xref: /openbmc/qemu/target/i386/kvm/kvm.c (revision 88aa6576e4ab40b538f543852128cb17fce37f87)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright (C) 2006-2008 Qumranet Technologies
5  * Copyright IBM, Corp. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include "qapi/visitor.h"
19 #include <math.h>
20 #include <sys/ioctl.h>
21 #include <sys/utsname.h>
22 #include <sys/syscall.h>
23 #include <sys/resource.h>
24 #include <sys/time.h>
25 
26 #include <linux/kvm.h>
27 #include <linux/kvm_para.h>
28 #include "standard-headers/asm-x86/kvm_para.h"
29 #include "hw/xen/interface/arch-x86/cpuid.h"
30 
31 #include "cpu.h"
32 #include "host-cpu.h"
33 #include "vmsr_energy.h"
34 #include "system/system.h"
35 #include "system/hw_accel.h"
36 #include "system/kvm_int.h"
37 #include "system/runstate.h"
38 #include "kvm_i386.h"
39 #include "../confidential-guest.h"
40 #include "sev.h"
41 #include "tdx.h"
42 #include "xen-emu.h"
43 #include "hyperv.h"
44 #include "hyperv-proto.h"
45 
46 #include "gdbstub/enums.h"
47 #include "qemu/host-utils.h"
48 #include "qemu/main-loop.h"
49 #include "qemu/ratelimit.h"
50 #include "qemu/config-file.h"
51 #include "qemu/error-report.h"
52 #include "qemu/memalign.h"
53 #include "hw/i386/x86.h"
54 #include "hw/i386/kvm/xen_evtchn.h"
55 #include "hw/i386/pc.h"
56 #include "hw/i386/apic.h"
57 #include "hw/i386/apic_internal.h"
58 #include "hw/i386/apic-msidef.h"
59 #include "hw/i386/intel_iommu.h"
60 #include "hw/i386/topology.h"
61 #include "hw/i386/x86-iommu.h"
62 #include "hw/i386/e820_memory_layout.h"
63 
64 #include "hw/xen/xen.h"
65 
66 #include "hw/pci/pci.h"
67 #include "hw/pci/msi.h"
68 #include "hw/pci/msix.h"
69 #include "migration/blocker.h"
70 #include "exec/memattrs.h"
71 #include "exec/target_page.h"
72 #include "trace.h"
73 
74 #include CONFIG_DEVICES
75 
76 //#define DEBUG_KVM
77 
78 #ifdef DEBUG_KVM
79 #define DPRINTF(fmt, ...) \
80     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
81 #else
82 #define DPRINTF(fmt, ...) \
83     do { } while (0)
84 #endif
85 
86 /*
87  * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
88  * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
89  * Since these must be part of guest physical memory, we need to allocate
90  * them, both by setting their start addresses in the kernel and by
91  * creating a corresponding e820 entry. We need 4 pages before the BIOS,
92  * so this value allows up to 16M BIOSes.
93  */
94 #define KVM_IDENTITY_BASE 0xfeffc000
95 
96 /* From arch/x86/kvm/lapic.h */
97 #define KVM_APIC_BUS_CYCLE_NS       1
98 #define KVM_APIC_BUS_FREQUENCY      (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
99 
100 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
101  * 255 kvm_msr_entry structs */
102 #define MSR_BUF_SIZE 4096
103 
104 typedef bool QEMURDMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t *val);
105 typedef bool QEMUWRMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t val);
106 typedef struct {
107     uint32_t msr;
108     QEMURDMSRHandler *rdmsr;
109     QEMUWRMSRHandler *wrmsr;
110 } KVMMSRHandlers;
111 
112 static void kvm_init_msrs(X86CPU *cpu);
113 static int kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
114                           QEMUWRMSRHandler *wrmsr);
115 
116 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
117     KVM_CAP_INFO(SET_TSS_ADDR),
118     KVM_CAP_INFO(EXT_CPUID),
119     KVM_CAP_INFO(MP_STATE),
120     KVM_CAP_INFO(SIGNAL_MSI),
121     KVM_CAP_INFO(IRQ_ROUTING),
122     KVM_CAP_INFO(DEBUGREGS),
123     KVM_CAP_INFO(XSAVE),
124     KVM_CAP_INFO(VCPU_EVENTS),
125     KVM_CAP_INFO(X86_ROBUST_SINGLESTEP),
126     KVM_CAP_INFO(MCE),
127     KVM_CAP_INFO(ADJUST_CLOCK),
128     KVM_CAP_INFO(SET_IDENTITY_MAP_ADDR),
129     KVM_CAP_LAST_INFO
130 };
131 
132 static bool has_msr_star;
133 static bool has_msr_hsave_pa;
134 static bool has_msr_tsc_aux;
135 static bool has_msr_tsc_adjust;
136 static bool has_msr_tsc_deadline;
137 static bool has_msr_feature_control;
138 static bool has_msr_misc_enable;
139 static bool has_msr_smbase;
140 static bool has_msr_bndcfgs;
141 static int lm_capable_kernel;
142 static bool has_msr_hv_hypercall;
143 static bool has_msr_hv_crash;
144 static bool has_msr_hv_reset;
145 static bool has_msr_hv_vpindex;
146 static bool hv_vpindex_settable;
147 static bool has_msr_hv_runtime;
148 static bool has_msr_hv_synic;
149 static bool has_msr_hv_stimer;
150 static bool has_msr_hv_frequencies;
151 static bool has_msr_hv_reenlightenment;
152 static bool has_msr_hv_syndbg_options;
153 static bool has_msr_xss;
154 static bool has_msr_umwait;
155 static bool has_msr_spec_ctrl;
156 static bool has_tsc_scale_msr;
157 static bool has_msr_tsx_ctrl;
158 static bool has_msr_virt_ssbd;
159 static bool has_msr_smi_count;
160 static bool has_msr_arch_capabs;
161 static bool has_msr_core_capabs;
162 static bool has_msr_vmx_vmfunc;
163 static bool has_msr_ucode_rev;
164 static bool has_msr_vmx_procbased_ctls2;
165 static bool has_msr_perf_capabs;
166 static bool has_msr_pkrs;
167 static bool has_msr_hwcr;
168 
169 static uint32_t has_architectural_pmu_version;
170 static uint32_t num_architectural_pmu_gp_counters;
171 static uint32_t num_architectural_pmu_fixed_counters;
172 
173 static int has_xsave2;
174 static int has_xcrs;
175 static int has_sregs2;
176 static int has_exception_payload;
177 static int has_triple_fault_event;
178 
179 static bool has_msr_mcg_ext_ctl;
180 
181 static struct kvm_cpuid2 *cpuid_cache;
182 static struct kvm_cpuid2 *hv_cpuid_cache;
183 static struct kvm_msr_list *kvm_feature_msrs;
184 
185 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES];
186 
187 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
188 static RateLimit bus_lock_ratelimit_ctrl;
189 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value);
190 
191 static const char *vm_type_name[] = {
192     [KVM_X86_DEFAULT_VM] = "default",
193     [KVM_X86_SEV_VM] = "SEV",
194     [KVM_X86_SEV_ES_VM] = "SEV-ES",
195     [KVM_X86_SNP_VM] = "SEV-SNP",
196     [KVM_X86_TDX_VM] = "TDX",
197 };
198 
199 bool kvm_is_vm_type_supported(int type)
200 {
201     uint32_t machine_types;
202 
203     /*
204      * old KVM doesn't support KVM_CAP_VM_TYPES but KVM_X86_DEFAULT_VM
205      * is always supported
206      */
207     if (type == KVM_X86_DEFAULT_VM) {
208         return true;
209     }
210 
211     machine_types = kvm_check_extension(KVM_STATE(current_machine->accelerator),
212                                         KVM_CAP_VM_TYPES);
213     return !!(machine_types & BIT(type));
214 }
215 
216 int kvm_get_vm_type(MachineState *ms)
217 {
218     int kvm_type = KVM_X86_DEFAULT_VM;
219 
220     if (ms->cgs) {
221         if (!object_dynamic_cast(OBJECT(ms->cgs), TYPE_X86_CONFIDENTIAL_GUEST)) {
222             error_report("configuration type %s not supported for x86 guests",
223                          object_get_typename(OBJECT(ms->cgs)));
224             exit(1);
225         }
226         kvm_type = x86_confidential_guest_kvm_type(
227             X86_CONFIDENTIAL_GUEST(ms->cgs));
228     }
229 
230     if (!kvm_is_vm_type_supported(kvm_type)) {
231         error_report("vm-type %s not supported by KVM", vm_type_name[kvm_type]);
232         exit(1);
233     }
234 
235     return kvm_type;
236 }
237 
238 bool kvm_enable_hypercall(uint64_t enable_mask)
239 {
240     KVMState *s = KVM_STATE(current_accel());
241 
242     return !kvm_vm_enable_cap(s, KVM_CAP_EXIT_HYPERCALL, 0, enable_mask);
243 }
244 
245 bool kvm_has_smm(void)
246 {
247     return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
248 }
249 
250 bool kvm_has_adjust_clock_stable(void)
251 {
252     int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
253 
254     return (ret & KVM_CLOCK_TSC_STABLE);
255 }
256 
257 bool kvm_has_exception_payload(void)
258 {
259     return has_exception_payload;
260 }
261 
262 static bool kvm_x2apic_api_set_flags(uint64_t flags)
263 {
264     KVMState *s = KVM_STATE(current_accel());
265 
266     return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
267 }
268 
269 #define MEMORIZE(fn, _result) \
270     ({ \
271         static bool _memorized; \
272         \
273         if (_memorized) { \
274             return _result; \
275         } \
276         _memorized = true; \
277         _result = fn; \
278     })
279 
280 static bool has_x2apic_api;
281 
282 bool kvm_has_x2apic_api(void)
283 {
284     return has_x2apic_api;
285 }
286 
287 bool kvm_enable_x2apic(void)
288 {
289     return MEMORIZE(
290              kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
291                                       KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
292              has_x2apic_api);
293 }
294 
295 bool kvm_hv_vpindex_settable(void)
296 {
297     return hv_vpindex_settable;
298 }
299 
300 static int kvm_get_tsc(CPUState *cs)
301 {
302     X86CPU *cpu = X86_CPU(cs);
303     CPUX86State *env = &cpu->env;
304     uint64_t value;
305     int ret;
306 
307     if (env->tsc_valid) {
308         return 0;
309     }
310 
311     env->tsc_valid = !runstate_is_running();
312 
313     ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value);
314     if (ret < 0) {
315         return ret;
316     }
317 
318     env->tsc = value;
319     return 0;
320 }
321 
322 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
323 {
324     kvm_get_tsc(cpu);
325 }
326 
327 void kvm_synchronize_all_tsc(void)
328 {
329     CPUState *cpu;
330 
331     if (kvm_enabled()) {
332         CPU_FOREACH(cpu) {
333             run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
334         }
335     }
336 }
337 
338 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
339 {
340     struct kvm_cpuid2 *cpuid;
341     int r, size;
342 
343     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
344     cpuid = g_malloc0(size);
345     cpuid->nent = max;
346     r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
347     if (r == 0 && cpuid->nent >= max) {
348         r = -E2BIG;
349     }
350     if (r < 0) {
351         if (r == -E2BIG) {
352             g_free(cpuid);
353             return NULL;
354         } else {
355             fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
356                     strerror(-r));
357             exit(1);
358         }
359     }
360     return cpuid;
361 }
362 
363 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
364  * for all entries.
365  */
366 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
367 {
368     struct kvm_cpuid2 *cpuid;
369     int max = 1;
370 
371     if (cpuid_cache != NULL) {
372         return cpuid_cache;
373     }
374     while ((cpuid = try_get_cpuid(s, max)) == NULL) {
375         max *= 2;
376     }
377     cpuid_cache = cpuid;
378     return cpuid;
379 }
380 
381 static bool host_tsx_broken(void)
382 {
383     int family, model, stepping;\
384     char vendor[CPUID_VENDOR_SZ + 1];
385 
386     host_cpu_vendor_fms(vendor, &family, &model, &stepping);
387 
388     /* Check if we are running on a Haswell host known to have broken TSX */
389     return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
390            (family == 6) &&
391            ((model == 63 && stepping < 4) ||
392             model == 60 || model == 69 || model == 70);
393 }
394 
395 /* Returns the value for a specific register on the cpuid entry
396  */
397 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
398 {
399     uint32_t ret = 0;
400     switch (reg) {
401     case R_EAX:
402         ret = entry->eax;
403         break;
404     case R_EBX:
405         ret = entry->ebx;
406         break;
407     case R_ECX:
408         ret = entry->ecx;
409         break;
410     case R_EDX:
411         ret = entry->edx;
412         break;
413     }
414     return ret;
415 }
416 
417 /* Find matching entry for function/index on kvm_cpuid2 struct
418  */
419 struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
420                                           uint32_t function,
421                                           uint32_t index)
422 {
423     int i;
424     for (i = 0; i < cpuid->nent; ++i) {
425         if (cpuid->entries[i].function == function &&
426             cpuid->entries[i].index == index) {
427             return &cpuid->entries[i];
428         }
429     }
430     /* not found: */
431     return NULL;
432 }
433 
434 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
435                                       uint32_t index, int reg)
436 {
437     struct kvm_cpuid2 *cpuid;
438     uint32_t ret = 0;
439     uint32_t cpuid_1_edx, unused;
440     uint64_t bitmask;
441 
442     cpuid = get_supported_cpuid(s);
443 
444     struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
445     if (entry) {
446         ret = cpuid_entry_get_reg(entry, reg);
447     }
448 
449     /* Fixups for the data returned by KVM, below */
450 
451     if (function == 1 && reg == R_EDX) {
452         /* KVM before 2.6.30 misreports the following features */
453         ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
454         /* KVM never reports CPUID_HT but QEMU can support when vcpus > 1 */
455         ret |= CPUID_HT;
456     } else if (function == 1 && reg == R_ECX) {
457         /* We can set the hypervisor flag, even if KVM does not return it on
458          * GET_SUPPORTED_CPUID
459          */
460         ret |= CPUID_EXT_HYPERVISOR;
461         /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
462          * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
463          * and the irqchip is in the kernel.
464          */
465         if (kvm_irqchip_in_kernel() &&
466                 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
467             ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
468         }
469 
470         /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
471          * without the in-kernel irqchip
472          */
473         if (!kvm_irqchip_in_kernel()) {
474             ret &= ~CPUID_EXT_X2APIC;
475         }
476 
477         if (enable_cpu_pm) {
478             int disable_exits = kvm_check_extension(s,
479                                                     KVM_CAP_X86_DISABLE_EXITS);
480 
481             if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
482                 ret |= CPUID_EXT_MONITOR;
483             }
484         }
485     } else if (function == 6 && reg == R_EAX) {
486         ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
487     } else if (function == 7 && index == 0 && reg == R_EBX) {
488         /* Not new instructions, just an optimization.  */
489         uint32_t ebx;
490         host_cpuid(7, 0, &unused, &ebx, &unused, &unused);
491         ret |= ebx & CPUID_7_0_EBX_ERMS;
492 
493         if (host_tsx_broken()) {
494             ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
495         }
496     } else if (function == 7 && index == 0 && reg == R_EDX) {
497         /* Not new instructions, just an optimization.  */
498         uint32_t edx;
499         host_cpuid(7, 0, &unused, &unused, &unused, &edx);
500         ret |= edx & CPUID_7_0_EDX_FSRM;
501 
502         /*
503          * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
504          * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
505          * returned by KVM_GET_MSR_INDEX_LIST.
506          */
507         if (!has_msr_arch_capabs) {
508             ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
509         }
510     } else if (function == 7 && index == 1 && reg == R_EAX) {
511         /* Not new instructions, just an optimization.  */
512         uint32_t eax;
513         host_cpuid(7, 1, &eax, &unused, &unused, &unused);
514         ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC);
515     } else if (function == 7 && index == 2 && reg == R_EDX) {
516         uint32_t edx;
517         host_cpuid(7, 2, &unused, &unused, &unused, &edx);
518         ret |= edx & CPUID_7_2_EDX_MCDT_NO;
519     } else if (function == 0xd && index == 0 &&
520                (reg == R_EAX || reg == R_EDX)) {
521         /*
522          * The value returned by KVM_GET_SUPPORTED_CPUID does not include
523          * features that still have to be enabled with the arch_prctl
524          * system call.  QEMU needs the full value, which is retrieved
525          * with KVM_GET_DEVICE_ATTR.
526          */
527         struct kvm_device_attr attr = {
528             .group = 0,
529             .attr = KVM_X86_XCOMP_GUEST_SUPP,
530             .addr = (unsigned long) &bitmask
531         };
532 
533         bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
534         if (!sys_attr) {
535             return ret;
536         }
537 
538         int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
539         if (rc < 0) {
540             if (rc != -ENXIO) {
541                 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
542                             "error: %d", rc);
543             }
544             return ret;
545         }
546         ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
547     } else if (function == 0x80000001 && reg == R_ECX) {
548         /*
549          * It's safe to enable TOPOEXT even if it's not returned by
550          * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
551          * us to keep CPU models including TOPOEXT runnable on older kernels.
552          */
553         ret |= CPUID_EXT3_TOPOEXT;
554     } else if (function == 0x80000001 && reg == R_EDX) {
555         /* On Intel, kvm returns cpuid according to the Intel spec,
556          * so add missing bits according to the AMD spec:
557          */
558         cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
559         ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
560     } else if (function == 0x80000007 && reg == R_EBX) {
561         ret |= CPUID_8000_0007_EBX_OVERFLOW_RECOV | CPUID_8000_0007_EBX_SUCCOR;
562     } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
563         /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
564          * be enabled without the in-kernel irqchip
565          */
566         if (!kvm_irqchip_in_kernel()) {
567             ret &= ~CPUID_KVM_PV_UNHALT;
568         }
569         if (kvm_irqchip_is_split()) {
570             ret |= CPUID_KVM_MSI_EXT_DEST_ID;
571         }
572     } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
573         ret |= CPUID_KVM_HINTS_REALTIME;
574     }
575 
576     if (current_machine->cgs) {
577         ret = x86_confidential_guest_mask_cpuid_features(
578             X86_CONFIDENTIAL_GUEST(current_machine->cgs),
579             function, index, reg, ret);
580     }
581     return ret;
582 }
583 
584 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
585 {
586     struct {
587         struct kvm_msrs info;
588         struct kvm_msr_entry entries[1];
589     } msr_data = {};
590     uint64_t value;
591     uint32_t ret, can_be_one, must_be_one;
592 
593     if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
594         return 0;
595     }
596 
597     /* Check if requested MSR is supported feature MSR */
598     int i;
599     for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
600         if (kvm_feature_msrs->indices[i] == index) {
601             break;
602         }
603     if (i == kvm_feature_msrs->nmsrs) {
604         return 0; /* if the feature MSR is not supported, simply return 0 */
605     }
606 
607     msr_data.info.nmsrs = 1;
608     msr_data.entries[0].index = index;
609 
610     ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
611     if (ret != 1) {
612         error_report("KVM get MSR (index=0x%x) feature failed, %s",
613             index, strerror(-ret));
614         exit(1);
615     }
616 
617     value = msr_data.entries[0].data;
618     switch (index) {
619     case MSR_IA32_VMX_PROCBASED_CTLS2:
620         if (!has_msr_vmx_procbased_ctls2) {
621             /* KVM forgot to add these bits for some time, do this ourselves. */
622             if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
623                 CPUID_XSAVE_XSAVES) {
624                 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
625             }
626             if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
627                 CPUID_EXT_RDRAND) {
628                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
629             }
630             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
631                 CPUID_7_0_EBX_INVPCID) {
632                 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
633             }
634             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
635                 CPUID_7_0_EBX_RDSEED) {
636                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
637             }
638             if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
639                 CPUID_EXT2_RDTSCP) {
640                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
641             }
642         }
643         /* fall through */
644     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
645     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
646     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
647     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
648         /*
649          * Return true for bits that can be one, but do not have to be one.
650          * The SDM tells us which bits could have a "must be one" setting,
651          * so we can do the opposite transformation in make_vmx_msr_value.
652          */
653         must_be_one = (uint32_t)value;
654         can_be_one = (uint32_t)(value >> 32);
655         return can_be_one & ~must_be_one;
656 
657     default:
658         return value;
659     }
660 }
661 
662 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
663                                      int *max_banks)
664 {
665     *max_banks = kvm_check_extension(s, KVM_CAP_MCE);
666     return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
667 }
668 
669 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
670 {
671     CPUState *cs = CPU(cpu);
672     CPUX86State *env = &cpu->env;
673     uint64_t status = MCI_STATUS_VAL | MCI_STATUS_EN | MCI_STATUS_MISCV |
674                       MCI_STATUS_ADDRV;
675     uint64_t mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
676     int flags = 0;
677 
678     if (!IS_AMD_CPU(env)) {
679         status |= MCI_STATUS_S | MCI_STATUS_UC;
680         if (code == BUS_MCEERR_AR) {
681             status |= MCI_STATUS_AR | 0x134;
682             mcg_status |= MCG_STATUS_EIPV;
683         } else {
684             status |= 0xc0;
685         }
686     } else {
687         if (code == BUS_MCEERR_AR) {
688             status |= MCI_STATUS_UC | MCI_STATUS_POISON;
689             mcg_status |= MCG_STATUS_EIPV;
690         } else {
691             /* Setting the POISON bit for deferred errors indicates to the
692              * guest kernel that the address provided by the MCE is valid
693              * and usable which will ensure that the guest kernel will send
694              * a SIGBUS_AO signal to the guest process. This allows for
695              * more desirable behavior in the case that the guest process
696              * with poisoned memory has set the MCE_KILL_EARLY prctl flag
697              * which indicates that the process would prefer to handle or
698              * shutdown due to the poisoned memory condition before the
699              * memory has been accessed.
700              *
701              * While the POISON bit would not be set in a deferred error
702              * sent from hardware, the bit is not meaningful for deferred
703              * errors and can be reused in this scenario.
704              */
705             status |= MCI_STATUS_DEFERRED | MCI_STATUS_POISON;
706         }
707     }
708 
709     flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
710     /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
711      * guest kernel back into env->mcg_ext_ctl.
712      */
713     cpu_synchronize_state(cs);
714     if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
715         mcg_status |= MCG_STATUS_LMCE;
716         flags = 0;
717     }
718 
719     cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
720                        (MCM_ADDR_PHYS << 6) | 0xc, flags);
721 }
722 
723 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
724 {
725     MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
726 
727     qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
728                                    &mff);
729 }
730 
731 static void hardware_memory_error(void *host_addr)
732 {
733     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
734     error_report("QEMU got Hardware memory error at addr %p", host_addr);
735     exit(1);
736 }
737 
738 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
739 {
740     X86CPU *cpu = X86_CPU(c);
741     CPUX86State *env = &cpu->env;
742     ram_addr_t ram_addr;
743     hwaddr paddr;
744 
745     /* If we get an action required MCE, it has been injected by KVM
746      * while the VM was running.  An action optional MCE instead should
747      * be coming from the main thread, which qemu_init_sigbus identifies
748      * as the "early kill" thread.
749      */
750     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
751 
752     if ((env->mcg_cap & MCG_SER_P) && addr) {
753         ram_addr = qemu_ram_addr_from_host(addr);
754         if (ram_addr != RAM_ADDR_INVALID &&
755             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
756             kvm_hwpoison_page_add(ram_addr);
757             kvm_mce_inject(cpu, paddr, code);
758 
759             /*
760              * Use different logging severity based on error type.
761              * If there is additional MCE reporting on the hypervisor, QEMU VA
762              * could be another source to identify the PA and MCE details.
