1 /* 2 * QEMU KVM support 3 * 4 * Copyright (C) 2006-2008 Qumranet Technologies 5 * Copyright IBM, Corp. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or later. 11 * See the COPYING file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qapi/qapi-events-run-state.h" 17 #include "qapi/error.h" 18 #include "qapi/visitor.h" 19 #include <sys/ioctl.h> 20 #include <sys/utsname.h> 21 #include <sys/syscall.h> 22 23 #include <linux/kvm.h> 24 #include <linux/kvm_para.h> 25 #include "standard-headers/asm-x86/kvm_para.h" 26 #include "hw/xen/interface/arch-x86/cpuid.h" 27 28 #include "cpu.h" 29 #include "host-cpu.h" 30 #include "sysemu/sysemu.h" 31 #include "sysemu/hw_accel.h" 32 #include "sysemu/kvm_int.h" 33 #include "sysemu/runstate.h" 34 #include "kvm_i386.h" 35 #include "../confidential-guest.h" 36 #include "sev.h" 37 #include "xen-emu.h" 38 #include "hyperv.h" 39 #include "hyperv-proto.h" 40 41 #include "exec/gdbstub.h" 42 #include "qemu/host-utils.h" 43 #include "qemu/main-loop.h" 44 #include "qemu/ratelimit.h" 45 #include "qemu/config-file.h" 46 #include "qemu/error-report.h" 47 #include "qemu/memalign.h" 48 #include "hw/i386/x86.h" 49 #include "hw/i386/kvm/xen_evtchn.h" 50 #include "hw/i386/pc.h" 51 #include "hw/i386/apic.h" 52 #include "hw/i386/apic_internal.h" 53 #include "hw/i386/apic-msidef.h" 54 #include "hw/i386/intel_iommu.h" 55 #include "hw/i386/topology.h" 56 #include "hw/i386/x86-iommu.h" 57 #include "hw/i386/e820_memory_layout.h" 58 59 #include "hw/xen/xen.h" 60 61 #include "hw/pci/pci.h" 62 #include "hw/pci/msi.h" 63 #include "hw/pci/msix.h" 64 #include "migration/blocker.h" 65 #include "exec/memattrs.h" 66 #include "trace.h" 67 68 #include CONFIG_DEVICES 69 70 //#define DEBUG_KVM 71 72 #ifdef DEBUG_KVM 73 #define DPRINTF(fmt, ...) \ 74 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 75 #else 76 #define DPRINTF(fmt, ...) \ 77 do { } while (0) 78 #endif 79 80 /* From arch/x86/kvm/lapic.h */ 81 #define KVM_APIC_BUS_CYCLE_NS 1 82 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS) 83 84 #define MSR_KVM_WALL_CLOCK 0x11 85 #define MSR_KVM_SYSTEM_TIME 0x12 86 87 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus 88 * 255 kvm_msr_entry structs */ 89 #define MSR_BUF_SIZE 4096 90 91 static void kvm_init_msrs(X86CPU *cpu); 92 93 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 94 KVM_CAP_INFO(SET_TSS_ADDR), 95 KVM_CAP_INFO(EXT_CPUID), 96 KVM_CAP_INFO(MP_STATE), 97 KVM_CAP_INFO(SIGNAL_MSI), 98 KVM_CAP_INFO(IRQ_ROUTING), 99 KVM_CAP_INFO(DEBUGREGS), 100 KVM_CAP_INFO(XSAVE), 101 KVM_CAP_INFO(VCPU_EVENTS), 102 KVM_CAP_INFO(X86_ROBUST_SINGLESTEP), 103 KVM_CAP_INFO(MCE), 104 KVM_CAP_INFO(ADJUST_CLOCK), 105 KVM_CAP_INFO(SET_IDENTITY_MAP_ADDR), 106 KVM_CAP_LAST_INFO 107 }; 108 109 static bool has_msr_star; 110 static bool has_msr_hsave_pa; 111 static bool has_msr_tsc_aux; 112 static bool has_msr_tsc_adjust; 113 static bool has_msr_tsc_deadline; 114 static bool has_msr_feature_control; 115 static bool has_msr_misc_enable; 116 static bool has_msr_smbase; 117 static bool has_msr_bndcfgs; 118 static int lm_capable_kernel; 119 static bool has_msr_hv_hypercall; 120 static bool has_msr_hv_crash; 121 static bool has_msr_hv_reset; 122 static bool has_msr_hv_vpindex; 123 static bool hv_vpindex_settable; 124 static bool has_msr_hv_runtime; 125 static bool has_msr_hv_synic; 126 static bool has_msr_hv_stimer; 127 static bool has_msr_hv_frequencies; 128 static bool has_msr_hv_reenlightenment; 129 static bool has_msr_hv_syndbg_options; 130 static bool has_msr_xss; 131 static bool has_msr_umwait; 132 static bool has_msr_spec_ctrl; 133 static bool has_tsc_scale_msr; 134 static bool has_msr_tsx_ctrl; 135 static bool has_msr_virt_ssbd; 136 static bool has_msr_smi_count; 137 static bool has_msr_arch_capabs; 138 static bool has_msr_core_capabs; 139 static bool has_msr_vmx_vmfunc; 140 static bool has_msr_ucode_rev; 141 static bool has_msr_vmx_procbased_ctls2; 142 static bool has_msr_perf_capabs; 143 static bool has_msr_pkrs; 144 145 static uint32_t has_architectural_pmu_version; 146 static uint32_t num_architectural_pmu_gp_counters; 147 static uint32_t num_architectural_pmu_fixed_counters; 148 149 static int has_xsave2; 150 static int has_xcrs; 151 static int has_sregs2; 152 static int has_exception_payload; 153 static int has_triple_fault_event; 154 155 static bool has_msr_mcg_ext_ctl; 156 157 static struct kvm_cpuid2 *cpuid_cache; 158 static struct kvm_cpuid2 *hv_cpuid_cache; 159 static struct kvm_msr_list *kvm_feature_msrs; 160 161 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES]; 162 163 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */ 164 static RateLimit bus_lock_ratelimit_ctrl; 165 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value); 166 167 static const char *vm_type_name[] = { 168 [KVM_X86_DEFAULT_VM] = "default", 169 [KVM_X86_SEV_VM] = "SEV", 170 [KVM_X86_SEV_ES_VM] = "SEV-ES", 171 [KVM_X86_SNP_VM] = "SEV-SNP", 172 }; 173 174 bool kvm_is_vm_type_supported(int type) 175 { 176 uint32_t machine_types; 177 178 /* 179 * old KVM doesn't support KVM_CAP_VM_TYPES but KVM_X86_DEFAULT_VM 180 * is always supported 181 */ 182 if (type == KVM_X86_DEFAULT_VM) { 183 return true; 184 } 185 186 machine_types = kvm_check_extension(KVM_STATE(current_machine->accelerator), 187 KVM_CAP_VM_TYPES); 188 return !!(machine_types & BIT(type)); 189 } 190 191 int kvm_get_vm_type(MachineState *ms) 192 { 193 int kvm_type = KVM_X86_DEFAULT_VM; 194 195 if (ms->cgs) { 196 if (!object_dynamic_cast(OBJECT(ms->cgs), TYPE_X86_CONFIDENTIAL_GUEST)) { 197 error_report("configuration type %s not supported for x86 guests", 198 object_get_typename(OBJECT(ms->cgs))); 199 exit(1); 200 } 201 kvm_type = x86_confidential_guest_kvm_type( 202 X86_CONFIDENTIAL_GUEST(ms->cgs)); 203 } 204 205 if (!kvm_is_vm_type_supported(kvm_type)) { 206 error_report("vm-type %s not supported by KVM", vm_type_name[kvm_type]); 207 exit(1); 208 } 209 210 return kvm_type; 211 } 212 213 bool kvm_enable_hypercall(uint64_t enable_mask) 214 { 215 KVMState *s = KVM_STATE(current_accel()); 216 217 return !kvm_vm_enable_cap(s, KVM_CAP_EXIT_HYPERCALL, 0, enable_mask); 218 } 219 220 bool kvm_has_smm(void) 221 { 222 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM); 223 } 224 225 bool kvm_has_adjust_clock_stable(void) 226 { 227 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); 228 229 return (ret & KVM_CLOCK_TSC_STABLE); 230 } 231 232 bool kvm_has_exception_payload(void) 233 { 234 return has_exception_payload; 235 } 236 237 static bool kvm_x2apic_api_set_flags(uint64_t flags) 238 { 239 KVMState *s = KVM_STATE(current_accel()); 240 241 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); 242 } 243 244 #define MEMORIZE(fn, _result) \ 245 ({ \ 246 static bool _memorized; \ 247 \ 248 if (_memorized) { \ 249 return _result; \ 250 } \ 251 _memorized = true; \ 252 _result = fn; \ 253 }) 254 255 static bool has_x2apic_api; 256 257 bool kvm_has_x2apic_api(void) 258 { 259 return has_x2apic_api; 260 } 261 262 bool kvm_enable_x2apic(void) 263 { 264 return MEMORIZE( 265 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | 266 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), 267 has_x2apic_api); 268 } 269 270 bool kvm_hv_vpindex_settable(void) 271 { 272 return hv_vpindex_settable; 273 } 274 275 static int kvm_get_tsc(CPUState *cs) 276 { 277 X86CPU *cpu = X86_CPU(cs); 278 CPUX86State *env = &cpu->env; 279 uint64_t value; 280 int ret; 281 282 if (env->tsc_valid) { 283 return 0; 284 } 285 286 env->tsc_valid = !runstate_is_running(); 287 288 ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value); 289 if (ret < 0) { 290 return ret; 291 } 292 293 env->tsc = value; 294 return 0; 295 } 296 297 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) 298 { 299 kvm_get_tsc(cpu); 300 } 301 302 void kvm_synchronize_all_tsc(void) 303 { 304 CPUState *cpu; 305 306 if (kvm_enabled()) { 307 CPU_FOREACH(cpu) { 308 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); 309 } 310 } 311 } 312 313 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) 314 { 315 struct kvm_cpuid2 *cpuid; 316 int r, size; 317 318 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 319 cpuid = g_malloc0(size); 320 cpuid->nent = max; 321 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); 322 if (r == 0 && cpuid->nent >= max) { 323 r = -E2BIG; 324 } 325 if (r < 0) { 326 if (r == -E2BIG) { 327 g_free(cpuid); 328 return NULL; 329 } else { 330 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", 331 strerror(-r)); 332 exit(1); 333 } 334 } 335 return cpuid; 336 } 337 338 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough 339 * for all entries. 340 */ 341 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) 342 { 343 struct kvm_cpuid2 *cpuid; 344 int max = 1; 345 346 if (cpuid_cache != NULL) { 347 return cpuid_cache; 348 } 349 while ((cpuid = try_get_cpuid(s, max)) == NULL) { 350 max *= 2; 351 } 352 cpuid_cache = cpuid; 353 return cpuid; 354 } 355 356 static bool host_tsx_broken(void) 357 { 358 int family, model, stepping;\ 359 char vendor[CPUID_VENDOR_SZ + 1]; 360 361 host_cpu_vendor_fms(vendor, &family, &model, &stepping); 362 363 /* Check if we are running on a Haswell host known to have broken TSX */ 364 return !strcmp(vendor, CPUID_VENDOR_INTEL) && 365 (family == 6) && 366 ((model == 63 && stepping < 4) || 367 model == 60 || model == 69 || model == 70); 368 } 369 370 /* Returns the value for a specific register on the cpuid entry 371 */ 372 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) 373 { 374 uint32_t ret = 0; 375 switch (reg) { 376 case R_EAX: 377 ret = entry->eax; 378 break; 379 case R_EBX: 380 ret = entry->ebx; 381 break; 382 case R_ECX: 383 ret = entry->ecx; 384 break; 385 case R_EDX: 386 ret = entry->edx; 387 break; 388 } 389 return ret; 390 } 391 392 /* Find matching entry for function/index on kvm_cpuid2 struct 393 */ 394 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, 395 uint32_t function, 396 uint32_t index) 397 { 398 int i; 399 for (i = 0; i < cpuid->nent; ++i) { 400 if (cpuid->entries[i].function == function && 401 cpuid->entries[i].index == index) { 402 return &cpuid->entries[i]; 403 } 404 } 405 /* not found: */ 406 return NULL; 407 } 408 409 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, 410 uint32_t index, int reg) 411 { 412 struct kvm_cpuid2 *cpuid; 413 uint32_t ret = 0; 414 uint32_t cpuid_1_edx, unused; 415 uint64_t bitmask; 416 417 cpuid = get_supported_cpuid(s); 418 419 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); 420 if (entry) { 421 ret = cpuid_entry_get_reg(entry, reg); 422 } 423 424 /* Fixups for the data returned by KVM, below */ 425 426 if (function == 1 && reg == R_EDX) { 427 /* KVM before 2.6.30 misreports the following features */ 428 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; 429 /* KVM never reports CPUID_HT but QEMU can support when vcpus > 1 */ 430 ret |= CPUID_HT; 431 } else if (function == 1 && reg == R_ECX) { 432 /* We can set the hypervisor flag, even if KVM does not return it on 433 * GET_SUPPORTED_CPUID 434 */ 435 ret |= CPUID_EXT_HYPERVISOR; 436 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it 437 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, 438 * and the irqchip is in the kernel. 439 */ 440 if (kvm_irqchip_in_kernel() && 441 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { 442 ret |= CPUID_EXT_TSC_DEADLINE_TIMER; 443 } 444 445 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled 446 * without the in-kernel irqchip 447 */ 448 if (!kvm_irqchip_in_kernel()) { 449 ret &= ~CPUID_EXT_X2APIC; 450 } 451 452 if (enable_cpu_pm) { 453 int disable_exits = kvm_check_extension(s, 454 KVM_CAP_X86_DISABLE_EXITS); 455 456 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) { 457 ret |= CPUID_EXT_MONITOR; 458 } 459 } 460 } else if (function == 6 && reg == R_EAX) { 461 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ 462 } else if (function == 7 && index == 0 && reg == R_EBX) { 463 /* Not new instructions, just an optimization. */ 464 uint32_t ebx; 465 host_cpuid(7, 0, &unused, &ebx, &unused, &unused); 466 ret |= ebx & CPUID_7_0_EBX_ERMS; 467 468 if (host_tsx_broken()) { 469 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); 470 } 471 } else if (function == 7 && index == 0 && reg == R_EDX) { 472 /* Not new instructions, just an optimization. */ 473 uint32_t edx; 474 host_cpuid(7, 0, &unused, &unused, &unused, &edx); 475 ret |= edx & CPUID_7_0_EDX_FSRM; 476 477 /* 478 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts. 479 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is 480 * returned by KVM_GET_MSR_INDEX_LIST. 481 */ 482 if (!has_msr_arch_capabs) { 483 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES; 484 } 485 } else if (function == 7 && index == 1 && reg == R_EAX) { 486 /* Not new instructions, just an optimization. */ 487 uint32_t eax; 488 host_cpuid(7, 1, &eax, &unused, &unused, &unused); 489 ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC); 490 } else if (function == 7 && index == 2 && reg == R_EDX) { 491 uint32_t edx; 492 host_cpuid(7, 2, &unused, &unused, &unused, &edx); 493 ret |= edx & CPUID_7_2_EDX_MCDT_NO; 494 } else if (function == 0xd && index == 0 && 495 (reg == R_EAX || reg == R_EDX)) { 496 /* 497 * The value returned by KVM_GET_SUPPORTED_CPUID does not include 498 * features that still have to be enabled with the arch_prctl 499 * system call. QEMU needs the full value, which is retrieved 500 * with KVM_GET_DEVICE_ATTR. 501 */ 502 struct kvm_device_attr attr = { 503 .group = 0, 504 .attr = KVM_X86_XCOMP_GUEST_SUPP, 505 .addr = (unsigned long) &bitmask 506 }; 507 508 bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES); 509 if (!sys_attr) { 510 return ret; 511 } 512 513 int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr); 514 if (rc < 0) { 515 if (rc != -ENXIO) { 516 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) " 517 "error: %d", rc); 518 } 519 return ret; 520 } 521 ret = (reg == R_EAX) ? bitmask : bitmask >> 32; 522 } else if (function == 0x80000001 && reg == R_ECX) { 523 /* 524 * It's safe to enable TOPOEXT even if it's not returned by 525 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows 526 * us to keep CPU models including TOPOEXT runnable on older kernels. 527 */ 528 ret |= CPUID_EXT3_TOPOEXT; 529 } else if (function == 0x80000001 && reg == R_EDX) { 530 /* On Intel, kvm returns cpuid according to the Intel spec, 531 * so add missing bits according to the AMD spec: 532 */ 533 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); 534 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; 535 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { 536 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't 537 * be enabled without the in-kernel irqchip 538 */ 539 if (!kvm_irqchip_in_kernel()) { 540 ret &= ~(1U << KVM_FEATURE_PV_UNHALT); 541 } 542 if (kvm_irqchip_is_split()) { 543 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID; 544 } 545 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) { 546 ret |= 1U << KVM_HINTS_REALTIME; 547 } 548 549 return ret; 550 } 551 552 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index) 553 { 554 struct { 555 struct kvm_msrs info; 556 struct kvm_msr_entry entries[1]; 557 } msr_data = {}; 558 uint64_t value; 559 uint32_t ret, can_be_one, must_be_one; 560 561 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */ 562 return 0; 563 } 564 565 /* Check if requested MSR is supported feature MSR */ 566 int i; 567 for (i = 0; i < kvm_feature_msrs->nmsrs; i++) 568 if (kvm_feature_msrs->indices[i] == index) { 569 break; 570 } 571 if (i == kvm_feature_msrs->nmsrs) { 572 return 0; /* if the feature MSR is not supported, simply return 0 */ 573 } 574 575 msr_data.info.nmsrs = 1; 576 msr_data.entries[0].index = index; 577 578 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data); 579 if (ret != 1) { 580 error_report("KVM get MSR (index=0x%x) feature failed, %s", 581 index, strerror(-ret)); 582 exit(1); 583 } 584 585 value = msr_data.entries[0].data; 586 switch (index) { 587 case MSR_IA32_VMX_PROCBASED_CTLS2: 588 if (!has_msr_vmx_procbased_ctls2) { 589 /* KVM forgot to add these bits for some time, do this ourselves. */ 590 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) & 591 CPUID_XSAVE_XSAVES) { 592 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32; 593 } 594 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) & 595 CPUID_EXT_RDRAND) { 596 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32; 597 } 598 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 599 CPUID_7_0_EBX_INVPCID) { 600 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32; 601 } 602 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 603 CPUID_7_0_EBX_RDSEED) { 604 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32; 605 } 606 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) & 607 CPUID_EXT2_RDTSCP) { 608 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32; 609 } 610 } 611 /* fall through */ 612 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 613 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 614 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 615 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 616 /* 617 * Return true for bits that can be one, but do not have to be one. 618 * The SDM tells us which bits could have a "must be one" setting, 619 * so we can do the opposite transformation in make_vmx_msr_value. 620 */ 621 must_be_one = (uint32_t)value; 622 can_be_one = (uint32_t)(value >> 32); 623 return can_be_one & ~must_be_one; 624 625 default: 626 return value; 627 } 628 } 629 630 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, 631 int *max_banks) 632 { 633 *max_banks = kvm_check_extension(s, KVM_CAP_MCE); 634 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); 635 } 636 637 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) 638 { 639 CPUState *cs = CPU(cpu); 640 CPUX86State *env = &cpu->env; 641 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | 642 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; 643 uint64_t mcg_status = MCG_STATUS_MCIP; 644 int flags = 0; 645 646 if (code == BUS_MCEERR_AR) { 647 status |= MCI_STATUS_AR | 0x134; 648 mcg_status |= MCG_STATUS_RIPV | MCG_STATUS_EIPV; 649 } else { 650 status |= 0xc0; 651 mcg_status |= MCG_STATUS_RIPV; 652 } 653 654 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; 655 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the 656 * guest kernel back into env->mcg_ext_ctl. 657 */ 658 cpu_synchronize_state(cs); 659 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { 660 mcg_status |= MCG_STATUS_LMCE; 661 flags = 0; 662 } 663 664 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, 665 (MCM_ADDR_PHYS << 6) | 0xc, flags); 666 } 667 668 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar) 669 { 670 MemoryFailureFlags mff = {.action_required = ar, .recursive = false}; 671 672 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action, 673 &mff); 674 } 675 676 static void hardware_memory_error(void *host_addr) 677 { 678 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true); 679 error_report("QEMU got Hardware memory error at addr %p", host_addr); 680 exit(1); 681 } 682 683 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) 684 { 685 X86CPU *cpu = X86_CPU(c); 686 CPUX86State *env = &cpu->env; 687 ram_addr_t ram_addr; 688 hwaddr paddr; 689 690 /* If we get an action required MCE, it has been injected by KVM 691 * while the VM was running. An action optional MCE instead should 692 * be coming from the main thread, which qemu_init_sigbus identifies 693 * as the "early kill" thread. 694 */ 695 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); 696 697 if ((env->mcg_cap & MCG_SER_P) && addr) { 698 ram_addr = qemu_ram_addr_from_host(addr); 699 if (ram_addr != RAM_ADDR_INVALID && 700 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { 701 kvm_hwpoison_page_add(ram_addr); 702 kvm_mce_inject(cpu, paddr, code); 703 704 /* 705 * Use different logging severity based on error type. 706 * If there is additional MCE reporting on the hypervisor, QEMU VA 707 * could be another source to identify the PA and MCE details. 708 */ 709 if (code == BUS_MCEERR_AR) { 710 error_report("Guest MCE Memory Error at QEMU addr %p and " 711 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 712 addr, paddr, "BUS_MCEERR_AR"); 713 } else { 714 warn_report("Guest MCE Memory Error at QEMU addr %p and " 715 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 716 addr, paddr, "BUS_MCEERR_AO"); 717 } 718 719 return; 720 } 721 722 if (code == BUS_MCEERR_AO) { 723 warn_report("Hardware memory error at addr %p of type %s " 724 "for memory used by QEMU itself instead of guest system!", 725 addr, "BUS_MCEERR_AO"); 726 } 727 } 728 729 if (code == BUS_MCEERR_AR) { 730 hardware_memory_error(addr); 731 } 732 733 /* Hope we are lucky for AO MCE, just notify a event */ 734 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false); 735 } 736 737 static void kvm_queue_exception(CPUX86State *env, 738 int32_t exception_nr, 739 uint8_t exception_has_payload, 740 uint64_t exception_payload) 741 { 742 assert(env->exception_nr == -1); 743 assert(!env->exception_pending); 744 assert(!env->exception_injected); 745 assert(!env->exception_has_payload); 746 747 env->exception_nr = exception_nr; 748 749 if (has_exception_payload) { 750 env->exception_pending = 1; 751 752 env->exception_has_payload = exception_has_payload; 753 env->exception_payload = exception_payload; 754 } else { 755 env->exception_injected = 1; 756 757 if (exception_nr == EXCP01_DB) { 758 assert(exception_has_payload); 759 env->dr[6] = exception_payload; 760 } else if (exception_nr == EXCP0E_PAGE) { 761 assert(exception_has_payload); 762 env->cr[2] = exception_payload; 763 } else { 764 assert(!exception_has_payload); 765 } 766 } 767 } 768 769 static void cpu_update_state(void *opaque, bool running, RunState state) 770 { 771 CPUX86State *env = opaque; 772 773 if (running) { 774 env->tsc_valid = false; 775 } 776 } 777 778 unsigned long kvm_arch_vcpu_id(CPUState *cs) 779 { 780 X86CPU *cpu = X86_CPU(cs); 781 return cpu->apic_id; 782 } 783 784 #ifndef KVM_CPUID_SIGNATURE_NEXT 785 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 786 #endif 787 788 static bool hyperv_enabled(X86CPU *cpu) 789 { 790 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 && 791 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) || 792 cpu->hyperv_features || cpu->hyperv_passthrough); 793 } 794 795 /* 796 * Check whether target_freq is within conservative 797 * ntp correctable bounds (250ppm) of freq 798 */ 799 static inline bool freq_within_bounds(int freq, int target_freq) 800 { 801 int max_freq = freq + (freq * 250 / 1000000); 802 int min_freq = freq - (freq * 250 / 1000000); 803 804 if (target_freq >= min_freq && target_freq <= max_freq) { 805 return true; 806 } 807 808 return false; 809 } 810 811 static int kvm_arch_set_tsc_khz(CPUState *cs) 812 { 813 X86CPU *cpu = X86_CPU(cs); 814 CPUX86State *env = &cpu->env; 815 int r, cur_freq; 816 bool set_ioctl = false; 817 818 if (!env->tsc_khz) { 819 return 0; 820 } 821 822 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 823 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP; 824 825 /* 826 * If TSC scaling is supported, attempt to set TSC frequency. 