xref: /openbmc/qemu/target/i386/kvm/kvm.c (revision 59d3740c)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright (C) 2006-2008 Qumranet Technologies
5  * Copyright IBM, Corp. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include "qapi/visitor.h"
19 #include <sys/ioctl.h>
20 #include <sys/utsname.h>
21 #include <sys/syscall.h>
22 
23 #include <linux/kvm.h>
24 #include "standard-headers/asm-x86/kvm_para.h"
25 #include "hw/xen/interface/arch-x86/cpuid.h"
26 
27 #include "cpu.h"
28 #include "host-cpu.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/hw_accel.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "kvm_i386.h"
34 #include "../confidential-guest.h"
35 #include "sev.h"
36 #include "xen-emu.h"
37 #include "hyperv.h"
38 #include "hyperv-proto.h"
39 
40 #include "exec/gdbstub.h"
41 #include "qemu/host-utils.h"
42 #include "qemu/main-loop.h"
43 #include "qemu/ratelimit.h"
44 #include "qemu/config-file.h"
45 #include "qemu/error-report.h"
46 #include "qemu/memalign.h"
47 #include "hw/i386/x86.h"
48 #include "hw/i386/kvm/xen_evtchn.h"
49 #include "hw/i386/pc.h"
50 #include "hw/i386/apic.h"
51 #include "hw/i386/apic_internal.h"
52 #include "hw/i386/apic-msidef.h"
53 #include "hw/i386/intel_iommu.h"
54 #include "hw/i386/topology.h"
55 #include "hw/i386/x86-iommu.h"
56 #include "hw/i386/e820_memory_layout.h"
57 
58 #include "hw/xen/xen.h"
59 
60 #include "hw/pci/pci.h"
61 #include "hw/pci/msi.h"
62 #include "hw/pci/msix.h"
63 #include "migration/blocker.h"
64 #include "exec/memattrs.h"
65 #include "trace.h"
66 
67 #include CONFIG_DEVICES
68 
69 //#define DEBUG_KVM
70 
71 #ifdef DEBUG_KVM
72 #define DPRINTF(fmt, ...) \
73     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
74 #else
75 #define DPRINTF(fmt, ...) \
76     do { } while (0)
77 #endif
78 
79 /* From arch/x86/kvm/lapic.h */
80 #define KVM_APIC_BUS_CYCLE_NS       1
81 #define KVM_APIC_BUS_FREQUENCY      (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
82 
83 #define MSR_KVM_WALL_CLOCK  0x11
84 #define MSR_KVM_SYSTEM_TIME 0x12
85 
86 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
87  * 255 kvm_msr_entry structs */
88 #define MSR_BUF_SIZE 4096
89 
90 static void kvm_init_msrs(X86CPU *cpu);
91 
92 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
93     KVM_CAP_INFO(SET_TSS_ADDR),
94     KVM_CAP_INFO(EXT_CPUID),
95     KVM_CAP_INFO(MP_STATE),
96     KVM_CAP_INFO(SIGNAL_MSI),
97     KVM_CAP_INFO(IRQ_ROUTING),
98     KVM_CAP_INFO(DEBUGREGS),
99     KVM_CAP_INFO(XSAVE),
100     KVM_CAP_INFO(VCPU_EVENTS),
101     KVM_CAP_INFO(X86_ROBUST_SINGLESTEP),
102     KVM_CAP_INFO(MCE),
103     KVM_CAP_INFO(ADJUST_CLOCK),
104     KVM_CAP_INFO(SET_IDENTITY_MAP_ADDR),
105     KVM_CAP_LAST_INFO
106 };
107 
108 static bool has_msr_star;
109 static bool has_msr_hsave_pa;
110 static bool has_msr_tsc_aux;
111 static bool has_msr_tsc_adjust;
112 static bool has_msr_tsc_deadline;
113 static bool has_msr_feature_control;
114 static bool has_msr_misc_enable;
115 static bool has_msr_smbase;
116 static bool has_msr_bndcfgs;
117 static int lm_capable_kernel;
118 static bool has_msr_hv_hypercall;
119 static bool has_msr_hv_crash;
120 static bool has_msr_hv_reset;
121 static bool has_msr_hv_vpindex;
122 static bool hv_vpindex_settable;
123 static bool has_msr_hv_runtime;
124 static bool has_msr_hv_synic;
125 static bool has_msr_hv_stimer;
126 static bool has_msr_hv_frequencies;
127 static bool has_msr_hv_reenlightenment;
128 static bool has_msr_hv_syndbg_options;
129 static bool has_msr_xss;
130 static bool has_msr_umwait;
131 static bool has_msr_spec_ctrl;
132 static bool has_tsc_scale_msr;
133 static bool has_msr_tsx_ctrl;
134 static bool has_msr_virt_ssbd;
135 static bool has_msr_smi_count;
136 static bool has_msr_arch_capabs;
137 static bool has_msr_core_capabs;
138 static bool has_msr_vmx_vmfunc;
139 static bool has_msr_ucode_rev;
140 static bool has_msr_vmx_procbased_ctls2;
141 static bool has_msr_perf_capabs;
142 static bool has_msr_pkrs;
143 
144 static uint32_t has_architectural_pmu_version;
145 static uint32_t num_architectural_pmu_gp_counters;
146 static uint32_t num_architectural_pmu_fixed_counters;
147 
148 static int has_xsave2;
149 static int has_xcrs;
150 static int has_sregs2;
151 static int has_exception_payload;
152 static int has_triple_fault_event;
153 
154 static bool has_msr_mcg_ext_ctl;
155 
156 static struct kvm_cpuid2 *cpuid_cache;
157 static struct kvm_cpuid2 *hv_cpuid_cache;
158 static struct kvm_msr_list *kvm_feature_msrs;
159 
160 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES];
161 
162 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
163 static RateLimit bus_lock_ratelimit_ctrl;
164 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value);
165 
166 static const char *vm_type_name[] = {
167     [KVM_X86_DEFAULT_VM] = "default",
168     [KVM_X86_SEV_VM] = "SEV",
169     [KVM_X86_SEV_ES_VM] = "SEV-ES",
170     [KVM_X86_SNP_VM] = "SEV-SNP",
171 };
172 
173 bool kvm_is_vm_type_supported(int type)
174 {
175     uint32_t machine_types;
176 
177     /*
178      * old KVM doesn't support KVM_CAP_VM_TYPES but KVM_X86_DEFAULT_VM
179      * is always supported
180      */
181     if (type == KVM_X86_DEFAULT_VM) {
182         return true;
183     }
184 
185     machine_types = kvm_check_extension(KVM_STATE(current_machine->accelerator),
186                                         KVM_CAP_VM_TYPES);
187     return !!(machine_types & BIT(type));
188 }
189 
190 int kvm_get_vm_type(MachineState *ms)
191 {
192     int kvm_type = KVM_X86_DEFAULT_VM;
193 
194     if (ms->cgs) {
195         if (!object_dynamic_cast(OBJECT(ms->cgs), TYPE_X86_CONFIDENTIAL_GUEST)) {
196             error_report("configuration type %s not supported for x86 guests",
197                          object_get_typename(OBJECT(ms->cgs)));
198             exit(1);
199         }
200         kvm_type = x86_confidential_guest_kvm_type(
201             X86_CONFIDENTIAL_GUEST(ms->cgs));
202     }
203 
204     if (!kvm_is_vm_type_supported(kvm_type)) {
205         error_report("vm-type %s not supported by KVM", vm_type_name[kvm_type]);
206         exit(1);
207     }
208 
209     return kvm_type;
210 }
211 
212 bool kvm_has_smm(void)
213 {
214     return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
215 }
216 
217 bool kvm_has_adjust_clock_stable(void)
218 {
219     int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
220 
221     return (ret & KVM_CLOCK_TSC_STABLE);
222 }
223 
224 bool kvm_has_exception_payload(void)
225 {
226     return has_exception_payload;
227 }
228 
229 static bool kvm_x2apic_api_set_flags(uint64_t flags)
230 {
231     KVMState *s = KVM_STATE(current_accel());
232 
233     return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
234 }
235 
236 #define MEMORIZE(fn, _result) \
237     ({ \
238         static bool _memorized; \
239         \
240         if (_memorized) { \
241             return _result; \
242         } \
243         _memorized = true; \
244         _result = fn; \
245     })
246 
247 static bool has_x2apic_api;
248 
249 bool kvm_has_x2apic_api(void)
250 {
251     return has_x2apic_api;
252 }
253 
254 bool kvm_enable_x2apic(void)
255 {
256     return MEMORIZE(
257              kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
258                                       KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
259              has_x2apic_api);
260 }
261 
262 bool kvm_hv_vpindex_settable(void)
263 {
264     return hv_vpindex_settable;
265 }
266 
267 static int kvm_get_tsc(CPUState *cs)
268 {
269     X86CPU *cpu = X86_CPU(cs);
270     CPUX86State *env = &cpu->env;
271     uint64_t value;
272     int ret;
273 
274     if (env->tsc_valid) {
275         return 0;
276     }
277 
278     env->tsc_valid = !runstate_is_running();
279 
280     ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value);
281     if (ret < 0) {
282         return ret;
283     }
284 
285     env->tsc = value;
286     return 0;
287 }
288 
289 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
290 {
291     kvm_get_tsc(cpu);
292 }
293 
294 void kvm_synchronize_all_tsc(void)
295 {
296     CPUState *cpu;
297 
298     if (kvm_enabled()) {
299         CPU_FOREACH(cpu) {
300             run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
301         }
302     }
303 }
304 
305 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
306 {
307     struct kvm_cpuid2 *cpuid;
308     int r, size;
309 
310     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
311     cpuid = g_malloc0(size);
312     cpuid->nent = max;
313     r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
314     if (r == 0 && cpuid->nent >= max) {
315         r = -E2BIG;
316     }
317     if (r < 0) {
318         if (r == -E2BIG) {
319             g_free(cpuid);
320             return NULL;
321         } else {
322             fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
323                     strerror(-r));
324             exit(1);
325         }
326     }
327     return cpuid;
328 }
329 
330 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
331  * for all entries.
