; 4071 4072 for (j = 0; j < HV_CRASH_PARAMS; j++) 4073 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 4074 env->msr_hv_crash_params[j]); 4075 4076 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY); 4077 } 4078 if (has_msr_hv_runtime) { 4079 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); 4080 } 4081 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) 4082 && hv_vpindex_settable) { 4083 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX, 4084 hyperv_vp_index(CPU(cpu))); 4085 } 4086 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 4087 int j; 4088 4089 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION); 4090 4091 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 4092 env->msr_hv_synic_control); 4093 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 4094 env->msr_hv_synic_evt_page); 4095 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 4096 env->msr_hv_synic_msg_page); 4097 4098 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { 4099 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, 4100 env->msr_hv_synic_sint[j]); 4101 } 4102 } 4103 if (has_msr_hv_stimer) { 4104 int j; 4105 4106 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { 4107 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, 4108 env->msr_hv_stimer_config[j]); 4109 } 4110 4111 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { 4112 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, 4113 env->msr_hv_stimer_count[j]); 4114 } 4115 } 4116 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 4117 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); 4118 4119 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); 4120 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); 4121 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); 4122 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); 4123 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); 4124 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); 4125 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); 4126 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); 4127 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); 4128 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); 4129 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); 4130 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); 4131 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 4132 /* The CPU GPs if we write to a bit above the physical limit of 4133 * the host CPU (and KVM emulates that) 4134 */ 4135 uint64_t mask = env->mtrr_var[i].mask; 4136 mask &= phys_mask; 4137 4138 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 4139 env->mtrr_var[i].base); 4140 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); 4141 } 4142 } 4143 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 4144 int addr_num = kvm_arch_get_supported_cpuid(kvm_state, 4145 0x14, 1, R_EAX) & 0x7; 4146 4147 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 4148 env->msr_rtit_ctrl); 4149 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 4150 env->msr_rtit_status); 4151 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 4152 env->msr_rtit_output_base); 4153 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 4154 env->msr_rtit_output_mask); 4155 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 4156 env->msr_rtit_cr3_match); 4157 for (i = 0; i < addr_num; i++) { 4158 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 4159 env->msr_rtit_addrs[i]); 4160 } 4161 } 4162 4163 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 4164 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 4165 env->msr_ia32_sgxlepubkeyhash[0]); 4166 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 4167 env->msr_ia32_sgxlepubkeyhash[1]); 4168 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 4169 env->msr_ia32_sgxlepubkeyhash[2]); 4170 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 4171 env->msr_ia32_sgxlepubkeyhash[3]); 4172 } 4173 4174 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) { 4175 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 4176 env->msr_xfd); 4177 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 4178 env->msr_xfd_err); 4179 } 4180 4181 if (kvm_enabled() && cpu->enable_pmu && 4182 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) { 4183 uint64_t depth; 4184 int ret; 4185 4186 /* 4187 * Only migrate Arch LBR states when the host Arch LBR depth 4188 * equals that of source guest's, this is to avoid mismatch 4189 * of guest/host config for the msr hence avoid unexpected 4190 * misbehavior. 4191 */ 4192 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth); 4193 4194 if (ret == 1 && !!depth && depth == env->msr_lbr_depth) { 4195 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl); 4196 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth); 4197 4198 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) { 4199 if (!env->lbr_records[i].from) { 4200 continue; 4201 } 4202 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 4203 env->lbr_records[i].from); 4204 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 4205 env->lbr_records[i].to); 4206 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 4207 env->lbr_records[i].info); 4208 } 4209 } 4210 } 4211 4212 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see 4213 * kvm_put_msr_feature_control. */ 4214 } 4215 4216 if (env->mcg_cap) { 4217 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); 4218 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); 4219 if (has_msr_mcg_ext_ctl) { 4220 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); 4221 } 4222 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 4223 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); 4224 } 4225 } 4226 4227 return kvm_buf_set_msrs(cpu); 4228 } 4229 4230 4231 static int kvm_get_xsave(X86CPU *cpu) 4232 { 4233 CPUX86State *env = &cpu->env; 4234 void *xsave = env->xsave_buf; 4235 unsigned long type; 4236 int ret; 4237 4238 type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE; 4239 ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave); 4240 if (ret < 0) { 4241 return ret; 4242 } 4243 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len); 4244 4245 return 0; 4246 } 4247 4248 static int kvm_get_xcrs(X86CPU *cpu) 4249 { 4250 CPUX86State *env = &cpu->env; 4251 int i, ret; 4252 struct kvm_xcrs xcrs; 4253 4254 if (!has_xcrs) { 4255 return 0; 4256 } 4257 4258 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); 4259 if (ret < 0) { 4260 return ret; 4261 } 4262 4263 for (i = 0; i < xcrs.nr_xcrs; i++) { 4264 /* Only support xcr0 now */ 4265 if (xcrs.xcrs[i].xcr == 0) { 4266 env->xcr0 = xcrs.xcrs[i].value; 4267 break; 4268 } 4269 } 4270 return 0; 4271 } 4272 4273 static int kvm_get_sregs(X86CPU *cpu) 4274 { 4275 CPUX86State *env = &cpu->env; 4276 struct kvm_sregs sregs; 4277 int ret; 4278 4279 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); 4280 if (ret < 0) { 4281 return ret; 4282 } 4283 4284 /* 4285 * The interrupt_bitmap is ignored because KVM_GET_SREGS is 4286 * always preceded by KVM_GET_VCPU_EVENTS. 4287 */ 4288 4289 get_seg(&env->segs[R_CS], &sregs.cs); 4290 get_seg(&env->segs[R_DS], &sregs.ds); 4291 get_seg(&env->segs[R_ES], &sregs.es); 4292 get_seg(&env->segs[R_FS], &sregs.fs); 4293 get_seg(&env->segs[R_GS], &sregs.gs); 4294 get_seg(&env->segs[R_SS], &sregs.ss); 4295 4296 get_seg(&env->tr, &sregs.tr); 4297 get_seg(&env->ldt, &sregs.ldt); 4298 4299 env->idt.limit = sregs.idt.limit; 4300 env->idt.base = sregs.idt.base; 4301 env->gdt.limit = sregs.gdt.limit; 4302 env->gdt.base = sregs.gdt.base; 4303 4304 env->cr[0] = sregs.cr0; 4305 env->cr[2] = sregs.cr2; 4306 env->cr[3] = sregs.cr3; 4307 env->cr[4] = sregs.cr4; 4308 4309 env->efer = sregs.efer; 4310 if (sev_es_enabled() && env->efer & MSR_EFER_LME && 4311 env->cr[0] & CR0_PG_MASK) { 4312 env->efer |= MSR_EFER_LMA; 4313 } 4314 4315 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 4316 x86_update_hflags(env); 4317 4318 return 0; 4319 } 4320 4321 static int kvm_get_sregs2(X86CPU *cpu) 4322 { 4323 CPUX86State *env = &cpu->env; 4324 struct kvm_sregs2 sregs; 4325 int i, ret; 4326 4327 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs); 4328 if (ret < 0) { 4329 return ret; 4330 } 4331 4332 get_seg(&env->segs[R_CS], &sregs.cs); 4333 get_seg(&env->segs[R_DS], &sregs.ds); 4334 get_seg(&env->segs[R_ES], &sregs.es); 4335 get_seg(&env->segs[R_FS], &sregs.fs); 4336 get_seg(&env->segs[R_GS], &sregs.gs); 4337 get_seg(&env->segs[R_SS], &sregs.ss); 4338 4339 get_seg(&env->tr, &sregs.tr); 4340 get_seg(&env->ldt, &sregs.ldt); 4341 4342 env->idt.limit = sregs.idt.limit; 4343 env->idt.base = sregs.idt.base; 4344 env->gdt.limit = sregs.gdt.limit; 4345 env->gdt.base = sregs.gdt.base; 4346 4347 env->cr[0] = sregs.cr0; 4348 env->cr[2] = sregs.cr2; 4349 env->cr[3] = sregs.cr3; 4350 env->cr[4] = sregs.cr4; 4351 4352 env->efer = sregs.efer; 4353 if (sev_es_enabled() && env->efer & MSR_EFER_LME && 4354 env->cr[0] & CR0_PG_MASK) { 4355 env->efer |= MSR_EFER_LMA; 4356 } 4357 4358 env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 4359 4360 if (env->pdptrs_valid) { 4361 for (i = 0; i < 4; i++) { 4362 env->pdptrs[i] = sregs.pdptrs[i]; 4363 } 4364 } 4365 4366 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 4367 x86_update_hflags(env); 4368 4369 return 0; 4370 } 4371 4372 static int kvm_get_msrs(X86CPU *cpu) 4373 { 4374 CPUX86State *env = &cpu->env; 4375 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; 4376 int ret, i; 4377 uint64_t mtrr_top_bits; 4378 4379 kvm_msr_buf_reset(cpu); 4380 4381 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); 4382 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); 4383 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); 4384 kvm_msr_entry_add(cpu, MSR_PAT, 0); 4385 if (has_msr_star) { 4386 kvm_msr_entry_add(cpu, MSR_STAR, 0); 4387 } 4388 if (has_msr_hsave_pa) { 4389 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); 4390 } 4391 if (has_msr_tsc_aux) { 4392 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); 4393 } 4394 if (has_msr_tsc_adjust) { 4395 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); 4396 } 4397 if (has_msr_tsc_deadline) { 4398 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); 4399 } 4400 if (has_msr_misc_enable) { 4401 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); 4402 } 4403 if (has_msr_smbase) { 4404 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); 4405 } 4406 if (has_msr_smi_count) { 4407 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0); 4408 } 4409 if (has_msr_feature_control) { 4410 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); 4411 } 4412 if (has_msr_pkrs) { 4413 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0); 4414 } 4415 if (has_msr_bndcfgs) { 4416 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); 4417 } 4418 if (has_msr_xss) { 4419 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); 4420 } 4421 if (has_msr_umwait) { 4422 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0); 4423 } 4424 if (has_msr_spec_ctrl) { 4425 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0); 4426 } 4427 if (has_tsc_scale_msr) { 4428 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0); 4429 } 4430 4431 if (has_msr_tsx_ctrl) { 4432 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0); 4433 } 4434 if (has_msr_virt_ssbd) { 4435 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0); 4436 } 4437 if (!env->tsc_valid) { 4438 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); 4439 env->tsc_valid = !runstate_is_running(); 4440 } 4441 if (has_msr_hwcr) { 4442 kvm_msr_entry_add(cpu, MSR_K7_HWCR, 0); 4443 } 4444 4445 #ifdef TARGET_X86_64 4446 if (lm_capable_kernel) { 4447 kvm_msr_entry_add(cpu, MSR_CSTAR, 0); 4448 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); 4449 kvm_msr_entry_add(cpu, MSR_FMASK, 0); 4450 kvm_msr_entry_add(cpu, MSR_LSTAR, 0); 4451 if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) { 4452 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, 0); 4453 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, 0); 4454 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, 0); 4455 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, 0); 4456 kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, 0); 4457 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, 0); 4458 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, 0); 4459 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, 0); 4460 kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, 0); 4461 } 4462 } 4463 #endif 4464 if (env->features[FEAT_KVM] & (CPUID_KVM_CLOCK | CPUID_KVM_CLOCK2)) { 4465 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); 4466 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); 4467 } 4468 if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF_INT) { 4469 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0); 4470 } 4471 if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF) { 4472 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); 4473 } 4474 if (env->features[FEAT_KVM] & CPUID_KVM_PV_EOI) { 4475 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); 4476 } 4477 if (env->features[FEAT_KVM] & CPUID_KVM_STEAL_TIME) { 4478 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); 4479 } 4480 if (env->features[FEAT_KVM] & CPUID_KVM_POLL_CONTROL) { 4481 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1); 4482 } 4483 if (has_architectural_pmu_version > 0) { 4484 if (has_architectural_pmu_version > 1) { 4485 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 4486 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 4487 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); 4488 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); 4489 } 4490 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 4491 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); 4492 } 4493 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 4494 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); 4495 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); 4496 } 4497 } 4498 4499 if (env->mcg_cap) { 4500 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); 4501 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); 4502 if (has_msr_mcg_ext_ctl) { 4503 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); 4504 } 4505 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 4506 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); 4507 } 4508 } 4509 4510 if (has_msr_hv_hypercall) { 4511 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); 4512 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); 4513 } 4514 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 4515 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); 4516 } 4517 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 4518 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); 4519 } 4520 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 4521 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0); 4522 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0); 4523 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0); 4524 } 4525 if (has_msr_hv_syndbg_options) { 4526 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0); 4527 } 4528 if (has_msr_hv_crash) { 4529 int j; 4530 4531 for (j = 0; j < HV_CRASH_PARAMS; j++) { 4532 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); 4533 } 4534 } 4535 if (has_msr_hv_runtime) { 4536 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); 4537 } 4538 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 4539 uint32_t msr; 4540 4541 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); 4542 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); 4543 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); 4544 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { 4545 kvm_msr_entry_add(cpu, msr, 0); 4546 } 4547 } 4548 if (has_msr_hv_stimer) { 4549 uint32_t msr; 4550 4551 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; 4552 msr++) { 4553 kvm_msr_entry_add(cpu, msr, 0); 4554 } 4555 } 4556 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 4557 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); 4558 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); 4559 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); 4560 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); 4561 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); 4562 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); 4563 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); 4564 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); 4565 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); 4566 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); 4567 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); 4568 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); 4569 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 4570 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); 4571 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); 4572 } 4573 } 4574 4575 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 4576 int addr_num = 4577 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7; 4578 4579 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0); 4580 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0); 4581 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0); 4582 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0); 4583 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0); 4584 for (i = 0; i < addr_num; i++) { 4585 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0); 4586 } 4587 } 4588 4589 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 4590 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0); 4591 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0); 4592 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0); 4593 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0); 4594 } 4595 4596 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) { 4597 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0); 4598 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0); 4599 } 4600 4601 if (kvm_enabled() && cpu->enable_pmu && 4602 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) { 4603 uint64_t depth; 4604 4605 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth); 4606 if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) { 4607 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0); 4608 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0); 4609 4610 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) { 4611 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0); 4612 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0); 4613 