1 /* 2 * QEMU KVM support 3 * 4 * Copyright (C) 2006-2008 Qumranet Technologies 5 * Copyright IBM, Corp. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or later. 11 * See the COPYING file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qapi/qapi-events-run-state.h" 17 #include "qapi/error.h" 18 #include <sys/ioctl.h> 19 #include <sys/utsname.h> 20 21 #include <linux/kvm.h> 22 #include "standard-headers/asm-x86/kvm_para.h" 23 24 #include "cpu.h" 25 #include "host-cpu.h" 26 #include "sysemu/sysemu.h" 27 #include "sysemu/hw_accel.h" 28 #include "sysemu/kvm_int.h" 29 #include "sysemu/runstate.h" 30 #include "kvm_i386.h" 31 #include "sev_i386.h" 32 #include "hyperv.h" 33 #include "hyperv-proto.h" 34 35 #include "exec/gdbstub.h" 36 #include "qemu/host-utils.h" 37 #include "qemu/main-loop.h" 38 #include "qemu/config-file.h" 39 #include "qemu/error-report.h" 40 #include "hw/i386/x86.h" 41 #include "hw/i386/apic.h" 42 #include "hw/i386/apic_internal.h" 43 #include "hw/i386/apic-msidef.h" 44 #include "hw/i386/intel_iommu.h" 45 #include "hw/i386/x86-iommu.h" 46 #include "hw/i386/e820_memory_layout.h" 47 #include "sysemu/sev.h" 48 49 #include "hw/pci/pci.h" 50 #include "hw/pci/msi.h" 51 #include "hw/pci/msix.h" 52 #include "migration/blocker.h" 53 #include "exec/memattrs.h" 54 #include "trace.h" 55 56 //#define DEBUG_KVM 57 58 #ifdef DEBUG_KVM 59 #define DPRINTF(fmt, ...) \ 60 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 61 #else 62 #define DPRINTF(fmt, ...) \ 63 do { } while (0) 64 #endif 65 66 /* From arch/x86/kvm/lapic.h */ 67 #define KVM_APIC_BUS_CYCLE_NS 1 68 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS) 69 70 #define MSR_KVM_WALL_CLOCK 0x11 71 #define MSR_KVM_SYSTEM_TIME 0x12 72 73 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus 74 * 255 kvm_msr_entry structs */ 75 #define MSR_BUF_SIZE 4096 76 77 static void kvm_init_msrs(X86CPU *cpu); 78 79 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 80 KVM_CAP_INFO(SET_TSS_ADDR), 81 KVM_CAP_INFO(EXT_CPUID), 82 KVM_CAP_INFO(MP_STATE), 83 KVM_CAP_LAST_INFO 84 }; 85 86 static bool has_msr_star; 87 static bool has_msr_hsave_pa; 88 static bool has_msr_tsc_aux; 89 static bool has_msr_tsc_adjust; 90 static bool has_msr_tsc_deadline; 91 static bool has_msr_feature_control; 92 static bool has_msr_misc_enable; 93 static bool has_msr_smbase; 94 static bool has_msr_bndcfgs; 95 static int lm_capable_kernel; 96 static bool has_msr_hv_hypercall; 97 static bool has_msr_hv_crash; 98 static bool has_msr_hv_reset; 99 static bool has_msr_hv_vpindex; 100 static bool hv_vpindex_settable; 101 static bool has_msr_hv_runtime; 102 static bool has_msr_hv_synic; 103 static bool has_msr_hv_stimer; 104 static bool has_msr_hv_frequencies; 105 static bool has_msr_hv_reenlightenment; 106 static bool has_msr_xss; 107 static bool has_msr_umwait; 108 static bool has_msr_spec_ctrl; 109 static bool has_msr_tsx_ctrl; 110 static bool has_msr_virt_ssbd; 111 static bool has_msr_smi_count; 112 static bool has_msr_arch_capabs; 113 static bool has_msr_core_capabs; 114 static bool has_msr_vmx_vmfunc; 115 static bool has_msr_ucode_rev; 116 static bool has_msr_vmx_procbased_ctls2; 117 static bool has_msr_perf_capabs; 118 static bool has_msr_pkrs; 119 120 static uint32_t has_architectural_pmu_version; 121 static uint32_t num_architectural_pmu_gp_counters; 122 static uint32_t num_architectural_pmu_fixed_counters; 123 124 static int has_xsave; 125 static int has_xcrs; 126 static int has_pit_state2; 127 static int has_exception_payload; 128 129 static bool has_msr_mcg_ext_ctl; 130 131 static struct kvm_cpuid2 *cpuid_cache; 132 static struct kvm_msr_list *kvm_feature_msrs; 133 134 int kvm_has_pit_state2(void) 135 { 136 return has_pit_state2; 137 } 138 139 bool kvm_has_smm(void) 140 { 141 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM); 142 } 143 144 bool kvm_has_adjust_clock_stable(void) 145 { 146 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); 147 148 return (ret == KVM_CLOCK_TSC_STABLE); 149 } 150 151 bool kvm_has_adjust_clock(void) 152 { 153 return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); 154 } 155 156 bool kvm_has_exception_payload(void) 157 { 158 return has_exception_payload; 159 } 160 161 static bool kvm_x2apic_api_set_flags(uint64_t flags) 162 { 163 KVMState *s = KVM_STATE(current_accel()); 164 165 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); 166 } 167 168 #define MEMORIZE(fn, _result) \ 169 ({ \ 170 static bool _memorized; \ 171 \ 172 if (_memorized) { \ 173 return _result; \ 174 } \ 175 _memorized = true; \ 176 _result = fn; \ 177 }) 178 179 static bool has_x2apic_api; 180 181 bool kvm_has_x2apic_api(void) 182 { 183 return has_x2apic_api; 184 } 185 186 bool kvm_enable_x2apic(void) 187 { 188 return MEMORIZE( 189 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | 190 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), 191 has_x2apic_api); 192 } 193 194 bool kvm_hv_vpindex_settable(void) 195 { 196 return hv_vpindex_settable; 197 } 198 199 static int kvm_get_tsc(CPUState *cs) 200 { 201 X86CPU *cpu = X86_CPU(cs); 202 CPUX86State *env = &cpu->env; 203 struct { 204 struct kvm_msrs info; 205 struct kvm_msr_entry entries[1]; 206 } msr_data = {}; 207 int ret; 208 209 if (env->tsc_valid) { 210 return 0; 211 } 212 213 memset(&msr_data, 0, sizeof(msr_data)); 214 msr_data.info.nmsrs = 1; 215 msr_data.entries[0].index = MSR_IA32_TSC; 216 env->tsc_valid = !runstate_is_running(); 217 218 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); 219 if (ret < 0) { 220 return ret; 221 } 222 223 assert(ret == 1); 224 env->tsc = msr_data.entries[0].data; 225 return 0; 226 } 227 228 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) 229 { 230 kvm_get_tsc(cpu); 231 } 232 233 void kvm_synchronize_all_tsc(void) 234 { 235 CPUState *cpu; 236 237 if (kvm_enabled()) { 238 CPU_FOREACH(cpu) { 239 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); 240 } 241 } 242 } 243 244 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) 245 { 246 struct kvm_cpuid2 *cpuid; 247 int r, size; 248 249 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 250 cpuid = g_malloc0(size); 251 cpuid->nent = max; 252 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); 253 if (r == 0 && cpuid->nent >= max) { 254 r = -E2BIG; 255 } 256 if (r < 0) { 257 if (r == -E2BIG) { 258 g_free(cpuid); 259 return NULL; 260 } else { 261 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", 262 strerror(-r)); 263 exit(1); 264 } 265 } 266 return cpuid; 267 } 268 269 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough 270 * for all entries. 271 */ 272 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) 273 { 274 struct kvm_cpuid2 *cpuid; 275 int max = 1; 276 277 if (cpuid_cache != NULL) { 278 return cpuid_cache; 279 } 280 while ((cpuid = try_get_cpuid(s, max)) == NULL) { 281 max *= 2; 282 } 283 cpuid_cache = cpuid; 284 return cpuid; 285 } 286 287 static bool host_tsx_broken(void) 288 { 289 int family, model, stepping;\ 290 char vendor[CPUID_VENDOR_SZ + 1]; 291 292 host_cpu_vendor_fms(vendor, &family, &model, &stepping); 293 294 /* Check if we are running on a Haswell host known to have broken TSX */ 295 return !strcmp(vendor, CPUID_VENDOR_INTEL) && 296 (family == 6) && 297 ((model == 63 && stepping < 4) || 298 model == 60 || model == 69 || model == 70); 299 } 300 301 /* Returns the value for a specific register on the cpuid entry 302 */ 303 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) 304 { 305 uint32_t ret = 0; 306 switch (reg) { 307 case R_EAX: 308 ret = entry->eax; 309 break; 310 case R_EBX: 311 ret = entry->ebx; 312 break; 313 case R_ECX: 314 ret = entry->ecx; 315 break; 316 case R_EDX: 317 ret = entry->edx; 318 break; 319 } 320 return ret; 321 } 322 323 /* Find matching entry for function/index on kvm_cpuid2 struct 324 */ 325 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, 326 uint32_t function, 327 uint32_t index) 328 { 329 int i; 330 for (i = 0; i < cpuid->nent; ++i) { 331 if (cpuid->entries[i].function == function && 332 cpuid->entries[i].index == index) { 333 return &cpuid->entries[i]; 334 } 335 } 336 /* not found: */ 337 return NULL; 338 } 339 340 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, 341 uint32_t index, int reg) 342 { 343 struct kvm_cpuid2 *cpuid; 344 uint32_t ret = 0; 345 uint32_t cpuid_1_edx; 346 347 cpuid = get_supported_cpuid(s); 348 349 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); 350 if (entry) { 351 ret = cpuid_entry_get_reg(entry, reg); 352 } 353 354 /* Fixups for the data returned by KVM, below */ 355 356 if (function == 1 && reg == R_EDX) { 357 /* KVM before 2.6.30 misreports the following features */ 358 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; 359 } else if (function == 1 && reg == R_ECX) { 360 /* We can set the hypervisor flag, even if KVM does not return it on 361 * GET_SUPPORTED_CPUID 362 */ 363 ret |= CPUID_EXT_HYPERVISOR; 364 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it 365 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, 366 * and the irqchip is in the kernel. 367 */ 368 if (kvm_irqchip_in_kernel() && 369 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { 370 ret |= CPUID_EXT_TSC_DEADLINE_TIMER; 371 } 372 373 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled 374 * without the in-kernel irqchip 375 */ 376 if (!kvm_irqchip_in_kernel()) { 377 ret &= ~CPUID_EXT_X2APIC; 378 } 379 380 if (enable_cpu_pm) { 381 int disable_exits = kvm_check_extension(s, 382 KVM_CAP_X86_DISABLE_EXITS); 383 384 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) { 385 ret |= CPUID_EXT_MONITOR; 386 } 387 } 388 } else if (function == 6 && reg == R_EAX) { 389 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ 390 } else if (function == 7 && index == 0 && reg == R_EBX) { 391 if (host_tsx_broken()) { 392 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); 393 } 394 } else if (function == 7 && index == 0 && reg == R_EDX) { 395 /* 396 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts. 397 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is 398 * returned by KVM_GET_MSR_INDEX_LIST. 399 */ 400 if (!has_msr_arch_capabs) { 401 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES; 402 } 403 } else if (function == 0x80000001 && reg == R_ECX) { 404 /* 405 * It's safe to enable TOPOEXT even if it's not returned by 406 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows 407 * us to keep CPU models including TOPOEXT runnable on older kernels. 408 */ 409 ret |= CPUID_EXT3_TOPOEXT; 410 } else if (function == 0x80000001 && reg == R_EDX) { 411 /* On Intel, kvm returns cpuid according to the Intel spec, 412 * so add missing bits according to the AMD spec: 413 */ 414 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); 415 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; 416 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { 417 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't 418 * be enabled without the in-kernel irqchip 419 */ 420 if (!kvm_irqchip_in_kernel()) { 421 ret &= ~(1U << KVM_FEATURE_PV_UNHALT); 422 } 423 if (kvm_irqchip_is_split()) { 424 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID; 425 } 426 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) { 427 ret |= 1U << KVM_HINTS_REALTIME; 428 } 429 430 return ret; 431 } 432 433 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index) 434 { 435 struct { 436 struct kvm_msrs info; 437 struct kvm_msr_entry entries[1]; 438 } msr_data = {}; 439 uint64_t value; 440 uint32_t ret, can_be_one, must_be_one; 441 442 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */ 443 return 0; 444 } 445 446 /* Check if requested MSR is supported feature MSR */ 447 int i; 448 for (i = 0; i < kvm_feature_msrs->nmsrs; i++) 449 if (kvm_feature_msrs->indices[i] == index) { 450 break; 451 } 452 if (i == kvm_feature_msrs->nmsrs) { 453 return 0; /* if the feature MSR is not supported, simply return 0 */ 454 } 455 456 msr_data.info.nmsrs = 1; 457 msr_data.entries[0].index = index; 458 459 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data); 460 if (ret != 1) { 461 error_report("KVM get MSR (index=0x%x) feature failed, %s", 462 index, strerror(-ret)); 463 exit(1); 464 } 465 466 value = msr_data.entries[0].data; 467 switch (index) { 468 case MSR_IA32_VMX_PROCBASED_CTLS2: 469 if (!has_msr_vmx_procbased_ctls2) { 470 /* KVM forgot to add these bits for some time, do this ourselves. */ 471 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) & 472 CPUID_XSAVE_XSAVES) { 473 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32; 474 } 475 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) & 476 CPUID_EXT_RDRAND) { 477 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32; 478 } 479 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 480 CPUID_7_0_EBX_INVPCID) { 481 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32; 482 } 483 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 484 CPUID_7_0_EBX_RDSEED) { 485 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32; 486 } 487 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) & 488 CPUID_EXT2_RDTSCP) { 489 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32; 490 } 491 } 492 /* fall through */ 493 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 494 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 495 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 496 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 497 /* 498 * Return true for bits that can be one, but do not have to be one. 499 * The SDM tells us which bits could have a "must be one" setting, 500 * so we can do the opposite transformation in make_vmx_msr_value. 501 */ 502 must_be_one = (uint32_t)value; 503 can_be_one = (uint32_t)(value >> 32); 504 return can_be_one & ~must_be_one; 505 506 default: 507 return value; 508 } 509 } 510 511 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, 512 int *max_banks) 513 { 514 int r; 515 516 r = kvm_check_extension(s, KVM_CAP_MCE); 517 if (r > 0) { 518 *max_banks = r; 519 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); 520 } 521 return -ENOSYS; 522 } 523 524 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) 525 { 526 CPUState *cs = CPU(cpu); 527 CPUX86State *env = &cpu->env; 528 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | 529 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; 530 uint64_t mcg_status = MCG_STATUS_MCIP; 531 int flags = 0; 532 533 if (code == BUS_MCEERR_AR) { 534 status |= MCI_STATUS_AR | 0x134; 535 mcg_status |= MCG_STATUS_EIPV; 536 } else { 537 status |= 0xc0; 538 mcg_status |= MCG_STATUS_RIPV; 539 } 540 541 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; 542 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the 543 * guest kernel back into env->mcg_ext_ctl. 544 */ 545 cpu_synchronize_state(cs); 546 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { 547 mcg_status |= MCG_STATUS_LMCE; 548 flags = 0; 549 } 550 551 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, 552 (MCM_ADDR_PHYS << 6) | 0xc, flags); 553 } 554 555 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar) 556 { 557 MemoryFailureFlags mff = {.action_required = ar, .recursive = false}; 558 559 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action, 560 &mff); 561 } 562 563 static void hardware_memory_error(void *host_addr) 564 { 565 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true); 566 error_report("QEMU got Hardware memory error at addr %p", host_addr); 567 exit(1); 568 } 569 570 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) 571 { 572 X86CPU *cpu = X86_CPU(c); 573 CPUX86State *env = &cpu->env; 574 ram_addr_t ram_addr; 575 hwaddr paddr; 576 577 /* If we get an action required MCE, it has been injected by KVM 578 * while the VM was running. An action optional MCE instead should 579 * be coming from the main thread, which qemu_init_sigbus identifies 580 * as the "early kill" thread. 581 */ 582 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); 583 584 if ((env->mcg_cap & MCG_SER_P) && addr) { 585 ram_addr = qemu_ram_addr_from_host(addr); 586 if (ram_addr != RAM_ADDR_INVALID && 587 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { 588 kvm_hwpoison_page_add(ram_addr); 589 kvm_mce_inject(cpu, paddr, code); 590 591 /* 592 * Use different logging severity based on error type. 593 * If there is additional MCE reporting on the hypervisor, QEMU VA 594 * could be another source to identify the PA and MCE details. 595 */ 596 if (code == BUS_MCEERR_AR) { 597 error_report("Guest MCE Memory Error at QEMU addr %p and " 598 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 599 addr, paddr, "BUS_MCEERR_AR"); 600 } else { 601 warn_report("Guest MCE Memory Error at QEMU addr %p and " 602 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 603 addr, paddr, "BUS_MCEERR_AO"); 604 } 605 606 return; 607 } 608 609 if (code == BUS_MCEERR_AO) { 610 warn_report("Hardware memory error at addr %p of type %s " 611 "for memory used by QEMU itself instead of guest system!", 612 addr, "BUS_MCEERR_AO"); 613 } 614 } 615 616 if (code == BUS_MCEERR_AR) { 617 hardware_memory_error(addr); 618 } 619 620 /* Hope we are lucky for AO MCE, just notify a event */ 621 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false); 622 } 623 624 static void kvm_reset_exception(CPUX86State *env) 625 { 626 env->exception_nr = -1; 627 env->exception_pending = 0; 628 env->exception_injected = 0; 629 env->exception_has_payload = false; 630 env->exception_payload = 0; 631 } 632 633 static void kvm_queue_exception(CPUX86State *env, 634 int32_t exception_nr, 635 uint8_t exception_has_payload, 636 uint64_t exception_payload) 637 { 638 assert(env->exception_nr == -1); 639 assert(!env->exception_pending); 640 assert(!env->exception_injected); 641 assert(!env->exception_has_payload); 642 643 env->exception_nr = exception_nr; 644 645 if (has_exception_payload) { 646 env->exception_pending = 1; 647 648 env->exception_has_payload = exception_has_payload; 649 env->exception_payload = exception_payload; 650 } else { 651 env->exception_injected = 1; 652 653 if (exception_nr == EXCP01_DB) { 654 assert(exception_has_payload); 655 env->dr[6] = exception_payload; 656 } else if (exception_nr == EXCP0E_PAGE) { 657 assert(exception_has_payload); 658 env->cr[2] = exception_payload; 659 } else { 660 assert(!exception_has_payload); 661 } 662 } 663 } 664 665 static int kvm_inject_mce_oldstyle(X86CPU *cpu) 666 { 667 CPUX86State *env = &cpu->env; 668 669 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) { 670 unsigned int bank, bank_num = env->mcg_cap & 0xff; 671 struct kvm_x86_mce mce; 672 673 kvm_reset_exception(env); 674 675 /* 676 * There must be at least one bank in use if an MCE is pending. 