332  */
333 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
334 {
335     struct kvm_cpuid2 *cpuid;
336     int max = 1;
337 
338     if (cpuid_cache != NULL) {
339         return cpuid_cache;
340     }
341     while ((cpuid = try_get_cpuid(s, max)) == NULL) {
342         max *= 2;
343     }
344     cpuid_cache = cpuid;
345     return cpuid;
346 }
347 
348 static bool host_tsx_broken(void)
349 {
350     int family, model, stepping;\
351     char vendor[CPUID_VENDOR_SZ + 1];
352 
353     host_cpu_vendor_fms(vendor, &family, &model, &stepping);
354 
355     /* Check if we are running on a Haswell host known to have broken TSX */
356     return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
357            (family == 6) &&
358            ((model == 63 && stepping < 4) ||
359             model == 60 || model == 69 || model == 70);
360 }
361 
362 /* Returns the value for a specific register on the cpuid entry
363  */
364 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
365 {
366     uint32_t ret = 0;
367     switch (reg) {
368     case R_EAX:
369         ret = entry->eax;
370         break;
371     case R_EBX:
372         ret = entry->ebx;
373         break;
374     case R_ECX:
375         ret = entry->ecx;
376         break;
377     case R_EDX:
378         ret = entry->edx;
379         break;
380     }
381     return ret;
382 }
383 
384 /* Find matching entry for function/index on kvm_cpuid2 struct
385  */
386 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
387                                                  uint32_t function,
388                                                  uint32_t index)
389 {
390     int i;
391     for (i = 0; i < cpuid->nent; ++i) {
392         if (cpuid->entries[i].function == function &&
393             cpuid->entries[i].index == index) {
394             return &cpuid->entries[i];
395         }
396     }
397     /* not found: */
398     return NULL;
399 }
400 
401 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
402                                       uint32_t index, int reg)
403 {
404     struct kvm_cpuid2 *cpuid;
405     uint32_t ret = 0;
406     uint32_t cpuid_1_edx, unused;
407     uint64_t bitmask;
408 
409     cpuid = get_supported_cpuid(s);
410 
411     struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
412     if (entry) {
413         ret = cpuid_entry_get_reg(entry, reg);
414     }
415 
416     /* Fixups for the data returned by KVM, below */
417 
418     if (function == 1 && reg == R_EDX) {
419         /* KVM before 2.6.30 misreports the following features */
420         ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
421         /* KVM never reports CPUID_HT but QEMU can support when vcpus > 1 */
422         ret |= CPUID_HT;
423     } else if (function == 1 && reg == R_ECX) {
424         /* We can set the hypervisor flag, even if KVM does not return it on
425          * GET_SUPPORTED_CPUID
426          */
427         ret |= CPUID_EXT_HYPERVISOR;
428         /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
429          * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
430          * and the irqchip is in the kernel.
431          */
432         if (kvm_irqchip_in_kernel() &&
433                 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
434             ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
435         }
436 
437         /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
438          * without the in-kernel irqchip
439          */
440         if (!kvm_irqchip_in_kernel()) {
441             ret &= ~CPUID_EXT_X2APIC;
442         }
443 
444         if (enable_cpu_pm) {
445             int disable_exits = kvm_check_extension(s,
446                                                     KVM_CAP_X86_DISABLE_EXITS);
447 
448             if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
449                 ret |= CPUID_EXT_MONITOR;
450             }
451         }
452     } else if (function == 6 && reg == R_EAX) {
453         ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
454     } else if (function == 7 && index == 0 && reg == R_EBX) {
455         /* Not new instructions, just an optimization.  */
456         uint32_t ebx;
457         host_cpuid(7, 0, &unused, &ebx, &unused, &unused);
458         ret |= ebx & CPUID_7_0_EBX_ERMS;
459 
460         if (host_tsx_broken()) {
461             ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
462         }
463     } else if (function == 7 && index == 0 && reg == R_EDX) {
464         /* Not new instructions, just an optimization.  */
465         uint32_t edx;
466         host_cpuid(7, 0, &unused, &unused, &unused, &edx);
467         ret |= edx & CPUID_7_0_EDX_FSRM;
468 
469         /*
470          * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
471          * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
472          * returned by KVM_GET_MSR_INDEX_LIST.
473          */
474         if (!has_msr_arch_capabs) {
475             ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
476         }
477     } else if (function == 7 && index == 1 && reg == R_EAX) {
478         /* Not new instructions, just an optimization.  */
479         uint32_t eax;
480         host_cpuid(7, 1, &eax, &unused, &unused, &unused);
481         ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC);
482     } else if (function == 7 && index == 2 && reg == R_EDX) {
483         uint32_t edx;
484         host_cpuid(7, 2, &unused, &unused, &unused, &edx);
485         ret |= edx & CPUID_7_2_EDX_MCDT_NO;
486     } else if (function == 0xd && index == 0 &&
487                (reg == R_EAX || reg == R_EDX)) {
488         /*
489          * The value returned by KVM_GET_SUPPORTED_CPUID does not include
490          * features that still have to be enabled with the arch_prctl
491          * system call.  QEMU needs the full value, which is retrieved
492          * with KVM_GET_DEVICE_ATTR.
493          */
494         struct kvm_device_attr attr = {
495             .group = 0,
496             .attr = KVM_X86_XCOMP_GUEST_SUPP,
497             .addr = (unsigned long) &bitmask
498         };
499 
500         bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
501         if (!sys_attr) {
502             return ret;
503         }
504 
505         int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
506         if (rc < 0) {
507             if (rc != -ENXIO) {
508                 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
509                             "error: %d", rc);
510             }
511             return ret;
512         }
513         ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
514     } else if (function == 0x80000001 && reg == R_ECX) {
515         /*
516          * It's safe to enable TOPOEXT even if it's not returned by
517          * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
518          * us to keep CPU models including TOPOEXT runnable on older kernels.
519          */
520         ret |= CPUID_EXT3_TOPOEXT;
521     } else if (function == 0x80000001 && reg == R_EDX) {
522         /* On Intel, kvm returns cpuid according to the Intel spec,
523          * so add missing bits according to the AMD spec:
524          */
525         cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
526         ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
527     } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
528         /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
529          * be enabled without the in-kernel irqchip
530          */
531         if (!kvm_irqchip_in_kernel()) {
532             ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
533         }
534         if (kvm_irqchip_is_split()) {
535             ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
536         }
537     } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
538         ret |= 1U << KVM_HINTS_REALTIME;
539     }
540 
541     return ret;
542 }
543 
544 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
545 {
546     struct {
547         struct kvm_msrs info;
548         struct kvm_msr_entry entries[1];
549     } msr_data = {};
550     uint64_t value;
551     uint32_t ret, can_be_one, must_be_one;
552 
553     if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
554         return 0;
555     }
556 
557     /* Check if requested MSR is supported feature MSR */
558     int i;
559     for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
560         if (kvm_feature_msrs->indices[i] == index) {
561             break;
562         }
563     if (i == kvm_feature_msrs->nmsrs) {
564         return 0; /* if the feature MSR is not supported, simply return 0 */
565     }
566 
567     msr_data.info.nmsrs = 1;
568     msr_data.entries[0].index = index;
569 
570     ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
571     if (ret != 1) {
572         error_report("KVM get MSR (index=0x%x) feature failed, %s",
573             index, strerror(-ret));
574         exit(1);
575     }
576 
577     value = msr_data.entries[0].data;
578     switch (index) {
579     case MSR_IA32_VMX_PROCBASED_CTLS2:
580         if (!has_msr_vmx_procbased_ctls2) {
581             /* KVM forgot to add these bits for some time, do this ourselves. */
582             if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
583                 CPUID_XSAVE_XSAVES) {
584                 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
585             }
586             if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
587                 CPUID_EXT_RDRAND) {
588                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
589             }
590             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
591                 CPUID_7_0_EBX_INVPCID) {
592                 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
593             }
594             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
595                 CPUID_7_0_EBX_RDSEED) {
596                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
597             }
598             if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
599                 CPUID_EXT2_RDTSCP) {
600                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
601             }
602         }
603         /* fall through */
604     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
605     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
606     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
607     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
608         /*
609          * Return true for bits that can be one, but do not have to be one.
610          * The SDM tells us which bits could have a "must be one" setting,
611          * so we can do the opposite transformation in make_vmx_msr_value.
612          */
613         must_be_one = (uint32_t)value;
614         can_be_one = (uint32_t)(value >> 32);
615         return can_be_one & ~must_be_one;
616 
617     default:
618         return value;
619     }
620 }
621 
622 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
623                                      int *max_banks)
624 {
625     *max_banks = kvm_check_extension(s, KVM_CAP_MCE);
626     return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
627 }
628 
629 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
630 {
631     CPUState *cs = CPU(cpu);
632     CPUX86State *env = &cpu->env;
633     uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
634                       MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
635     uint64_t mcg_status = MCG_STATUS_MCIP;
636     int flags = 0;
637 
638     if (code == BUS_MCEERR_AR) {
639         status |= MCI_STATUS_AR | 0x134;
640         mcg_status |= MCG_STATUS_RIPV | MCG_STATUS_EIPV;
641     } else {
642         status |= 0xc0;
643         mcg_status |= MCG_STATUS_RIPV;
644     }
645 
646     flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
647     /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
648      * guest kernel back into env->mcg_ext_ctl.
649      */
650     cpu_synchronize_state(cs);
651     if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
652         mcg_status |= MCG_STATUS_LMCE;
653         flags = 0;
654     }
655 
656     cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
657                        (MCM_ADDR_PHYS << 6) | 0xc, flags);
658 }
659 
660 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
661 {
662     MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
663 
664     qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
665                                    &mff);
666 }
667 
668 static void hardware_memory_error(void *host_addr)
669 {
670     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
671     error_report("QEMU got Hardware memory error at addr %p", host_addr);
672     exit(1);
673 }
674 
675 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
676 {
677     X86CPU *cpu = X86_CPU(c);
678     CPUX86State *env = &cpu->env;
679     ram_addr_t ram_addr;
680     hwaddr paddr;
681 
682     /* If we get an action required MCE, it has been injected by KVM
683      * while the VM was running.  An action optional MCE instead should
684      * be coming from the main thread, which qemu_init_sigbus identifies
685      * as the "early kill" thread.
686      */
687     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
688 
689     if ((env->mcg_cap & MCG_SER_P) && addr) {
690         ram_addr = qemu_ram_addr_from_host(addr);
691         if (ram_addr != RAM_ADDR_INVALID &&
692             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
693             kvm_hwpoison_page_add(ram_addr);
694             kvm_mce_inject(cpu, paddr, code);
695 
696             /*
697              * Use different logging severity based on error type.
698              * If there is additional MCE reporting on the hypervisor, QEMU VA
699              * could be another source to identify the PA and MCE details.