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0); 4614 } 4615 } 4616 } 4617 4618 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); 4619 if (ret < 0) { 4620 return ret; 4621 } 4622 4623 if (ret < cpu->kvm_msr_buf->nmsrs) { 4624 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 4625 error_report("error: failed to get MSR 0x%" PRIx32, 4626 (uint32_t)e->index); 4627 } 4628 4629 assert(ret == cpu->kvm_msr_buf->nmsrs); 4630 /* 4631 * MTRR masks: Each mask consists of 5 parts 4632 * a 10..0: must be zero 4633 * b 11 : valid bit 4634 * c n-1.12: actual mask bits 4635 * d 51..n: reserved must be zero 4636 * e 63.52: reserved must be zero 4637 * 4638 * 'n' is the number of physical bits supported by the CPU and is 4639 * apparently always <= 52. We know our 'n' but don't know what 4640 * the destinations 'n' is; it might be smaller, in which case 4641 * it masks (c) on loading. It might be larger, in which case 4642 * we fill 'd' so that d..c is consistent irrespetive of the 'n' 4643 * we're migrating to. 4644 */ 4645 4646 if (cpu->fill_mtrr_mask) { 4647 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); 4648 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); 4649 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); 4650 } else { 4651 mtrr_top_bits = 0; 4652 } 4653 4654 for (i = 0; i < ret; i++) { 4655 uint32_t index = msrs[i].index; 4656 switch (index) { 4657 case MSR_IA32_SYSENTER_CS: 4658 env->sysenter_cs = msrs[i].data; 4659 break; 4660 case MSR_IA32_SYSENTER_ESP: 4661 env->sysenter_esp = msrs[i].data; 4662 break; 4663 case MSR_IA32_SYSENTER_EIP: 4664 env->sysenter_eip = msrs[i].data; 4665 break; 4666 case MSR_PAT: 4667 env->pat = msrs[i].data; 4668 break; 4669 case MSR_STAR: 4670 env->star = msrs[i].data; 4671 break; 4672 #ifdef TARGET_X86_64 4673 case MSR_CSTAR: 4674 env->cstar = msrs[i].data; 4675 break; 4676 case MSR_KERNELGSBASE: 4677 env->kernelgsbase = msrs[i].data; 4678 break; 4679 case MSR_FMASK: 4680 env->fmask = msrs[i].data; 4681 break; 4682 case MSR_LSTAR: 4683 env->lstar = msrs[i].data; 4684 break; 4685 case MSR_IA32_FRED_RSP0: 4686 env->fred_rsp0 = msrs[i].data; 4687 break; 4688 case MSR_IA32_FRED_RSP1: 4689 env->fred_rsp1 = msrs[i].data; 4690 break; 4691 case MSR_IA32_FRED_RSP2: 4692 env->fred_rsp2 = msrs[i].data; 4693 break; 4694 case MSR_IA32_FRED_RSP3: 4695 env->fred_rsp3 = msrs[i].data; 4696 break; 4697 case MSR_IA32_FRED_STKLVLS: 4698 env->fred_stklvls = msrs[i].data; 4699 break; 4700 case MSR_IA32_FRED_SSP1: 4701 env->fred_ssp1 = msrs[i].data; 4702 break; 4703 case MSR_IA32_FRED_SSP2: 4704 env->fred_ssp2 = msrs[i].data; 4705 break; 4706 case MSR_IA32_FRED_SSP3: 4707 env->fred_ssp3 = msrs[i].data; 4708 break; 4709 case MSR_IA32_FRED_CONFIG: 4710 env->fred_config = msrs[i].data; 4711 break; 4712 #endif 4713 case MSR_IA32_TSC: 4714 env->tsc = msrs[i].data; 4715 break; 4716 case MSR_TSC_AUX: 4717 env->tsc_aux = msrs[i].data; 4718 break; 4719 case MSR_TSC_ADJUST: 4720 env->tsc_adjust = msrs[i].data; 4721 break; 4722 case MSR_IA32_TSCDEADLINE: 4723 env->tsc_deadline = msrs[i].data; 4724 break; 4725 case MSR_VM_HSAVE_PA: 4726 env->vm_hsave = msrs[i].data; 4727 break; 4728 case MSR_KVM_SYSTEM_TIME: 4729 env->system_time_msr = msrs[i].data; 4730 break; 4731 case MSR_KVM_WALL_CLOCK: 4732 env->wall_clock_msr = msrs[i].data; 4733 break; 4734 case MSR_MCG_STATUS: 4735 env->mcg_status = msrs[i].data; 4736 break; 4737 case MSR_MCG_CTL: 4738 env->mcg_ctl = msrs[i].data; 4739 break; 4740 case MSR_MCG_EXT_CTL: 4741 env->mcg_ext_ctl = msrs[i].data; 4742 break; 4743 case MSR_IA32_MISC_ENABLE: 4744 env->msr_ia32_misc_enable = msrs[i].data; 4745 break; 4746 case MSR_IA32_SMBASE: 4747 env->smbase = msrs[i].data; 4748 break; 4749 case MSR_SMI_COUNT: 4750 env->msr_smi_count = msrs[i].data; 4751 break; 4752 case MSR_IA32_FEATURE_CONTROL: 4753 env->msr_ia32_feature_control = msrs[i].data; 4754 break; 4755 case MSR_IA32_BNDCFGS: 4756 env->msr_bndcfgs = msrs[i].data; 4757 break; 4758 case MSR_IA32_XSS: 4759 env->xss = msrs[i].data; 4760 break; 4761 case MSR_IA32_UMWAIT_CONTROL: 4762 env->umwait = msrs[i].data; 4763 break; 4764 case MSR_IA32_PKRS: 4765 env->pkrs = msrs[i].data; 4766 break; 4767 default: 4768 if (msrs[i].index >= MSR_MC0_CTL && 4769 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { 4770 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; 4771 } 4772 break; 4773 case MSR_KVM_ASYNC_PF_EN: 4774 env->async_pf_en_msr = msrs[i].data; 4775 break; 4776 case MSR_KVM_ASYNC_PF_INT: 4777 env->async_pf_int_msr = msrs[i].data; 4778 break; 4779 case MSR_KVM_PV_EOI_EN: 4780 env->pv_eoi_en_msr = msrs[i].data; 4781 break; 4782 case MSR_KVM_STEAL_TIME: 4783 env->steal_time_msr = msrs[i].data; 4784 break; 4785 case MSR_KVM_POLL_CONTROL: { 4786 env->poll_control_msr = msrs[i].data; 4787 break; 4788 } 4789 case MSR_CORE_PERF_FIXED_CTR_CTRL: 4790 env->msr_fixed_ctr_ctrl = msrs[i].data; 4791 break; 4792 case MSR_CORE_PERF_GLOBAL_CTRL: 4793 env->msr_global_ctrl = msrs[i].data; 4794 break; 4795 case MSR_CORE_PERF_GLOBAL_STATUS: 4796 env->msr_global_status = msrs[i].data; 4797 break; 4798 case MSR_CORE_PERF_GLOBAL_OVF_CTRL: 4799 env->msr_global_ovf_ctrl = msrs[i].data; 4800 break; 4801 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: 4802 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; 4803 break; 4804 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: 4805 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; 4806 break; 4807 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: 4808 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; 4809 break; 4810 case HV_X64_MSR_HYPERCALL: 4811 env->msr_hv_hypercall = msrs[i].data; 4812 break; 4813 case HV_X64_MSR_GUEST_OS_ID: 4814 env->msr_hv_guest_os_id = msrs[i].data; 4815 break; 4816 case HV_X64_MSR_APIC_ASSIST_PAGE: 4817 env->msr_hv_vapic = msrs[i].data; 4818 break; 4819 case HV_X64_MSR_REFERENCE_TSC: 4820 env->msr_hv_tsc = msrs[i].data; 4821 break; 4822 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4823 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; 4824 break; 4825 case HV_X64_MSR_VP_RUNTIME: 4826 env->msr_hv_runtime = msrs[i].data; 4827 break; 4828 case HV_X64_MSR_SCONTROL: 4829 env->msr_hv_synic_control = msrs[i].data; 4830 break; 4831 case HV_X64_MSR_SIEFP: 4832 env->msr_hv_synic_evt_page = msrs[i].data; 4833 break; 4834 case HV_X64_MSR_SIMP: 4835 env->msr_hv_synic_msg_page = msrs[i].data; 4836 break; 4837 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 4838 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; 4839 break; 4840 case HV_X64_MSR_STIMER0_CONFIG: 4841 case HV_X64_MSR_STIMER1_CONFIG: 4842 case HV_X64_MSR_STIMER2_CONFIG: 4843 case HV_X64_MSR_STIMER3_CONFIG: 4844 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = 4845 msrs[i].data; 4846 break; 4847 case HV_X64_MSR_STIMER0_COUNT: 4848 case HV_X64_MSR_STIMER1_COUNT: 4849 case HV_X64_MSR_STIMER2_COUNT: 4850 case HV_X64_MSR_STIMER3_COUNT: 4851 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = 4852 msrs[i].data; 4853 break; 4854 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4855 env->msr_hv_reenlightenment_control = msrs[i].data; 4856 break; 4857 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4858 env->msr_hv_tsc_emulation_control = msrs[i].data; 4859 break; 4860 case HV_X64_MSR_TSC_EMULATION_STATUS: 4861 env->msr_hv_tsc_emulation_status = msrs[i].data; 4862 break; 4863 case HV_X64_MSR_SYNDBG_OPTIONS: 4864 env->msr_hv_syndbg_options = msrs[i].data; 4865 break; 4866 case MSR_MTRRdefType: 4867 env->mtrr_deftype = msrs[i].data; 4868 break; 4869 case MSR_MTRRfix64K_00000: 4870 env->mtrr_fixed[0] = msrs[i].data; 4871 break; 4872 case MSR_MTRRfix16K_80000: 4873 env->mtrr_fixed[1] = msrs[i].data; 4874 break; 4875 case MSR_MTRRfix16K_A0000: 4876 env->mtrr_fixed[2] = msrs[i].data; 4877 break; 4878 case MSR_MTRRfix4K_C0000: 4879 env->mtrr_fixed[3] = msrs[i].data; 4880 break; 4881 case MSR_MTRRfix4K_C8000: 4882 env->mtrr_fixed[4] = msrs[i].data; 4883 break; 4884 case MSR_MTRRfix4K_D0000: 4885 env->mtrr_fixed[5] = msrs[i].data; 4886 break; 4887 case MSR_MTRRfix4K_D8000: 4888 env->mtrr_fixed[6] = msrs[i].data; 4889 break; 4890 case MSR_MTRRfix4K_E0000: 4891 env->mtrr_fixed[7] = msrs[i].data; 4892 break; 4893 case MSR_MTRRfix4K_E8000: 4894 env->mtrr_fixed[8] = msrs[i].data; 4895 break; 4896 case MSR_MTRRfix4K_F0000: 4897 env->mtrr_fixed[9] = msrs[i].data; 4898 break; 4899 case MSR_MTRRfix4K_F8000: 4900 env->mtrr_fixed[10] = msrs[i].data; 4901 break; 4902 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): 4903 if (index & 1) { 4904 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | 4905 mtrr_top_bits; 4906 } else { 4907 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; 4908 } 4909 break; 4910 case MSR_IA32_SPEC_CTRL: 4911 env->spec_ctrl = msrs[i].data; 4912 break; 4913 case MSR_AMD64_TSC_RATIO: 4914 env->amd_tsc_scale_msr = msrs[i].data; 4915 break; 4916 case MSR_IA32_TSX_CTRL: 4917 env->tsx_ctrl = msrs[i].data; 4918 break; 4919 case MSR_VIRT_SSBD: 4920 env->virt_ssbd = msrs[i].data; 4921 break; 4922 case MSR_IA32_RTIT_CTL: 4923 env->msr_rtit_ctrl = msrs[i].data; 4924 break; 4925 case MSR_IA32_RTIT_STATUS: 4926 env->msr_rtit_status = msrs[i].data; 4927 break; 4928 case MSR_IA32_RTIT_OUTPUT_BASE: 4929 env->msr_rtit_output_base = msrs[i].data; 4930 break; 4931 case MSR_IA32_RTIT_OUTPUT_MASK: 4932 env->msr_rtit_output_mask = msrs[i].data; 4933 break; 4934 