677 * Find it and use its values for the event injection. 678 */ 679 for (bank = 0; bank < bank_num; bank++) { 680 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { 681 break; 682 } 683 } 684 assert(bank < bank_num); 685 686 mce.bank = bank; 687 mce.status = env->mce_banks[bank * 4 + 1]; 688 mce.mcg_status = env->mcg_status; 689 mce.addr = env->mce_banks[bank * 4 + 2]; 690 mce.misc = env->mce_banks[bank * 4 + 3]; 691 692 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); 693 } 694 return 0; 695 } 696 697 static void cpu_update_state(void *opaque, bool running, RunState state) 698 { 699 CPUX86State *env = opaque; 700 701 if (running) { 702 env->tsc_valid = false; 703 } 704 } 705 706 unsigned long kvm_arch_vcpu_id(CPUState *cs) 707 { 708 X86CPU *cpu = X86_CPU(cs); 709 return cpu->apic_id; 710 } 711 712 #ifndef KVM_CPUID_SIGNATURE_NEXT 713 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 714 #endif 715 716 static bool hyperv_enabled(X86CPU *cpu) 717 { 718 CPUState *cs = CPU(cpu); 719 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 && 720 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) || 721 cpu->hyperv_features || cpu->hyperv_passthrough); 722 } 723 724 /* 725 * Check whether target_freq is within conservative 726 * ntp correctable bounds (250ppm) of freq 727 */ 728 static inline bool freq_within_bounds(int freq, int target_freq) 729 { 730 int max_freq = freq + (freq * 250 / 1000000); 731 int min_freq = freq - (freq * 250 / 1000000); 732 733 if (target_freq >= min_freq && target_freq <= max_freq) { 734 return true; 735 } 736 737 return false; 738 } 739 740 static int kvm_arch_set_tsc_khz(CPUState *cs) 741 { 742 X86CPU *cpu = X86_CPU(cs); 743 CPUX86State *env = &cpu->env; 744 int r, cur_freq; 745 bool set_ioctl = false; 746 747 if (!env->tsc_khz) { 748 return 0; 749 } 750 751 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 752 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP; 753 754 /* 755 * If TSC scaling is supported, attempt to set TSC frequency. 756 */ 757 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) { 758 set_ioctl = true; 759 } 760 761 /* 762 * If desired TSC frequency is within bounds of NTP correction, 763 * attempt to set TSC frequency. 764 */ 765 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) { 766 set_ioctl = true; 767 } 768 769 r = set_ioctl ? 770 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : 771 -ENOTSUP; 772 773 if (r < 0) { 774 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current 775 * TSC frequency doesn't match the one we want. 776 */ 777 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 778 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 779 -ENOTSUP; 780 if (cur_freq <= 0 || cur_freq != env->tsc_khz) { 781 warn_report("TSC frequency mismatch between " 782 "VM (%" PRId64 " kHz) and host (%d kHz), " 783 "and TSC scaling unavailable", 784 env->tsc_khz, cur_freq); 785 return r; 786 } 787 } 788 789 return 0; 790 } 791 792 static bool tsc_is_stable_and_known(CPUX86State *env) 793 { 794 if (!env->tsc_khz) { 795 return false; 796 } 797 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) 798 || env->user_tsc_khz; 799 } 800 801 static struct { 802 const char *desc; 803 struct { 804 uint32_t fw; 805 uint32_t bits; 806 } flags[2]; 807 uint64_t dependencies; 808 } kvm_hyperv_properties[] = { 809 [HYPERV_FEAT_RELAXED] = { 810 .desc = "relaxed timing (hv-relaxed)", 811 .flags = { 812 {.fw = FEAT_HYPERV_EAX, 813 .bits = HV_HYPERCALL_AVAILABLE}, 814 {.fw = FEAT_HV_RECOMM_EAX, 815 .bits = HV_RELAXED_TIMING_RECOMMENDED} 816 } 817 }, 818 [HYPERV_FEAT_VAPIC] = { 819 .desc = "virtual APIC (hv-vapic)", 820 .flags = { 821 {.fw = FEAT_HYPERV_EAX, 822 .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE}, 823 {.fw = FEAT_HV_RECOMM_EAX, 824 .bits = HV_APIC_ACCESS_RECOMMENDED} 825 } 826 }, 827 [HYPERV_FEAT_TIME] = { 828 .desc = "clocksources (hv-time)", 829 .flags = { 830 {.fw = FEAT_HYPERV_EAX, 831 .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE | 832 HV_REFERENCE_TSC_AVAILABLE} 833 } 834 }, 835 [HYPERV_FEAT_CRASH] = { 836 .desc = "crash MSRs (hv-crash)", 837 .flags = { 838 {.fw = FEAT_HYPERV_EDX, 839 .bits = HV_GUEST_CRASH_MSR_AVAILABLE} 840 } 841 }, 842 [HYPERV_FEAT_RESET] = { 843 .desc = "reset MSR (hv-reset)", 844 .flags = { 845 {.fw = FEAT_HYPERV_EAX, 846 .bits = HV_RESET_AVAILABLE} 847 } 848 }, 849 [HYPERV_FEAT_VPINDEX] = { 850 .desc = "VP_INDEX MSR (hv-vpindex)", 851 .flags = { 852 {.fw = FEAT_HYPERV_EAX, 853 .bits = HV_VP_INDEX_AVAILABLE} 854 } 855 }, 856 [HYPERV_FEAT_RUNTIME] = { 857 .desc = "VP_RUNTIME MSR (hv-runtime)", 858 .flags = { 859 {.fw = FEAT_HYPERV_EAX, 860 .bits = HV_VP_RUNTIME_AVAILABLE} 861 } 862 }, 863 [HYPERV_FEAT_SYNIC] = { 864 .desc = "synthetic interrupt controller (hv-synic)", 865 .flags = { 866 {.fw = FEAT_HYPERV_EAX, 867 .bits = HV_SYNIC_AVAILABLE} 868 } 869 }, 870 [HYPERV_FEAT_STIMER] = { 871 .desc = "synthetic timers (hv-stimer)", 872 .flags = { 873 {.fw = FEAT_HYPERV_EAX, 874 .bits = HV_SYNTIMERS_AVAILABLE} 875 }, 876 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME) 877 }, 878 [HYPERV_FEAT_FREQUENCIES] = { 879 .desc = "frequency MSRs (hv-frequencies)", 880 .flags = { 881 {.fw = FEAT_HYPERV_EAX, 882 .bits = HV_ACCESS_FREQUENCY_MSRS}, 883 {.fw = FEAT_HYPERV_EDX, 884 .bits = HV_FREQUENCY_MSRS_AVAILABLE} 885 } 886 }, 887 [HYPERV_FEAT_REENLIGHTENMENT] = { 888 .desc = "reenlightenment MSRs (hv-reenlightenment)", 889 .flags = { 890 {.fw = FEAT_HYPERV_EAX, 891 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL} 892 } 893 }, 894 [HYPERV_FEAT_TLBFLUSH] = { 895 .desc = "paravirtualized TLB flush (hv-tlbflush)", 896 .flags = { 897 {.fw = FEAT_HV_RECOMM_EAX, 898 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED | 899 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 900 }, 901 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 902 }, 903 [HYPERV_FEAT_EVMCS] = { 904 .desc = "enlightened VMCS (hv-evmcs)", 905 .flags = { 906 {.fw = FEAT_HV_RECOMM_EAX, 907 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED} 908 }, 909 .dependencies = BIT(HYPERV_FEAT_VAPIC) 910 }, 911 [HYPERV_FEAT_IPI] = { 912 .desc = "paravirtualized IPI (hv-ipi)", 913 .flags = { 914 {.fw = FEAT_HV_RECOMM_EAX, 915 .bits = HV_CLUSTER_IPI_RECOMMENDED | 916 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 917 }, 918 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 919 }, 920 [HYPERV_FEAT_STIMER_DIRECT] = { 921 .desc = "direct mode synthetic timers (hv-stimer-direct)", 922 .flags = { 923 {.fw = FEAT_HYPERV_EDX, 924 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE} 925 }, 926 .dependencies = BIT(HYPERV_FEAT_STIMER) 927 }, 928 }; 929 930 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max) 931 { 932 struct kvm_cpuid2 *cpuid; 933 int r, size; 934 935 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 936 cpuid = g_malloc0(size); 937 cpuid->nent = max; 938 939 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 940 if (r == 0 && cpuid->nent >= max) { 941 r = -E2BIG; 942 } 943 if (r < 0) { 944 if (r == -E2BIG) { 945 g_free(cpuid); 946 return NULL; 947 } else { 948 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n", 949 strerror(-r)); 950 exit(1); 951 } 952 } 953 return cpuid; 954 } 955 956 /* 957 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough 958 * for all entries. 959 */ 960 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs) 961 { 962 struct kvm_cpuid2 *cpuid; 963 int max = 7; /* 0x40000000..0x40000005, 0x4000000A */ 964 965 /* 966 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with 967 * -E2BIG, however, it doesn't report back the right size. Keep increasing 968 * it and re-trying until we succeed. 969 */ 970 while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) { 971 max++; 972 } 973 return cpuid; 974 } 975 976 /* 977 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature 978 * leaves from KVM_CAP_HYPERV* and present MSRs data. 979 */ 980 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs) 981 { 982 X86CPU *cpu = X86_CPU(cs); 983 struct kvm_cpuid2 *cpuid; 984 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm; 985 986 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */ 987 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries)); 988 cpuid->nent = 2; 989 990 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */ 991 entry_feat = &cpuid->entries[0]; 992 entry_feat->function = HV_CPUID_FEATURES; 993 994 entry_recomm = &cpuid->entries[1]; 995 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO; 996 entry_recomm->ebx = cpu->hyperv_spinlock_attempts; 997 998 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) { 999 entry_feat->eax |= HV_HYPERCALL_AVAILABLE; 1000 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE; 1001 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1002 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED; 1003 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED; 1004 } 1005 1006 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { 1007 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE; 1008 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE; 1009 } 1010 1011 if (has_msr_hv_frequencies) { 1012 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS; 1013 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE; 1014 } 1015 1016 if (has_msr_hv_crash) { 1017 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE; 1018 } 1019 1020 if (has_msr_hv_reenlightenment) { 1021 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL; 1022 } 1023 1024 if (has_msr_hv_reset) { 1025 entry_feat->eax |= HV_RESET_AVAILABLE; 1026 } 1027 1028 if (has_msr_hv_vpindex) { 1029 entry_feat->eax |= HV_VP_INDEX_AVAILABLE; 1030 } 1031 1032 if (has_msr_hv_runtime) { 1033 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE; 1034 } 1035 1036 if (has_msr_hv_synic) { 1037 unsigned int cap = cpu->hyperv_synic_kvm_only ? 1038 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1039 1040 if (kvm_check_extension(cs->kvm_state, cap) > 0) { 1041 entry_feat->eax |= HV_SYNIC_AVAILABLE; 1042 } 1043 } 1044 1045 if (has_msr_hv_stimer) { 1046 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE; 1047 } 1048 1049 if (kvm_check_extension(cs->kvm_state, 1050 KVM_CAP_HYPERV_TLBFLUSH) > 0) { 1051 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED; 1052 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1053 } 1054 1055 if (kvm_check_extension(cs->kvm_state, 1056 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1057 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1058 } 1059 1060 if (kvm_check_extension(cs->kvm_state, 1061 KVM_CAP_HYPERV_SEND_IPI) > 0) { 1062 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED; 1063 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1064 } 1065 1066 return cpuid; 1067 } 1068 1069 static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r) 1070 { 1071 struct kvm_cpuid_entry2 *entry; 1072 uint32_t func; 1073 int reg; 1074 1075 switch (fw) { 1076 case FEAT_HYPERV_EAX: 1077 reg = R_EAX; 1078 func = HV_CPUID_FEATURES; 1079 break; 1080 case FEAT_HYPERV_EDX: 1081 reg = R_EDX; 1082 func = HV_CPUID_FEATURES; 1083 break; 1084 case FEAT_HV_RECOMM_EAX: 1085 reg = R_EAX; 1086 func = HV_CPUID_ENLIGHTMENT_INFO; 1087 break; 1088 default: 1089 return -EINVAL; 1090 } 1091 1092 entry = cpuid_find_entry(cpuid, func, 0); 1093 if (!entry) { 1094 return -ENOENT; 1095 } 1096 1097 switch (reg) { 1098 case R_EAX: 1099 *r = entry->eax; 1100 break; 1101 case R_EDX: 1102 *r = entry->edx; 1103 break; 1104 default: 1105 return -EINVAL; 1106 } 1107 1108 return 0; 1109 } 1110 1111 static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid, 1112 int feature) 1113 { 1114 X86CPU *cpu = X86_CPU(cs); 1115 CPUX86State *env = &cpu->env; 1116 uint32_t r, fw, bits; 1117 uint64_t deps; 1118 int i, dep_feat; 1119 1120 if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) { 1121 return 0; 1122 } 1123 1124 deps = kvm_hyperv_properties[feature].dependencies; 1125 while (deps) { 1126 dep_feat = ctz64(deps); 1127 if (!(hyperv_feat_enabled(cpu, dep_feat))) { 1128 fprintf(stderr, 1129 "Hyper-V %s requires Hyper-V %s\n", 1130 kvm_hyperv_properties[feature].desc, 1131 kvm_hyperv_properties[dep_feat].desc); 1132 return 1; 1133 } 1134 deps &= ~(1ull << dep_feat); 1135 } 1136 1137 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) { 1138 fw = kvm_hyperv_properties[feature].flags[i].fw; 1139 bits = kvm_hyperv_properties[feature].flags[i].bits; 1140 1141 if (!fw) { 1142 continue; 1143 } 1144 1145 if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) { 1146 if (hyperv_feat_enabled(cpu, feature)) { 1147 fprintf(stderr, 1148 "Hyper-V %s is not supported by kernel\n", 1149 kvm_hyperv_properties[feature].desc); 1150 return 1; 1151 } else { 1152 return 0; 1153 } 1154 } 1155 1156 env->features[fw] |= bits; 1157 } 1158 1159 if (cpu->hyperv_passthrough) { 1160 cpu->hyperv_features |= BIT(feature); 1161 } 1162 1163 return 0; 1164 } 1165 1166 /* 1167 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in 1168 * case of success, errno < 0 in case of failure and 0 when no Hyper-V 1169 * extentions are enabled. 1170 */ 1171 static int hyperv_handle_properties(CPUState *cs, 1172 struct kvm_cpuid_entry2 *cpuid_ent) 1173 { 1174 X86CPU *cpu = X86_CPU(cs); 1175 CPUX86State *env = &cpu->env; 1176 struct kvm_cpuid2 *cpuid; 1177 struct kvm_cpuid_entry2 *c; 1178 uint32_t cpuid_i = 0; 1179 int r; 1180 1181 if (!hyperv_enabled(cpu)) 1182 return 0; 1183 1184 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) || 1185 cpu->hyperv_passthrough) { 1186 uint16_t evmcs_version; 1187 1188 r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0, 1189 (uintptr_t)&evmcs_version); 1190 1191 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) { 1192 fprintf(stderr, "Hyper-V %s is not supported by kernel\n", 1193 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc); 1194 return -ENOSYS; 1195 } 1196 1197 if (!r) { 1198 env->features[FEAT_HV_RECOMM_EAX] |= 1199 HV_ENLIGHTENED_VMCS_RECOMMENDED; 1200 env->features[FEAT_HV_NESTED_EAX] = evmcs_version; 1201 } 1202 } 1203 1204 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) { 1205 cpuid = get_supported_hv_cpuid(cs); 1206 } else { 1207 cpuid = get_supported_hv_cpuid_legacy(cs); 1208 } 1209 1210 if (cpu->hyperv_passthrough) { 1211 memcpy(cpuid_ent, &cpuid->entries[0], 1212 cpuid->nent * sizeof(cpuid->entries[0])); 1213 1214 c = cpuid_find_entry(cpuid, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, 0); 1215 if (c) { 1216 cpu->hyperv_vendor_id[0] = c->ebx; 1217 cpu->hyperv_vendor_id[1] = c->ecx; 1218 cpu->hyperv_vendor_id[2] = c->edx; 1219 } 1220 1221 c = cpuid_find_entry(cpuid, HV_CPUID_INTERFACE, 0); 1222 if (c) { 1223 cpu->hyperv_interface_id[0] = c->eax; 1224 cpu->hyperv_interface_id[1] = c->ebx; 1225 cpu->hyperv_interface_id[2] = c->ecx; 1226 cpu->hyperv_interface_id[3] = c->edx; 1227 } 1228 1229 c = cpuid_find_entry(cpuid, HV_CPUID_VERSION, 0); 1230 if (c) { 1231 cpu->hyperv_version_id[0] = c->eax; 1232 cpu->hyperv_version_id[1] = c->ebx; 1233 cpu->hyperv_version_id[2] = c->ecx; 1234 cpu->hyperv_version_id[3] = c->edx; 1235 } 1236 1237 c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0); 1238 if (c) { 1239 env->features[FEAT_HYPERV_EAX] = c->eax; 1240 env->features[FEAT_HYPERV_EBX] = c->ebx; 1241 env->features[FEAT_HYPERV_EDX] = c->edx; 1242 } 1243 1244 c = cpuid_find_entry(cpuid, HV_CPUID_IMPLEMENT_LIMITS, 0); 1245 if (c) { 1246 cpu->hv_max_vps = c->eax; 1247 cpu->hyperv_limits[0] = c->ebx; 1248 cpu->hyperv_limits[1] = c->ecx; 1249 cpu->hyperv_limits[2] = c->edx; 1250 } 1251 1252 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0); 1253 if (c) { 1254 env->features[FEAT_HV_RECOMM_EAX] = c->eax; 1255 1256 /* hv-spinlocks may have been overriden */ 1257 if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) { 1258 c->ebx = cpu->hyperv_spinlock_attempts; 1259 } 1260 } 1261 c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0); 1262 if (c) { 1263 env->features[FEAT_HV_NESTED_EAX] = c->eax; 1264 } 1265 } 1266 1267 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) { 1268 env->features[FEAT_HV_RECOMM_EAX] |= HV_NO_NONARCH_CORESHARING; 1269 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) { 1270 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0); 1271 if (c) { 1272 env->features[FEAT_HV_RECOMM_EAX] |= 1273 c->eax & HV_NO_NONARCH_CORESHARING; 1274 } 1275 } 1276 1277 /* Features */ 1278 r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED); 1279 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC); 1280 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME); 1281 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH); 1282 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET); 1283 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX); 1284 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME); 1285 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC); 1286 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER); 1287 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES); 1288 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT); 1289 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH); 1290 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS); 1291 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI); 1292 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT); 1293 1294 /* Additional dependencies not covered by kvm_hyperv_properties[] */ 1295 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1296 !cpu->hyperv_synic_kvm_only && 1297 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) { 1298 fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n", 1299 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc, 1300 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc); 1301 r |= 1; 1302 } 1303 1304 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */ 1305 env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1306 1307 if (r) { 1308 r = -ENOSYS; 1309 goto free; 1310 } 1311 1312 if (cpu->hyperv_passthrough) { 1313 /* We already copied all feature words from KVM as is */ 1314 r = cpuid->nent; 1315 goto free; 1316 } 1317 1318 c = &cpuid_ent[cpuid_i++]; 1319 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS; 1320 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ? 