700              */
701             if (code == BUS_MCEERR_AR) {
702                 error_report("Guest MCE Memory Error at QEMU addr %p and "
703                     "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
704                     addr, paddr, "BUS_MCEERR_AR");
705             } else {
706                  warn_report("Guest MCE Memory Error at QEMU addr %p and "
707                      "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
708                      addr, paddr, "BUS_MCEERR_AO");
709             }
710 
711             return;
712         }
713 
714         if (code == BUS_MCEERR_AO) {
715             warn_report("Hardware memory error at addr %p of type %s "
716                 "for memory used by QEMU itself instead of guest system!",
717                  addr, "BUS_MCEERR_AO");
718         }
719     }
720 
721     if (code == BUS_MCEERR_AR) {
722         hardware_memory_error(addr);
723     }
724 
725     /* Hope we are lucky for AO MCE, just notify a event */
726     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
727 }
728 
729 static void kvm_queue_exception(CPUX86State *env,
730                                 int32_t exception_nr,
731                                 uint8_t exception_has_payload,
732                                 uint64_t exception_payload)
733 {
734     assert(env->exception_nr == -1);
735     assert(!env->exception_pending);
736     assert(!env->exception_injected);
737     assert(!env->exception_has_payload);
738 
739     env->exception_nr = exception_nr;
740 
741     if (has_exception_payload) {
742         env->exception_pending = 1;
743 
744         env->exception_has_payload = exception_has_payload;
745         env->exception_payload = exception_payload;
746     } else {
747         env->exception_injected = 1;
748 
749         if (exception_nr == EXCP01_DB) {
750             assert(exception_has_payload);
751             env->dr[6] = exception_payload;
752         } else if (exception_nr == EXCP0E_PAGE) {
753             assert(exception_has_payload);
754             env->cr[2] = exception_payload;
755         } else {
756             assert(!exception_has_payload);
757         }
758     }
759 }
760 
761 static void cpu_update_state(void *opaque, bool running, RunState state)
762 {
763     CPUX86State *env = opaque;
764 
765     if (running) {
766         env->tsc_valid = false;
767     }
768 }
769 
770 unsigned long kvm_arch_vcpu_id(CPUState *cs)
771 {
772     X86CPU *cpu = X86_CPU(cs);
773     return cpu->apic_id;
774 }
775 
776 #ifndef KVM_CPUID_SIGNATURE_NEXT
777 #define KVM_CPUID_SIGNATURE_NEXT                0x40000100
778 #endif
779 
780 static bool hyperv_enabled(X86CPU *cpu)
781 {
782     return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
783         ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
784          cpu->hyperv_features || cpu->hyperv_passthrough);
785 }
786 
787 /*
788  * Check whether target_freq is within conservative
789  * ntp correctable bounds (250ppm) of freq
790  */
791 static inline bool freq_within_bounds(int freq, int target_freq)
792 {
793         int max_freq = freq + (freq * 250 / 1000000);
794         int min_freq = freq - (freq * 250 / 1000000);
795 
796         if (target_freq >= min_freq && target_freq <= max_freq) {
797                 return true;
798         }
799 
800         return false;
801 }
802 
803 static int kvm_arch_set_tsc_khz(CPUState *cs)
804 {
805     X86CPU *cpu = X86_CPU(cs);
806     CPUX86State *env = &cpu->env;
807     int r, cur_freq;
808     bool set_ioctl = false;
809 
810     if (!env->tsc_khz) {
811         return 0;
812     }
813 
814     cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
815                kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
816 
817     /*
818      * If TSC scaling is supported, attempt to set TSC frequency.
819      */
820     if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
821         set_ioctl = true;
822     }
823 
824     /*
825      * If desired TSC frequency is within bounds of NTP correction,
826      * attempt to set TSC frequency.
827      */
828     if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
829         set_ioctl = true;
830     }
831 
832     r = set_ioctl ?
833         kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
834         -ENOTSUP;
835 
836     if (r < 0) {
837         /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
838          * TSC frequency doesn't match the one we want.
839          */
840         cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
841                    kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
842                    -ENOTSUP;
843         if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
844             warn_report("TSC frequency mismatch between "
845                         "VM (%" PRId64 " kHz) and host (%d kHz), "
846                         "and TSC scaling unavailable",
847                         env->tsc_khz, cur_freq);
848             return r;
849         }
850     }
851 
852     return 0;
853 }
854 
855 static bool tsc_is_stable_and_known(CPUX86State *env)
856 {
857     if (!env->tsc_khz) {
858         return false;
859     }
860     return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
861         || env->user_tsc_khz;
862 }
863 
864 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
865 
866 static struct {
867     const char *desc;
868     struct {
869         uint32_t func;
870         int reg;
871         uint32_t bits;
872     } flags[2];
873     uint64_t dependencies;
874 } kvm_hyperv_properties[] = {
875     [HYPERV_FEAT_RELAXED] = {
876         .desc = "relaxed timing (hv-relaxed)",
877         .flags = {
878             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
879              .bits = HV_RELAXED_TIMING_RECOMMENDED}
880         }
881     },
882     [HYPERV_FEAT_VAPIC] = {
883         .desc = "virtual APIC (hv-vapic)",
884         .flags = {
885             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
886              .bits = HV_APIC_ACCESS_AVAILABLE}
887         }
888     },
889     [HYPERV_FEAT_TIME] = {
890         .desc = "clocksources (hv-time)",
891         .flags = {
892             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
893              .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
894         }
895     },
896     [HYPERV_FEAT_CRASH] = {
897         .desc = "crash MSRs (hv-crash)",
898         .flags = {
899             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
900              .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
901         }
902     },
903     [HYPERV_FEAT_RESET] = {
904         .desc = "reset MSR (hv-reset)",
905         .flags = {
906             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
907              .bits = HV_RESET_AVAILABLE}
908         }
909     },
910     [HYPERV_FEAT_VPINDEX] = {
911         .desc = "VP_INDEX MSR (hv-vpindex)",
912         .flags = {
913             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
914              .bits = HV_VP_INDEX_AVAILABLE}
915         }
916     },
917     [HYPERV_FEAT_RUNTIME] = {
918         .desc = "VP_RUNTIME MSR (hv-runtime)",
919         .flags = {
920             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
921              .bits = HV_VP_RUNTIME_AVAILABLE}
922         }
923     },
924     [HYPERV_FEAT_SYNIC] = {
925         .desc = "synthetic interrupt controller (hv-synic)",
926         .flags = {
927             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
928              .bits = HV_SYNIC_AVAILABLE}
929         }
930     },
931     [HYPERV_FEAT_STIMER] = {
932         .desc = "synthetic timers (hv-stimer)",
933         .flags = {
934             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
935              .bits = HV_SYNTIMERS_AVAILABLE}
936         },
937         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
938     },
939     [HYPERV_FEAT_FREQUENCIES] = {
940         .desc = "frequency MSRs (hv-frequencies)",
941         .flags = {
942             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
943              .bits = HV_ACCESS_FREQUENCY_MSRS},
944             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
945              .bits = HV_FREQUENCY_MSRS_AVAILABLE}
946         }
947     },
948     [HYPERV_FEAT_REENLIGHTENMENT] = {
949         .desc = "reenlightenment MSRs (hv-reenlightenment)",
950         .flags = {
951             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
952              .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
953         }
954     },
955     [HYPERV_FEAT_TLBFLUSH] = {
956         .desc = "paravirtualized TLB flush (hv-tlbflush)",
957         .flags = {
958             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
959              .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
960              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
961         },
962         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
963     },
964     [HYPERV_FEAT_EVMCS] = {
965         .desc = "enlightened VMCS (hv-evmcs)",
966         .flags = {
967             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
968              .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
969         },
970         .dependencies = BIT(HYPERV_FEAT_VAPIC)
971     },
972     [HYPERV_FEAT_IPI] = {
973         .desc = "paravirtualized IPI (hv-ipi)",
974         .flags = {
975             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
976              .bits = HV_CLUSTER_IPI_RECOMMENDED |
977              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
978         },
979         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
980     },
981     [HYPERV_FEAT_STIMER_DIRECT] = {
982         .desc = "direct mode synthetic timers (hv-stimer-direct)",
983         .flags = {
984             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
985              .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
986         },
987         .dependencies = BIT(HYPERV_FEAT_STIMER)
988     },
989     [HYPERV_FEAT_AVIC] = {
990         .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
991         .flags = {
992             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
993              .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
994         }
995     },
996 #ifdef CONFIG_SYNDBG
997     [HYPERV_FEAT_SYNDBG] = {
998         .desc = "Enable synthetic kernel debugger channel (hv-syndbg)",
999         .flags = {
1000             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1001              .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE}
1002         },
1003         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED)
1004     },
1005 #endif
1006     [HYPERV_FEAT_MSR_BITMAP] = {
1007         .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)",
1008         .flags = {
1009             {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1010              .bits = HV_NESTED_MSR_BITMAP}
1011         }
1012     },
1013     [HYPERV_FEAT_XMM_INPUT] = {
1014         .desc = "XMM fast hypercall input (hv-xmm-input)",
1015         .flags = {
1016             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1017              .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE}
1018         }
1019     },
1020     [HYPERV_FEAT_TLBFLUSH_EXT] = {
1021         .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)",
1022         .flags = {
1023             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1024              .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE}
1025         },
1026         .dependencies = BIT(HYPERV_FEAT_TLBFLUSH)
1027     },
1028     [HYPERV_FEAT_TLBFLUSH_DIRECT] = {
1029         .desc = "direct TLB flush (hv-tlbflush-direct)",
1030         .flags = {
1031             {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1032              .bits = HV_NESTED_DIRECT_FLUSH}
1033         },
1034         .dependencies = BIT(HYPERV_FEAT_VAPIC)
1035     },
1036 };
1037 
1038 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
1039                                            bool do_sys_ioctl)
1040 {
1041     struct kvm_cpuid2 *cpuid;
1042     int r, size;
1043 
1044     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
1045     cpuid = g_malloc0(size);
1046     cpuid->nent = max;
1047 
1048     if (do_sys_ioctl) {
1049         r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1050     } else {
1051         r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1052     }
1053     if (r == 0 && cpuid->nent >= max) {
1054         r = -E2BIG;
1055     }
1056     if (r < 0) {
1057         if (r == -E2BIG) {
1058             g_free(cpuid);
1059             return NULL;
1060         } else {
1061             fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
1062                     strerror(-r));
1063             exit(1);
1064         }
1065     }
1066     return cpuid;
1067 }
1068 
1069 /*
1070  * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1071  * for all entries.
1072  */
1073 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1074 {
1075     struct kvm_cpuid2 *cpuid;
1076     /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */
1077     int max = 11;
1078     int i;
1079     bool do_sys_ioctl;
1080 
1081     do_sys_ioctl =
1082         kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1083 
1084     /*
1085      * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1086      * unsupported, kvm_hyperv_expand_features() checks for that.
1087      */
1088     assert(do_sys_ioctl || cs->kvm_state);
1089 
1090     /*
1091      * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1092      * -E2BIG, however, it doesn't report back the right size. Keep increasing
1093      * it and re-trying until we succeed.
1094      */
1095     while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1096         max++;
1097     }
1098 
1099     /*
1100      * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1101      * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1102      * information early, just check for the capability and set the bit
1103      * manually.