827 */ 828 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) { 829 set_ioctl = true; 830 } 831 832 /* 833 * If desired TSC frequency is within bounds of NTP correction, 834 * attempt to set TSC frequency. 835 */ 836 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) { 837 set_ioctl = true; 838 } 839 840 r = set_ioctl ? 841 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : 842 -ENOTSUP; 843 844 if (r < 0) { 845 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current 846 * TSC frequency doesn't match the one we want. 847 */ 848 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 849 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 850 -ENOTSUP; 851 if (cur_freq <= 0 || cur_freq != env->tsc_khz) { 852 warn_report("TSC frequency mismatch between " 853 "VM (%" PRId64 " kHz) and host (%d kHz), " 854 "and TSC scaling unavailable", 855 env->tsc_khz, cur_freq); 856 return r; 857 } 858 } 859 860 return 0; 861 } 862 863 static bool tsc_is_stable_and_known(CPUX86State *env) 864 { 865 if (!env->tsc_khz) { 866 return false; 867 } 868 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) 869 || env->user_tsc_khz; 870 } 871 872 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1) 873 874 static struct { 875 const char *desc; 876 struct { 877 uint32_t func; 878 int reg; 879 uint32_t bits; 880 } flags[2]; 881 uint64_t dependencies; 882 } kvm_hyperv_properties[] = { 883 [HYPERV_FEAT_RELAXED] = { 884 .desc = "relaxed timing (hv-relaxed)", 885 .flags = { 886 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 887 .bits = HV_RELAXED_TIMING_RECOMMENDED} 888 } 889 }, 890 [HYPERV_FEAT_VAPIC] = { 891 .desc = "virtual APIC (hv-vapic)", 892 .flags = { 893 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 894 .bits = HV_APIC_ACCESS_AVAILABLE} 895 } 896 }, 897 [HYPERV_FEAT_TIME] = { 898 .desc = "clocksources (hv-time)", 899 .flags = { 900 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 901 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE} 902 } 903 }, 904 [HYPERV_FEAT_CRASH] = { 905 .desc = "crash MSRs (hv-crash)", 906 .flags = { 907 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 908 .bits = HV_GUEST_CRASH_MSR_AVAILABLE} 909 } 910 }, 911 [HYPERV_FEAT_RESET] = { 912 .desc = "reset MSR (hv-reset)", 913 .flags = { 914 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 915 .bits = HV_RESET_AVAILABLE} 916 } 917 }, 918 [HYPERV_FEAT_VPINDEX] = { 919 .desc = "VP_INDEX MSR (hv-vpindex)", 920 .flags = { 921 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 922 .bits = HV_VP_INDEX_AVAILABLE} 923 } 924 }, 925 [HYPERV_FEAT_RUNTIME] = { 926 .desc = "VP_RUNTIME MSR (hv-runtime)", 927 .flags = { 928 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 929 .bits = HV_VP_RUNTIME_AVAILABLE} 930 } 931 }, 932 [HYPERV_FEAT_SYNIC] = { 933 .desc = "synthetic interrupt controller (hv-synic)", 934 .flags = { 935 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 936 .bits = HV_SYNIC_AVAILABLE} 937 } 938 }, 939 [HYPERV_FEAT_STIMER] = { 940 .desc = "synthetic timers (hv-stimer)", 941 .flags = { 942 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 943 .bits = HV_SYNTIMERS_AVAILABLE} 944 }, 945 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME) 946 }, 947 [HYPERV_FEAT_FREQUENCIES] = { 948 .desc = "frequency MSRs (hv-frequencies)", 949 .flags = { 950 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 951 .bits = HV_ACCESS_FREQUENCY_MSRS}, 952 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 953 .bits = HV_FREQUENCY_MSRS_AVAILABLE} 954 } 955 }, 956 [HYPERV_FEAT_REENLIGHTENMENT] = { 957 .desc = "reenlightenment MSRs (hv-reenlightenment)", 958 .flags = { 959 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 960 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL} 961 } 962 }, 963 [HYPERV_FEAT_TLBFLUSH] = { 964 .desc = "paravirtualized TLB flush (hv-tlbflush)", 965 .flags = { 966 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 967 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED | 968 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 969 }, 970 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 971 }, 972 [HYPERV_FEAT_EVMCS] = { 973 .desc = "enlightened VMCS (hv-evmcs)", 974 .flags = { 975 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 976 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED} 977 }, 978 .dependencies = BIT(HYPERV_FEAT_VAPIC) 979 }, 980 [HYPERV_FEAT_IPI] = { 981 .desc = "paravirtualized IPI (hv-ipi)", 982 .flags = { 983 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 984 .bits = HV_CLUSTER_IPI_RECOMMENDED | 985 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 986 }, 987 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 988 }, 989 [HYPERV_FEAT_STIMER_DIRECT] = { 990 .desc = "direct mode synthetic timers (hv-stimer-direct)", 991 .flags = { 992 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 993 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE} 994 }, 995 .dependencies = BIT(HYPERV_FEAT_STIMER) 996 }, 997 [HYPERV_FEAT_AVIC] = { 998 .desc = "AVIC/APICv support (hv-avic/hv-apicv)", 999 .flags = { 1000 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1001 .bits = HV_DEPRECATING_AEOI_RECOMMENDED} 1002 } 1003 }, 1004 #ifdef CONFIG_SYNDBG 1005 [HYPERV_FEAT_SYNDBG] = { 1006 .desc = "Enable synthetic kernel debugger channel (hv-syndbg)", 1007 .flags = { 1008 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1009 .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE} 1010 }, 1011 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED) 1012 }, 1013 #endif 1014 [HYPERV_FEAT_MSR_BITMAP] = { 1015 .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)", 1016 .flags = { 1017 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX, 1018 .bits = HV_NESTED_MSR_BITMAP} 1019 } 1020 }, 1021 [HYPERV_FEAT_XMM_INPUT] = { 1022 .desc = "XMM fast hypercall input (hv-xmm-input)", 1023 .flags = { 1024 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1025 .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE} 1026 } 1027 }, 1028 [HYPERV_FEAT_TLBFLUSH_EXT] = { 1029 .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)", 1030 .flags = { 1031 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1032 .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE} 1033 }, 1034 .dependencies = BIT(HYPERV_FEAT_TLBFLUSH) 1035 }, 1036 [HYPERV_FEAT_TLBFLUSH_DIRECT] = { 1037 .desc = "direct TLB flush (hv-tlbflush-direct)", 1038 .flags = { 1039 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX, 1040 .bits = HV_NESTED_DIRECT_FLUSH} 1041 }, 1042 .dependencies = BIT(HYPERV_FEAT_VAPIC) 1043 }, 1044 }; 1045 1046 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max, 1047 bool do_sys_ioctl) 1048 { 1049 struct kvm_cpuid2 *cpuid; 1050 int r, size; 1051 1052 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 1053 cpuid = g_malloc0(size); 1054 cpuid->nent = max; 1055 1056 if (do_sys_ioctl) { 1057 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1058 } else { 1059 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1060 } 1061 if (r == 0 && cpuid->nent >= max) { 1062 r = -E2BIG; 1063 } 1064 if (r < 0) { 1065 if (r == -E2BIG) { 1066 g_free(cpuid); 1067 return NULL; 1068 } else { 1069 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n", 1070 strerror(-r)); 1071 exit(1); 1072 } 1073 } 1074 return cpuid; 1075 } 1076 1077 /* 1078 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough 1079 * for all entries. 1080 */ 1081 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs) 1082 { 1083 struct kvm_cpuid2 *cpuid; 1084 /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */ 1085 int max = 11; 1086 int i; 1087 bool do_sys_ioctl; 1088 1089 do_sys_ioctl = 1090 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0; 1091 1092 /* 1093 * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is 1094 * unsupported, kvm_hyperv_expand_features() checks for that. 1095 */ 1096 assert(do_sys_ioctl || cs->kvm_state); 1097 1098 /* 1099 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with 1100 * -E2BIG, however, it doesn't report back the right size. Keep increasing 1101 * it and re-trying until we succeed. 1102 */ 1103 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) { 1104 max++; 1105 } 1106 1107 /* 1108 * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before 1109 * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the 1110 * information early, just check for the capability and set the bit 1111 * manually. 1112 */ 1113 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state, 1114 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1115 for (i = 0; i < cpuid->nent; i++) { 1116 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) { 1117 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1118 } 1119 } 1120 } 1121 1122 return cpuid; 1123 } 1124 1125 /* 1126 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature 1127 * leaves from KVM_CAP_HYPERV* and present MSRs data. 1128 */ 1129 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs) 1130 { 1131 X86CPU *cpu = X86_CPU(cs); 1132 struct kvm_cpuid2 *cpuid; 1133 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm; 1134 1135 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */ 1136 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries)); 1137 cpuid->nent = 2; 1138 1139 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */ 1140 entry_feat = &cpuid->entries[0]; 1141 entry_feat->function = HV_CPUID_FEATURES; 1142 1143 entry_recomm = &cpuid->entries[1]; 1144 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO; 1145 entry_recomm->ebx = cpu->hyperv_spinlock_attempts; 1146 1147 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) { 1148 entry_feat->eax |= HV_HYPERCALL_AVAILABLE; 1149 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE; 1150 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1151 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED; 1152 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED; 1153 } 1154 1155 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { 1156 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE; 1157 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE; 1158 } 1159 1160 if (has_msr_hv_frequencies) { 1161 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS; 1162 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE; 1163 } 1164 1165 if (has_msr_hv_crash) { 1166 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE; 1167 } 1168 1169 if (has_msr_hv_reenlightenment) { 1170 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL; 1171 } 1172 1173 if (has_msr_hv_reset) { 1174 entry_feat->eax |= HV_RESET_AVAILABLE; 1175 } 1176 1177 if (has_msr_hv_vpindex) { 1178 entry_feat->eax |= HV_VP_INDEX_AVAILABLE; 1179 } 1180 1181 if (has_msr_hv_runtime) { 1182 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE; 1183 } 1184 1185 if (has_msr_hv_synic) { 1186 unsigned int cap = cpu->hyperv_synic_kvm_only ? 1187 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1188 1189 if (kvm_check_extension(cs->kvm_state, cap) > 0) { 1190 entry_feat->eax |= HV_SYNIC_AVAILABLE; 1191 } 1192 } 1193 1194 if (has_msr_hv_stimer) { 1195 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE; 1196 } 1197 1198 if (has_msr_hv_syndbg_options) { 1199 entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE; 1200 entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE; 1201 entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED; 1202 } 1203 1204 if (kvm_check_extension(cs->kvm_state, 1205 KVM_CAP_HYPERV_TLBFLUSH) > 0) { 1206 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED; 1207 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1208 } 1209 1210 if (kvm_check_extension(cs->kvm_state, 1211 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1212 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1213 } 1214 1215 if (kvm_check_extension(cs->kvm_state, 1216 KVM_CAP_HYPERV_SEND_IPI) > 0) { 1217 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED; 1218 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1219 } 1220 1221 return cpuid; 1222 } 1223 1224 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg) 1225 { 1226 struct kvm_cpuid_entry2 *entry; 1227 struct kvm_cpuid2 *cpuid; 1228 1229 if (hv_cpuid_cache) { 1230 cpuid = hv_cpuid_cache; 1231 } else { 1232 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) { 1233 cpuid = get_supported_hv_cpuid(cs); 1234 } else { 1235 /* 1236 * 'cs->kvm_state' may be NULL when Hyper-V features are expanded 1237 * before KVM context is created but this is only done when 1238 * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies 1239 * KVM_CAP_HYPERV_CPUID. 1240 */ 1241 assert(cs->kvm_state); 1242 1243 cpuid = get_supported_hv_cpuid_legacy(cs); 1244 } 1245 hv_cpuid_cache = cpuid; 1246 } 1247 1248 if (!cpuid) { 1249 return 0; 1250 } 1251 1252 entry = cpuid_find_entry(cpuid, func, 0); 1253 if (!entry) { 1254 return 0; 1255 } 1256 1257 return cpuid_entry_get_reg(entry, reg); 1258 } 1259 1260 static bool hyperv_feature_supported(CPUState *cs, int feature) 1261 { 1262 uint32_t func, bits; 1263 int i, reg; 1264 1265 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) { 1266 1267 func = kvm_hyperv_properties[feature].flags[i].func; 1268 reg = kvm_hyperv_properties[feature].flags[i].reg; 1269 bits = kvm_hyperv_properties[feature].flags[i].bits; 1270 1271 if (!func) { 1272 continue; 1273 } 1274 1275 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) { 1276 return false; 1277 } 1278 } 1279 1280 return true; 1281 } 1282 1283 /* Checks that all feature dependencies are enabled */ 1284 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp) 1285 { 1286 uint64_t deps; 1287 int dep_feat; 1288 1289 deps = kvm_hyperv_properties[feature].dependencies; 1290 while (deps) { 1291 dep_feat = ctz64(deps); 1292 if (!(hyperv_feat_enabled(cpu, dep_feat))) { 1293 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1294 kvm_hyperv_properties[feature].desc, 1295 kvm_hyperv_properties[dep_feat].desc); 1296 return false; 1297 } 1298 deps &= ~(1ull << dep_feat); 1299 } 1300 1301 return true; 1302 } 1303 1304 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg) 1305 { 1306 X86CPU *cpu = X86_CPU(cs); 1307 uint32_t r = 0; 1308 int i, j; 1309 1310 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) { 1311 if (!hyperv_feat_enabled(cpu, i)) { 1312 continue; 1313 } 1314 1315 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) { 1316 if (kvm_hyperv_properties[i].flags[j].func != func) { 1317 continue; 1318 } 1319 if (kvm_hyperv_properties[i].flags[j].reg != reg) { 1320 continue; 1321 } 1322 1323 r |= kvm_hyperv_properties[i].flags[j].bits; 1324 } 1325 } 1326 1327 /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */ 1328 if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) { 1329 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1330 r |= DEFAULT_EVMCS_VERSION; 1331 } 1332 } 1333 1334 return r; 1335 } 1336 1337 /* 1338 * Expand Hyper-V CPU features. In partucular, check that all the requested 1339 * features are supported by the host and the sanity of the configuration 1340 * (that all the required dependencies are included). Also, this takes care 1341 * of 'hv_passthrough' mode and fills the environment with all supported 1342 * Hyper-V features. 1343 */ 1344 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp) 1345 { 1346 CPUState *cs = CPU(cpu); 1347 Error *local_err = NULL; 1348 int feat; 1349 1350 if (!hyperv_enabled(cpu)) 1351 return true; 1352 1353 /* 1354 * When kvm_hyperv_expand_features is called at CPU feature expansion 1355 * time per-CPU kvm_state is not available yet so we can only proceed 1356 * when KVM_CAP_SYS_HYPERV_CPUID is supported. 1357 */ 1358 if (!cs->kvm_state && 1359 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID)) 1360 return true; 1361 1362 if (cpu->hyperv_passthrough) { 1363 cpu->hyperv_vendor_id[0] = 1364 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX); 1365 cpu->hyperv_vendor_id[1] = 1366 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX); 1367 cpu->hyperv_vendor_id[2] = 1368 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX); 1369 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor, 1370 sizeof(cpu->hyperv_vendor_id) + 1); 1371 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id, 1372 sizeof(cpu->hyperv_vendor_id)); 1373 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0; 1374 1375 cpu->hyperv_interface_id[0] = 1376 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX); 1377 cpu->hyperv_interface_id[1] = 1378 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX); 1379 cpu->hyperv_interface_id[2] = 1380 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX); 1381 cpu->hyperv_interface_id[3] = 1382 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX); 1383 1384 cpu->hyperv_ver_id_build = 1385 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX); 1386 cpu->hyperv_ver_id_major = 1387 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16; 1388 cpu->hyperv_ver_id_minor = 1389 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff; 1390 cpu->hyperv_ver_id_sp = 1391 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX); 1392 cpu->hyperv_ver_id_sb = 1393 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24; 1394 cpu->hyperv_ver_id_sn = 1395 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff; 1396 1397 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, 1398 R_EAX); 1399 cpu->hyperv_limits[0] = 1400 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX); 1401 cpu->hyperv_limits[1] = 1402 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX); 1403 cpu->hyperv_limits[2] = 1404 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX); 1405 1406 cpu->hyperv_spinlock_attempts = 1407 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX); 1408 1409 /* 1410 * Mark feature as enabled in 'cpu->hyperv_features' as 1411 * hv_build_cpuid_leaf() uses this info to build guest CPUIDs. 1412 */ 1413 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1414 if (hyperv_feature_supported(cs, feat)) { 1415 cpu->hyperv_features |= BIT(feat); 1416 } 1417 } 1418 } else { 1419 /* Check features availability and dependencies */ 1420 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1421 /* If the feature was not requested skip it. */ 1422 if (!hyperv_feat_enabled(cpu, feat)) { 1423 continue; 1424 } 1425 1426 /* Check if the feature is supported by KVM */ 1427 if (!hyperv_feature_supported(cs, feat)) { 1428 error_setg(errp, "Hyper-V %s is not supported by kernel", 1429 kvm_hyperv_properties[feat].desc); 1430 return false; 1431 } 1432 1433 /* Check dependencies */ 1434 if (!hv_feature_check_deps(cpu, feat, &local_err)) { 1435 error_propagate(errp, local_err); 1436 return false; 1437 } 1438 } 1439 } 1440 1441 /* Additional dependencies not covered by kvm_hyperv_properties[] */ 1442 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1443 !cpu->hyperv_synic_kvm_only && 1444 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) { 1445 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1446 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc, 1447 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc); 1448 return false; 1449 } 1450 1451 return true; 1452 } 1453 1454 /* 1455 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent. 1456 */ 1457 static int hyperv_fill_cpuids(CPUState *cs, 1458 struct kvm_cpuid_entry2 *cpuid_ent) 1459 { 1460 X86CPU *cpu = X86_CPU(cs); 1461 struct kvm_cpuid_entry2 *c; 1462 uint32_t signature[3]; 1463 uint32_t cpuid_i = 0, max_cpuid_leaf = 0; 1464 uint32_t nested_eax = 1465 hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX); 1466 1467 max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES : 1468 HV_CPUID_IMPLEMENT_LIMITS; 1469 1470 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) { 1471 max_cpuid_leaf = 1472 MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES); 1473 } 1474 1475 c = &cpuid_ent[cpuid_i++]; 1476 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS; 1477 c->eax = max_cpuid_leaf; 1478 c->ebx = cpu->hyperv_vendor_id[0]; 1479 c->ecx = cpu->hyperv_vendor_id[1]; 1480 c->edx = cpu->hyperv_vendor_id[2]; 1481 1482 c = &cpuid_ent[cpuid_i++]; 1483 c->function = HV_CPUID_INTERFACE; 1484 c->eax = cpu->hyperv_interface_id[0]; 1485 c->ebx = cpu->hyperv_interface_id[1]; 1486 c->ecx = cpu->hyperv_interface_id[2]; 1487 c->edx = cpu->hyperv_interface_id[3]; 1488 1489 c = &cpuid_ent[cpuid_i++]; 1490 c->function = HV_CPUID_VERSION; 1491 c->eax = cpu->hyperv_ver_id_build; 1492 c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 | 1493 cpu->hyperv_ver_id_minor; 1494 c->ecx = cpu->hyperv_ver_id_sp; 1495 c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 | 1496 (cpu->hyperv_ver_id_sn & 0xffffff); 1497 1498 c = &cpuid_ent[cpuid_i++]; 1499 c->function = HV_CPUID_FEATURES; 1500 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX); 1501 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX); 1502 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX); 1503 1504 /* Unconditionally required with any Hyper-V enlightenment */ 1505 c->eax |= HV_HYPERCALL_AVAILABLE; 1506 1507 /* SynIC and Vmbus devices require messages/signals hypercalls */ 1508 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1509 !cpu->hyperv_synic_kvm_only) { 1510 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS; 1511 } 1512 1513 1514 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */ 1515 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1516 1517 c = &cpuid_ent[cpuid_i++]; 1518 c->function = HV_CPUID_ENLIGHTMENT_INFO; 1519 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX); 1520 c->ebx = cpu->hyperv_spinlock_attempts; 1521 1522 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) && 1523 !