1321 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS; 1322 c->ebx = cpu->hyperv_vendor_id[0]; 1323 c->ecx = cpu->hyperv_vendor_id[1]; 1324 c->edx = cpu->hyperv_vendor_id[2]; 1325 1326 c = &cpuid_ent[cpuid_i++]; 1327 c->function = HV_CPUID_INTERFACE; 1328 c->eax = cpu->hyperv_interface_id[0]; 1329 c->ebx = cpu->hyperv_interface_id[1]; 1330 c->ecx = cpu->hyperv_interface_id[2]; 1331 c->edx = cpu->hyperv_interface_id[3]; 1332 1333 c = &cpuid_ent[cpuid_i++]; 1334 c->function = HV_CPUID_VERSION; 1335 c->eax = cpu->hyperv_version_id[0]; 1336 c->ebx = cpu->hyperv_version_id[1]; 1337 c->ecx = cpu->hyperv_version_id[2]; 1338 c->edx = cpu->hyperv_version_id[3]; 1339 1340 c = &cpuid_ent[cpuid_i++]; 1341 c->function = HV_CPUID_FEATURES; 1342 c->eax = env->features[FEAT_HYPERV_EAX]; 1343 c->ebx = env->features[FEAT_HYPERV_EBX]; 1344 c->edx = env->features[FEAT_HYPERV_EDX]; 1345 1346 c = &cpuid_ent[cpuid_i++]; 1347 c->function = HV_CPUID_ENLIGHTMENT_INFO; 1348 c->eax = env->features[FEAT_HV_RECOMM_EAX]; 1349 c->ebx = cpu->hyperv_spinlock_attempts; 1350 1351 c = &cpuid_ent[cpuid_i++]; 1352 c->function = HV_CPUID_IMPLEMENT_LIMITS; 1353 c->eax = cpu->hv_max_vps; 1354 c->ebx = cpu->hyperv_limits[0]; 1355 c->ecx = cpu->hyperv_limits[1]; 1356 c->edx = cpu->hyperv_limits[2]; 1357 1358 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1359 __u32 function; 1360 1361 /* Create zeroed 0x40000006..0x40000009 leaves */ 1362 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1; 1363 function < HV_CPUID_NESTED_FEATURES; function++) { 1364 c = &cpuid_ent[cpuid_i++]; 1365 c->function = function; 1366 } 1367 1368 c = &cpuid_ent[cpuid_i++]; 1369 c->function = HV_CPUID_NESTED_FEATURES; 1370 c->eax = env->features[FEAT_HV_NESTED_EAX]; 1371 } 1372 r = cpuid_i; 1373 1374 free: 1375 g_free(cpuid); 1376 1377 return r; 1378 } 1379 1380 static Error *hv_passthrough_mig_blocker; 1381 static Error *hv_no_nonarch_cs_mig_blocker; 1382 1383 static int hyperv_init_vcpu(X86CPU *cpu) 1384 { 1385 CPUState *cs = CPU(cpu); 1386 Error *local_err = NULL; 1387 int ret; 1388 1389 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) { 1390 error_setg(&hv_passthrough_mig_blocker, 1391 "'hv-passthrough' CPU flag prevents migration, use explicit" 1392 " set of hv-* flags instead"); 1393 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err); 1394 if (local_err) { 1395 error_report_err(local_err); 1396 error_free(hv_passthrough_mig_blocker); 1397 return ret; 1398 } 1399 } 1400 1401 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO && 1402 hv_no_nonarch_cs_mig_blocker == NULL) { 1403 error_setg(&hv_no_nonarch_cs_mig_blocker, 1404 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration" 1405 " use explicit 'hv-no-nonarch-coresharing=on' instead (but" 1406 " make sure SMT is disabled and/or that vCPUs are properly" 1407 " pinned)"); 1408 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err); 1409 if (local_err) { 1410 error_report_err(local_err); 1411 error_free(hv_no_nonarch_cs_mig_blocker); 1412 return ret; 1413 } 1414 } 1415 1416 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) { 1417 /* 1418 * the kernel doesn't support setting vp_index; assert that its value 1419 * is in sync 1420 */ 1421 struct { 1422 struct kvm_msrs info; 1423 struct kvm_msr_entry entries[1]; 1424 } msr_data = { 1425 .info.nmsrs = 1, 1426 .entries[0].index = HV_X64_MSR_VP_INDEX, 1427 }; 1428 1429 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data); 1430 if (ret < 0) { 1431 return ret; 1432 } 1433 assert(ret == 1); 1434 1435 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) { 1436 error_report("kernel's vp_index != QEMU's vp_index"); 1437 return -ENXIO; 1438 } 1439 } 1440 1441 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 1442 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ? 1443 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1444 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0); 1445 if (ret < 0) { 1446 error_report("failed to turn on HyperV SynIC in KVM: %s", 1447 strerror(-ret)); 1448 return ret; 1449 } 1450 1451 if (!cpu->hyperv_synic_kvm_only) { 1452 ret = hyperv_x86_synic_add(cpu); 1453 if (ret < 0) { 1454 error_report("failed to create HyperV SynIC: %s", 1455 strerror(-ret)); 1456 return ret; 1457 } 1458 } 1459 } 1460 1461 return 0; 1462 } 1463 1464 static Error *invtsc_mig_blocker; 1465 1466 #define KVM_MAX_CPUID_ENTRIES 100 1467 1468 int kvm_arch_init_vcpu(CPUState *cs) 1469 { 1470 struct { 1471 struct kvm_cpuid2 cpuid; 1472 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; 1473 } cpuid_data; 1474 /* 1475 * The kernel defines these structs with padding fields so there 1476 * should be no extra padding in our cpuid_data struct. 1477 */ 1478 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) != 1479 sizeof(struct kvm_cpuid2) + 1480 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES); 1481 1482 X86CPU *cpu = X86_CPU(cs); 1483 CPUX86State *env = &cpu->env; 1484 uint32_t limit, i, j, cpuid_i; 1485 uint32_t unused; 1486 struct kvm_cpuid_entry2 *c; 1487 uint32_t signature[3]; 1488 int kvm_base = KVM_CPUID_SIGNATURE; 1489 int max_nested_state_len; 1490 int r; 1491 Error *local_err = NULL; 1492 1493 memset(&cpuid_data, 0, sizeof(cpuid_data)); 1494 1495 cpuid_i = 0; 1496 1497 r = kvm_arch_set_tsc_khz(cs); 1498 if (r < 0) { 1499 return r; 1500 } 1501 1502 /* vcpu's TSC frequency is either specified by user, or following 1503 * the value used by KVM if the former is not present. In the 1504 * latter case, we query it from KVM and record in env->tsc_khz, 1505 * so that vcpu's TSC frequency can be migrated later via this field. 1506 */ 1507 if (!env->tsc_khz) { 1508 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 1509 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 1510 -ENOTSUP; 1511 if (r > 0) { 1512 env->tsc_khz = r; 1513 } 1514 } 1515 1516 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY; 1517 1518 /* Paravirtualization CPUIDs */ 1519 r = hyperv_handle_properties(cs, cpuid_data.entries); 1520 if (r < 0) { 1521 return r; 1522 } else if (r > 0) { 1523 cpuid_i = r; 1524 kvm_base = KVM_CPUID_SIGNATURE_NEXT; 1525 has_msr_hv_hypercall = true; 1526 } 1527 1528 if (cpu->expose_kvm) { 1529 memcpy(signature, "KVMKVMKVM\0\0\0", 12); 1530 c = &cpuid_data.entries[cpuid_i++]; 1531 c->function = KVM_CPUID_SIGNATURE | kvm_base; 1532 c->eax = KVM_CPUID_FEATURES | kvm_base; 1533 c->ebx = signature[0]; 1534 c->ecx = signature[1]; 1535 c->edx = signature[2]; 1536 1537 c = &cpuid_data.entries[cpuid_i++]; 1538 c->function = KVM_CPUID_FEATURES | kvm_base; 1539 c->eax = env->features[FEAT_KVM]; 1540 c->edx = env->features[FEAT_KVM_HINTS]; 1541 } 1542 1543 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); 1544 1545 for (i = 0; i <= limit; i++) { 1546 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1547 fprintf(stderr, "unsupported level value: 0x%x\n", limit); 1548 abort(); 1549 } 1550 c = &cpuid_data.entries[cpuid_i++]; 1551 1552 switch (i) { 1553 case 2: { 1554 /* Keep reading function 2 till all the input is received */ 1555 int times; 1556 1557 c->function = i; 1558 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | 1559 KVM_CPUID_FLAG_STATE_READ_NEXT; 1560 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1561 times = c->eax & 0xff; 1562 1563 for (j = 1; j < times; ++j) { 1564 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1565 fprintf(stderr, "cpuid_data is full, no space for " 1566 "cpuid(eax:2):eax & 0xf = 0x%x\n", times); 1567 abort(); 1568 } 1569 c = &cpuid_data.entries[cpuid_i++]; 1570 c->function = i; 1571 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; 1572 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1573 } 1574 break; 1575 } 1576 case 0x1f: 1577 if (env->nr_dies < 2) { 1578 break; 1579 } 1580 /* fallthrough */ 1581 case 4: 1582 case 0xb: 1583 case 0xd: 1584 for (j = 0; ; j++) { 1585 if (i == 0xd && j == 64) { 1586 break; 1587 } 1588 1589 if (i == 0x1f && j == 64) { 1590 break; 1591 } 1592 1593 c->function = i; 1594 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1595 c->index = j; 1596 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1597 1598 if (i == 4 && c->eax == 0) { 1599 break; 1600 } 1601 if (i == 0xb && !(c->ecx & 0xff00)) { 1602 break; 1603 } 1604 if (i == 0x1f && !(c->ecx & 0xff00)) { 1605 break; 1606 } 1607 if (i == 0xd && c->eax == 0) { 1608 continue; 1609 } 1610 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1611 fprintf(stderr, "cpuid_data is full, no space for " 1612 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 1613 abort(); 1614 } 1615 c = &cpuid_data.entries[cpuid_i++]; 1616 } 1617 break; 1618 case 0x7: 1619 case 0x14: { 1620 uint32_t times; 1621 1622 c->function = i; 1623 c->index = 0; 1624 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1625 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1626 times = c->eax; 1627 1628 for (j = 1; j <= times; ++j) { 1629 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1630 fprintf(stderr, "cpuid_data is full, no space for " 1631 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 1632 abort(); 1633 } 1634 c = &cpuid_data.entries[cpuid_i++]; 1635 c->function = i; 1636 c->index = j; 1637 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1638 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1639 } 1640 break; 1641 } 1642 default: 1643 c->function = i; 1644 c->flags = 0; 1645 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1646 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 1647 /* 1648 * KVM already returns all zeroes if a CPUID entry is missing, 1649 * so we can omit it and avoid hitting KVM's 80-entry limit. 1650 */ 1651 cpuid_i--; 1652 } 1653 break; 1654 } 1655 } 1656 1657 if (limit >= 0x0a) { 1658 uint32_t eax, edx; 1659 1660 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx); 1661 1662 has_architectural_pmu_version = eax & 0xff; 1663 if (has_architectural_pmu_version > 0) { 1664 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8; 1665 1666 /* Shouldn't be more than 32, since that's the number of bits 1667 * available in EBX to tell us _which_ counters are available. 1668 * Play it safe. 1669 */ 1670 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) { 1671 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS; 1672 } 1673 1674 if (has_architectural_pmu_version > 1) { 1675 num_architectural_pmu_fixed_counters = edx & 0x1f; 1676 1677 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) { 1678 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS; 1679 } 1680 } 1681 } 1682 } 1683 1684 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); 1685 1686 for (i = 0x80000000; i <= limit; i++) { 1687 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1688 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); 1689 abort(); 1690 } 1691 c = &cpuid_data.entries[cpuid_i++]; 1692 1693 switch (i) { 1694 case 0x8000001d: 1695 /* Query for all AMD cache information leaves */ 1696 for (j = 0; ; j++) { 1697 c->function = i; 1698 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1699 c->index = j; 1700 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1701 1702 if (c->eax == 0) { 1703 break; 1704 } 1705 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1706 fprintf(stderr, "cpuid_data is full, no space for " 1707 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 1708 abort(); 1709 } 1710 c = &cpuid_data.entries[cpuid_i++]; 1711 } 1712 break; 1713 default: 1714 c->function = i; 1715 c->flags = 0; 1716 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1717 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 1718 /* 1719 * KVM already returns all zeroes if a CPUID entry is missing, 1720 * so we can omit it and avoid hitting KVM's 80-entry limit. 1721 */ 1722 cpuid_i--; 1723 } 1724 break; 1725 } 1726 } 1727 1728 /* Call Centaur's CPUID instructions they are supported. */ 1729 if (env->cpuid_xlevel2 > 0) { 1730 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); 1731 1732 for (i = 0xC0000000; i <= limit; i++) { 1733 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1734 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); 1735 abort(); 1736 } 1737 c = &cpuid_data.entries[cpuid_i++]; 1738 1739 c->function = i; 1740 c->flags = 0; 1741 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1742 } 1743 } 1744 1745 cpuid_data.cpuid.nent = cpuid_i; 1746 1747 if (((env->cpuid_version >> 8)&0xF) >= 6 1748 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == 1749 (CPUID_MCE | CPUID_MCA) 1750 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { 1751 uint64_t mcg_cap, unsupported_caps; 1752 int banks; 1753 int ret; 1754 1755 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); 1756 if (ret < 0) { 1757 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); 1758 return ret; 1759 } 1760 1761 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { 1762 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", 1763 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); 1764 return -ENOTSUP; 1765 } 1766 1767 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); 1768 if (unsupported_caps) { 1769 if (unsupported_caps & MCG_LMCE_P) { 1770 error_report("kvm: LMCE not supported"); 1771 return -ENOTSUP; 1772 } 1773 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64, 1774 unsupported_caps); 1775 } 1776 1777 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; 1778 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); 1779 if (ret < 0) { 1780 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); 1781 return ret; 1782 } 1783 } 1784 1785 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env); 1786 1787 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); 1788 if (c) { 1789 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || 1790 !!