763              */
764             if (code == BUS_MCEERR_AR) {
765                 error_report("Guest MCE Memory Error at QEMU addr %p and "
766                     "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
767                     addr, paddr, "BUS_MCEERR_AR");
768             } else {
769                  warn_report("Guest MCE Memory Error at QEMU addr %p and "
770                      "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
771                      addr, paddr, "BUS_MCEERR_AO");
772             }
773 
774             return;
775         }
776 
777         if (code == BUS_MCEERR_AO) {
778             warn_report("Hardware memory error at addr %p of type %s "
779                 "for memory used by QEMU itself instead of guest system!",
780                  addr, "BUS_MCEERR_AO");
781         }
782     }
783 
784     if (code == BUS_MCEERR_AR) {
785         hardware_memory_error(addr);
786     }
787 
788     /* Hope we are lucky for AO MCE, just notify a event */
789     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
790 }
791 
792 static void kvm_queue_exception(CPUX86State *env,
793                                 int32_t exception_nr,
794                                 uint8_t exception_has_payload,
795                                 uint64_t exception_payload)
796 {
797     assert(env->exception_nr == -1);
798     assert(!env->exception_pending);
799     assert(!env->exception_injected);
800     assert(!env->exception_has_payload);
801 
802     env->exception_nr = exception_nr;
803 
804     if (has_exception_payload) {
805         env->exception_pending = 1;
806 
807         env->exception_has_payload = exception_has_payload;
808         env->exception_payload = exception_payload;
809     } else {
810         env->exception_injected = 1;
811 
812         if (exception_nr == EXCP01_DB) {
813             assert(exception_has_payload);
814             env->dr[6] = exception_payload;
815         } else if (exception_nr == EXCP0E_PAGE) {
816             assert(exception_has_payload);
817             env->cr[2] = exception_payload;
818         } else {
819             assert(!exception_has_payload);
820         }
821     }
822 }
823 
824 static void cpu_update_state(void *opaque, bool running, RunState state)
825 {
826     CPUX86State *env = opaque;
827 
828     if (running) {
829         env->tsc_valid = false;
830     }
831 }
832 
833 unsigned long kvm_arch_vcpu_id(CPUState *cs)
834 {
835     X86CPU *cpu = X86_CPU(cs);
836     return cpu->apic_id;
837 }
838 
839 #ifndef KVM_CPUID_SIGNATURE_NEXT
840 #define KVM_CPUID_SIGNATURE_NEXT                0x40000100
841 #endif
842 
843 static bool hyperv_enabled(X86CPU *cpu)
844 {
845     return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
846         ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
847          cpu->hyperv_features || cpu->hyperv_passthrough);
848 }
849 
850 /*
851  * Check whether target_freq is within conservative
852  * ntp correctable bounds (250ppm) of freq
853  */
854 static inline bool freq_within_bounds(int freq, int target_freq)
855 {
856         int max_freq = freq + (freq * 250 / 1000000);
857         int min_freq = freq - (freq * 250 / 1000000);
858 
859         if (target_freq >= min_freq && target_freq <= max_freq) {
860                 return true;
861         }
862 
863         return false;
864 }
865 
866 static int kvm_arch_set_tsc_khz(CPUState *cs)
867 {
868     X86CPU *cpu = X86_CPU(cs);
869     CPUX86State *env = &cpu->env;
870     int r, cur_freq;
871     bool set_ioctl = false;
872 
873     /*
874      * TSC of TD vcpu is immutable, it cannot be set/changed via vcpu scope
875      * VM_SET_TSC_KHZ, but only be initialized via VM scope VM_SET_TSC_KHZ
876      * before ioctl KVM_TDX_INIT_VM in tdx_pre_create_vcpu()
877      */
878     if (is_tdx_vm()) {
879         return 0;
880     }
881 
882     if (!env->tsc_khz) {
883         return 0;
884     }
885 
886     cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
887                kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
888 
889     /*
890      * If TSC scaling is supported, attempt to set TSC frequency.
891      */
892     if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
893         set_ioctl = true;
894     }
895 
896     /*
897      * If desired TSC frequency is within bounds of NTP correction,
898      * attempt to set TSC frequency.
899      */
900     if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
901         set_ioctl = true;
902     }
903 
904     r = set_ioctl ?
905         kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
906         -ENOTSUP;
907 
908     if (r < 0) {
909         /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
910          * TSC frequency doesn't match the one we want.
911          */
912         cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
913                    kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
914                    -ENOTSUP;
915         if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
916             warn_report("TSC frequency mismatch between "
917                         "VM (%" PRId64 " kHz) and host (%d kHz), "
918                         "and TSC scaling unavailable",
919                         env->tsc_khz, cur_freq);
920             return r;
921         }
922     }
923 
924     return 0;
925 }
926 
927 static bool tsc_is_stable_and_known(CPUX86State *env)
928 {
929     if (!env->tsc_khz) {
930         return false;
931     }
932     return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
933         || env->user_tsc_khz;
934 }
935 
936 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
937 
938 static struct {
939     const char *desc;
940     struct {
941         uint32_t func;
942         int reg;
943         uint32_t bits;
944     } flags[2];
945     uint64_t dependencies;
946     bool skip_passthrough;
947 } kvm_hyperv_properties[] = {
948     [HYPERV_FEAT_RELAXED] = {
949         .desc = "relaxed timing (hv-relaxed)",
950         .flags = {
951             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
952              .bits = HV_RELAXED_TIMING_RECOMMENDED}
953         }
954     },
955     [HYPERV_FEAT_VAPIC] = {
956         .desc = "virtual APIC (hv-vapic)",
957         .flags = {
958             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
959              .bits = HV_APIC_ACCESS_AVAILABLE}
960         }
961     },
962     [HYPERV_FEAT_TIME] = {
963         .desc = "clocksources (hv-time)",
964         .flags = {
965             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
966              .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
967         }
968     },
969     [HYPERV_FEAT_CRASH] = {
970         .desc = "crash MSRs (hv-crash)",
971         .flags = {
972             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
973              .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
974         }
975     },
976     [HYPERV_FEAT_RESET] = {
977         .desc = "reset MSR (hv-reset)",
978         .flags = {
979             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
980              .bits = HV_RESET_AVAILABLE}
981         }
982     },
983     [HYPERV_FEAT_VPINDEX] = {
984         .desc = "VP_INDEX MSR (hv-vpindex)",
985         .flags = {
986             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
987              .bits = HV_VP_INDEX_AVAILABLE}
988         }
989     },
990     [HYPERV_FEAT_RUNTIME] = {
991         .desc = "VP_RUNTIME MSR (hv-runtime)",
992         .flags = {
993             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
994              .bits = HV_VP_RUNTIME_AVAILABLE}
995         }
996     },
997     [HYPERV_FEAT_SYNIC] = {
998         .desc = "synthetic interrupt controller (hv-synic)",
999         .flags = {
1000             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
1001              .bits = HV_SYNIC_AVAILABLE}
1002         }
1003     },
1004     [HYPERV_FEAT_STIMER] = {
1005         .desc = "synthetic timers (hv-stimer)",
1006         .flags = {
1007             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
1008              .bits = HV_SYNTIMERS_AVAILABLE}
1009         },
1010         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
1011     },
1012     [HYPERV_FEAT_FREQUENCIES] = {
1013         .desc = "frequency MSRs (hv-frequencies)",
1014         .flags = {
1015             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
1016              .bits = HV_ACCESS_FREQUENCY_MSRS},
1017             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1018              .bits = HV_FREQUENCY_MSRS_AVAILABLE}
1019         }
1020     },
1021     [HYPERV_FEAT_REENLIGHTENMENT] = {
1022         .desc = "reenlightenment MSRs (hv-reenlightenment)",
1023         .flags = {
1024             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
1025              .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
1026         }
1027     },
1028     [HYPERV_FEAT_TLBFLUSH] = {
1029         .desc = "paravirtualized TLB flush (hv-tlbflush)",
1030         .flags = {
1031             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1032              .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
1033              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
1034         },
1035         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
1036     },
1037     [HYPERV_FEAT_EVMCS] = {
1038         .desc = "enlightened VMCS (hv-evmcs)",
1039         .flags = {
1040             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1041              .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
1042         },
1043         .dependencies = BIT(HYPERV_FEAT_VAPIC)
1044     },
1045     [HYPERV_FEAT_IPI] = {
1046         .desc = "paravirtualized IPI (hv-ipi)",
1047         .flags = {
1048             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1049              .bits = HV_CLUSTER_IPI_RECOMMENDED |
1050              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
1051         },
1052         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
1053     },
1054     [HYPERV_FEAT_STIMER_DIRECT] = {
1055         .desc = "direct mode synthetic timers (hv-stimer-direct)",
1056         .flags = {
1057             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1058              .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
1059         },
1060         .dependencies = BIT(HYPERV_FEAT_STIMER)
1061     },
1062     [HYPERV_FEAT_AVIC] = {
1063         .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
1064         .flags = {
1065             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1066              .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
1067         }
1068     },
1069     [HYPERV_FEAT_SYNDBG] = {
1070         .desc = "Enable synthetic kernel debugger channel (hv-syndbg)",
1071         .flags = {
1072             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1073              .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE}
1074         },
1075         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED),
1076         .skip_passthrough = true,
1077     },
1078     [HYPERV_FEAT_MSR_BITMAP] = {
1079         .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)",
1080         .flags = {
1081             {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1082              .bits = HV_NESTED_MSR_BITMAP}
1083         }
1084     },
1085     [HYPERV_FEAT_XMM_INPUT] = {
1086         .desc = "XMM fast hypercall input (hv-xmm-input)",
1087         .flags = {
1088             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1089              .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE}
1090         }
1091     },
1092     [HYPERV_FEAT_TLBFLUSH_EXT] = {
1093         .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)",
1094         .flags = {
1095             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1096              .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE}
1097         },
1098         .dependencies = BIT(HYPERV_FEAT_TLBFLUSH)
1099     },
1100     [HYPERV_FEAT_TLBFLUSH_DIRECT] = {
1101         .desc = "direct TLB flush (hv-tlbflush-direct)",
1102         .flags = {
1103             {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1104              .bits = HV_NESTED_DIRECT_FLUSH}
1105         },
1106         .dependencies = BIT(HYPERV_FEAT_VAPIC)
1107     },
1108 };
1109 
1110 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
1111                                            bool do_sys_ioctl)
1112 {
1113     struct kvm_cpuid2 *cpuid;
1114     int r, size;
1115 
1116     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
1117     cpuid = g_malloc0(size);
1118     cpuid->nent = max;
1119 
1120     if (do_sys_ioctl) {
1121         r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1122     } else {
1123         r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1124     }
1125     if (r == 0 && cpuid->nent >= max) {
1126         r = -E2BIG;
1127     }
1128     if (r < 0) {
1129         if (r == -E2BIG) {
1130             g_free(cpuid);
1131             return NULL;
1132         } else {
1133             fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
1134                     strerror(-r));
1135             exit(1);
1136         }
1137     }
1138     return cpuid;
1139 }
1140 
1141 /*
1142  * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1143  * for all entries.
1144  */
1145 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1146 {
1147     struct kvm_cpuid2 *cpuid;
1148     /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */
1149     int max = 11;
1150     int i;
1151     bool do_sys_ioctl;
1152 
1153     do_sys_ioctl =
1154         kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1155 
1156     /*
1157      * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1158      * unsupported, kvm_hyperv_expand_features() checks for that.
1159      */
1160     assert(do_sys_ioctl || cs->kvm_state);
1161 
1162     /*
1163      * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1164      * -E2BIG, however, it doesn't report back the right size. Keep increasing
1165      * it and re-trying until we succeed.
1166      */
1167     while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1168         max++;
1169     }
1170 
1171     /*
1172      * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1173      * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1174      * information early, just check for the capability and set the bit
1175      * manually.
1176      */
1177     if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1178                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1179         for (i = 0; i < cpuid->nent; i++) {
1180             if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1181                 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1182             }
1183         }
1184     }
1185 
1186     return cpuid;
1187 }
1188 
1189 /*
1190  * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1191  * leaves from KVM_CAP_HYPERV* and present MSRs data.
1192  */
1193 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1194 {
1195     X86CPU *cpu = X86_CPU(cs);
1196     struct kvm_cpuid2 *cpuid;
1197     struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1198 
1199     /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1200     cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1201     cpuid->nent = 2;
1202 
1203     /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1204     entry_feat = &cpuid->entries[0];
1205     entry_feat->function = HV_CPUID_FEATURES;
1206 
1207     entry_recomm = &cpuid->entries[1];
1208     entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1209     entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1210 
1211     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1212         entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1213         entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1214         entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1215         entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1216         entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1217     }
1218 
1219     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1220         entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1221         entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1222     }
1223 
1224     if (has_msr_hv_frequencies) {
1225         entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1226         entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1227     }
1228 
1229     if (has_msr_hv_crash) {
1230         entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1231     }
1232 
1233     if (has_msr_hv_reenlightenment) {
1234         entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1235     }
1236 
1237     if (has_msr_hv_reset) {
1238         entry_feat->eax |= HV_RESET_AVAILABLE;
1239     }
1240 
1241     if (has_msr_hv_vpindex) {
1242         entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1243     }
1244 
1245     if (has_msr_hv_runtime) {
1246         entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1247     }
1248 
1249     if (has_msr_hv_synic) {
1250         unsigned int cap = cpu->hyperv_synic_kvm_only ?
1251             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1252 
1253         if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1254             entry_feat->eax |= HV_SYNIC_AVAILABLE;
1255         }
1256     }
1257 
1258     if (has_msr_hv_stimer) {
1259         entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1260     }
1261 
1262     if (has_msr_hv_syndbg_options) {
1263         entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE;
1264         entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1265         entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED;
1266     }
1267 
1268     if (kvm_check_extension(cs->kvm_state,
1269                             KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1270         entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1271         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1272     }
1273 
1274     if (kvm_check_extension(cs->kvm_state,
1275                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1276         entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1277     }
1278 
1279     if (kvm_check_extension(cs->kvm_state,
1280                             KVM_CAP_HYPERV_SEND_IPI) > 0) {
1281         entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1282         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1283     }
1284 
1285     return cpuid;
1286 }
1287 
1288 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1289 {
1290     struct kvm_cpuid_entry2 *entry;
1291     struct kvm_cpuid2 *cpuid;
1292 
1293     if (hv_cpuid_cache) {
1294         cpuid = hv_cpuid_cache;
1295     } else {
1296         if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1297             cpuid = get_supported_hv_cpuid(cs);
1298         } else {
1299             /*
1300              * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1301              * before KVM context is created but this is only done when
1302              * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1303              * KVM_CAP_HYPERV_CPUID.
1304              */
1305             assert(cs->kvm_state);
1306 
1307             cpuid = get_supported_hv_cpuid_legacy(cs);
1308         }
1309         hv_cpuid_cache = cpuid;
1310     }
1311 
1312     if (!cpuid) {
1313         return 0;
1314     }
1315 
1316     entry = cpuid_find_entry(cpuid, func, 0);
1317     if (!entry) {
1318         return 0;
1319     }
1320 
1321     return cpuid_entry_get_reg(entry, reg);
1322 }
1323 
1324 static bool hyperv_feature_supported(CPUState *cs, int feature)
1325 {
1326     uint32_t func, bits;
1327     int i, reg;
1328 
1329     /*
1330      * kvm_hyperv_properties needs to define at least one CPUID flag which
1331      * must be used to detect the feature, it's hard to say whether it is
1332      * supported or not otherwise.
1333      */
1334     assert(kvm_hyperv_properties[feature].flags[0].func);
1335 
1336     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1337 
1338         func = kvm_hyperv_properties[feature].flags[i].func;
1339         reg = kvm_hyperv_properties[feature].flags[i].reg;
1340         bits = kvm_hyperv_properties[feature].flags[i].bits;
1341 
1342         if (!func) {
1343             continue;
1344         }
1345 
1346         if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1347             return false;
1348         }
1349     }
1350 
1351     return true;
1352 }
1353 
1354 /* Checks that all feature dependencies are enabled */
1355 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1356 {
1357     uint64_t deps;
1358     int dep_feat;
1359 
1360     deps = kvm_hyperv_properties[feature].dependencies;
1361     while (deps) {
1362         dep_feat = ctz64(deps);
1363         if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1364             error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1365                        kvm_hyperv_properties[feature].desc,
1366                        kvm_hyperv_properties[dep_feat].desc);
1367             return false;
1368         }
1369         deps &= ~(1ull << dep_feat);
1370     }
1371 
1372     return true;
1373 }
1374 
1375 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1376 {
1377     X86CPU *cpu = X86_CPU(cs);
1378     uint32_t r = 0;
1379     int i, j;
1380 
1381     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1382         if (!hyperv_feat_enabled(cpu, i)) {
1383             continue;
1384         }
1385 
1386         for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1387             if (kvm_hyperv_properties[i].flags[j].func != func) {
1388                 continue;
1389             }
1390             if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1391                 continue;
1392             }
1393 
1394             r |= kvm_hyperv_properties[i].flags[j].bits;
1395         }
1396     }
1397 
1398     /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */
1399     if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) {
1400         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1401             r |= DEFAULT_EVMCS_VERSION;
1402         }
1403     }
1404 
1405     return r;
1406 }
1407 
1408 /*
1409  * Expand Hyper-V CPU features. In partucular, check that all the requested
1410  * features are supported by the host and the sanity of the configuration
1411  * (that all the required dependencies are included). Also, this takes care
1412  * of 'hv_passthrough' mode and fills the environment with all supported
1413  * Hyper-V features.
1414  */
1415 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1416 {
1417     CPUState *cs = CPU(cpu);
1418     Error *local_err = NULL;
1419     int feat;
1420 
1421     if (!hyperv_enabled(cpu))
1422         return true;
1423 
1424     /*
1425      * When kvm_hyperv_expand_features is called at CPU feature expansion
1426      * time per-CPU kvm_state is not available yet so we can only proceed
1427      * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1428      */
1429     if (!cs->kvm_state &&
1430         !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1431         return true;
1432 
1433     if (cpu->hyperv_passthrough) {
1434         cpu->hyperv_vendor_id[0] =
1435             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1436         cpu->hyperv_vendor_id[1] =
1437             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1438         cpu->hyperv_vendor_id[2] =
1439             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1440         cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1441                                        sizeof(cpu->hyperv_vendor_id) + 1);
1442         memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1443                sizeof(cpu->hyperv_vendor_id));
1444         cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1445 
1446         cpu->hyperv_interface_id[0] =
1447             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1448         cpu->hyperv_interface_id[1] =
1449             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1450         cpu->hyperv_interface_id[2] =
1451             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1452         cpu->hyperv_interface_id[3] =
1453             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1454 
1455         cpu->hyperv_ver_id_build =
1456             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1457         cpu->hyperv_ver_id_major =
1458             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1459         cpu->hyperv_ver_id_minor =
1460             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1461         cpu->hyperv_ver_id_sp =
1462             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1463         cpu->hyperv_ver_id_sb =
1464             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1465         cpu->hyperv_ver_id_sn =
1466             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1467 
1468         cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1469                                             R_EAX);
1470         cpu->hyperv_limits[0] =
1471             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1472         cpu->hyperv_limits[1] =
1473             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1474         cpu->hyperv_limits[2] =
1475             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1476 
1477         cpu->hyperv_spinlock_attempts =
1478             hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1479 
1480         /*
1481          * Mark feature as enabled in 'cpu->hyperv_features' as
1482          * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1483          */
1484         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1485             if (hyperv_feature_supported(cs, feat) &&
1486                 !kvm_hyperv_properties[feat].skip_passthrough) {
1487                 cpu->hyperv_features |= BIT(feat);
1488             }
1489         }
1490     } else {
1491         /* Check features availability and dependencies */
1492         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1493             /* If the feature was not requested skip it. */
1494             if (!hyperv_feat_enabled(cpu, feat)) {
1495                 continue;
1496             }
1497 
1498             /* Check if the feature is supported by KVM */
1499             if (!hyperv_feature_supported(cs, feat)) {
1500                 error_setg(errp, "Hyper-V %s is not supported by kernel",
1501                            kvm_hyperv_properties[feat].desc);
1502                 return false;
1503             }
1504 
1505             /* Check dependencies */
1506             if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1507                 error_propagate(errp, local_err);
1508                 return false;
1509             }
1510         }
1511     }
1512 
1513     /* Additional dependencies not covered by kvm_hyperv_properties[] */
1514     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1515         !cpu->hyperv_synic_kvm_only &&
1516         !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1517         error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1518                    kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1519                    kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1520         return false;
1521     }
1522 
1523     return true;
1524 }
1525 
1526 /*
1527  * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1528  */
1529 static int hyperv_fill_cpuids(CPUState *cs,
1530                               struct kvm_cpuid_entry2 *cpuid_ent)
1531 {
1532     X86CPU *cpu = X86_CPU(cs);
1533     struct kvm_cpuid_entry2 *c;
1534     uint32_t signature[3];
1535     uint32_t cpuid_i = 0, max_cpuid_leaf = 0;
1536     uint32_t nested_eax =
1537         hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX);
1538 
1539     max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES :
1540         HV_CPUID_IMPLEMENT_LIMITS;
1541 
1542     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1543         max_cpuid_leaf =
1544             MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
1545     }
1546 
1547     c = &cpuid_ent[cpuid_i++];
1548     c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1549     c->eax = max_cpuid_leaf;
1550     c->ebx = cpu->hyperv_vendor_id[0];
1551     c->ecx = cpu->hyperv_vendor_id[1];
1552     c->edx = cpu->hyperv_vendor_id[2];
1553 
1554     c = &cpuid_ent[cpuid_i++];
1555     c->function = HV_CPUID_INTERFACE;
1556     c->eax = cpu->hyperv_interface_id[0];
1557     c->ebx = cpu->hyperv_interface_id[1];
1558     c->ecx = cpu->hyperv_interface_id[2];
1559     c->edx = cpu->hyperv_interface_id[3];
1560 
1561     c = &cpuid_ent[cpuid_i++];
1562     c->function = HV_CPUID_VERSION;
1563     c->eax = cpu->hyperv_ver_id_build;
1564     c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1565         cpu->hyperv_ver_id_minor;
1566     c->ecx = cpu->hyperv_ver_id_sp;
1567     c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1568         (cpu->hyperv_ver_id_sn & 0xffffff);
1569 
1570     c = &cpuid_ent[cpuid_i++];
1571     c->function = HV_CPUID_FEATURES;
1572     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1573     c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1574     c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1575 
1576     /* Unconditionally required with any Hyper-V enlightenment */
1577     c->eax |= HV_HYPERCALL_AVAILABLE;
1578 
1579     /* SynIC and Vmbus devices require messages/signals hypercalls */
1580     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1581         !cpu->hyperv_synic_kvm_only) {
1582         c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1583     }
1584 
1585 
1586     /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1587     c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1588 
1589     c = &cpuid_ent[cpuid_i++];
1590     c->function = HV_CPUID_ENLIGHTMENT_INFO;
1591     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1592     c->ebx = cpu->hyperv_spinlock_attempts;
1593 
1594     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1595         !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1596         c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1597     }
1598 
1599     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1600         c->eax |= HV_NO_NONARCH_CORESHARING;
1601     } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1602         c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1603             HV_NO_NONARCH_CORESHARING;
1604     }
1605 
1606     c = &cpuid_ent[cpuid_i++];
1607     c->function = HV_CPUID_IMPLEMENT_LIMITS;
1608     c->eax = cpu->hv_max_vps;
1609     c->ebx = cpu->hyperv_limits[0];
1610     c->ecx = cpu->hyperv_limits[1];
1611     c->edx = cpu->hyperv_limits[2];
1612 
1613     if (nested_eax) {
1614         uint32_t function;
1615 
1616         /* Create zeroed 0x40000006..0x40000009 leaves */
1617         for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1618              function < HV_CPUID_NESTED_FEATURES; function++) {
1619             c = &cpuid_ent[cpuid_i++];
1620             c->function = function;
1621         }
1622 
1623         c = &cpuid_ent[cpuid_i++];
1624         c->function = HV_CPUID_NESTED_FEATURES;
1625         c->eax = nested_eax;
1626     }
1627 
1628     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1629         c = &cpuid_ent[cpuid_i++];
1630         c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS;
1631         c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1632             HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1633         memcpy(signature, "Microsoft VS", 12);
1634         c->eax = 0;
1635         c->ebx = signature[0];
1636         c->ecx = signature[1];
1637         c->edx = signature[2];
1638 
1639         c = &cpuid_ent[cpuid_i++];
1640         c->function = HV_CPUID_SYNDBG_INTERFACE;
1641         memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
1642         c->eax = signature[0];
1643         c->ebx = 0;
1644         c->ecx = 0;
1645         c->edx = 0;
1646 
1647         c = &cpuid_ent[cpuid_i++];
1648         c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1649         c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
1650         c->ebx = 0;
1651         c->ecx = 0;
1652         c->edx = 0;
1653     }
1654 
1655     return cpuid_i;
1656 }
1657 
1658 static Error *hv_passthrough_mig_blocker;
1659 static Error *hv_no_nonarch_cs_mig_blocker;
1660 
1661 /* Checks that the exposed eVMCS version range is supported by KVM */
1662 static bool evmcs_version_supported(uint16_t evmcs_version,
1663                                     uint16_t supported_evmcs_version)
1664 {
1665     uint8_t min_version = evmcs_version & 0xff;
1666     uint8_t max_version = evmcs_version >> 8;
1667     uint8_t min_supported_version = supported_evmcs_version & 0xff;
1668     uint8_t max_supported_version = supported_evmcs_version >> 8;
1669 
1670     return (min_version >= min_supported_version) &&
1671         (max_version <= max_supported_version);
1672 }
1673 
1674 static int hyperv_init_vcpu(X86CPU *cpu)
1675 {
1676     CPUState *cs = CPU(cpu);
1677     Error *local_err = NULL;
1678     int ret;
1679 
1680     if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1681         error_setg(&hv_passthrough_mig_blocker,
1682                    "'hv-passthrough' CPU flag prevents migration, use explicit"
1683                    " set of hv-* flags instead");
1684         ret = migrate_add_blocker(&hv_passthrough_mig_blocker, &local_err);
1685         if (ret < 0) {
1686             error_report_err(local_err);
1687             return ret;
1688         }
1689     }
1690 
1691     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1692         hv_no_nonarch_cs_mig_blocker == NULL) {
1693         error_setg(&hv_no_nonarch_cs_mig_blocker,
1694                    "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1695                    " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1696                    " make sure SMT is disabled and/or that vCPUs are properly"
1697                    " pinned)");
1698         ret = migrate_add_blocker(&hv_no_nonarch_cs_mig_blocker, &local_err);
1699         if (ret < 0) {
1700             error_report_err(local_err);
1701             return ret;
1702         }
1703     }
1704 
1705     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1706         /*
1707          * the kernel doesn't support setting vp_index; assert that its value
1708          * is in sync
1709          */
1710         uint64_t value;
1711 
1712         ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value);
1713         if (ret < 0) {
1714             return ret;
1715         }
1716 
1717         if (value != hyperv_vp_index(CPU(cpu))) {
1718             error_report("kernel's vp_index != QEMU's vp_index");
1719             return -ENXIO;
1720         }
1721     }
1722 
1723     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1724         uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1725             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1726         ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1727         if (ret < 0) {
1728             error_report("failed to turn on HyperV SynIC in KVM: %s",
1729                          strerror(-ret));
1730             return ret;
1731         }
1732 
1733         if (!cpu->hyperv_synic_kvm_only) {
1734             ret = hyperv_x86_synic_add(cpu);
1735             if (ret < 0) {
1736                 error_report("failed to create HyperV SynIC: %s",
1737                              strerror(-ret));
1738                 return ret;
1739             }
1740         }
1741     }
1742 
1743     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1744         uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1745         uint16_t supported_evmcs_version;
1746 
1747         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1748                                   (uintptr_t)&supported_evmcs_version);
1749 
1750         /*
1751          * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1752          * option sets. Note: we hardcode the maximum supported eVMCS version
1753          * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1754          * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1755          * to be added.