1104      */
1105     if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1106                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1107         for (i = 0; i < cpuid->nent; i++) {
1108             if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1109                 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1110             }
1111         }
1112     }
1113 
1114     return cpuid;
1115 }
1116 
1117 /*
1118  * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1119  * leaves from KVM_CAP_HYPERV* and present MSRs data.
1120  */
1121 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1122 {
1123     X86CPU *cpu = X86_CPU(cs);
1124     struct kvm_cpuid2 *cpuid;
1125     struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1126 
1127     /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1128     cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1129     cpuid->nent = 2;
1130 
1131     /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1132     entry_feat = &cpuid->entries[0];
1133     entry_feat->function = HV_CPUID_FEATURES;
1134 
1135     entry_recomm = &cpuid->entries[1];
1136     entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1137     entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1138 
1139     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1140         entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1141         entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1142         entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1143         entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1144         entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1145     }
1146 
1147     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1148         entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1149         entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1150     }
1151 
1152     if (has_msr_hv_frequencies) {
1153         entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1154         entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1155     }
1156 
1157     if (has_msr_hv_crash) {
1158         entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1159     }
1160 
1161     if (has_msr_hv_reenlightenment) {
1162         entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1163     }
1164 
1165     if (has_msr_hv_reset) {
1166         entry_feat->eax |= HV_RESET_AVAILABLE;
1167     }
1168 
1169     if (has_msr_hv_vpindex) {
1170         entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1171     }
1172 
1173     if (has_msr_hv_runtime) {
1174         entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1175     }
1176 
1177     if (has_msr_hv_synic) {
1178         unsigned int cap = cpu->hyperv_synic_kvm_only ?
1179             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1180 
1181         if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1182             entry_feat->eax |= HV_SYNIC_AVAILABLE;
1183         }
1184     }
1185 
1186     if (has_msr_hv_stimer) {
1187         entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1188     }
1189 
1190     if (has_msr_hv_syndbg_options) {
1191         entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE;
1192         entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1193         entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED;
1194     }
1195 
1196     if (kvm_check_extension(cs->kvm_state,
1197                             KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1198         entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1199         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1200     }
1201 
1202     if (kvm_check_extension(cs->kvm_state,
1203                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1204         entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1205     }
1206 
1207     if (kvm_check_extension(cs->kvm_state,
1208                             KVM_CAP_HYPERV_SEND_IPI) > 0) {
1209         entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1210         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1211     }
1212 
1213     return cpuid;
1214 }
1215 
1216 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1217 {
1218     struct kvm_cpuid_entry2 *entry;
1219     struct kvm_cpuid2 *cpuid;
1220 
1221     if (hv_cpuid_cache) {
1222         cpuid = hv_cpuid_cache;
1223     } else {
1224         if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1225             cpuid = get_supported_hv_cpuid(cs);
1226         } else {
1227             /*
1228              * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1229              * before KVM context is created but this is only done when
1230              * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1231              * KVM_CAP_HYPERV_CPUID.
1232              */
1233             assert(cs->kvm_state);
1234 
1235             cpuid = get_supported_hv_cpuid_legacy(cs);
1236         }
1237         hv_cpuid_cache = cpuid;
1238     }
1239 
1240     if (!cpuid) {
1241         return 0;
1242     }
1243 
1244     entry = cpuid_find_entry(cpuid, func, 0);
1245     if (!entry) {
1246         return 0;
1247     }
1248 
1249     return cpuid_entry_get_reg(entry, reg);
1250 }
1251 
1252 static bool hyperv_feature_supported(CPUState *cs, int feature)
1253 {
1254     uint32_t func, bits;
1255     int i, reg;
1256 
1257     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1258 
1259         func = kvm_hyperv_properties[feature].flags[i].func;
1260         reg = kvm_hyperv_properties[feature].flags[i].reg;
1261         bits = kvm_hyperv_properties[feature].flags[i].bits;
1262 
1263         if (!func) {
1264             continue;
1265         }
1266 
1267         if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1268             return false;
1269         }
1270     }
1271 
1272     return true;
1273 }
1274 
1275 /* Checks that all feature dependencies are enabled */
1276 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1277 {
1278     uint64_t deps;
1279     int dep_feat;
1280 
1281     deps = kvm_hyperv_properties[feature].dependencies;
1282     while (deps) {
1283         dep_feat = ctz64(deps);
1284         if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1285             error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1286                        kvm_hyperv_properties[feature].desc,
1287                        kvm_hyperv_properties[dep_feat].desc);
1288             return false;
1289         }
1290         deps &= ~(1ull << dep_feat);
1291     }
1292 
1293     return true;
1294 }
1295 
1296 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1297 {
1298     X86CPU *cpu = X86_CPU(cs);
1299     uint32_t r = 0;
1300     int i, j;
1301 
1302     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1303         if (!hyperv_feat_enabled(cpu, i)) {
1304             continue;
1305         }
1306 
1307         for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1308             if (kvm_hyperv_properties[i].flags[j].func != func) {
1309                 continue;
1310             }
1311             if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1312                 continue;
1313             }
1314 
1315             r |= kvm_hyperv_properties[i].flags[j].bits;
1316         }
1317     }
1318 
1319     /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */
1320     if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) {
1321         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1322             r |= DEFAULT_EVMCS_VERSION;
1323         }
1324     }
1325 
1326     return r;
1327 }
1328 
1329 /*
1330  * Expand Hyper-V CPU features. In partucular, check that all the requested
1331  * features are supported by the host and the sanity of the configuration
1332  * (that all the required dependencies are included). Also, this takes care
1333  * of 'hv_passthrough' mode and fills the environment with all supported
1334  * Hyper-V features.
1335  */
1336 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1337 {
1338     CPUState *cs = CPU(cpu);
1339     Error *local_err = NULL;
1340     int feat;
1341 
1342     if (!hyperv_enabled(cpu))
1343         return true;
1344 
1345     /*
1346      * When kvm_hyperv_expand_features is called at CPU feature expansion
1347      * time per-CPU kvm_state is not available yet so we can only proceed
1348      * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1349      */
1350     if (!cs->kvm_state &&
1351         !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1352         return true;
1353 
1354     if (cpu->hyperv_passthrough) {
1355         cpu->hyperv_vendor_id[0] =
1356             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1357         cpu->hyperv_vendor_id[1] =
1358             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1359         cpu->hyperv_vendor_id[2] =
1360             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1361         cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1362                                        sizeof(cpu->hyperv_vendor_id) + 1);
1363         memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1364                sizeof(cpu->hyperv_vendor_id));
1365         cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1366 
1367         cpu->hyperv_interface_id[0] =
1368             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1369         cpu->hyperv_interface_id[1] =
1370             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1371         cpu->hyperv_interface_id[2] =
1372             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1373         cpu->hyperv_interface_id[3] =
1374             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1375 
1376         cpu->hyperv_ver_id_build =
1377             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1378         cpu->hyperv_ver_id_major =
1379             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1380         cpu->hyperv_ver_id_minor =
1381             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1382         cpu->hyperv_ver_id_sp =
1383             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1384         cpu->hyperv_ver_id_sb =
1385             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1386         cpu->hyperv_ver_id_sn =
1387             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1388 
1389         cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1390                                             R_EAX);
1391         cpu->hyperv_limits[0] =
1392             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1393         cpu->hyperv_limits[1] =
1394             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1395         cpu->hyperv_limits[2] =
1396             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1397 
1398         cpu->hyperv_spinlock_attempts =
1399             hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1400 
1401         /*
1402          * Mark feature as enabled in 'cpu->hyperv_features' as
1403          * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1404          */
1405         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1406             if (hyperv_feature_supported(cs, feat)) {
1407                 cpu->hyperv_features |= BIT(feat);
1408             }
1409         }
1410     } else {
1411         /* Check features availability and dependencies */
1412         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1413             /* If the feature was not requested skip it. */
1414             if (!hyperv_feat_enabled(cpu, feat)) {
1415                 continue;
1416             }
1417 
1418             /* Check if the feature is supported by KVM */
1419             if (!hyperv_feature_supported(cs, feat)) {
1420                 error_setg(errp, "Hyper-V %s is not supported by kernel",
1421                            kvm_hyperv_properties[feat].desc);
1422                 return false;
1423             }
1424 
1425             /* Check dependencies */
1426             if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1427                 error_propagate(errp, local_err);
1428                 return false;
1429             }
1430         }
1431     }
1432 
1433     /* Additional dependencies not covered by kvm_hyperv_properties[] */
1434     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1435         !cpu->hyperv_synic_kvm_only &&
1436         !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1437         error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1438                    kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1439                    kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1440         return false;
1441     }
1442 
1443     return true;
1444 }
1445 
1446 /*
1447  * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1448  */
1449 static int hyperv_fill_cpuids(CPUState *cs,
1450                               struct kvm_cpuid_entry2 *cpuid_ent)
1451 {
1452     X86CPU *cpu = X86_CPU(cs);
1453     struct kvm_cpuid_entry2 *c;
1454     uint32_t signature[3];
1455     uint32_t cpuid_i = 0, max_cpuid_leaf = 0;
1456     uint32_t nested_eax =
1457         hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX);
1458 
1459     max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES :
1460         HV_CPUID_IMPLEMENT_LIMITS;
1461 
1462     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1463         max_cpuid_leaf =
1464             MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
1465     }
1466 
1467     c = &cpuid_ent[cpuid_i++];
1468     c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1469     c->eax = max_cpuid_leaf;
1470     c->ebx = cpu->hyperv_vendor_id[0];
1471     c->ecx = cpu->hyperv_vendor_id[1];
1472     c->edx = cpu->hyperv_vendor_id[2];
1473 
1474     c = &cpuid_ent[cpuid_i++];
1475     c->function = HV_CPUID_INTERFACE;
1476     c->eax = cpu->hyperv_interface_id[0];
1477     c->ebx = cpu->hyperv_interface_id[1];
1478     c->ecx = cpu->hyperv_interface_id[2];
1479     c->edx = cpu->hyperv_interface_id[3];
1480 
1481     c = &cpuid_ent[cpuid_i++];
1482     c->function = HV_CPUID_VERSION;
1483     c->eax = cpu->hyperv_ver_id_build;
1484     c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1485         cpu->hyperv_ver_id_minor;
1486     c->ecx = cpu->hyperv_ver_id_sp;
1487     c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1488         (cpu->hyperv_ver_id_sn & 0xffffff);
1489 
1490     c = &cpuid_ent[cpuid_i++];
1491     c->function = HV_CPUID_FEATURES;
1492     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1493     c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1494     c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1495 
1496     /* Unconditionally required with any Hyper-V enlightenment */
1497     c->eax |= HV_HYPERCALL_AVAILABLE;
1498 
1499     /* SynIC and Vmbus devices require messages/signals hypercalls */