(c->ecx & CPUID_EXT_SMX); 1791 } 1792 1793 if (env->mcg_cap & MCG_LMCE_P) { 1794 has_msr_mcg_ext_ctl = has_msr_feature_control = true; 1795 } 1796 1797 if (!env->user_tsc_khz) { 1798 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && 1799 invtsc_mig_blocker == NULL) { 1800 error_setg(&invtsc_mig_blocker, 1801 "State blocked by non-migratable CPU device" 1802 " (invtsc flag)"); 1803 r = migrate_add_blocker(invtsc_mig_blocker, &local_err); 1804 if (local_err) { 1805 error_report_err(local_err); 1806 error_free(invtsc_mig_blocker); 1807 return r; 1808 } 1809 } 1810 } 1811 1812 if (cpu->vmware_cpuid_freq 1813 /* Guests depend on 0x40000000 to detect this feature, so only expose 1814 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ 1815 && cpu->expose_kvm 1816 && kvm_base == KVM_CPUID_SIGNATURE 1817 /* TSC clock must be stable and known for this feature. */ 1818 && tsc_is_stable_and_known(env)) { 1819 1820 c = &cpuid_data.entries[cpuid_i++]; 1821 c->function = KVM_CPUID_SIGNATURE | 0x10; 1822 c->eax = env->tsc_khz; 1823 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */ 1824 c->ecx = c->edx = 0; 1825 1826 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); 1827 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); 1828 } 1829 1830 cpuid_data.cpuid.nent = cpuid_i; 1831 1832 cpuid_data.cpuid.padding = 0; 1833 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); 1834 if (r) { 1835 goto fail; 1836 } 1837 1838 if (has_xsave) { 1839 env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); 1840 memset(env->xsave_buf, 0, sizeof(struct kvm_xsave)); 1841 } 1842 1843 max_nested_state_len = kvm_max_nested_state_length(); 1844 if (max_nested_state_len > 0) { 1845 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data)); 1846 1847 if (cpu_has_vmx(env) || cpu_has_svm(env)) { 1848 struct kvm_vmx_nested_state_hdr *vmx_hdr; 1849 1850 env->nested_state = g_malloc0(max_nested_state_len); 1851 env->nested_state->size = max_nested_state_len; 1852 1853 if (cpu_has_vmx(env)) { 1854 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX; 1855 vmx_hdr = &env->nested_state->hdr.vmx; 1856 vmx_hdr->vmxon_pa = -1ull; 1857 vmx_hdr->vmcs12_pa = -1ull; 1858 } else { 1859 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM; 1860 } 1861 } 1862 } 1863 1864 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); 1865 1866 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { 1867 has_msr_tsc_aux = false; 1868 } 1869 1870 kvm_init_msrs(cpu); 1871 1872 r = hyperv_init_vcpu(cpu); 1873 if (r) { 1874 goto fail; 1875 } 1876 1877 return 0; 1878 1879 fail: 1880 migrate_del_blocker(invtsc_mig_blocker); 1881 1882 return r; 1883 } 1884 1885 int kvm_arch_destroy_vcpu(CPUState *cs) 1886 { 1887 X86CPU *cpu = X86_CPU(cs); 1888 CPUX86State *env = &cpu->env; 1889 1890 if (cpu->kvm_msr_buf) { 1891 g_free(cpu->kvm_msr_buf); 1892 cpu->kvm_msr_buf = NULL; 1893 } 1894 1895 if (env->nested_state) { 1896 g_free(env->nested_state); 1897 env->nested_state = NULL; 1898 } 1899 1900 qemu_del_vm_change_state_handler(cpu->vmsentry); 1901 1902 return 0; 1903 } 1904 1905 void kvm_arch_reset_vcpu(X86CPU *cpu) 1906 { 1907 CPUX86State *env = &cpu->env; 1908 1909 env->xcr0 = 1; 1910 if (kvm_irqchip_in_kernel()) { 1911 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : 1912 KVM_MP_STATE_UNINITIALIZED; 1913 } else { 1914 env->mp_state = KVM_MP_STATE_RUNNABLE; 1915 } 1916 1917 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 1918 int i; 1919 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { 1920 env->msr_hv_synic_sint[i] = HV_SINT_MASKED; 1921 } 1922 1923 hyperv_x86_synic_reset(cpu); 1924 } 1925 /* enabled by default */ 1926 env->poll_control_msr = 1; 1927 1928 sev_es_set_reset_vector(CPU(cpu)); 1929 } 1930 1931 void kvm_arch_do_init_vcpu(X86CPU *cpu) 1932 { 1933 CPUX86State *env = &cpu->env; 1934 1935 /* APs get directly into wait-for-SIPI state. */ 1936 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { 1937 env->mp_state = KVM_MP_STATE_INIT_RECEIVED; 1938 } 1939 } 1940 1941 static int kvm_get_supported_feature_msrs(KVMState *s) 1942 { 1943 int ret = 0; 1944 1945 if (kvm_feature_msrs != NULL) { 1946 return 0; 1947 } 1948 1949 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) { 1950 return 0; 1951 } 1952 1953 struct kvm_msr_list msr_list; 1954 1955 msr_list.nmsrs = 0; 1956 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list); 1957 if (ret < 0 && ret != -E2BIG) { 1958 error_report("Fetch KVM feature MSR list failed: %s", 1959 strerror(-ret)); 1960 return ret; 1961 } 1962 1963 assert(msr_list.nmsrs > 0); 1964 kvm_feature_msrs = (struct kvm_msr_list *) \ 1965 g_malloc0(sizeof(msr_list) + 1966 msr_list.nmsrs * sizeof(msr_list.indices[0])); 1967 1968 kvm_feature_msrs->nmsrs = msr_list.nmsrs; 1969 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs); 1970 1971 if (ret < 0) { 1972 error_report("Fetch KVM feature MSR list failed: %s", 1973 strerror(-ret)); 1974 g_free(kvm_feature_msrs); 1975 kvm_feature_msrs = NULL; 1976 return ret; 1977 } 1978 1979 return 0; 1980 } 1981 1982 static int kvm_get_supported_msrs(KVMState *s) 1983 { 1984 int ret = 0; 1985 struct kvm_msr_list msr_list, *kvm_msr_list; 1986 1987 /* 1988 * Obtain MSR list from KVM. These are the MSRs that we must 1989 * save/restore. 1990 */ 1991 msr_list.nmsrs = 0; 1992 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); 1993 if (ret < 0 && ret != -E2BIG) { 1994 return ret; 1995 } 1996 /* 1997 * Old kernel modules had a bug and could write beyond the provided 1998 * memory. Allocate at least a safe amount of 1K. 1999 */ 2000 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + 2001 msr_list.nmsrs * 2002 sizeof(msr_list.indices[0]))); 2003 2004 kvm_msr_list->nmsrs = msr_list.nmsrs; 2005 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); 2006 if (ret >= 0) { 2007 int i; 2008 2009 for (i = 0; i < kvm_msr_list->nmsrs; i++) { 2010 switch (kvm_msr_list->indices[i]) { 2011 case MSR_STAR: 2012 has_msr_star = true; 2013 break; 2014 case MSR_VM_HSAVE_PA: 2015 has_msr_hsave_pa = true; 2016 break; 2017 case MSR_TSC_AUX: 2018 has_msr_tsc_aux = true; 2019 break; 2020 case MSR_TSC_ADJUST: 2021 has_msr_tsc_adjust = true; 2022 break; 2023 case MSR_IA32_TSCDEADLINE: 2024 has_msr_tsc_deadline = true; 2025 break; 2026 case MSR_IA32_SMBASE: 2027 has_msr_smbase = true; 2028 break; 2029 case MSR_SMI_COUNT: 2030 has_msr_smi_count = true; 2031 break; 2032 case MSR_IA32_MISC_ENABLE: 2033 has_msr_misc_enable = true; 2034 break; 2035 case MSR_IA32_BNDCFGS: 2036 has_msr_bndcfgs = true; 2037 break; 2038 case MSR_IA32_XSS: 2039 has_msr_xss = true; 2040 break; 2041 case MSR_IA32_UMWAIT_CONTROL: 2042 has_msr_umwait = true; 2043 break; 2044 case HV_X64_MSR_CRASH_CTL: 2045 has_msr_hv_crash = true; 2046 break; 2047 case HV_X64_MSR_RESET: 2048 has_msr_hv_reset = true; 2049 break; 2050 case HV_X64_MSR_VP_INDEX: 2051 has_msr_hv_vpindex = true; 2052 break; 2053 case HV_X64_MSR_VP_RUNTIME: 2054 has_msr_hv_runtime = true; 2055 break; 2056 case HV_X64_MSR_SCONTROL: 2057 has_msr_hv_synic = true; 2058 break; 2059 case HV_X64_MSR_STIMER0_CONFIG: 2060 has_msr_hv_stimer = true; 2061 break; 2062 case HV_X64_MSR_TSC_FREQUENCY: 2063 has_msr_hv_frequencies = true; 2064 break; 2065 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 2066 has_msr_hv_reenlightenment = true; 2067 break; 2068 case MSR_IA32_SPEC_CTRL: 2069 has_msr_spec_ctrl = true; 2070 break; 2071 case MSR_IA32_TSX_CTRL: 2072 has_msr_tsx_ctrl = true; 2073 break; 2074 case MSR_VIRT_SSBD: 2075 has_msr_virt_ssbd = true; 2076 break; 2077 case MSR_IA32_ARCH_CAPABILITIES: 2078 has_msr_arch_capabs = true; 2079 break; 2080 case MSR_IA32_CORE_CAPABILITY: 2081 has_msr_core_capabs = true; 2082 break; 2083 case MSR_IA32_PERF_CAPABILITIES: 2084 has_msr_perf_capabs = true; 2085 break; 2086 case MSR_IA32_VMX_VMFUNC: 2087 has_msr_vmx_vmfunc = true; 2088 break; 2089 case MSR_IA32_UCODE_REV: 2090 has_msr_ucode_rev = true; 2091 break; 2092 case MSR_IA32_VMX_PROCBASED_CTLS2: 2093 has_msr_vmx_procbased_ctls2 = true; 2094 break; 2095 case MSR_IA32_PKRS: 2096 has_msr_pkrs = true; 2097 break; 2098 } 2099 } 2100 } 2101 2102 g_free(kvm_msr_list); 2103 2104 return ret; 2105 } 2106 2107 static Notifier smram_machine_done; 2108 static KVMMemoryListener smram_listener; 2109 static AddressSpace smram_address_space; 2110 static MemoryRegion smram_as_root; 2111 static MemoryRegion smram_as_mem; 2112 2113 static void register_smram_listener(Notifier *n, void *unused) 2114 { 2115 MemoryRegion *smram = 2116 (MemoryRegion *) object_resolve_path("/machine/smram", NULL); 2117 2118 /* Outer container... */ 2119 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); 2120 memory_region_set_enabled(&smram_as_root, true); 2121 2122 /* ... with two regions inside: normal system memory with low 2123 * priority, and... 2124 */ 2125 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", 2126 get_system_memory(), 0, ~0ull); 2127 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); 2128 memory_region_set_enabled(&smram_as_mem, true); 2129 2130 if (smram) { 2131 /* ... SMRAM with higher priority */ 2132 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); 2133 memory_region_set_enabled(smram, true); 2134 } 2135 2136 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); 2137 kvm_memory_listener_register(kvm_state, &smram_listener, 2138 &smram_address_space, 1); 2139 } 2140 2141 int kvm_arch_init(MachineState *ms, KVMState *s) 2142 { 2143 uint64_t identity_base = 0xfffbc000; 2144 uint64_t shadow_mem; 2145 int ret; 2146 struct utsname utsname; 2147 Error *local_err = NULL; 2148 2149 /* 2150 * Initialize SEV context, if required 2151 * 2152 * If no memory encryption is requested (ms->cgs == NULL) this is 2153 * a no-op. 2154 * 2155 * It's also a no-op if a non-SEV confidential guest support 2156 * mechanism is selected. SEV is the only mechanism available to 2157 * select on x86 at present, so this doesn't arise, but if new 2158 * mechanisms are supported in future (e.g. TDX), they'll need 2159 * their own initialization either here or elsewhere. 2160 */ 2161 ret = sev_kvm_init(ms->cgs, &local_err); 2162 if (ret < 0) { 2163 error_report_err(local_err); 2164 return ret; 2165 } 2166 2167 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { 2168 error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM"); 2169 return -ENOTSUP; 2170 } 2171 2172 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE); 2173 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); 2174 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); 2175 2176 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX); 2177 2178 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD); 2179 if (has_exception_payload) { 2180 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true); 2181 if (ret < 0) { 2182 error_report("kvm: Failed to enable exception payload cap: %s", 2183 strerror(-ret)); 2184 return ret; 2185 } 2186 } 2187 2188 ret = kvm_get_supported_msrs(s); 2189 if (ret < 0) { 2190 return ret; 2191 } 2192 2193 kvm_get_supported_feature_msrs(s); 2194 2195 uname(&utsname); 2196 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; 2197 2198 /* 2199 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. 2200 * In order to use vm86 mode, an EPT identity map and a TSS are needed. 2201 * Since these must be part of guest physical memory, we need to allocate 2202 * them, both by setting their start addresses in the kernel and by 2203 * creating a corresponding e820 entry. We need 4 pages before the BIOS. 2204 * 2205 * Older KVM versions may not support setting the identity map base. In 2206 * that case we need to stick with the default, i.e. a 256K maximum BIOS 2207 * size. 2208 */ 2209 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { 2210 /* Allows up to 16M BIOSes. */ 2211 identity_base = 0xfeffc000; 2212 2213 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); 2214 if (ret < 0) { 2215 return ret; 2216 } 2217 } 2218 2219 /* Set TSS base one page after EPT identity map. */ 2220 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); 2221 if (ret < 0) { 2222 return ret; 2223 } 2224 2225 /* Tell fw_cfg to notify the BIOS to reserve the range. */ 2226 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); 2227 if (ret < 0) { 2228 fprintf(stderr, "e820_add_entry() table is full\n"); 2229 return ret; 2230 } 2231 2232 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort); 2233 if (shadow_mem != -1) { 2234 shadow_mem /= 4096; 2235 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); 2236 if (ret < 0) { 2237 return ret; 2238 } 2239 } 2240 2241 if (kvm_check_extension(s, KVM_CAP_X86_SMM) && 2242 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) && 2243 x86_machine_is_smm_enabled(X86_MACHINE(ms))) { 2244 smram_machine_done.notify = register_smram_listener; 2245 qemu_add_machine_init_done_notifier(&smram_machine_done); 2246 } 2247 2248 if (enable_cpu_pm) { 2249 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS); 2250 int ret; 2251 2252 /* Work around for kernel header with a typo. TODO: fix header and drop. */ 2253 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT) 2254 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL 2255 #endif 2256 if (disable_exits) { 2257 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT | 2258 KVM_X86_DISABLE_EXITS_HLT | 2259 KVM_X86_DISABLE_EXITS_PAUSE | 2260 KVM_X86_DISABLE_EXITS_CSTATE); 2261 } 2262 2263 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0, 2264 disable_exits); 2265 if (ret < 0) { 2266 error_report("kvm: guest stopping CPU not supported: %s", 2267 strerror(-ret)); 2268 } 2269 } 2270 2271 return 0; 2272 } 2273 2274 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 2275 { 2276 lhs->selector = rhs->selector; 2277 lhs->base = rhs->base; 2278 lhs->limit = rhs->limit; 2279 lhs->type = 3; 2280 lhs->present = 1; 2281 lhs->dpl = 3; 2282 lhs->db = 0; 2283 lhs->s = 1; 2284 lhs->l = 0; 2285 lhs->g = 0; 2286 lhs->avl = 0; 2287 lhs->unusable = 0; 2288 } 2289 2290 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 2291 { 2292 unsigned flags = rhs->flags; 2293 lhs->selector = rhs->selector; 2294 lhs->base = rhs->base; 2295 lhs->limit = rhs->limit; 2296 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; 2297 lhs->present = (flags & DESC_P_MASK) != 0; 2298 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; 2299 lhs->db = (flags >> DESC_B_SHIFT) & 1; 2300 lhs->s = (flags & DESC_S_MASK) != 0; 2301 lhs->l = (flags >> DESC_L_SHIFT) & 1; 2302 lhs->g = (flags & DESC_G_MASK) != 0; 2303 lhs->avl = (flags & DESC_AVL_MASK) != 0; 2304 lhs->unusable = !lhs->present; 2305 lhs->padding = 0; 2306 } 2307 2308 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) 2309 { 2310 lhs->selector = rhs->selector; 2311 lhs->base = rhs->base; 2312 lhs->limit = rhs->limit; 2313 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | 2314 ((rhs->present && !rhs->unusable) * DESC_P_MASK) | 2315 (rhs->dpl << DESC_DPL_SHIFT) | 2316 (rhs->db << DESC_B_SHIFT) | 2317 (rhs->s * DESC_S_MASK) | 2318 (rhs->l << DESC_L_SHIFT) | 2319 (rhs->g * DESC_G_MASK) | 2320 (rhs->avl * DESC_AVL_MASK); 2321 } 2322 2323 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) 2324 { 2325 if (set) { 2326 *kvm_reg = *qemu_reg; 2327 } else { 2328 *qemu_reg = *kvm_reg; 2329 } 2330 } 2331 2332 static int kvm_getput_regs(X86CPU *cpu, int set) 2333 { 2334 CPUX86State *env = &cpu->env; 2335 struct kvm_regs regs; 2336 int ret = 0; 2337 2338 if (!set) { 2339 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); 2340 if (ret < 0) { 2341 return ret; 2342 } 2343 } 2344 2345 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); 2346 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); 2347 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); 2348 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); 2349 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); 2350 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); 2351 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); 2352 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); 2353 #ifdef TARGET_X86_64 2354 kvm_getput_reg(®s.r8, &env->regs[8], set); 2355 kvm_getput_reg(®s.r9, &env->regs[9], set); 2356 kvm_getput_reg(®s.r10, &env->regs[10], set); 2357 kvm_getput_reg(®s.r11, &env->regs[11], set); 2358 kvm_getput_reg(®s.r12, &env->regs[12], set); 2359 kvm_getput_reg(®s.r13, &env->regs[13], set); 2360 kvm_getput_reg(®s.r14, &env->regs[14], set); 2361 kvm_getput_reg(®s.r15, &env->regs[15], set); 2362 #endif 2363 2364 kvm_getput_reg(®s.rflags, &env->eflags, set); 2365 kvm_getput_reg(®s.rip, &env->eip, set); 2366 2367 if (set) { 2368 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); 2369 } 2370 2371 return ret; 2372 } 2373 2374 static int kvm_put_fpu(X86CPU *cpu) 2375 { 2376 CPUX86State *env = &cpu->env; 2377 struct kvm_fpu fpu; 2378 int i; 2379 2380 memset(&fpu, 0, sizeof fpu); 2381 fpu.fsw = env->fpus & ~(7 << 11); 2382 fpu.fsw |= (env->fpstt & 7) << 11; 2383 fpu.fcw = env->fpuc; 2384 fpu.last_opcode = env->fpop; 2385 fpu.last_ip = env->fpip; 2386 fpu.last_dp = env->fpdp; 2387 for (i = 0; i < 8; ++i) { 2388 fpu.ftwx |= (!env->fptags[i]) << i; 2389 } 2390 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); 2391 for (i = 0; i < CPU_NB_REGS; i++) { 2392 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0)); 2393 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1)); 2394 } 2395 fpu.mxcsr = env->mxcsr; 2396 2397 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); 2398 } 2399 2400 #define XSAVE_FCW_FSW 0 2401 #define XSAVE_FTW_FOP 1 2402 #define XSAVE_CWD_RIP 2 2403 #define XSAVE_CWD_RDP 4 2404 #define XSAVE_MXCSR 6 2405 #define XSAVE_ST_SPACE 8 2406 #define XSAVE_XMM_SPACE 40 2407 #define XSAVE_XSTATE_BV 128 2408 #define XSAVE_YMMH_SPACE 144 2409 #define XSAVE_BNDREGS 240 2410 #define XSAVE_BNDCSR 256 2411 #define XSAVE_OPMASK 272 2412 #define XSAVE_ZMM_Hi256 288 2413 #define XSAVE_Hi16_ZMM 416 2414 #define XSAVE_PKRU 672 2415 2416 #define XSAVE_BYTE_OFFSET(word_offset) \ 2417 ((word_offset) * sizeof_field(struct kvm_xsave, region[0])) 2418 2419 #define ASSERT_OFFSET(word_offset, field) \ 2420 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \ 2421 offsetof(X86XSaveArea, field)) 2422 2423 ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw); 2424 ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw); 2425 ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip); 2426 ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp); 2427 ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr); 2428 ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs); 2429 ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs); 2430 ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv); 2431 ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state); 2432 ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state); 2433 ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state); 2434 ASSERT_OFFSET(XSAVE_OPMASK, opmask_state); 2435 ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state); 2436 ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state); 2437 ASSERT_OFFSET(XSAVE_PKRU, pkru_state); 2438 2439 static int kvm_put_xsave(X86CPU *cpu) 2440 { 2441 CPUX86State *env = &cpu->env; 2442 X86XSaveArea *xsave = env->xsave_buf; 2443 2444 if (!has_xsave) { 2445 return kvm_put_fpu(cpu); 2446 } 2447 x86_cpu_xsave_all_areas(cpu, xsave); 2448 2449 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); 2450 } 2451 2452 static int kvm_put_xcrs(X86CPU *cpu) 2453 { 2454 CPUX86State *env = &cpu->env; 2455 struct kvm_xcrs xcrs = {}; 2456 2457 if (!has_xcrs) { 2458 return 0; 2459 } 2460 2461 xcrs.nr_xcrs = 1; 2462 xcrs.flags = 0; 2463 xcrs.xcrs[0].xcr = 0; 2464 xcrs.xcrs[0].value = env->xcr0; 2465 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); 