case MSR_IA32_RTIT_CR3_MATCH: 4935 env->msr_rtit_cr3_match = msrs[i].data; 4936 break; 4937 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 4938 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data; 4939 break; 4940 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 4941 env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] = 4942 msrs[i].data; 4943 break; 4944 case MSR_IA32_XFD: 4945 env->msr_xfd = msrs[i].data; 4946 break; 4947 case MSR_IA32_XFD_ERR: 4948 env->msr_xfd_err = msrs[i].data; 4949 break; 4950 case MSR_ARCH_LBR_CTL: 4951 env->msr_lbr_ctl = msrs[i].data; 4952 break; 4953 case MSR_ARCH_LBR_DEPTH: 4954 env->msr_lbr_depth = msrs[i].data; 4955 break; 4956 case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31: 4957 env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data; 4958 break; 4959 case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31: 4960 env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data; 4961 break; 4962 case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31: 4963 env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data; 4964 break; 4965 case MSR_K7_HWCR: 4966 env->msr_hwcr = msrs[i].data; 4967 break; 4968 } 4969 } 4970 4971 return 0; 4972 } 4973 4974 static int kvm_put_mp_state(X86CPU *cpu) 4975 { 4976 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; 4977 4978 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 4979 } 4980 4981 static int kvm_get_mp_state(X86CPU *cpu) 4982 { 4983 CPUState *cs = CPU(cpu); 4984 CPUX86State *env = &cpu->env; 4985 struct kvm_mp_state mp_state; 4986 int ret; 4987 4988 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); 4989 if (ret < 0) { 4990 return ret; 4991 } 4992 env->mp_state = mp_state.mp_state; 4993 if (kvm_irqchip_in_kernel()) { 4994 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); 4995 } 4996 return 0; 4997 } 4998 4999 static int kvm_get_apic(X86CPU *cpu) 5000 { 5001 DeviceState *apic = cpu->apic_state; 5002 struct kvm_lapic_state kapic; 5003 int ret; 5004 5005 if (apic && kvm_irqchip_in_kernel()) { 5006 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); 5007 if (ret < 0) { 5008 return ret; 5009 } 5010 5011 kvm_get_apic_state(apic, &kapic); 5012 } 5013 return 0; 5014 } 5015 5016 static int kvm_put_vcpu_events(X86CPU *cpu, int level) 5017 { 5018 CPUState *cs = CPU(cpu); 5019 CPUX86State *env = &cpu->env; 5020 struct kvm_vcpu_events events = {}; 5021 5022 events.flags = 0; 5023 5024 if (has_exception_payload) { 5025 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5026 events.exception.pending = env->exception_pending; 5027 events.exception_has_payload = env->exception_has_payload; 5028 events.exception_payload = env->exception_payload; 5029 } 5030 events.exception.nr = env->exception_nr; 5031 events.exception.injected = env->exception_injected; 5032 events.exception.has_error_code = env->has_error_code; 5033 events.exception.error_code = env->error_code; 5034 5035 events.interrupt.injected = (env->interrupt_injected >= 0); 5036 events.interrupt.nr = env->interrupt_injected; 5037 events.interrupt.soft = env->soft_interrupt; 5038 5039 events.nmi.injected = env->nmi_injected; 5040 events.nmi.pending = env->nmi_pending; 5041 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); 5042 5043 events.sipi_vector = env->sipi_vector; 5044 5045 if (has_msr_smbase) { 5046 events.flags |= KVM_VCPUEVENT_VALID_SMM; 5047 events.smi.smm = !!(env->hflags & HF_SMM_MASK); 5048 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); 5049 if (kvm_irqchip_in_kernel()) { 5050 /* As soon as these are moved to the kernel, remove them 5051 * from cs->interrupt_request. 5052 */ 5053 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; 5054 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; 5055 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); 5056 } else { 5057 /* Keep these in cs->interrupt_request. */ 5058 events.smi.pending = 0; 5059 events.smi.latched_init = 0; 5060 } 5061 } 5062 5063 if (level >= KVM_PUT_RESET_STATE) { 5064 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; 5065 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 5066 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR; 5067 } 5068 } 5069 5070 if (has_triple_fault_event) { 5071 events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5072 events.triple_fault.pending = env->triple_fault_pending; 5073 } 5074 5075 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 5076 } 5077 5078 static int kvm_get_vcpu_events(X86CPU *cpu) 5079 { 5080 CPUX86State *env = &cpu->env; 5081 struct kvm_vcpu_events events; 5082 int ret; 5083 5084 memset(&events, 0, sizeof(events)); 5085 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 5086 if (ret < 0) { 5087 return ret; 5088 } 5089 5090 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5091 env->exception_pending = events.exception.pending; 5092 env->exception_has_payload = events.exception_has_payload; 5093 env->exception_payload = events.exception_payload; 5094 } else { 5095 env->exception_pending = 0; 5096 env->exception_has_payload = false; 5097 } 5098 env->exception_injected = events.exception.injected; 5099 env->exception_nr = 5100 (env->exception_pending || env->exception_injected) ? 5101 events.exception.nr : -1; 5102 env->has_error_code = events.exception.has_error_code; 5103 env->error_code = events.exception.error_code; 5104 5105 env->interrupt_injected = 5106 events.interrupt.injected ? events.interrupt.nr : -1; 5107 env->soft_interrupt = events.interrupt.soft; 5108 5109 env->nmi_injected = events.nmi.injected; 5110 env->nmi_pending = events.nmi.pending; 5111 if (events.nmi.masked) { 5112 env->hflags2 |= HF2_NMI_MASK; 5113 } else { 5114 env->hflags2 &= ~HF2_NMI_MASK; 5115 } 5116 5117 if (events.flags & KVM_VCPUEVENT_VALID_SMM) { 5118 if (events.smi.smm) { 5119 env->hflags |= HF_SMM_MASK; 5120 } else { 5121 env->hflags &= ~HF_SMM_MASK; 5122 } 5123 if (events.smi.pending) { 5124 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 5125 } else { 5126 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 5127 } 5128 if (events.smi.smm_inside_nmi) { 5129 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; 5130 } else { 5131 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; 5132 } 5133 if (events.smi.latched_init) { 5134 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 5135 } else { 5136 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 5137 } 5138 } 5139 5140 if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5141 env->triple_fault_pending = events.triple_fault.pending; 5142 } 5143 5144 env->sipi_vector = events.sipi_vector; 5145 5146 return 0; 5147 } 5148 5149 static int kvm_put_debugregs(X86CPU *cpu) 5150 { 5151 CPUX86State *env = &cpu->env; 5152 struct kvm_debugregs dbgregs; 5153 int i; 5154 5155 memset(&dbgregs, 0, sizeof(dbgregs)); 5156 for (i = 0; i < 4; i++) { 5157 dbgregs.db[i] = env->dr[i]; 5158 } 5159 dbgregs.dr6 = env->dr[6]; 5160 dbgregs.dr7 = env->dr[7]; 5161 dbgregs.flags = 0; 5162 5163 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); 5164 } 5165 5166 static int kvm_get_debugregs(X86CPU *cpu) 5167 { 5168 CPUX86State *env = &cpu->env; 5169 struct kvm_debugregs dbgregs; 5170 int i, ret; 5171 5172 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); 5173 if (ret < 0) { 5174 return ret; 5175 } 5176 for (i = 0; i < 4; i++) { 5177 env->dr[i] = dbgregs.db[i]; 5178 } 5179 env->dr[4] = env->dr[6] = dbgregs.dr6; 5180 env->dr[5] = env->dr[7] = dbgregs.dr7; 5181 5182 return 0; 5183 } 5184 5185 static int kvm_put_nested_state(X86CPU *cpu) 5186 { 5187 CPUX86State *env = &cpu->env; 5188 int max_nested_state_len = kvm_max_nested_state_length(); 5189 5190 if (!env->nested_state) { 5191 return 0; 5192 } 5193 5194 /* 5195 * Copy flags that are affected by reset from env->hflags and env->hflags2. 5196 */ 5197 if (env->hflags & HF_GUEST_MASK) { 5198 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE; 5199 } else { 5200 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE; 5201 } 5202 5203 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */ 5204 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) { 5205 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET; 5206 } else { 5207 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET; 5208 } 5209 5210 assert(env->nested_state->size <= max_nested_state_len); 5211 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state); 5212 } 5213 5214 static int kvm_get_nested_state(X86CPU *cpu) 5215 { 5216 CPUX86State *env = &cpu->env; 5217 int max_nested_state_len = kvm_max_nested_state_length(); 5218 int ret; 5219 5220 if (!env->nested_state) { 5221 return 0; 5222 } 5223 5224 /* 5225 * It is possible that migration restored a smaller size into 5226 * nested_state->hdr.size than what our kernel support. 5227 * We preserve migration origin nested_state->hdr.size for 5228 * call to KVM_SET_NESTED_STATE but wish that our next call 5229 * to KVM_GET_NESTED_STATE will use max size our kernel support. 5230 */ 5231 env->nested_state->size = max_nested_state_len; 5232 5233 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state); 5234 if (ret < 0) { 5235 return ret; 5236 } 5237 5238 /* 5239 * Copy flags that are affected by reset to env->hflags and env->hflags2. 