1500     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1501         !cpu->hyperv_synic_kvm_only) {
1502         c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1503     }
1504 
1505 
1506     /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1507     c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1508 
1509     c = &cpuid_ent[cpuid_i++];
1510     c->function = HV_CPUID_ENLIGHTMENT_INFO;
1511     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1512     c->ebx = cpu->hyperv_spinlock_attempts;
1513 
1514     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1515         !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1516         c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1517     }
1518 
1519     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1520         c->eax |= HV_NO_NONARCH_CORESHARING;
1521     } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1522         c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1523             HV_NO_NONARCH_CORESHARING;
1524     }
1525 
1526     c = &cpuid_ent[cpuid_i++];
1527     c->function = HV_CPUID_IMPLEMENT_LIMITS;
1528     c->eax = cpu->hv_max_vps;
1529     c->ebx = cpu->hyperv_limits[0];
1530     c->ecx = cpu->hyperv_limits[1];
1531     c->edx = cpu->hyperv_limits[2];
1532 
1533     if (nested_eax) {
1534         uint32_t function;
1535 
1536         /* Create zeroed 0x40000006..0x40000009 leaves */
1537         for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1538              function < HV_CPUID_NESTED_FEATURES; function++) {
1539             c = &cpuid_ent[cpuid_i++];
1540             c->function = function;
1541         }
1542 
1543         c = &cpuid_ent[cpuid_i++];
1544         c->function = HV_CPUID_NESTED_FEATURES;
1545         c->eax = nested_eax;
1546     }
1547 
1548     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1549         c = &cpuid_ent[cpuid_i++];
1550         c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS;
1551         c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1552             HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1553         memcpy(signature, "Microsoft VS", 12);
1554         c->eax = 0;
1555         c->ebx = signature[0];
1556         c->ecx = signature[1];
1557         c->edx = signature[2];
1558 
1559         c = &cpuid_ent[cpuid_i++];
1560         c->function = HV_CPUID_SYNDBG_INTERFACE;
1561         memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
1562         c->eax = signature[0];
1563         c->ebx = 0;
1564         c->ecx = 0;
1565         c->edx = 0;
1566 
1567         c = &cpuid_ent[cpuid_i++];
1568         c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1569         c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
1570         c->ebx = 0;
1571         c->ecx = 0;
1572         c->edx = 0;
1573     }
1574 
1575     return cpuid_i;
1576 }
1577 
1578 static Error *hv_passthrough_mig_blocker;
1579 static Error *hv_no_nonarch_cs_mig_blocker;
1580 
1581 /* Checks that the exposed eVMCS version range is supported by KVM */
1582 static bool evmcs_version_supported(uint16_t evmcs_version,
1583                                     uint16_t supported_evmcs_version)
1584 {
1585     uint8_t min_version = evmcs_version & 0xff;
1586     uint8_t max_version = evmcs_version >> 8;
1587     uint8_t min_supported_version = supported_evmcs_version & 0xff;
1588     uint8_t max_supported_version = supported_evmcs_version >> 8;
1589 
1590     return (min_version >= min_supported_version) &&
1591         (max_version <= max_supported_version);
1592 }
1593 
1594 static int hyperv_init_vcpu(X86CPU *cpu)
1595 {
1596     CPUState *cs = CPU(cpu);
1597     Error *local_err = NULL;
1598     int ret;
1599 
1600     if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1601         error_setg(&hv_passthrough_mig_blocker,
1602                    "'hv-passthrough' CPU flag prevents migration, use explicit"
1603                    " set of hv-* flags instead");
1604         ret = migrate_add_blocker(&hv_passthrough_mig_blocker, &local_err);
1605         if (ret < 0) {
1606             error_report_err(local_err);
1607             return ret;
1608         }
1609     }
1610 
1611     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1612         hv_no_nonarch_cs_mig_blocker == NULL) {
1613         error_setg(&hv_no_nonarch_cs_mig_blocker,
1614                    "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1615                    " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1616                    " make sure SMT is disabled and/or that vCPUs are properly"
1617                    " pinned)");
1618         ret = migrate_add_blocker(&hv_no_nonarch_cs_mig_blocker, &local_err);
1619         if (ret < 0) {
1620             error_report_err(local_err);
1621             return ret;
1622         }
1623     }
1624 
1625     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1626         /*
1627          * the kernel doesn't support setting vp_index; assert that its value
1628          * is in sync
1629          */
1630         uint64_t value;
1631 
1632         ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value);
1633         if (ret < 0) {
1634             return ret;
1635         }
1636 
1637         if (value != hyperv_vp_index(CPU(cpu))) {
1638             error_report("kernel's vp_index != QEMU's vp_index");
1639             return -ENXIO;
1640         }
1641     }
1642 
1643     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1644         uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1645             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1646         ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1647         if (ret < 0) {
1648             error_report("failed to turn on HyperV SynIC in KVM: %s",
1649                          strerror(-ret));
1650             return ret;
1651         }
1652 
1653         if (!cpu->hyperv_synic_kvm_only) {
1654             ret = hyperv_x86_synic_add(cpu);
1655             if (ret < 0) {
1656                 error_report("failed to create HyperV SynIC: %s",
1657                              strerror(-ret));
1658                 return ret;
1659             }
1660         }
1661     }
1662 
1663     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1664         uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1665         uint16_t supported_evmcs_version;
1666 
1667         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1668                                   (uintptr_t)&supported_evmcs_version);
1669 
1670         /*
1671          * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1672          * option sets. Note: we hardcode the maximum supported eVMCS version
1673          * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1674          * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1675          * to be added.
1676          */
1677         if (ret < 0) {
1678             error_report("Hyper-V %s is not supported by kernel",
1679                          kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1680             return ret;
1681         }
1682 
1683         if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1684             error_report("eVMCS version range [%d..%d] is not supported by "
1685                          "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1686                          evmcs_version >> 8, supported_evmcs_version & 0xff,
1687                          supported_evmcs_version >> 8);
1688             return -ENOTSUP;
1689         }
1690     }
1691 
1692     if (cpu->hyperv_enforce_cpuid) {
1693         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1694         if (ret < 0) {
1695             error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1696                          strerror(-ret));
1697             return ret;
1698         }
1699     }
1700 
1701     /* Skip SynIC and VP_INDEX since they are hard deps already */
1702     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_STIMER) &&
1703         hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1704         hyperv_feat_enabled(cpu, HYPERV_FEAT_RUNTIME)) {
1705         hyperv_x86_set_vmbus_recommended_features_enabled();
1706     }
1707 
1708     return 0;
1709 }
1710 
1711 static Error *invtsc_mig_blocker;
1712 
1713 #define KVM_MAX_CPUID_ENTRIES  100
1714 
1715 static void kvm_init_xsave(CPUX86State *env)
1716 {
1717     if (has_xsave2) {
1718         env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1719     } else {
1720         env->xsave_buf_len = sizeof(struct kvm_xsave);
1721     }
1722 
1723     env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1724     memset(env->xsave_buf, 0, env->xsave_buf_len);
1725     /*
1726      * The allocated storage must be large enough for all of the
1727      * possible XSAVE state components.
1728      */
1729     assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1730            env->xsave_buf_len);
1731 }
1732 
1733 static void kvm_init_nested_state(CPUX86State *env)
1734 {
1735     struct kvm_vmx_nested_state_hdr *vmx_hdr;
1736     uint32_t size;
1737 
1738     if (!env->nested_state) {
1739         return;
1740     }
1741 
1742     size = env->nested_state->size;
1743 
1744     memset(env->nested_state, 0, size);
1745     env->nested_state->size = size;
1746 
1747     if (cpu_has_vmx(env)) {
1748         env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1749         vmx_hdr = &env->nested_state->hdr.vmx;
1750         vmx_hdr->vmxon_pa = -1ull;
1751         vmx_hdr->vmcs12_pa = -1ull;
1752     } else if (cpu_has_svm(env)) {
1753         env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1754     }
1755 }
1756 
1757 static uint32_t kvm_x86_build_cpuid(CPUX86State *env,
1758                                     struct kvm_cpuid_entry2 *entries,
1759                                     uint32_t cpuid_i)
1760 {
1761     uint32_t limit, i, j;
1762     uint32_t unused;
1763     struct kvm_cpuid_entry2 *c;
1764 
1765     cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1766 
1767     for (i = 0; i <= limit; i++) {
1768         j = 0;
1769         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1770             goto full;
1771         }
1772         c = &entries[cpuid_i++];
1773         switch (i) {
1774         case 2: {
1775             /* Keep reading function 2 till all the input is received */
1776             int times;
1777 
1778             c->function = i;
1779             c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1780                        KVM_CPUID_FLAG_STATE_READ_NEXT;
1781             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1782             times = c->eax & 0xff;
1783 
1784             for (j = 1; j < times; ++j) {
1785                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1786                     goto full;
1787                 }
1788                 c = &entries[cpuid_i++];
1789                 c->function = i;
1790                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1791                 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1792             }
1793             break;
1794         }
1795         case 0x1f:
1796             if (!x86_has_extended_topo(env->avail_cpu_topo)) {
1797                 cpuid_i--;
1798                 break;
1799             }
1800             /* fallthrough */
1801         case 4:
1802         case 0xb:
1803         case 0xd:
1804             for (j = 0; ; j++) {
1805                 if (i == 0xd && j == 64) {
1806                     break;
1807                 }
1808 
1809                 c->function = i;
1810                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1811                 c->index = j;
1812                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1813 
1814                 if (i == 4 && c->eax == 0) {
1815                     break;
1816                 }
1817                 if (i == 0xb && !(c->ecx & 0xff00)) {
1818                     break;
1819                 }
1820                 if (i == 0x1f && !(c->ecx & 0xff00)) {
1821                     break;
1822                 }
1823                 if (i == 0xd && c->eax == 0) {
1824                     continue;
1825                 }
1826                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1827                     goto full;
1828                 }
1829                 c = &entries[cpuid_i++];
1830             }
1831             break;
1832         case 0x12:
1833             for (j = 0; ; j++) {
1834                 c->function = i;
1835                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1836                 c->index = j;
1837                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1838 
1839                 if (j > 1 && (c->eax & 0xf) != 1) {
1840                     break;
1841                 }
1842 
1843                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1844                     goto full;
1845                 }
1846                 c = &entries[cpuid_i++];
1847             }
1848             break;
1849         case 0x7:
1850         case 0x14:
1851         case 0x1d:
1852         case 0x1e: {
1853             uint32_t times;
1854 
1855             c->function = i;
1856             c->index = 0;
1857             c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1858             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1859             times = c->eax;
1860 
1861             for (j = 1; j <= times; ++j) {
1862                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1863                     goto full;
1864                 }
1865                 c = &entries[cpuid_i++];
1866                 c->function = i;
1867                 c->index = j;
1868                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1869                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1870             }
1871             break;
1872         }
1873         default:
1874             c->function = i;
1875             c->flags = 0;
1876             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1877             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1878                 /*
1879                  * KVM already returns all zeroes if a CPUID entry is missing,
1880                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1881                  */
1882                 cpuid_i--;
1883             }
1884             break;
1885         }
1886     }
1887 
1888     if (limit >= 0x0a) {
1889         uint32_t eax, edx;
1890 
1891         cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1892 
1893         has_architectural_pmu_version = eax & 0xff;
1894         if (has_architectural_pmu_version > 0) {
1895             num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1896 
1897             /* Shouldn't be more than 32, since that's the number of bits
1898              * available in EBX to tell us _which_ counters are available.