2466 } 2467 2468 static int kvm_put_sregs(X86CPU *cpu) 2469 { 2470 CPUX86State *env = &cpu->env; 2471 struct kvm_sregs sregs; 2472 2473 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); 2474 if (env->interrupt_injected >= 0) { 2475 sregs.interrupt_bitmap[env->interrupt_injected / 64] |= 2476 (uint64_t)1 << (env->interrupt_injected % 64); 2477 } 2478 2479 if ((env->eflags & VM_MASK)) { 2480 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 2481 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 2482 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 2483 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 2484 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 2485 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 2486 } else { 2487 set_seg(&sregs.cs, &env->segs[R_CS]); 2488 set_seg(&sregs.ds, &env->segs[R_DS]); 2489 set_seg(&sregs.es, &env->segs[R_ES]); 2490 set_seg(&sregs.fs, &env->segs[R_FS]); 2491 set_seg(&sregs.gs, &env->segs[R_GS]); 2492 set_seg(&sregs.ss, &env->segs[R_SS]); 2493 } 2494 2495 set_seg(&sregs.tr, &env->tr); 2496 set_seg(&sregs.ldt, &env->ldt); 2497 2498 sregs.idt.limit = env->idt.limit; 2499 sregs.idt.base = env->idt.base; 2500 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 2501 sregs.gdt.limit = env->gdt.limit; 2502 sregs.gdt.base = env->gdt.base; 2503 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 2504 2505 sregs.cr0 = env->cr[0]; 2506 sregs.cr2 = env->cr[2]; 2507 sregs.cr3 = env->cr[3]; 2508 sregs.cr4 = env->cr[4]; 2509 2510 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 2511 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 2512 2513 sregs.efer = env->efer; 2514 2515 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); 2516 } 2517 2518 static void kvm_msr_buf_reset(X86CPU *cpu) 2519 { 2520 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); 2521 } 2522 2523 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) 2524 { 2525 struct kvm_msrs *msrs = cpu->kvm_msr_buf; 2526 void *limit = ((void *)msrs) + MSR_BUF_SIZE; 2527 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; 2528 2529 assert((void *)(entry + 1) <= limit); 2530 2531 entry->index = index; 2532 entry->reserved = 0; 2533 entry->data = value; 2534 msrs->nmsrs++; 2535 } 2536 2537 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) 2538 { 2539 kvm_msr_buf_reset(cpu); 2540 kvm_msr_entry_add(cpu, index, value); 2541 2542 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 2543 } 2544 2545 void kvm_put_apicbase(X86CPU *cpu, uint64_t value) 2546 { 2547 int ret; 2548 2549 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); 2550 assert(ret == 1); 2551 } 2552 2553 static int kvm_put_tscdeadline_msr(X86CPU *cpu) 2554 { 2555 CPUX86State *env = &cpu->env; 2556 int ret; 2557 2558 if (!has_msr_tsc_deadline) { 2559 return 0; 2560 } 2561 2562 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); 2563 if (ret < 0) { 2564 return ret; 2565 } 2566 2567 assert(ret == 1); 2568 return 0; 2569 } 2570 2571 /* 2572 * Provide a separate write service for the feature control MSR in order to 2573 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done 2574 * before writing any other state because forcibly leaving nested mode 2575 * invalidates the VCPU state. 2576 */ 2577 static int kvm_put_msr_feature_control(X86CPU *cpu) 2578 { 2579 int ret; 2580 2581 if (!has_msr_feature_control) { 2582 return 0; 2583 } 2584 2585 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, 2586 cpu->env.msr_ia32_feature_control); 2587 if (ret < 0) { 2588 return ret; 2589 } 2590 2591 assert(ret == 1); 2592 return 0; 2593 } 2594 2595 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features) 2596 { 2597 uint32_t default1, can_be_one, can_be_zero; 2598 uint32_t must_be_one; 2599 2600 switch (index) { 2601 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 2602 default1 = 0x00000016; 2603 break; 2604 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 2605 default1 = 0x0401e172; 2606 break; 2607 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 2608 default1 = 0x000011ff; 2609 break; 2610 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 2611 default1 = 0x00036dff; 2612 break; 2613 case MSR_IA32_VMX_PROCBASED_CTLS2: 2614 default1 = 0; 2615 break; 2616 default: 2617 abort(); 2618 } 2619 2620 /* If a feature bit is set, the control can be either set or clear. 2621 * Otherwise the value is limited to either 0 or 1 by default1. 2622 */ 2623 can_be_one = features | default1; 2624 can_be_zero = features | ~default1; 2625 must_be_one = ~can_be_zero; 2626 2627 /* 2628 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one). 2629 * Bit 32:63 -> 1 if the control bit can be one. 2630 */ 2631 return must_be_one | (((uint64_t)can_be_one) << 32); 2632 } 2633 2634 #define VMCS12_MAX_FIELD_INDEX (0x17) 2635 2636 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f) 2637 { 2638 uint64_t kvm_vmx_basic = 2639 kvm_arch_get_supported_msr_feature(kvm_state, 2640 MSR_IA32_VMX_BASIC); 2641 2642 if (!kvm_vmx_basic) { 2643 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0), 2644 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail. 2645 */ 2646 return; 2647 } 2648 2649 uint64_t kvm_vmx_misc = 2650 kvm_arch_get_supported_msr_feature(kvm_state, 2651 MSR_IA32_VMX_MISC); 2652 uint64_t kvm_vmx_ept_vpid = 2653 kvm_arch_get_supported_msr_feature(kvm_state, 2654 MSR_IA32_VMX_EPT_VPID_CAP); 2655 2656 /* 2657 * If the guest is 64-bit, a value of 1 is allowed for the host address 2658 * space size vmexit control. 2659 */ 2660 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM 2661 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0; 2662 2663 /* 2664 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should 2665 * not change them for backwards compatibility. 2666 */ 2667 uint64_t fixed_vmx_basic = kvm_vmx_basic & 2668 (MSR_VMX_BASIC_VMCS_REVISION_MASK | 2669 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK | 2670 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK); 2671 2672 /* 2673 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can 2674 * change in the future but are always zero for now, clear them to be 2675 * future proof. Bits 32-63 in theory could change, though KVM does 2676 * not support dual-monitor treatment and probably never will; mask 2677 * them out as well. 2678 */ 2679 uint64_t fixed_vmx_misc = kvm_vmx_misc & 2680 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK | 2681 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK); 2682 2683 /* 2684 * EPT memory types should not change either, so we do not bother 2685 * adding features for them. 2686 */ 2687 uint64_t fixed_vmx_ept_mask = 2688 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ? 2689 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0); 2690 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask; 2691 2692 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 2693 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 2694 f[FEAT_VMX_PROCBASED_CTLS])); 2695 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS, 2696 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS, 2697 f[FEAT_VMX_PINBASED_CTLS])); 2698 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS, 2699 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS, 2700 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit); 2701 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS, 2702 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS, 2703 f[FEAT_VMX_ENTRY_CTLS])); 2704 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2, 2705 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2, 2706 f[FEAT_VMX_SECONDARY_CTLS])); 2707 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP, 2708 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid); 2709 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC, 2710 f[FEAT_VMX_BASIC] | fixed_vmx_basic); 2711 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC, 2712 f[FEAT_VMX_MISC] | fixed_vmx_misc); 2713 if (has_msr_vmx_vmfunc) { 2714 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]); 2715 } 2716 2717 /* 2718 * Just to be safe, write these with constant values. The CRn_FIXED1 2719 * MSRs are generated by KVM based on the vCPU's CPUID. 2720 */ 2721 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0, 2722 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK); 2723 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0, 2724 CR4_VMXE_MASK); 2725 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 2726 VMCS12_MAX_FIELD_INDEX << 1); 2727 } 2728 2729 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f) 2730 { 2731 uint64_t kvm_perf_cap = 2732 kvm_arch_get_supported_msr_feature(kvm_state, 2733 MSR_IA32_PERF_CAPABILITIES); 2734 2735 if (kvm_perf_cap) { 2736 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES, 2737 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]); 2738 } 2739 } 2740 2741 static int kvm_buf_set_msrs(X86CPU *cpu) 2742 { 2743 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 2744 if (ret < 0) { 2745 return ret; 2746 } 2747 2748 if (ret < cpu->kvm_msr_buf->nmsrs) { 2749 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 2750 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, 2751 (uint32_t)e->index, (uint64_t)e->data); 2752 } 2753 2754 assert(ret == cpu->kvm_msr_buf->nmsrs); 2755 return 0; 2756 } 2757 2758 static void kvm_init_msrs(X86CPU *cpu) 2759 { 2760 CPUX86State *env = &cpu->env; 2761 2762 kvm_msr_buf_reset(cpu); 2763 if (has_msr_arch_capabs) { 2764 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES, 2765 env->features[FEAT_ARCH_CAPABILITIES]); 2766 } 2767 2768 if (has_msr_core_capabs) { 2769 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY, 2770 env->features[FEAT_CORE_CAPABILITY]); 2771 } 2772 2773 if (has_msr_perf_capabs && cpu->enable_pmu) { 2774 kvm_msr_entry_add_perf(cpu, env->features); 2775 } 2776 2777 if (has_msr_ucode_rev) { 2778 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev); 2779 } 2780 2781 /* 2782 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but 2783 * all kernels with MSR features should have them. 2784 */ 2785 if (kvm_feature_msrs && cpu_has_vmx(env)) { 2786 kvm_msr_entry_add_vmx(cpu, env->features); 2787 } 2788 2789 assert(kvm_buf_set_msrs(cpu) == 0); 2790 } 2791 2792 static int kvm_put_msrs(X86CPU *cpu, int level) 2793 { 2794 CPUX86State *env = &cpu->env; 2795 int i; 2796 2797 kvm_msr_buf_reset(cpu); 2798 2799 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); 2800 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); 2801 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); 2802 kvm_msr_entry_add(cpu, MSR_PAT, env->pat); 2803 if (has_msr_star) { 2804 kvm_msr_entry_add(cpu, MSR_STAR, env->star); 2805 } 2806 if (has_msr_hsave_pa) { 2807 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); 2808 } 2809 if (has_msr_tsc_aux) { 2810 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); 2811 } 2812 if (has_msr_tsc_adjust) { 2813 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); 2814 } 2815 if (has_msr_misc_enable) { 2816 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 2817 env->msr_ia32_misc_enable); 2818 } 2819 if (has_msr_smbase) { 2820 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); 2821 } 2822 if (has_msr_smi_count) { 2823 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count); 2824 } 2825 if (has_msr_pkrs) { 2826 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs); 2827 } 2828 if (has_msr_bndcfgs) { 2829 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); 2830 } 2831 if (has_msr_xss) { 2832 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); 2833 } 2834 if (has_msr_umwait) { 2835 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait); 2836 } 2837 if (has_msr_spec_ctrl) { 2838 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl); 2839 } 2840 if (has_msr_tsx_ctrl) { 2841 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl); 2842 } 2843 if (has_msr_virt_ssbd) { 2844 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd); 2845 } 2846 2847 #ifdef TARGET_X86_64 2848 if (lm_capable_kernel) { 2849 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); 2850 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); 2851 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); 2852 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); 2853 } 2854 #endif 2855 2856 /* 2857 * The following MSRs have side effects on the guest or are too heavy 2858 * for normal writeback. Limit them to reset or full state updates. 2859 */ 2860 if (level >= KVM_PUT_RESET_STATE) { 2861 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); 2862 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); 2863 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); 2864 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { 2865 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr); 2866 } 2867 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { 2868 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); 2869 } 2870 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { 2871 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); 2872 } 2873 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { 2874 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); 2875 } 2876 2877 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { 2878 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr); 2879 } 2880 2881 if (has_architectural_pmu_version > 0) { 2882 if (has_architectural_pmu_version > 1) { 2883 /* Stop the counter. */ 2884 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 2885 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 2886 } 2887 2888 /* Set the counter values. */ 2889 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 2890 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 2891 env->msr_fixed_counters[i]); 2892 } 2893 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 2894 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 2895 env->msr_gp_counters[i]); 2896 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 2897 env->msr_gp_evtsel[i]); 2898 } 2899 if (has_architectural_pmu_version > 1) { 2900 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 2901 env->msr_global_status); 2902 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 2903 env->msr_global_ovf_ctrl); 2904 2905 /* Now start the PMU. */ 2906 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 2907 env->msr_fixed_ctr_ctrl); 2908 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 2909 env->msr_global_ctrl); 2910 } 2911 } 2912 /* 2913 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add, 2914 * only sync them to KVM on the first cpu 2915 */ 2916 if (current_cpu == first_cpu) { 2917 if (has_msr_hv_hypercall) { 2918 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 2919 env->msr_hv_guest_os_id); 2920 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 2921 env->msr_hv_hypercall); 2922 } 2923 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 2924 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 2925 env->msr_hv_tsc); 2926 } 2927 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 2928 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 2929 env->msr_hv_reenlightenment_control); 2930 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 2931 env->msr_hv_tsc_emulation_control); 2932 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 2933 env->msr_hv_tsc_emulation_status); 2934 } 2935 } 2936 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 2937 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 2938 env->msr_hv_vapic); 2939 } 2940 if (has_msr_hv_crash) { 2941 int j; 2942 2943 for (j = 0; j < HV_CRASH_PARAMS; j++) 2944 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 2945 env->msr_hv_crash_params[j]); 2946 2947 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY); 2948 } 2949 if (has_msr_hv_runtime) { 2950 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); 2951 } 2952 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) 2953 && hv_vpindex_settable) { 2954 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX, 2955 hyperv_vp_index(CPU(cpu))); 2956 } 2957 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 2958 int j; 2959 2960 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION); 2961 2962 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 2963 env->msr_hv_synic_control); 2964 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 2965 env->msr_hv_synic_evt_page); 2966 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 2967 env->msr_hv_synic_msg_page); 2968 2969 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { 2970 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, 2971 env->msr_hv_synic_sint[j]); 2972 } 2973 } 2974 if (has_msr_hv_stimer) { 2975 int j; 2976 2977 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { 2978 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, 2979 env->msr_hv_stimer_config[j]); 2980 } 2981 2982 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { 2983 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, 2984 env->msr_hv_stimer_count[j]); 2985 } 2986 } 2987 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 2988 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); 2989 2990 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); 2991 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); 2992 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); 2993 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); 2994 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); 2995 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); 2996 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); 2997 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); 2998 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); 2999 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); 3000 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); 3001 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); 3002 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 3003 /* The CPU GPs if we write to a bit above the physical limit of 3004 * the host CPU (and KVM emulates that) 3005 */ 3006 uint64_t mask = env->mtrr_var[i].mask; 3007 mask &= phys_mask; 3008 3009 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 3010 env->mtrr_var[i].base); 3011 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); 3012 } 3013 } 3014 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 3015 int addr_num = kvm_arch_get_supported_cpuid(kvm_state, 3016 0x14, 1, R_EAX) & 0x7; 3017 3018 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 3019 env->msr_rtit_ctrl); 3020 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 3021 env->msr_rtit_status); 3022 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 3023 env->msr_rtit_output_base); 3024 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 3025 env->msr_rtit_output_mask); 3026 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 3027 env->msr_rtit_cr3_match); 3028 for (i = 0; i < addr_num; i++) { 3029 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 3030 env->msr_rtit_addrs[i]); 3031 } 3032 } 3033 3034 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see 3035 * kvm_put_msr_feature_control. */ 3036 } 3037 3038 if (env->mcg_cap) { 3039 int i; 3040 3041 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); 3042 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); 3043 if (has_msr_mcg_ext_ctl) { 3044 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); 3045 } 3046 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 3047 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); 3048 } 3049 } 3050 3051 return kvm_buf_set_msrs(cpu); 3052 } 3053 3054 3055 static int kvm_get_fpu(X86CPU *cpu) 3056 { 3057 CPUX86State *env = &cpu->env; 3058 struct kvm_fpu fpu; 3059 int i, ret; 3060 3061 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); 3062 if (ret < 0) { 3063 return ret; 3064 } 3065 3066 env->fpstt = (fpu.fsw >> 11) & 7; 3067 env->fpus = fpu.fsw; 3068 env->fpuc = fpu.fcw; 3069 env->fpop = fpu.last_opcode; 3070 env->fpip = fpu.last_ip; 3071 env->fpdp = fpu.last_dp; 3072 for (i = 0; i < 8; ++i) { 3073 env->fptags[i] = !