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) { 1524 c->eax |= HV_APIC_ACCESS_RECOMMENDED; 1525 } 1526 1527 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) { 1528 c->eax |= HV_NO_NONARCH_CORESHARING; 1529 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) { 1530 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) & 1531 HV_NO_NONARCH_CORESHARING; 1532 } 1533 1534 c = &cpuid_ent[cpuid_i++]; 1535 c->function = HV_CPUID_IMPLEMENT_LIMITS; 1536 c->eax = cpu->hv_max_vps; 1537 c->ebx = cpu->hyperv_limits[0]; 1538 c->ecx = cpu->hyperv_limits[1]; 1539 c->edx = cpu->hyperv_limits[2]; 1540 1541 if (nested_eax) { 1542 uint32_t function; 1543 1544 /* Create zeroed 0x40000006..0x40000009 leaves */ 1545 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1; 1546 function < HV_CPUID_NESTED_FEATURES; function++) { 1547 c = &cpuid_ent[cpuid_i++]; 1548 c->function = function; 1549 } 1550 1551 c = &cpuid_ent[cpuid_i++]; 1552 c->function = HV_CPUID_NESTED_FEATURES; 1553 c->eax = nested_eax; 1554 } 1555 1556 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) { 1557 c = &cpuid_ent[cpuid_i++]; 1558 c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS; 1559 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ? 1560 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS; 1561 memcpy(signature, "Microsoft VS", 12); 1562 c->eax = 0; 1563 c->ebx = signature[0]; 1564 c->ecx = signature[1]; 1565 c->edx = signature[2]; 1566 1567 c = &cpuid_ent[cpuid_i++]; 1568 c->function = HV_CPUID_SYNDBG_INTERFACE; 1569 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12); 1570 c->eax = signature[0]; 1571 c->ebx = 0; 1572 c->ecx = 0; 1573 c->edx = 0; 1574 1575 c = &cpuid_ent[cpuid_i++]; 1576 c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES; 1577 c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING; 1578 c->ebx = 0; 1579 c->ecx = 0; 1580 c->edx = 0; 1581 } 1582 1583 return cpuid_i; 1584 } 1585 1586 static Error *hv_passthrough_mig_blocker; 1587 static Error *hv_no_nonarch_cs_mig_blocker; 1588 1589 /* Checks that the exposed eVMCS version range is supported by KVM */ 1590 static bool evmcs_version_supported(uint16_t evmcs_version, 1591 uint16_t supported_evmcs_version) 1592 { 1593 uint8_t min_version = evmcs_version & 0xff; 1594 uint8_t max_version = evmcs_version >> 8; 1595 uint8_t min_supported_version = supported_evmcs_version & 0xff; 1596 uint8_t max_supported_version = supported_evmcs_version >> 8; 1597 1598 return (min_version >= min_supported_version) && 1599 (max_version <= max_supported_version); 1600 } 1601 1602 static int hyperv_init_vcpu(X86CPU *cpu) 1603 { 1604 CPUState *cs = CPU(cpu); 1605 Error *local_err = NULL; 1606 int ret; 1607 1608 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) { 1609 error_setg(&hv_passthrough_mig_blocker, 1610 "'hv-passthrough' CPU flag prevents migration, use explicit" 1611 " set of hv-* flags instead"); 1612 ret = migrate_add_blocker(&hv_passthrough_mig_blocker, &local_err); 1613 if (ret < 0) { 1614 error_report_err(local_err); 1615 return ret; 1616 } 1617 } 1618 1619 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO && 1620 hv_no_nonarch_cs_mig_blocker == NULL) { 1621 error_setg(&hv_no_nonarch_cs_mig_blocker, 1622 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration" 1623 " use explicit 'hv-no-nonarch-coresharing=on' instead (but" 1624 " make sure SMT is disabled and/or that vCPUs are properly" 1625 " pinned)"); 1626 ret = migrate_add_blocker(&hv_no_nonarch_cs_mig_blocker, &local_err); 1627 if (ret < 0) { 1628 error_report_err(local_err); 1629 return ret; 1630 } 1631 } 1632 1633 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) { 1634 /* 1635 * the kernel doesn't support setting vp_index; assert that its value 1636 * is in sync 1637 */ 1638 uint64_t value; 1639 1640 ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value); 1641 if (ret < 0) { 1642 return ret; 1643 } 1644 1645 if (value != hyperv_vp_index(CPU(cpu))) { 1646 error_report("kernel's vp_index != QEMU's vp_index"); 1647 return -ENXIO; 1648 } 1649 } 1650 1651 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 1652 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ? 1653 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1654 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0); 1655 if (ret < 0) { 1656 error_report("failed to turn on HyperV SynIC in KVM: %s", 1657 strerror(-ret)); 1658 return ret; 1659 } 1660 1661 if (!cpu->hyperv_synic_kvm_only) { 1662 ret = hyperv_x86_synic_add(cpu); 1663 if (ret < 0) { 1664 error_report("failed to create HyperV SynIC: %s", 1665 strerror(-ret)); 1666 return ret; 1667 } 1668 } 1669 } 1670 1671 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1672 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION; 1673 uint16_t supported_evmcs_version; 1674 1675 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0, 1676 (uintptr_t)&supported_evmcs_version); 1677 1678 /* 1679 * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs' 1680 * option sets. Note: we hardcode the maximum supported eVMCS version 1681 * to '1' as well so 'hv-evmcs' feature is migratable even when (and if) 1682 * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have 1683 * to be added. 1684 */ 1685 if (ret < 0) { 1686 error_report("Hyper-V %s is not supported by kernel", 1687 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc); 1688 return ret; 1689 } 1690 1691 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) { 1692 error_report("eVMCS version range [%d..%d] is not supported by " 1693 "kernel (supported: [%d..%d])", evmcs_version & 0xff, 1694 evmcs_version >> 8, supported_evmcs_version & 0xff, 1695 supported_evmcs_version >> 8); 1696 return -ENOTSUP; 1697 } 1698 } 1699 1700 if (cpu->hyperv_enforce_cpuid) { 1701 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1); 1702 if (ret < 0) { 1703 error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s", 1704 strerror(-ret)); 1705 return ret; 1706 } 1707 } 1708 1709 /* Skip SynIC and VP_INDEX since they are hard deps already */ 1710 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_STIMER) && 1711 hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) && 1712 hyperv_feat_enabled(cpu, HYPERV_FEAT_RUNTIME)) { 1713 hyperv_x86_set_vmbus_recommended_features_enabled(); 1714 } 1715 1716 return 0; 1717 } 1718 1719 static Error *invtsc_mig_blocker; 1720 1721 #define KVM_MAX_CPUID_ENTRIES 100 1722 1723 static void kvm_init_xsave(CPUX86State *env) 1724 { 1725 if (has_xsave2) { 1726 env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096); 1727 } else { 1728 env->xsave_buf_len = sizeof(struct kvm_xsave); 1729 } 1730 1731 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len); 1732 memset(env->xsave_buf, 0, env->xsave_buf_len); 1733 /* 1734 * The allocated storage must be large enough for all of the 1735 * possible XSAVE state components. 1736 */ 1737 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <= 1738 env->xsave_buf_len); 1739 } 1740 1741 static void kvm_init_nested_state(CPUX86State *env) 1742 { 1743 struct kvm_vmx_nested_state_hdr *vmx_hdr; 1744 uint32_t size; 1745 1746 if (!env->nested_state) { 1747 return; 1748 } 1749 1750 size = env->nested_state->size; 1751 1752 memset(env->nested_state, 0, size); 1753 env->nested_state->size = size; 1754 1755 if (cpu_has_vmx(env)) { 1756 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX; 1757 vmx_hdr = &env->nested_state->hdr.vmx; 1758 vmx_hdr->vmxon_pa = -1ull; 1759 vmx_hdr->vmcs12_pa = -1ull; 1760 } else if (cpu_has_svm(env)) { 1761 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM; 1762 } 1763 } 1764 1765 static uint32_t kvm_x86_build_cpuid(CPUX86State *env, 1766 struct kvm_cpuid_entry2 *entries, 1767 uint32_t cpuid_i) 1768 { 1769 uint32_t limit, i, j; 1770 uint32_t unused; 1771 struct kvm_cpuid_entry2 *c; 1772 1773 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); 1774 1775 for (i = 0; i <= limit; i++) { 1776 j = 0; 1777 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1778 goto full; 1779 } 1780 c = &entries[cpuid_i++]; 1781 switch (i) { 1782 case 2: { 1783 /* Keep reading function 2 till all the input is received */ 1784 int times; 1785 1786 c->function = i; 1787 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | 1788 KVM_CPUID_FLAG_STATE_READ_NEXT; 1789 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1790 times = c->eax & 0xff; 1791 1792 for (j = 1; j < times; ++j) { 1793 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1794 goto full; 1795 } 1796 c = &entries[cpuid_i++]; 1797 c->function = i; 1798 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; 1799 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1800 } 1801 break; 1802 } 1803 case 0x1f: 1804 if (!x86_has_extended_topo(env->avail_cpu_topo)) { 1805 cpuid_i--; 1806 break; 1807 } 1808 /* fallthrough */ 1809 case 4: 1810 case 0xb: 1811 case 0xd: 1812 for (j = 0; ; j++) { 1813 if (i == 0xd && j == 64) { 1814 break; 1815 } 1816 1817 c->function = i; 1818 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1819 c->index = j; 1820 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1821 1822 if (i == 4 && c->eax == 0) { 1823 break; 1824 } 1825 if (i == 0xb && !(c->ecx & 0xff00)) { 1826 break; 1827 } 1828 if (i == 0x1f && !(c->ecx & 0xff00)) { 1829 break; 1830 } 1831 if (i == 0xd && c->eax == 0) { 1832 continue; 1833 } 1834 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1835 goto full; 1836 } 1837 c = &entries[cpuid_i++]; 1838 } 1839 break; 1840 case 0x12: 1841 for (j = 0; ; j++) { 1842 c->function = i; 1843 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1844 c->index = j; 1845 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1846 1847 if (j > 1 && (c->eax & 0xf) != 1) { 1848 break; 1849 } 1850 1851 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1852 goto full; 1853 } 1854 c = &entries[cpuid_i++]; 1855 } 1856 break; 1857 case 0x7: 1858 case 0x14: 1859 case 0x1d: 1860 case 0x1e: { 1861 uint32_t times; 1862 1863 c->function = i; 1864 c->index = 0; 1865 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1866 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1867 times = c->eax; 1868 1869 for (j = 1; j <= times; ++j) { 1870 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1871 goto full; 1872 } 1873 c = &entries[cpuid_i++]; 1874 c->function = i; 1875 c->index = j; 1876 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1877 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1878 } 1879 break; 1880 } 1881 default: 1882 c->function = i; 1883 c->flags = 0; 1884 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1885 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 1886 /* 1887 * KVM already returns all zeroes if a CPUID entry is missing, 1888 * so we can omit it and avoid hitting KVM's 80-entry limit. 1889 */ 1890 cpuid_i--; 1891 } 1892 break; 1893 } 1894 } 1895 1896 if (limit >= 0x0a) { 1897 uint32_t eax, edx; 1898 1899 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx); 1900 1901 has_architectural_pmu_version = eax & 0xff; 1902 if (has_architectural_pmu_version > 0) { 1903 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8; 1904 1905 /* Shouldn't be more than 32, since that's the number of bits 1906 * available in EBX to tell us _which_ counters are available. 1907 * Play it safe. 1908 */ 1909 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) { 1910 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS; 1911 } 1912 1913 if (has_architectural_pmu_version > 1) { 1914 num_architectural_pmu_fixed_counters = edx & 0x1f; 1915 1916 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) { 1917 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS; 1918 } 1919 } 1920 } 1921 } 1922 1923 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); 1924 1925 for (i = 0x80000000; i <= limit; i++) { 1926 j = 0; 1927 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1928 goto full; 1929 } 1930 c = &entries[cpuid_i++]; 1931 1932 switch (i) { 1933 case 0x8000001d: 1934 /* Query for all AMD cache information leaves */ 1935 for (j = 0; ; j++) { 1936 c->function = i; 1937 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1938 c->index = j; 1939 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1940 1941 if (c->eax == 0) { 1942 break; 1943 } 1944 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1945 goto full; 1946 } 1947 c = &entries[cpuid_i++]; 1948 } 1949 break; 1950 default: 1951 c->function = i; 1952 c->flags = 0; 1953 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1954 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 1955 /* 1956 * KVM already returns all zeroes if a CPUID entry is missing, 1957 * so we can omit it and avoid hitting KVM's 80-entry limit. 1958 */ 1959 cpuid_i--; 1960 } 1961 break; 1962 } 1963 } 1964 1965 /* Call Centaur's CPUID instructions they are supported. */ 1966 if (env->cpuid_xlevel2 > 0) { 1967 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); 1968 1969 for (i = 0xC0000000; i <= limit; i++) { 1970 j = 0; 1971 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1972 goto full; 1973 } 1974 c = &entries[cpuid_i++]; 1975 1976 c->function = i; 1977 c->flags = 0; 1978 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1979 } 1980 } 1981 1982 return cpuid_i; 1983 1984 full: 1985 fprintf(stderr, "cpuid_data is full, no space for " 1986 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 1987 abort(); 1988 } 1989 1990 int kvm_arch_init_vcpu(CPUState *cs) 1991 { 1992 struct { 1993 struct kvm_cpuid2 cpuid; 1994 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; 1995 } cpuid_data; 1996 /* 1997 * The kernel defines these structs with padding fields so there 1998 * should be no extra padding in our cpuid_data struct. 1999 */ 2000 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) != 2001 sizeof(struct kvm_cpuid2) + 2002 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES); 2003 2004 X86CPU *cpu = X86_CPU(cs); 2005 CPUX86State *env = &cpu->env; 2006 uint32_t cpuid_i; 2007 struct kvm_cpuid_entry2 *c; 2008 uint32_t signature[3]; 2009 int kvm_base = KVM_CPUID_SIGNATURE; 2010 int max_nested_state_len; 2011 int r; 2012 Error *local_err = NULL; 2013 2014 memset(&cpuid_data, 0, sizeof(cpuid_data)); 2015 2016 cpuid_i = 0; 2017 2018 has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2); 2019 2020 r = kvm_arch_set_tsc_khz(cs); 2021 if (r < 0) { 2022 return r; 2023 } 2024 2025 /* vcpu's TSC frequency is either specified by user, or following 2026 * the value used by KVM if the former is not present. In the 2027 * latter case, we query it from KVM and record in env->tsc_khz, 2028 * so that vcpu's TSC frequency can be migrated later via this field. 2029 */ 2030 if (!env->tsc_khz) { 2031 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 2032 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 2033 -ENOTSUP; 2034 if (r > 0) { 2035 env->tsc_khz = r; 2036 } 2037 } 2038 2039 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY; 2040 2041 /* 2042 * kvm_hyperv_expand_features() is called here for the second time in case 2043 * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle 2044 * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to 2045 * check which Hyper-V enlightenments are supported and which are not, we 2046 * can still proceed and check/expand Hyper-V enlightenments here so legacy 2047 * behavior is preserved. 2048 */ 2049 if (!kvm_hyperv_expand_features(cpu, &local_err)) { 2050 error_report_err(local_err); 2051 return -ENOSYS; 2052 } 2053 2054 if (hyperv_enabled(cpu)) { 2055 r = hyperv_init_vcpu(cpu); 2056 if (r) { 2057 return r; 2058 } 2059 2060 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries); 2061 kvm_base = KVM_CPUID_SIGNATURE_NEXT; 2062 has_msr_hv_hypercall = true; 2063 } 2064 2065 if (cs->kvm_state->xen_version) { 2066 #ifdef CONFIG_XEN_EMU 2067 struct kvm_cpuid_entry2 *xen_max_leaf; 2068 2069 memcpy(signature, "XenVMMXenVMM", 12); 2070 2071 xen_max_leaf = c = &cpuid_data.entries[cpuid_i++]; 2072 c->function = kvm_base + XEN_CPUID_SIGNATURE; 2073 c->eax = kvm_base + XEN_CPUID_TIME; 2074 c->ebx = signature[0]; 2075 c->ecx = signature[1]; 2076 c->edx = signature[2]; 2077 2078 c = &cpuid_data.entries[cpuid_i++]; 2079 c->function = kvm_base + XEN_CPUID_VENDOR; 2080 c->eax = cs->kvm_state->xen_version; 2081 c->ebx = 0; 2082 c->ecx = 0; 2083 c->edx = 0; 2084 2085 c = &cpuid_data.entries[cpuid_i++]; 2086 c->function = kvm_base + XEN_CPUID_HVM_MSR; 2087 /* Number of hypercall-transfer pages */ 2088 c->eax = 1; 2089 /* Hypercall MSR base address */ 2090 if (hyperv_enabled(cpu)) { 2091 c->ebx = XEN_HYPERCALL_MSR_HYPERV; 2092 kvm_xen_init(cs->kvm_state, c->ebx); 2093 } else { 2094 c->ebx = XEN_HYPERCALL_MSR; 2095 } 2096 c->ecx = 0; 2097 c->edx = 0; 2098 2099 c = &cpuid_data.entries[cpuid_i++]; 2100 c->function = kvm_base + XEN_CPUID_TIME; 2101 c->eax = ((!!tsc_is_stable_and_known(env) << 1) | 2102 (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2)); 2103 /* default=0 (emulate if necessary) */ 2104 c->ebx = 0; 2105 /* guest tsc frequency */ 2106 c->ecx = env->user_tsc_khz; 2107 /* guest tsc incarnation (migration count) */ 2108 c->edx = 0; 2109 2110 c = &cpuid_data.entries[cpuid_i++]; 2111 c->function = kvm_base + XEN_CPUID_HVM; 2112 xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM; 2113 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) { 2114 c->function = kvm_base + XEN_CPUID_HVM; 2115 2116 if (cpu->xen_vapic) { 2117 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT; 2118 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT; 2119 } 2120 2121 c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS; 2122 2123 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) { 2124 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT; 2125 c->ebx = cs->cpu_index; 2126 } 2127 2128 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 17)) { 2129 c->eax |= XEN_HVM_CPUID_UPCALL_VECTOR; 2130 } 2131 } 2132 2133 r = kvm_xen_init_vcpu(cs); 2134 if (r) { 2135 return r; 2136 } 2137 2138 kvm_base += 0x100; 2139 #else /* CONFIG_XEN_EMU */ 2140 /* This should never happen as kvm_arch_init() would have died first. */ 2141 fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n"); 2142 abort(); 2143 #endif 2144 } else if (cpu->expose_kvm) { 2145 memcpy(signature, "KVMKVMKVM\0\0\0", 12); 2146 c = &cpuid_data.entries[cpuid_i++]; 2147 c->function = KVM_CPUID_SIGNATURE | kvm_base; 2148 c->eax = KVM_CPUID_FEATURES | kvm_base; 2149 c->ebx = signature[0]; 2150 c->ecx = signature[1]; 2151 c->edx = signature[2]; 2152 2153 c = &cpuid_data.entries[cpuid_i++]; 2154 c->function = KVM_CPUID_FEATURES | kvm_base; 2155 c->eax = env->features[FEAT_KVM]; 2156 c->edx = env->features[FEAT_KVM_HINTS]; 2157 } 2158 2159 if (cpu->kvm_pv_enforce_cpuid) { 2160 r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1); 2161 if (r < 0) { 2162 fprintf(stderr, 2163 "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s", 2164 strerror(-r)); 2165 abort(); 2166 } 2167 } 2168 2169 cpuid_i = kvm_x86_build_cpuid(env, cpuid_data.entries, cpuid_i); 2170 cpuid_data.cpuid.nent = cpuid_i; 2171 2172 if (((env->cpuid_version >> 8)&0xF) >= 6 2173 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == 2174 (CPUID_MCE | CPUID_MCA)) { 2175 uint64_t mcg_cap, unsupported_caps; 2176 int banks; 2177 int ret; 2178 2179 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); 2180 if (ret < 0) { 2181 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); 2182 return ret; 2183 } 2184 2185 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { 2186 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", 2187 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); 2188 return -ENOTSUP; 2189 } 2190 2191 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); 2192 if (unsupported_caps) { 2193 if (unsupported_caps & MCG_LMCE_P) { 2194 error_report("kvm: LMCE not supported"); 2195 return -ENOTSUP; 2196 } 2197 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64, 2198 unsupported_caps); 2199 } 2200 2201 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; 2202 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); 2203 if (ret < 0) { 2204 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); 2205 return ret; 2206 } 2207 } 2208 2209 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env); 2210 2211 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); 2212 if (c) { 2213 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || 2214 !!