5240 */ 5241 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) { 5242 env->hflags |= HF_GUEST_MASK; 5243 } else { 5244 env->hflags &= ~HF_GUEST_MASK; 5245 } 5246 5247 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */ 5248 if (cpu_has_svm(env)) { 5249 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) { 5250 env->hflags2 |= HF2_GIF_MASK; 5251 } else { 5252 env->hflags2 &= ~HF2_GIF_MASK; 5253 } 5254 } 5255 5256 return ret; 5257 } 5258 5259 int kvm_arch_put_registers(CPUState *cpu, int level, Error **errp) 5260 { 5261 X86CPU *x86_cpu = X86_CPU(cpu); 5262 int ret; 5263 5264 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); 5265 5266 /* 5267 * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX 5268 * root operation upon vCPU reset. kvm_put_msr_feature_control() should also 5269 * precede kvm_put_nested_state() when 'real' nested state is set. 5270 */ 5271 if (level >= KVM_PUT_RESET_STATE) { 5272 ret = kvm_put_msr_feature_control(x86_cpu); 5273 if (ret < 0) { 5274 error_setg_errno(errp, -ret, "Failed to set feature control MSR"); 5275 return ret; 5276 } 5277 } 5278 5279 /* must be before kvm_put_nested_state so that EFER.SVME is set */ 5280 ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu); 5281 if (ret < 0) { 5282 error_setg_errno(errp, -ret, "Failed to set special registers"); 5283 return ret; 5284 } 5285 5286 if (level >= KVM_PUT_RESET_STATE) { 5287 ret = kvm_put_nested_state(x86_cpu); 5288 if (ret < 0) { 5289 error_setg_errno(errp, -ret, "Failed to set nested state"); 5290 return ret; 5291 } 5292 } 5293 5294 if (level == KVM_PUT_FULL_STATE) { 5295 /* We don't check for kvm_arch_set_tsc_khz() errors here, 5296 * because TSC frequency mismatch shouldn't abort migration, 5297 * unless the user explicitly asked for a more strict TSC 5298 * setting (e.g. using an explicit "tsc-freq" option). 5299 */ 5300 kvm_arch_set_tsc_khz(cpu); 5301 } 5302 5303 #ifdef CONFIG_XEN_EMU 5304 if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) { 5305 ret = kvm_put_xen_state(cpu); 5306 if (ret < 0) { 5307 error_setg_errno(errp, -ret, "Failed to set Xen state"); 5308 return ret; 5309 } 5310 } 5311 #endif 5312 5313 ret = kvm_getput_regs(x86_cpu, 1); 5314 if (ret < 0) { 5315 error_setg_errno(errp, -ret, "Failed to set general purpose registers"); 5316 return ret; 5317 } 5318 ret = kvm_put_xsave(x86_cpu); 5319 if (ret < 0) { 5320 error_setg_errno(errp, -ret, "Failed to set XSAVE"); 5321 return ret; 5322 } 5323 ret = kvm_put_xcrs(x86_cpu); 5324 if (ret < 0) { 5325 error_setg_errno(errp, -ret, "Failed to set XCRs"); 5326 return ret; 5327 } 5328 ret = kvm_put_msrs(x86_cpu, level); 5329 if (ret < 0) { 5330 error_setg_errno(errp, -ret, "Failed to set MSRs"); 5331 return ret; 5332 } 5333 ret = kvm_put_vcpu_events(x86_cpu, level); 5334 if (ret < 0) { 5335 error_setg_errno(errp, -ret, "Failed to set vCPU events"); 5336 return ret; 5337 } 5338 if (level >= KVM_PUT_RESET_STATE) { 5339 ret = kvm_put_mp_state(x86_cpu); 5340 if (ret < 0) { 5341 error_setg_errno(errp, -ret, "Failed to set MP state"); 5342 return ret; 5343 } 5344 } 5345 5346 ret = kvm_put_tscdeadline_msr(x86_cpu); 5347 if (ret < 0) { 5348 error_setg_errno(errp, -ret, "Failed to set TSC deadline MSR"); 5349 return ret; 5350 } 5351 ret = kvm_put_debugregs(x86_cpu); 5352 if (ret < 0) { 5353 error_setg_errno(errp, -ret, "Failed to set debug registers"); 5354 return ret; 5355 } 5356 return 0; 5357 } 5358 5359 int kvm_arch_get_registers(CPUState *cs, Error **errp) 5360 { 5361 X86CPU *cpu = X86_CPU(cs); 5362 int ret; 5363 5364 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); 5365 5366 ret = kvm_get_vcpu_events(cpu); 5367 if (ret < 0) { 5368 error_setg_errno(errp, -ret, "Failed to get vCPU events"); 5369 goto out; 5370 } 5371 /* 5372 * KVM_GET_MPSTATE can modify CS and RIP, call it before 5373 * KVM_GET_REGS and KVM_GET_SREGS. 5374 */ 5375 ret = kvm_get_mp_state(cpu); 5376 if (ret < 0) { 5377 error_setg_errno(errp, -ret, "Failed to get MP state"); 5378 goto out; 5379 } 5380 ret = kvm_getput_regs(cpu, 0); 5381 if (ret < 0) { 5382 error_setg_errno(errp, -ret, "Failed to get general purpose registers"); 5383 goto out; 5384 } 5385 ret = kvm_get_xsave(cpu); 5386 if (ret < 0) { 5387 error_setg_errno(errp, -ret, "Failed to get XSAVE"); 5388 goto out; 5389 } 5390 ret = kvm_get_xcrs(cpu); 5391 if (ret < 0) { 5392 error_setg_errno(errp, -ret, "Failed to get XCRs"); 5393 goto out; 5394 } 5395 ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu); 5396 if (ret < 0) { 5397 error_setg_errno(errp, -ret, "Failed to get special registers"); 5398 goto out; 5399 } 5400 ret = kvm_get_msrs(cpu); 5401 if (ret < 0) { 5402 error_setg_errno(errp, -ret, "Failed to get MSRs"); 5403 goto out; 5404 } 5405 ret = kvm_get_apic(cpu); 5406 if (ret < 0) { 5407 error_setg_errno(errp, -ret, "Failed to get APIC"); 5408 goto out; 5409 } 5410 ret = kvm_get_debugregs(cpu); 5411 if (ret < 0) { 5412 error_setg_errno(errp, -ret, "Failed to get debug registers"); 5413 goto out; 5414 } 5415 ret = kvm_get_nested_state(cpu); 5416 if (ret < 0) { 5417 error_setg_errno(errp, -ret, "Failed to get nested state"); 5418 goto out; 5419 } 5420 #ifdef CONFIG_XEN_EMU 5421 if (xen_mode == XEN_EMULATE) { 5422 ret = kvm_get_xen_state(cs); 5423 if (ret < 0) { 5424 error_setg_errno(errp, -ret, "Failed to get Xen state"); 5425 goto out; 5426 } 5427 } 5428 #endif 5429 ret = 0; 5430 out: 5431 cpu_sync_bndcs_hflags(&cpu->env); 5432 return ret; 5433 } 5434 5435 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 5436 { 5437 X86CPU *x86_cpu = X86_CPU(cpu); 5438 CPUX86State *env = &x86_cpu->env; 5439 int ret; 5440 5441 /* Inject NMI */ 5442 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { 5443 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { 5444 bql_lock(); 5445 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; 5446 bql_unlock(); 5447 DPRINTF("injected NMI\n"); 5448 ret = kvm_vcpu_ioctl(cpu, KVM_NMI); 5449 if (ret < 0) { 5450 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", 5451 strerror(-ret)); 5452 } 5453 } 5454 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { 5455 bql_lock(); 5456 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; 5457 bql_unlock(); 5458 DPRINTF("injected SMI\n"); 5459 ret = kvm_vcpu_ioctl(cpu, KVM_SMI); 5460 if (ret < 0) { 5461 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", 5462 strerror(-ret)); 5463 } 5464 } 5465 } 5466 5467 if (!kvm_pic_in_kernel()) { 5468 bql_lock(); 5469 } 5470 5471 /* Force the VCPU out of its inner loop to process any INIT requests 5472 * or (for userspace APIC, but it is cheap to combine the checks here) 5473 * pending TPR access reports. 5474 */ 5475 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { 5476 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && 5477 !(env->hflags & HF_SMM_MASK)) { 5478 cpu->exit_request = 1; 5479 } 5480 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { 5481 cpu->exit_request = 1; 5482 } 5483 } 5484 5485 if (!kvm_pic_in_kernel()) { 5486 /* Try to inject an interrupt if the guest can accept it */ 5487 if (run->ready_for_interrupt_injection && 5488 (cpu->interrupt_request & CPU_INTERRUPT_HARD) && 5489 (env->eflags & IF_MASK)) { 5490 int irq; 5491 5492 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; 5493 irq = cpu_get_pic_interrupt(env); 5494 if (irq >= 0) { 5495 struct kvm_interrupt intr; 5496 5497 intr.irq = irq; 5498 DPRINTF("injected interrupt %d\n", irq); 5499 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); 5500 if (ret < 0) { 5501 fprintf(stderr, 5502 "KVM: injection failed, interrupt lost (%s)\n", 5503 strerror(-ret)); 5504 } 5505 } 5506 } 5507 5508 /* If we have an interrupt but the guest is not ready to receive an 5509 * interrupt, request an interrupt window exit. This will 5510 * cause a return to userspace as soon as the guest is ready to 5511 * receive interrupts. */ 5512 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { 5513 run->request_interrupt_window = 1; 5514 } else { 5515 run->request_interrupt_window = 0; 5516 } 5517 5518 DPRINTF("setting tpr\n"); 5519 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); 5520 5521 bql_unlock(); 5522 } 5523 } 5524 5525 static void kvm_rate_limit_on_bus_lock(void) 5526 { 5527 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1); 5528 5529 if (delay_ns) { 5530 g_usleep(delay_ns / SCALE_US); 5531 } 5532 } 5533 5534 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) 5535 { 5536 X86CPU *x86_cpu = X86_CPU(cpu); 5537 CPUX86State *env = &x86_cpu->env; 5538 5539 if (run->flags & KVM_RUN_X86_SMM) { 5540 env->hflags |= HF_SMM_MASK; 5541 } else { 5542 env->hflags &= ~HF_SMM_MASK; 5543 } 5544 if (run->if_flag) { 5545 env->eflags |= IF_MASK; 5546 } else { 5547 env->eflags &= ~IF_MASK; 5548 } 5549 if (run->flags & KVM_RUN_X86_BUS_LOCK) { 5550 kvm_rate_limit_on_bus_lock(); 5551 } 5552 5553 #ifdef CONFIG_XEN_EMU 5554 /* 5555 * If the callback is asserted as a GSI (or PCI INTx) then check if 5556 * vcpu_info->evtchn_upcall_pending has been cleared, and deassert 5557 * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC 5558 * EOI and only resample then, exactly how the VFIO eventfd pairs 5559 * are designed to work for level triggered interrupts. 