((fpu.ftwx >> i) & 1); 3074 } 3075 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); 3076 for (i = 0; i < CPU_NB_REGS; i++) { 3077 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]); 3078 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]); 3079 } 3080 env->mxcsr = fpu.mxcsr; 3081 3082 return 0; 3083 } 3084 3085 static int kvm_get_xsave(X86CPU *cpu) 3086 { 3087 CPUX86State *env = &cpu->env; 3088 X86XSaveArea *xsave = env->xsave_buf; 3089 int ret; 3090 3091 if (!has_xsave) { 3092 return kvm_get_fpu(cpu); 3093 } 3094 3095 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave); 3096 if (ret < 0) { 3097 return ret; 3098 } 3099 x86_cpu_xrstor_all_areas(cpu, xsave); 3100 3101 return 0; 3102 } 3103 3104 static int kvm_get_xcrs(X86CPU *cpu) 3105 { 3106 CPUX86State *env = &cpu->env; 3107 int i, ret; 3108 struct kvm_xcrs xcrs; 3109 3110 if (!has_xcrs) { 3111 return 0; 3112 } 3113 3114 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); 3115 if (ret < 0) { 3116 return ret; 3117 } 3118 3119 for (i = 0; i < xcrs.nr_xcrs; i++) { 3120 /* Only support xcr0 now */ 3121 if (xcrs.xcrs[i].xcr == 0) { 3122 env->xcr0 = xcrs.xcrs[i].value; 3123 break; 3124 } 3125 } 3126 return 0; 3127 } 3128 3129 static int kvm_get_sregs(X86CPU *cpu) 3130 { 3131 CPUX86State *env = &cpu->env; 3132 struct kvm_sregs sregs; 3133 int bit, i, ret; 3134 3135 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); 3136 if (ret < 0) { 3137 return ret; 3138 } 3139 3140 /* There can only be one pending IRQ set in the bitmap at a time, so try 3141 to find it and save its number instead (-1 for none). */ 3142 env->interrupt_injected = -1; 3143 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { 3144 if (sregs.interrupt_bitmap[i]) { 3145 bit = ctz64(sregs.interrupt_bitmap[i]); 3146 env->interrupt_injected = i * 64 + bit; 3147 break; 3148 } 3149 } 3150 3151 get_seg(&env->segs[R_CS], &sregs.cs); 3152 get_seg(&env->segs[R_DS], &sregs.ds); 3153 get_seg(&env->segs[R_ES], &sregs.es); 3154 get_seg(&env->segs[R_FS], &sregs.fs); 3155 get_seg(&env->segs[R_GS], &sregs.gs); 3156 get_seg(&env->segs[R_SS], &sregs.ss); 3157 3158 get_seg(&env->tr, &sregs.tr); 3159 get_seg(&env->ldt, &sregs.ldt); 3160 3161 env->idt.limit = sregs.idt.limit; 3162 env->idt.base = sregs.idt.base; 3163 env->gdt.limit = sregs.gdt.limit; 3164 env->gdt.base = sregs.gdt.base; 3165 3166 env->cr[0] = sregs.cr0; 3167 env->cr[2] = sregs.cr2; 3168 env->cr[3] = sregs.cr3; 3169 env->cr[4] = sregs.cr4; 3170 3171 env->efer = sregs.efer; 3172 3173 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 3174 x86_update_hflags(env); 3175 3176 return 0; 3177 } 3178 3179 static int kvm_get_msrs(X86CPU *cpu) 3180 { 3181 CPUX86State *env = &cpu->env; 3182 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; 3183 int ret, i; 3184 uint64_t mtrr_top_bits; 3185 3186 kvm_msr_buf_reset(cpu); 3187 3188 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); 3189 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); 3190 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); 3191 kvm_msr_entry_add(cpu, MSR_PAT, 0); 3192 if (has_msr_star) { 3193 kvm_msr_entry_add(cpu, MSR_STAR, 0); 3194 } 3195 if (has_msr_hsave_pa) { 3196 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); 3197 } 3198 if (has_msr_tsc_aux) { 3199 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); 3200 } 3201 if (has_msr_tsc_adjust) { 3202 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); 3203 } 3204 if (has_msr_tsc_deadline) { 3205 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); 3206 } 3207 if (has_msr_misc_enable) { 3208 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); 3209 } 3210 if (has_msr_smbase) { 3211 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); 3212 } 3213 if (has_msr_smi_count) { 3214 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0); 3215 } 3216 if (has_msr_feature_control) { 3217 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); 3218 } 3219 if (has_msr_pkrs) { 3220 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0); 3221 } 3222 if (has_msr_bndcfgs) { 3223 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); 3224 } 3225 if (has_msr_xss) { 3226 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); 3227 } 3228 if (has_msr_umwait) { 3229 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0); 3230 } 3231 if (has_msr_spec_ctrl) { 3232 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0); 3233 } 3234 if (has_msr_tsx_ctrl) { 3235 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0); 3236 } 3237 if (has_msr_virt_ssbd) { 3238 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0); 3239 } 3240 if (!env->tsc_valid) { 3241 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); 3242 env->tsc_valid = !runstate_is_running(); 3243 } 3244 3245 #ifdef TARGET_X86_64 3246 if (lm_capable_kernel) { 3247 kvm_msr_entry_add(cpu, MSR_CSTAR, 0); 3248 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); 3249 kvm_msr_entry_add(cpu, MSR_FMASK, 0); 3250 kvm_msr_entry_add(cpu, MSR_LSTAR, 0); 3251 } 3252 #endif 3253 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); 3254 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); 3255 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { 3256 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0); 3257 } 3258 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { 3259 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); 3260 } 3261 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { 3262 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); 3263 } 3264 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { 3265 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); 3266 } 3267 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { 3268 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1); 3269 } 3270 if (has_architectural_pmu_version > 0) { 3271 if (has_architectural_pmu_version > 1) { 3272 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 3273 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 3274 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); 3275 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); 3276 } 3277 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 3278 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); 3279 } 3280 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 3281 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); 3282 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); 3283 } 3284 } 3285 3286 if (env->mcg_cap) { 3287 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); 3288 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); 3289 if (has_msr_mcg_ext_ctl) { 3290 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); 3291 } 3292 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 3293 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); 3294 } 3295 } 3296 3297 if (has_msr_hv_hypercall) { 3298 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); 3299 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); 3300 } 3301 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 3302 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); 3303 } 3304 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 3305 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); 3306 } 3307 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 3308 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0); 3309 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0); 3310 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0); 3311 } 3312 if (has_msr_hv_crash) { 3313 int j; 3314 3315 for (j = 0; j < HV_CRASH_PARAMS; j++) { 3316 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); 3317 } 3318 } 3319 if (has_msr_hv_runtime) { 3320 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); 3321 } 3322 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 3323 uint32_t msr; 3324 3325 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); 3326 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); 3327 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); 3328 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { 3329 kvm_msr_entry_add(cpu, msr, 0); 3330 } 3331 } 3332 if (has_msr_hv_stimer) { 3333 uint32_t msr; 3334 3335 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; 3336 msr++) { 3337 kvm_msr_entry_add(cpu, msr, 0); 3338 } 3339 } 3340 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 3341 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); 3342 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); 3343 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); 3344 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); 3345 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); 3346 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); 3347 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); 3348 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); 3349 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); 3350 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); 3351 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); 3352 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); 3353 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 3354 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); 3355 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); 3356 } 3357 } 3358 3359 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 3360 int addr_num = 3361 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7; 3362 3363 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0); 3364 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0); 3365 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0); 3366 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0); 3367 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0); 3368 for (i = 0; i < addr_num; i++) { 3369 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0); 3370 } 3371 } 3372 3373 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); 3374 if (ret < 0) { 3375 return ret; 3376 } 3377 3378 if (ret < cpu->kvm_msr_buf->nmsrs) { 3379 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 3380 error_report("error: failed to get MSR 0x%" PRIx32, 3381 (uint32_t)e->index); 3382 } 3383 3384 assert(ret == cpu->kvm_msr_buf->nmsrs); 3385 /* 3386 * MTRR masks: Each mask consists of 5 parts 3387 * a 10..0: must be zero 3388 * b 11 : valid bit 3389 * c n-1.12: actual mask bits 3390 * d 51..n: reserved must be zero 3391 * e 63.52: reserved must be zero 3392 * 3393 * 'n' is the number of physical bits supported by the CPU and is 3394 * apparently always <= 52. We know our 'n' but don't know what 3395 * the destinations 'n' is; it might be smaller, in which case 3396 * it masks (c) on loading. It might be larger, in which case 3397 * we fill 'd' so that d..c is consistent irrespetive of the 'n' 3398 * we're migrating to. 3399 */ 3400 3401 if (cpu->fill_mtrr_mask) { 3402 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); 3403 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); 3404 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); 3405 } else { 3406 mtrr_top_bits = 0; 3407 } 3408 3409 for (i = 0; i < ret; i++) { 3410 uint32_t index = msrs[i].index; 3411 switch (index) { 3412 case MSR_IA32_SYSENTER_CS: 3413 env->sysenter_cs = msrs[i].data; 3414 break; 3415 case MSR_IA32_SYSENTER_ESP: 3416 env->sysenter_esp = msrs[i].data; 3417 break; 3418 case MSR_IA32_SYSENTER_EIP: 3419 env->sysenter_eip = msrs[i].data; 3420 break; 3421 case MSR_PAT: 3422 env->pat = msrs[i].data; 3423 break; 3424 case MSR_STAR: 3425 env->star = msrs[i].data; 3426 break; 3427 #ifdef TARGET_X86_64 3428 case MSR_CSTAR: 3429 env->cstar = msrs[i].data; 3430 break; 3431 case MSR_KERNELGSBASE: 3432 env->kernelgsbase = msrs[i].data; 3433 break; 3434 case MSR_FMASK: 3435 env->fmask = msrs[i].data; 3436 break; 3437 case MSR_LSTAR: 3438 env->lstar = msrs[i].data; 3439 break; 3440 #endif 3441 case MSR_IA32_TSC: 3442 env->tsc = msrs[i].data; 3443 break; 3444 case MSR_TSC_AUX: 3445 env->tsc_aux = msrs[i].data; 3446 break; 3447 case MSR_TSC_ADJUST: 3448 env->tsc_adjust = msrs[i].data; 3449 break; 3450 case MSR_IA32_TSCDEADLINE: 3451 env->tsc_deadline = msrs[i].data; 3452 break; 3453 case MSR_VM_HSAVE_PA: 3454 env->vm_hsave = msrs[i].data; 3455 break; 3456 case MSR_KVM_SYSTEM_TIME: 3457 env->system_time_msr = msrs[i].data; 3458 break; 3459 case MSR_KVM_WALL_CLOCK: 3460 env->wall_clock_msr = msrs[i].data; 3461 break; 3462 case MSR_MCG_STATUS: 3463 env->mcg_status = msrs[i].data; 3464 break; 3465 case MSR_MCG_CTL: 3466 env->mcg_ctl = msrs[i].data; 3467 break; 3468 case MSR_MCG_EXT_CTL: 3469 env->mcg_ext_ctl = msrs[i].data; 3470 break; 3471 case MSR_IA32_MISC_ENABLE: 3472 env->msr_ia32_misc_enable = msrs[i].data; 3473 break; 3474 case MSR_IA32_SMBASE: 3475 env->smbase = msrs[i].data; 3476 break; 3477 case MSR_SMI_COUNT: 3478 env->msr_smi_count = msrs[i].data; 3479 break; 3480 case MSR_IA32_FEATURE_CONTROL: 3481 env->msr_ia32_feature_control = msrs[i].data; 3482 break; 3483 case MSR_IA32_BNDCFGS: 3484 env->msr_bndcfgs = msrs[i].data; 3485 break; 3486 case MSR_IA32_XSS: 3487 env->xss = msrs[i].data; 3488 break; 3489 case MSR_IA32_UMWAIT_CONTROL: 3490 env->umwait = msrs[i].data; 3491 break; 3492 case MSR_IA32_PKRS: 3493 env->pkrs = msrs[i].data; 3494 break; 3495 default: 3496 if (msrs[i].index >= MSR_MC0_CTL && 3497 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { 3498 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; 3499 } 3500 break; 3501 case MSR_KVM_ASYNC_PF_EN: 3502 env->async_pf_en_msr = msrs[i].data; 3503 break; 3504 case MSR_KVM_ASYNC_PF_INT: 3505 env->async_pf_int_msr = msrs[i].data; 3506 break; 3507 case MSR_KVM_PV_EOI_EN: 3508 env->pv_eoi_en_msr = msrs[i].data; 3509 break; 3510 case MSR_KVM_STEAL_TIME: 3511 env->steal_time_msr = msrs[i].data; 3512 break; 3513 case MSR_KVM_POLL_CONTROL: { 3514 env->poll_control_msr = msrs[i].data; 3515 break; 3516 } 3517 case MSR_CORE_PERF_FIXED_CTR_CTRL: 3518 env->msr_fixed_ctr_ctrl = msrs[i].data; 3519 break; 3520 case MSR_CORE_PERF_GLOBAL_CTRL: 3521 env->msr_global_ctrl = msrs[i].data; 3522 break; 3523 case MSR_CORE_PERF_GLOBAL_STATUS: 3524 env->msr_global_status = msrs[i].data; 3525 break; 3526 case MSR_CORE_PERF_GLOBAL_OVF_CTRL: 3527 env->msr_global_ovf_ctrl = msrs[i].data; 3528 break; 3529 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: 3530 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; 3531 break; 3532 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: 3533 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; 3534 break; 3535 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: 3536 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; 3537 break; 3538 case HV_X64_MSR_HYPERCALL: 3539 env->msr_hv_hypercall = msrs[i].data; 3540 break; 3541 case HV_X64_MSR_GUEST_OS_ID: 3542 env->msr_hv_guest_os_id = msrs[i].data; 3543 break; 3544 case HV_X64_MSR_APIC_ASSIST_PAGE: 3545 env->msr_hv_vapic = msrs[i].data; 3546 break; 3547 case HV_X64_MSR_REFERENCE_TSC: 3548 env->msr_hv_tsc = msrs[i].data; 3549 break; 3550 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3551 