1756          */
1757         if (ret < 0) {
1758             error_report("Hyper-V %s is not supported by kernel",
1759                          kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1760             return ret;
1761         }
1762 
1763         if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1764             error_report("eVMCS version range [%d..%d] is not supported by "
1765                          "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1766                          evmcs_version >> 8, supported_evmcs_version & 0xff,
1767                          supported_evmcs_version >> 8);
1768             return -ENOTSUP;
1769         }
1770     }
1771 
1772     if (cpu->hyperv_enforce_cpuid) {
1773         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1774         if (ret < 0) {
1775             error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1776                          strerror(-ret));
1777             return ret;
1778         }
1779     }
1780 
1781     /* Skip SynIC and VP_INDEX since they are hard deps already */
1782     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_STIMER) &&
1783         hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1784         hyperv_feat_enabled(cpu, HYPERV_FEAT_RUNTIME)) {
1785         hyperv_x86_set_vmbus_recommended_features_enabled();
1786     }
1787 
1788     return 0;
1789 }
1790 
1791 static Error *invtsc_mig_blocker;
1792 
1793 static void kvm_init_xsave(CPUX86State *env)
1794 {
1795     if (has_xsave2) {
1796         env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1797     } else {
1798         env->xsave_buf_len = sizeof(struct kvm_xsave);
1799     }
1800 
1801     env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1802     memset(env->xsave_buf, 0, env->xsave_buf_len);
1803     /*
1804      * The allocated storage must be large enough for all of the
1805      * possible XSAVE state components.
1806      */
1807     assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1808            env->xsave_buf_len);
1809 }
1810 
1811 static void kvm_init_nested_state(CPUX86State *env)
1812 {
1813     struct kvm_vmx_nested_state_hdr *vmx_hdr;
1814     uint32_t size;
1815 
1816     if (!env->nested_state) {
1817         return;
1818     }
1819 
1820     size = env->nested_state->size;
1821 
1822     memset(env->nested_state, 0, size);
1823     env->nested_state->size = size;
1824 
1825     if (cpu_has_vmx(env)) {
1826         env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1827         vmx_hdr = &env->nested_state->hdr.vmx;
1828         vmx_hdr->vmxon_pa = -1ull;
1829         vmx_hdr->vmcs12_pa = -1ull;
1830     } else if (cpu_has_svm(env)) {
1831         env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1832     }
1833 }
1834 
1835 uint32_t kvm_x86_build_cpuid(CPUX86State *env, struct kvm_cpuid_entry2 *entries,
1836                              uint32_t cpuid_i)
1837 {
1838     uint32_t limit, i, j;
1839     uint32_t unused;
1840     struct kvm_cpuid_entry2 *c;
1841 
1842     cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1843 
1844     for (i = 0; i <= limit; i++) {
1845         j = 0;
1846         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1847             goto full;
1848         }
1849         c = &entries[cpuid_i++];
1850         switch (i) {
1851         case 2: {
1852             /* Keep reading function 2 till all the input is received */
1853             int times;
1854 
1855             c->function = i;
1856             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1857             times = c->eax & 0xff;
1858             if (times > 1) {
1859                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1860                            KVM_CPUID_FLAG_STATE_READ_NEXT;
1861             }
1862 
1863             for (j = 1; j < times; ++j) {
1864                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1865                     goto full;
1866                 }
1867                 c = &entries[cpuid_i++];
1868                 c->function = i;
1869                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1870                 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1871             }
1872             break;
1873         }
1874         case 0x1f:
1875             if (!x86_has_extended_topo(env->avail_cpu_topo)) {
1876                 cpuid_i--;
1877                 break;
1878             }
1879             /* fallthrough */
1880         case 4:
1881         case 0xb:
1882         case 0xd:
1883             for (j = 0; ; j++) {
1884                 c->function = i;
1885                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1886                 c->index = j;
1887                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1888 
1889                 if (i == 4 && c->eax == 0) {
1890                     break;
1891                 }
1892                 if (i == 0xb && !(c->ecx & 0xff00)) {
1893                     break;
1894                 }
1895                 if (i == 0x1f && !(c->ecx & 0xff00)) {
1896                     break;
1897                 }
1898                 if (i == 0xd && c->eax == 0) {
1899                     if (j < 63) {
1900                         continue;
1901                     } else {
1902                         cpuid_i--;
1903                         break;
1904                     }
1905                 }
1906                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1907                     goto full;
1908                 }
1909                 c = &entries[cpuid_i++];
1910             }
1911             break;
1912         case 0x12:
1913             for (j = 0; ; j++) {
1914                 c->function = i;
1915                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1916                 c->index = j;
1917                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1918 
1919                 if (j > 1 && (c->eax & 0xf) != 1) {
1920                     break;
1921                 }
1922 
1923                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1924                     goto full;
1925                 }
1926                 c = &entries[cpuid_i++];
1927             }
1928             break;
1929         case 0x7:
1930         case 0x14:
1931         case 0x1d:
1932         case 0x1e:
1933         case 0x24: {
1934             uint32_t times;
1935 
1936             c->function = i;
1937             c->index = 0;
1938             c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1939             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1940             times = c->eax;
1941 
1942             for (j = 1; j <= times; ++j) {
1943                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1944                     goto full;
1945                 }
1946                 c = &entries[cpuid_i++];
1947                 c->function = i;
1948                 c->index = j;
1949                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1950                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1951             }
1952             break;
1953         }
1954         default:
1955             c->function = i;
1956             c->flags = 0;
1957             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1958             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1959                 /*
1960                  * KVM already returns all zeroes if a CPUID entry is missing,
1961                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1962                  */
1963                 cpuid_i--;
1964             }
1965             break;
1966         }
1967     }
1968 
1969     if (limit >= 0x0a) {
1970         uint32_t eax, edx;
1971 
1972         cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1973 
1974         has_architectural_pmu_version = eax & 0xff;
1975         if (has_architectural_pmu_version > 0) {
1976             num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1977 
1978             /* Shouldn't be more than 32, since that's the number of bits
1979              * available in EBX to tell us _which_ counters are available.
1980              * Play it safe.
1981              */
1982             if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1983                 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1984             }
1985 
1986             if (has_architectural_pmu_version > 1) {
1987                 num_architectural_pmu_fixed_counters = edx & 0x1f;
1988 
1989                 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1990                     num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1991                 }
1992             }
1993         }
1994     }
1995 
1996     cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1997 
1998     for (i = 0x80000000; i <= limit; i++) {
1999         j = 0;
2000         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2001             goto full;
2002         }
2003         c = &entries[cpuid_i++];
2004 
2005         switch (i) {
2006         case 0x8000001d:
2007             /* Query for all AMD cache information leaves */
2008             for (j = 0; ; j++) {
2009                 c->function = i;
2010                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2011                 c->index = j;
2012                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2013 
2014                 if (c->eax == 0) {
2015                     break;
2016                 }
2017                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2018                     goto full;
2019                 }
2020                 c = &entries[cpuid_i++];
2021             }
2022             break;
2023         default:
2024             c->function = i;
2025             c->flags = 0;
2026             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2027             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2028                 /*
2029                  * KVM already returns all zeroes if a CPUID entry is missing,
2030                  * so we can omit it and avoid hitting KVM's 80-entry limit.
2031                  */
2032                 cpuid_i--;
2033             }
2034             break;
2035         }
2036     }
2037 
2038     /* Call Centaur's CPUID instructions they are supported. */
2039     if (env->cpuid_xlevel2 > 0) {
2040         cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
2041 
2042         for (i = 0xC0000000; i <= limit; i++) {
2043             j = 0;
2044             if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2045                 goto full;
2046             }
2047             c = &entries[cpuid_i++];
2048 
2049             c->function = i;
2050             c->flags = 0;
2051             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2052         }
2053     }
2054 
2055     return cpuid_i;
2056 
2057 full:
2058     fprintf(stderr, "cpuid_data is full, no space for "
2059             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2060     abort();
2061 }
2062 
2063 int kvm_arch_pre_create_vcpu(CPUState *cpu, Error **errp)
2064 {
2065     if (is_tdx_vm()) {
2066         return tdx_pre_create_vcpu(cpu, errp);
2067     }
2068 
2069     return 0;
2070 }
2071 
2072 int kvm_arch_init_vcpu(CPUState *cs)
2073 {
2074     struct {
2075         struct kvm_cpuid2 cpuid;
2076         struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
2077     } cpuid_data;
2078     /*
2079      * The kernel defines these structs with padding fields so there
2080      * should be no extra padding in our cpuid_data struct.
2081      */
2082     QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
2083                       sizeof(struct kvm_cpuid2) +
2084                       sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
2085 
2086     X86CPU *cpu = X86_CPU(cs);
2087     CPUX86State *env = &cpu->env;
2088     uint32_t cpuid_i;
2089     struct kvm_cpuid_entry2 *c;
2090     uint32_t signature[3];
2091     int kvm_base = KVM_CPUID_SIGNATURE;
2092     int max_nested_state_len;
2093     int r;
2094     Error *local_err = NULL;
2095 
2096     memset(&cpuid_data, 0, sizeof(cpuid_data));
2097 
2098     cpuid_i = 0;
2099 
2100     has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
2101 
2102     r = kvm_arch_set_tsc_khz(cs);
2103     if (r < 0) {
2104         return r;
2105     }
2106 
2107     /* vcpu's TSC frequency is either specified by user, or following
2108      * the value used by KVM if the former is not present. In the
2109      * latter case, we query it from KVM and record in env->tsc_khz,
2110      * so that vcpu's TSC frequency can be migrated later via this field.
2111      */
2112     if (!env->tsc_khz) {
2113         r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
2114             kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
2115             -ENOTSUP;
2116         if (r > 0) {
2117             env->tsc_khz = r;
2118         }
2119     }
2120 
2121     env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
2122 
2123     /*
2124      * kvm_hyperv_expand_features() is called here for the second time in case
2125      * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
2126      * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
2127      * check which Hyper-V enlightenments are supported and which are not, we
2128      * can still proceed and check/expand Hyper-V enlightenments here so legacy
2129      * behavior is preserved.
2130      */
2131     if (!kvm_hyperv_expand_features(cpu, &local_err)) {
2132         error_report_err(local_err);
2133         return -ENOSYS;
2134     }
2135 
2136     if (hyperv_enabled(cpu)) {
2137         r = hyperv_init_vcpu(cpu);
2138         if (r) {
2139             return r;
2140         }
2141 
2142         cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
2143         kvm_base = KVM_CPUID_SIGNATURE_NEXT;
2144         has_msr_hv_hypercall = true;
2145     }
2146 
2147     if (cs->kvm_state->xen_version) {
2148 #ifdef CONFIG_XEN_EMU
2149         struct kvm_cpuid_entry2 *xen_max_leaf;
2150 
2151         memcpy(signature, "XenVMMXenVMM", 12);
2152 
2153         xen_max_leaf = c = &cpuid_data.entries[cpuid_i++];
2154         c->function = kvm_base + XEN_CPUID_SIGNATURE;
2155         c->eax = kvm_base + XEN_CPUID_TIME;
2156         c->ebx = signature[0];
2157         c->ecx = signature[1];
2158         c->edx = signature[2];
2159 
2160         c = &cpuid_data.entries[cpuid_i++];
2161         c->function = kvm_base + XEN_CPUID_VENDOR;
2162         c->eax = cs->kvm_state->xen_version;
2163         c->ebx = 0;
2164         c->ecx = 0;
2165         c->edx = 0;
2166 
2167         c = &cpuid_data.entries[cpuid_i++];
2168         c->function = kvm_base + XEN_CPUID_HVM_MSR;
2169         /* Number of hypercall-transfer pages */
2170         c->eax = 1;
2171         /* Hypercall MSR base address */
2172         if (hyperv_enabled(cpu)) {
2173             c->ebx = XEN_HYPERCALL_MSR_HYPERV;
2174             kvm_xen_init(cs->kvm_state, c->ebx);
2175         } else {
2176             c->ebx = XEN_HYPERCALL_MSR;
2177         }
2178         c->ecx = 0;
2179         c->edx = 0;
2180 
2181         c = &cpuid_data.entries[cpuid_i++];
2182         c->function = kvm_base + XEN_CPUID_TIME;
2183         c->eax = ((!!tsc_is_stable_and_known(env) << 1) |
2184             (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2));
2185         /* default=0 (emulate if necessary) */
2186         c->ebx = 0;
2187         /* guest tsc frequency */
2188         c->ecx = env->user_tsc_khz;
2189         /* guest tsc incarnation (migration count) */
2190         c->edx = 0;
2191 
2192         c = &cpuid_data.entries[cpuid_i++];
2193         c->function = kvm_base + XEN_CPUID_HVM;
2194         xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM;
2195         if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) {
2196             c->function = kvm_base + XEN_CPUID_HVM;
2197 
2198             if (cpu->xen_vapic) {
2199                 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT;
2200                 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT;
2201             }
2202 
2203             c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS;
2204 
2205             if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) {
2206                 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT;
2207                 c->ebx = cs->cpu_index;
2208             }
2209 
2210             if (cs->kvm_state->xen_version >= XEN_VERSION(4, 17)) {
2211                 c->eax |= XEN_HVM_CPUID_UPCALL_VECTOR;
2212             }
2213         }
2214 
2215         r = kvm_xen_init_vcpu(cs);
2216         if (r) {
2217             return r;
2218         }
2219 
2220         kvm_base += 0x100;
2221 #else /* CONFIG_XEN_EMU */
2222         /* This should never happen as kvm_arch_init() would have died first. */
2223         fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n");
2224         abort();
2225 #endif
2226     } else if (cpu->expose_kvm) {
2227         memcpy(signature, "KVMKVMKVM\0\0\0", 12);
2228         c = &cpuid_data.entries[cpuid_i++];
2229         c->function = KVM_CPUID_SIGNATURE | kvm_base;
2230         c->eax = KVM_CPUID_FEATURES | kvm_base;
2231         c->ebx = signature[0];
2232         c->ecx = signature[1];
2233         c->edx = signature[2];
2234 
2235         c = &cpuid_data.entries[cpuid_i++];
2236         c->function = KVM_CPUID_FEATURES | kvm_base;
2237         c->eax = env->features[FEAT_KVM];
2238         c->edx = env->features[FEAT_KVM_HINTS];
2239     }
2240 
2241     if (cpu->kvm_pv_enforce_cpuid) {
2242         r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
2243         if (r < 0) {
2244             fprintf(stderr,
2245                     "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
2246                     strerror(-r));
2247             abort();
2248         }
2249     }
2250 
2251     cpuid_i = kvm_x86_build_cpuid(env, cpuid_data.entries, cpuid_i);
2252     cpuid_data.cpuid.nent = cpuid_i;
2253 
2254     if (((env->cpuid_version >> 8)&0xF) >= 6
2255         && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
2256            (CPUID_MCE | CPUID_MCA)) {
2257         uint64_t mcg_cap, unsupported_caps;
2258         int banks;
2259         int ret;
2260 
2261         ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
2262         if (ret < 0) {
2263             fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
2264             return ret;
2265         }
2266 
2267         if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
2268             error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2269                          (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
2270             return -ENOTSUP;
2271         }
2272 
2273         unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
2274         if (unsupported_caps) {
2275             if (unsupported_caps & MCG_LMCE_P) {
2276                 error_report("kvm: LMCE not supported");
2277                 return -ENOTSUP;
2278             }
2279             warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
2280                         unsupported_caps);
2281         }
2282 
2283         env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
2284         ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
2285         if (ret < 0) {
2286             fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
2287             return ret;
2288         }
2289     }
2290 
2291     cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
2292 
2293     c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
2294     if (c) {
2295         has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
2296                                   !!(c->ecx & CPUID_EXT_SMX);
2297     }
2298 
2299     c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
2300     if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
2301         has_msr_feature_control = true;
2302     }
2303 
2304     if (env->mcg_cap & MCG_LMCE_P) {
2305         has_msr_mcg_ext_ctl = has_msr_feature_control = true;
2306     }
2307 
2308     if (!env->user_tsc_khz) {
2309         if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2310             invtsc_mig_blocker == NULL) {
2311             error_setg(&invtsc_mig_blocker,
2312                        "State blocked by non-migratable CPU device"
2313                        " (invtsc flag)");
2314             r = migrate_add_blocker(&invtsc_mig_blocker, &local_err);
2315             if (r < 0) {
2316                 error_report_err(local_err);
2317                 return r;
2318             }
2319         }
2320     }
2321 
2322     if (cpu->vmware_cpuid_freq
2323         /* Guests depend on 0x40000000 to detect this feature, so only expose
2324          * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2325         && cpu->expose_kvm
2326         && kvm_base == KVM_CPUID_SIGNATURE
2327         /* TSC clock must be stable and known for this feature. */
2328         && tsc_is_stable_and_known(env)) {
2329 
2330         c = &cpuid_data.entries[cpuid_i++];
2331         c->function = KVM_CPUID_SIGNATURE | 0x10;
2332         c->eax = env->tsc_khz;
2333         c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2334         c->ecx = c->edx = 0;
2335 
2336         c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2337         c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2338     }
2339 
2340     cpuid_data.cpuid.nent = cpuid_i;
2341 
2342     cpuid_data.cpuid.padding = 0;
2343     r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2344     if (r) {
2345         goto fail;
2346     }
2347     kvm_init_xsave(env);
2348 
2349     max_nested_state_len = kvm_max_nested_state_length();
2350     if (max_nested_state_len > 0) {
2351         assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2352 
2353         if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2354             env->nested_state = g_malloc0(max_nested_state_len);
2355             env->nested_state->size = max_nested_state_len;
2356 
2357             kvm_init_nested_state(env);
2358         }
2359     }
2360 
2361     cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2362 
2363     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2364         has_msr_tsc_aux = false;
2365     }
2366 
2367     kvm_init_msrs(cpu);
2368 
2369     return 0;
2370 
2371  fail:
2372     migrate_del_blocker(&invtsc_mig_blocker);
2373 
2374     return r;
2375 }
2376 
2377 int kvm_arch_destroy_vcpu(CPUState *cs)
2378 {
2379     X86CPU *cpu = X86_CPU(cs);
2380     CPUX86State *env = &cpu->env;
2381 
2382     g_free(env->xsave_buf);
2383 
2384     g_free(cpu->kvm_msr_buf);
2385     cpu->kvm_msr_buf = NULL;
2386 
2387     g_free(env->nested_state);
2388     env->nested_state = NULL;
2389 
2390     qemu_del_vm_change_state_handler(cpu->vmsentry);
2391 
2392     return 0;
2393 }
2394 
2395 void kvm_arch_reset_vcpu(X86CPU *cpu)
2396 {
2397     CPUX86State *env = &cpu->env;
2398 
2399     env->xcr0 = 1;
2400     if (kvm_irqchip_in_kernel()) {
2401         env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2402                                           KVM_MP_STATE_UNINITIALIZED;
2403     } else {
2404         env->mp_state = KVM_MP_STATE_RUNNABLE;
2405     }
2406 
2407     /* enabled by default */
2408     env->poll_control_msr = 1;
2409 
2410     kvm_init_nested_state(env);
2411 
2412     sev_es_set_reset_vector(CPU(cpu));
2413 }
2414 
2415 void kvm_arch_after_reset_vcpu(X86CPU *cpu)
2416 {
2417     CPUX86State *env = &cpu->env;
2418     int i;
2419 
2420     /*
2421      * Reset SynIC after all other devices have been reset to let them remove
2422      * their SINT routes first.
2423      */
2424     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2425         for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2426             env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2427         }
2428 
2429         hyperv_x86_synic_reset(cpu);
2430     }
2431 }
2432 
2433 void kvm_arch_reset_parked_vcpu(unsigned long vcpu_id, int kvm_fd)
2434 {
2435     g_autofree struct kvm_msrs *msrs = NULL;
2436 
2437     msrs = g_malloc0(sizeof(*msrs) + sizeof(msrs->entries[0]));
2438     msrs->entries[0].index = MSR_IA32_TSC;
2439     msrs->entries[0].data = 1; /* match the value in x86_cpu_reset() */
2440     msrs->nmsrs++;
2441 
2442     if (ioctl(kvm_fd, KVM_SET_MSRS, msrs) != 1) {
2443         warn_report("parked vCPU %lu TSC reset failed: %d",
2444                     vcpu_id, errno);
2445     }
2446 }
2447 
2448 void kvm_arch_do_init_vcpu(X86CPU *cpu)
2449 {
2450     CPUX86State *env = &cpu->env;
2451 
2452     /* APs get directly into wait-for-SIPI state.  */
2453     if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2454         env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2455     }
2456 }
2457 
2458 static int kvm_get_supported_feature_msrs(KVMState *s)
2459 {
2460     int ret = 0;
2461 
2462     if (kvm_feature_msrs != NULL) {
2463         return 0;
2464     }
2465 
2466     if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2467         return 0;
2468     }
2469 
2470     struct kvm_msr_list msr_list;
2471 
2472     msr_list.nmsrs = 0;
2473     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2474     if (ret < 0 && ret != -E2BIG) {
2475         error_report("Fetch KVM feature MSR list failed: %s",
2476             strerror(-ret));
2477         return ret;
2478     }
2479 
2480     assert(msr_list.nmsrs > 0);
2481     kvm_feature_msrs = g_malloc0(sizeof(msr_list) +
2482                  msr_list.nmsrs * sizeof(msr_list.indices[0]));
2483 
2484     kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2485     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2486 
2487     if (ret < 0) {
2488         error_report("Fetch KVM feature MSR list failed: %s",
2489             strerror(-ret));
2490         g_free(kvm_feature_msrs);
2491         kvm_feature_msrs = NULL;
2492         return ret;
2493     }
2494 
2495     return 0;
2496 }
2497 
2498 static int kvm_get_supported_msrs(KVMState *s)
2499 {
2500     int ret = 0;
2501     struct kvm_msr_list msr_list, *kvm_msr_list;
2502 
2503     /*
2504      *  Obtain MSR list from KVM.  These are the MSRs that we must
2505      *  save/restore.
2506      */
2507     msr_list.nmsrs = 0;
2508     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2509     if (ret < 0 && ret != -E2BIG) {
2510         return ret;
2511     }
2512     /*
2513      * Old kernel modules had a bug and could write beyond the provided
2514      * memory. Allocate at least a safe amount of 1K.