(c->ecx & CPUID_EXT_SMX); 2215 } 2216 2217 c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0); 2218 if (c && (c->ebx & CPUID_7_0_EBX_SGX)) { 2219 has_msr_feature_control = true; 2220 } 2221 2222 if (env->mcg_cap & MCG_LMCE_P) { 2223 has_msr_mcg_ext_ctl = has_msr_feature_control = true; 2224 } 2225 2226 if (!env->user_tsc_khz) { 2227 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && 2228 invtsc_mig_blocker == NULL) { 2229 error_setg(&invtsc_mig_blocker, 2230 "State blocked by non-migratable CPU device" 2231 " (invtsc flag)"); 2232 r = migrate_add_blocker(&invtsc_mig_blocker, &local_err); 2233 if (r < 0) { 2234 error_report_err(local_err); 2235 return r; 2236 } 2237 } 2238 } 2239 2240 if (cpu->vmware_cpuid_freq 2241 /* Guests depend on 0x40000000 to detect this feature, so only expose 2242 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ 2243 && cpu->expose_kvm 2244 && kvm_base == KVM_CPUID_SIGNATURE 2245 /* TSC clock must be stable and known for this feature. */ 2246 && tsc_is_stable_and_known(env)) { 2247 2248 c = &cpuid_data.entries[cpuid_i++]; 2249 c->function = KVM_CPUID_SIGNATURE | 0x10; 2250 c->eax = env->tsc_khz; 2251 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */ 2252 c->ecx = c->edx = 0; 2253 2254 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); 2255 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); 2256 } 2257 2258 cpuid_data.cpuid.nent = cpuid_i; 2259 2260 cpuid_data.cpuid.padding = 0; 2261 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); 2262 if (r) { 2263 goto fail; 2264 } 2265 kvm_init_xsave(env); 2266 2267 max_nested_state_len = kvm_max_nested_state_length(); 2268 if (max_nested_state_len > 0) { 2269 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data)); 2270 2271 if (cpu_has_vmx(env) || cpu_has_svm(env)) { 2272 env->nested_state = g_malloc0(max_nested_state_len); 2273 env->nested_state->size = max_nested_state_len; 2274 2275 kvm_init_nested_state(env); 2276 } 2277 } 2278 2279 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); 2280 2281 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { 2282 has_msr_tsc_aux = false; 2283 } 2284 2285 kvm_init_msrs(cpu); 2286 2287 return 0; 2288 2289 fail: 2290 migrate_del_blocker(&invtsc_mig_blocker); 2291 2292 return r; 2293 } 2294 2295 int kvm_arch_destroy_vcpu(CPUState *cs) 2296 { 2297 X86CPU *cpu = X86_CPU(cs); 2298 CPUX86State *env = &cpu->env; 2299 2300 g_free(env->xsave_buf); 2301 2302 g_free(cpu->kvm_msr_buf); 2303 cpu->kvm_msr_buf = NULL; 2304 2305 g_free(env->nested_state); 2306 env->nested_state = NULL; 2307 2308 qemu_del_vm_change_state_handler(cpu->vmsentry); 2309 2310 return 0; 2311 } 2312 2313 void kvm_arch_reset_vcpu(X86CPU *cpu) 2314 { 2315 CPUX86State *env = &cpu->env; 2316 2317 env->xcr0 = 1; 2318 if (kvm_irqchip_in_kernel()) { 2319 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : 2320 KVM_MP_STATE_UNINITIALIZED; 2321 } else { 2322 env->mp_state = KVM_MP_STATE_RUNNABLE; 2323 } 2324 2325 /* enabled by default */ 2326 env->poll_control_msr = 1; 2327 2328 kvm_init_nested_state(env); 2329 2330 sev_es_set_reset_vector(CPU(cpu)); 2331 } 2332 2333 void kvm_arch_after_reset_vcpu(X86CPU *cpu) 2334 { 2335 CPUX86State *env = &cpu->env; 2336 int i; 2337 2338 /* 2339 * Reset SynIC after all other devices have been reset to let them remove 2340 * their SINT routes first. 2341 */ 2342 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 2343 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { 2344 env->msr_hv_synic_sint[i] = HV_SINT_MASKED; 2345 } 2346 2347 hyperv_x86_synic_reset(cpu); 2348 } 2349 } 2350 2351 void kvm_arch_do_init_vcpu(X86CPU *cpu) 2352 { 2353 CPUX86State *env = &cpu->env; 2354 2355 /* APs get directly into wait-for-SIPI state. */ 2356 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { 2357 env->mp_state = KVM_MP_STATE_INIT_RECEIVED; 2358 } 2359 } 2360 2361 static int kvm_get_supported_feature_msrs(KVMState *s) 2362 { 2363 int ret = 0; 2364 2365 if (kvm_feature_msrs != NULL) { 2366 return 0; 2367 } 2368 2369 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) { 2370 return 0; 2371 } 2372 2373 struct kvm_msr_list msr_list; 2374 2375 msr_list.nmsrs = 0; 2376 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list); 2377 if (ret < 0 && ret != -E2BIG) { 2378 error_report("Fetch KVM feature MSR list failed: %s", 2379 strerror(-ret)); 2380 return ret; 2381 } 2382 2383 assert(msr_list.nmsrs > 0); 2384 kvm_feature_msrs = g_malloc0(sizeof(msr_list) + 2385 msr_list.nmsrs * sizeof(msr_list.indices[0])); 2386 2387 kvm_feature_msrs->nmsrs = msr_list.nmsrs; 2388 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs); 2389 2390 if (ret < 0) { 2391 error_report("Fetch KVM feature MSR list failed: %s", 2392 strerror(-ret)); 2393 g_free(kvm_feature_msrs); 2394 kvm_feature_msrs = NULL; 2395 return ret; 2396 } 2397 2398 return 0; 2399 } 2400 2401 static int kvm_get_supported_msrs(KVMState *s) 2402 { 2403 int ret = 0; 2404 struct kvm_msr_list msr_list, *kvm_msr_list; 2405 2406 /* 2407 * Obtain MSR list from KVM. These are the MSRs that we must 2408 * save/restore. 2409 */ 2410 msr_list.nmsrs = 0; 2411 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); 2412 if (ret < 0 && ret != -E2BIG) { 2413 return ret; 2414 } 2415 /* 2416 * Old kernel modules had a bug and could write beyond the provided 2417 * memory. Allocate at least a safe amount of 1K. 2418 */ 2419 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + 2420 msr_list.nmsrs * 2421 sizeof(msr_list.indices[0]))); 2422 2423 kvm_msr_list->nmsrs = msr_list.nmsrs; 2424 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); 2425 if (ret >= 0) { 2426 int i; 2427 2428 for (i = 0; i < kvm_msr_list->nmsrs; i++) { 2429 switch (kvm_msr_list->indices[i]) { 2430 case MSR_STAR: 2431 has_msr_star = true; 2432 break; 2433 case MSR_VM_HSAVE_PA: 2434 has_msr_hsave_pa = true; 2435 break; 2436 case MSR_TSC_AUX: 2437 has_msr_tsc_aux = true; 2438 break; 2439 case MSR_TSC_ADJUST: 2440 has_msr_tsc_adjust = true; 2441 break; 2442 case MSR_IA32_TSCDEADLINE: 2443 has_msr_tsc_deadline = true; 2444 break; 2445 case MSR_IA32_SMBASE: 2446 has_msr_smbase = true; 2447 break; 2448 case MSR_SMI_COUNT: 2449 has_msr_smi_count = true; 2450 break; 2451 case MSR_IA32_MISC_ENABLE: 2452 has_msr_misc_enable = true; 2453 break; 2454 case MSR_IA32_BNDCFGS: 2455 has_msr_bndcfgs = true; 2456 break; 2457 case MSR_IA32_XSS: 2458 has_msr_xss = true; 2459 break; 2460 case MSR_IA32_UMWAIT_CONTROL: 2461 has_msr_umwait = true; 2462 break; 2463 case HV_X64_MSR_CRASH_CTL: 2464 has_msr_hv_crash = true; 2465 break; 2466 case HV_X64_MSR_RESET: 2467 has_msr_hv_reset = true; 2468 break; 2469 case HV_X64_MSR_VP_INDEX: 2470 has_msr_hv_vpindex = true; 2471 break; 2472 case HV_X64_MSR_VP_RUNTIME: 2473 has_msr_hv_runtime = true; 2474 break; 2475 case HV_X64_MSR_SCONTROL: 2476 has_msr_hv_synic = true; 2477 break; 2478 case HV_X64_MSR_STIMER0_CONFIG: 2479 has_msr_hv_stimer = true; 2480 break; 2481 case HV_X64_MSR_TSC_FREQUENCY: 2482 has_msr_hv_frequencies = true; 2483 break; 2484 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 2485 has_msr_hv_reenlightenment = true; 2486 break; 2487 case HV_X64_MSR_SYNDBG_OPTIONS: 2488 has_msr_hv_syndbg_options = true; 2489 break; 2490 case MSR_IA32_SPEC_CTRL: 2491 has_msr_spec_ctrl = true; 2492 break; 2493 case MSR_AMD64_TSC_RATIO: 2494 has_tsc_scale_msr = true; 2495 break; 2496 case MSR_IA32_TSX_CTRL: 2497 has_msr_tsx_ctrl = true; 2498 break; 2499 case MSR_VIRT_SSBD: 2500 has_msr_virt_ssbd = true; 2501 break; 2502 case MSR_IA32_ARCH_CAPABILITIES: 2503 has_msr_arch_capabs = true; 2504 break; 2505 case MSR_IA32_CORE_CAPABILITY: 2506 has_msr_core_capabs = true; 2507 break; 2508 case MSR_IA32_PERF_CAPABILITIES: 2509 has_msr_perf_capabs = true; 2510 break; 2511 case MSR_IA32_VMX_VMFUNC: 2512 has_msr_vmx_vmfunc = true; 2513 break; 2514 case MSR_IA32_UCODE_REV: 2515 has_msr_ucode_rev = true; 2516 break; 2517 case MSR_IA32_VMX_PROCBASED_CTLS2: 2518 has_msr_vmx_procbased_ctls2 = true; 2519 break; 2520 case MSR_IA32_PKRS: 2521 has_msr_pkrs = true; 2522 break; 2523 } 2524 } 2525 } 2526 2527 g_free(kvm_msr_list); 2528 2529 return ret; 2530 } 2531 2532 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu, uint32_t msr, 2533 uint64_t *val) 2534 { 2535 CPUState *cs = CPU(cpu); 2536 2537 *val = cs->nr_threads * cs->nr_cores; /* thread count, bits 15..0 */ 2538 *val |= ((uint32_t)cs->nr_cores << 16); /* core count, bits 31..16 */ 2539 2540 return true; 2541 } 2542 2543 static Notifier smram_machine_done; 2544 static KVMMemoryListener smram_listener; 2545 static AddressSpace smram_address_space; 2546 static MemoryRegion smram_as_root; 2547 static MemoryRegion smram_as_mem; 2548 2549 static void register_smram_listener(Notifier *n, void *unused) 2550 { 2551 MemoryRegion *smram = 2552 (MemoryRegion *) object_resolve_path("/machine/smram", NULL); 2553 2554 /* Outer container... */ 2555 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); 2556 memory_region_set_enabled(&smram_as_root, true); 2557 2558 /* ... with two regions inside: normal system memory with low 2559 * priority, and... 2560 */ 2561 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", 2562 get_system_memory(), 0, ~0ull); 2563 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); 2564 memory_region_set_enabled(&smram_as_mem, true); 2565 2566 if (smram) { 2567 /* ... SMRAM with higher priority */ 2568 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); 2569 memory_region_set_enabled(smram, true); 2570 } 2571 2572 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); 2573 kvm_memory_listener_register(kvm_state, &smram_listener, 2574 &smram_address_space, 1, "kvm-smram"); 2575 } 2576 2577 int kvm_arch_get_default_type(MachineState *ms) 2578 { 2579 return 0; 2580 } 2581 2582 int kvm_arch_init(MachineState *ms, KVMState *s) 2583 { 2584 uint64_t identity_base = 0xfffbc000; 2585 uint64_t shadow_mem; 2586 int ret; 2587 struct utsname utsname; 2588 Error *local_err = NULL; 2589 2590 /* 2591 * Initialize SEV context, if required 2592 * 2593 * If no memory encryption is requested (ms->cgs == NULL) this is 2594 * a no-op. 2595 * 2596 * It's also a no-op if a non-SEV confidential guest support 2597 * mechanism is selected. SEV is the only mechanism available to 2598 * select on x86 at present, so this doesn't arise, but if new 2599 * mechanisms are supported in future (e.g. TDX), they'll need 2600 * their own initialization either here or elsewhere. 2601 */ 2602 if (ms->cgs) { 2603 ret = confidential_guest_kvm_init(ms->cgs, &local_err); 2604 if (ret < 0) { 2605 error_report_err(local_err); 2606 return ret; 2607 } 2608 } 2609 2610 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); 2611 has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0; 2612 2613 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX); 2614 2615 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD); 2616 if (has_exception_payload) { 2617 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true); 2618 if (ret < 0) { 2619 error_report("kvm: Failed to enable exception payload cap: %s", 2620 strerror(-ret)); 2621 return ret; 2622 } 2623 } 2624 2625 has_triple_fault_event = kvm_check_extension(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT); 2626 if (has_triple_fault_event) { 2627 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true); 2628 if (ret < 0) { 2629 error_report("kvm: Failed to enable triple fault event cap: %s", 2630 strerror(-ret)); 2631 return ret; 2632 } 2633 } 2634 2635 if (s->xen_version) { 2636 #ifdef CONFIG_XEN_EMU 2637 if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) { 2638 error_report("kvm: Xen support only available in PC machine"); 2639 return -ENOTSUP; 2640 } 2641 /* hyperv_enabled() doesn't work yet. */ 2642 uint32_t msr = XEN_HYPERCALL_MSR; 2643 ret = kvm_xen_init(s, msr); 2644 if (ret < 0) { 2645 return ret; 2646 } 2647 #else 2648 error_report("kvm: Xen support not enabled in qemu"); 2649 return -ENOTSUP; 2650 #endif 2651 } 2652 2653 ret = kvm_get_supported_msrs(s); 2654 if (ret < 0) { 2655 return ret; 2656 } 2657 2658 kvm_get_supported_feature_msrs(s); 2659 2660 uname(&utsname); 2661 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; 2662 2663 /* 2664 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. 2665 * In order to use vm86 mode, an EPT identity map and a TSS are needed. 2666 * Since these must be part of guest physical memory, we need to allocate 2667 * them, both by setting their start addresses in the kernel and by 2668 * creating a corresponding e820 entry. We need 4 pages before the BIOS, 2669 * so this value allows up to 16M BIOSes. 2670 */ 2671 identity_base = 0xfeffc000; 2672 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); 2673 if (ret < 0) { 2674 return ret; 2675 } 2676 2677 /* Set TSS base one page after EPT identity map. */ 2678 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); 2679 if (ret < 0) { 2680 return ret; 2681 } 2682 2683 /* Tell fw_cfg to notify the BIOS to reserve the range. */ 2684 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); 2685 if (ret < 0) { 2686 fprintf(stderr, "e820_add_entry() table is full\n"); 2687 return ret; 2688 } 2689 2690 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort); 2691 if (shadow_mem != -1) { 2692 shadow_mem /= 4096; 2693 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); 2694 if (ret < 0) { 2695 return ret; 2696 } 2697 } 2698 2699 if (kvm_check_extension(s, KVM_CAP_X86_SMM) && 2700 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) && 2701 x86_machine_is_smm_enabled(X86_MACHINE(ms))) { 2702 smram_machine_done.notify = register_smram_listener; 2703 qemu_add_machine_init_done_notifier(&smram_machine_done); 2704 } 2705 2706 if (enable_cpu_pm) { 2707 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS); 2708 /* Work around for kernel header with a typo. TODO: fix header and drop. */ 2709 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT) 2710 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL 2711 #endif 2712 if (disable_exits) { 2713 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT | 2714 KVM_X86_DISABLE_EXITS_HLT | 2715 KVM_X86_DISABLE_EXITS_PAUSE | 2716 KVM_X86_DISABLE_EXITS_CSTATE); 2717 } 2718 2719 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0, 2720 disable_exits); 2721 if (ret < 0) { 2722 error_report("kvm: guest stopping CPU not supported: %s", 2723 strerror(-ret)); 2724 } 2725 } 2726 2727 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) { 2728 X86MachineState *x86ms = X86_MACHINE(ms); 2729 2730 if (x86ms->bus_lock_ratelimit > 0) { 2731 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT); 2732 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) { 2733 error_report("kvm: bus lock detection unsupported"); 2734 return -ENOTSUP; 2735 } 2736 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0, 2737 KVM_BUS_LOCK_DETECTION_EXIT); 2738 if (ret < 0) { 2739 error_report("kvm: Failed to enable bus lock detection cap: %s", 2740 strerror(-ret)); 2741 return ret; 2742 } 2743 ratelimit_init(&bus_lock_ratelimit_ctrl); 2744 ratelimit_set_speed(&bus_lock_ratelimit_ctrl, 2745 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME); 2746 } 2747 } 2748 2749 if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE && 2750 kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) { 2751 uint64_t notify_window_flags = 2752 ((uint64_t)s->notify_window << 32) | 2753 KVM_X86_NOTIFY_VMEXIT_ENABLED | 2754 KVM_X86_NOTIFY_VMEXIT_USER; 2755 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0, 2756 notify_window_flags); 2757 if (ret < 0) { 2758 error_report("kvm: Failed to enable notify vmexit cap: %s", 2759 strerror(-ret)); 2760 return ret; 2761 } 2762 } 2763 if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) { 2764 bool r; 2765 2766 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0, 2767 KVM_MSR_EXIT_REASON_FILTER); 2768 if (ret) { 2769 error_report("Could not enable user space MSRs: %s", 2770 strerror(-ret)); 2771 exit(1); 2772 } 2773 2774 r = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT, 2775 kvm_rdmsr_core_thread_count, NULL); 2776 if (!r) { 2777 error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s", 2778 strerror(-ret)); 2779 exit(1); 2780 } 2781 } 2782 2783 return 0; 2784 } 2785 2786 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 2787 { 2788 lhs->selector = rhs->selector; 2789 lhs->base = rhs->base; 2790 lhs->limit = rhs->limit; 2791 lhs->type = 3; 2792 lhs->present = 1; 2793 lhs->dpl = 3; 2794 lhs->db = 0; 2795 lhs->s = 1; 2796 lhs->l = 0; 2797 lhs->g = 0; 2798 lhs->avl = 0; 2799 lhs->unusable = 0; 2800 } 2801 2802 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 2803 { 2804 unsigned flags = rhs->flags; 2805 lhs->selector = rhs->selector; 2806 lhs->base = rhs->base; 2807 lhs->limit = rhs->limit; 2808 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; 2809 lhs->present = (flags & DESC_P_MASK) != 0; 2810 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; 2811 lhs->db = (flags >> DESC_B_SHIFT) & 1; 2812 lhs->s = (flags & DESC_S_MASK) != 0; 2813 lhs->l = (flags >> DESC_L_SHIFT) & 1; 2814 lhs->g = (flags & DESC_G_MASK) != 0; 2815 lhs->avl = (flags & DESC_AVL_MASK) != 0; 2816 lhs->unusable = !lhs->present; 2817 lhs->padding = 0; 2818 } 2819 2820 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) 2821 { 2822 lhs->selector = rhs->selector; 2823 lhs->base = rhs->base; 2824 lhs->limit = rhs->limit; 2825 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | 2826 ((rhs->present && !rhs->unusable) * DESC_P_MASK) | 2827 (rhs->dpl << DESC_DPL_SHIFT) | 2828 (rhs->db << DESC_B_SHIFT) | 2829 (rhs->s * DESC_S_MASK) | 2830 (rhs->l << DESC_L_SHIFT) | 2831 (rhs->g * DESC_G_MASK) | 2832 (rhs->avl * DESC_AVL_MASK); 2833 } 2834 2835 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) 2836 { 2837 if (set) { 2838 *kvm_reg = *qemu_reg; 2839 } else { 2840 *qemu_reg = *kvm_reg; 2841 } 2842 } 2843 2844 static int kvm_getput_regs(X86CPU *cpu, int set) 2845 { 2846 CPUX86State *env = &cpu->env; 2847 struct kvm_regs regs; 2848 int ret = 0; 2849 2850 if (!set) { 2851 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); 2852 if (ret < 0) { 2853 return ret; 2854 } 2855 } 2856 2857 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); 2858 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); 2859 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); 2860 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); 2861 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); 2862 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); 2863 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); 2864 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); 2865 #ifdef TARGET_X86_64 2866 kvm_getput_reg(®s.r8, &env->regs[8], set); 2867 kvm_getput_reg(®s.r9, &env->regs[9], set); 2868 kvm_getput_reg(®s.r10, &env->regs[10], set); 2869 kvm_getput_reg(®s.r11, &env->regs[11], set); 2870 kvm_getput_reg(®s.r12, &env->regs[12], set); 2871 kvm_getput_reg(®s.r13, &env->regs[13], set); 2872 kvm_getput_reg(®s.r14, &env->regs[14], set); 2873 kvm_getput_reg(®s.r15, &env->regs[15], set); 2874 #endif 2875 2876 kvm_getput_reg(®s.rflags, &env->eflags, set); 2877 kvm_getput_reg(®s.rip, &env->eip, set); 2878 2879 if (set) { 2880 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); 2881 } 2882 2883 return ret; 2884 } 2885 2886 static int kvm_put_xsave(X86CPU *cpu) 2887 { 2888 CPUX86State *env = &cpu->env; 2889 void *xsave = env->xsave_buf; 2890 2891 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len); 2892 2893 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); 2894 } 2895 2896 static int kvm_put_xcrs(X86CPU *cpu) 2897 { 2898 CPUX86State *env = &cpu->env; 2899 struct kvm_xcrs xcrs = {}; 2900 2901 if (!has_xcrs) { 2902 return 0; 2903 } 2904 2905 xcrs.nr_xcrs = 1; 2906 xcrs.flags = 0; 2907 xcrs.xcrs[0].xcr = 0; 2908 xcrs.xcrs[0].value = env->xcr0; 2909 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); 2910 } 2911 2912 static int kvm_put_sregs(X86CPU *cpu) 2913 { 2914 CPUX86State *env = &cpu->env; 2915 struct kvm_sregs sregs; 2916 2917 /* 2918 * The interrupt_bitmap is ignored because KVM_SET_SREGS is 2919 * always followed by KVM_SET_VCPU_EVENTS. 