5560 */ 5561 if (x86_cpu->env.xen_callback_asserted) { 5562 kvm_xen_maybe_deassert_callback(cpu); 5563 } 5564 #endif 5565 5566 /* We need to protect the apic state against concurrent accesses from 5567 * different threads in case the userspace irqchip is used. */ 5568 if (!kvm_irqchip_in_kernel()) { 5569 bql_lock(); 5570 } 5571 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); 5572 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); 5573 if (!kvm_irqchip_in_kernel()) { 5574 bql_unlock(); 5575 } 5576 return cpu_get_mem_attrs(env); 5577 } 5578 5579 int kvm_arch_process_async_events(CPUState *cs) 5580 { 5581 X86CPU *cpu = X86_CPU(cs); 5582 CPUX86State *env = &cpu->env; 5583 5584 if (cs->interrupt_request & CPU_INTERRUPT_MCE) { 5585 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ 5586 assert(env->mcg_cap); 5587 5588 cs->interrupt_request &= ~CPU_INTERRUPT_MCE; 5589 5590 kvm_cpu_synchronize_state(cs); 5591 5592 if (env->exception_nr == EXCP08_DBLE) { 5593 /* this means triple fault */ 5594 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 5595 cs->exit_request = 1; 5596 return 0; 5597 } 5598 kvm_queue_exception(env, EXCP12_MCHK, 0, 0); 5599 env->has_error_code = 0; 5600 5601 cs->halted = 0; 5602 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { 5603 env->mp_state = KVM_MP_STATE_RUNNABLE; 5604 } 5605 } 5606 5607 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && 5608 !(env->hflags & HF_SMM_MASK)) { 5609 kvm_cpu_synchronize_state(cs); 5610 do_cpu_init(cpu); 5611 } 5612 5613 if (kvm_irqchip_in_kernel()) { 5614 return 0; 5615 } 5616 5617 if (cs->interrupt_request & CPU_INTERRUPT_POLL) { 5618 cs->interrupt_request &= ~CPU_INTERRUPT_POLL; 5619 apic_poll_irq(cpu->apic_state); 5620 } 5621 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && 5622 (env->eflags & IF_MASK)) || 5623 (cs->interrupt_request & CPU_INTERRUPT_NMI)) { 5624 cs->halted = 0; 5625 } 5626 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { 5627 kvm_cpu_synchronize_state(cs); 5628 do_cpu_sipi(cpu); 5629 } 5630 if (cs->interrupt_request & CPU_INTERRUPT_TPR) { 5631 cs->interrupt_request &= ~CPU_INTERRUPT_TPR; 5632 kvm_cpu_synchronize_state(cs); 5633 apic_handle_tpr_access_report(cpu->apic_state, env->eip, 5634 env->tpr_access_type); 5635 } 5636 5637 return cs->halted; 5638 } 5639 5640 static int kvm_handle_halt(X86CPU *cpu) 5641 { 5642 CPUState *cs = CPU(cpu); 5643 CPUX86State *env = &cpu->env; 5644 5645 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && 5646 (env->eflags & IF_MASK)) && 5647 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { 5648 cs->halted = 1; 5649 return EXCP_HLT; 5650 } 5651 5652 return 0; 5653 } 5654 5655 static int kvm_handle_tpr_access(X86CPU *cpu) 5656 { 5657 CPUState *cs = CPU(cpu); 5658 struct kvm_run *run = cs->kvm_run; 5659 5660 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, 5661 run->tpr_access.is_write ? TPR_ACCESS_WRITE 5662 : TPR_ACCESS_READ); 5663 return 1; 5664 } 5665 5666 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 5667 { 5668 static const uint8_t int3 = 0xcc; 5669 5670 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || 5671 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { 5672 return -EINVAL; 5673 } 5674 return 0; 5675 } 5676 5677 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 5678 { 5679 uint8_t int3; 5680 5681 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) { 5682 return -EINVAL; 5683 } 5684 if (int3 != 0xcc) { 5685 return 0; 5686 } 5687 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { 5688 return -EINVAL; 5689 } 5690 return 0; 5691 } 5692 5693 static struct { 5694 target_ulong addr; 5695 int len; 5696 int type; 5697 } hw_breakpoint[4]; 5698 5699 static int nb_hw_breakpoint; 5700 5701 static int find_hw_breakpoint(target_ulong addr, int len, int type) 5702 { 5703 int n; 5704 5705 for (n = 0; n < nb_hw_breakpoint; n++) { 5706 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && 5707 (hw_breakpoint[n].len == len || len == -1)) { 5708 return n; 5709 } 5710 } 5711 return -1; 5712 } 5713 5714 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type) 5715 { 5716 switch (type) { 5717 case GDB_BREAKPOINT_HW: 5718 len = 1; 5719 break; 5720 case GDB_WATCHPOINT_WRITE: 5721 case GDB_WATCHPOINT_ACCESS: 5722 switch (len) { 5723 case 1: 5724 break; 5725 case 2: 5726 case 4: 5727 case 8: 5728 if (addr & (len - 1)) { 5729 return -EINVAL; 5730 } 5731 break; 5732 default: 5733 return -EINVAL; 5734 } 5735 break; 5736 default: 5737 return -ENOSYS; 5738 } 5739 5740 if (nb_hw_breakpoint == 4) { 5741 return -ENOBUFS; 5742 } 5743 if (find_hw_breakpoint(addr, len, type) >= 0) { 5744 return -EEXIST; 5745 } 5746 hw_breakpoint[nb_hw_breakpoint].addr = addr; 5747 hw_breakpoint[nb_hw_breakpoint].len = len; 5748 hw_breakpoint[nb_hw_breakpoint].type = type; 5749 nb_hw_breakpoint++; 5750 5751 return 0; 5752 } 5753 5754 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type) 5755 { 5756 int n; 5757 5758 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); 5759 if (n < 0) { 5760 return -ENOENT; 5761 } 5762 nb_hw_breakpoint--; 5763 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; 5764 5765 return 0; 5766 } 5767 5768 void kvm_arch_remove_all_hw_breakpoints(void) 5769 { 5770 nb_hw_breakpoint = 0; 5771 } 5772 5773 static CPUWatchpoint hw_watchpoint; 5774 5775 static int kvm_handle_debug(X86CPU *cpu, 5776 struct kvm_debug_exit_arch *arch_info) 5777 { 5778 CPUState *cs = CPU(cpu); 5779 CPUX86State *env = &cpu->env; 5780 int ret = 0; 5781 int n; 5782 5783 if (arch_info->exception == EXCP01_DB) { 5784 if (arch_info->dr6 & DR6_BS) { 5785 if (cs->singlestep_enabled) { 5786 ret = EXCP_DEBUG; 5787 } 5788 } else { 5789 for (n = 0; n < 4; n++) { 5790 if (arch_info->dr6 & (1 << n)) { 5791 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { 5792 case 0x0: 5793 ret = EXCP_DEBUG; 5794 break; 5795 case 0x1: 5796 ret = EXCP_DEBUG; 5797 cs->watchpoint_hit = &hw_watchpoint; 5798 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 5799 hw_watchpoint.flags = BP_MEM_WRITE; 5800 break; 5801 case 0x3: 5802 ret = EXCP_DEBUG; 5803 cs->watchpoint_hit = &hw_watchpoint; 5804 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 5805 hw_watchpoint.flags = BP_MEM_ACCESS; 5806 break; 5807 } 5808 } 5809 } 5810 } 5811 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { 5812 ret = EXCP_DEBUG; 5813 } 5814 if (ret == 0) { 5815 cpu_synchronize_state(cs); 5816 assert(env->exception_nr == -1); 5817 5818 /* pass to guest */ 5819 kvm_queue_exception(env, arch_info->exception, 5820 arch_info->exception == EXCP01_DB, 5821 arch_info->dr6); 5822 env->has_error_code = 0; 5823 } 5824 5825 return ret; 5826 } 5827 5828 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 5829 { 5830 const uint8_t type_code[] = { 5831 [GDB_BREAKPOINT_HW] = 0x0, 5832 [GDB_WATCHPOINT_WRITE] = 0x1, 5833 [GDB_WATCHPOINT_ACCESS] = 0x3 5834 }; 5835 const uint8_t len_code[] = { 5836 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 5837 }; 5838 int n; 5839 5840 if (kvm_sw_breakpoints_active(cpu)) { 5841 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 5842 } 5843 if (nb_hw_breakpoint > 0) { 5844 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 5845 dbg->arch.debugreg[7] = 0x0600; 5846 for (n = 0; n < nb_hw_breakpoint; n++) { 5847 dbg->arch.debugreg[n] = hw_breakpoint[n].addr; 5848 dbg->arch.debugreg[7] |= (2 << (n * 2)) | 5849 (type_code[hw_breakpoint[n].type] << (16 + n*4)) | 5850 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); 5851 } 5852 } 5853 } 5854 5855 static int kvm_install_msr_filters(KVMState *s) 5856 { 5857 uint64_t zero = 0; 5858 struct kvm_msr_filter filter = { 5859 .flags = KVM_MSR_FILTER_DEFAULT_ALLOW, 5860 }; 5861 int i, j = 0; 5862 5863 QEMU_BUILD_BUG_ON(ARRAY_SIZE(msr_handlers) != ARRAY_SIZE(filter.ranges)); 5864 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5865 KVMMSRHandlers *handler = &msr_handlers[i]; 5866 if (handler->msr) { 5867 struct kvm_msr_filter_range *range = &filter.ranges[j++]; 5868 5869 *range = (struct kvm_msr_filter_range) { 5870 .flags = 0, 5871 .nmsrs = 1, 5872 .base = handler->msr, 5873 .bitmap = (__u8 *)&zero, 5874 }; 5875 5876 if (handler->rdmsr) { 5877 range->flags |= KVM_MSR_FILTER_READ; 5878 } 5879 5880 if (handler->wrmsr) { 5881 range->flags |= KVM_MSR_FILTER_WRITE; 5882 } 5883 } 5884 } 5885 5886 return kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter); 5887 } 5888 5889 static int kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr, 5890 QEMUWRMSRHandler *wrmsr) 5891 { 5892 int i, ret; 5893 5894 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5895 if (!msr_handlers[i].msr) { 5896 msr_handlers[i] = (KVMMSRHandlers) { 5897 .msr = msr, 5898 .rdmsr = rdmsr, 5899 .wrmsr = wrmsr, 5900 }; 5901 5902 ret = kvm_install_msr_filters(s); 5903 if (ret) { 5904 msr_handlers[i] = (KVMMSRHandlers) { }; 5905 return ret; 5906 } 5907 5908 return 0; 5909 } 5910 } 5911 5912 return -EINVAL; 5913 } 5914 5915 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run) 5916 { 5917 int i; 5918 bool r; 5919 5920 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5921 KVMMSRHandlers *handler = &msr_handlers[i]; 5922 if (run->msr.index == handler->msr) { 5923 if (handler->rdmsr) { 5924 r = handler->rdmsr(cpu, handler->msr, 5925 (uint64_t *)&run->msr.data); 5926 run->msr.error = r ? 0 : 1; 5927 return 0; 5928 } 5929 } 5930 } 5931 5932 g_assert_not_reached(); 5933 } 5934 5935 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run) 5936 { 5937 int i; 5938 bool r; 5939 5940 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5941 KVMMSRHandlers *handler = &msr_handlers[i]; 5942 if (run->msr.index == handler->msr) { 5943 if (handler->wrmsr) { 5944 r = handler->wrmsr(cpu, handler->msr, run->msr.data); 5945 run->msr.error = r ? 