2515      */
2516     kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2517                                           msr_list.nmsrs *
2518                                           sizeof(msr_list.indices[0])));
2519 
2520     kvm_msr_list->nmsrs = msr_list.nmsrs;
2521     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2522     if (ret >= 0) {
2523         int i;
2524 
2525         for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2526             switch (kvm_msr_list->indices[i]) {
2527             case MSR_STAR:
2528                 has_msr_star = true;
2529                 break;
2530             case MSR_VM_HSAVE_PA:
2531                 has_msr_hsave_pa = true;
2532                 break;
2533             case MSR_TSC_AUX:
2534                 has_msr_tsc_aux = true;
2535                 break;
2536             case MSR_TSC_ADJUST:
2537                 has_msr_tsc_adjust = true;
2538                 break;
2539             case MSR_IA32_TSCDEADLINE:
2540                 has_msr_tsc_deadline = true;
2541                 break;
2542             case MSR_IA32_SMBASE:
2543                 has_msr_smbase = true;
2544                 break;
2545             case MSR_SMI_COUNT:
2546                 has_msr_smi_count = true;
2547                 break;
2548             case MSR_IA32_MISC_ENABLE:
2549                 has_msr_misc_enable = true;
2550                 break;
2551             case MSR_IA32_BNDCFGS:
2552                 has_msr_bndcfgs = true;
2553                 break;
2554             case MSR_IA32_XSS:
2555                 has_msr_xss = true;
2556                 break;
2557             case MSR_IA32_UMWAIT_CONTROL:
2558                 has_msr_umwait = true;
2559                 break;
2560             case HV_X64_MSR_CRASH_CTL:
2561                 has_msr_hv_crash = true;
2562                 break;
2563             case HV_X64_MSR_RESET:
2564                 has_msr_hv_reset = true;
2565                 break;
2566             case HV_X64_MSR_VP_INDEX:
2567                 has_msr_hv_vpindex = true;
2568                 break;
2569             case HV_X64_MSR_VP_RUNTIME:
2570                 has_msr_hv_runtime = true;
2571                 break;
2572             case HV_X64_MSR_SCONTROL:
2573                 has_msr_hv_synic = true;
2574                 break;
2575             case HV_X64_MSR_STIMER0_CONFIG:
2576                 has_msr_hv_stimer = true;
2577                 break;
2578             case HV_X64_MSR_TSC_FREQUENCY:
2579                 has_msr_hv_frequencies = true;
2580                 break;
2581             case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2582                 has_msr_hv_reenlightenment = true;
2583                 break;
2584             case HV_X64_MSR_SYNDBG_OPTIONS:
2585                 has_msr_hv_syndbg_options = true;
2586                 break;
2587             case MSR_IA32_SPEC_CTRL:
2588                 has_msr_spec_ctrl = true;
2589                 break;
2590             case MSR_AMD64_TSC_RATIO:
2591                 has_tsc_scale_msr = true;
2592                 break;
2593             case MSR_IA32_TSX_CTRL:
2594                 has_msr_tsx_ctrl = true;
2595                 break;
2596             case MSR_VIRT_SSBD:
2597                 has_msr_virt_ssbd = true;
2598                 break;
2599             case MSR_IA32_ARCH_CAPABILITIES:
2600                 has_msr_arch_capabs = true;
2601                 break;
2602             case MSR_IA32_CORE_CAPABILITY:
2603                 has_msr_core_capabs = true;
2604                 break;
2605             case MSR_IA32_PERF_CAPABILITIES:
2606                 has_msr_perf_capabs = true;
2607                 break;
2608             case MSR_IA32_VMX_VMFUNC:
2609                 has_msr_vmx_vmfunc = true;
2610                 break;
2611             case MSR_IA32_UCODE_REV:
2612                 has_msr_ucode_rev = true;
2613                 break;
2614             case MSR_IA32_VMX_PROCBASED_CTLS2:
2615                 has_msr_vmx_procbased_ctls2 = true;
2616                 break;
2617             case MSR_IA32_PKRS:
2618                 has_msr_pkrs = true;
2619                 break;
2620             case MSR_K7_HWCR:
2621                 has_msr_hwcr = true;
2622             }
2623         }
2624     }
2625 
2626     g_free(kvm_msr_list);
2627 
2628     return ret;
2629 }
2630 
2631 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu,
2632                                         uint32_t msr,
2633                                         uint64_t *val)
2634 {
2635     *val = cpu_x86_get_msr_core_thread_count(cpu);
2636 
2637     return true;
2638 }
2639 
2640 static bool kvm_rdmsr_rapl_power_unit(X86CPU *cpu,
2641                                       uint32_t msr,
2642                                       uint64_t *val)
2643 {
2644 
2645     CPUState *cs = CPU(cpu);
2646 
2647     *val = cs->kvm_state->msr_energy.msr_unit;
2648 
2649     return true;
2650 }
2651 
2652 static bool kvm_rdmsr_pkg_power_limit(X86CPU *cpu,
2653                                       uint32_t msr,
2654                                       uint64_t *val)
2655 {
2656 
2657     CPUState *cs = CPU(cpu);
2658 
2659     *val = cs->kvm_state->msr_energy.msr_limit;
2660 
2661     return true;
2662 }
2663 
2664 static bool kvm_rdmsr_pkg_power_info(X86CPU *cpu,
2665                                      uint32_t msr,
2666                                      uint64_t *val)
2667 {
2668 
2669     CPUState *cs = CPU(cpu);
2670 
2671     *val = cs->kvm_state->msr_energy.msr_info;
2672 
2673     return true;
2674 }
2675 
2676 static bool kvm_rdmsr_pkg_energy_status(X86CPU *cpu,
2677                                         uint32_t msr,
2678                                         uint64_t *val)
2679 {
2680 
2681     CPUState *cs = CPU(cpu);
2682     *val = cs->kvm_state->msr_energy.msr_value[cs->cpu_index];
2683 
2684     return true;
2685 }
2686 
2687 static Notifier smram_machine_done;
2688 static KVMMemoryListener smram_listener;
2689 static AddressSpace smram_address_space;
2690 static MemoryRegion smram_as_root;
2691 static MemoryRegion smram_as_mem;
2692 
2693 static void register_smram_listener(Notifier *n, void *unused)
2694 {
2695     MemoryRegion *smram =
2696         (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2697 
2698     /* Outer container... */
2699     memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2700     memory_region_set_enabled(&smram_as_root, true);
2701 
2702     /* ... with two regions inside: normal system memory with low
2703      * priority, and...
2704      */
2705     memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2706                              get_system_memory(), 0, ~0ull);
2707     memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2708     memory_region_set_enabled(&smram_as_mem, true);
2709 
2710     if (smram) {
2711         /* ... SMRAM with higher priority */
2712         memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2713         memory_region_set_enabled(smram, true);
2714     }
2715 
2716     address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2717     kvm_memory_listener_register(kvm_state, &smram_listener,
2718                                  &smram_address_space, 1, "kvm-smram");
2719 }
2720 
2721 static void *kvm_msr_energy_thread(void *data)
2722 {
2723     KVMState *s = data;
2724     struct KVMMsrEnergy *vmsr = &s->msr_energy;
2725 
2726     g_autofree vmsr_package_energy_stat *pkg_stat = NULL;
2727     g_autofree vmsr_thread_stat *thd_stat = NULL;
2728     g_autofree CPUState *cpu = NULL;
2729     g_autofree unsigned int *vpkgs_energy_stat = NULL;
2730     unsigned int num_threads = 0;
2731 
2732     X86CPUTopoIDs topo_ids;
2733 
2734     rcu_register_thread();
2735 
2736     /* Allocate memory for each package energy status */
2737     pkg_stat = g_new0(vmsr_package_energy_stat, vmsr->host_topo.maxpkgs);
2738 
2739     /* Allocate memory for thread stats */
2740     thd_stat = g_new0(vmsr_thread_stat, 1);
2741 
2742     /* Allocate memory for holding virtual package energy counter */
2743     vpkgs_energy_stat = g_new0(unsigned int, vmsr->guest_vsockets);
2744 
2745     /* Populate the max tick of each packages */
2746     for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2747         /*
2748          * Max numbers of ticks per package
2749          * Time in second * Number of ticks/second * Number of cores/package
2750          * ex: 100 ticks/second/CPU, 12 CPUs per Package gives 1200 ticks max
2751          */
2752         vmsr->host_topo.maxticks[i] = (MSR_ENERGY_THREAD_SLEEP_US / 1000000)
2753                         * sysconf(_SC_CLK_TCK)
2754                         * vmsr->host_topo.pkg_cpu_count[i];
2755     }
2756 
2757     while (true) {
2758         /* Get all qemu threads id */
2759         g_autofree pid_t *thread_ids
2760             = vmsr_get_thread_ids(vmsr->pid, &num_threads);
2761 
2762         if (thread_ids == NULL) {
2763             goto clean;
2764         }
2765 
2766         thd_stat = g_renew(vmsr_thread_stat, thd_stat, num_threads);
2767         /* Unlike g_new0, g_renew0 function doesn't exist yet... */
2768         memset(thd_stat, 0, num_threads * sizeof(vmsr_thread_stat));
2769 
2770         /* Populate all the thread stats */
2771         for (int i = 0; i < num_threads; i++) {
2772             thd_stat[i].utime = g_new0(unsigned long long, 2);
2773             thd_stat[i].stime = g_new0(unsigned long long, 2);
2774             thd_stat[i].thread_id = thread_ids[i];
2775             vmsr_read_thread_stat(vmsr->pid,
2776                                   thd_stat[i].thread_id,
2777                                   &thd_stat[i].utime[0],
2778                                   &thd_stat[i].stime[0],
2779                                   &thd_stat[i].cpu_id);
2780             thd_stat[i].pkg_id =
2781                 vmsr_get_physical_package_id(thd_stat[i].cpu_id);
2782         }
2783 
2784         /* Retrieve all packages power plane energy counter */
2785         for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2786             for (int j = 0; j < num_threads; j++) {
2787                 /*
2788                  * Use the first thread we found that ran on the CPU
2789                  * of the package to read the packages energy counter
2790                  */
2791                 if (thd_stat[j].pkg_id == i) {
2792                     pkg_stat[i].e_start =
2793                     vmsr_read_msr(MSR_PKG_ENERGY_STATUS,
2794                                   thd_stat[j].cpu_id,
2795                                   thd_stat[j].thread_id,
2796                                   s->msr_energy.sioc);
2797                     break;
2798                 }
2799             }
2800         }
2801 
2802         /* Sleep a short period while the other threads are working */
2803         usleep(MSR_ENERGY_THREAD_SLEEP_US);
2804 
2805         /*
2806          * Retrieve all packages power plane energy counter
2807          * Calculate the delta of all packages
2808          */
2809         for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2810             for (int j = 0; j < num_threads; j++) {
2811                 /*
2812                  * Use the first thread we found that ran on the CPU
2813                  * of the package to read the packages energy counter
2814                  */
2815                 if (thd_stat[j].pkg_id == i) {
2816                     pkg_stat[i].e_end =
2817                     vmsr_read_msr(MSR_PKG_ENERGY_STATUS,
2818                                   thd_stat[j].cpu_id,
2819                                   thd_stat[j].thread_id,
2820                                   s->msr_energy.sioc);
2821                     /*
2822                      * Prevent the case we have migrate the VM
2823                      * during the sleep period or any other cases
2824                      * were energy counter might be lower after
2825                      * the sleep period.
2826                      */
2827                     if (pkg_stat[i].e_end > pkg_stat[i].e_start) {
2828                         pkg_stat[i].e_delta =
2829                             pkg_stat[i].e_end - pkg_stat[i].e_start;
2830                     } else {
2831                         pkg_stat[i].e_delta = 0;
2832                     }
2833                     break;
2834                 }
2835             }
2836         }
2837 
2838         /* Delta of ticks spend by each thread between the sample */
2839         for (int i = 0; i < num_threads; i++) {
2840             vmsr_read_thread_stat(vmsr->pid,
2841                                   thd_stat[i].thread_id,
2842                                   &thd_stat[i].utime[1],
2843                                   &thd_stat[i].stime[1],
2844                                   &thd_stat[i].cpu_id);
2845 
2846             if (vmsr->pid < 0) {
2847                 /*
2848                  * We don't count the dead thread
2849                  * i.e threads that existed before the sleep
2850                  * and not anymore
2851                  */
2852                 thd_stat[i].delta_ticks = 0;
2853             } else {
2854                 vmsr_delta_ticks(thd_stat, i);
2855             }
2856         }
2857 
2858         /*
2859          * Identify the vcpu threads
2860          * Calculate the number of vcpu per package
2861          */
2862         CPU_FOREACH(cpu) {
2863             for (int i = 0; i < num_threads; i++) {
2864                 if (cpu->thread_id == thd_stat[i].thread_id) {
2865                     thd_stat[i].is_vcpu = true;
2866                     thd_stat[i].vcpu_id = cpu->cpu_index;
2867                     pkg_stat[thd_stat[i].pkg_id].nb_vcpu++;
2868                     thd_stat[i].acpi_id = kvm_arch_vcpu_id(cpu);
2869                     break;
2870                 }
2871             }
2872         }
2873 
2874         /* Retrieve the virtual package number of each vCPU */
2875         for (int i = 0; i < vmsr->guest_cpu_list->len; i++) {
2876             for (int j = 0; j < num_threads; j++) {
2877                 if ((thd_stat[j].acpi_id ==
2878                         vmsr->guest_cpu_list->cpus[i].arch_id)
2879                     && (thd_stat[j].is_vcpu == true)) {
2880                     x86_topo_ids_from_apicid(thd_stat[j].acpi_id,
2881                         &vmsr->guest_topo_info, &topo_ids);
2882                     thd_stat[j].vpkg_id = topo_ids.pkg_id;
2883                 }
2884             }
2885         }
2886 
2887         /* Calculate the total energy of all non-vCPU thread */
2888         for (int i = 0; i < num_threads; i++) {
2889             if ((thd_stat[i].is_vcpu != true) &&
2890                 (thd_stat[i].delta_ticks > 0)) {
2891                 double temp;
2892                 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta,
2893                     thd_stat[i].delta_ticks,
2894                     vmsr->host_topo.maxticks[thd_stat[i].pkg_id]);
2895                 pkg_stat[thd_stat[i].pkg_id].e_ratio
2896                     += (uint64_t)lround(temp);
2897             }
2898         }
2899 
2900         /* Calculate the ratio per non-vCPU thread of each package */
2901         for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2902             if (pkg_stat[i].nb_vcpu > 0) {
2903                 pkg_stat[i].e_ratio = pkg_stat[i].e_ratio / pkg_stat[i].nb_vcpu;
2904             }
2905         }
2906 
2907         /*
2908          * Calculate the energy for each Package:
2909          * Energy Package = sum of each vCPU energy that belongs to the package
2910          */
2911         for (int i = 0; i < num_threads; i++) {
2912             if ((thd_stat[i].is_vcpu == true) && \
2913                     (thd_stat[i].delta_ticks > 0)) {
2914                 double temp;
2915                 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta,
2916                     thd_stat[i].delta_ticks,
2917                     vmsr->host_topo.maxticks[thd_stat[i].pkg_id]);
2918                 vpkgs_energy_stat[thd_stat[i].vpkg_id] +=
2919                     (uint64_t)lround(temp);
2920                 vpkgs_energy_stat[thd_stat[i].vpkg_id] +=
2921                     pkg_stat[thd_stat[i].pkg_id].e_ratio;
2922             }
2923         }
2924 
2925         /*
2926          * Finally populate the vmsr register of each vCPU with the total
2927          * package value to emulate the real hardware where each CPU return the
2928          * value of the package it belongs.
2929          */
2930         for (int i = 0; i < num_threads; i++) {
2931             if ((thd_stat[i].is_vcpu == true) && \
2932                     (thd_stat[i].delta_ticks > 0)) {
2933                 vmsr->msr_value[thd_stat[i].vcpu_id] = \
2934                                         vpkgs_energy_stat[thd_stat[i].vpkg_id];
2935           }
2936         }
2937 
2938         /* Freeing memory before zeroing the pointer */
2939         for (int i = 0; i < num_threads; i++) {
2940             g_free(thd_stat[i].utime);
2941             g_free(thd_stat[i].stime);
2942         }
2943    }
2944 
2945 clean:
2946     rcu_unregister_thread();
2947     return NULL;
2948 }
2949 
2950 static int kvm_msr_energy_thread_init(KVMState *s, MachineState *ms)
2951 {
2952     MachineClass *mc = MACHINE_GET_CLASS(ms);
2953     struct KVMMsrEnergy *r = &s->msr_energy;
2954 
2955     /*
2956      * Sanity check
2957      * 1. Host cpu must be Intel cpu
2958      * 2. RAPL must be enabled on the Host
2959      */
2960     if (!is_host_cpu_intel()) {
2961         error_report("The RAPL feature can only be enabled on hosts "
2962                      "with Intel CPU models");
2963         return -1;
2964     }
2965 
2966     if (!is_rapl_enabled()) {
2967         return -1;
2968     }
2969 
2970     /* Retrieve the virtual topology */
2971     vmsr_init_topo_info(&r->guest_topo_info, ms);
2972 
2973     /* Retrieve the number of vcpu */
2974     r->guest_vcpus = ms->smp.cpus;
2975 
2976     /* Retrieve the number of virtual sockets */
2977     r->guest_vsockets = ms->smp.sockets;
2978 
2979     /* Allocate register memory (MSR_PKG_STATUS) for each vcpu */
2980     r->msr_value = g_new0(uint64_t, r->guest_vcpus);
2981 
2982     /* Retrieve the CPUArchIDlist */
2983     r->guest_cpu_list = mc->possible_cpu_arch_ids(ms);
2984 
2985     /* Max number of cpus on the Host */
2986     r->host_topo.maxcpus = vmsr_get_maxcpus();
2987     if (r->host_topo.maxcpus == 0) {
2988         error_report("host max cpus = 0");
2989         return -1;
2990     }
2991 
2992     /* Max number of packages on the host */
2993     r->host_topo.maxpkgs = vmsr_get_max_physical_package(r->host_topo.maxcpus);
2994     if (r->host_topo.maxpkgs == 0) {
2995         error_report("host max pkgs = 0");
2996         return -1;
2997     }
2998 
2999     /* Allocate memory for each package on the host */
3000     r->host_topo.pkg_cpu_count = g_new0(unsigned int, r->host_topo.maxpkgs);
3001     r->host_topo.maxticks = g_new0(unsigned int, r->host_topo.maxpkgs);
3002 
3003     vmsr_count_cpus_per_package(r->host_topo.pkg_cpu_count,
3004                                 r->host_topo.maxpkgs);
3005     for (int i = 0; i < r->host_topo.maxpkgs; i++) {
3006         if (r->host_topo.pkg_cpu_count[i] == 0) {
3007             error_report("cpu per packages = 0 on package_%d", i);
3008             return -1;
3009         }
3010     }
3011 
3012     /* Get QEMU PID*/
3013     r->pid = getpid();
3014 
3015     /* Compute the socket path if necessary */
3016     if (s->msr_energy.socket_path == NULL) {
3017         s->msr_energy.socket_path = vmsr_compute_default_paths();
3018     }
3019 
3020     /* Open socket with vmsr helper */
3021     s->msr_energy.sioc = vmsr_open_socket(s->msr_energy.socket_path);
3022 
3023     if (s->msr_energy.sioc == NULL) {
3024         error_report("vmsr socket opening failed");
3025         return -1;
3026     }
3027 
3028     /* Those MSR values should not change */
3029     r->msr_unit  = vmsr_read_msr(MSR_RAPL_POWER_UNIT, 0, r->pid,
3030                                     s->msr_energy.sioc);
3031     r->msr_limit = vmsr_read_msr(MSR_PKG_POWER_LIMIT, 0, r->pid,
3032                                     s->msr_energy.sioc);
3033     r->msr_info  = vmsr_read_msr(MSR_PKG_POWER_INFO, 0, r->pid,
3034                                     s->msr_energy.sioc);
3035     if (r->msr_unit == 0 || r->msr_limit == 0 || r->msr_info == 0) {
3036         error_report("can't read any virtual msr");
3037         return -1;
3038     }
3039 
3040     qemu_thread_create(&r->msr_thr, "kvm-msr",
3041                        kvm_msr_energy_thread,
3042                        s, QEMU_THREAD_JOINABLE);
3043     return 0;
3044 }
3045 
3046 int kvm_arch_get_default_type(MachineState *ms)
3047 {
3048     return 0;
3049 }
3050 
3051 static int kvm_vm_enable_exception_payload(KVMState *s)
3052 {
3053     int ret = 0;
3054     has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
3055     if (has_exception_payload) {
3056         ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
3057         if (ret < 0) {
3058             error_report("kvm: Failed to enable exception payload cap: %s",
3059                          strerror(-ret));
3060         }
3061     }
3062 
3063     return ret;
3064 }
3065 
3066 static int kvm_vm_enable_triple_fault_event(KVMState *s)
3067 {
3068     int ret = 0;
3069     has_triple_fault_event = \
3070         kvm_check_extension(s,
3071                             KVM_CAP_X86_TRIPLE_FAULT_EVENT);
3072     if (has_triple_fault_event) {
3073         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true);
3074         if (ret < 0) {
3075             error_report("kvm: Failed to enable triple fault event cap: %s",
3076                          strerror(-ret));
3077         }
3078     }
3079     return ret;
3080 }
3081 
3082 static int kvm_vm_set_identity_map_addr(KVMState *s, uint64_t identity_base)
3083 {
3084     return kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
3085 }
3086 
3087 static int kvm_vm_set_nr_mmu_pages(KVMState *s)
3088 {
3089     uint64_t shadow_mem;
3090     int ret = 0;
3091     shadow_mem = object_property_get_int(OBJECT(s),
3092                                          "kvm-shadow-mem",
3093                                          &error_abort);
3094     if (shadow_mem != -1) {
3095         shadow_mem /= 4096;
3096         ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
3097     }
3098     return ret;
3099 }
3100 
3101 static int kvm_vm_set_tss_addr(KVMState *s, uint64_t tss_base)
3102 {
3103     return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, tss_base);
3104 }
3105 
3106 static int kvm_vm_enable_disable_exits(KVMState *s)
3107 {
3108     int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
3109 
3110     if (disable_exits) {
3111         disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
3112                           KVM_X86_DISABLE_EXITS_HLT |
3113                           KVM_X86_DISABLE_EXITS_PAUSE |
3114                           KVM_X86_DISABLE_EXITS_CSTATE);
3115     }
3116 
3117     return kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
3118                              disable_exits);
3119 }
3120 
3121 static int kvm_vm_enable_bus_lock_exit(KVMState *s)
3122 {
3123     int ret = 0;
3124     ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
3125     if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
3126         error_report("kvm: bus lock detection unsupported");
3127         return -ENOTSUP;
3128     }
3129     ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
3130                             KVM_BUS_LOCK_DETECTION_EXIT);
3131     if (ret < 0) {
3132         error_report("kvm: Failed to enable bus lock detection cap: %s",
3133                      strerror(-ret));
3134     }
3135 
3136     return ret;
3137 }
3138 
3139 static int kvm_vm_enable_notify_vmexit(KVMState *s)
3140 {
3141     int ret = 0;
3142     if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE) {
3143         uint64_t notify_window_flags =
3144             ((uint64_t)s->notify_window << 32) |
3145             KVM_X86_NOTIFY_VMEXIT_ENABLED |
3146             KVM_X86_NOTIFY_VMEXIT_USER;
3147         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0,
3148                                 notify_window_flags);
3149         if (ret < 0) {
3150             error_report("kvm: Failed to enable notify vmexit cap: %s",
3151                          strerror(-ret));
3152         }
3153     }
3154     return ret;
3155 }
3156 
3157 static int kvm_vm_enable_userspace_msr(KVMState *s)
3158 {
3159     int ret;
3160 
3161     ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0,
3162                             KVM_MSR_EXIT_REASON_FILTER);
3163     if (ret < 0) {
3164         error_report("Could not enable user space MSRs: %s",
3165                      strerror(-ret));
3166         exit(1);
3167     }
3168 
3169     ret = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT,
3170                          kvm_rdmsr_core_thread_count, NULL);
3171     if (ret < 0) {
3172         error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s",
3173                      strerror(-ret));
3174         exit(1);
3175     }
3176 
3177     return 0;
3178 }
3179 
3180 static int kvm_vm_enable_energy_msrs(KVMState *s)
3181 {
3182     int ret;
3183 
3184     if (s->msr_energy.enable == true) {
3185         ret = kvm_filter_msr(s, MSR_RAPL_POWER_UNIT,
3186                              kvm_rdmsr_rapl_power_unit, NULL);
3187         if (ret < 0) {
3188             error_report("Could not install MSR_RAPL_POWER_UNIT handler: %s",
3189                          strerror(-ret));
3190             return ret;
3191         }
3192 
3193         ret = kvm_filter_msr(s, MSR_PKG_POWER_LIMIT,
3194                              kvm_rdmsr_pkg_power_limit, NULL);
3195         if (ret < 0) {
3196             error_report("Could not install MSR_PKG_POWER_LIMIT handler: %s",
3197                          strerror(-ret));
3198             return ret;
3199         }
3200 
3201         ret = kvm_filter_msr(s, MSR_PKG_POWER_INFO,
3202                              kvm_rdmsr_pkg_power_info, NULL);
3203         if (ret < 0) {
3204             error_report("Could not install MSR_PKG_POWER_INFO handler: %s",
3205                          strerror(-ret));
3206             return ret;
3207         }
3208         ret = kvm_filter_msr(s, MSR_PKG_ENERGY_STATUS,
3209                              kvm_rdmsr_pkg_energy_status, NULL);
3210         if (ret < 0) {
3211             error_report("Could not install MSR_PKG_ENERGY_STATUS handler: %s",
3212                          strerror(-ret));
3213             return ret;
3214         }
3215     }
3216     return 0;
3217 }
3218 
3219 int kvm_arch_init(MachineState *ms, KVMState *s)
3220 {
3221     int ret;
3222     struct utsname utsname;
3223     Error *local_err = NULL;
3224 
3225     /*
3226      * Initialize confidential guest (SEV/TDX) context, if required
3227      */
3228     if (ms->cgs) {
3229         ret = confidential_guest_kvm_init(ms->cgs, &local_err);
3230         if (ret < 0) {
3231             error_report_err(local_err);
3232             return ret;
3233         }
3234     }
3235 
3236     has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
3237     has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
3238 
3239     hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
3240 
3241     ret = kvm_vm_enable_exception_payload(s);
3242     if (ret < 0) {
3243         return ret;
3244     }
3245 
3246     ret = kvm_vm_enable_triple_fault_event(s);
3247     if (ret < 0) {
3248         return ret;
3249     }
3250 
3251     if (s->xen_version) {
3252 #ifdef CONFIG_XEN_EMU
3253         if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) {
3254             error_report("kvm: Xen support only available in PC machine");
3255             return -ENOTSUP;
3256         }
3257         /* hyperv_enabled() doesn't work yet. */
3258         uint32_t msr = XEN_HYPERCALL_MSR;
3259         ret = kvm_xen_init(s, msr);
3260         if (ret < 0) {
3261             return ret;
3262         }
3263 #else
3264         error_report("kvm: Xen support not enabled in qemu");
3265         return -ENOTSUP;
3266 #endif
3267     }
3268 
3269     ret = kvm_get_supported_msrs(s);
3270     if (ret < 0) {
3271         return ret;
3272     }
3273 
3274     ret = kvm_get_supported_feature_msrs(s);
3275     if (ret < 0) {
3276         return ret;
3277     }
3278 
3279     uname(&utsname);
3280     lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
3281 
3282     ret = kvm_vm_set_identity_map_addr(s, KVM_IDENTITY_BASE);
3283     if (ret < 0) {
3284         return ret;
3285     }
3286 
3287     /* Set TSS base one page after EPT identity map. */
3288     ret = kvm_vm_set_tss_addr(s, KVM_IDENTITY_BASE + 0x1000);
3289     if (ret < 0) {
3290         return ret;
3291     }
3292 
3293     /* Tell fw_cfg to notify the BIOS to reserve the range. */
3294     e820_add_entry(KVM_IDENTITY_BASE, 0x4000, E820_RESERVED);
3295 
3296     ret = kvm_vm_set_nr_mmu_pages(s);
3297     if (ret < 0) {
3298         return ret;
3299     }
3300 
3301     if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
3302         object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
3303         x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
3304         smram_machine_done.notify = register_smram_listener;
3305         qemu_add_machine_init_done_notifier(&smram_machine_done);
3306     }
3307 
3308     if (enable_cpu_pm) {
3309         ret = kvm_vm_enable_disable_exits(s);
3310         if (ret < 0) {
3311             error_report("kvm: guest stopping CPU not supported: %s",
3312                          strerror(-ret));
3313             return ret;
3314         }
3315     }
3316 
3317     if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
3318         X86MachineState *x86ms = X86_MACHINE(ms);
3319 
3320         if (x86ms->bus_lock_ratelimit > 0) {
3321             ret = kvm_vm_enable_bus_lock_exit(s);
3322             if (ret < 0) {
3323                 return ret;
3324             }
3325             ratelimit_init(&bus_lock_ratelimit_ctrl);
3326             ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
3327                                 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
3328         }
3329     }
3330 
3331     if (kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) {
3332         ret = kvm_vm_enable_notify_vmexit(s);
3333         if (ret < 0) {
3334             return ret;
3335         }
3336     }
3337 
3338     if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) {
3339         ret = kvm_vm_enable_userspace_msr(s);
3340         if (ret < 0) {
3341             return ret;
3342         }
3343 
3344         if (s->msr_energy.enable == true) {
3345             ret = kvm_vm_enable_energy_msrs(s);
3346             if (ret < 0) {
3347                 return ret;
3348             }
3349 
3350             ret = kvm_msr_energy_thread_init(s, ms);
3351             if (ret < 0) {
3352                 error_report("kvm : error RAPL feature requirement not met");
3353                 return ret;
3354             }
3355         }
3356     }
3357 
3358     return 0;
3359 }
3360 
3361 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
3362 {
3363     lhs->selector = rhs->selector;
3364     lhs->base = rhs->base;
3365     lhs->limit = rhs->limit;
3366     lhs->type = 3;
3367     lhs->present = 1;
3368     lhs->dpl = 3;
3369     lhs->db = 0;
3370     lhs->s = 1;
3371     lhs->l = 0;
3372     lhs->g = 0;
3373     lhs->avl = 0;
3374     lhs->unusable = 0;
3375 }
3376 
3377 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
3378 {
3379     unsigned flags = rhs->flags;
3380     lhs->selector = rhs->selector;
3381     lhs->base = rhs->base;
3382     lhs->limit = rhs->limit;
3383     lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
3384     lhs->present = (flags & DESC_P_MASK) != 0;
3385     lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
3386     lhs->db = (flags >> DESC_B_SHIFT) & 1;
3387     lhs->s = (flags & DESC_S_MASK) != 0;
3388     lhs->l = (flags >> DESC_L_SHIFT) & 1;
3389     lhs->g = (flags & DESC_G_MASK) != 0;
3390     lhs->avl = (flags & DESC_AVL_MASK) != 0;
3391     lhs->unusable = !lhs->present;
3392     lhs->padding = 0;
3393 }
3394 
3395 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
3396 {
3397     lhs->selector = rhs->selector;
3398     lhs->base = rhs->base;
3399     lhs->limit = rhs->limit;
3400     lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
3401                  ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
3402                  (rhs->dpl << DESC_DPL_SHIFT) |
3403                  (rhs->db << DESC_B_SHIFT) |
3404                  (rhs->s * DESC_S_MASK) |
3405                  (rhs->l << DESC_L_SHIFT) |
3406                  (rhs->g * DESC_G_MASK) |
3407                  (rhs->avl * DESC_AVL_MASK);
3408 }
3409 
3410 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
3411 {
3412     if (set) {
3413         *kvm_reg = *qemu_reg;
3414     } else {
3415         *qemu_reg = *kvm_reg;
3416     }
3417 }
3418 
3419 static int kvm_getput_regs(X86CPU *cpu, int set)
3420 {
3421     CPUX86State *env = &cpu->env;
3422     struct kvm_regs regs;
3423     int ret = 0;
3424 
3425     if (!set) {
3426         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
3427         if (ret < 0) {
3428             return ret;
3429         }
3430     }
3431 
3432     kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
3433     kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
3434     kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
3435     kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
3436     kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
3437     kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
3438     kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
3439     kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
3440 #ifdef TARGET_X86_64
3441     kvm_getput_reg(&regs.r8, &env->regs[8], set);
3442     kvm_getput_reg(&regs.r9, &env->regs[9], set);
3443     kvm_getput_reg(&regs.r10, &env->regs[10], set);
3444     kvm_getput_reg(&regs.r11, &env->regs[11], set);
3445     kvm_getput_reg(&regs.r12, &env->regs[12], set);
3446     kvm_getput_reg(&regs.r13, &env->regs[13], set);
3447     kvm_getput_reg(&regs.r14, &env->regs[14], set);
3448     kvm_getput_reg(&regs.r15, &env->regs[15], set);
3449 #endif
3450 
3451     kvm_getput_reg(&regs.rflags, &env->eflags, set);
3452     kvm_getput_reg(&regs.rip, &env->eip, set);
3453 
3454     if (set) {
3455         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
3456     }
3457 
3458     return ret;
3459 }
3460 
3461 static int kvm_put_xsave(X86CPU *cpu)
3462 {
3463     CPUX86State *env = &cpu->env;
3464     void *xsave = env->xsave_buf;
3465 
3466     x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
3467 
3468     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
3469 }
3470 
3471 static int kvm_put_xcrs(X86CPU *cpu)
3472 {
3473     CPUX86State *env = &cpu->env;
3474     struct kvm_xcrs xcrs = {};
3475 
3476     if (!has_xcrs) {
3477         return 0;
3478     }
3479 
3480     xcrs.nr_xcrs = 1;
3481     xcrs.flags = 0;
3482     xcrs.xcrs[0].xcr = 0;
3483     xcrs.xcrs[0].value = env->xcr0;
3484     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
3485 }
3486 
3487 static int kvm_put_sregs(X86CPU *cpu)
3488 {
3489     CPUX86State *env = &cpu->env;
3490     struct kvm_sregs sregs;
3491 
3492     /*
3493      * The interrupt_bitmap is ignored because KVM_SET_SREGS is
3494      * always followed by KVM_SET_VCPU_EVENTS.