1899              * Play it safe.
1900              */
1901             if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1902                 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1903             }
1904 
1905             if (has_architectural_pmu_version > 1) {
1906                 num_architectural_pmu_fixed_counters = edx & 0x1f;
1907 
1908                 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1909                     num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1910                 }
1911             }
1912         }
1913     }
1914 
1915     cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1916 
1917     for (i = 0x80000000; i <= limit; i++) {
1918         j = 0;
1919         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1920             goto full;
1921         }
1922         c = &entries[cpuid_i++];
1923 
1924         switch (i) {
1925         case 0x8000001d:
1926             /* Query for all AMD cache information leaves */
1927             for (j = 0; ; j++) {
1928                 c->function = i;
1929                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1930                 c->index = j;
1931                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1932 
1933                 if (c->eax == 0) {
1934                     break;
1935                 }
1936                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1937                     goto full;
1938                 }
1939                 c = &entries[cpuid_i++];
1940             }
1941             break;
1942         default:
1943             c->function = i;
1944             c->flags = 0;
1945             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1946             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1947                 /*
1948                  * KVM already returns all zeroes if a CPUID entry is missing,
1949                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1950                  */
1951                 cpuid_i--;
1952             }
1953             break;
1954         }
1955     }
1956 
1957     /* Call Centaur's CPUID instructions they are supported. */
1958     if (env->cpuid_xlevel2 > 0) {
1959         cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1960 
1961         for (i = 0xC0000000; i <= limit; i++) {
1962             j = 0;
1963             if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1964                 goto full;
1965             }
1966             c = &entries[cpuid_i++];
1967 
1968             c->function = i;
1969             c->flags = 0;
1970             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1971         }
1972     }
1973 
1974     return cpuid_i;
1975 
1976 full:
1977     fprintf(stderr, "cpuid_data is full, no space for "
1978             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1979     abort();
1980 }
1981 
1982 int kvm_arch_init_vcpu(CPUState *cs)
1983 {
1984     struct {
1985         struct kvm_cpuid2 cpuid;
1986         struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1987     } cpuid_data;
1988     /*
1989      * The kernel defines these structs with padding fields so there
1990      * should be no extra padding in our cpuid_data struct.
1991      */
1992     QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1993                       sizeof(struct kvm_cpuid2) +
1994                       sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1995 
1996     X86CPU *cpu = X86_CPU(cs);
1997     CPUX86State *env = &cpu->env;
1998     uint32_t cpuid_i;
1999     struct kvm_cpuid_entry2 *c;
2000     uint32_t signature[3];
2001     int kvm_base = KVM_CPUID_SIGNATURE;
2002     int max_nested_state_len;
2003     int r;
2004     Error *local_err = NULL;
2005 
2006     memset(&cpuid_data, 0, sizeof(cpuid_data));
2007 
2008     cpuid_i = 0;
2009 
2010     has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
2011 
2012     r = kvm_arch_set_tsc_khz(cs);
2013     if (r < 0) {
2014         return r;
2015     }
2016 
2017     /* vcpu's TSC frequency is either specified by user, or following
2018      * the value used by KVM if the former is not present. In the
2019      * latter case, we query it from KVM and record in env->tsc_khz,
2020      * so that vcpu's TSC frequency can be migrated later via this field.
2021      */
2022     if (!env->tsc_khz) {
2023         r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
2024             kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
2025             -ENOTSUP;
2026         if (r > 0) {
2027             env->tsc_khz = r;
2028         }
2029     }
2030 
2031     env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
2032 
2033     /*
2034      * kvm_hyperv_expand_features() is called here for the second time in case
2035      * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
2036      * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
2037      * check which Hyper-V enlightenments are supported and which are not, we
2038      * can still proceed and check/expand Hyper-V enlightenments here so legacy
2039      * behavior is preserved.
2040      */
2041     if (!kvm_hyperv_expand_features(cpu, &local_err)) {
2042         error_report_err(local_err);
2043         return -ENOSYS;
2044     }
2045 
2046     if (hyperv_enabled(cpu)) {
2047         r = hyperv_init_vcpu(cpu);
2048         if (r) {
2049             return r;
2050         }
2051 
2052         cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
2053         kvm_base = KVM_CPUID_SIGNATURE_NEXT;
2054         has_msr_hv_hypercall = true;
2055     }
2056 
2057     if (cs->kvm_state->xen_version) {
2058 #ifdef CONFIG_XEN_EMU
2059         struct kvm_cpuid_entry2 *xen_max_leaf;
2060 
2061         memcpy(signature, "XenVMMXenVMM", 12);
2062 
2063         xen_max_leaf = c = &cpuid_data.entries[cpuid_i++];
2064         c->function = kvm_base + XEN_CPUID_SIGNATURE;
2065         c->eax = kvm_base + XEN_CPUID_TIME;
2066         c->ebx = signature[0];
2067         c->ecx = signature[1];
2068         c->edx = signature[2];
2069 
2070         c = &cpuid_data.entries[cpuid_i++];
2071         c->function = kvm_base + XEN_CPUID_VENDOR;
2072         c->eax = cs->kvm_state->xen_version;
2073         c->ebx = 0;
2074         c->ecx = 0;
2075         c->edx = 0;
2076 
2077         c = &cpuid_data.entries[cpuid_i++];
2078         c->function = kvm_base + XEN_CPUID_HVM_MSR;
2079         /* Number of hypercall-transfer pages */
2080         c->eax = 1;
2081         /* Hypercall MSR base address */
2082         if (hyperv_enabled(cpu)) {
2083             c->ebx = XEN_HYPERCALL_MSR_HYPERV;
2084             kvm_xen_init(cs->kvm_state, c->ebx);
2085         } else {
2086             c->ebx = XEN_HYPERCALL_MSR;
2087         }
2088         c->ecx = 0;
2089         c->edx = 0;
2090 
2091         c = &cpuid_data.entries[cpuid_i++];
2092         c->function = kvm_base + XEN_CPUID_TIME;
2093         c->eax = ((!!tsc_is_stable_and_known(env) << 1) |
2094             (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2));
2095         /* default=0 (emulate if necessary) */
2096         c->ebx = 0;
2097         /* guest tsc frequency */
2098         c->ecx = env->user_tsc_khz;
2099         /* guest tsc incarnation (migration count) */
2100         c->edx = 0;
2101 
2102         c = &cpuid_data.entries[cpuid_i++];
2103         c->function = kvm_base + XEN_CPUID_HVM;
2104         xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM;
2105         if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) {
2106             c->function = kvm_base + XEN_CPUID_HVM;
2107 
2108             if (cpu->xen_vapic) {
2109                 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT;
2110                 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT;
2111             }
2112 
2113             c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS;
2114 
2115             if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) {
2116                 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT;
2117                 c->ebx = cs->cpu_index;
2118             }
2119 
2120             if (cs->kvm_state->xen_version >= XEN_VERSION(4, 17)) {
2121                 c->eax |= XEN_HVM_CPUID_UPCALL_VECTOR;
2122             }
2123         }
2124 
2125         r = kvm_xen_init_vcpu(cs);
2126         if (r) {
2127             return r;
2128         }
2129 
2130         kvm_base += 0x100;
2131 #else /* CONFIG_XEN_EMU */
2132         /* This should never happen as kvm_arch_init() would have died first. */
2133         fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n");
2134         abort();
2135 #endif
2136     } else if (cpu->expose_kvm) {
2137         memcpy(signature, "KVMKVMKVM\0\0\0", 12);
2138         c = &cpuid_data.entries[cpuid_i++];
2139         c->function = KVM_CPUID_SIGNATURE | kvm_base;
2140         c->eax = KVM_CPUID_FEATURES | kvm_base;
2141         c->ebx = signature[0];
2142         c->ecx = signature[1];
2143         c->edx = signature[2];
2144 
2145         c = &cpuid_data.entries[cpuid_i++];
2146         c->function = KVM_CPUID_FEATURES | kvm_base;
2147         c->eax = env->features[FEAT_KVM];
2148         c->edx = env->features[FEAT_KVM_HINTS];
2149     }
2150 
2151     if (cpu->kvm_pv_enforce_cpuid) {
2152         r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
2153         if (r < 0) {
2154             fprintf(stderr,
2155                     "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
2156                     strerror(-r));
2157             abort();
2158         }
2159     }
2160 
2161     cpuid_i = kvm_x86_build_cpuid(env, cpuid_data.entries, cpuid_i);
2162     cpuid_data.cpuid.nent = cpuid_i;
2163 
2164     if (((env->cpuid_version >> 8)&0xF) >= 6
2165         && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
2166            (CPUID_MCE | CPUID_MCA)) {
2167         uint64_t mcg_cap, unsupported_caps;
2168         int banks;
2169         int ret;
2170 
2171         ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
2172         if (ret < 0) {
2173             fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
2174             return ret;
2175         }
2176 
2177         if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
2178             error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2179                          (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
2180             return -ENOTSUP;
2181         }
2182 
2183         unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
2184         if (unsupported_caps) {
2185             if (unsupported_caps & MCG_LMCE_P) {
2186                 error_report("kvm: LMCE not supported");
2187                 return -ENOTSUP;
2188             }
2189             warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
2190                         unsupported_caps);
2191         }
2192 
2193         env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
2194         ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
2195         if (ret < 0) {
2196             fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
2197             return ret;
2198         }
2199     }
2200 
2201     cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
2202 
2203     c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
2204     if (c) {
2205         has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
2206                                   !!(c->ecx & CPUID_EXT_SMX);
2207     }
2208 
2209     c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