2920 */ 2921 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); 2922 2923 if ((env->eflags & VM_MASK)) { 2924 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 2925 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 2926 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 2927 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 2928 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 2929 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 2930 } else { 2931 set_seg(&sregs.cs, &env->segs[R_CS]); 2932 set_seg(&sregs.ds, &env->segs[R_DS]); 2933 set_seg(&sregs.es, &env->segs[R_ES]); 2934 set_seg(&sregs.fs, &env->segs[R_FS]); 2935 set_seg(&sregs.gs, &env->segs[R_GS]); 2936 set_seg(&sregs.ss, &env->segs[R_SS]); 2937 } 2938 2939 set_seg(&sregs.tr, &env->tr); 2940 set_seg(&sregs.ldt, &env->ldt); 2941 2942 sregs.idt.limit = env->idt.limit; 2943 sregs.idt.base = env->idt.base; 2944 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 2945 sregs.gdt.limit = env->gdt.limit; 2946 sregs.gdt.base = env->gdt.base; 2947 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 2948 2949 sregs.cr0 = env->cr[0]; 2950 sregs.cr2 = env->cr[2]; 2951 sregs.cr3 = env->cr[3]; 2952 sregs.cr4 = env->cr[4]; 2953 2954 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 2955 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 2956 2957 sregs.efer = env->efer; 2958 2959 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); 2960 } 2961 2962 static int kvm_put_sregs2(X86CPU *cpu) 2963 { 2964 CPUX86State *env = &cpu->env; 2965 struct kvm_sregs2 sregs; 2966 int i; 2967 2968 sregs.flags = 0; 2969 2970 if ((env->eflags & VM_MASK)) { 2971 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 2972 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 2973 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 2974 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 2975 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 2976 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 2977 } else { 2978 set_seg(&sregs.cs, &env->segs[R_CS]); 2979 set_seg(&sregs.ds, &env->segs[R_DS]); 2980 set_seg(&sregs.es, &env->segs[R_ES]); 2981 set_seg(&sregs.fs, &env->segs[R_FS]); 2982 set_seg(&sregs.gs, &env->segs[R_GS]); 2983 set_seg(&sregs.ss, &env->segs[R_SS]); 2984 } 2985 2986 set_seg(&sregs.tr, &env->tr); 2987 set_seg(&sregs.ldt, &env->ldt); 2988 2989 sregs.idt.limit = env->idt.limit; 2990 sregs.idt.base = env->idt.base; 2991 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 2992 sregs.gdt.limit = env->gdt.limit; 2993 sregs.gdt.base = env->gdt.base; 2994 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 2995 2996 sregs.cr0 = env->cr[0]; 2997 sregs.cr2 = env->cr[2]; 2998 sregs.cr3 = env->cr[3]; 2999 sregs.cr4 = env->cr[4]; 3000 3001 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 3002 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 3003 3004 sregs.efer = env->efer; 3005 3006 if (env->pdptrs_valid) { 3007 for (i = 0; i < 4; i++) { 3008 sregs.pdptrs[i] = env->pdptrs[i]; 3009 } 3010 sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 3011 } 3012 3013 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs); 3014 } 3015 3016 3017 static void kvm_msr_buf_reset(X86CPU *cpu) 3018 { 3019 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); 3020 } 3021 3022 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) 3023 { 3024 struct kvm_msrs *msrs = cpu->kvm_msr_buf; 3025 void *limit = ((void *)msrs) + MSR_BUF_SIZE; 3026 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; 3027 3028 assert((void *)(entry + 1) <= limit); 3029 3030 entry->index = index; 3031 entry->reserved = 0; 3032 entry->data = value; 3033 msrs->nmsrs++; 3034 } 3035 3036 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) 3037 { 3038 kvm_msr_buf_reset(cpu); 3039 kvm_msr_entry_add(cpu, index, value); 3040 3041 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 3042 } 3043 3044 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value) 3045 { 3046 int ret; 3047 struct { 3048 struct kvm_msrs info; 3049 struct kvm_msr_entry entries[1]; 3050 } msr_data = { 3051 .info.nmsrs = 1, 3052 .entries[0].index = index, 3053 }; 3054 3055 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); 3056 if (ret < 0) { 3057 return ret; 3058 } 3059 assert(ret == 1); 3060 *value = msr_data.entries[0].data; 3061 return ret; 3062 } 3063 void kvm_put_apicbase(X86CPU *cpu, uint64_t value) 3064 { 3065 int ret; 3066 3067 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); 3068 assert(ret == 1); 3069 } 3070 3071 static int kvm_put_tscdeadline_msr(X86CPU *cpu) 3072 { 3073 CPUX86State *env = &cpu->env; 3074 int ret; 3075 3076 if (!has_msr_tsc_deadline) { 3077 return 0; 3078 } 3079 3080 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); 3081 if (ret < 0) { 3082 return ret; 3083 } 3084 3085 assert(ret == 1); 3086 return 0; 3087 } 3088 3089 /* 3090 * Provide a separate write service for the feature control MSR in order to 3091 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done 3092 * before writing any other state because forcibly leaving nested mode 3093 * invalidates the VCPU state. 3094 */ 3095 static int kvm_put_msr_feature_control(X86CPU *cpu) 3096 { 3097 int ret; 3098 3099 if (!has_msr_feature_control) { 3100 return 0; 3101 } 3102 3103 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, 3104 cpu->env.msr_ia32_feature_control); 3105 if (ret < 0) { 3106 return ret; 3107 } 3108 3109 assert(ret == 1); 3110 return 0; 3111 } 3112 3113 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features) 3114 { 3115 uint32_t default1, can_be_one, can_be_zero; 3116 uint32_t must_be_one; 3117 3118 switch (index) { 3119 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 3120 default1 = 0x00000016; 3121 break; 3122 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 3123 default1 = 0x0401e172; 3124 break; 3125 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 3126 default1 = 0x000011ff; 3127 break; 3128 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 3129 default1 = 0x00036dff; 3130 break; 3131 case MSR_IA32_VMX_PROCBASED_CTLS2: 3132 default1 = 0; 3133 break; 3134 default: 3135 abort(); 3136 } 3137 3138 /* If a feature bit is set, the control can be either set or clear. 3139 * Otherwise the value is limited to either 0 or 1 by default1. 3140 */ 3141 can_be_one = features | default1; 3142 can_be_zero = features | ~default1; 3143 must_be_one = ~can_be_zero; 3144 3145 /* 3146 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one). 3147 * Bit 32:63 -> 1 if the control bit can be one. 3148 */ 3149 return must_be_one | (((uint64_t)can_be_one) << 32); 3150 } 3151 3152 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f) 3153 { 3154 uint64_t kvm_vmx_basic = 3155 kvm_arch_get_supported_msr_feature(kvm_state, 3156 MSR_IA32_VMX_BASIC); 3157 3158 if (!kvm_vmx_basic) { 3159 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0), 3160 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail. 3161 */ 3162 return; 3163 } 3164 3165 uint64_t kvm_vmx_misc = 3166 kvm_arch_get_supported_msr_feature(kvm_state, 3167 MSR_IA32_VMX_MISC); 3168 uint64_t kvm_vmx_ept_vpid = 3169 kvm_arch_get_supported_msr_feature(kvm_state, 3170 MSR_IA32_VMX_EPT_VPID_CAP); 3171 3172 /* 3173 * If the guest is 64-bit, a value of 1 is allowed for the host address 3174 * space size vmexit control. 3175 */ 3176 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM 3177 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0; 3178 3179 /* 3180 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should 3181 * not change them for backwards compatibility. 3182 */ 3183 uint64_t fixed_vmx_basic = kvm_vmx_basic & 3184 (MSR_VMX_BASIC_VMCS_REVISION_MASK | 3185 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK | 3186 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK); 3187 3188 /* 3189 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can 3190 * change in the future but are always zero for now, clear them to be 3191 * future proof. Bits 32-63 in theory could change, though KVM does 3192 * not support dual-monitor treatment and probably never will; mask 3193 * them out as well. 3194 */ 3195 uint64_t fixed_vmx_misc = kvm_vmx_misc & 3196 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK | 3197 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK); 3198 3199 /* 3200 * EPT memory types should not change either, so we do not bother 3201 * adding features for them. 3202 */ 3203 uint64_t fixed_vmx_ept_mask = 3204 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ? 3205 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0); 3206 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask; 3207 3208 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 3209 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 3210 f[FEAT_VMX_PROCBASED_CTLS])); 3211 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS, 3212 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS, 3213 f[FEAT_VMX_PINBASED_CTLS])); 3214 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS, 3215 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS, 3216 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit); 3217 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS, 3218 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS, 3219 f[FEAT_VMX_ENTRY_CTLS])); 3220 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2, 3221 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2, 3222 f[FEAT_VMX_SECONDARY_CTLS])); 3223 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP, 3224 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid); 3225 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC, 3226 f[FEAT_VMX_BASIC] | fixed_vmx_basic); 3227 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC, 3228 f[FEAT_VMX_MISC] | fixed_vmx_misc); 3229 if (has_msr_vmx_vmfunc) { 3230 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]); 3231 } 3232 3233 /* 3234 * Just to be safe, write these with constant values. The CRn_FIXED1 3235 * MSRs are generated by KVM based on the vCPU's CPUID. 3236 */ 3237 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0, 3238 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK); 3239 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0, 3240 CR4_VMXE_MASK); 3241 3242 if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) { 3243 /* TSC multiplier (0x2032). */ 3244 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32); 3245 } else { 3246 /* Preemption timer (0x482E). */ 3247 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E); 3248 } 3249 } 3250 3251 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f) 3252 { 3253 uint64_t kvm_perf_cap = 3254 kvm_arch_get_supported_msr_feature(kvm_state, 3255 MSR_IA32_PERF_CAPABILITIES); 3256 3257 if (kvm_perf_cap) { 3258 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES, 3259 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]); 3260 } 3261 } 3262 3263 static int kvm_buf_set_msrs(X86CPU *cpu) 3264 { 3265 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 3266 if (ret < 0) { 3267 return ret; 3268 } 3269 3270 if (ret < cpu->kvm_msr_buf->nmsrs) { 3271 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 3272 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, 3273 (uint32_t)e->index, (uint64_t)e->data); 3274 } 3275 3276 assert(ret == cpu->kvm_msr_buf->nmsrs); 3277 return 0; 3278 } 3279 3280 static void kvm_init_msrs(X86CPU *cpu) 3281 { 3282 CPUX86State *env = &cpu->env; 3283 3284 kvm_msr_buf_reset(cpu); 3285 if (has_msr_arch_capabs) { 3286 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES, 3287 env->features[FEAT_ARCH_CAPABILITIES]); 3288 } 3289 3290 if (has_msr_core_capabs) { 3291 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY, 3292 env->features[FEAT_CORE_CAPABILITY]); 3293 } 3294 3295 if (has_msr_perf_capabs && cpu->enable_pmu) { 3296 kvm_msr_entry_add_perf(cpu, env->features); 3297 } 3298 3299 if (has_msr_ucode_rev) { 3300 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev); 3301 } 3302 3303 /* 3304 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but 3305 * all kernels with MSR features should have them. 3306 */ 3307 if (kvm_feature_msrs && cpu_has_vmx(env)) { 3308 kvm_msr_entry_add_vmx(cpu, env->features); 3309 } 3310 3311 assert(kvm_buf_set_msrs(cpu) == 0); 3312 } 3313 3314 static int kvm_put_msrs(X86CPU *cpu, int level) 3315 { 3316 CPUX86State *env = &cpu->env; 3317 int i; 3318 3319 kvm_msr_buf_reset(cpu); 3320 3321 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); 3322 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); 3323 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); 3324 kvm_msr_entry_add(cpu, MSR_PAT, env->pat); 3325 if (has_msr_star) { 3326 kvm_msr_entry_add(cpu, MSR_STAR, env->star); 3327 } 3328 if (has_msr_hsave_pa) { 3329 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); 3330 } 3331 if (has_msr_tsc_aux) { 3332 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); 3333 } 3334 if (has_msr_tsc_adjust) { 3335 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); 3336 } 3337 if (has_msr_misc_enable) { 3338 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 3339 env->msr_ia32_misc_enable); 3340 } 3341 if (has_msr_smbase) { 3342 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); 3343 } 3344 if (has_msr_smi_count) { 3345 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count); 3346 } 3347 if (has_msr_pkrs) { 3348 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs); 3349 } 3350 if (has_msr_bndcfgs) { 3351 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); 3352 } 3353 if (has_msr_xss) { 3354 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); 3355 } 3356 if (has_msr_umwait) { 3357 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait); 3358 } 3359 if (has_msr_spec_ctrl) { 3360 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl); 3361 } 3362 if (has_tsc_scale_msr) { 3363 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr); 3364 } 3365 3366 if (has_msr_tsx_ctrl) { 3367 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl); 3368 } 3369 if (has_msr_virt_ssbd) { 3370 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd); 3371 } 3372 3373 #ifdef TARGET_X86_64 3374 if (lm_capable_kernel) { 3375 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); 3376 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); 3377 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); 3378 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); 3379 } 3380 #endif 3381 3382 /* 3383 * The following MSRs have side effects on the guest or are too heavy 3384 * for normal writeback. Limit them to reset or full state updates. 3385 */ 3386 if (level >= KVM_PUT_RESET_STATE) { 3387 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); 3388 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); 3389 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); 3390 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { 3391 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr); 3392 } 3393 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { 3394 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); 3395 } 3396 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { 3397 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); 3398 } 3399 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { 3400 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); 3401 } 3402 3403 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { 3404 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr); 3405 } 3406 3407 if (has_architectural_pmu_version > 0) { 3408 if (has_architectural_pmu_version > 1) { 3409 /* Stop the counter. */ 3410 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 3411 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 3412 } 3413 3414 /* Set the counter values. */ 3415 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 3416 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 3417 env->msr_fixed_counters[i]); 3418 } 3419 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 3420 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 3421 env->msr_gp_counters[i]); 3422 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 3423 env->msr_gp_evtsel[i]); 3424 } 3425 if (has_architectural_pmu_version > 1) { 3426 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 3427 env->msr_global_status); 3428 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 3429 env->msr_global_ovf_ctrl); 3430 3431 /* Now start the PMU. */ 3432 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 3433 env->msr_fixed_ctr_ctrl); 3434 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 3435 env->msr_global_ctrl); 3436 } 3437 } 3438 /* 3439 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add, 3440 * only sync them to KVM on the first cpu 3441 */ 3442 if (current_cpu == first_cpu) { 3443 if (has_msr_hv_hypercall) { 3444 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 3445 env->msr_hv_guest_os_id); 3446 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 3447 env->msr_hv_hypercall); 3448 } 3449 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 3450 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 3451 env->msr_hv_tsc); 3452 } 3453 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 3454 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 3455 env->msr_hv_reenlightenment_control); 3456 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 3457 env->msr_hv_tsc_emulation_control); 3458 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 3459 env->msr_hv_tsc_emulation_status); 3460 } 3461 #ifdef CONFIG_SYNDBG 3462 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) && 3463 has_msr_hv_syndbg_options) { 3464 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 3465 hyperv_syndbg_query_options()); 3466 } 3467 #endif 3468 } 3469 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 3470 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 3471 env->msr_hv_vapic); 3472 } 3473 if (has_msr_hv_crash) { 3474 int j; 3475 3476 for (j = 0; j < HV_CRASH_PARAMS; j++) 3477 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 3478 env->msr_hv_crash_params[j]); 3479 3480 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY); 3481 } 3482 if (has_msr_hv_runtime) { 3483 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); 3484 } 3485 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) 3486 && hv_vpindex_settable) { 3487 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX, 3488 hyperv_vp_index(CPU(cpu))); 3489 } 3490 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 3491 int j; 3492 3493 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION); 3494 3495 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 3496 env->msr_hv_synic_control); 3497 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 3498 env->msr_hv_synic_evt_page); 3499 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 3500 env->msr_hv_synic_msg_page); 3501 3502 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { 3503 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, 3504 env->msr_hv_synic_sint[j]); 3505 } 3506 } 3507 if (has_msr_hv_stimer) { 3508 int j; 3509 3510 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { 3511 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, 3512 env->msr_hv_stimer_config[j]); 3513 } 3514 3515 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { 3516 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, 3517 env->msr_hv_stimer_count[j]); 3518 } 3519 } 3520 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 3521 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); 3522 3523 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); 3524 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); 3525 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); 3526 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); 3527 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); 3528 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); 3529 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); 3530 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); 3531 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); 3532 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); 3533 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); 3534 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); 3535 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 3536 /* The CPU GPs if we write to a bit above the physical limit of 3537 * the host CPU (and KVM emulates that) 3538 */ 3539 uint64_t mask = env->mtrr_var[i].mask; 3540 mask &= phys_mask; 3541 3542 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 3543 env->mtrr_var[i].base); 3544 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); 3545 } 3546 } 3547 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 3548 int addr_num = kvm_arch_get_supported_cpuid(kvm_state, 3549 0x14, 1, R_EAX) & 0x7; 3550 3551 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 3552 env->msr_rtit_ctrl); 3553 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 3554 env->msr_rtit_status); 3555 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 3556 env->msr_rtit_output_base); 3557 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 3558 env->msr_rtit_output_mask); 3559 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 3560 env->msr_rtit_cr3_match); 3561 for (i = 0; i < addr_num; i++) { 3562 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 3563 env->msr_rtit_addrs[i]); 3564 } 3565 } 3566 3567 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 3568 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 3569 env->msr_ia32_sgxlepubkeyhash[0]); 3570 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 3571 env->msr_ia32_sgxlepubkeyhash[1]); 3572 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 3573 env->msr_ia32_sgxlepubkeyhash[2]); 3574 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 3575 env->msr_ia32_sgxlepubkeyhash[3]); 3576 } 3577 3578 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) { 3579 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 3580 env->msr_xfd); 3581 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 3582 env->msr_xfd_err); 3583 } 3584 3585 if (kvm_enabled() && cpu->enable_pmu && 3586 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) { 3587 uint64_t depth; 3588 int ret; 3589 3590 /* 3591 * Only migrate Arch LBR states when the host Arch LBR depth 3592 * equals that of source guest's, this is to avoid mismatch 3593 * of guest/host config for the msr hence avoid unexpected 3594 * misbehavior. 3595 */ 3596 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth); 3597 3598 if (ret == 1 && !!depth && depth == env->msr_lbr_depth) { 3599 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl); 3600 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth); 3601 3602 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) { 3603 if (!env->lbr_records[i].from) { 3604 continue; 3605 } 3606 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 3607 env->lbr_records[i].from); 3608 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 3609 env->lbr_records[i].to); 3610 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 3611 env->lbr_records[i].info); 3612 } 3613 } 3614 } 3615 3616 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see 3617 * kvm_put_msr_feature_control. */ 3618 } 3619 3620 if (env->mcg_cap) { 3621 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); 3622 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); 3623 if (has_msr_mcg_ext_ctl) { 3624 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); 3625 } 3626 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 3627 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); 3628 } 3629 } 3630 3631 return kvm_buf_set_msrs(cpu); 3632 } 3633 3634 3635 static int kvm_get_xsave(X86CPU *cpu) 3636 { 3637 CPUX86State *env = &cpu->env; 3638 void *xsave = env->xsave_buf; 3639 int type, ret; 3640 3641 type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE; 3642 ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave); 3643 if (ret < 0) { 3644 return ret; 3645 } 3646 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len); 3647 3648 return 0; 3649 } 3650 3651 static int kvm_get_xcrs(X86CPU *cpu) 3652 { 3653 CPUX86State *env = &cpu->env; 3654 int i, ret; 3655 struct kvm_xcrs xcrs; 3656 3657 if (!has_xcrs) { 3658 return 0; 3659 } 3660 3661 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); 3662 if (ret < 0) { 3663 return ret; 3664 } 3665 3666 for (i = 0; i < xcrs.nr_xcrs; i++) { 3667 /* Only support xcr0 now */ 3668 if (xcrs.xcrs[i].xcr == 0) { 3669 env->xcr0 = xcrs.xcrs[i].value; 3670 break; 3671 } 3672 } 3673 return 0; 3674 } 3675 3676 static int kvm_get_sregs(X86CPU *cpu) 3677 { 3678 CPUX86State *env = &cpu->env; 3679 struct kvm_sregs sregs; 3680 int ret; 3681 3682 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); 3683 if (ret < 0) { 3684 return ret; 3685 } 3686 3687 /* 3688 * The interrupt_bitmap is ignored because KVM_GET_SREGS is 3689 * always preceded by KVM_GET_VCPU_EVENTS. 