3495      */
3496     memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
3497 
3498     if ((env->eflags & VM_MASK)) {
3499         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
3500         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
3501         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
3502         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
3503         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
3504         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
3505     } else {
3506         set_seg(&sregs.cs, &env->segs[R_CS]);
3507         set_seg(&sregs.ds, &env->segs[R_DS]);
3508         set_seg(&sregs.es, &env->segs[R_ES]);
3509         set_seg(&sregs.fs, &env->segs[R_FS]);
3510         set_seg(&sregs.gs, &env->segs[R_GS]);
3511         set_seg(&sregs.ss, &env->segs[R_SS]);
3512     }
3513 
3514     set_seg(&sregs.tr, &env->tr);
3515     set_seg(&sregs.ldt, &env->ldt);
3516 
3517     sregs.idt.limit = env->idt.limit;
3518     sregs.idt.base = env->idt.base;
3519     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
3520     sregs.gdt.limit = env->gdt.limit;
3521     sregs.gdt.base = env->gdt.base;
3522     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
3523 
3524     sregs.cr0 = env->cr[0];
3525     sregs.cr2 = env->cr[2];
3526     sregs.cr3 = env->cr[3];
3527     sregs.cr4 = env->cr[4];
3528 
3529     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
3530     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
3531 
3532     sregs.efer = env->efer;
3533 
3534     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
3535 }
3536 
3537 static int kvm_put_sregs2(X86CPU *cpu)
3538 {
3539     CPUX86State *env = &cpu->env;
3540     struct kvm_sregs2 sregs;
3541     int i;
3542 
3543     sregs.flags = 0;
3544 
3545     if ((env->eflags & VM_MASK)) {
3546         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
3547         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
3548         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
3549         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
3550         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
3551         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
3552     } else {
3553         set_seg(&sregs.cs, &env->segs[R_CS]);
3554         set_seg(&sregs.ds, &env->segs[R_DS]);
3555         set_seg(&sregs.es, &env->segs[R_ES]);
3556         set_seg(&sregs.fs, &env->segs[R_FS]);
3557         set_seg(&sregs.gs, &env->segs[R_GS]);
3558         set_seg(&sregs.ss, &env->segs[R_SS]);
3559     }
3560 
3561     set_seg(&sregs.tr, &env->tr);
3562     set_seg(&sregs.ldt, &env->ldt);
3563 
3564     sregs.idt.limit = env->idt.limit;
3565     sregs.idt.base = env->idt.base;
3566     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
3567     sregs.gdt.limit = env->gdt.limit;
3568     sregs.gdt.base = env->gdt.base;
3569     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
3570 
3571     sregs.cr0 = env->cr[0];
3572     sregs.cr2 = env->cr[2];
3573     sregs.cr3 = env->cr[3];
3574     sregs.cr4 = env->cr[4];
3575 
3576     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
3577     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
3578 
3579     sregs.efer = env->efer;
3580 
3581     if (env->pdptrs_valid) {
3582         for (i = 0; i < 4; i++) {
3583             sregs.pdptrs[i] = env->pdptrs[i];
3584         }
3585         sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
3586     }
3587 
3588     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
3589 }
3590 
3591 
3592 static void kvm_msr_buf_reset(X86CPU *cpu)
3593 {
3594     memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
3595 }
3596 
3597 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
3598 {
3599     struct kvm_msrs *msrs = cpu->kvm_msr_buf;
3600     void *limit = ((void *)msrs) + MSR_BUF_SIZE;
3601     struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
3602 
3603     assert((void *)(entry + 1) <= limit);
3604 
3605     entry->index = index;
3606     entry->reserved = 0;
3607     entry->data = value;
3608     msrs->nmsrs++;
3609 }
3610 
3611 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
3612 {
3613     kvm_msr_buf_reset(cpu);
3614     kvm_msr_entry_add(cpu, index, value);
3615 
3616     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3617 }
3618 
3619 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value)
3620 {
3621     int ret;
3622     struct {
3623         struct kvm_msrs info;
3624         struct kvm_msr_entry entries[1];
3625     } msr_data = {
3626         .info.nmsrs = 1,
3627         .entries[0].index = index,
3628     };
3629 
3630     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
3631     if (ret < 0) {
3632         return ret;
3633     }
3634     assert(ret == 1);
3635     *value = msr_data.entries[0].data;
3636     return ret;
3637 }
3638 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
3639 {
3640     int ret;
3641 
3642     ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
3643     assert(ret == 1);
3644 }
3645 
3646 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
3647 {
3648     CPUX86State *env = &cpu->env;
3649     int ret;
3650 
3651     if (!has_msr_tsc_deadline) {
3652         return 0;
3653     }
3654 
3655     ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
3656     if (ret < 0) {
3657         return ret;
3658     }
3659 
3660     assert(ret == 1);
3661     return 0;
3662 }
3663 
3664 /*
3665  * Provide a separate write service for the feature control MSR in order to
3666  * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
3667  * before writing any other state because forcibly leaving nested mode
3668  * invalidates the VCPU state.
3669  */
3670 static int kvm_put_msr_feature_control(X86CPU *cpu)
3671 {
3672     int ret;
3673 
3674     if (!has_msr_feature_control) {
3675         return 0;
3676     }
3677 
3678     ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
3679                           cpu->env.msr_ia32_feature_control);
3680     if (ret < 0) {
3681         return ret;
3682     }
3683 
3684     assert(ret == 1);
3685     return 0;
3686 }
3687 
3688 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
3689 {
3690     uint32_t default1, can_be_one, can_be_zero;
3691     uint32_t must_be_one;
3692 
3693     switch (index) {
3694     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3695         default1 = 0x00000016;
3696         break;
3697     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3698         default1 = 0x0401e172;
3699         break;
3700     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3701         default1 = 0x000011ff;
3702         break;
3703     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3704         default1 = 0x00036dff;
3705         break;
3706     case MSR_IA32_VMX_PROCBASED_CTLS2:
3707         default1 = 0;
3708         break;
3709     default:
3710         abort();
3711     }
3712 
3713     /* If a feature bit is set, the control can be either set or clear.
3714      * Otherwise the value is limited to either 0 or 1 by default1.
3715      */
3716     can_be_one = features | default1;
3717     can_be_zero = features | ~default1;
3718     must_be_one = ~can_be_zero;
3719 
3720     /*
3721      * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
3722      * Bit 32:63 -> 1 if the control bit can be one.
3723      */
3724     return must_be_one | (((uint64_t)can_be_one) << 32);
3725 }
3726 
3727 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
3728 {
3729     uint64_t kvm_vmx_basic =
3730         kvm_arch_get_supported_msr_feature(kvm_state,
3731                                            MSR_IA32_VMX_BASIC);
3732 
3733     if (!kvm_vmx_basic) {
3734         /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
3735          * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
3736          */
3737         return;
3738     }
3739 
3740     uint64_t kvm_vmx_misc =
3741         kvm_arch_get_supported_msr_feature(kvm_state,
3742                                            MSR_IA32_VMX_MISC);
3743     uint64_t kvm_vmx_ept_vpid =
3744         kvm_arch_get_supported_msr_feature(kvm_state,
3745                                            MSR_IA32_VMX_EPT_VPID_CAP);
3746 
3747     /*
3748      * If the guest is 64-bit, a value of 1 is allowed for the host address
3749      * space size vmexit control.
3750      */
3751     uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
3752         ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
3753 
3754     /*
3755      * Bits 0-30, 32-44 and 50-53 come from the host.  KVM should
3756      * not change them for backwards compatibility.
3757      */
3758     uint64_t fixed_vmx_basic = kvm_vmx_basic &
3759         (MSR_VMX_BASIC_VMCS_REVISION_MASK |
3760          MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
3761          MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
3762 
3763     /*
3764      * Same for bits 0-4 and 25-27.  Bits 16-24 (CR3 target count) can
3765      * change in the future but are always zero for now, clear them to be
3766      * future proof.  Bits 32-63 in theory could change, though KVM does
3767      * not support dual-monitor treatment and probably never will; mask
3768      * them out as well.
3769      */
3770     uint64_t fixed_vmx_misc = kvm_vmx_misc &
3771         (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
3772          MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
3773 
3774     /*
3775      * EPT memory types should not change either, so we do not bother
3776      * adding features for them.
3777      */
3778     uint64_t fixed_vmx_ept_mask =
3779             (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
3780              MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
3781     uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
3782 
3783     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3784                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3785                                          f[FEAT_VMX_PROCBASED_CTLS]));
3786     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3787                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3788                                          f[FEAT_VMX_PINBASED_CTLS]));
3789     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3790                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
3791                                          f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
3792     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3793                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3794                                          f[FEAT_VMX_ENTRY_CTLS]));
3795     kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
3796                       make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
3797                                          f[FEAT_VMX_SECONDARY_CTLS]));
3798     kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
3799                       f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
3800     kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
3801                       f[FEAT_VMX_BASIC] | fixed_vmx_basic);
3802     kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
3803                       f[FEAT_VMX_MISC] | fixed_vmx_misc);
3804     if (has_msr_vmx_vmfunc) {
3805         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
3806     }
3807 
3808     /*
3809      * Just to be safe, write these with constant values.  The CRn_FIXED1
3810      * MSRs are generated by KVM based on the vCPU's CPUID.
3811      */
3812     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
3813                       CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
3814     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
3815                       CR4_VMXE_MASK);
3816 
3817     if (f[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) {
3818         /* FRED injected-event data (0x2052).  */
3819         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x52);
3820     } else if (f[FEAT_VMX_EXIT_CTLS] &
3821                VMX_VM_EXIT_ACTIVATE_SECONDARY_CONTROLS) {
3822         /* Secondary VM-exit controls (0x2044).  */
3823         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x44);
3824     } else if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
3825         /* TSC multiplier (0x2032).  */
3826         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
3827     } else {
3828         /* Preemption timer (0x482E).  */
3829         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
3830     }
3831 }
3832 
3833 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
3834 {
3835     uint64_t kvm_perf_cap =
3836         kvm_arch_get_supported_msr_feature(kvm_state,
3837                                            MSR_IA32_PERF_CAPABILITIES);
3838 
3839     if (kvm_perf_cap) {
3840         kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
3841                         kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
3842     }
3843 }
3844 
3845 static int kvm_buf_set_msrs(X86CPU *cpu)
3846 {
3847     int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3848     if (ret < 0) {
3849         return ret;
3850     }
3851 
3852     if (ret < cpu->kvm_msr_buf->nmsrs) {
3853         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3854         error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
3855                      (uint32_t)e->index, (uint64_t)e->data);
3856     }
3857 
3858     assert(ret == cpu->kvm_msr_buf->nmsrs);
3859     return 0;
3860 }
3861 
3862 static void kvm_init_msrs(X86CPU *cpu)
3863 {
3864     CPUX86State *env = &cpu->env;
3865 
3866     kvm_msr_buf_reset(cpu);
3867     if (has_msr_arch_capabs) {
3868         kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3869                           env->features[FEAT_ARCH_CAPABILITIES]);
3870     }
3871 
3872     if (has_msr_core_capabs) {
3873         kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3874                           env->features[FEAT_CORE_CAPABILITY]);
3875     }
3876 
3877     if (has_msr_perf_capabs && cpu->enable_pmu) {
3878         kvm_msr_entry_add_perf(cpu, env->features);
3879     }
3880 
3881     if (has_msr_ucode_rev) {
3882         kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3883     }
3884 
3885     /*
3886      * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3887      * all kernels with MSR features should have them.
3888      */
3889     if (kvm_feature_msrs && cpu_has_vmx(env)) {
3890         kvm_msr_entry_add_vmx(cpu, env->features);
3891     }
3892 
3893     assert(kvm_buf_set_msrs(cpu) == 0);
3894 }
3895 
3896 static int kvm_put_msrs(X86CPU *cpu, int level)
3897 {
3898     CPUX86State *env = &cpu->env;
3899     int i;
3900 
3901     kvm_msr_buf_reset(cpu);
3902 
3903     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3904     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3905     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3906     kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3907     if (has_msr_star) {
3908         kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3909     }
3910     if (has_msr_hsave_pa) {
3911         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3912     }
3913     if (has_msr_tsc_aux) {
3914         kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3915     }
3916     if (has_msr_tsc_adjust) {
3917         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3918     }
3919     if (has_msr_misc_enable) {
3920         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3921                           env->msr_ia32_misc_enable);
3922     }
3923     if (has_msr_smbase) {
3924         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3925     }
3926     if (has_msr_smi_count) {
3927         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3928     }
3929     if (has_msr_pkrs) {
3930         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3931     }
3932     if (has_msr_bndcfgs) {
3933         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3934     }
3935     if (has_msr_xss) {
3936         kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3937     }
3938     if (has_msr_umwait) {
3939         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3940     }
3941     if (has_msr_spec_ctrl) {
3942         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3943     }
3944     if (has_tsc_scale_msr) {
3945         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3946     }
3947 
3948     if (has_msr_tsx_ctrl) {
3949         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3950     }
3951     if (has_msr_virt_ssbd) {
3952         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3953     }
3954     if (has_msr_hwcr) {
3955         kvm_msr_entry_add(cpu, MSR_K7_HWCR, env->msr_hwcr);
3956     }
3957 
3958 #ifdef TARGET_X86_64
3959     if (lm_capable_kernel) {
3960         kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3961         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3962         kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3963         kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3964         if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) {
3965             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, env->fred_rsp0);
3966             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, env->fred_rsp1);
3967             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, env->fred_rsp2);
3968             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, env->fred_rsp3);
3969             kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, env->fred_stklvls);
3970             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, env->fred_ssp1);
3971             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, env->fred_ssp2);
3972             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, env->fred_ssp3);
3973             kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, env->fred_config);
3974         }
3975     }
3976 #endif
3977 
3978     /*
3979      * The following MSRs have side effects on the guest or are too heavy
3980      * for normal writeback. Limit them to reset or full state updates.
3981      */
3982     if (level >= KVM_PUT_RESET_STATE) {
3983         kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3984         if (env->features[FEAT_KVM] & (CPUID_KVM_CLOCK | CPUID_KVM_CLOCK2)) {
3985             kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3986             kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3987         }
3988         if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF_INT) {
3989             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3990         }
3991         if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF) {
3992             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
3993         }
3994         if (env->features[FEAT_KVM] & CPUID_KVM_PV_EOI) {
3995             kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
3996         }
3997         if (env->features[FEAT_KVM] & CPUID_KVM_STEAL_TIME) {
3998             kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
3999         }
4000 
4001         if (env->features[FEAT_KVM] & CPUID_KVM_POLL_CONTROL) {
4002             kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
4003         }
4004 
4005         if (has_architectural_pmu_version > 0) {
4006             if (has_architectural_pmu_version > 1) {
4007                 /* Stop the counter.  */
4008                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
4009                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
4010             }
4011 
4012             /* Set the counter values.  */
4013             for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
4014                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
4015                                   env->msr_fixed_counters[i]);
4016             }
4017             for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
4018                 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
4019                                   env->msr_gp_counters[i]);
4020                 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
4021                                   env->msr_gp_evtsel[i]);
4022             }
4023             if (has_architectural_pmu_version > 1) {
4024                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
4025                                   env->msr_global_status);
4026                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
4027                                   env->msr_global_ovf_ctrl);
4028 
4029                 /* Now start the PMU.  */
4030                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
4031                                   env->msr_fixed_ctr_ctrl);
4032                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
4033                                   env->msr_global_ctrl);
4034             }
4035         }
4036         /*
4037          * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
4038          * only sync them to KVM on the first cpu
4039          */
4040         if (current_cpu == first_cpu) {
4041             if (has_msr_hv_hypercall) {
4042                 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
4043                                   env->msr_hv_guest_os_id);
4044                 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
4045                                   env->msr_hv_hypercall);
4046             }
4047             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
4048                 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
4049                                   env->msr_hv_tsc);
4050             }
4051             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
4052                 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
4053                                   env->msr_hv_reenlightenment_control);
4054                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
4055                                   env->msr_hv_tsc_emulation_control);
4056                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
4057                                   env->msr_hv_tsc_emulation_status);
4058             }
4059             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) &&
4060                 has_msr_hv_syndbg_options) {
4061                 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS,
4062                                   hyperv_syndbg_query_options());
4063             }
4064         }
4065         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
4066             kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
4067                               env->msr_hv_vapic);
4068         }
4069         if (has_msr_hv_crash) {
4070             int j;
4071 
4072             for (j = 0; j < HV_CRASH_PARAMS; j++)
4073                 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
4074                                   env->msr_hv_crash_params[j]);
4075 
4076             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
4077         }
4078         if (has_msr_hv_runtime) {
4079             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
4080         }
4081         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
4082             && hv_vpindex_settable) {
4083             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
4084                               hyperv_vp_index(CPU(cpu)));
4085         }
4086         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
4087             int j;
4088 
4089             kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
4090 
4091             kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
4092                               env->msr_hv_synic_control);
4093             kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
4094                               env->msr_hv_synic_evt_page);
4095             kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
4096                               env->msr_hv_synic_msg_page);
4097 
4098             for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
4099                 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
4100                                   env->msr_hv_synic_sint[j]);
4101             }
4102         }
4103         if (has_msr_hv_stimer) {
4104             int j;
4105 
4106             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
4107                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
4108                                 env->msr_hv_stimer_config[j]);
4109             }
4110 
4111             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
4112                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
4113                                 env->msr_hv_stimer_count[j]);
4114             }
4115         }
4116         if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
4117             uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
4118 
4119             kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
4120             kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
4121             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
4122             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
4123             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
4124             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
4125             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
4126             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
4127             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
4128             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
4129             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
4130             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
4131             for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
4132                 /* The CPU GPs if we write to a bit above the physical limit of
4133                  * the host CPU (and KVM emulates that)
4134                  */
4135                 uint64_t mask = env->mtrr_var[i].mask;
4136                 mask &= phys_mask;
4137 
4138                 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
4139                                   env->mtrr_var[i].base);
4140                 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
4141             }
4142         }
4143         if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
4144             int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
4145                                                     0x14, 1, R_EAX) & 0x7;
4146 
4147             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
4148                             env->msr_rtit_ctrl);
4149             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
4150                             env->msr_rtit_status);
4151             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
4152                             env->msr_rtit_output_base);
4153             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
4154                             env->msr_rtit_output_mask);
4155             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
4156                             env->msr_rtit_cr3_match);
4157             for (i = 0; i < addr_num; i++) {
4158                 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
4159                             env->msr_rtit_addrs[i]);
4160             }
4161         }
4162 
4163         if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
4164             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
4165                               env->msr_ia32_sgxlepubkeyhash[0]);
4166             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
4167                               env->msr_ia32_sgxlepubkeyhash[1]);
4168             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
4169                               env->msr_ia32_sgxlepubkeyhash[2]);
4170             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
4171                               env->msr_ia32_sgxlepubkeyhash[3]);
4172         }
4173 
4174         if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
4175             kvm_msr_entry_add(cpu, MSR_IA32_XFD,
4176                               env->msr_xfd);
4177             kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
4178                               env->msr_xfd_err);
4179         }
4180 
4181         if (kvm_enabled() && cpu->enable_pmu &&
4182             (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
4183             uint64_t depth;
4184             int ret;
4185 
4186             /*
4187              * Only migrate Arch LBR states when the host Arch LBR depth
4188              * equals that of source guest's, this is to avoid mismatch
4189              * of guest/host config for the msr hence avoid unexpected
4190              * misbehavior.