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; 3552 break; 3553 case HV_X64_MSR_VP_RUNTIME: 3554 env->msr_hv_runtime = msrs[i].data; 3555 break; 3556 case HV_X64_MSR_SCONTROL: 3557 env->msr_hv_synic_control = msrs[i].data; 3558 break; 3559 case HV_X64_MSR_SIEFP: 3560 env->msr_hv_synic_evt_page = msrs[i].data; 3561 break; 3562 case HV_X64_MSR_SIMP: 3563 env->msr_hv_synic_msg_page = msrs[i].data; 3564 break; 3565 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 3566 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; 3567 break; 3568 case HV_X64_MSR_STIMER0_CONFIG: 3569 case HV_X64_MSR_STIMER1_CONFIG: 3570 case HV_X64_MSR_STIMER2_CONFIG: 3571 case HV_X64_MSR_STIMER3_CONFIG: 3572 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = 3573 msrs[i].data; 3574 break; 3575 case HV_X64_MSR_STIMER0_COUNT: 3576 case HV_X64_MSR_STIMER1_COUNT: 3577 case HV_X64_MSR_STIMER2_COUNT: 3578 case HV_X64_MSR_STIMER3_COUNT: 3579 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = 3580 msrs[i].data; 3581 break; 3582 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3583 env->msr_hv_reenlightenment_control = msrs[i].data; 3584 break; 3585 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3586 env->msr_hv_tsc_emulation_control = msrs[i].data; 3587 break; 3588 case HV_X64_MSR_TSC_EMULATION_STATUS: 3589 env->msr_hv_tsc_emulation_status = msrs[i].data; 3590 break; 3591 case MSR_MTRRdefType: 3592 env->mtrr_deftype = msrs[i].data; 3593 break; 3594 case MSR_MTRRfix64K_00000: 3595 env->mtrr_fixed[0] = msrs[i].data; 3596 break; 3597 case MSR_MTRRfix16K_80000: 3598 env->mtrr_fixed[1] = msrs[i].data; 3599 break; 3600 case MSR_MTRRfix16K_A0000: 3601 env->mtrr_fixed[2] = msrs[i].data; 3602 break; 3603 case MSR_MTRRfix4K_C0000: 3604 env->mtrr_fixed[3] = msrs[i].data; 3605 break; 3606 case MSR_MTRRfix4K_C8000: 3607 env->mtrr_fixed[4] = msrs[i].data; 3608 break; 3609 case MSR_MTRRfix4K_D0000: 3610 env->mtrr_fixed[5] = msrs[i].data; 3611 break; 3612 case MSR_MTRRfix4K_D8000: 3613 env->mtrr_fixed[6] = msrs[i].data; 3614 break; 3615 case MSR_MTRRfix4K_E0000: 3616 env->mtrr_fixed[7] = msrs[i].data; 3617 break; 3618 case MSR_MTRRfix4K_E8000: 3619 env->mtrr_fixed[8] = msrs[i].data; 3620 break; 3621 case MSR_MTRRfix4K_F0000: 3622 env->mtrr_fixed[9] = msrs[i].data; 3623 break; 3624 case MSR_MTRRfix4K_F8000: 3625 env->mtrr_fixed[10] = msrs[i].data; 3626 break; 3627 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): 3628 if (index & 1) { 3629 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | 3630 mtrr_top_bits; 3631 } else { 3632 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; 3633 } 3634 break; 3635 case MSR_IA32_SPEC_CTRL: 3636 env->spec_ctrl = msrs[i].data; 3637 break; 3638 case MSR_IA32_TSX_CTRL: 3639 env->tsx_ctrl = msrs[i].data; 3640 break; 3641 case MSR_VIRT_SSBD: 3642 env->virt_ssbd = msrs[i].data; 3643 break; 3644 case MSR_IA32_RTIT_CTL: 3645 env->msr_rtit_ctrl = msrs[i].data; 3646 break; 3647 case MSR_IA32_RTIT_STATUS: 3648 env->msr_rtit_status = msrs[i].data; 3649 break; 3650 case MSR_IA32_RTIT_OUTPUT_BASE: 3651 env->msr_rtit_output_base = msrs[i].data; 3652 break; 3653 case MSR_IA32_RTIT_OUTPUT_MASK: 3654 env->msr_rtit_output_mask = msrs[i].data; 3655 break; 3656 case MSR_IA32_RTIT_CR3_MATCH: 3657 env->msr_rtit_cr3_match = msrs[i].data; 3658 break; 3659 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 3660 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data; 3661 break; 3662 } 3663 } 3664 3665 return 0; 3666 } 3667 3668 static int kvm_put_mp_state(X86CPU *cpu) 3669 { 3670 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; 3671 3672 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 3673 } 3674 3675 static int kvm_get_mp_state(X86CPU *cpu) 3676 { 3677 CPUState *cs = CPU(cpu); 3678 CPUX86State *env = &cpu->env; 3679 struct kvm_mp_state mp_state; 3680 int ret; 3681 3682 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); 3683 if (ret < 0) { 3684 return ret; 3685 } 3686 env->mp_state = mp_state.mp_state; 3687 if (kvm_irqchip_in_kernel()) { 3688 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); 3689 } 3690 return 0; 3691 } 3692 3693 static int kvm_get_apic(X86CPU *cpu) 3694 { 3695 DeviceState *apic = cpu->apic_state; 3696 struct kvm_lapic_state kapic; 3697 int ret; 3698 3699 if (apic && kvm_irqchip_in_kernel()) { 3700 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); 3701 if (ret < 0) { 3702 return ret; 3703 } 3704 3705 kvm_get_apic_state(apic, &kapic); 3706 } 3707 return 0; 3708 } 3709 3710 static int kvm_put_vcpu_events(X86CPU *cpu, int level) 3711 { 3712 CPUState *cs = CPU(cpu); 3713 CPUX86State *env = &cpu->env; 3714 struct kvm_vcpu_events events = {}; 3715 3716 if (!kvm_has_vcpu_events()) { 3717 return 0; 3718 } 3719 3720 events.flags = 0; 3721 3722 if (has_exception_payload) { 3723 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 3724 events.exception.pending = env->exception_pending; 3725 events.exception_has_payload = env->exception_has_payload; 3726 events.exception_payload = env->exception_payload; 3727 } 3728 events.exception.nr = env->exception_nr; 3729 events.exception.injected = env->exception_injected; 3730 events.exception.has_error_code = env->has_error_code; 3731 events.exception.error_code = env->error_code; 3732 3733 events.interrupt.injected = (env->interrupt_injected >= 0); 3734 events.interrupt.nr = env->interrupt_injected; 3735 events.interrupt.soft = env->soft_interrupt; 3736 3737 events.nmi.injected = env->nmi_injected; 3738 events.nmi.pending = env->nmi_pending; 3739 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); 3740 3741 events.sipi_vector = env->sipi_vector; 3742 3743 if (has_msr_smbase) { 3744 events.smi.smm = !!(env->hflags & HF_SMM_MASK); 3745 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); 3746 if (kvm_irqchip_in_kernel()) { 3747 /* As soon as these are moved to the kernel, remove them 3748 * from cs->interrupt_request. 3749 */ 3750 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; 3751 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; 3752 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); 3753 } else { 3754 /* Keep these in cs->interrupt_request. */ 3755 events.smi.pending = 0; 3756 events.smi.latched_init = 0; 3757 } 3758 /* Stop SMI delivery on old machine types to avoid a reboot 3759 * on an inward migration of an old VM. 3760 */ 3761 if (!cpu->kvm_no_smi_migration) { 3762 events.flags |= KVM_VCPUEVENT_VALID_SMM; 3763 } 3764 } 3765 3766 if (level >= KVM_PUT_RESET_STATE) { 3767 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; 3768 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 3769 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR; 3770 } 3771 } 3772 3773 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 3774 } 3775 3776 static int kvm_get_vcpu_events(X86CPU *cpu) 3777 { 3778 CPUX86State *env = &cpu->env; 3779 struct kvm_vcpu_events events; 3780 int ret; 3781 3782 if (!kvm_has_vcpu_events()) { 3783 return 0; 3784 } 3785 3786 memset(&events, 0, sizeof(events)); 3787 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 3788 if (ret < 0) { 3789 return ret; 3790 } 3791 3792 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 3793 env->exception_pending = events.exception.pending; 3794 env->exception_has_payload = events.exception_has_payload; 3795 env->exception_payload = events.exception_payload; 3796 } else { 3797 env->exception_pending = 0; 3798 env->exception_has_payload = false; 3799 } 3800 env->exception_injected = events.exception.injected; 3801 env->exception_nr = 3802 (env->exception_pending || env->exception_injected) ? 3803 events.exception.nr : -1; 3804 env->has_error_code = events.exception.has_error_code; 3805 env->error_code = events.exception.error_code; 3806 3807 env->interrupt_injected = 3808 events.interrupt.injected ? events.interrupt.nr : -1; 3809 env->soft_interrupt = events.interrupt.soft; 3810 3811 env->nmi_injected = events.nmi.injected; 3812 env->nmi_pending = events.nmi.pending; 3813 if (events.nmi.masked) { 3814 env->hflags2 |= HF2_NMI_MASK; 3815 } else { 3816 env->hflags2 &= ~HF2_NMI_MASK; 3817 } 3818 3819 if (events.flags & KVM_VCPUEVENT_VALID_SMM) { 3820 if (events.smi.smm) { 3821 env->hflags |= HF_SMM_MASK; 3822 } else { 3823 env->hflags &= ~HF_SMM_MASK; 3824 } 3825 if (events.smi.pending) { 3826 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 3827 } else { 3828 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 3829 } 3830 if (events.smi.smm_inside_nmi) { 3831 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; 3832 } else { 3833 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; 3834 } 3835 if (events.smi.latched_init) { 3836 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 3837 } else { 3838 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 3839 } 3840 } 3841 3842 env->sipi_vector = events.sipi_vector; 3843 3844 return 0; 3845 } 3846 3847 static int kvm_guest_debug_workarounds(X86CPU *cpu) 3848 { 3849 CPUState *cs = CPU(cpu); 3850 CPUX86State *env = &cpu->env; 3851 int ret = 0; 3852 unsigned long reinject_trap = 0; 3853 3854 if (!kvm_has_vcpu_events()) { 3855 if (env->exception_nr == EXCP01_DB) { 3856 reinject_trap = KVM_GUESTDBG_INJECT_DB; 3857 } else if (env->exception_injected == EXCP03_INT3) { 3858 reinject_trap = KVM_GUESTDBG_INJECT_BP; 3859 } 3860 kvm_reset_exception(env); 3861 } 3862 3863 /* 3864 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF 3865 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this 3866 * by updating the debug state once again if single-stepping is on. 3867 * Another reason to call kvm_update_guest_debug here is a pending debug 3868 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to 3869 * reinject them via SET_GUEST_DEBUG. 3870 */ 3871 if (reinject_trap || 3872 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { 3873 ret = kvm_update_guest_debug(cs, reinject_trap); 3874 } 3875 return ret; 3876 } 3877 3878 static int kvm_put_debugregs(X86CPU *cpu) 3879 { 3880 CPUX86State *env = &cpu->env; 3881 struct kvm_debugregs dbgregs; 3882 int i; 3883 3884 if (!kvm_has_debugregs()) { 3885 return 0; 3886 } 3887 3888 memset(&dbgregs, 0, sizeof(dbgregs)); 3889 for (i = 0; i < 4; i++) { 3890 dbgregs.db[i] = env->dr[i]; 3891 } 3892 dbgregs.dr6 = env->dr[6]; 3893 dbgregs.dr7 = env->dr[7]; 3894 dbgregs.flags = 0; 3895 3896 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); 3897 } 3898 3899 static int kvm_get_debugregs(X86CPU *cpu) 3900 { 3901 CPUX86State *env = &cpu->env; 3902 struct kvm_debugregs dbgregs; 3903 int i, ret; 3904 3905 if (!kvm_has_debugregs()) { 3906 return 0; 3907 } 3908 3909 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); 3910 if (ret < 0) { 3911 return ret; 3912 } 3913 for (i = 0; i < 4; i++) { 3914 env->dr[i] = dbgregs.db[i]; 3915 } 3916 env->dr[4] = env->dr[6] = dbgregs.dr6; 3917 env->dr[5] = env->dr[7] = dbgregs.dr7; 3918 3919 return 0; 3920 } 3921 3922 static int kvm_put_nested_state(X86CPU *cpu) 3923 { 3924 CPUX86State *env = &cpu->env; 3925 int max_nested_state_len = kvm_max_nested_state_length(); 3926 3927 if (!env->nested_state) { 3928 return 0; 3929 } 3930 3931 /* 3932 * Copy flags that are affected by reset from env->hflags and env->hflags2. 3933 */ 3934 if (env->hflags & HF_GUEST_MASK) { 3935 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE; 3936 } else { 3937 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE; 3938 } 3939 3940 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */ 3941 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) { 3942 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET; 3943 } else { 3944 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET; 3945 } 3946 3947 assert(env->nested_state->size <= max_nested_state_len); 3948 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state); 3949 } 3950 3951 static int kvm_get_nested_state(X86CPU *cpu) 3952 { 3953 CPUX86State *env = &cpu->env; 3954 int max_nested_state_len = kvm_max_nested_state_length(); 3955 int ret; 3956 3957 if (!env->nested_state) { 3958 return 0; 3959 } 3960 3961 /* 3962 * It is possible that migration restored a smaller size into 3963 * nested_state->hdr.size than what our kernel support. 3964 * We preserve migration origin nested_state->hdr.size for 3965 * call to KVM_SET_NESTED_STATE but wish that our next call 3966 * to KVM_GET_NESTED_STATE will use max size our kernel support. 3967 */ 3968 env->nested_state->size = max_nested_state_len; 3969 3970 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state); 3971 if (ret < 0) { 3972 return ret; 3973 } 3974 3975 /* 3976 * Copy flags that are affected by reset to env->hflags and env->hflags2. 3977 */ 3978 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) { 3979 env->hflags |= HF_GUEST_MASK; 3980 } else { 3981 env->hflags &= ~HF_GUEST_MASK; 3982 } 3983 3984 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */ 3985 if (cpu_has_svm(env)) { 3986 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) { 3987 env->hflags2 |= HF2_GIF_MASK; 3988 } else { 3989 env->hflags2 &= ~HF2_GIF_MASK; 3990 } 3991 } 3992 3993 return ret; 3994 } 3995 3996 int kvm_arch_put_registers(CPUState *cpu, int level) 3997 { 3998 X86CPU *x86_cpu = X86_CPU(cpu); 3999 int ret; 4000 4001 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); 4002 4003 /* must be before kvm_put_nested_state so that EFER.SVME is set */ 4004 ret = kvm_put_sregs(x86_cpu); 4005 if (ret < 0) { 4006 return ret; 4007 } 4008 4009 if (level >= KVM_PUT_RESET_STATE) { 4010 ret = kvm_put_nested_state(x86_cpu); 4011 if (ret < 0) { 4012 return ret; 4013 } 4014 4015 ret = kvm_put_msr_feature_control(x86_cpu); 4016 if (ret < 0) { 4017 return ret; 4018 } 4019 } 4020 4021 if (level == KVM_PUT_FULL_STATE) { 4022 /* We don't check for kvm_arch_set_tsc_khz() errors here, 4023 * because TSC frequency mismatch shouldn't abort migration, 4024 * unless the user explicitly asked for a more strict TSC 4025 * setting (e.g. using an explicit "tsc-freq" option). 4026 */ 4027 kvm_arch_set_tsc_khz(cpu); 4028 } 4029 4030 ret = kvm_getput_regs(x86_cpu, 1); 4031 if (ret < 0) { 4032 return ret; 4033 } 4034 ret = kvm_put_xsave(x86_cpu); 4035 if (ret < 0) { 4036 return ret; 4037 } 4038 ret = kvm_put_xcrs(x86_cpu); 4039 if (ret < 0) { 4040 return ret; 4041 } 4042 /* must be before kvm_put_msrs */ 4043 ret = kvm_inject_mce_oldstyle(x86_cpu); 4044 if (ret < 0) { 4045 return ret; 4046 } 4047 ret = kvm_put_msrs(x86_cpu, level); 4048 if (ret < 0) { 4049 return ret; 4050 } 4051 ret = kvm_put_vcpu_events(x86_cpu, level); 4052 if (ret < 0) { 4053 return ret; 4054 } 4055 if (level >= KVM_PUT_RESET_STATE) { 4056 ret = kvm_put_mp_state(x86_cpu); 4057 if (ret < 0) { 4058 return ret; 4059 } 4060 } 4061 4062 ret = kvm_put_tscdeadline_msr(x86_cpu); 4063 if (ret < 0) { 4064 return ret; 4065 } 4066 ret = kvm_put_debugregs(x86_cpu); 4067 if (ret < 0) { 4068 return ret; 4069 } 4070 /* must be last */ 4071 ret = kvm_guest_debug_workarounds(x86_cpu); 4072 if (ret < 0) { 4073 return ret; 4074 } 4075 return 0; 4076 } 4077 4078 int kvm_arch_get_registers(CPUState *cs) 4079 { 4080 X86CPU *cpu = X86_CPU(cs); 4081 int ret; 4082 4083 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); 4084 4085 ret = kvm_get_vcpu_events(cpu); 4086 if (ret < 0) { 4087 goto out; 4088 } 4089 /* 4090 * KVM_GET_MPSTATE can modify CS and RIP, call it before 4091 * KVM_GET_REGS and KVM_GET_SREGS. 4092 */ 4093 ret = kvm_get_mp_state(cpu); 4094 if (ret < 0) { 4095 goto out; 4096 } 4097 ret = kvm_getput_regs(cpu, 0); 4098 if (ret < 0) { 4099 goto out; 4100 } 4101 ret = kvm_get_xsave(cpu); 4102 if (ret < 0) { 4103 goto out; 4104 } 4105 ret = kvm_get_xcrs(cpu); 4106 if (ret < 0) { 4107 goto out; 4108 } 4109 ret = kvm_get_sregs(cpu); 4110 if (ret < 0) { 4111 goto out; 4112 } 4113 ret = kvm_get_msrs(cpu); 4114 if (ret < 0) { 4115 goto out; 4116 } 4117 ret = kvm_get_apic(cpu); 4118 if (ret < 0) { 4119 goto out; 4120 } 4121 ret = kvm_get_debugregs(cpu); 4122 if (ret < 0) { 4123 goto out; 4124 } 4125 ret = kvm_get_nested_state(cpu); 4126 if (ret < 0) { 4127 goto out; 4128 } 4129 ret = 0; 4130 out: 4131 cpu_sync_bndcs_hflags(&cpu->env); 4132 return ret; 4133 } 4134 4135 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 4136 { 4137 X86CPU *x86_cpu = X86_CPU(cpu); 4138 CPUX86State *env = &x86_cpu->env; 4139 int ret; 4140 4141 /* Inject NMI */ 4142 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { 4143 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { 4144 qemu_mutex_lock_iothread(); 4145 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; 4146 qemu_mutex_unlock_iothread(); 4147 DPRINTF("injected NMI\n"); 4148 ret = kvm_vcpu_ioctl(cpu, KVM_NMI); 4149 if (ret < 0) { 4150 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", 4151 strerror(-ret)); 4152 } 4153 } 4154 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { 4155 qemu_mutex_lock_iothread(); 4156 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; 4157 qemu_mutex_unlock_iothread(); 4158 DPRINTF("injected SMI\n"); 4159 ret = kvm_vcpu_ioctl(cpu, KVM_SMI); 4160 if (ret < 0) { 4161 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", 4162 strerror(-ret)); 4163 } 4164 } 4165 } 4166 4167 if (!kvm_pic_in_kernel()) { 4168 qemu_mutex_lock_iothread(); 4169 } 4170 4171 /* Force the VCPU out of its inner loop to process any INIT requests 4172 * or (for userspace APIC, but it is cheap to combine the checks here) 4173 * pending TPR access reports. 4174 */ 4175 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { 4176 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && 4177 !