3690 */ 3691 3692 get_seg(&env->segs[R_CS], &sregs.cs); 3693 get_seg(&env->segs[R_DS], &sregs.ds); 3694 get_seg(&env->segs[R_ES], &sregs.es); 3695 get_seg(&env->segs[R_FS], &sregs.fs); 3696 get_seg(&env->segs[R_GS], &sregs.gs); 3697 get_seg(&env->segs[R_SS], &sregs.ss); 3698 3699 get_seg(&env->tr, &sregs.tr); 3700 get_seg(&env->ldt, &sregs.ldt); 3701 3702 env->idt.limit = sregs.idt.limit; 3703 env->idt.base = sregs.idt.base; 3704 env->gdt.limit = sregs.gdt.limit; 3705 env->gdt.base = sregs.gdt.base; 3706 3707 env->cr[0] = sregs.cr0; 3708 env->cr[2] = sregs.cr2; 3709 env->cr[3] = sregs.cr3; 3710 env->cr[4] = sregs.cr4; 3711 3712 env->efer = sregs.efer; 3713 if (sev_es_enabled() && env->efer & MSR_EFER_LME && 3714 env->cr[0] & CR0_PG_MASK) { 3715 env->efer |= MSR_EFER_LMA; 3716 } 3717 3718 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 3719 x86_update_hflags(env); 3720 3721 return 0; 3722 } 3723 3724 static int kvm_get_sregs2(X86CPU *cpu) 3725 { 3726 CPUX86State *env = &cpu->env; 3727 struct kvm_sregs2 sregs; 3728 int i, ret; 3729 3730 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs); 3731 if (ret < 0) { 3732 return ret; 3733 } 3734 3735 get_seg(&env->segs[R_CS], &sregs.cs); 3736 get_seg(&env->segs[R_DS], &sregs.ds); 3737 get_seg(&env->segs[R_ES], &sregs.es); 3738 get_seg(&env->segs[R_FS], &sregs.fs); 3739 get_seg(&env->segs[R_GS], &sregs.gs); 3740 get_seg(&env->segs[R_SS], &sregs.ss); 3741 3742 get_seg(&env->tr, &sregs.tr); 3743 get_seg(&env->ldt, &sregs.ldt); 3744 3745 env->idt.limit = sregs.idt.limit; 3746 env->idt.base = sregs.idt.base; 3747 env->gdt.limit = sregs.gdt.limit; 3748 env->gdt.base = sregs.gdt.base; 3749 3750 env->cr[0] = sregs.cr0; 3751 env->cr[2] = sregs.cr2; 3752 env->cr[3] = sregs.cr3; 3753 env->cr[4] = sregs.cr4; 3754 3755 env->efer = sregs.efer; 3756 if (sev_es_enabled() && env->efer & MSR_EFER_LME && 3757 env->cr[0] & CR0_PG_MASK) { 3758 env->efer |= MSR_EFER_LMA; 3759 } 3760 3761 env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 3762 3763 if (env->pdptrs_valid) { 3764 for (i = 0; i < 4; i++) { 3765 env->pdptrs[i] = sregs.pdptrs[i]; 3766 } 3767 } 3768 3769 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 3770 x86_update_hflags(env); 3771 3772 return 0; 3773 } 3774 3775 static int kvm_get_msrs(X86CPU *cpu) 3776 { 3777 CPUX86State *env = &cpu->env; 3778 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; 3779 int ret, i; 3780 uint64_t mtrr_top_bits; 3781 3782 kvm_msr_buf_reset(cpu); 3783 3784 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); 3785 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); 3786 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); 3787 kvm_msr_entry_add(cpu, MSR_PAT, 0); 3788 if (has_msr_star) { 3789 kvm_msr_entry_add(cpu, MSR_STAR, 0); 3790 } 3791 if (has_msr_hsave_pa) { 3792 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); 3793 } 3794 if (has_msr_tsc_aux) { 3795 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); 3796 } 3797 if (has_msr_tsc_adjust) { 3798 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); 3799 } 3800 if (has_msr_tsc_deadline) { 3801 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); 3802 } 3803 if (has_msr_misc_enable) { 3804 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); 3805 } 3806 if (has_msr_smbase) { 3807 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); 3808 } 3809 if (has_msr_smi_count) { 3810 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0); 3811 } 3812 if (has_msr_feature_control) { 3813 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); 3814 } 3815 if (has_msr_pkrs) { 3816 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0); 3817 } 3818 if (has_msr_bndcfgs) { 3819 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); 3820 } 3821 if (has_msr_xss) { 3822 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); 3823 } 3824 if (has_msr_umwait) { 3825 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0); 3826 } 3827 if (has_msr_spec_ctrl) { 3828 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0); 3829 } 3830 if (has_tsc_scale_msr) { 3831 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0); 3832 } 3833 3834 if (has_msr_tsx_ctrl) { 3835 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0); 3836 } 3837 if (has_msr_virt_ssbd) { 3838 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0); 3839 } 3840 if (!env->tsc_valid) { 3841 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); 3842 env->tsc_valid = !runstate_is_running(); 3843 } 3844 3845 #ifdef TARGET_X86_64 3846 if (lm_capable_kernel) { 3847 kvm_msr_entry_add(cpu, MSR_CSTAR, 0); 3848 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); 3849 kvm_msr_entry_add(cpu, MSR_FMASK, 0); 3850 kvm_msr_entry_add(cpu, MSR_LSTAR, 0); 3851 } 3852 #endif 3853 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); 3854 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); 3855 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { 3856 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0); 3857 } 3858 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { 3859 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); 3860 } 3861 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { 3862 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); 3863 } 3864 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { 3865 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); 3866 } 3867 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { 3868 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1); 3869 } 3870 if (has_architectural_pmu_version > 0) { 3871 if (has_architectural_pmu_version > 1) { 3872 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 3873 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 3874 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); 3875 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); 3876 } 3877 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 3878 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); 3879 } 3880 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 3881 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); 3882 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); 3883 } 3884 } 3885 3886 if (env->mcg_cap) { 3887 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); 3888 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); 3889 if (has_msr_mcg_ext_ctl) { 3890 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); 3891 } 3892 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 3893 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); 3894 } 3895 } 3896 3897 if (has_msr_hv_hypercall) { 3898 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); 3899 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); 3900 } 3901 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 3902 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); 3903 } 3904 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 3905 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); 3906 } 3907 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 3908 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0); 3909 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0); 3910 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0); 3911 } 3912 if (has_msr_hv_syndbg_options) { 3913 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0); 3914 } 3915 if (has_msr_hv_crash) { 3916 int j; 3917 3918 for (j = 0; j < HV_CRASH_PARAMS; j++) { 3919 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); 3920 } 3921 } 3922 if (has_msr_hv_runtime) { 3923 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); 3924 } 3925 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 3926 uint32_t msr; 3927 3928 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); 3929 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); 3930 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); 3931 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { 3932 kvm_msr_entry_add(cpu, msr, 0); 3933 } 3934 } 3935 if (has_msr_hv_stimer) { 3936 uint32_t msr; 3937 3938 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; 3939 msr++) { 3940 kvm_msr_entry_add(cpu, msr, 0); 3941 } 3942 } 3943 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 3944 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); 3945 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); 3946 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); 3947 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); 3948 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); 3949 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); 3950 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); 3951 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); 3952 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); 3953 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); 3954 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); 3955 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); 3956 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 3957 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); 3958 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); 3959 } 3960 } 3961 3962 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 3963 int addr_num = 3964 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7; 3965 3966 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0); 3967 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0); 3968 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0); 3969 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0); 3970 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0); 3971 for (i = 0; i < addr_num; i++) { 3972 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0); 3973 } 3974 } 3975 3976 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 3977 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0); 3978 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0); 3979 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0); 3980 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0); 3981 } 3982 3983 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) { 3984 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0); 3985 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0); 3986 } 3987 3988 if (kvm_enabled() && cpu->enable_pmu && 3989 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) { 3990 uint64_t depth; 3991 3992 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth); 3993 if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) { 3994 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0); 3995 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0); 3996 3997 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) { 3998 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0); 3999 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0); 4000 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0); 4001 } 4002 } 4003 } 4004 4005 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); 4006 if (ret < 0) { 4007 return ret; 4008 } 4009 4010 if (ret < cpu->kvm_msr_buf->nmsrs) { 4011 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 4012 error_report("error: failed to get MSR 0x%" PRIx32, 4013 (uint32_t)e->index); 4014 } 4015 4016 assert(ret == cpu->kvm_msr_buf->nmsrs); 4017 /* 4018 * MTRR masks: Each mask consists of 5 parts 4019 * a 10..0: must be zero 4020 * b 11 : valid bit 4021 * c n-1.12: actual mask bits 4022 * d 51..n: reserved must be zero 4023 * e 63.52: reserved must be zero 4024 * 4025 * 'n' is the number of physical bits supported by the CPU and is 4026 * apparently always <= 52. We know our 'n' but don't know what 4027 * the destinations 'n' is; it might be smaller, in which case 4028 * it masks (c) on loading. It might be larger, in which case 4029 * we fill 'd' so that d..c is consistent irrespetive of the 'n' 4030 * we're migrating to. 4031 */ 4032 4033 if (cpu->fill_mtrr_mask) { 4034 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); 4035 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); 4036 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); 4037 } else { 4038 mtrr_top_bits = 0; 4039 } 4040 4041 for (i = 0; i < ret; i++) { 4042 uint32_t index = msrs[i].index; 4043 switch (index) { 4044 case MSR_IA32_SYSENTER_CS: 4045 env->sysenter_cs = msrs[i].data; 4046 break; 4047 case MSR_IA32_SYSENTER_ESP: 4048 env->sysenter_esp = msrs[i].data; 4049 break; 4050 case MSR_IA32_SYSENTER_EIP: 4051 env->sysenter_eip = msrs[i].data; 4052 break; 4053 case MSR_PAT: 4054 env->pat = msrs[i].data; 4055 break; 4056 case MSR_STAR: 4057 env->star = msrs[i].data; 4058 break; 4059 #ifdef TARGET_X86_64 4060 case MSR_CSTAR: 4061 env->cstar = msrs[i].data; 4062 break; 4063 case MSR_KERNELGSBASE: 4064 env->kernelgsbase = msrs[i].data; 4065 break; 4066 case MSR_FMASK: 4067 env->fmask = msrs[i].data; 4068 break; 4069 case MSR_LSTAR: 4070 env->lstar = msrs[i].data; 4071 break; 4072 #endif 4073 case MSR_IA32_TSC: 4074 env->tsc = msrs[i].data; 4075 break; 4076 case MSR_TSC_AUX: 4077 env->tsc_aux = msrs[i].data; 4078 break; 4079 case MSR_TSC_ADJUST: 4080 env->tsc_adjust = msrs[i].data; 4081 break; 4082 case MSR_IA32_TSCDEADLINE: 4083 env->tsc_deadline = msrs[i].data; 4084 break; 4085 case MSR_VM_HSAVE_PA: 4086 env->vm_hsave = msrs[i].data; 4087 break; 4088 case MSR_KVM_SYSTEM_TIME: 4089 env->system_time_msr = msrs[i].data; 4090 break; 4091 case MSR_KVM_WALL_CLOCK: 4092 env->wall_clock_msr = msrs[i].data; 4093 break; 4094 case MSR_MCG_STATUS: 4095 env->mcg_status = msrs[i].data; 4096 break; 4097 case MSR_MCG_CTL: 4098 env->mcg_ctl = msrs[i].data; 4099 break; 4100 case MSR_MCG_EXT_CTL: 4101 env->mcg_ext_ctl = msrs[i].data; 4102 break; 4103 case MSR_IA32_MISC_ENABLE: 4104 env->msr_ia32_misc_enable = msrs[i].data; 4105 break; 4106 case MSR_IA32_SMBASE: 4107 env->smbase = msrs[i].data; 4108 break; 4109 case MSR_SMI_COUNT: 4110 env->msr_smi_count = msrs[i].data; 4111 break; 4112 case MSR_IA32_FEATURE_CONTROL: 4113 env->msr_ia32_feature_control = msrs[i].data; 4114 break; 4115 case MSR_IA32_BNDCFGS: 4116 env->msr_bndcfgs = msrs[i].data; 4117 break; 4118 case MSR_IA32_XSS: 4119 env->xss = msrs[i].data; 4120 break; 4121 case MSR_IA32_UMWAIT_CONTROL: 4122 env->umwait = msrs[i].data; 4123 break; 4124 case MSR_IA32_PKRS: 4125 env->pkrs = msrs[i].data; 4126 break; 4127 default: 4128 if (msrs[i].index >= MSR_MC0_CTL && 4129 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { 4130 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; 4131 } 4132 break; 4133 case MSR_KVM_ASYNC_PF_EN: 4134 env->async_pf_en_msr = msrs[i].data; 4135 break; 4136 case MSR_KVM_ASYNC_PF_INT: 4137 env->async_pf_int_msr = msrs[i].data; 4138 break; 4139 case MSR_KVM_PV_EOI_EN: 4140 env->pv_eoi_en_msr = msrs[i].data; 4141 break; 4142 case MSR_KVM_STEAL_TIME: 4143 env->steal_time_msr = msrs[i].data; 4144 break; 4145 case MSR_KVM_POLL_CONTROL: { 4146 env->poll_control_msr = msrs[i].data; 4147 break; 4148 } 4149 case MSR_CORE_PERF_FIXED_CTR_CTRL: 4150 env->msr_fixed_ctr_ctrl = msrs[i].data; 4151 break; 4152 case MSR_CORE_PERF_GLOBAL_CTRL: 4153 env->msr_global_ctrl = msrs[i].data; 4154 break; 4155 case MSR_CORE_PERF_GLOBAL_STATUS: 4156 env->msr_global_status = msrs[i].data; 4157 break; 4158 case MSR_CORE_PERF_GLOBAL_OVF_CTRL: 4159 env->msr_global_ovf_ctrl = msrs[i].data; 4160 break; 4161 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: 4162 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; 4163 break; 4164 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: 4165 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; 4166 break; 4167 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: 4168 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; 4169 break; 4170 case HV_X64_MSR_HYPERCALL: 4171 env->msr_hv_hypercall = msrs[i].data; 4172 break; 4173 case HV_X64_MSR_GUEST_OS_ID: 4174 env->msr_hv_guest_os_id = msrs[i].data; 4175 break; 4176 case HV_X64_MSR_APIC_ASSIST_PAGE: 4177 env->msr_hv_vapic = msrs[i].data; 4178 break; 4179 case HV_X64_MSR_REFERENCE_TSC: 4180 env->msr_hv_tsc = msrs[i].data; 4181 break; 4182 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4183 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; 4184 break; 4185 case HV_X64_MSR_VP_RUNTIME: 4186 env->msr_hv_runtime = msrs[i].data; 4187 break; 4188 case HV_X64_MSR_SCONTROL: 4189 env->msr_hv_synic_control = msrs[i].data; 4190 break; 4191 case HV_X64_MSR_SIEFP: 4192 env->msr_hv_synic_evt_page = msrs[i].data; 4193 break; 4194 case HV_X64_MSR_SIMP: 4195 env->msr_hv_synic_msg_page = msrs[i].data; 4196 break; 4197 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 4198 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; 4199 break; 4200 case HV_X64_MSR_STIMER0_CONFIG: 4201 case HV_X64_MSR_STIMER1_CONFIG: 4202 case HV_X64_MSR_STIMER2_CONFIG: 4203 case HV_X64_MSR_STIMER3_CONFIG: 4204 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = 4205 msrs[i].data; 4206 break; 4207 case HV_X64_MSR_STIMER0_COUNT: 4208 case HV_X64_MSR_STIMER1_COUNT: 4209 case HV_X64_MSR_STIMER2_COUNT: 4210 case HV_X64_MSR_STIMER3_COUNT: 4211 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = 4212 msrs[i].data; 4213 break; 4214 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4215 env->msr_hv_reenlightenment_control = msrs[i].data; 4216 break; 4217 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4218 env->msr_hv_tsc_emulation_control = msrs[i].data; 4219 break; 4220 case HV_X64_MSR_TSC_EMULATION_STATUS: 4221 env->msr_hv_tsc_emulation_status = msrs[i].data; 4222 break; 4223 case HV_X64_MSR_SYNDBG_OPTIONS: 4224 env->msr_hv_syndbg_options = msrs[i].data; 4225 break; 4226 case MSR_MTRRdefType: 4227 env->mtrr_deftype = msrs[i].data; 4228 break; 4229 case MSR_MTRRfix64K_00000: 4230 env->mtrr_fixed[0] = msrs[i].data; 4231 break; 4232 case MSR_MTRRfix16K_80000: 4233 env->mtrr_fixed[1] = msrs[i].data; 4234 break; 4235 case MSR_MTRRfix16K_A0000: 4236 env->mtrr_fixed[2] = msrs[i].data; 4237 break; 4238 case MSR_MTRRfix4K_C0000: 4239 env->mtrr_fixed[3] = msrs[i].data; 4240 break; 4241 case MSR_MTRRfix4K_C8000: 4242 env->mtrr_fixed[4] = msrs[i].data; 4243 break; 4244 case MSR_MTRRfix4K_D0000: 4245 env->mtrr_fixed[5] = msrs[i].data; 4246 break; 4247 case MSR_MTRRfix4K_D8000: 4248 env->mtrr_fixed[6] = msrs[i].data; 4249 break; 4250 case MSR_MTRRfix4K_E0000: 4251 env->mtrr_fixed[7] = msrs[i].data; 4252 break; 4253 case MSR_MTRRfix4K_E8000: 4254 env->mtrr_fixed[8] = msrs[i].data; 4255 break; 4256 case MSR_MTRRfix4K_F0000: 4257 env->mtrr_fixed[9] = msrs[i].data; 4258 break; 4259 case MSR_MTRRfix4K_F8000: 4260 env->mtrr_fixed[10] = msrs[i].data; 4261 break; 4262 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): 4263 if (index & 1) { 4264 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | 4265 mtrr_top_bits; 4266 } else { 4267 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; 4268 } 4269 break; 4270 case MSR_IA32_SPEC_CTRL: 4271 env->spec_ctrl = msrs[i].data; 4272 break; 4273 case MSR_AMD64_TSC_RATIO: 4274 env->amd_tsc_scale_msr = msrs[i].data; 4275 break; 4276 case MSR_IA32_TSX_CTRL: 4277 env->tsx_ctrl = msrs[i].data; 4278 break; 4279 case MSR_VIRT_SSBD: 4280 env->virt_ssbd = msrs[i].data; 4281 break; 4282 case MSR_IA32_RTIT_CTL: 4283 env->msr_rtit_ctrl = msrs[i].data; 4284 break; 4285 case MSR_IA32_RTIT_STATUS: 4286 env->msr_rtit_status = msrs[i].data; 4287 break; 4288 case MSR_IA32_RTIT_OUTPUT_BASE: 4289 env->msr_rtit_output_base = msrs[i].data; 4290 break; 4291 case MSR_IA32_RTIT_OUTPUT_MASK: 4292 env->msr_rtit_output_mask = msrs[i].data; 4293 break; 4294 case MSR_IA32_RTIT_CR3_MATCH: 4295 env->msr_rtit_cr3_match = msrs[i].data; 4296 break; 4297 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 4298 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data; 4299 break; 4300 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 4301 env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] = 4302 msrs[i].data; 4303 break; 4304 case MSR_IA32_XFD: 4305 env->msr_xfd = msrs[i].data; 4306 break; 4307 case MSR_IA32_XFD_ERR: 4308 env->msr_xfd_err = msrs[i].data; 4309 break; 4310 case MSR_ARCH_LBR_CTL: 4311 env->msr_lbr_ctl = msrs[i].data; 4312 break; 4313 case MSR_ARCH_LBR_DEPTH: 4314 env->msr_lbr_depth = msrs[i].data; 4315 break; 4316 case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31: 4317 env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data; 4318 break; 4319 case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31: 4320 env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data; 4321 break; 4322 case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31: 4323 env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data; 4324 break; 4325 } 4326 } 4327 4328 return 0; 4329 } 4330 4331 static int kvm_put_mp_state(X86CPU *cpu) 4332 { 4333 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; 4334 4335 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 4336 } 4337 4338 static int kvm_get_mp_state(X86CPU *cpu) 4339 { 4340 CPUState *cs = CPU(cpu); 4341 CPUX86State *env = &cpu->env; 4342 struct kvm_mp_state mp_state; 4343 int ret; 4344 4345 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); 4346 if (ret < 0) { 4347 return ret; 4348 } 4349 env->mp_state = mp_state.mp_state; 4350 if (kvm_irqchip_in_kernel()) { 4351 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); 4352 } 4353 return 0; 4354 } 4355 4356 static int kvm_get_apic(X86CPU *cpu) 4357 { 4358 DeviceState *apic = cpu->apic_state; 4359 struct kvm_lapic_state kapic; 4360 int ret; 4361 4362 if (apic && kvm_irqchip_in_kernel()) { 4363 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); 4364 if (ret < 0) { 4365 return ret; 4366 } 4367 4368 kvm_get_apic_state(apic, &kapic); 4369 } 4370 return 0; 4371 } 4372 4373 static int kvm_put_vcpu_events(X86CPU *cpu, int level) 4374 { 4375 CPUState *cs = CPU(cpu); 4376 CPUX86State *env = &cpu->env; 4377 struct kvm_vcpu_events events = {}; 4378 4379 events.flags = 0; 4380 4381 if (has_exception_payload) { 4382 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 4383 events.exception.pending = env->exception_pending; 4384 events.exception_has_payload = env->exception_has_payload; 4385 events.exception_payload = env->exception_payload; 4386 } 4387 events.exception.nr = env->exception_nr; 4388 events.exception.injected = env->exception_injected; 4389 events.exception.has_error_code = env->has_error_code; 4390 events.exception.error_code = env->error_code; 4391 4392 events.interrupt.injected = (env->interrupt_injected >= 0); 4393 events.interrupt.nr = env->interrupt_injected; 4394 events.interrupt.soft = env->soft_interrupt; 4395 4396 events.nmi.injected = env->nmi_injected; 4397 events.nmi.pending = env->nmi_pending; 4398 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); 4399 4400 events.sipi_vector = env->sipi_vector; 4401 4402 if (has_msr_smbase) { 4403 events.smi.smm = !!