0 : 1; 5946 return 0; 5947 } 5948 } 5949 } 5950 5951 g_assert_not_reached(); 5952 } 5953 5954 static bool has_sgx_provisioning; 5955 5956 static bool __kvm_enable_sgx_provisioning(KVMState *s) 5957 { 5958 int fd, ret; 5959 5960 if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) { 5961 return false; 5962 } 5963 5964 fd = qemu_open_old("/dev/sgx_provision", O_RDONLY); 5965 if (fd < 0) { 5966 return false; 5967 } 5968 5969 ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd); 5970 if (ret) { 5971 error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret)); 5972 exit(1); 5973 } 5974 close(fd); 5975 return true; 5976 } 5977 5978 bool kvm_enable_sgx_provisioning(KVMState *s) 5979 { 5980 return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning); 5981 } 5982 5983 static bool host_supports_vmx(void) 5984 { 5985 uint32_t ecx, unused; 5986 5987 host_cpuid(1, 0, &unused, &unused, &ecx, &unused); 5988 return ecx & CPUID_EXT_VMX; 5989 } 5990 5991 /* 5992 * Currently the handling here only supports use of KVM_HC_MAP_GPA_RANGE 5993 * to service guest-initiated memory attribute update requests so that 5994 * KVM_SET_MEMORY_ATTRIBUTES can update whether or not a page should be 5995 * backed by the private memory pool provided by guest_memfd, and as such 5996 * is only applicable to guest_memfd-backed guests (e.g. SNP/TDX). 5997 * 5998 * Other other use-cases for KVM_HC_MAP_GPA_RANGE, such as for SEV live 5999 * migration, are not implemented here currently. 6000 * 6001 * For the guest_memfd use-case, these exits will generally be synthesized 6002 * by KVM based on platform-specific hypercalls, like GHCB requests in the 6003 * case of SEV-SNP, and not issued directly within the guest though the 6004 * KVM_HC_MAP_GPA_RANGE hypercall. So in this case, KVM_HC_MAP_GPA_RANGE is 6005 * not actually advertised to guests via the KVM CPUID feature bit, as 6006 * opposed to SEV live migration where it would be. Since it is unlikely the 6007 * SEV live migration use-case would be useful for guest-memfd backed guests, 6008 * because private/shared page tracking is already provided through other 6009 * means, these 2 use-cases should be treated as being mutually-exclusive. 6010 */ 6011 static int kvm_handle_hc_map_gpa_range(struct kvm_run *run) 6012 { 6013 uint64_t gpa, size, attributes; 6014 6015 if (!machine_require_guest_memfd(current_machine)) 6016 return -EINVAL; 6017 6018 gpa = run->hypercall.args[0]; 6019 size = run->hypercall.args[1] * TARGET_PAGE_SIZE; 6020 attributes = run->hypercall.args[2]; 6021 6022 trace_kvm_hc_map_gpa_range(gpa, size, attributes, run->hypercall.flags); 6023 6024 return kvm_convert_memory(gpa, size, attributes & KVM_MAP_GPA_RANGE_ENCRYPTED); 6025 } 6026 6027 static int kvm_handle_hypercall(struct kvm_run *run) 6028 { 6029 if (run->hypercall.nr == KVM_HC_MAP_GPA_RANGE) 6030 return kvm_handle_hc_map_gpa_range(run); 6031 6032 return -EINVAL; 6033 } 6034 6035 #define VMX_INVALID_GUEST_STATE 0x80000021 6036 6037 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 6038 { 6039 X86CPU *cpu = X86_CPU(cs); 6040 uint64_t code; 6041 int ret; 6042 bool ctx_invalid; 6043 KVMState *state; 6044 6045 switch (run->exit_reason) { 6046 case KVM_EXIT_HLT: 6047 DPRINTF("handle_hlt\n"); 6048 bql_lock(); 6049 ret = kvm_handle_halt(cpu); 6050 bql_unlock(); 6051 break; 6052 case KVM_EXIT_SET_TPR: 6053 ret = 0; 6054 break; 6055 case KVM_EXIT_TPR_ACCESS: 6056 bql_lock(); 6057 ret = kvm_handle_tpr_access(cpu); 6058 bql_unlock(); 6059 break; 6060 case KVM_EXIT_FAIL_ENTRY: 6061 code = run->fail_entry.hardware_entry_failure_reason; 6062 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", 6063 code); 6064 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { 6065 fprintf(stderr, 6066 "\nIf you're running a guest on an Intel machine without " 6067 "unrestricted mode\n" 6068 "support, the failure can be most likely due to the guest " 6069 "entering an invalid\n" 6070 "state for Intel VT. For example, the guest maybe running " 6071 "in big real mode\n" 6072 "which is not supported on less recent Intel processors." 6073 "\n\n"); 6074 } 6075 ret = -1; 6076 break; 6077 case KVM_EXIT_EXCEPTION: 6078 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", 6079 run->ex.exception, run->ex.error_code); 6080 ret = -1; 6081 break; 6082 case KVM_EXIT_DEBUG: 6083 DPRINTF("kvm_exit_debug\n"); 6084 bql_lock(); 6085 ret = kvm_handle_debug(cpu, &run->debug.arch); 6086 bql_unlock(); 6087 break; 6088 case KVM_EXIT_HYPERV: 6089 ret = kvm_hv_handle_exit(cpu, &run->hyperv); 6090 break; 6091 case KVM_EXIT_IOAPIC_EOI: 6092 ioapic_eoi_broadcast(run->eoi.vector); 6093 ret = 0; 6094 break; 6095 case KVM_EXIT_X86_BUS_LOCK: 6096 /* already handled in kvm_arch_post_run */ 6097 ret = 0; 6098 break; 6099 case KVM_EXIT_NOTIFY: 6100 ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID); 6101 state = KVM_STATE(current_accel()); 6102 if (ctx_invalid || 6103 state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) { 6104 warn_report("KVM internal error: Encountered a notify exit " 6105 "with invalid context in guest."); 6106 ret = -1; 6107 } else { 6108 warn_report_once("KVM: Encountered a notify exit with valid " 6109 "context in guest. " 6110 "The guest could be misbehaving."); 6111 ret = 0; 6112 } 6113 break; 6114 case KVM_EXIT_X86_RDMSR: 6115 /* We only enable MSR filtering, any other exit is bogus */ 6116 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER); 6117 ret = kvm_handle_rdmsr(cpu, run); 6118 break; 6119 case KVM_EXIT_X86_WRMSR: 6120 /* We only enable MSR filtering, any other exit is bogus */ 6121 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER); 6122 ret = kvm_handle_wrmsr(cpu, run); 6123 break; 6124 #ifdef CONFIG_XEN_EMU 6125 case KVM_EXIT_XEN: 6126 ret = kvm_xen_handle_exit(cpu, &run->xen); 6127 break; 6128 #endif 6129 case KVM_EXIT_HYPERCALL: 6130 ret = kvm_handle_hypercall(run); 6131 break; 6132 default: 6133 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); 6134 ret = -1; 6135 break; 6136 } 6137 6138 return ret; 6139 } 6140 6141 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 6142 { 6143 X86CPU *cpu = X86_CPU(cs); 6144 CPUX86State *env = &cpu->env; 6145 6146 kvm_cpu_synchronize_state(cs); 6147 return !(env->cr[0] & CR0_PE_MASK) || 6148 ((env->segs[R_CS].selector & 3) != 3); 6149 } 6150 6151 void kvm_arch_init_irq_routing(KVMState *s) 6152 { 6153 /* We know at this point that we're using the in-kernel 6154 * irqchip, so we can use irqfds, and on x86 we know 6155 * we can use msi via irqfd and GSI routing. 6156 */ 6157 kvm_msi_via_irqfd_allowed = true; 6158 kvm_gsi_routing_allowed = true; 6159 6160 if (kvm_irqchip_is_split()) { 6161 KVMRouteChange c = kvm_irqchip_begin_route_changes(s); 6162 int i; 6163 6164 /* If the ioapic is in QEMU and the lapics are in KVM, reserve 6165 MSI routes for signaling interrupts to the local apics. */ 6166 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 6167 if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) { 6168 error_report("Could not enable split IRQ mode."); 6169 exit(1); 6170 } 6171 } 6172 kvm_irqchip_commit_route_changes(&c); 6173 } 6174 } 6175 6176 int kvm_arch_irqchip_create(KVMState *s) 6177 { 6178 int ret; 6179 if (kvm_kernel_irqchip_split()) { 6180 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); 6181 if (ret) { 6182 error_report("Could not enable split irqchip mode: %s", 6183 strerror(-ret)); 6184 exit(1); 6185 } else { 6186 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); 6187 kvm_split_irqchip = true; 6188 return 1; 6189 } 6190 } else { 6191 return 0; 6192 } 6193 } 6194 6195 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address) 6196 { 6197 CPUX86State *env; 6198 uint64_t ext_id; 6199 6200 if (!first_cpu) { 6201 return address; 6202 } 6203 env = &X86_CPU(first_cpu)->env; 6204 if (!(env->features[FEAT_KVM] & CPUID_KVM_MSI_EXT_DEST_ID)) { 6205 return address; 6206 } 6207 6208 /* 6209 * If the remappable format bit is set, or the upper bits are 6210 * already set in address_hi, or the low extended bits aren't 6211 * there anyway, do nothing. 6212 */ 6213 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT); 6214 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) { 6215 return address; 6216 } 6217 6218 address &= ~ext_id; 6219 address |= ext_id << 35; 6220 return address; 6221 } 6222 6223 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 6224 uint64_t address, uint32_t data, PCIDevice *dev) 6225 { 6226 X86IOMMUState *iommu = x86_iommu_get_default(); 6227 6228 if (iommu) { 6229 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu); 6230 6231 if (class->int_remap) { 6232 int ret; 6233 MSIMessage src, dst; 6234 6235 src.address = route->u.msi.address_hi; 6236 src.address <<= VTD_MSI_ADDR_HI_SHIFT; 6237 src.address |= route->u.msi.address_lo; 6238 src.data = route->u.msi.data; 6239 6240 ret = class->int_remap(iommu, &src, &dst, dev ? \ 6241 pci_requester_id(dev) : \ 6242 X86_IOMMU_SID_INVALID); 6243 if (ret) { 6244 trace_kvm_x86_fixup_msi_error(route->gsi); 6245 return 1; 6246 } 6247 6248 /* 6249 * Handled untranslated compatibility format interrupt with 6250 * extended destination ID in the low bits 11-5. */ 6251 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address); 6252 6253 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; 6254 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; 6255 route->u.msi.data = dst.data; 6256 return 0; 6257 } 6258 } 6259 6260 #ifdef CONFIG_XEN_EMU 6261 if (xen_mode == XEN_EMULATE) { 6262 int handled = xen_evtchn_translate_pirq_msi(route, address, data); 6263 6264 /* 6265 * If it was a PIRQ and successfully routed (handled == 0) or it was 6266 * an error (handled < 0), return. If it wasn't a PIRQ, keep going. 