4191              */
4192             ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
4193 
4194             if (ret == 1 && !!depth && depth == env->msr_lbr_depth) {
4195                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl);
4196                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth);
4197 
4198                 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
4199                     if (!env->lbr_records[i].from) {
4200                         continue;
4201                     }
4202                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i,
4203                                       env->lbr_records[i].from);
4204                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i,
4205                                       env->lbr_records[i].to);
4206                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i,
4207                                       env->lbr_records[i].info);
4208                 }
4209             }
4210         }
4211 
4212         /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
4213          *       kvm_put_msr_feature_control. */
4214     }
4215 
4216     if (env->mcg_cap) {
4217         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
4218         kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
4219         if (has_msr_mcg_ext_ctl) {
4220             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
4221         }
4222         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
4223             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
4224         }
4225     }
4226 
4227     return kvm_buf_set_msrs(cpu);
4228 }
4229 
4230 
4231 static int kvm_get_xsave(X86CPU *cpu)
4232 {
4233     CPUX86State *env = &cpu->env;
4234     void *xsave = env->xsave_buf;
4235     unsigned long type;
4236     int ret;
4237 
4238     type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
4239     ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
4240     if (ret < 0) {
4241         return ret;
4242     }
4243     x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
4244 
4245     return 0;
4246 }
4247 
4248 static int kvm_get_xcrs(X86CPU *cpu)
4249 {
4250     CPUX86State *env = &cpu->env;
4251     int i, ret;
4252     struct kvm_xcrs xcrs;
4253 
4254     if (!has_xcrs) {
4255         return 0;
4256     }
4257 
4258     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
4259     if (ret < 0) {
4260         return ret;
4261     }
4262 
4263     for (i = 0; i < xcrs.nr_xcrs; i++) {
4264         /* Only support xcr0 now */
4265         if (xcrs.xcrs[i].xcr == 0) {
4266             env->xcr0 = xcrs.xcrs[i].value;
4267             break;
4268         }
4269     }
4270     return 0;
4271 }
4272 
4273 static int kvm_get_sregs(X86CPU *cpu)
4274 {
4275     CPUX86State *env = &cpu->env;
4276     struct kvm_sregs sregs;
4277     int ret;
4278 
4279     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
4280     if (ret < 0) {
4281         return ret;
4282     }
4283 
4284     /*
4285      * The interrupt_bitmap is ignored because KVM_GET_SREGS is
4286      * always preceded by KVM_GET_VCPU_EVENTS.
4287      */
4288 
4289     get_seg(&env->segs[R_CS], &sregs.cs);
4290     get_seg(&env->segs[R_DS], &sregs.ds);
4291     get_seg(&env->segs[R_ES], &sregs.es);
4292     get_seg(&env->segs[R_FS], &sregs.fs);
4293     get_seg(&env->segs[R_GS], &sregs.gs);
4294     get_seg(&env->segs[R_SS], &sregs.ss);
4295 
4296     get_seg(&env->tr, &sregs.tr);
4297     get_seg(&env->ldt, &sregs.ldt);
4298 
4299     env->idt.limit = sregs.idt.limit;
4300     env->idt.base = sregs.idt.base;
4301     env->gdt.limit = sregs.gdt.limit;
4302     env->gdt.base = sregs.gdt.base;
4303 
4304     env->cr[0] = sregs.cr0;
4305     env->cr[2] = sregs.cr2;
4306     env->cr[3] = sregs.cr3;
4307     env->cr[4] = sregs.cr4;
4308 
4309     env->efer = sregs.efer;
4310     if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
4311         env->cr[0] & CR0_PG_MASK) {
4312         env->efer |= MSR_EFER_LMA;
4313     }
4314 
4315     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
4316     x86_update_hflags(env);
4317 
4318     return 0;
4319 }
4320 
4321 static int kvm_get_sregs2(X86CPU *cpu)
4322 {
4323     CPUX86State *env = &cpu->env;
4324     struct kvm_sregs2 sregs;
4325     int i, ret;
4326 
4327     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
4328     if (ret < 0) {
4329         return ret;
4330     }
4331 
4332     get_seg(&env->segs[R_CS], &sregs.cs);
4333     get_seg(&env->segs[R_DS], &sregs.ds);
4334     get_seg(&env->segs[R_ES], &sregs.es);
4335     get_seg(&env->segs[R_FS], &sregs.fs);
4336     get_seg(&env->segs[R_GS], &sregs.gs);
4337     get_seg(&env->segs[R_SS], &sregs.ss);
4338 
4339     get_seg(&env->tr, &sregs.tr);
4340     get_seg(&env->ldt, &sregs.ldt);
4341 
4342     env->idt.limit = sregs.idt.limit;
4343     env->idt.base = sregs.idt.base;
4344     env->gdt.limit = sregs.gdt.limit;
4345     env->gdt.base = sregs.gdt.base;
4346 
4347     env->cr[0] = sregs.cr0;
4348     env->cr[2] = sregs.cr2;
4349     env->cr[3] = sregs.cr3;
4350     env->cr[4] = sregs.cr4;
4351 
4352     env->efer = sregs.efer;
4353     if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
4354         env->cr[0] & CR0_PG_MASK) {
4355         env->efer |= MSR_EFER_LMA;
4356     }
4357 
4358     env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
4359 
4360     if (env->pdptrs_valid) {
4361         for (i = 0; i < 4; i++) {
4362             env->pdptrs[i] = sregs.pdptrs[i];
4363         }
4364     }
4365 
4366     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
4367     x86_update_hflags(env);
4368 
4369     return 0;
4370 }
4371 
4372 static int kvm_get_msrs(X86CPU *cpu)
4373 {
4374     CPUX86State *env = &cpu->env;
4375     struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
4376     int ret, i;
4377     uint64_t mtrr_top_bits;
4378 
4379     kvm_msr_buf_reset(cpu);
4380 
4381     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
4382     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
4383     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
4384     kvm_msr_entry_add(cpu, MSR_PAT, 0);
4385     if (has_msr_star) {
4386         kvm_msr_entry_add(cpu, MSR_STAR, 0);
4387     }
4388     if (has_msr_hsave_pa) {
4389         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
4390     }
4391     if (has_msr_tsc_aux) {
4392         kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
4393     }
4394     if (has_msr_tsc_adjust) {
4395         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
4396     }
4397     if (has_msr_tsc_deadline) {
4398         kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
4399     }
4400     if (has_msr_misc_enable) {
4401         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
4402     }
4403     if (has_msr_smbase) {
4404         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
4405     }
4406     if (has_msr_smi_count) {
4407         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
4408     }
4409     if (has_msr_feature_control) {
4410         kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
4411     }
4412     if (has_msr_pkrs) {
4413         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
4414     }
4415     if (has_msr_bndcfgs) {
4416         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
4417     }
4418     if (has_msr_xss) {
4419         kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
4420     }
4421     if (has_msr_umwait) {
4422         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
4423     }
4424     if (has_msr_spec_ctrl) {
4425         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
4426     }
4427     if (has_tsc_scale_msr) {
4428         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
4429     }
4430 
4431     if (has_msr_tsx_ctrl) {
4432         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
4433     }
4434     if (has_msr_virt_ssbd) {
4435         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
4436     }
4437     if (!env->tsc_valid) {
4438         kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
4439         env->tsc_valid = !runstate_is_running();
4440     }
4441     if (has_msr_hwcr) {
4442         kvm_msr_entry_add(cpu, MSR_K7_HWCR, 0);
4443     }
4444 
4445 #ifdef TARGET_X86_64
4446     if (lm_capable_kernel) {
4447         kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
4448         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
4449         kvm_msr_entry_add(cpu, MSR_FMASK, 0);
4450         kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
4451         if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) {
4452             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, 0);
4453             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, 0);
4454             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, 0);
4455             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, 0);
4456             kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, 0);
4457             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, 0);
4458             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, 0);
4459             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, 0);
4460             kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, 0);
4461         }
4462     }
4463 #endif
4464     if (env->features[FEAT_KVM] & (CPUID_KVM_CLOCK | CPUID_KVM_CLOCK2)) {
4465         kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
4466         kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
4467     }
4468     if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF_INT) {
4469         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
4470     }
4471     if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF) {
4472         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
4473     }
4474     if (env->features[FEAT_KVM] & CPUID_KVM_PV_EOI) {
4475         kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
4476     }
4477     if (env->features[FEAT_KVM] & CPUID_KVM_STEAL_TIME) {
4478         kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
4479     }
4480     if (env->features[FEAT_KVM] & CPUID_KVM_POLL_CONTROL) {
4481         kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
4482     }
4483     if (has_architectural_pmu_version > 0) {
4484         if (has_architectural_pmu_version > 1) {
4485             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
4486             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
4487             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
4488             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
4489         }
4490         for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
4491             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
4492         }
4493         for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
4494             kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
4495             kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
4496         }
4497     }
4498 
4499     if (env->mcg_cap) {
4500         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
4501         kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
4502         if (has_msr_mcg_ext_ctl) {
4503             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
4504         }
4505         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
4506             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
4507         }
4508     }
4509 
4510     if (has_msr_hv_hypercall) {
4511         kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
4512         kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
4513     }
4514     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
4515         kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
4516     }
4517     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
4518         kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
4519     }
4520     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
4521         kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
4522         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
4523         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
4524     }
4525     if (has_msr_hv_syndbg_options) {
4526         kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0);
4527     }
4528     if (has_msr_hv_crash) {
4529         int j;
4530 
4531         for (j = 0; j < HV_CRASH_PARAMS; j++) {
4532             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
4533         }
4534     }
4535     if (has_msr_hv_runtime) {
4536         kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
4537     }
4538     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
4539         uint32_t msr;
4540 
4541         kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
4542         kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
4543         kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
4544         for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
4545             kvm_msr_entry_add(cpu, msr, 0);
4546         }
4547     }
4548     if (has_msr_hv_stimer) {
4549         uint32_t msr;
4550 
4551         for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
4552              msr++) {
4553             kvm_msr_entry_add(cpu, msr, 0);
4554         }
4555     }
4556     if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
4557         kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
4558         kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
4559         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
4560         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
4561         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
4562         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
4563         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
4564         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
4565         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
4566         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
4567         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
4568         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
4569         for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
4570             kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
4571             kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
4572         }
4573     }
4574 
4575     if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
4576         int addr_num =
4577             kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
4578 
4579         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
4580         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
4581         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
4582         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
4583         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
4584         for (i = 0; i < addr_num; i++) {
4585             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
4586         }
4587     }
4588 
4589     if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
4590         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
4591         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
4592         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
4593         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
4594     }
4595 
4596     if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
4597         kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
4598         kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
4599     }
4600 
4601     if (kvm_enabled() && cpu->enable_pmu &&
4602         (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
4603         uint64_t depth;
4604 
4605         ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
4606         if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) {
4607             kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0);
4608             kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0);
4609 
4610             for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
4611                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0);
4612                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0);
4613                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0);
4614             }
4615         }
4616     }
4617 
4618     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
4619     if (ret < 0) {
4620         return ret;
4621     }
4622 
4623     if (ret < cpu->kvm_msr_buf->nmsrs) {
4624         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
4625         error_report("error: failed to get MSR 0x%" PRIx32,
4626                      (uint32_t)e->index);
4627     }
4628 
4629     assert(ret == cpu->kvm_msr_buf->nmsrs);
4630     /*
4631      * MTRR masks: Each mask consists of 5 parts
4632      * a  10..0: must be zero
4633      * b  11   : valid bit
4634      * c n-1.12: actual mask bits
4635      * d  51..n: reserved must be zero
4636      * e  63.52: reserved must be zero
4637      *
4638      * 'n' is the number of physical bits supported by the CPU and is
4639      * apparently always <= 52.   We know our 'n' but don't know what
4640      * the destinations 'n' is; it might be smaller, in which case
4641      * it masks (c) on loading. It might be larger, in which case
4642      * we fill 'd' so that d..c is consistent irrespetive of the 'n'
4643      * we're migrating to.
4644      */
4645 
4646     if (cpu->fill_mtrr_mask) {
4647         QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
4648         assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
4649         mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
4650     } else {
4651         mtrr_top_bits = 0;
4652     }
4653 
4654     for (i = 0; i < ret; i++) {
4655         uint32_t index = msrs[i].index;
4656         switch (index) {
4657         case MSR_IA32_SYSENTER_CS:
4658             env->sysenter_cs = msrs[i].data;
4659             break;
4660         case MSR_IA32_SYSENTER_ESP:
4661             env->sysenter_esp = msrs[i].data;
4662             break;
4663         case MSR_IA32_SYSENTER_EIP:
4664             env->sysenter_eip = msrs[i].data;
4665             break;
4666         case MSR_PAT:
4667             env->pat = msrs[i].data;
4668             break;
4669         case MSR_STAR:
4670             env->star = msrs[i].data;
4671             break;
4672 #ifdef TARGET_X86_64
4673         case MSR_CSTAR:
4674             env->cstar = msrs[i].data;
4675             break;
4676         case MSR_KERNELGSBASE:
4677             env->kernelgsbase = msrs[i].data;
4678             break;
4679         case MSR_FMASK:
4680             env->fmask = msrs[i].data;
4681             break;
4682         case MSR_LSTAR:
4683             env->lstar = msrs[i].data;
4684             break;
4685         case MSR_IA32_FRED_RSP0:
4686             env->fred_rsp0 = msrs[i].data;
4687             break;
4688         case MSR_IA32_FRED_RSP1:
4689             env->fred_rsp1 = msrs[i].data;
4690             break;
4691         case MSR_IA32_FRED_RSP2:
4692             env->fred_rsp2 = msrs[i].data;
4693             break;
4694         case MSR_IA32_FRED_RSP3:
4695             env->fred_rsp3 = msrs[i].data;
4696             break;
4697         case MSR_IA32_FRED_STKLVLS:
4698             env->fred_stklvls = msrs[i].data;
4699             break;
4700         case MSR_IA32_FRED_SSP1:
4701             env->fred_ssp1 = msrs[i].data;
4702             break;
4703         case MSR_IA32_FRED_SSP2:
4704             env->fred_ssp2 = msrs[i].data;
4705             break;
4706         case MSR_IA32_FRED_SSP3:
4707             env->fred_ssp3 = msrs[i].data;
4708             break;
4709         case MSR_IA32_FRED_CONFIG:
4710             env->fred_config = msrs[i].data;
4711             break;
4712 #endif
4713         case MSR_IA32_TSC:
4714             env->tsc = msrs[i].data;
4715             break;
4716         case MSR_TSC_AUX:
4717             env->tsc_aux = msrs[i].data;
4718             break;
4719         case MSR_TSC_ADJUST:
4720             env->tsc_adjust = msrs[i].data;
4721             break;
4722         case MSR_IA32_TSCDEADLINE:
4723             env->tsc_deadline = msrs[i].data;
4724             break;
4725         case MSR_VM_HSAVE_PA:
4726             env->vm_hsave = msrs[i].data;
4727             break;
4728         case MSR_KVM_SYSTEM_TIME:
4729             env->system_time_msr = msrs[i].data;
4730             break;
4731         case MSR_KVM_WALL_CLOCK:
4732             env->wall_clock_msr = msrs[i].data;
4733             break;
4734         case MSR_MCG_STATUS:
4735             env->mcg_status = msrs[i].data;
4736             break;
4737         case MSR_MCG_CTL:
4738             env->mcg_ctl = msrs[i].data;
4739             break;
4740         case MSR_MCG_EXT_CTL:
4741             env->mcg_ext_ctl = msrs[i].data;
4742             break;
4743         case MSR_IA32_MISC_ENABLE:
4744             env->msr_ia32_misc_enable = msrs[i].data;
4745             break;
4746         case MSR_IA32_SMBASE:
4747             env->smbase = msrs[i].data;
4748             break;
4749         case MSR_SMI_COUNT:
4750             env->msr_smi_count = msrs[i].data;
4751             break;
4752         case MSR_IA32_FEATURE_CONTROL:
4753             env->msr_ia32_feature_control = msrs[i].data;
4754             break;
4755         case MSR_IA32_BNDCFGS:
4756             env->msr_bndcfgs = msrs[i].data;
4757             break;
4758         case MSR_IA32_XSS:
4759             env->xss = msrs[i].data;
4760             break;
4761         case MSR_IA32_UMWAIT_CONTROL:
4762             env->umwait = msrs[i].data;
4763             break;
4764         case MSR_IA32_PKRS:
4765             env->pkrs = msrs[i].data;
4766             break;
4767         default:
4768             if (msrs[i].index >= MSR_MC0_CTL &&
4769                 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
4770                 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
4771             }
4772             break;
4773         case MSR_KVM_ASYNC_PF_EN:
4774             env->async_pf_en_msr = msrs[i].data;
4775             break;
4776         case MSR_KVM_ASYNC_PF_INT:
4777             env->async_pf_int_msr = msrs[i].data;
4778             break;
4779         case MSR_KVM_PV_EOI_EN:
4780             env->pv_eoi_en_msr = msrs[i].data;
4781             break;
4782         case MSR_KVM_STEAL_TIME:
4783             env->steal_time_msr = msrs[i].data;
4784             break;
4785         case MSR_KVM_POLL_CONTROL: {
4786             env->poll_control_msr = msrs[i].data;
4787             break;
4788         }
4789         case MSR_CORE_PERF_FIXED_CTR_CTRL:
4790             env->msr_fixed_ctr_ctrl = msrs[i].data;
4791             break;
4792         case MSR_CORE_PERF_GLOBAL_CTRL:
4793             env->msr_global_ctrl = msrs[i].data;
4794             break;
4795         case MSR_CORE_PERF_GLOBAL_STATUS:
4796             env->msr_global_status = msrs[i].data;
4797             break;
4798         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
4799             env->msr_global_ovf_ctrl = msrs[i].data;
4800             break;
4801         case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
4802             env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
4803             break;
4804         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
4805             env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
4806             break;
4807         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
4808             env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
4809             break;
4810         case HV_X64_MSR_HYPERCALL:
4811             env->msr_hv_hypercall = msrs[i].data;
4812             break;
4813         case HV_X64_MSR_GUEST_OS_ID:
4814             env->msr_hv_guest_os_id = msrs[i].data;
4815             break;
4816         case HV_X64_MSR_APIC_ASSIST_PAGE:
4817             env->msr_hv_vapic = msrs[i].data;
4818             break;
4819         case HV_X64_MSR_REFERENCE_TSC:
4820             env->msr_hv_tsc = msrs[i].data;
4821             break;
4822         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4823             env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
4824             break;
4825         case HV_X64_MSR_VP_RUNTIME:
4826             env->msr_hv_runtime = msrs[i].data;
4827             break;
4828         case HV_X64_MSR_SCONTROL:
4829             env->msr_hv_synic_control = msrs[i].data;
4830             break;
4831         case HV_X64_MSR_SIEFP:
4832             env->msr_hv_synic_evt_page = msrs[i].data;
4833             break;
4834         case HV_X64_MSR_SIMP:
4835             env->msr_hv_synic_msg_page = msrs[i].data;
4836             break;
4837         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
4838             env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
4839             break;
4840         case HV_X64_MSR_STIMER0_CONFIG:
4841         case HV_X64_MSR_STIMER1_CONFIG:
4842         case HV_X64_MSR_STIMER2_CONFIG:
4843         case HV_X64_MSR_STIMER3_CONFIG:
4844             env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
4845                                 msrs[i].data;
4846             break;
4847         case HV_X64_MSR_STIMER0_COUNT:
4848         case HV_X64_MSR_STIMER1_COUNT:
4849         case HV_X64_MSR_STIMER2_COUNT:
4850         case HV_X64_MSR_STIMER3_COUNT:
4851             env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
4852                                 msrs[i].data;
4853             break;
4854         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4855             env->msr_hv_reenlightenment_control = msrs[i].data;
4856             break;
4857         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4858             env->msr_hv_tsc_emulation_control = msrs[i].data;
4859             break;
4860         case HV_X64_MSR_TSC_EMULATION_STATUS:
4861             env->msr_hv_tsc_emulation_status = msrs[i].data;
4862             break;
4863         case HV_X64_MSR_SYNDBG_OPTIONS:
4864             env->msr_hv_syndbg_options = msrs[i].data;
4865             break;
4866         case MSR_MTRRdefType:
4867             env->mtrr_deftype = msrs[i].data;
4868             break;
4869         case MSR_MTRRfix64K_00000:
4870             env->mtrr_fixed[0] = msrs[i].data;
4871             break;
4872         case MSR_MTRRfix16K_80000:
4873             env->mtrr_fixed[1] = msrs[i].data;
4874             break;
4875         case MSR_MTRRfix16K_A0000:
4876             env->mtrr_fixed[2] = msrs[i].data;
4877             break;
4878         case MSR_MTRRfix4K_C0000:
4879             env->mtrr_fixed[3] = msrs[i].data;
4880             break;
4881         case MSR_MTRRfix4K_C8000:
4882             env->mtrr_fixed[4] = msrs[i].data;
4883             break;
4884         case MSR_MTRRfix4K_D0000:
4885             env->mtrr_fixed[5] = msrs[i].data;
4886             break;
4887         case MSR_MTRRfix4K_D8000:
4888             env->mtrr_fixed[6] = msrs[i].data;
4889             break;
4890         case MSR_MTRRfix4K_E0000:
4891             env->mtrr_fixed[7] = msrs[i].data;
4892             break;
4893         case MSR_MTRRfix4K_E8000:
4894             env->mtrr_fixed[8] = msrs[i].data;
4895             break;
4896         case MSR_MTRRfix4K_F0000:
4897             env->mtrr_fixed[9] = msrs[i].data;
4898             break;
4899         case MSR_MTRRfix4K_F8000:
4900             env->mtrr_fixed[10] = msrs[i].data;
4901             break;
4902         case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
4903             if (index & 1) {
4904                 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
4905                                                                mtrr_top_bits;
4906             } else {
4907                 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
4908             }
4909             break;
4910         case MSR_IA32_SPEC_CTRL:
4911             env->spec_ctrl = msrs[i].data;
4912             break;
4913         case MSR_AMD64_TSC_RATIO:
4914             env->amd_tsc_scale_msr = msrs[i].data;
4915             break;
4916         case MSR_IA32_TSX_CTRL:
4917             env->tsx_ctrl = msrs[i].data;
4918             break;
4919         case MSR_VIRT_SSBD:
4920             env->virt_ssbd = msrs[i].data;
4921             break;
4922         case MSR_IA32_RTIT_CTL:
4923             env->msr_rtit_ctrl = msrs[i].data;
4924             break;
4925         case MSR_IA32_RTIT_STATUS:
4926             env->msr_rtit_status = msrs[i].data;
4927             break;
4928         case MSR_IA32_RTIT_OUTPUT_BASE:
4929             env->msr_rtit_output_base = msrs[i].data;
4930             break;
4931         case MSR_IA32_RTIT_OUTPUT_MASK:
4932             env->msr_rtit_output_mask = msrs[i].data;
4933             break;
4934         case MSR_IA32_RTIT_CR3_MATCH:
4935             env->msr_rtit_cr3_match = msrs[i].data;
4936             break;
4937         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
4938             env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
4939             break;
4940         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
4941             env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
4942                            msrs[i].data;
4943             break;
4944         case MSR_IA32_XFD:
4945             env->msr_xfd = msrs[i].data;
4946             break;
4947         case MSR_IA32_XFD_ERR:
4948             env->msr_xfd_err = msrs[i].data;
4949             break;
4950         case MSR_ARCH_LBR_CTL:
4951             env->msr_lbr_ctl = msrs[i].data;
4952             break;
4953         case MSR_ARCH_LBR_DEPTH:
4954             env->msr_lbr_depth = msrs[i].data;
4955             break;
4956         case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31:
4957             env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data;
4958             break;
4959         case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31:
4960             env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data;
4961             break;
4962         case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31:
4963             env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data;
4964             break;
4965         case MSR_K7_HWCR:
4966             env->msr_hwcr = msrs[i].data;
4967             break;
4968         }
4969     }
4970 
4971     return 0;
4972 }
4973 
4974 static int kvm_put_mp_state(X86CPU *cpu)
4975 {
4976     struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4977 
4978     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4979 }
4980 
4981 static int kvm_get_mp_state(X86CPU *cpu)
4982 {
4983     CPUState *cs = CPU(cpu);
4984     CPUX86State *env = &cpu->env;
4985     struct kvm_mp_state mp_state;
4986     int ret;
4987 
4988     ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
4989     if (ret < 0) {
4990         return ret;
4991     }
4992     env->mp_state = mp_state.mp_state;
4993     if (kvm_irqchip_in_kernel()) {
4994         cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
4995     }
4996     return 0;
4997 }
4998 
4999 static int kvm_get_apic(X86CPU *cpu)
5000 {
5001     DeviceState *apic = cpu->apic_state;
5002     struct kvm_lapic_state kapic;
5003     int ret;
5004 
5005     if (apic && kvm_irqchip_in_kernel()) {
5006         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
5007         if (ret < 0) {
5008             return ret;
5009         }
5010 
5011         kvm_get_apic_state(apic, &kapic);
5012     }
5013     return 0;
5014 }
5015 
5016 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
5017 {
5018     CPUState *cs = CPU(cpu);
5019     CPUX86State *env = &cpu->env;
5020     struct kvm_vcpu_events events = {};
5021 
5022     events.flags = 0;
5023 
5024     if (has_exception_payload) {
5025         events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5026         events.exception.pending = env->exception_pending;
5027         events.exception_has_payload = env->exception_has_payload;
5028         events.exception_payload = env->exception_payload;
5029     }
5030     events.exception.nr = env->exception_nr;
5031     events.exception.injected = env->exception_injected;
5032     events.exception.has_error_code = env->has_error_code;
5033     events.exception.error_code = env->error_code;
5034 
5035     events.interrupt.injected = (env->interrupt_injected >= 0);
5036     events.interrupt.nr = env->interrupt_injected;
5037     events.interrupt.soft = env->soft_interrupt;
5038 
5039     events.nmi.injected = env->nmi_injected;
5040     events.nmi.pending = env->nmi_pending;
5041     events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
5042 
5043     events.sipi_vector = env->sipi_vector;
5044 
5045     if (has_msr_smbase) {
5046         events.flags |= KVM_VCPUEVENT_VALID_SMM;
5047         events.smi.smm = !!(env->hflags & HF_SMM_MASK);
5048         events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
5049         if (kvm_irqchip_in_kernel()) {
5050             /* As soon as these are moved to the kernel, remove them
5051              * from cs->interrupt_request.