(env->hflags & HF_SMM_MASK); 4404 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); 4405 if (kvm_irqchip_in_kernel()) { 4406 /* As soon as these are moved to the kernel, remove them 4407 * from cs->interrupt_request. 4408 */ 4409 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; 4410 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; 4411 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); 4412 } else { 4413 /* Keep these in cs->interrupt_request. */ 4414 events.smi.pending = 0; 4415 events.smi.latched_init = 0; 4416 } 4417 /* Stop SMI delivery on old machine types to avoid a reboot 4418 * on an inward migration of an old VM. 4419 */ 4420 if (!cpu->kvm_no_smi_migration) { 4421 events.flags |= KVM_VCPUEVENT_VALID_SMM; 4422 } 4423 } 4424 4425 if (level >= KVM_PUT_RESET_STATE) { 4426 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; 4427 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 4428 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR; 4429 } 4430 } 4431 4432 if (has_triple_fault_event) { 4433 events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 4434 events.triple_fault.pending = env->triple_fault_pending; 4435 } 4436 4437 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 4438 } 4439 4440 static int kvm_get_vcpu_events(X86CPU *cpu) 4441 { 4442 CPUX86State *env = &cpu->env; 4443 struct kvm_vcpu_events events; 4444 int ret; 4445 4446 memset(&events, 0, sizeof(events)); 4447 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 4448 if (ret < 0) { 4449 return ret; 4450 } 4451 4452 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 4453 env->exception_pending = events.exception.pending; 4454 env->exception_has_payload = events.exception_has_payload; 4455 env->exception_payload = events.exception_payload; 4456 } else { 4457 env->exception_pending = 0; 4458 env->exception_has_payload = false; 4459 } 4460 env->exception_injected = events.exception.injected; 4461 env->exception_nr = 4462 (env->exception_pending || env->exception_injected) ? 4463 events.exception.nr : -1; 4464 env->has_error_code = events.exception.has_error_code; 4465 env->error_code = events.exception.error_code; 4466 4467 env->interrupt_injected = 4468 events.interrupt.injected ? events.interrupt.nr : -1; 4469 env->soft_interrupt = events.interrupt.soft; 4470 4471 env->nmi_injected = events.nmi.injected; 4472 env->nmi_pending = events.nmi.pending; 4473 if (events.nmi.masked) { 4474 env->hflags2 |= HF2_NMI_MASK; 4475 } else { 4476 env->hflags2 &= ~HF2_NMI_MASK; 4477 } 4478 4479 if (events.flags & KVM_VCPUEVENT_VALID_SMM) { 4480 if (events.smi.smm) { 4481 env->hflags |= HF_SMM_MASK; 4482 } else { 4483 env->hflags &= ~HF_SMM_MASK; 4484 } 4485 if (events.smi.pending) { 4486 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 4487 } else { 4488 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 4489 } 4490 if (events.smi.smm_inside_nmi) { 4491 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; 4492 } else { 4493 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; 4494 } 4495 if (events.smi.latched_init) { 4496 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 4497 } else { 4498 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 4499 } 4500 } 4501 4502 if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 4503 env->triple_fault_pending = events.triple_fault.pending; 4504 } 4505 4506 env->sipi_vector = events.sipi_vector; 4507 4508 return 0; 4509 } 4510 4511 static int kvm_put_debugregs(X86CPU *cpu) 4512 { 4513 CPUX86State *env = &cpu->env; 4514 struct kvm_debugregs dbgregs; 4515 int i; 4516 4517 memset(&dbgregs, 0, sizeof(dbgregs)); 4518 for (i = 0; i < 4; i++) { 4519 dbgregs.db[i] = env->dr[i]; 4520 } 4521 dbgregs.dr6 = env->dr[6]; 4522 dbgregs.dr7 = env->dr[7]; 4523 dbgregs.flags = 0; 4524 4525 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); 4526 } 4527 4528 static int kvm_get_debugregs(X86CPU *cpu) 4529 { 4530 CPUX86State *env = &cpu->env; 4531 struct kvm_debugregs dbgregs; 4532 int i, ret; 4533 4534 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); 4535 if (ret < 0) { 4536 return ret; 4537 } 4538 for (i = 0; i < 4; i++) { 4539 env->dr[i] = dbgregs.db[i]; 4540 } 4541 env->dr[4] = env->dr[6] = dbgregs.dr6; 4542 env->dr[5] = env->dr[7] = dbgregs.dr7; 4543 4544 return 0; 4545 } 4546 4547 static int kvm_put_nested_state(X86CPU *cpu) 4548 { 4549 CPUX86State *env = &cpu->env; 4550 int max_nested_state_len = kvm_max_nested_state_length(); 4551 4552 if (!env->nested_state) { 4553 return 0; 4554 } 4555 4556 /* 4557 * Copy flags that are affected by reset from env->hflags and env->hflags2. 4558 */ 4559 if (env->hflags & HF_GUEST_MASK) { 4560 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE; 4561 } else { 4562 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE; 4563 } 4564 4565 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */ 4566 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) { 4567 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET; 4568 } else { 4569 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET; 4570 } 4571 4572 assert(env->nested_state->size <= max_nested_state_len); 4573 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state); 4574 } 4575 4576 static int kvm_get_nested_state(X86CPU *cpu) 4577 { 4578 CPUX86State *env = &cpu->env; 4579 int max_nested_state_len = kvm_max_nested_state_length(); 4580 int ret; 4581 4582 if (!env->nested_state) { 4583 return 0; 4584 } 4585 4586 /* 4587 * It is possible that migration restored a smaller size into 4588 * nested_state->hdr.size than what our kernel support. 4589 * We preserve migration origin nested_state->hdr.size for 4590 * call to KVM_SET_NESTED_STATE but wish that our next call 4591 * to KVM_GET_NESTED_STATE will use max size our kernel support. 4592 */ 4593 env->nested_state->size = max_nested_state_len; 4594 4595 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state); 4596 if (ret < 0) { 4597 return ret; 4598 } 4599 4600 /* 4601 * Copy flags that are affected by reset to env->hflags and env->hflags2. 4602 */ 4603 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) { 4604 env->hflags |= HF_GUEST_MASK; 4605 } else { 4606 env->hflags &= ~HF_GUEST_MASK; 4607 } 4608 4609 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */ 4610 if (cpu_has_svm(env)) { 4611 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) { 4612 env->hflags2 |= HF2_GIF_MASK; 4613 } else { 4614 env->hflags2 &= ~HF2_GIF_MASK; 4615 } 4616 } 4617 4618 return ret; 4619 } 4620 4621 int kvm_arch_put_registers(CPUState *cpu, int level) 4622 { 4623 X86CPU *x86_cpu = X86_CPU(cpu); 4624 int ret; 4625 4626 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); 4627 4628 /* 4629 * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX 4630 * root operation upon vCPU reset. kvm_put_msr_feature_control() should also 4631 * precede kvm_put_nested_state() when 'real' nested state is set. 4632 */ 4633 if (level >= KVM_PUT_RESET_STATE) { 4634 ret = kvm_put_msr_feature_control(x86_cpu); 4635 if (ret < 0) { 4636 return ret; 4637 } 4638 } 4639 4640 /* must be before kvm_put_nested_state so that EFER.SVME is set */ 4641 ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu); 4642 if (ret < 0) { 4643 return ret; 4644 } 4645 4646 if (level >= KVM_PUT_RESET_STATE) { 4647 ret = kvm_put_nested_state(x86_cpu); 4648 if (ret < 0) { 4649 return ret; 4650 } 4651 } 4652 4653 if (level == KVM_PUT_FULL_STATE) { 4654 /* We don't check for kvm_arch_set_tsc_khz() errors here, 4655 * because TSC frequency mismatch shouldn't abort migration, 4656 * unless the user explicitly asked for a more strict TSC 4657 * setting (e.g. using an explicit "tsc-freq" option). 4658 */ 4659 kvm_arch_set_tsc_khz(cpu); 4660 } 4661 4662 #ifdef CONFIG_XEN_EMU 4663 if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) { 4664 ret = kvm_put_xen_state(cpu); 4665 if (ret < 0) { 4666 return ret; 4667 } 4668 } 4669 #endif 4670 4671 ret = kvm_getput_regs(x86_cpu, 1); 4672 if (ret < 0) { 4673 return ret; 4674 } 4675 ret = kvm_put_xsave(x86_cpu); 4676 if (ret < 0) { 4677 return ret; 4678 } 4679 ret = kvm_put_xcrs(x86_cpu); 4680 if (ret < 0) { 4681 return ret; 4682 } 4683 ret = kvm_put_msrs(x86_cpu, level); 4684 if (ret < 0) { 4685 return ret; 4686 } 4687 ret = kvm_put_vcpu_events(x86_cpu, level); 4688 if (ret < 0) { 4689 return ret; 4690 } 4691 if (level >= KVM_PUT_RESET_STATE) { 4692 ret = kvm_put_mp_state(x86_cpu); 4693 if (ret < 0) { 4694 return ret; 4695 } 4696 } 4697 4698 ret = kvm_put_tscdeadline_msr(x86_cpu); 4699 if (ret < 0) { 4700 return ret; 4701 } 4702 ret = kvm_put_debugregs(x86_cpu); 4703 if (ret < 0) { 4704 return ret; 4705 } 4706 return 0; 4707 } 4708 4709 int kvm_arch_get_registers(CPUState *cs) 4710 { 4711 X86CPU *cpu = X86_CPU(cs); 4712 int ret; 4713 4714 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); 4715 4716 ret = kvm_get_vcpu_events(cpu); 4717 if (ret < 0) { 4718 goto out; 4719 } 4720 /* 4721 * KVM_GET_MPSTATE can modify CS and RIP, call it before 4722 * KVM_GET_REGS and KVM_GET_SREGS. 4723 */ 4724 ret = kvm_get_mp_state(cpu); 4725 if (ret < 0) { 4726 goto out; 4727 } 4728 ret = kvm_getput_regs(cpu, 0); 4729 if (ret < 0) { 4730 goto out; 4731 } 4732 ret = kvm_get_xsave(cpu); 4733 if (ret < 0) { 4734 goto out; 4735 } 4736 ret = kvm_get_xcrs(cpu); 4737 if (ret < 0) { 4738 goto out; 4739 } 4740 ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu); 4741 if (ret < 0) { 4742 goto out; 4743 } 4744 ret = kvm_get_msrs(cpu); 4745 if (ret < 0) { 4746 goto out; 4747 } 4748 ret = kvm_get_apic(cpu); 4749 if (ret < 0) { 4750 goto out; 4751 } 4752 ret = kvm_get_debugregs(cpu); 4753 if (ret < 0) { 4754 goto out; 4755 } 4756 ret = kvm_get_nested_state(cpu); 4757 if (ret < 0) { 4758 goto out; 4759 } 4760 #ifdef CONFIG_XEN_EMU 4761 if (xen_mode == XEN_EMULATE) { 4762 ret = kvm_get_xen_state(cs); 4763 if (ret < 0) { 4764 goto out; 4765 } 4766 } 4767 #endif 4768 ret = 0; 4769 out: 4770 cpu_sync_bndcs_hflags(&cpu->env); 4771 return ret; 4772 } 4773 4774 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 4775 { 4776 X86CPU *x86_cpu = X86_CPU(cpu); 4777 CPUX86State *env = &x86_cpu->env; 4778 int ret; 4779 4780 /* Inject NMI */ 4781 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { 4782 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { 4783 bql_lock(); 4784 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; 4785 bql_unlock(); 4786 DPRINTF("injected NMI\n"); 4787 ret = kvm_vcpu_ioctl(cpu, KVM_NMI); 4788 if (ret < 0) { 4789 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", 4790 strerror(-ret)); 4791 } 4792 } 4793 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { 4794 bql_lock(); 4795 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; 4796 bql_unlock(); 4797 DPRINTF("injected SMI\n"); 4798 ret = kvm_vcpu_ioctl(cpu, KVM_SMI); 4799 if (ret < 0) { 4800 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", 4801 strerror(-ret)); 4802 } 4803 } 4804 } 4805 4806 if (!kvm_pic_in_kernel()) { 4807 bql_lock(); 4808 } 4809 4810 /* Force the VCPU out of its inner loop to process any INIT requests 4811 * or (for userspace APIC, but it is cheap to combine the checks here) 4812 * pending TPR access reports. 4813 */ 4814 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { 4815 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && 4816 !(env->hflags & HF_SMM_MASK)) { 4817 cpu->exit_request = 1; 4818 } 4819 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { 4820 cpu->exit_request = 1; 4821 } 4822 } 4823 4824 if (!kvm_pic_in_kernel()) { 4825 /* Try to inject an interrupt if the guest can accept it */ 4826 if (run->ready_for_interrupt_injection && 4827 (cpu->interrupt_request & CPU_INTERRUPT_HARD) && 4828 (env->eflags & IF_MASK)) { 4829 int irq; 4830 4831 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; 4832 irq = cpu_get_pic_interrupt(env); 4833 if (irq >= 0) { 4834 struct kvm_interrupt intr; 4835 4836 intr.irq = irq; 4837 DPRINTF("injected interrupt %d\n", irq); 4838 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); 4839 if (ret < 0) { 4840 fprintf(stderr, 4841 "KVM: injection failed, interrupt lost (%s)\n", 4842 strerror(-ret)); 4843 } 4844 } 4845 } 4846 4847 /* If we have an interrupt but the guest is not ready to receive an 4848 * interrupt, request an interrupt window exit. This will 4849 * cause a return to userspace as soon as the guest is ready to 4850 * receive interrupts. */ 4851 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { 4852 run->request_interrupt_window = 1; 4853 } else { 4854 run->request_interrupt_window = 0; 4855 } 4856 4857 DPRINTF("setting tpr\n"); 4858 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); 4859 4860 bql_unlock(); 4861 } 4862 } 4863 4864 static void kvm_rate_limit_on_bus_lock(void) 4865 { 4866 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1); 4867 4868 if (delay_ns) { 4869 g_usleep(delay_ns / SCALE_US); 4870 } 4871 } 4872 4873 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) 4874 { 4875 X86CPU *x86_cpu = X86_CPU(cpu); 4876 CPUX86State *env = &x86_cpu->env; 4877 4878 if (run->flags & KVM_RUN_X86_SMM) { 4879 env->hflags |= HF_SMM_MASK; 4880 } else { 4881 env->hflags &= ~HF_SMM_MASK; 4882 } 4883 if (run->if_flag) { 4884 env->eflags |= IF_MASK; 4885 } else { 4886 env->eflags &= ~IF_MASK; 4887 } 4888 if (run->flags & KVM_RUN_X86_BUS_LOCK) { 4889 kvm_rate_limit_on_bus_lock(); 4890 } 4891 4892 #ifdef CONFIG_XEN_EMU 4893 /* 4894 * If the callback is asserted as a GSI (or PCI INTx) then check if 4895 * vcpu_info->evtchn_upcall_pending has been cleared, and deassert 4896 * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC 4897 * EOI and only resample then, exactly how the VFIO eventfd pairs 4898 * are designed to work for level triggered interrupts. 4899 */ 4900 if (x86_cpu->env.xen_callback_asserted) { 4901 kvm_xen_maybe_deassert_callback(cpu); 4902 } 4903 #endif 4904 4905 /* We need to protect the apic state against concurrent accesses from 4906 * different threads in case the userspace irqchip is used. */ 4907 if (!kvm_irqchip_in_kernel()) { 4908 bql_lock(); 4909 } 4910 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); 4911 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); 4912 if (!kvm_irqchip_in_kernel()) { 4913 bql_unlock(); 4914 } 4915 return cpu_get_mem_attrs(env); 4916 } 4917 4918 int kvm_arch_process_async_events(CPUState *cs) 4919 { 4920 X86CPU *cpu = X86_CPU(cs); 4921 CPUX86State *env = &cpu->env; 4922 4923 if (cs->interrupt_request & CPU_INTERRUPT_MCE) { 4924 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ 4925 assert(env->mcg_cap); 4926 4927 cs->interrupt_request &= ~CPU_INTERRUPT_MCE; 4928 4929 kvm_cpu_synchronize_state(cs); 4930 4931 if (env->exception_nr == EXCP08_DBLE) { 4932 /* this means triple fault */ 4933 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 4934 cs->exit_request = 1; 4935 return 0; 4936 } 4937 kvm_queue_exception(env, EXCP12_MCHK, 0, 0); 4938 env->has_error_code = 0; 4939 4940 cs->halted = 0; 4941 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { 4942 env->mp_state = KVM_MP_STATE_RUNNABLE; 4943 } 4944 } 4945 4946 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && 4947 !(env->hflags & HF_SMM_MASK)) { 4948 kvm_cpu_synchronize_state(cs); 4949 do_cpu_init(cpu); 4950 } 4951 4952 if (kvm_irqchip_in_kernel()) { 4953 return 0; 4954 } 4955 4956 if (cs->interrupt_request & CPU_INTERRUPT_POLL) { 4957 cs->interrupt_request &= ~CPU_INTERRUPT_POLL; 4958 apic_poll_irq(cpu->apic_state); 4959 } 4960 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && 4961 (env->eflags & IF_MASK)) || 4962 (cs->interrupt_request & CPU_INTERRUPT_NMI)) { 4963 cs->halted = 0; 4964 } 4965 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { 4966 kvm_cpu_synchronize_state(cs); 4967 do_cpu_sipi(cpu); 4968 } 4969 if (cs->interrupt_request & CPU_INTERRUPT_TPR) { 4970 cs->interrupt_request &= ~CPU_INTERRUPT_TPR; 4971 kvm_cpu_synchronize_state(cs); 4972 apic_handle_tpr_access_report(cpu->apic_state, env->eip, 4973 env->tpr_access_type); 4974 } 4975 4976 return cs->halted; 4977 } 4978 4979 static int kvm_handle_halt(X86CPU *cpu) 4980 { 4981 CPUState *cs = CPU(cpu); 4982 CPUX86State *env = &cpu->env; 4983 4984 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && 4985 (env->eflags & IF_MASK)) && 4986 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { 4987 cs->halted = 1; 4988 return EXCP_HLT; 4989 } 4990 4991 return 0; 4992 } 4993 4994 static int kvm_handle_tpr_access(X86CPU *cpu) 4995 { 4996 CPUState *cs = CPU(cpu); 4997 struct kvm_run *run = cs->kvm_run; 4998 4999 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, 5000 run->tpr_access.is_write ? TPR_ACCESS_WRITE 5001 : TPR_ACCESS_READ); 5002 return 1; 5003 } 5004 5005 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 5006 { 5007 static const uint8_t int3 = 0xcc; 5008 5009 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || 5010 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { 5011 return -EINVAL; 5012 } 5013 return 0; 5014 } 5015 5016 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 5017 { 5018 uint8_t int3; 5019 5020 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) { 5021 return -EINVAL; 5022 } 5023 if (int3 != 0xcc) { 5024 return 0; 5025 } 5026 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { 5027 return -EINVAL; 5028 } 5029 return 0; 5030 } 5031 5032 static struct { 5033 target_ulong addr; 5034 int len; 5035 int type; 5036 } hw_breakpoint[4]; 5037 5038 static int nb_hw_breakpoint; 5039 5040 static int find_hw_breakpoint(target_ulong addr, int len, int type) 5041 { 5042 int n; 5043 5044 for (n = 0; n < nb_hw_breakpoint; n++) { 5045 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && 5046 (hw_breakpoint[n].len == len || len == -1)) { 5047 return n; 5048 } 5049 } 5050 return -1; 5051 } 5052 5053 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type) 5054 { 5055 switch (type) { 5056 case GDB_BREAKPOINT_HW: 5057 len = 1; 5058 break; 5059 case GDB_WATCHPOINT_WRITE: 5060 case GDB_WATCHPOINT_ACCESS: 5061 switch (len) { 5062 case 1: 5063 break; 5064 case 2: 5065 case 4: 5066 case 8: 5067 if (addr & (len - 1)) { 5068 return -EINVAL; 5069 } 5070 break; 5071 default: 5072 return -EINVAL; 5073 } 5074 break; 5075 default: 5076 return -ENOSYS; 5077 } 5078 5079 if (nb_hw_breakpoint == 4) { 5080 return -ENOBUFS; 5081 } 5082 if (find_hw_breakpoint(addr, len, type) >= 0) { 5083 return -EEXIST; 5084 } 5085 hw_breakpoint[nb_hw_breakpoint].addr = addr; 5086 hw_breakpoint[nb_hw_breakpoint].len = len; 5087 hw_breakpoint[nb_hw_breakpoint].type = type; 5088 nb_hw_breakpoint++; 5089 5090 return 0; 5091 } 5092 5093 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type) 5094 { 5095 int n; 5096 5097 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); 5098 if (n < 0) { 5099 return -ENOENT; 5100 } 5101 nb_hw_breakpoint--; 5102 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; 5103 5104 return 0; 5105 } 5106 5107 void kvm_arch_remove_all_hw_breakpoints(void) 5108 { 5109 nb_hw_breakpoint = 0; 5110 } 5111 5112 static CPUWatchpoint hw_watchpoint; 5113 5114 static int kvm_handle_debug(X86CPU *cpu, 5115 struct kvm_debug_exit_arch *arch_info) 5116 { 5117 CPUState *cs = CPU(cpu); 5118 CPUX86State *env = &cpu->env; 5119 int ret = 0; 5120 int n; 5121 5122 if (arch_info->exception == EXCP01_DB) { 5123 if (arch_info->dr6 & DR6_BS) { 5124 if (cs->singlestep_enabled) { 5125 ret = EXCP_DEBUG; 5126 } 5127 } else { 5128 for (n = 0; n < 4; n++) { 5129 if (arch_info->dr6 & (1 << n)) { 5130 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { 5131 case 0x0: 5132 ret = EXCP_DEBUG; 5133 break; 5134 case 0x1: 5135 ret = EXCP_DEBUG; 5136 cs->watchpoint_hit = &hw_watchpoint; 5137 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 5138 hw_watchpoint.flags = BP_MEM_WRITE; 5139 break; 5140 case 0x3: 5141 ret = EXCP_DEBUG; 5142 cs->watchpoint_hit = &hw_watchpoint; 5143 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 5144 hw_watchpoint.flags = BP_MEM_ACCESS; 5145 break; 5146 } 5147 } 5148 } 5149 } 5150 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { 5151 ret = EXCP_DEBUG; 5152 } 5153 if (ret == 0) { 5154 cpu_synchronize_state(cs); 5155 assert(env->exception_nr == -1); 5156 5157 /* pass to guest */ 5158 kvm_queue_exception(env, arch_info->exception, 5159 arch_info->exception == EXCP01_DB, 5160 arch_info->dr6); 5161 env->has_error_code = 0; 5162 } 5163 5164 return ret; 5165 } 5166 5167 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 5168 { 5169 const uint8_t type_code[] = { 5170 [GDB_BREAKPOINT_HW] = 0x0, 5171 [GDB_WATCHPOINT_WRITE] = 0x1, 5172 [GDB_WATCHPOINT_ACCESS] = 0x3 5173 }; 5174 const uint8_t len_code[] = { 5175 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 5176 }; 5177 int n; 5178 5179 if (kvm_sw_breakpoints_active(cpu)) { 5180 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 5181 } 5182 if (nb_hw_breakpoint > 0) { 5183 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 5184 dbg->arch.debugreg[7] = 0x0600; 5185 for (n = 0; n < nb_hw_breakpoint; n++) { 5186 dbg->arch.debugreg[n] = hw_breakpoint[n].addr; 5187 dbg->arch.debugreg[7] |= (2 << (n * 2)) | 5188 (type_code[hw_breakpoint[n].type] << (16 + n*4)) | 5189 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); 5190 } 5191 } 5192 } 5193 5194 static bool kvm_install_msr_filters(KVMState *s) 5195 { 5196 uint64_t zero = 0; 5197 struct kvm_msr_filter filter = { 5198 .flags = KVM_MSR_FILTER_DEFAULT_ALLOW, 5199 }; 5200 int r, i, j = 0; 5201 5202 for (i = 0; i < KVM_MSR_FILTER_MAX_RANGES; i++) { 5203 KVMMSRHandlers *handler = &msr_handlers[i]; 5204 if (handler->msr) { 5205 struct kvm_msr_filter_range *range = &filter.ranges[j++]; 5206 5207 *range = (struct kvm_msr_filter_range) { 5208 .flags = 0, 5209 .nmsrs = 1, 5210 .base = handler->msr, 5211 .bitmap = (__u8 *)&zero, 5212 }; 5213 5214 if (handler->rdmsr) { 5215 range->flags |= KVM_MSR_FILTER_READ; 5216 } 5217 5218 if (handler->wrmsr) { 5219 range->flags |= KVM_MSR_FILTER_WRITE; 5220 } 5221 } 5222 } 5223 5224 r = kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter); 5225 if (r) { 5226 return false; 5227 } 5228 5229 return true; 5230 } 5231 5232 bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr, 5233 QEMUWRMSRHandler *wrmsr) 5234 { 5235 int i; 5236 5237 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5238 if (!msr_handlers[i].msr) { 5239 msr_handlers[i] = (KVMMSRHandlers) { 5240 .msr = msr, 5241 .rdmsr = rdmsr, 5242 .wrmsr = wrmsr, 5243 }; 5244 5245 if (!kvm_install_msr_filters(s)) { 5246 msr_handlers[i] = (KVMMSRHandlers) { }; 5247 return false; 5248 } 5249 5250 return true; 5251 } 5252 } 5253 5254 return false; 5255 } 5256 5257 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run) 5258 { 5259 int i; 5260 bool r; 5261 5262 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5263 KVMMSRHandlers *handler = &msr_handlers[i]; 5264 if (run->msr.index == handler->msr) { 5265 if (handler->rdmsr) { 5266 r = handler->rdmsr(cpu, handler->msr, 5267 (uint64_t *)&run->msr.data); 5268 run->msr.error = r ? 