2210     if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
2211         has_msr_feature_control = true;
2212     }
2213 
2214     if (env->mcg_cap & MCG_LMCE_P) {
2215         has_msr_mcg_ext_ctl = has_msr_feature_control = true;
2216     }
2217 
2218     if (!env->user_tsc_khz) {
2219         if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2220             invtsc_mig_blocker == NULL) {
2221             error_setg(&invtsc_mig_blocker,
2222                        "State blocked by non-migratable CPU device"
2223                        " (invtsc flag)");
2224             r = migrate_add_blocker(&invtsc_mig_blocker, &local_err);
2225             if (r < 0) {
2226                 error_report_err(local_err);
2227                 return r;
2228             }
2229         }
2230     }
2231 
2232     if (cpu->vmware_cpuid_freq
2233         /* Guests depend on 0x40000000 to detect this feature, so only expose
2234          * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2235         && cpu->expose_kvm
2236         && kvm_base == KVM_CPUID_SIGNATURE
2237         /* TSC clock must be stable and known for this feature. */
2238         && tsc_is_stable_and_known(env)) {
2239 
2240         c = &cpuid_data.entries[cpuid_i++];
2241         c->function = KVM_CPUID_SIGNATURE | 0x10;
2242         c->eax = env->tsc_khz;
2243         c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2244         c->ecx = c->edx = 0;
2245 
2246         c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2247         c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2248     }
2249 
2250     cpuid_data.cpuid.nent = cpuid_i;
2251 
2252     cpuid_data.cpuid.padding = 0;
2253     r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2254     if (r) {
2255         goto fail;
2256     }
2257     kvm_init_xsave(env);
2258 
2259     max_nested_state_len = kvm_max_nested_state_length();
2260     if (max_nested_state_len > 0) {
2261         assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2262 
2263         if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2264             env->nested_state = g_malloc0(max_nested_state_len);
2265             env->nested_state->size = max_nested_state_len;
2266 
2267             kvm_init_nested_state(env);
2268         }
2269     }
2270 
2271     cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2272 
2273     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2274         has_msr_tsc_aux = false;
2275     }
2276 
2277     kvm_init_msrs(cpu);
2278 
2279     return 0;
2280 
2281  fail:
2282     migrate_del_blocker(&invtsc_mig_blocker);
2283 
2284     return r;
2285 }
2286 
2287 int kvm_arch_destroy_vcpu(CPUState *cs)
2288 {
2289     X86CPU *cpu = X86_CPU(cs);
2290     CPUX86State *env = &cpu->env;
2291 
2292     g_free(env->xsave_buf);
2293 
2294     g_free(cpu->kvm_msr_buf);
2295     cpu->kvm_msr_buf = NULL;
2296 
2297     g_free(env->nested_state);
2298     env->nested_state = NULL;
2299 
2300     qemu_del_vm_change_state_handler(cpu->vmsentry);
2301 
2302     return 0;
2303 }
2304 
2305 void kvm_arch_reset_vcpu(X86CPU *cpu)
2306 {
2307     CPUX86State *env = &cpu->env;
2308 
2309     env->xcr0 = 1;
2310     if (kvm_irqchip_in_kernel()) {
2311         env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2312                                           KVM_MP_STATE_UNINITIALIZED;
2313     } else {
2314         env->mp_state = KVM_MP_STATE_RUNNABLE;
2315     }
2316 
2317     /* enabled by default */
2318     env->poll_control_msr = 1;
2319 
2320     kvm_init_nested_state(env);
2321 
2322     sev_es_set_reset_vector(CPU(cpu));
2323 }
2324 
2325 void kvm_arch_after_reset_vcpu(X86CPU *cpu)
2326 {
2327     CPUX86State *env = &cpu->env;
2328     int i;
2329 
2330     /*
2331      * Reset SynIC after all other devices have been reset to let them remove
2332      * their SINT routes first.
2333      */
2334     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2335         for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2336             env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2337         }
2338 
2339         hyperv_x86_synic_reset(cpu);
2340     }
2341 }
2342 
2343 void kvm_arch_do_init_vcpu(X86CPU *cpu)
2344 {
2345     CPUX86State *env = &cpu->env;
2346 
2347     /* APs get directly into wait-for-SIPI state.  */
2348     if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2349         env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2350     }
2351 }
2352 
2353 static int kvm_get_supported_feature_msrs(KVMState *s)
2354 {
2355     int ret = 0;
2356 
2357     if (kvm_feature_msrs != NULL) {
2358         return 0;
2359     }
2360 
2361     if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2362         return 0;
2363     }
2364 
2365     struct kvm_msr_list msr_list;
2366 
2367     msr_list.nmsrs = 0;
2368     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2369     if (ret < 0 && ret != -E2BIG) {
2370         error_report("Fetch KVM feature MSR list failed: %s",
2371             strerror(-ret));
2372         return ret;
2373     }
2374 
2375     assert(msr_list.nmsrs > 0);
2376     kvm_feature_msrs = g_malloc0(sizeof(msr_list) +
2377                  msr_list.nmsrs * sizeof(msr_list.indices[0]));
2378 
2379     kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2380     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2381 
2382     if (ret < 0) {
2383         error_report("Fetch KVM feature MSR list failed: %s",
2384             strerror(-ret));
2385         g_free(kvm_feature_msrs);
2386         kvm_feature_msrs = NULL;
2387         return ret;
2388     }
2389 
2390     return 0;
2391 }
2392 
2393 static int kvm_get_supported_msrs(KVMState *s)
2394 {
2395     int ret = 0;
2396     struct kvm_msr_list msr_list, *kvm_msr_list;
2397 
2398     /*
2399      *  Obtain MSR list from KVM.  These are the MSRs that we must
2400      *  save/restore.
2401      */
2402     msr_list.nmsrs = 0;
2403     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2404     if (ret < 0 && ret != -E2BIG) {
2405         return ret;
2406     }
2407     /*
2408      * Old kernel modules had a bug and could write beyond the provided
2409      * memory. Allocate at least a safe amount of 1K.
2410      */
2411     kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2412                                           msr_list.nmsrs *
2413                                           sizeof(msr_list.indices[0])));
2414 
2415     kvm_msr_list->nmsrs = msr_list.nmsrs;
2416     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2417     if (ret >= 0) {
2418         int i;
2419 
2420         for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2421             switch (kvm_msr_list->indices[i]) {
2422             case MSR_STAR:
2423                 has_msr_star = true;
2424                 break;
2425             case MSR_VM_HSAVE_PA:
2426                 has_msr_hsave_pa = true;
2427                 break;
2428             case MSR_TSC_AUX:
2429                 has_msr_tsc_aux = true;
2430                 break;
2431             case MSR_TSC_ADJUST:
2432                 has_msr_tsc_adjust = true;
2433                 break;
2434             case MSR_IA32_TSCDEADLINE:
2435                 has_msr_tsc_deadline = true;
2436                 break;
2437             case MSR_IA32_SMBASE:
2438                 has_msr_smbase = true;
2439                 break;
2440             case MSR_SMI_COUNT:
2441                 has_msr_smi_count = true;
2442                 break;
2443             case MSR_IA32_MISC_ENABLE:
2444                 has_msr_misc_enable = true;
2445                 break;
2446             case MSR_IA32_BNDCFGS:
2447                 has_msr_bndcfgs = true;
2448                 break;
2449             case MSR_IA32_XSS:
2450                 has_msr_xss = true;
2451                 break;
2452             case MSR_IA32_UMWAIT_CONTROL:
2453                 has_msr_umwait = true;
2454                 break;
2455             case HV_X64_MSR_CRASH_CTL:
2456                 has_msr_hv_crash = true;
2457                 break;
2458             case HV_X64_MSR_RESET:
2459                 has_msr_hv_reset = true;
2460                 break;
2461             case HV_X64_MSR_VP_INDEX:
2462                 has_msr_hv_vpindex = true;
2463                 break;
2464             case HV_X64_MSR_VP_RUNTIME:
2465                 has_msr_hv_runtime = true;
2466                 break;
2467             case HV_X64_MSR_SCONTROL:
2468                 has_msr_hv_synic = true;
2469                 break;
2470             case HV_X64_MSR_STIMER0_CONFIG:
2471                 has_msr_hv_stimer = true;
2472                 break;
2473             case HV_X64_MSR_TSC_FREQUENCY:
2474                 has_msr_hv_frequencies = true;
2475                 break;
2476             case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2477                 has_msr_hv_reenlightenment = true;
2478                 break;
2479             case HV_X64_MSR_SYNDBG_OPTIONS:
2480                 has_msr_hv_syndbg_options = true;
2481                 break;
2482             case MSR_IA32_SPEC_CTRL:
2483                 has_msr_spec_ctrl = true;
2484                 break;
2485             case MSR_AMD64_TSC_RATIO:
2486                 has_tsc_scale_msr = true;
2487                 break;
2488             case MSR_IA32_TSX_CTRL:
2489                 has_msr_tsx_ctrl = true;
2490                 break;
2491             case MSR_VIRT_SSBD:
2492                 has_msr_virt_ssbd = true;
2493                 break;
2494             case MSR_IA32_ARCH_CAPABILITIES:
2495                 has_msr_arch_capabs = true;
2496                 break;
2497             case MSR_IA32_CORE_CAPABILITY:
2498                 has_msr_core_capabs = true;
2499                 break;
2500             case MSR_IA32_PERF_CAPABILITIES:
2501                 has_msr_perf_capabs = true;
2502                 break;
2503             case MSR_IA32_VMX_VMFUNC:
2504                 has_msr_vmx_vmfunc = true;
2505                 break;
2506             case MSR_IA32_UCODE_REV:
2507                 has_msr_ucode_rev = true;
2508                 break;
2509             case MSR_IA32_VMX_PROCBASED_CTLS2:
2510                 has_msr_vmx_procbased_ctls2 = true;
2511                 break;
2512             case MSR_IA32_PKRS:
2513                 has_msr_pkrs = true;
2514                 break;
2515             }
2516         }
2517     }
2518 
2519     g_free(kvm_msr_list);
2520 
2521     return ret;
2522 }
2523 
2524 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu, uint32_t msr,
2525                                         uint64_t *val)
2526 {
2527     CPUState *cs = CPU(cpu);
2528 
2529     *val = cs->nr_threads * cs->nr_cores; /* thread count, bits 15..0 */
2530     *val |= ((uint32_t)cs->nr_cores << 16); /* core count, bits 31..16 */
2531 
2532     return true;
2533 }
2534 
2535 static Notifier smram_machine_done;
2536 static KVMMemoryListener smram_listener;
2537 static AddressSpace smram_address_space;
2538 static MemoryRegion smram_as_root;
2539 static MemoryRegion smram_as_mem;
2540 
2541 static void register_smram_listener(Notifier *n, void *unused)
2542 {
2543     MemoryRegion *smram =
2544         (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2545 
2546     /* Outer container... */
2547     memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2548     memory_region_set_enabled(&smram_as_root, true);
2549 
2550     /* ... with two regions inside: normal system memory with low
2551      * priority, and...