6267 */ 6268 if (handled <= 0) { 6269 return handled; 6270 } 6271 } 6272 #endif 6273 6274 address = kvm_swizzle_msi_ext_dest_id(address); 6275 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT; 6276 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK; 6277 return 0; 6278 } 6279 6280 typedef struct MSIRouteEntry MSIRouteEntry; 6281 6282 struct MSIRouteEntry { 6283 PCIDevice *dev; /* Device pointer */ 6284 int vector; /* MSI/MSIX vector index */ 6285 int virq; /* Virtual IRQ index */ 6286 QLIST_ENTRY(MSIRouteEntry) list; 6287 }; 6288 6289 /* List of used GSI routes */ 6290 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ 6291 QLIST_HEAD_INITIALIZER(msi_route_list); 6292 6293 void kvm_update_msi_routes_all(void *private, bool global, 6294 uint32_t index, uint32_t mask) 6295 { 6296 int cnt = 0, vector; 6297 MSIRouteEntry *entry; 6298 MSIMessage msg; 6299 PCIDevice *dev; 6300 6301 /* TODO: explicit route update */ 6302 QLIST_FOREACH(entry, &msi_route_list, list) { 6303 cnt++; 6304 vector = entry->vector; 6305 dev = entry->dev; 6306 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) { 6307 msg = msix_get_message(dev, vector); 6308 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) { 6309 msg = msi_get_message(dev, vector); 6310 } else { 6311 /* 6312 * Either MSI/MSIX is disabled for the device, or the 6313 * specific message was masked out. Skip this one. 6314 */ 6315 continue; 6316 } 6317 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); 6318 } 6319 kvm_irqchip_commit_routes(kvm_state); 6320 trace_kvm_x86_update_msi_routes(cnt); 6321 } 6322 6323 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 6324 int vector, PCIDevice *dev) 6325 { 6326 static bool notify_list_inited = false; 6327 MSIRouteEntry *entry; 6328 6329 if (!dev) { 6330 /* These are (possibly) IOAPIC routes only used for split 6331 * kernel irqchip mode, while what we are housekeeping are 6332 * PCI devices only. */ 6333 return 0; 6334 } 6335 6336 entry = g_new0(MSIRouteEntry, 1); 6337 entry->dev = dev; 6338 entry->vector = vector; 6339 entry->virq = route->gsi; 6340 QLIST_INSERT_HEAD(&msi_route_list, entry, list); 6341 6342 trace_kvm_x86_add_msi_route(route->gsi); 6343 6344 if (!notify_list_inited) { 6345 /* For the first time we do add route, add ourselves into 6346 * IOMMU's IEC notify list if needed. */ 6347 X86IOMMUState *iommu = x86_iommu_get_default(); 6348 if (iommu) { 6349 x86_iommu_iec_register_notifier(iommu, 6350 kvm_update_msi_routes_all, 6351 NULL); 6352 } 6353 notify_list_inited = true; 6354 } 6355 return 0; 6356 } 6357 6358 int kvm_arch_release_virq_post(int virq) 6359 { 6360 MSIRouteEntry *entry, *next; 6361 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { 6362 if (entry->virq == virq) { 6363 trace_kvm_x86_remove_msi_route(virq); 6364 QLIST_REMOVE(entry, list); 6365 g_free(entry); 6366 break; 6367 } 6368 } 6369 return 0; 6370 } 6371 6372 int kvm_arch_msi_data_to_gsi(uint32_t data) 6373 { 6374 abort(); 6375 } 6376 6377 bool kvm_has_waitpkg(void) 6378 { 6379 return has_msr_umwait; 6380 } 6381 6382 #define ARCH_REQ_XCOMP_GUEST_PERM 0x1025 6383 6384 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask) 6385 { 6386 KVMState *s = kvm_state; 6387 uint64_t supported; 6388 6389 mask &= XSTATE_DYNAMIC_MASK; 6390 if (!mask) { 6391 return; 6392 } 6393 /* 6394 * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0]. 6395 * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned 6396 * about them already because they are not supported features. 6397 */ 6398 supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX); 6399 supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32; 6400 mask &= supported; 6401 6402 while (mask) { 6403 int bit = ctz64(mask); 6404 int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit); 6405 if (rc) { 6406 /* 6407 * Older kernel version (<5.17) do not support 6408 * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return 6409 * any dynamic feature from kvm_arch_get_supported_cpuid. 6410 */ 6411 warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure " 6412 "for feature bit %d", bit); 6413 } 6414 mask &= ~BIT_ULL(bit); 6415 } 6416 } 6417 6418 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp) 6419 { 6420 KVMState *s = KVM_STATE(obj); 6421 return s->notify_vmexit; 6422 } 6423 6424 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp) 6425 { 6426 KVMState *s = KVM_STATE(obj); 6427 6428 if (s->fd != -1) { 6429 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 6430 return; 6431 } 6432 6433 s->notify_vmexit = value; 6434 } 6435 6436 static void kvm_arch_get_notify_window(Object *obj, Visitor *v, 6437 const char *name, void *opaque, 6438 Error **errp) 6439 { 6440 KVMState *s = KVM_STATE(obj); 6441 uint32_t value = s->notify_window; 6442 6443 visit_type_uint32(v, name, &value, errp); 6444 } 6445 6446 static void kvm_arch_set_notify_window(Object *obj, Visitor *v, 6447 const char *name, void *opaque, 6448 Error **errp) 6449 { 6450 KVMState *s = KVM_STATE(obj); 6451 uint32_t value; 6452 6453 if (s->fd != -1) { 6454 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 6455 return; 6456 } 6457 6458 if (!visit_type_uint32(v, name, &value, errp)) { 6459 return; 6460 } 6461 6462 s->notify_window = value; 6463 } 6464 6465 static void kvm_arch_get_xen_version(Object *obj, Visitor *v, 6466 const char *name, void *opaque, 6467 Error **errp) 6468 { 6469 KVMState *s = KVM_STATE(obj); 6470 uint32_t value = s->xen_version; 6471 6472 visit_type_uint32(v, name, &value, errp); 6473 } 6474 6475 static void kvm_arch_set_xen_version(Object *obj, Visitor *v, 6476 const char *name, void *opaque, 6477 Error **errp) 6478 { 6479 KVMState *s = KVM_STATE(obj); 6480 Error *error = NULL; 6481 uint32_t value; 6482 6483 visit_type_uint32(v, name, &value, &error); 6484 if (error) { 6485 error_propagate(errp, error); 6486 return; 6487 } 6488 6489 s->xen_version = value; 6490 if (value && xen_mode == XEN_DISABLED) { 6491 xen_mode = XEN_EMULATE; 6492 } 6493 } 6494 6495 static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v, 6496 const char *name, void *opaque, 6497 Error **errp) 6498 { 6499 KVMState *s = KVM_STATE(obj); 6500 uint16_t value = s->xen_gnttab_max_frames; 6501 6502 visit_type_uint16(v, name, &value, errp); 6503 } 6504 6505 static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v, 6506 const char *name, void *opaque, 6507 Error **errp) 6508 { 6509 KVMState *s = KVM_STATE(obj); 6510 Error *error = NULL; 6511 uint16_t value; 6512 6513 visit_type_uint16(v, name, &value, &error); 6514 if (error) { 6515 error_propagate(errp, error); 6516 return; 6517 } 6518 6519 s->xen_gnttab_max_frames = value; 6520 } 6521 6522 static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v, 6523 const char *name, void *opaque, 6524 Error **errp) 6525 { 6526 KVMState *s = KVM_STATE(obj); 6527 uint16_t value = s->xen_evtchn_max_pirq; 6528 6529 visit_type_uint16(v, name, &value, errp); 6530 } 6531 6532 static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v, 6533 const char *name, void *opaque, 6534 Error **errp) 6535 { 6536 KVMState *s = KVM_STATE(obj); 6537 Error *error = NULL; 6538 uint16_t value; 6539 6540 visit_type_uint16(v, name, &value, &error); 6541 if (error) { 6542 error_propagate(errp, error); 6543 return; 6544 } 6545 6546 s->xen_evtchn_max_pirq = value; 6547 } 6548 6549 void kvm_arch_accel_class_init(ObjectClass *oc) 6550 { 6551 object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption", 6552 &NotifyVmexitOption_lookup, 6553 kvm_arch_get_notify_vmexit, 6554 kvm_arch_set_notify_vmexit); 6555 object_class_property_set_description(oc, "notify-vmexit", 6556 "Enable notify VM exit"); 6557 6558 object_class_property_add(oc, "notify-window", "uint32", 6559 kvm_arch_get_notify_window, 6560 kvm_arch_set_notify_window, 6561 NULL, NULL); 6562 object_class_property_set_description(oc, "notify-window", 6563 "Clock cycles without an event window " 6564 "after which a notification VM exit occurs"); 6565 6566 object_class_property_add(oc, "xen-version", "uint32", 6567 kvm_arch_get_xen_version, 6568 kvm_arch_set_xen_version, 6569 NULL, NULL); 6570 object_class_property_set_description(oc, "xen-version", 6571 "Xen version to be emulated " 6572 "(in XENVER_version form " 6573 "e.g. 0x4000a for 4.10)"); 6574 6575 object_class_property_add(oc, "xen-gnttab-max-frames", "uint16", 6576 kvm_arch_get_xen_gnttab_max_frames, 6577 kvm_arch_set_xen_gnttab_max_frames, 6578 NULL, NULL); 6579 object_class_property_set_description(oc, "xen-gnttab-max-frames", 6580 "Maximum number of grant table frames"); 6581 6582 object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16", 6583 kvm_arch_get_xen_evtchn_max_pirq, 6584 kvm_arch_set_xen_evtchn_max_pirq, 6585 NULL, NULL); 6586 object_class_property_set_description(oc, "xen-evtchn-max-pirq", 6587 "Maximum number of Xen PIRQs"); 6588 } 6589 6590 void kvm_set_max_apic_id(uint32_t max_apic_id) 6591 { 6592 kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id); 6593 } 6594