5052              */
5053             events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
5054             events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
5055             cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
5056         } else {
5057             /* Keep these in cs->interrupt_request.  */
5058             events.smi.pending = 0;
5059             events.smi.latched_init = 0;
5060         }
5061     }
5062 
5063     if (level >= KVM_PUT_RESET_STATE) {
5064         events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
5065         if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
5066             events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
5067         }
5068     }
5069 
5070     if (has_triple_fault_event) {
5071         events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5072         events.triple_fault.pending = env->triple_fault_pending;
5073     }
5074 
5075     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
5076 }
5077 
5078 static int kvm_get_vcpu_events(X86CPU *cpu)
5079 {
5080     CPUX86State *env = &cpu->env;
5081     struct kvm_vcpu_events events;
5082     int ret;
5083 
5084     memset(&events, 0, sizeof(events));
5085     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
5086     if (ret < 0) {
5087        return ret;
5088     }
5089 
5090     if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5091         env->exception_pending = events.exception.pending;
5092         env->exception_has_payload = events.exception_has_payload;
5093         env->exception_payload = events.exception_payload;
5094     } else {
5095         env->exception_pending = 0;
5096         env->exception_has_payload = false;
5097     }
5098     env->exception_injected = events.exception.injected;
5099     env->exception_nr =
5100         (env->exception_pending || env->exception_injected) ?
5101         events.exception.nr : -1;
5102     env->has_error_code = events.exception.has_error_code;
5103     env->error_code = events.exception.error_code;
5104 
5105     env->interrupt_injected =
5106         events.interrupt.injected ? events.interrupt.nr : -1;
5107     env->soft_interrupt = events.interrupt.soft;
5108 
5109     env->nmi_injected = events.nmi.injected;
5110     env->nmi_pending = events.nmi.pending;
5111     if (events.nmi.masked) {
5112         env->hflags2 |= HF2_NMI_MASK;
5113     } else {
5114         env->hflags2 &= ~HF2_NMI_MASK;
5115     }
5116 
5117     if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
5118         if (events.smi.smm) {
5119             env->hflags |= HF_SMM_MASK;
5120         } else {
5121             env->hflags &= ~HF_SMM_MASK;
5122         }
5123         if (events.smi.pending) {
5124             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
5125         } else {
5126             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
5127         }
5128         if (events.smi.smm_inside_nmi) {
5129             env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
5130         } else {
5131             env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
5132         }
5133         if (events.smi.latched_init) {
5134             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
5135         } else {
5136             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
5137         }
5138     }
5139 
5140     if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5141         env->triple_fault_pending = events.triple_fault.pending;
5142     }
5143 
5144     env->sipi_vector = events.sipi_vector;
5145 
5146     return 0;
5147 }
5148 
5149 static int kvm_put_debugregs(X86CPU *cpu)
5150 {
5151     CPUX86State *env = &cpu->env;
5152     struct kvm_debugregs dbgregs;
5153     int i;
5154 
5155     memset(&dbgregs, 0, sizeof(dbgregs));
5156     for (i = 0; i < 4; i++) {
5157         dbgregs.db[i] = env->dr[i];
5158     }
5159     dbgregs.dr6 = env->dr[6];
5160     dbgregs.dr7 = env->dr[7];
5161     dbgregs.flags = 0;
5162 
5163     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
5164 }
5165 
5166 static int kvm_get_debugregs(X86CPU *cpu)
5167 {
5168     CPUX86State *env = &cpu->env;
5169     struct kvm_debugregs dbgregs;
5170     int i, ret;
5171 
5172     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
5173     if (ret < 0) {
5174         return ret;
5175     }
5176     for (i = 0; i < 4; i++) {
5177         env->dr[i] = dbgregs.db[i];
5178     }
5179     env->dr[4] = env->dr[6] = dbgregs.dr6;
5180     env->dr[5] = env->dr[7] = dbgregs.dr7;
5181 
5182     return 0;
5183 }
5184 
5185 static int kvm_put_nested_state(X86CPU *cpu)
5186 {
5187     CPUX86State *env = &cpu->env;
5188     int max_nested_state_len = kvm_max_nested_state_length();
5189 
5190     if (!env->nested_state) {
5191         return 0;
5192     }
5193 
5194     /*
5195      * Copy flags that are affected by reset from env->hflags and env->hflags2.
5196      */
5197     if (env->hflags & HF_GUEST_MASK) {
5198         env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
5199     } else {
5200         env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
5201     }
5202 
5203     /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
5204     if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
5205         env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
5206     } else {
5207         env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
5208     }
5209 
5210     assert(env->nested_state->size <= max_nested_state_len);
5211     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
5212 }
5213 
5214 static int kvm_get_nested_state(X86CPU *cpu)
5215 {
5216     CPUX86State *env = &cpu->env;
5217     int max_nested_state_len = kvm_max_nested_state_length();
5218     int ret;
5219 
5220     if (!env->nested_state) {
5221         return 0;
5222     }
5223 
5224     /*
5225      * It is possible that migration restored a smaller size into
5226      * nested_state->hdr.size than what our kernel support.
5227      * We preserve migration origin nested_state->hdr.size for
5228      * call to KVM_SET_NESTED_STATE but wish that our next call
5229      * to KVM_GET_NESTED_STATE will use max size our kernel support.
5230      */
5231     env->nested_state->size = max_nested_state_len;
5232 
5233     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
5234     if (ret < 0) {
5235         return ret;
5236     }
5237 
5238     /*
5239      * Copy flags that are affected by reset to env->hflags and env->hflags2.
5240      */
5241     if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
5242         env->hflags |= HF_GUEST_MASK;
5243     } else {
5244         env->hflags &= ~HF_GUEST_MASK;
5245     }
5246 
5247     /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
5248     if (cpu_has_svm(env)) {
5249         if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
5250             env->hflags2 |= HF2_GIF_MASK;
5251         } else {
5252             env->hflags2 &= ~HF2_GIF_MASK;
5253         }
5254     }
5255 
5256     return ret;
5257 }
5258 
5259 int kvm_arch_put_registers(CPUState *cpu, int level, Error **errp)
5260 {
5261     X86CPU *x86_cpu = X86_CPU(cpu);
5262     int ret;
5263 
5264     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
5265 
5266     /*
5267      * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX
5268      * root operation upon vCPU reset. kvm_put_msr_feature_control() should also
5269      * precede kvm_put_nested_state() when 'real' nested state is set.
5270      */
5271     if (level >= KVM_PUT_RESET_STATE) {
5272         ret = kvm_put_msr_feature_control(x86_cpu);
5273         if (ret < 0) {
5274             error_setg_errno(errp, -ret, "Failed to set feature control MSR");
5275             return ret;
5276         }
5277     }
5278 
5279     /* must be before kvm_put_nested_state so that EFER.SVME is set */
5280     ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
5281     if (ret < 0) {
5282         error_setg_errno(errp, -ret, "Failed to set special registers");
5283         return ret;
5284     }
5285 
5286     if (level >= KVM_PUT_RESET_STATE) {
5287         ret = kvm_put_nested_state(x86_cpu);
5288         if (ret < 0) {
5289             error_setg_errno(errp, -ret, "Failed to set nested state");
5290             return ret;
5291         }
5292     }
5293 
5294     if (level == KVM_PUT_FULL_STATE) {
5295         /* We don't check for kvm_arch_set_tsc_khz() errors here,
5296          * because TSC frequency mismatch shouldn't abort migration,
5297          * unless the user explicitly asked for a more strict TSC
5298          * setting (e.g. using an explicit "tsc-freq" option).
5299          */
5300         kvm_arch_set_tsc_khz(cpu);
5301     }
5302 
5303 #ifdef CONFIG_XEN_EMU
5304     if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) {
5305         ret = kvm_put_xen_state(cpu);
5306         if (ret < 0) {
5307             error_setg_errno(errp, -ret, "Failed to set Xen state");
5308             return ret;
5309         }
5310     }
5311 #endif
5312 
5313     ret = kvm_getput_regs(x86_cpu, 1);
5314     if (ret < 0) {
5315         error_setg_errno(errp, -ret, "Failed to set general purpose registers");
5316         return ret;
5317     }
5318     ret = kvm_put_xsave(x86_cpu);
5319     if (ret < 0) {
5320         error_setg_errno(errp, -ret, "Failed to set XSAVE");
5321         return ret;
5322     }
5323     ret = kvm_put_xcrs(x86_cpu);
5324     if (ret < 0) {
5325         error_setg_errno(errp, -ret, "Failed to set XCRs");
5326         return ret;
5327     }
5328     ret = kvm_put_msrs(x86_cpu, level);
5329     if (ret < 0) {
5330         error_setg_errno(errp, -ret, "Failed to set MSRs");
5331         return ret;
5332     }
5333     ret = kvm_put_vcpu_events(x86_cpu, level);
5334     if (ret < 0) {
5335         error_setg_errno(errp, -ret, "Failed to set vCPU events");
5336         return ret;
5337     }
5338     if (level >= KVM_PUT_RESET_STATE) {
5339         ret = kvm_put_mp_state(x86_cpu);
5340         if (ret < 0) {
5341             error_setg_errno(errp, -ret, "Failed to set MP state");
5342             return ret;
5343         }
5344     }
5345 
5346     ret = kvm_put_tscdeadline_msr(x86_cpu);
5347     if (ret < 0) {
5348         error_setg_errno(errp, -ret, "Failed to set TSC deadline MSR");
5349         return ret;
5350     }
5351     ret = kvm_put_debugregs(x86_cpu);
5352     if (ret < 0) {
5353         error_setg_errno(errp, -ret, "Failed to set debug registers");
5354         return ret;
5355     }
5356     return 0;
5357 }
5358 
5359 int kvm_arch_get_registers(CPUState *cs, Error **errp)
5360 {
5361     X86CPU *cpu = X86_CPU(cs);
5362     int ret;
5363 
5364     assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
5365 
5366     ret = kvm_get_vcpu_events(cpu);
5367     if (ret < 0) {
5368         error_setg_errno(errp, -ret, "Failed to get vCPU events");
5369         goto out;
5370     }
5371     /*
5372      * KVM_GET_MPSTATE can modify CS and RIP, call it before
5373      * KVM_GET_REGS and KVM_GET_SREGS.
5374      */
5375     ret = kvm_get_mp_state(cpu);
5376     if (ret < 0) {
5377         error_setg_errno(errp, -ret, "Failed to get MP state");
5378         goto out;
5379     }
5380     ret = kvm_getput_regs(cpu, 0);
5381     if (ret < 0) {
5382         error_setg_errno(errp, -ret, "Failed to get general purpose registers");
5383         goto out;
5384     }
5385     ret = kvm_get_xsave(cpu);
5386     if (ret < 0) {
5387         error_setg_errno(errp, -ret, "Failed to get XSAVE");
5388         goto out;
5389     }
5390     ret = kvm_get_xcrs(cpu);
5391     if (ret < 0) {
5392         error_setg_errno(errp, -ret, "Failed to get XCRs");
5393         goto out;
5394     }
5395     ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
5396     if (ret < 0) {
5397         error_setg_errno(errp, -ret, "Failed to get special registers");
5398         goto out;
5399     }
5400     ret = kvm_get_msrs(cpu);
5401     if (ret < 0) {
5402         error_setg_errno(errp, -ret, "Failed to get MSRs");
5403         goto out;
5404     }
5405     ret = kvm_get_apic(cpu);
5406     if (ret < 0) {
5407         error_setg_errno(errp, -ret, "Failed to get APIC");
5408         goto out;
5409     }
5410     ret = kvm_get_debugregs(cpu);
5411     if (ret < 0) {
5412         error_setg_errno(errp, -ret, "Failed to get debug registers");
5413         goto out;
5414     }
5415     ret = kvm_get_nested_state(cpu);
5416     if (ret < 0) {
5417         error_setg_errno(errp, -ret, "Failed to get nested state");
5418         goto out;
5419     }
5420 #ifdef CONFIG_XEN_EMU
5421     if (xen_mode == XEN_EMULATE) {
5422         ret = kvm_get_xen_state(cs);
5423         if (ret < 0) {
5424             error_setg_errno(errp, -ret, "Failed to get Xen state");
5425             goto out;
5426         }
5427     }
5428 #endif
5429     ret = 0;
5430  out:
5431     cpu_sync_bndcs_hflags(&cpu->env);
5432     return ret;
5433 }
5434 
5435 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
5436 {
5437     X86CPU *x86_cpu = X86_CPU(cpu);
5438     CPUX86State *env = &x86_cpu->env;
5439     int ret;
5440 
5441     /* Inject NMI */
5442     if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
5443         if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
5444             bql_lock();
5445             cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
5446             bql_unlock();
5447             DPRINTF("injected NMI\n");
5448             ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
5449             if (ret < 0) {
5450                 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
5451                         strerror(-ret));
5452             }
5453         }
5454         if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
5455             bql_lock();
5456             cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
5457             bql_unlock();
5458             DPRINTF("injected SMI\n");
5459             ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
5460             if (ret < 0) {
5461                 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
5462                         strerror(-ret));
5463             }
5464         }
5465     }
5466 
5467     if (!kvm_pic_in_kernel()) {
5468         bql_lock();
5469     }
5470 
5471     /* Force the VCPU out of its inner loop to process any INIT requests
5472      * or (for userspace APIC, but it is cheap to combine the checks here)
5473      * pending TPR access reports.
5474      */
5475     if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
5476         if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
5477             !(env->hflags & HF_SMM_MASK)) {
5478             cpu->exit_request = 1;
5479         }
5480         if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
5481             cpu->exit_request = 1;
5482         }
5483     }
5484 
5485     if (!kvm_pic_in_kernel()) {
5486         /* Try to inject an interrupt if the guest can accept it */
5487         if (run->ready_for_interrupt_injection &&
5488             (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
5489             (env->eflags & IF_MASK)) {
5490             int irq;
5491 
5492             cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
5493             irq = cpu_get_pic_interrupt(env);
5494             if (irq >= 0) {
5495                 struct kvm_interrupt intr;
5496 
5497                 intr.irq = irq;
5498                 DPRINTF("injected interrupt %d\n", irq);
5499                 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
5500                 if (ret < 0) {
5501                     fprintf(stderr,
5502                             "KVM: injection failed, interrupt lost (%s)\n",
5503                             strerror(-ret));
5504                 }
5505             }
5506         }
5507 
5508         /* If we have an interrupt but the guest is not ready to receive an
5509          * interrupt, request an interrupt window exit.  This will
5510          * cause a return to userspace as soon as the guest is ready to
5511          * receive interrupts. */
5512         if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
5513             run->request_interrupt_window = 1;
5514         } else {
5515             run->request_interrupt_window = 0;
5516         }
5517 
5518         DPRINTF("setting tpr\n");
5519         run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
5520 
5521         bql_unlock();
5522     }
5523 }
5524 
5525 static void kvm_rate_limit_on_bus_lock(void)
5526 {
5527     uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
5528 
5529     if (delay_ns) {
5530         g_usleep(delay_ns / SCALE_US);
5531     }
5532 }
5533 
5534 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
5535 {
5536     X86CPU *x86_cpu = X86_CPU(cpu);
5537     CPUX86State *env = &x86_cpu->env;
5538 
5539     if (run->flags & KVM_RUN_X86_SMM) {
5540         env->hflags |= HF_SMM_MASK;
5541     } else {
5542         env->hflags &= ~HF_SMM_MASK;
5543     }
5544     if (run->if_flag) {
5545         env->eflags |= IF_MASK;
5546     } else {
5547         env->eflags &= ~IF_MASK;
5548     }
5549     if (run->flags & KVM_RUN_X86_BUS_LOCK) {
5550         kvm_rate_limit_on_bus_lock();
5551     }
5552 
5553 #ifdef CONFIG_XEN_EMU
5554     /*
5555      * If the callback is asserted as a GSI (or PCI INTx) then check if
5556      * vcpu_info->evtchn_upcall_pending has been cleared, and deassert
5557      * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC
5558      * EOI and only resample then, exactly how the VFIO eventfd pairs
5559      * are designed to work for level triggered interrupts.
5560      */
5561     if (x86_cpu->env.xen_callback_asserted) {
5562         kvm_xen_maybe_deassert_callback(cpu);
5563     }
5564 #endif
5565 
5566     /* We need to protect the apic state against concurrent accesses from
5567      * different threads in case the userspace irqchip is used. */
5568     if (!kvm_irqchip_in_kernel()) {
5569         bql_lock();
5570     }
5571     cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
5572     cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
5573     if (!kvm_irqchip_in_kernel()) {
5574         bql_unlock();
5575     }
5576     return cpu_get_mem_attrs(env);
5577 }
5578 
5579 int kvm_arch_process_async_events(CPUState *cs)
5580 {
5581     X86CPU *cpu = X86_CPU(cs);
5582     CPUX86State *env = &cpu->env;
5583 
5584     if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
5585         /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
5586         assert(env->mcg_cap);
5587 
5588         cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
5589 
5590         kvm_cpu_synchronize_state(cs);
5591 
5592         if (env->exception_nr == EXCP08_DBLE) {
5593             /* this means triple fault */
5594             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
5595             cs->exit_request = 1;
5596             return 0;
5597         }
5598         kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
5599         env->has_error_code = 0;
5600 
5601         cs->halted = 0;
5602         if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
5603             env->mp_state = KVM_MP_STATE_RUNNABLE;
5604         }
5605     }
5606 
5607     if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
5608         !(env->hflags & HF_SMM_MASK)) {
5609         kvm_cpu_synchronize_state(cs);
5610         do_cpu_init(cpu);
5611     }
5612 
5613     if (kvm_irqchip_in_kernel()) {
5614         return 0;
5615     }
5616 
5617     if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
5618         cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
5619         apic_poll_irq(cpu->apic_state);
5620     }
5621     if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5622          (env->eflags & IF_MASK)) ||
5623         (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5624         cs->halted = 0;
5625     }
5626     if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
5627         kvm_cpu_synchronize_state(cs);
5628         do_cpu_sipi(cpu);
5629     }
5630     if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
5631         cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
5632         kvm_cpu_synchronize_state(cs);
5633         apic_handle_tpr_access_report(cpu->apic_state, env->eip,
5634                                       env->tpr_access_type);
5635     }
5636 
5637     return cs->halted;
5638 }
5639 
5640 static int kvm_handle_halt(X86CPU *cpu)
5641 {
5642     CPUState *cs = CPU(cpu);
5643     CPUX86State *env = &cpu->env;
5644 
5645     if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5646           (env->eflags & IF_MASK)) &&
5647         !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5648         cs->halted = 1;
5649         return EXCP_HLT;
5650     }
5651 
5652     return 0;
5653 }
5654 
5655 static int kvm_handle_tpr_access(X86CPU *cpu)
5656 {
5657     CPUState *cs = CPU(cpu);
5658     struct kvm_run *run = cs->kvm_run;
5659 
5660     apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
5661                                   run->tpr_access.is_write ? TPR_ACCESS_WRITE
5662                                                            : TPR_ACCESS_READ);
5663     return 1;
5664 }
5665 
5666 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5667 {
5668     static const uint8_t int3 = 0xcc;
5669 
5670     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
5671         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
5672         return -EINVAL;
5673     }
5674     return 0;
5675 }
5676 
5677 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5678 {
5679     uint8_t int3;
5680 
5681     if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
5682         return -EINVAL;
5683     }
5684     if (int3 != 0xcc) {
5685         return 0;
5686     }
5687     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
5688         return -EINVAL;
5689     }
5690     return 0;
5691 }
5692 
5693 static struct {
5694     target_ulong addr;
5695     int len;
5696     int type;
5697 } hw_breakpoint[4];
5698 
5699 static int nb_hw_breakpoint;
5700 
5701 static int find_hw_breakpoint(target_ulong addr, int len, int type)
5702 {
5703     int n;
5704 
5705     for (n = 0; n < nb_hw_breakpoint; n++) {
5706         if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
5707             (hw_breakpoint[n].len == len || len == -1)) {
5708             return n;
5709         }
5710     }
5711     return -1;
5712 }
5713 
5714 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
5715 {
5716     switch (type) {
5717     case GDB_BREAKPOINT_HW:
5718         len = 1;
5719         break;
5720     case GDB_WATCHPOINT_WRITE:
5721     case GDB_WATCHPOINT_ACCESS:
5722         switch (len) {
5723         case 1:
5724             break;
5725         case 2:
5726         case 4:
5727         case 8:
5728             if (addr & (len - 1)) {
5729                 return -EINVAL;
5730             }
5731             break;
5732         default:
5733             return -EINVAL;
5734         }
5735         break;
5736     default:
5737         return -ENOSYS;
5738     }
5739 
5740     if (nb_hw_breakpoint == 4) {
5741         return -ENOBUFS;
5742     }
5743     if (find_hw_breakpoint(addr, len, type) >= 0) {
5744         return -EEXIST;
5745     }
5746     hw_breakpoint[nb_hw_breakpoint].addr = addr;
5747     hw_breakpoint[nb_hw_breakpoint].len = len;
5748     hw_breakpoint[nb_hw_breakpoint].type = type;
5749     nb_hw_breakpoint++;
5750 
5751     return 0;
5752 }
5753 
5754 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
5755 {
5756     int n;
5757 
5758     n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
5759     if (n < 0) {
5760         return -ENOENT;
5761     }
5762     nb_hw_breakpoint--;
5763     hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
5764 
5765     return 0;
5766 }
5767 
5768 void kvm_arch_remove_all_hw_breakpoints(void)
5769 {
5770     nb_hw_breakpoint = 0;
5771 }
5772 
5773 static CPUWatchpoint hw_watchpoint;
5774 
5775 static int kvm_handle_debug(X86CPU *cpu,
5776                             struct kvm_debug_exit_arch *arch_info)
5777 {
5778     CPUState *cs = CPU(cpu);
5779     CPUX86State *env = &cpu->env;
5780     int ret = 0;
5781     int n;
5782 
5783     if (arch_info->exception == EXCP01_DB) {
5784         if (arch_info->dr6 & DR6_BS) {
5785             if (cs->singlestep_enabled) {
5786                 ret = EXCP_DEBUG;
5787             }
5788         } else {
5789             for (n = 0; n < 4; n++) {
5790                 if (arch_info->dr6 & (1 << n)) {
5791                     switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
5792                     case 0x0:
5793                         ret = EXCP_DEBUG;
5794                         break;
5795                     case 0x1:
5796                         ret = EXCP_DEBUG;
5797                         cs->watchpoint_hit = &hw_watchpoint;
5798                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5799                         hw_watchpoint.flags = BP_MEM_WRITE;
5800                         break;
5801                     case 0x3:
5802                         ret = EXCP_DEBUG;
5803                         cs->watchpoint_hit = &hw_watchpoint;
5804                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5805                         hw_watchpoint.flags = BP_MEM_ACCESS;
5806                         break;
5807                     }
5808                 }
5809             }
5810         }
5811     } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
5812         ret = EXCP_DEBUG;
5813     }
5814     if (ret == 0) {
5815         cpu_synchronize_state(cs);
5816         assert(env->exception_nr == -1);
5817 
5818         /* pass to guest */
5819         kvm_queue_exception(env, arch_info->exception,
5820                             arch_info->exception == EXCP01_DB,
5821                             arch_info->dr6);
5822         env->has_error_code = 0;
5823     }
5824 
5825     return ret;
5826 }
5827 
5828 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
5829 {
5830     const uint8_t type_code[] = {
5831         [GDB_BREAKPOINT_HW] = 0x0,
5832         [GDB_WATCHPOINT_WRITE] = 0x1,
5833         [GDB_WATCHPOINT_ACCESS] = 0x3
5834     };
5835     const uint8_t len_code[] = {
5836         [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
5837     };
5838     int n;
5839 
5840     if (kvm_sw_breakpoints_active(cpu)) {
5841         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
5842     }
5843     if (nb_hw_breakpoint > 0) {
5844         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
5845         dbg->arch.debugreg[7] = 0x0600;
5846         for (n = 0; n < nb_hw_breakpoint; n++) {
5847             dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
5848             dbg->arch.debugreg[7] |= (2 << (n * 2)) |
5849                 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
5850                 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
5851         }
5852     }
5853 }
5854 
5855 static int kvm_install_msr_filters(KVMState *s)
5856 {
5857     uint64_t zero = 0;
5858     struct kvm_msr_filter filter = {
5859         .flags = KVM_MSR_FILTER_DEFAULT_ALLOW,
5860     };
5861     int i, j = 0;
5862 
5863     QEMU_BUILD_BUG_ON(ARRAY_SIZE(msr_handlers) != ARRAY_SIZE(filter.ranges));
5864     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5865         KVMMSRHandlers *handler = &msr_handlers[i];
5866         if (handler->msr) {
5867             struct kvm_msr_filter_range *range = &filter.ranges[j++];
5868 
5869             *range = (struct kvm_msr_filter_range) {
5870                 .flags = 0,
5871                 .nmsrs = 1,
5872                 .base = handler->msr,
5873                 .bitmap = (__u8 *)&zero,
5874             };
5875 
5876             if (handler->rdmsr) {
5877                 range->flags |= KVM_MSR_FILTER_READ;
5878             }
5879 
5880             if (handler->wrmsr) {
5881                 range->flags |= KVM_MSR_FILTER_WRITE;
5882             }
5883         }
5884     }
5885 
5886     return kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter);
5887 }
5888 
5889 static int kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
5890                           QEMUWRMSRHandler *wrmsr)
5891 {
5892     int i, ret;
5893 
5894     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5895         if (!msr_handlers[i].msr) {
5896             msr_handlers[i] = (KVMMSRHandlers) {
5897                 .msr = msr,
5898                 .rdmsr = rdmsr,
5899                 .wrmsr = wrmsr,
5900             };
5901 
5902             ret = kvm_install_msr_filters(s);
5903             if (ret) {
5904                 msr_handlers[i] = (KVMMSRHandlers) { };
5905                 return ret;
5906             }
5907 
5908             return 0;
5909         }
5910     }
5911 
5912     return -EINVAL;
5913 }
5914 
5915 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run)
5916 {
5917     int i;
5918     bool r;
5919 
5920     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5921         KVMMSRHandlers *handler = &msr_handlers[i];
5922         if (run->msr.index == handler->msr) {
5923             if (handler->rdmsr) {
5924                 r = handler->rdmsr(cpu, handler->msr,
5925                                    (uint64_t *)&run->msr.data);
5926                 run->msr.error = r ? 0 : 1;
5927                 return 0;
5928             }
5929         }
5930     }
5931 
5932     g_assert_not_reached();
5933 }
5934 
5935 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run)
5936 {
5937     int i;
5938     bool r;
5939 
5940     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5941         KVMMSRHandlers *handler = &msr_handlers[i];
5942         if (run->msr.index == handler->msr) {
5943             if (handler->wrmsr) {
5944                 r = handler->wrmsr(cpu, handler->msr, run->msr.data);
5945                 run->msr.error = r ? 0 : 1;
5946                 return 0;
5947             }
5948         }
5949     }
5950 
5951     g_assert_not_reached();
5952 }
5953 
5954 static bool has_sgx_provisioning;
5955 
5956 static bool __kvm_enable_sgx_provisioning(KVMState *s)
5957 {
5958     int fd, ret;
5959 
5960     if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
5961         return false;
5962     }
5963 
5964     fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
5965     if (fd < 0) {
5966         return false;
5967     }
5968 
5969     ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
5970     if (ret) {
5971         error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
5972         exit(1);
5973     }
5974     close(fd);
5975     return true;
5976 }
5977 
5978 bool kvm_enable_sgx_provisioning(KVMState *s)
5979 {
5980     return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
5981 }
5982 
5983 static bool host_supports_vmx(void)
5984 {
5985     uint32_t ecx, unused;
5986 
5987     host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
5988     return ecx & CPUID_EXT_VMX;
5989 }
5990 
5991 /*
5992  * Currently the handling here only supports use of KVM_HC_MAP_GPA_RANGE
5993  * to service guest-initiated memory attribute update requests so that
5994  * KVM_SET_MEMORY_ATTRIBUTES can update whether or not a page should be
5995  * backed by the private memory pool provided by guest_memfd, and as such
5996  * is only applicable to guest_memfd-backed guests (e.g. SNP/TDX).