(env->hflags & HF_SMM_MASK)) { 4178 cpu->exit_request = 1; 4179 } 4180 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { 4181 cpu->exit_request = 1; 4182 } 4183 } 4184 4185 if (!kvm_pic_in_kernel()) { 4186 /* Try to inject an interrupt if the guest can accept it */ 4187 if (run->ready_for_interrupt_injection && 4188 (cpu->interrupt_request & CPU_INTERRUPT_HARD) && 4189 (env->eflags & IF_MASK)) { 4190 int irq; 4191 4192 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; 4193 irq = cpu_get_pic_interrupt(env); 4194 if (irq >= 0) { 4195 struct kvm_interrupt intr; 4196 4197 intr.irq = irq; 4198 DPRINTF("injected interrupt %d\n", irq); 4199 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); 4200 if (ret < 0) { 4201 fprintf(stderr, 4202 "KVM: injection failed, interrupt lost (%s)\n", 4203 strerror(-ret)); 4204 } 4205 } 4206 } 4207 4208 /* If we have an interrupt but the guest is not ready to receive an 4209 * interrupt, request an interrupt window exit. This will 4210 * cause a return to userspace as soon as the guest is ready to 4211 * receive interrupts. */ 4212 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { 4213 run->request_interrupt_window = 1; 4214 } else { 4215 run->request_interrupt_window = 0; 4216 } 4217 4218 DPRINTF("setting tpr\n"); 4219 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); 4220 4221 qemu_mutex_unlock_iothread(); 4222 } 4223 } 4224 4225 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) 4226 { 4227 X86CPU *x86_cpu = X86_CPU(cpu); 4228 CPUX86State *env = &x86_cpu->env; 4229 4230 if (run->flags & KVM_RUN_X86_SMM) { 4231 env->hflags |= HF_SMM_MASK; 4232 } else { 4233 env->hflags &= ~HF_SMM_MASK; 4234 } 4235 if (run->if_flag) { 4236 env->eflags |= IF_MASK; 4237 } else { 4238 env->eflags &= ~IF_MASK; 4239 } 4240 4241 /* We need to protect the apic state against concurrent accesses from 4242 * different threads in case the userspace irqchip is used. */ 4243 if (!kvm_irqchip_in_kernel()) { 4244 qemu_mutex_lock_iothread(); 4245 } 4246 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); 4247 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); 4248 if (!kvm_irqchip_in_kernel()) { 4249 qemu_mutex_unlock_iothread(); 4250 } 4251 return cpu_get_mem_attrs(env); 4252 } 4253 4254 int kvm_arch_process_async_events(CPUState *cs) 4255 { 4256 X86CPU *cpu = X86_CPU(cs); 4257 CPUX86State *env = &cpu->env; 4258 4259 if (cs->interrupt_request & CPU_INTERRUPT_MCE) { 4260 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ 4261 assert(env->mcg_cap); 4262 4263 cs->interrupt_request &= ~CPU_INTERRUPT_MCE; 4264 4265 kvm_cpu_synchronize_state(cs); 4266 4267 if (env->exception_nr == EXCP08_DBLE) { 4268 /* this means triple fault */ 4269 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 4270 cs->exit_request = 1; 4271 return 0; 4272 } 4273 kvm_queue_exception(env, EXCP12_MCHK, 0, 0); 4274 env->has_error_code = 0; 4275 4276 cs->halted = 0; 4277 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { 4278 env->mp_state = KVM_MP_STATE_RUNNABLE; 4279 } 4280 } 4281 4282 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && 4283 !(env->hflags & HF_SMM_MASK)) { 4284 kvm_cpu_synchronize_state(cs); 4285 do_cpu_init(cpu); 4286 } 4287 4288 if (kvm_irqchip_in_kernel()) { 4289 return 0; 4290 } 4291 4292 if (cs->interrupt_request & CPU_INTERRUPT_POLL) { 4293 cs->interrupt_request &= ~CPU_INTERRUPT_POLL; 4294 apic_poll_irq(cpu->apic_state); 4295 } 4296 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && 4297 (env->eflags & IF_MASK)) || 4298 (cs->interrupt_request & CPU_INTERRUPT_NMI)) { 4299 cs->halted = 0; 4300 } 4301 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { 4302 kvm_cpu_synchronize_state(cs); 4303 do_cpu_sipi(cpu); 4304 } 4305 if (cs->interrupt_request & CPU_INTERRUPT_TPR) { 4306 cs->interrupt_request &= ~CPU_INTERRUPT_TPR; 4307 kvm_cpu_synchronize_state(cs); 4308 apic_handle_tpr_access_report(cpu->apic_state, env->eip, 4309 env->tpr_access_type); 4310 } 4311 4312 return cs->halted; 4313 } 4314 4315 static int kvm_handle_halt(X86CPU *cpu) 4316 { 4317 CPUState *cs = CPU(cpu); 4318 CPUX86State *env = &cpu->env; 4319 4320 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && 4321 (env->eflags & IF_MASK)) && 4322 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { 4323 cs->halted = 1; 4324 return EXCP_HLT; 4325 } 4326 4327 return 0; 4328 } 4329 4330 static int kvm_handle_tpr_access(X86CPU *cpu) 4331 { 4332 CPUState *cs = CPU(cpu); 4333 struct kvm_run *run = cs->kvm_run; 4334 4335 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, 4336 run->tpr_access.is_write ? TPR_ACCESS_WRITE 4337 : TPR_ACCESS_READ); 4338 return 1; 4339 } 4340 4341 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 4342 { 4343 static const uint8_t int3 = 0xcc; 4344 4345 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || 4346 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { 4347 return -EINVAL; 4348 } 4349 return 0; 4350 } 4351 4352 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 4353 { 4354 uint8_t int3; 4355 4356 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) { 4357 return -EINVAL; 4358 } 4359 if (int3 != 0xcc) { 4360 return 0; 4361 } 4362 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { 4363 return -EINVAL; 4364 } 4365 return 0; 4366 } 4367 4368 static struct { 4369 target_ulong addr; 4370 int len; 4371 int type; 4372 } hw_breakpoint[4]; 4373 4374 static int nb_hw_breakpoint; 4375 4376 static int find_hw_breakpoint(target_ulong addr, int len, int type) 4377 { 4378 int n; 4379 4380 for (n = 0; n < nb_hw_breakpoint; n++) { 4381 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && 4382 (hw_breakpoint[n].len == len || len == -1)) { 4383 return n; 4384 } 4385 } 4386 return -1; 4387 } 4388 4389 int kvm_arch_insert_hw_breakpoint(target_ulong addr, 4390 target_ulong len, int type) 4391 { 4392 switch (type) { 4393 case GDB_BREAKPOINT_HW: 4394 len = 1; 4395 break; 4396 case GDB_WATCHPOINT_WRITE: 4397 case GDB_WATCHPOINT_ACCESS: 4398 switch (len) { 4399 case 1: 4400 break; 4401 case 2: 4402 case 4: 4403 case 8: 4404 if (addr & (len - 1)) { 4405 return -EINVAL; 4406 } 4407 break; 4408 default: 4409 return -EINVAL; 4410 } 4411 break; 4412 default: 4413 return -ENOSYS; 4414 } 4415 4416 if (nb_hw_breakpoint == 4) { 4417 return -ENOBUFS; 4418 } 4419 if (find_hw_breakpoint(addr, len, type) >= 0) { 4420 return -EEXIST; 4421 } 4422 hw_breakpoint[nb_hw_breakpoint].addr = addr; 4423 hw_breakpoint[nb_hw_breakpoint].len = len; 4424 hw_breakpoint[nb_hw_breakpoint].type = type; 4425 nb_hw_breakpoint++; 4426 4427 return 0; 4428 } 4429 4430 int kvm_arch_remove_hw_breakpoint(target_ulong addr, 4431 target_ulong len, int type) 4432 { 4433 int n; 4434 4435 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); 4436 if (n < 0) { 4437 return -ENOENT; 4438 } 4439 nb_hw_breakpoint--; 4440 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; 4441 4442 return 0; 4443 } 4444 4445 void kvm_arch_remove_all_hw_breakpoints(void) 4446 { 4447 nb_hw_breakpoint = 0; 4448 } 4449 4450 static CPUWatchpoint hw_watchpoint; 4451 4452 static int kvm_handle_debug(X86CPU *cpu, 4453 struct kvm_debug_exit_arch *arch_info) 4454 { 4455 CPUState *cs = CPU(cpu); 4456 CPUX86State *env = &cpu->env; 4457 int ret = 0; 4458 int n; 4459 4460 if (arch_info->exception == EXCP01_DB) { 4461 if (arch_info->dr6 & DR6_BS) { 4462 if (cs->singlestep_enabled) { 4463 ret = EXCP_DEBUG; 4464 } 4465 } else { 4466 for (n = 0; n < 4; n++) { 4467 if (arch_info->dr6 & (1 << n)) { 4468 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { 4469 case 0x0: 4470 ret = EXCP_DEBUG; 4471 break; 4472 case 0x1: 4473 ret = EXCP_DEBUG; 4474 cs->watchpoint_hit = &hw_watchpoint; 4475 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 4476 hw_watchpoint.flags = BP_MEM_WRITE; 4477 break; 4478 case 0x3: 4479 ret = EXCP_DEBUG; 4480 cs->watchpoint_hit = &hw_watchpoint; 4481 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 4482 hw_watchpoint.flags = BP_MEM_ACCESS; 4483 break; 4484 } 4485 } 4486 } 4487 } 4488 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { 4489 ret = EXCP_DEBUG; 4490 } 4491 if (ret == 0) { 4492 cpu_synchronize_state(cs); 4493 assert(env->exception_nr == -1); 4494 4495 /* pass to guest */ 4496 kvm_queue_exception(env, arch_info->exception, 4497 arch_info->exception == EXCP01_DB, 4498 arch_info->dr6); 4499 env->has_error_code = 0; 4500 } 4501 4502 return ret; 4503 } 4504 4505 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 4506 { 4507 const uint8_t type_code[] = { 4508 [GDB_BREAKPOINT_HW] = 0x0, 4509 [GDB_WATCHPOINT_WRITE] = 0x1, 4510 [GDB_WATCHPOINT_ACCESS] = 0x3 4511 }; 4512 const uint8_t len_code[] = { 4513 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 4514 }; 4515 int n; 4516 4517 if (kvm_sw_breakpoints_active(cpu)) { 4518 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 4519 } 4520 if (nb_hw_breakpoint > 0) { 4521 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 4522 dbg->arch.debugreg[7] = 0x0600; 4523 for (n = 0; n < nb_hw_breakpoint; n++) { 4524 dbg->arch.debugreg[n] = hw_breakpoint[n].addr; 4525 dbg->arch.debugreg[7] |= (2 << (n * 2)) | 4526 (type_code[hw_breakpoint[n].type] << (16 + n*4)) | 4527 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); 4528 } 4529 } 4530 } 4531 4532 static bool host_supports_vmx(void) 4533 { 4534 uint32_t ecx, unused; 4535 4536 host_cpuid(1, 0, &unused, &unused, &ecx, &unused); 4537 return ecx & CPUID_EXT_VMX; 4538 } 4539 4540 #define VMX_INVALID_GUEST_STATE 0x80000021 4541 4542 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 4543 { 4544 X86CPU *cpu = X86_CPU(cs); 4545 uint64_t code; 4546 int ret; 4547 4548 switch (run->exit_reason) { 4549 case KVM_EXIT_HLT: 4550 DPRINTF("handle_hlt\n"); 4551 qemu_mutex_lock_iothread(); 4552 ret = kvm_handle_halt(cpu); 4553 qemu_mutex_unlock_iothread(); 4554 break; 4555 case KVM_EXIT_SET_TPR: 4556 ret = 0; 4557 break; 4558 case KVM_EXIT_TPR_ACCESS: 4559 qemu_mutex_lock_iothread(); 4560 ret = kvm_handle_tpr_access(cpu); 4561 qemu_mutex_unlock_iothread(); 4562 break; 4563 case KVM_EXIT_FAIL_ENTRY: 4564 code = run->fail_entry.hardware_entry_failure_reason; 4565 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", 4566 code); 4567 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { 4568 fprintf(stderr, 4569 "\nIf you're running a guest on an Intel machine without " 4570 "unrestricted mode\n" 4571 "support, the failure can be most likely due to the guest " 4572 "entering an invalid\n" 4573 "state for Intel VT. For example, the guest maybe running " 4574 "in big real mode\n" 4575 "which is not supported on less recent Intel processors." 4576 "\n\n"); 4577 } 4578 ret = -1; 4579 break; 4580 case KVM_EXIT_EXCEPTION: 4581 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", 4582 run->ex.exception, run->ex.error_code); 4583 ret = -1; 4584 break; 4585 case KVM_EXIT_DEBUG: 4586 DPRINTF("kvm_exit_debug\n"); 4587 qemu_mutex_lock_iothread(); 4588 ret = kvm_handle_debug(cpu, &run->debug.arch); 4589 qemu_mutex_unlock_iothread(); 4590 break; 4591 case KVM_EXIT_HYPERV: 4592 ret = kvm_hv_handle_exit(cpu, &run->hyperv); 4593 break; 4594 case KVM_EXIT_IOAPIC_EOI: 4595 ioapic_eoi_broadcast(run->eoi.vector); 4596 ret = 0; 4597 break; 4598 default: 4599 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); 4600 ret = -1; 4601 break; 4602 } 4603 4604 return ret; 4605 } 4606 4607 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 4608 { 4609 X86CPU *cpu = X86_CPU(cs); 4610 CPUX86State *env = &cpu->env; 4611 4612 kvm_cpu_synchronize_state(cs); 4613 return !(env->cr[0] & CR0_PE_MASK) || 4614 ((env->segs[R_CS].selector & 3) != 3); 4615 } 4616 4617 void kvm_arch_init_irq_routing(KVMState *s) 4618 { 4619 /* We know at this point that we're using the in-kernel 4620 * irqchip, so we can use irqfds, and on x86 we know 4621 * we can use msi via irqfd and GSI routing. 4622 */ 4623 kvm_msi_via_irqfd_allowed = true; 4624 kvm_gsi_routing_allowed = true; 4625 4626 if (kvm_irqchip_is_split()) { 4627 int i; 4628 4629 /* If the ioapic is in QEMU and the lapics are in KVM, reserve 4630 MSI routes for signaling interrupts to the local apics. */ 4631 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 4632 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) { 4633 error_report("Could not enable split IRQ mode."); 4634 exit(1); 4635 } 4636 } 4637 } 4638 } 4639 4640 int kvm_arch_irqchip_create(KVMState *s) 4641 { 4642 int ret; 4643 if (kvm_kernel_irqchip_split()) { 4644 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); 4645 if (ret) { 4646 error_report("Could not enable split irqchip mode: %s", 4647 strerror(-ret)); 4648 exit(1); 4649 } else { 4650 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); 4651 kvm_split_irqchip = true; 4652 return 1; 4653 } 4654 } else { 4655 return 0; 4656 } 4657 } 4658 4659 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address) 4660 { 4661 CPUX86State *env; 4662 uint64_t ext_id; 4663 4664 if (!first_cpu) { 4665 return address; 4666 } 4667 env = &X86_CPU(first_cpu)->env; 4668 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) { 4669 return address; 4670 } 4671 4672 /* 4673 * If the remappable format bit is set, or the upper bits are 4674 * already set in address_hi, or the low extended bits aren't 4675 * there anyway, do nothing. 4676 */ 4677 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT); 4678 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) { 4679 return address; 4680 } 4681 4682 address &= ~ext_id; 4683 address |= ext_id << 35; 4684 return address; 4685 } 4686 4687 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 4688 uint64_t address, uint32_t data, PCIDevice *dev) 4689 { 4690 X86IOMMUState *iommu = x86_iommu_get_default(); 4691 4692 if (iommu) { 4693 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu); 4694 4695 if (class->int_remap) { 4696 int ret; 4697 MSIMessage src, dst; 4698 4699 src.address = route->u.msi.address_hi; 4700 src.address <<= VTD_MSI_ADDR_HI_SHIFT; 4701 src.address |= route->u.msi.address_lo; 4702 src.data = route->u.msi.data; 4703 4704 ret = class->int_remap(iommu, &src, &dst, dev ? \ 4705 pci_requester_id(dev) : \ 4706 X86_IOMMU_SID_INVALID); 4707 if (ret) { 4708 trace_kvm_x86_fixup_msi_error(route->gsi); 4709 return 1; 4710 } 4711 4712 /* 4713 * Handled untranslated compatibilty format interrupt with 4714 * extended destination ID in the low bits 11-5. */ 4715 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address); 4716 4717 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; 4718 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; 4719 route->u.msi.data = dst.data; 4720 return 0; 4721 } 4722 } 4723 4724 address = kvm_swizzle_msi_ext_dest_id(address); 4725 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT; 4726 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK; 4727 return 0; 4728 } 4729 4730 typedef struct MSIRouteEntry MSIRouteEntry; 4731 4732 struct MSIRouteEntry { 4733 PCIDevice *dev; /* Device pointer */ 4734 int vector; /* MSI/MSIX vector index */ 4735 int virq; /* Virtual IRQ index */ 4736 QLIST_ENTRY(MSIRouteEntry) list; 4737 }; 4738 4739 /* List of used GSI routes */ 4740 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ 4741 QLIST_HEAD_INITIALIZER(msi_route_list); 4742 4743 static void kvm_update_msi_routes_all(void *private, bool global, 4744 uint32_t index, uint32_t mask) 4745 { 4746 int cnt = 0, vector; 4747 MSIRouteEntry *entry; 4748 MSIMessage msg; 4749 PCIDevice *dev; 4750 4751 /* TODO: explicit route update */ 4752 QLIST_FOREACH(entry, &msi_route_list, list) { 4753 cnt++; 4754 vector = entry->vector; 4755 dev = entry->dev; 4756 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) { 4757 msg = msix_get_message(dev, vector); 4758 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) { 4759 msg = msi_get_message(dev, vector); 4760 } else { 4761 /* 4762 * Either MSI/MSIX is disabled for the device, or the 4763 * specific message was masked out. Skip this one. 4764 */ 4765 continue; 4766 } 4767 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); 4768 } 4769 kvm_irqchip_commit_routes(kvm_state); 4770 trace_kvm_x86_update_msi_routes(cnt); 4771 } 4772 4773 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 4774 int vector, PCIDevice *dev) 4775 { 4776 static bool notify_list_inited = false; 4777 MSIRouteEntry *entry; 4778 4779 if (!dev) { 4780 /* These are (possibly) IOAPIC routes only used for split 4781 * kernel irqchip mode, while what we are housekeeping are 4782 * PCI devices only. */ 4783 return 0; 4784 } 4785 4786 entry = g_new0(MSIRouteEntry, 1); 4787 entry->dev = dev; 4788 entry->vector = vector; 4789 entry->virq = route->gsi; 4790 QLIST_INSERT_HEAD(&msi_route_list, entry, list); 4791 4792 trace_kvm_x86_add_msi_route(route->gsi); 4793 4794 if (!notify_list_inited) { 4795 /* For the first time we do add route, add ourselves into 4796 * IOMMU's IEC notify list if needed. */ 4797 X86IOMMUState *iommu = x86_iommu_get_default(); 4798 if (iommu) { 4799 x86_iommu_iec_register_notifier(iommu, 4800 kvm_update_msi_routes_all, 4801 NULL); 4802 } 4803 notify_list_inited = true; 4804 } 4805 return 0; 4806 } 4807 4808 int kvm_arch_release_virq_post(int virq) 4809 { 4810 MSIRouteEntry *entry, *next; 4811 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { 4812 if (entry->virq == virq) { 4813 trace_kvm_x86_remove_msi_route(virq); 4814 QLIST_REMOVE(entry, list); 4815 g_free(entry); 4816 break; 4817 } 4818 } 4819 return 0; 4820 } 4821 4822 int kvm_arch_msi_data_to_gsi(uint32_t data) 4823 { 4824 abort(); 4825 } 4826 4827 bool kvm_has_waitpkg(void) 4828 { 4829 return has_msr_umwait; 4830 } 4831 4832 bool kvm_arch_cpu_check_are_resettable(void) 4833 { 4834 return !sev_es_enabled(); 4835 } 4836