0 : 1; 5269 return 0; 5270 } 5271 } 5272 } 5273 5274 assert(false); 5275 } 5276 5277 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run) 5278 { 5279 int i; 5280 bool r; 5281 5282 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5283 KVMMSRHandlers *handler = &msr_handlers[i]; 5284 if (run->msr.index == handler->msr) { 5285 if (handler->wrmsr) { 5286 r = handler->wrmsr(cpu, handler->msr, run->msr.data); 5287 run->msr.error = r ? 0 : 1; 5288 return 0; 5289 } 5290 } 5291 } 5292 5293 assert(false); 5294 } 5295 5296 static bool has_sgx_provisioning; 5297 5298 static bool __kvm_enable_sgx_provisioning(KVMState *s) 5299 { 5300 int fd, ret; 5301 5302 if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) { 5303 return false; 5304 } 5305 5306 fd = qemu_open_old("/dev/sgx_provision", O_RDONLY); 5307 if (fd < 0) { 5308 return false; 5309 } 5310 5311 ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd); 5312 if (ret) { 5313 error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret)); 5314 exit(1); 5315 } 5316 close(fd); 5317 return true; 5318 } 5319 5320 bool kvm_enable_sgx_provisioning(KVMState *s) 5321 { 5322 return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning); 5323 } 5324 5325 static bool host_supports_vmx(void) 5326 { 5327 uint32_t ecx, unused; 5328 5329 host_cpuid(1, 0, &unused, &unused, &ecx, &unused); 5330 return ecx & CPUID_EXT_VMX; 5331 } 5332 5333 /* 5334 * Currently the handling here only supports use of KVM_HC_MAP_GPA_RANGE 5335 * to service guest-initiated memory attribute update requests so that 5336 * KVM_SET_MEMORY_ATTRIBUTES can update whether or not a page should be 5337 * backed by the private memory pool provided by guest_memfd, and as such 5338 * is only applicable to guest_memfd-backed guests (e.g. SNP/TDX). 5339 * 5340 * Other other use-cases for KVM_HC_MAP_GPA_RANGE, such as for SEV live 5341 * migration, are not implemented here currently. 5342 * 5343 * For the guest_memfd use-case, these exits will generally be synthesized 5344 * by KVM based on platform-specific hypercalls, like GHCB requests in the 5345 * case of SEV-SNP, and not issued directly within the guest though the 5346 * KVM_HC_MAP_GPA_RANGE hypercall. So in this case, KVM_HC_MAP_GPA_RANGE is 5347 * not actually advertised to guests via the KVM CPUID feature bit, as 5348 * opposed to SEV live migration where it would be. Since it is unlikely the 5349 * SEV live migration use-case would be useful for guest-memfd backed guests, 5350 * because private/shared page tracking is already provided through other 5351 * means, these 2 use-cases should be treated as being mutually-exclusive. 5352 */ 5353 static int kvm_handle_hc_map_gpa_range(struct kvm_run *run) 5354 { 5355 uint64_t gpa, size, attributes; 5356 5357 if (!machine_require_guest_memfd(current_machine)) 5358 return -EINVAL; 5359 5360 gpa = run->hypercall.args[0]; 5361 size = run->hypercall.args[1] * TARGET_PAGE_SIZE; 5362 attributes = run->hypercall.args[2]; 5363 5364 trace_kvm_hc_map_gpa_range(gpa, size, attributes, run->hypercall.flags); 5365 5366 return kvm_convert_memory(gpa, size, attributes & KVM_MAP_GPA_RANGE_ENCRYPTED); 5367 } 5368 5369 static int kvm_handle_hypercall(struct kvm_run *run) 5370 { 5371 if (run->hypercall.nr == KVM_HC_MAP_GPA_RANGE) 5372 return kvm_handle_hc_map_gpa_range(run); 5373 5374 return -EINVAL; 5375 } 5376 5377 #define VMX_INVALID_GUEST_STATE 0x80000021 5378 5379 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 5380 { 5381 X86CPU *cpu = X86_CPU(cs); 5382 uint64_t code; 5383 int ret; 5384 bool ctx_invalid; 5385 KVMState *state; 5386 5387 switch (run->exit_reason) { 5388 case KVM_EXIT_HLT: 5389 DPRINTF("handle_hlt\n"); 5390 bql_lock(); 5391 ret = kvm_handle_halt(cpu); 5392 bql_unlock(); 5393 break; 5394 case KVM_EXIT_SET_TPR: 5395 ret = 0; 5396 break; 5397 case KVM_EXIT_TPR_ACCESS: 5398 bql_lock(); 5399 ret = kvm_handle_tpr_access(cpu); 5400 bql_unlock(); 5401 break; 5402 case KVM_EXIT_FAIL_ENTRY: 5403 code = run->fail_entry.hardware_entry_failure_reason; 5404 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", 5405 code); 5406 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { 5407 fprintf(stderr, 5408 "\nIf you're running a guest on an Intel machine without " 5409 "unrestricted mode\n" 5410 "support, the failure can be most likely due to the guest " 5411 "entering an invalid\n" 5412 "state for Intel VT. For example, the guest maybe running " 5413 "in big real mode\n" 5414 "which is not supported on less recent Intel processors." 5415 "\n\n"); 5416 } 5417 ret = -1; 5418 break; 5419 case KVM_EXIT_EXCEPTION: 5420 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", 5421 run->ex.exception, run->ex.error_code); 5422 ret = -1; 5423 break; 5424 case KVM_EXIT_DEBUG: 5425 DPRINTF("kvm_exit_debug\n"); 5426 bql_lock(); 5427 ret = kvm_handle_debug(cpu, &run->debug.arch); 5428 bql_unlock(); 5429 break; 5430 case KVM_EXIT_HYPERV: 5431 ret = kvm_hv_handle_exit(cpu, &run->hyperv); 5432 break; 5433 case KVM_EXIT_IOAPIC_EOI: 5434 ioapic_eoi_broadcast(run->eoi.vector); 5435 ret = 0; 5436 break; 5437 case KVM_EXIT_X86_BUS_LOCK: 5438 /* already handled in kvm_arch_post_run */ 5439 ret = 0; 5440 break; 5441 case KVM_EXIT_NOTIFY: 5442 ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID); 5443 state = KVM_STATE(current_accel()); 5444 if (ctx_invalid || 5445 state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) { 5446 warn_report("KVM internal error: Encountered a notify exit " 5447 "with invalid context in guest."); 5448 ret = -1; 5449 } else { 5450 warn_report_once("KVM: Encountered a notify exit with valid " 5451 "context in guest. " 5452 "The guest could be misbehaving."); 5453 ret = 0; 5454 } 5455 break; 5456 case KVM_EXIT_X86_RDMSR: 5457 /* We only enable MSR filtering, any other exit is bogus */ 5458 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER); 5459 ret = kvm_handle_rdmsr(cpu, run); 5460 break; 5461 case KVM_EXIT_X86_WRMSR: 5462 /* We only enable MSR filtering, any other exit is bogus */ 5463 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER); 5464 ret = kvm_handle_wrmsr(cpu, run); 5465 break; 5466 #ifdef CONFIG_XEN_EMU 5467 case KVM_EXIT_XEN: 5468 ret = kvm_xen_handle_exit(cpu, &run->xen); 5469 break; 5470 #endif 5471 case KVM_EXIT_HYPERCALL: 5472 ret = kvm_handle_hypercall(run); 5473 break; 5474 default: 5475 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); 5476 ret = -1; 5477 break; 5478 } 5479 5480 return ret; 5481 } 5482 5483 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 5484 { 5485 X86CPU *cpu = X86_CPU(cs); 5486 CPUX86State *env = &cpu->env; 5487 5488 kvm_cpu_synchronize_state(cs); 5489 return !(env->cr[0] & CR0_PE_MASK) || 5490 ((env->segs[R_CS].selector & 3) != 3); 5491 } 5492 5493 void kvm_arch_init_irq_routing(KVMState *s) 5494 { 5495 /* We know at this point that we're using the in-kernel 5496 * irqchip, so we can use irqfds, and on x86 we know 5497 * we can use msi via irqfd and GSI routing. 5498 */ 5499 kvm_msi_via_irqfd_allowed = true; 5500 kvm_gsi_routing_allowed = true; 5501 5502 if (kvm_irqchip_is_split()) { 5503 KVMRouteChange c = kvm_irqchip_begin_route_changes(s); 5504 int i; 5505 5506 /* If the ioapic is in QEMU and the lapics are in KVM, reserve 5507 MSI routes for signaling interrupts to the local apics. */ 5508 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 5509 if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) { 5510 error_report("Could not enable split IRQ mode."); 5511 exit(1); 5512 } 5513 } 5514 kvm_irqchip_commit_route_changes(&c); 5515 } 5516 } 5517 5518 int kvm_arch_irqchip_create(KVMState *s) 5519 { 5520 int ret; 5521 if (kvm_kernel_irqchip_split()) { 5522 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); 5523 if (ret) { 5524 error_report("Could not enable split irqchip mode: %s", 5525 strerror(-ret)); 5526 exit(1); 5527 } else { 5528 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); 5529 kvm_split_irqchip = true; 5530 return 1; 5531 } 5532 } else { 5533 return 0; 5534 } 5535 } 5536 5537 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address) 5538 { 5539 CPUX86State *env; 5540 uint64_t ext_id; 5541 5542 if (!first_cpu) { 5543 return address; 5544 } 5545 env = &X86_CPU(first_cpu)->env; 5546 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) { 5547 return address; 5548 } 5549 5550 /* 5551 * If the remappable format bit is set, or the upper bits are 5552 * already set in address_hi, or the low extended bits aren't 5553 * there anyway, do nothing. 5554 */ 5555 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT); 5556 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) { 5557 return address; 5558 } 5559 5560 address &= ~ext_id; 5561 address |= ext_id << 35; 5562 return address; 5563 } 5564 5565 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 5566 uint64_t address, uint32_t data, PCIDevice *dev) 5567 { 5568 X86IOMMUState *iommu = x86_iommu_get_default(); 5569 5570 if (iommu) { 5571 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu); 5572 5573 if (class->int_remap) { 5574 int ret; 5575 MSIMessage src, dst; 5576 5577 src.address = route->u.msi.address_hi; 5578 src.address <<= VTD_MSI_ADDR_HI_SHIFT; 5579 src.address |= route->u.msi.address_lo; 5580 src.data = route->u.msi.data; 5581 5582 ret = class->int_remap(iommu, &src, &dst, dev ? \ 5583 pci_requester_id(dev) : \ 5584 X86_IOMMU_SID_INVALID); 5585 if (ret) { 5586 trace_kvm_x86_fixup_msi_error(route->gsi); 5587 return 1; 5588 } 5589 5590 /* 5591 * Handled untranslated compatibility format interrupt with 5592 * extended destination ID in the low bits 11-5. */ 5593 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address); 5594 5595 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; 5596 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; 5597 route->u.msi.data = dst.data; 5598 return 0; 5599 } 5600 } 5601 5602 #ifdef CONFIG_XEN_EMU 5603 if (xen_mode == XEN_EMULATE) { 5604 int handled = xen_evtchn_translate_pirq_msi(route, address, data); 5605 5606 /* 5607 * If it was a PIRQ and successfully routed (handled == 0) or it was 5608 * an error (handled < 0), return. If it wasn't a PIRQ, keep going. 5609 */ 5610 if (handled <= 0) { 5611 return handled; 5612 } 5613 } 5614 #endif 5615 5616 address = kvm_swizzle_msi_ext_dest_id(address); 5617 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT; 5618 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK; 5619 return 0; 5620 } 5621 5622 typedef struct MSIRouteEntry MSIRouteEntry; 5623 5624 struct MSIRouteEntry { 5625 PCIDevice *dev; /* Device pointer */ 5626 int vector; /* MSI/MSIX vector index */ 5627 int virq; /* Virtual IRQ index */ 5628 QLIST_ENTRY(MSIRouteEntry) list; 5629 }; 5630 5631 /* List of used GSI routes */ 5632 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ 5633 QLIST_HEAD_INITIALIZER(msi_route_list); 5634 5635 void kvm_update_msi_routes_all(void *private, bool global, 5636 uint32_t index, uint32_t mask) 5637 { 5638 int cnt = 0, vector; 5639 MSIRouteEntry *entry; 5640 MSIMessage msg; 5641 PCIDevice *dev; 5642 5643 /* TODO: explicit route update */ 5644 QLIST_FOREACH(entry, &msi_route_list, list) { 5645 cnt++; 5646 vector = entry->vector; 5647 dev = entry->dev; 5648 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) { 5649 msg = msix_get_message(dev, vector); 5650 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) { 5651 msg = msi_get_message(dev, vector); 5652 } else { 5653 /* 5654 * Either MSI/MSIX is disabled for the device, or the 5655 * specific message was masked out. Skip this one. 5656 */ 5657 continue; 5658 } 5659 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); 5660 } 5661 kvm_irqchip_commit_routes(kvm_state); 5662 trace_kvm_x86_update_msi_routes(cnt); 5663 } 5664 5665 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 5666 int vector, PCIDevice *dev) 5667 { 5668 static bool notify_list_inited = false; 5669 MSIRouteEntry *entry; 5670 5671 if (!dev) { 5672 /* These are (possibly) IOAPIC routes only used for split 5673 * kernel irqchip mode, while what we are housekeeping are 5674 * PCI devices only. */ 5675 return 0; 5676 } 5677 5678 entry = g_new0(MSIRouteEntry, 1); 5679 entry->dev = dev; 5680 entry->vector = vector; 5681 entry->virq = route->gsi; 5682 QLIST_INSERT_HEAD(&msi_route_list, entry, list); 5683 5684 trace_kvm_x86_add_msi_route(route->gsi); 5685 5686 if (!notify_list_inited) { 5687 /* For the first time we do add route, add ourselves into 5688 * IOMMU's IEC notify list if needed. */ 5689 X86IOMMUState *iommu = x86_iommu_get_default(); 5690 if (iommu) { 5691 x86_iommu_iec_register_notifier(iommu, 5692 kvm_update_msi_routes_all, 5693 NULL); 5694 } 5695 notify_list_inited = true; 5696 } 5697 return 0; 5698 } 5699 5700 int kvm_arch_release_virq_post(int virq) 5701 { 5702 MSIRouteEntry *entry, *next; 5703 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { 5704 if (entry->virq == virq) { 5705 trace_kvm_x86_remove_msi_route(virq); 5706 QLIST_REMOVE(entry, list); 5707 g_free(entry); 5708 break; 5709 } 5710 } 5711 return 0; 5712 } 5713 5714 int kvm_arch_msi_data_to_gsi(uint32_t data) 5715 { 5716 abort(); 5717 } 5718 5719 bool kvm_has_waitpkg(void) 5720 { 5721 return has_msr_umwait; 5722 } 5723 5724 #define ARCH_REQ_XCOMP_GUEST_PERM 0x1025 5725 5726 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask) 5727 { 5728 KVMState *s = kvm_state; 5729 uint64_t supported; 5730 5731 mask &= XSTATE_DYNAMIC_MASK; 5732 if (!mask) { 5733 return; 5734 } 5735 /* 5736 * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0]. 5737 * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned 5738 * about them already because they are not supported features. 5739 */ 5740 supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX); 5741 supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32; 5742 mask &= supported; 5743 5744 while (mask) { 5745 int bit = ctz64(mask); 5746 int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit); 5747 if (rc) { 5748 /* 5749 * Older kernel version (<5.17) do not support 5750 * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return 5751 * any dynamic feature from kvm_arch_get_supported_cpuid. 5752 */ 5753 warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure " 5754 "for feature bit %d", bit); 5755 } 5756 mask &= ~BIT_ULL(bit); 5757 } 5758 } 5759 5760 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp) 5761 { 5762 KVMState *s = KVM_STATE(obj); 5763 return s->notify_vmexit; 5764 } 5765 5766 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp) 5767 { 5768 KVMState *s = KVM_STATE(obj); 5769 5770 if (s->fd != -1) { 5771 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 5772 return; 5773 } 5774 5775 s->notify_vmexit = value; 5776 } 5777 5778 static void kvm_arch_get_notify_window(Object *obj, Visitor *v, 5779 const char *name, void *opaque, 5780 Error **errp) 5781 { 5782 KVMState *s = KVM_STATE(obj); 5783 uint32_t value = s->notify_window; 5784 5785 visit_type_uint32(v, name, &value, errp); 5786 } 5787 5788 static void kvm_arch_set_notify_window(Object *obj, Visitor *v, 5789 const char *name, void *opaque, 5790 Error **errp) 5791 { 5792 KVMState *s = KVM_STATE(obj); 5793 uint32_t value; 5794 5795 if (s->fd != -1) { 5796 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 5797 return; 5798 } 5799 5800 if (!visit_type_uint32(v, name, &value, errp)) { 5801 return; 5802 } 5803 5804 s->notify_window = value; 5805 } 5806 5807 static void kvm_arch_get_xen_version(Object *obj, Visitor *v, 5808 const char *name, void *opaque, 5809 Error **errp) 5810 { 5811 KVMState *s = KVM_STATE(obj); 5812 uint32_t value = s->xen_version; 5813 5814 visit_type_uint32(v, name, &value, errp); 5815 } 5816 5817 static void kvm_arch_set_xen_version(Object *obj, Visitor *v, 5818 const char *name, void *opaque, 5819 Error **errp) 5820 { 5821 KVMState *s = KVM_STATE(obj); 5822 Error *error = NULL; 5823 uint32_t value; 5824 5825 visit_type_uint32(v, name, &value, &error); 5826 if (error) { 5827 error_propagate(errp, error); 5828 return; 5829 } 5830 5831 s->xen_version = value; 5832 if (value && xen_mode == XEN_DISABLED) { 5833 xen_mode = XEN_EMULATE; 5834 } 5835 } 5836 5837 static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v, 5838 const char *name, void *opaque, 5839 Error **errp) 5840 { 5841 KVMState *s = KVM_STATE(obj); 5842 uint16_t value = s->xen_gnttab_max_frames; 5843 5844 visit_type_uint16(v, name, &value, errp); 5845 } 5846 5847 static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v, 5848 const char *name, void *opaque, 5849 Error **errp) 5850 { 5851 KVMState *s = KVM_STATE(obj); 5852 Error *error = NULL; 5853 uint16_t value; 5854 5855 visit_type_uint16(v, name, &value, &error); 5856 if (error) { 5857 error_propagate(errp, error); 5858 return; 5859 } 5860 5861 s->xen_gnttab_max_frames = value; 5862 } 5863 5864 static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v, 5865 const char *name, void *opaque, 5866 Error **errp) 5867 { 5868 KVMState *s = KVM_STATE(obj); 5869 uint16_t value = s->xen_evtchn_max_pirq; 5870 5871 visit_type_uint16(v, name, &value, errp); 5872 } 5873 5874 static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v, 5875 const char *name, void *opaque, 5876 Error **errp) 5877 { 5878 KVMState *s = KVM_STATE(obj); 5879 Error *error = NULL; 5880 uint16_t value; 5881 5882 visit_type_uint16(v, name, &value, &error); 5883 if (error) { 5884 error_propagate(errp, error); 5885 return; 5886 } 5887 5888 s->xen_evtchn_max_pirq = value; 5889 } 5890 5891 void kvm_arch_accel_class_init(ObjectClass *oc) 5892 { 5893 object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption", 5894 &NotifyVmexitOption_lookup, 5895 kvm_arch_get_notify_vmexit, 5896 kvm_arch_set_notify_vmexit); 5897 object_class_property_set_description(oc, "notify-vmexit", 5898 "Enable notify VM exit"); 5899 5900 object_class_property_add(oc, "notify-window", "uint32", 5901 kvm_arch_get_notify_window, 5902 kvm_arch_set_notify_window, 5903 NULL, NULL); 5904 object_class_property_set_description(oc, "notify-window", 5905 "Clock cycles without an event window " 5906 "after which a notification VM exit occurs"); 5907 5908 object_class_property_add(oc, "xen-version", "uint32", 5909 kvm_arch_get_xen_version, 5910 kvm_arch_set_xen_version, 5911 NULL, NULL); 5912 object_class_property_set_description(oc, "xen-version", 5913 "Xen version to be emulated " 5914 "(in XENVER_version form " 5915 "e.g. 0x4000a for 4.10)"); 5916 5917 object_class_property_add(oc, "xen-gnttab-max-frames", "uint16", 5918 kvm_arch_get_xen_gnttab_max_frames, 5919 kvm_arch_set_xen_gnttab_max_frames, 5920 NULL, NULL); 5921 object_class_property_set_description(oc, "xen-gnttab-max-frames", 5922 "Maximum number of grant table frames"); 5923 5924 object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16", 5925 kvm_arch_get_xen_evtchn_max_pirq, 5926 kvm_arch_set_xen_evtchn_max_pirq, 5927 NULL, NULL); 5928 object_class_property_set_description(oc, "xen-evtchn-max-pirq", 5929 "Maximum number of Xen PIRQs"); 5930 } 5931 5932 void kvm_set_max_apic_id(uint32_t max_apic_id) 5933 { 5934 kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id); 5935 } 5936