5997  *
5998  * Other other use-cases for KVM_HC_MAP_GPA_RANGE, such as for SEV live
5999  * migration, are not implemented here currently.
6000  *
6001  * For the guest_memfd use-case, these exits will generally be synthesized
6002  * by KVM based on platform-specific hypercalls, like GHCB requests in the
6003  * case of SEV-SNP, and not issued directly within the guest though the
6004  * KVM_HC_MAP_GPA_RANGE hypercall. So in this case, KVM_HC_MAP_GPA_RANGE is
6005  * not actually advertised to guests via the KVM CPUID feature bit, as
6006  * opposed to SEV live migration where it would be. Since it is unlikely the
6007  * SEV live migration use-case would be useful for guest-memfd backed guests,
6008  * because private/shared page tracking is already provided through other
6009  * means, these 2 use-cases should be treated as being mutually-exclusive.
6010  */
6011 static int kvm_handle_hc_map_gpa_range(struct kvm_run *run)
6012 {
6013     uint64_t gpa, size, attributes;
6014 
6015     if (!machine_require_guest_memfd(current_machine))
6016         return -EINVAL;
6017 
6018     gpa = run->hypercall.args[0];
6019     size = run->hypercall.args[1] * TARGET_PAGE_SIZE;
6020     attributes = run->hypercall.args[2];
6021 
6022     trace_kvm_hc_map_gpa_range(gpa, size, attributes, run->hypercall.flags);
6023 
6024     return kvm_convert_memory(gpa, size, attributes & KVM_MAP_GPA_RANGE_ENCRYPTED);
6025 }
6026 
6027 static int kvm_handle_hypercall(struct kvm_run *run)
6028 {
6029     if (run->hypercall.nr == KVM_HC_MAP_GPA_RANGE)
6030         return kvm_handle_hc_map_gpa_range(run);
6031 
6032     return -EINVAL;
6033 }
6034 
6035 #define VMX_INVALID_GUEST_STATE 0x80000021
6036 
6037 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
6038 {
6039     X86CPU *cpu = X86_CPU(cs);
6040     uint64_t code;
6041     int ret;
6042     bool ctx_invalid;
6043     KVMState *state;
6044 
6045     switch (run->exit_reason) {
6046     case KVM_EXIT_HLT:
6047         DPRINTF("handle_hlt\n");
6048         bql_lock();
6049         ret = kvm_handle_halt(cpu);
6050         bql_unlock();
6051         break;
6052     case KVM_EXIT_SET_TPR:
6053         ret = 0;
6054         break;
6055     case KVM_EXIT_TPR_ACCESS:
6056         bql_lock();
6057         ret = kvm_handle_tpr_access(cpu);
6058         bql_unlock();
6059         break;
6060     case KVM_EXIT_FAIL_ENTRY:
6061         code = run->fail_entry.hardware_entry_failure_reason;
6062         fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
6063                 code);
6064         if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
6065             fprintf(stderr,
6066                     "\nIf you're running a guest on an Intel machine without "
6067                         "unrestricted mode\n"
6068                     "support, the failure can be most likely due to the guest "
6069                         "entering an invalid\n"
6070                     "state for Intel VT. For example, the guest maybe running "
6071                         "in big real mode\n"
6072                     "which is not supported on less recent Intel processors."
6073                         "\n\n");
6074         }
6075         ret = -1;
6076         break;
6077     case KVM_EXIT_EXCEPTION:
6078         fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
6079                 run->ex.exception, run->ex.error_code);
6080         ret = -1;
6081         break;
6082     case KVM_EXIT_DEBUG:
6083         DPRINTF("kvm_exit_debug\n");
6084         bql_lock();
6085         ret = kvm_handle_debug(cpu, &run->debug.arch);
6086         bql_unlock();
6087         break;
6088     case KVM_EXIT_HYPERV:
6089         ret = kvm_hv_handle_exit(cpu, &run->hyperv);
6090         break;
6091     case KVM_EXIT_IOAPIC_EOI:
6092         ioapic_eoi_broadcast(run->eoi.vector);
6093         ret = 0;
6094         break;
6095     case KVM_EXIT_X86_BUS_LOCK:
6096         /* already handled in kvm_arch_post_run */
6097         ret = 0;
6098         break;
6099     case KVM_EXIT_NOTIFY:
6100         ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID);
6101         state = KVM_STATE(current_accel());
6102         if (ctx_invalid ||
6103             state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) {
6104             warn_report("KVM internal error: Encountered a notify exit "
6105                         "with invalid context in guest.");
6106             ret = -1;
6107         } else {
6108             warn_report_once("KVM: Encountered a notify exit with valid "
6109                              "context in guest. "
6110                              "The guest could be misbehaving.");
6111             ret = 0;
6112         }
6113         break;
6114     case KVM_EXIT_X86_RDMSR:
6115         /* We only enable MSR filtering, any other exit is bogus */
6116         assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
6117         ret = kvm_handle_rdmsr(cpu, run);
6118         break;
6119     case KVM_EXIT_X86_WRMSR:
6120         /* We only enable MSR filtering, any other exit is bogus */
6121         assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
6122         ret = kvm_handle_wrmsr(cpu, run);
6123         break;
6124 #ifdef CONFIG_XEN_EMU
6125     case KVM_EXIT_XEN:
6126         ret = kvm_xen_handle_exit(cpu, &run->xen);
6127         break;
6128 #endif
6129     case KVM_EXIT_HYPERCALL:
6130         ret = kvm_handle_hypercall(run);
6131         break;
6132     default:
6133         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
6134         ret = -1;
6135         break;
6136     }
6137 
6138     return ret;
6139 }
6140 
6141 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
6142 {
6143     X86CPU *cpu = X86_CPU(cs);
6144     CPUX86State *env = &cpu->env;
6145 
6146     kvm_cpu_synchronize_state(cs);
6147     return !(env->cr[0] & CR0_PE_MASK) ||
6148            ((env->segs[R_CS].selector  & 3) != 3);
6149 }
6150 
6151 void kvm_arch_init_irq_routing(KVMState *s)
6152 {
6153     /* We know at this point that we're using the in-kernel
6154      * irqchip, so we can use irqfds, and on x86 we know
6155      * we can use msi via irqfd and GSI routing.
6156      */
6157     kvm_msi_via_irqfd_allowed = true;
6158     kvm_gsi_routing_allowed = true;
6159 
6160     if (kvm_irqchip_is_split()) {
6161         KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
6162         int i;
6163 
6164         /* If the ioapic is in QEMU and the lapics are in KVM, reserve
6165            MSI routes for signaling interrupts to the local apics. */
6166         for (i = 0; i < IOAPIC_NUM_PINS; i++) {
6167             if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
6168                 error_report("Could not enable split IRQ mode.");
6169                 exit(1);
6170             }
6171         }
6172         kvm_irqchip_commit_route_changes(&c);
6173     }
6174 }
6175 
6176 int kvm_arch_irqchip_create(KVMState *s)
6177 {
6178     int ret;
6179     if (kvm_kernel_irqchip_split()) {
6180         ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
6181         if (ret) {
6182             error_report("Could not enable split irqchip mode: %s",
6183                          strerror(-ret));
6184             exit(1);
6185         } else {
6186             DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
6187             kvm_split_irqchip = true;
6188             return 1;
6189         }
6190     } else {
6191         return 0;
6192     }
6193 }
6194 
6195 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
6196 {
6197     CPUX86State *env;
6198     uint64_t ext_id;
6199 
6200     if (!first_cpu) {
6201         return address;
6202     }
6203     env = &X86_CPU(first_cpu)->env;
6204     if (!(env->features[FEAT_KVM] & CPUID_KVM_MSI_EXT_DEST_ID)) {
6205         return address;
6206     }
6207 
6208     /*
6209      * If the remappable format bit is set, or the upper bits are
6210      * already set in address_hi, or the low extended bits aren't
6211      * there anyway, do nothing.
6212      */
6213     ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
6214     if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
6215         return address;
6216     }
6217 
6218     address &= ~ext_id;
6219     address |= ext_id << 35;
6220     return address;
6221 }
6222 
6223 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
6224                              uint64_t address, uint32_t data, PCIDevice *dev)
6225 {
6226     X86IOMMUState *iommu = x86_iommu_get_default();
6227 
6228     if (iommu) {
6229         X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
6230 
6231         if (class->int_remap) {
6232             int ret;
6233             MSIMessage src, dst;
6234 
6235             src.address = route->u.msi.address_hi;
6236             src.address <<= VTD_MSI_ADDR_HI_SHIFT;
6237             src.address |= route->u.msi.address_lo;
6238             src.data = route->u.msi.data;
6239 
6240             ret = class->int_remap(iommu, &src, &dst, dev ?     \
6241                                    pci_requester_id(dev) :      \
6242                                    X86_IOMMU_SID_INVALID);
6243             if (ret) {
6244                 trace_kvm_x86_fixup_msi_error(route->gsi);
6245                 return 1;
6246             }
6247 
6248             /*
6249              * Handled untranslated compatibility format interrupt with
6250              * extended destination ID in the low bits 11-5. */
6251             dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
6252 
6253             route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
6254             route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
6255             route->u.msi.data = dst.data;
6256             return 0;
6257         }
6258     }
6259 
6260 #ifdef CONFIG_XEN_EMU
6261     if (xen_mode == XEN_EMULATE) {
6262         int handled = xen_evtchn_translate_pirq_msi(route, address, data);
6263 
6264         /*
6265          * If it was a PIRQ and successfully routed (handled == 0) or it was
6266          * an error (handled < 0), return. If it wasn't a PIRQ, keep going.
6267          */
6268         if (handled <= 0) {
6269             return handled;
6270         }
6271     }
6272 #endif
6273 
6274     address = kvm_swizzle_msi_ext_dest_id(address);
6275     route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
6276     route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
6277     return 0;
6278 }
6279 
6280 typedef struct MSIRouteEntry MSIRouteEntry;
6281 
6282 struct MSIRouteEntry {
6283     PCIDevice *dev;             /* Device pointer */
6284     int vector;                 /* MSI/MSIX vector index */
6285     int virq;                   /* Virtual IRQ index */
6286     QLIST_ENTRY(MSIRouteEntry) list;
6287 };
6288 
6289 /* List of used GSI routes */
6290 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
6291     QLIST_HEAD_INITIALIZER(msi_route_list);
6292 
6293 void kvm_update_msi_routes_all(void *private, bool global,
6294                                uint32_t index, uint32_t mask)
6295 {
6296     int cnt = 0, vector;
6297     MSIRouteEntry *entry;
6298     MSIMessage msg;
6299     PCIDevice *dev;
6300 
6301     /* TODO: explicit route update */
6302     QLIST_FOREACH(entry, &msi_route_list, list) {
6303         cnt++;
6304         vector = entry->vector;
6305         dev = entry->dev;
6306         if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
6307             msg = msix_get_message(dev, vector);
6308         } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
6309             msg = msi_get_message(dev, vector);
6310         } else {
6311             /*
6312              * Either MSI/MSIX is disabled for the device, or the
6313              * specific message was masked out.  Skip this one.
6314              */
6315             continue;
6316         }
6317         kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
6318     }
6319     kvm_irqchip_commit_routes(kvm_state);
6320     trace_kvm_x86_update_msi_routes(cnt);
6321 }
6322 
6323 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
6324                                 int vector, PCIDevice *dev)
6325 {
6326     static bool notify_list_inited = false;
6327     MSIRouteEntry *entry;
6328 
6329     if (!dev) {
6330         /* These are (possibly) IOAPIC routes only used for split
6331          * kernel irqchip mode, while what we are housekeeping are
6332          * PCI devices only. */
6333         return 0;
6334     }
6335 
6336     entry = g_new0(MSIRouteEntry, 1);
6337     entry->dev = dev;
6338     entry->vector = vector;
6339     entry->virq = route->gsi;
6340     QLIST_INSERT_HEAD(&msi_route_list, entry, list);
6341 
6342     trace_kvm_x86_add_msi_route(route->gsi);
6343 
6344     if (!notify_list_inited) {
6345         /* For the first time we do add route, add ourselves into
6346          * IOMMU's IEC notify list if needed. */
6347         X86IOMMUState *iommu = x86_iommu_get_default();
6348         if (iommu) {
6349             x86_iommu_iec_register_notifier(iommu,
6350                                             kvm_update_msi_routes_all,
6351                                             NULL);
6352         }
6353         notify_list_inited = true;
6354     }
6355     return 0;
6356 }
6357 
6358 int kvm_arch_release_virq_post(int virq)
6359 {
6360     MSIRouteEntry *entry, *next;
6361     QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
6362         if (entry->virq == virq) {
6363             trace_kvm_x86_remove_msi_route(virq);
6364             QLIST_REMOVE(entry, list);
6365             g_free(entry);
6366             break;
6367         }
6368     }
6369     return 0;
6370 }
6371 
6372 int kvm_arch_msi_data_to_gsi(uint32_t data)
6373 {
6374     abort();
6375 }
6376 
6377 bool kvm_has_waitpkg(void)
6378 {
6379     return has_msr_umwait;
6380 }
6381 
6382 #define ARCH_REQ_XCOMP_GUEST_PERM       0x1025
6383 
6384 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
6385 {
6386     KVMState *s = kvm_state;
6387     uint64_t supported;
6388 
6389     mask &= XSTATE_DYNAMIC_MASK;
6390     if (!mask) {
6391         return;
6392     }
6393     /*
6394      * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
6395      * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
6396      * about them already because they are not supported features.
6397      */
6398     supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
6399     supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
6400     mask &= supported;
6401 
6402     while (mask) {
6403         int bit = ctz64(mask);
6404         int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
6405         if (rc) {
6406             /*
6407              * Older kernel version (<5.17) do not support
6408              * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
6409              * any dynamic feature from kvm_arch_get_supported_cpuid.
6410              */
6411             warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
6412                         "for feature bit %d", bit);
6413         }
6414         mask &= ~BIT_ULL(bit);
6415     }
6416 }
6417 
6418 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp)
6419 {
6420     KVMState *s = KVM_STATE(obj);
6421     return s->notify_vmexit;
6422 }
6423 
6424 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp)
6425 {
6426     KVMState *s = KVM_STATE(obj);
6427 
6428     if (s->fd != -1) {
6429         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
6430         return;
6431     }
6432 
6433     s->notify_vmexit = value;
6434 }
6435 
6436 static void kvm_arch_get_notify_window(Object *obj, Visitor *v,
6437                                        const char *name, void *opaque,
6438                                        Error **errp)
6439 {
6440     KVMState *s = KVM_STATE(obj);
6441     uint32_t value = s->notify_window;
6442 
6443     visit_type_uint32(v, name, &value, errp);
6444 }
6445 
6446 static void kvm_arch_set_notify_window(Object *obj, Visitor *v,
6447                                        const char *name, void *opaque,
6448                                        Error **errp)
6449 {
6450     KVMState *s = KVM_STATE(obj);
6451     uint32_t value;
6452 
6453     if (s->fd != -1) {
6454         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
6455         return;
6456     }
6457 
6458     if (!visit_type_uint32(v, name, &value, errp)) {
6459         return;
6460     }
6461 
6462     s->notify_window = value;
6463 }
6464 
6465 static void kvm_arch_get_xen_version(Object *obj, Visitor *v,
6466                                      const char *name, void *opaque,
6467                                      Error **errp)
6468 {
6469     KVMState *s = KVM_STATE(obj);
6470     uint32_t value = s->xen_version;
6471 
6472     visit_type_uint32(v, name, &value, errp);
6473 }
6474 
6475 static void kvm_arch_set_xen_version(Object *obj, Visitor *v,
6476                                      const char *name, void *opaque,
6477                                      Error **errp)
6478 {
6479     KVMState *s = KVM_STATE(obj);
6480     Error *error = NULL;
6481     uint32_t value;
6482 
6483     visit_type_uint32(v, name, &value, &error);
6484     if (error) {
6485         error_propagate(errp, error);
6486         return;
6487     }
6488 
6489     s->xen_version = value;
6490     if (value && xen_mode == XEN_DISABLED) {
6491         xen_mode = XEN_EMULATE;
6492     }
6493 }
6494 
6495 static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v,
6496                                                const char *name, void *opaque,
6497                                                Error **errp)
6498 {
6499     KVMState *s = KVM_STATE(obj);
6500     uint16_t value = s->xen_gnttab_max_frames;
6501 
6502     visit_type_uint16(v, name, &value, errp);
6503 }
6504 
6505 static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v,
6506                                                const char *name, void *opaque,
6507                                                Error **errp)
6508 {
6509     KVMState *s = KVM_STATE(obj);
6510     Error *error = NULL;
6511     uint16_t value;
6512 
6513     visit_type_uint16(v, name, &value, &error);
6514     if (error) {
6515         error_propagate(errp, error);
6516         return;
6517     }
6518 
6519     s->xen_gnttab_max_frames = value;
6520 }
6521 
6522 static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v,
6523                                              const char *name, void *opaque,
6524                                              Error **errp)
6525 {
6526     KVMState *s = KVM_STATE(obj);
6527     uint16_t value = s->xen_evtchn_max_pirq;
6528 
6529     visit_type_uint16(v, name, &value, errp);
6530 }
6531 
6532 static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v,
6533                                              const char *name, void *opaque,
6534                                              Error **errp)
6535 {
6536     KVMState *s = KVM_STATE(obj);
6537     Error *error = NULL;
6538     uint16_t value;
6539 
6540     visit_type_uint16(v, name, &value, &error);
6541     if (error) {
6542         error_propagate(errp, error);
6543         return;
6544     }
6545 
6546     s->xen_evtchn_max_pirq = value;
6547 }
6548 
6549 void kvm_arch_accel_class_init(ObjectClass *oc)
6550 {
6551     object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption",
6552                                    &NotifyVmexitOption_lookup,
6553                                    kvm_arch_get_notify_vmexit,
6554                                    kvm_arch_set_notify_vmexit);
6555     object_class_property_set_description(oc, "notify-vmexit",
6556                                           "Enable notify VM exit");
6557 
6558     object_class_property_add(oc, "notify-window", "uint32",
6559                               kvm_arch_get_notify_window,
6560                               kvm_arch_set_notify_window,
6561                               NULL, NULL);
6562     object_class_property_set_description(oc, "notify-window",
6563                                           "Clock cycles without an event window "
6564                                           "after which a notification VM exit occurs");
6565 
6566     object_class_property_add(oc, "xen-version", "uint32",
6567                               kvm_arch_get_xen_version,
6568                               kvm_arch_set_xen_version,
6569                               NULL, NULL);
6570     object_class_property_set_description(oc, "xen-version",
6571                                           "Xen version to be emulated "
6572                                           "(in XENVER_version form "
6573                                           "e.g. 0x4000a for 4.10)");
6574 
6575     object_class_property_add(oc, "xen-gnttab-max-frames", "uint16",
6576                               kvm_arch_get_xen_gnttab_max_frames,
6577                               kvm_arch_set_xen_gnttab_max_frames,
6578                               NULL, NULL);
6579     object_class_property_set_description(oc, "xen-gnttab-max-frames",
6580                                           "Maximum number of grant table frames");
6581 
6582     object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16",
6583                               kvm_arch_get_xen_evtchn_max_pirq,
6584                               kvm_arch_set_xen_evtchn_max_pirq,
6585                               NULL, NULL);
6586     object_class_property_set_description(oc, "xen-evtchn-max-pirq",
6587                                           "Maximum number of Xen PIRQs");
6588 }
6589 
6590 void kvm_set_max_apic_id(uint32_t max_apic_id)
6591 {
6592     kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id);
6593 }
6594