2552      */
2553     memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2554                              get_system_memory(), 0, ~0ull);
2555     memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2556     memory_region_set_enabled(&smram_as_mem, true);
2557 
2558     if (smram) {
2559         /* ... SMRAM with higher priority */
2560         memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2561         memory_region_set_enabled(smram, true);
2562     }
2563 
2564     address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2565     kvm_memory_listener_register(kvm_state, &smram_listener,
2566                                  &smram_address_space, 1, "kvm-smram");
2567 }
2568 
2569 int kvm_arch_get_default_type(MachineState *ms)
2570 {
2571     return 0;
2572 }
2573 
2574 int kvm_arch_init(MachineState *ms, KVMState *s)
2575 {
2576     uint64_t identity_base = 0xfffbc000;
2577     uint64_t shadow_mem;
2578     int ret;
2579     struct utsname utsname;
2580     Error *local_err = NULL;
2581 
2582     /*
2583      * Initialize SEV context, if required
2584      *
2585      * If no memory encryption is requested (ms->cgs == NULL) this is
2586      * a no-op.
2587      *
2588      * It's also a no-op if a non-SEV confidential guest support
2589      * mechanism is selected.  SEV is the only mechanism available to
2590      * select on x86 at present, so this doesn't arise, but if new
2591      * mechanisms are supported in future (e.g. TDX), they'll need
2592      * their own initialization either here or elsewhere.
2593      */
2594     if (ms->cgs) {
2595         ret = confidential_guest_kvm_init(ms->cgs, &local_err);
2596         if (ret < 0) {
2597             error_report_err(local_err);
2598             return ret;
2599         }
2600     }
2601 
2602     has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2603     has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
2604 
2605     hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2606 
2607     has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2608     if (has_exception_payload) {
2609         ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2610         if (ret < 0) {
2611             error_report("kvm: Failed to enable exception payload cap: %s",
2612                          strerror(-ret));
2613             return ret;
2614         }
2615     }
2616 
2617     has_triple_fault_event = kvm_check_extension(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT);
2618     if (has_triple_fault_event) {
2619         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true);
2620         if (ret < 0) {
2621             error_report("kvm: Failed to enable triple fault event cap: %s",
2622                          strerror(-ret));
2623             return ret;
2624         }
2625     }
2626 
2627     if (s->xen_version) {
2628 #ifdef CONFIG_XEN_EMU
2629         if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) {
2630             error_report("kvm: Xen support only available in PC machine");
2631             return -ENOTSUP;
2632         }
2633         /* hyperv_enabled() doesn't work yet. */
2634         uint32_t msr = XEN_HYPERCALL_MSR;
2635         ret = kvm_xen_init(s, msr);
2636         if (ret < 0) {
2637             return ret;
2638         }
2639 #else
2640         error_report("kvm: Xen support not enabled in qemu");
2641         return -ENOTSUP;
2642 #endif
2643     }
2644 
2645     ret = kvm_get_supported_msrs(s);
2646     if (ret < 0) {
2647         return ret;
2648     }
2649 
2650     kvm_get_supported_feature_msrs(s);
2651 
2652     uname(&utsname);
2653     lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2654 
2655     /*
2656      * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2657      * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
2658      * Since these must be part of guest physical memory, we need to allocate
2659      * them, both by setting their start addresses in the kernel and by
2660      * creating a corresponding e820 entry. We need 4 pages before the BIOS,
2661      * so this value allows up to 16M BIOSes.
2662      */
2663     identity_base = 0xfeffc000;
2664     ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2665     if (ret < 0) {
2666         return ret;
2667     }
2668 
2669     /* Set TSS base one page after EPT identity map. */
2670     ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2671     if (ret < 0) {
2672         return ret;
2673     }
2674 
2675     /* Tell fw_cfg to notify the BIOS to reserve the range. */
2676     ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2677     if (ret < 0) {
2678         fprintf(stderr, "e820_add_entry() table is full\n");
2679         return ret;
2680     }
2681 
2682     shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2683     if (shadow_mem != -1) {
2684         shadow_mem /= 4096;
2685         ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2686         if (ret < 0) {
2687             return ret;
2688         }
2689     }
2690 
2691     if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2692         object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2693         x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2694         smram_machine_done.notify = register_smram_listener;
2695         qemu_add_machine_init_done_notifier(&smram_machine_done);
2696     }
2697 
2698     if (enable_cpu_pm) {
2699         int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2700 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2701 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2702 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2703 #endif
2704         if (disable_exits) {
2705             disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2706                               KVM_X86_DISABLE_EXITS_HLT |
2707                               KVM_X86_DISABLE_EXITS_PAUSE |
2708                               KVM_X86_DISABLE_EXITS_CSTATE);
2709         }
2710 
2711         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2712                                 disable_exits);
2713         if (ret < 0) {
2714             error_report("kvm: guest stopping CPU not supported: %s",
2715                          strerror(-ret));
2716         }
2717     }
2718 
2719     if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
2720         X86MachineState *x86ms = X86_MACHINE(ms);
2721 
2722         if (x86ms->bus_lock_ratelimit > 0) {
2723             ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
2724             if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
2725                 error_report("kvm: bus lock detection unsupported");
2726                 return -ENOTSUP;
2727             }
2728             ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
2729                                     KVM_BUS_LOCK_DETECTION_EXIT);
2730             if (ret < 0) {
2731                 error_report("kvm: Failed to enable bus lock detection cap: %s",
2732                              strerror(-ret));
2733                 return ret;
2734             }
2735             ratelimit_init(&bus_lock_ratelimit_ctrl);
2736             ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
2737                                 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
2738         }
2739     }
2740 
2741     if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE &&
2742         kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) {
2743             uint64_t notify_window_flags =
2744                 ((uint64_t)s->notify_window << 32) |
2745                 KVM_X86_NOTIFY_VMEXIT_ENABLED |
2746                 KVM_X86_NOTIFY_VMEXIT_USER;
2747             ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0,
2748                                     notify_window_flags);
2749             if (ret < 0) {
2750                 error_report("kvm: Failed to enable notify vmexit cap: %s",
2751                              strerror(-ret));
2752                 return ret;
2753             }
2754     }
2755     if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) {
2756         bool r;
2757 
2758         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0,
2759                                 KVM_MSR_EXIT_REASON_FILTER);
2760         if (ret) {
2761             error_report("Could not enable user space MSRs: %s",
2762                          strerror(-ret));
2763             exit(1);
2764         }
2765 
2766         r = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT,
2767                            kvm_rdmsr_core_thread_count, NULL);
2768         if (!r) {
2769             error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s",
2770                          strerror(-ret));
2771             exit(1);
2772         }
2773     }
2774 
2775     return 0;
2776 }
2777 
2778 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2779 {
2780     lhs->selector = rhs->selector;
2781     lhs->base = rhs->base;
2782     lhs->limit = rhs->limit;
2783     lhs->type = 3;
2784     lhs->present = 1;
2785     lhs->dpl = 3;
2786     lhs->db = 0;
2787     lhs->s = 1;
2788     lhs->l = 0;
2789     lhs->g = 0;
2790     lhs->avl = 0;
2791     lhs->unusable = 0;
2792 }
2793 
2794 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2795 {
2796     unsigned flags = rhs->flags;
2797     lhs->selector = rhs->selector;
2798     lhs->base = rhs->base;
2799     lhs->limit = rhs->limit;
2800     lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2801     lhs->present = (flags & DESC_P_MASK) != 0;
2802     lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2803     lhs->db = (flags >> DESC_B_SHIFT) & 1;
2804     lhs->s = (flags & DESC_S_MASK) != 0;
2805     lhs->l = (flags >> DESC_L_SHIFT) & 1;
2806     lhs->g = (flags & DESC_G_MASK) != 0;
2807     lhs->avl = (flags & DESC_AVL_MASK) != 0;
2808     lhs->unusable = !lhs->present;
2809     lhs->padding = 0;
2810 }
2811 
2812 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2813 {
2814     lhs->selector = rhs->selector;
2815     lhs->base = rhs->base;
2816     lhs->limit = rhs->limit;
2817     lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2818                  ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2819                  (rhs->dpl << DESC_DPL_SHIFT) |
2820                  (rhs->db << DESC_B_SHIFT) |
2821                  (rhs->s * DESC_S_MASK) |
2822                  (rhs->l << DESC_L_SHIFT) |
2823                  (rhs->g * DESC_G_MASK) |
2824                  (rhs->avl * DESC_AVL_MASK);
2825 }
2826 
2827 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2828 {
2829     if (set) {
2830         *kvm_reg = *qemu_reg;
2831     } else {
2832         *qemu_reg = *kvm_reg;
2833     }
2834 }
2835 
2836 static int kvm_getput_regs(X86CPU *cpu, int set)
2837 {
2838     CPUX86State *env = &cpu->env;
2839     struct kvm_regs regs;
2840     int ret = 0;
2841 
2842     if (!set) {
2843         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2844         if (ret < 0) {
2845             return ret;
2846         }
2847     }
2848 
2849     kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2850     kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2851     kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2852     kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2853     kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2854     kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2855     kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2856     kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2857 #ifdef TARGET_X86_64
2858     kvm_getput_reg(&regs.r8, &env->regs[8], set);
2859     kvm_getput_reg(&regs.r9, &env->regs[9], set);
2860     kvm_getput_reg(&regs.r10, &env->regs[10], set);
2861     kvm_getput_reg(&regs.r11, &env->regs[11], set);
2862     kvm_getput_reg(&regs.r12, &env->regs[12], set);
2863     kvm_getput_reg(&regs.r13, &env->regs[13], set);
2864     kvm_getput_reg(&regs.r14, &env->regs[14], set);
2865     kvm_getput_reg(&regs.r15, &env->regs[15], set);
2866 #endif
2867 
2868     kvm_getput_reg(&regs.rflags, &env->eflags, set);
2869     kvm_getput_reg(&regs.rip, &env->eip, set);
2870 
2871     if (set) {
2872         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2873     }
2874 
2875     return ret;
2876 }
2877 
2878 static int kvm_put_xsave(X86CPU *cpu)
2879 {
2880     CPUX86State *env = &cpu->env;
2881     void *xsave = env->xsave_buf;
2882 
2883     x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
2884 
2885     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2886 }
2887 
2888 static int kvm_put_xcrs(X86CPU *cpu)
2889 {
2890     CPUX86State *env = &cpu->env;
2891     struct kvm_xcrs xcrs = {};
2892 
2893     if (!has_xcrs) {
2894         return 0;
2895     }
2896 
2897     xcrs.nr_xcrs = 1;
2898     xcrs.flags = 0;
2899     xcrs.xcrs[0].xcr = 0;
2900     xcrs.xcrs[0].value = env->xcr0;
2901     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2902 }
2903 
2904 static int kvm_put_sregs(X86CPU *cpu)
2905 {
2906     CPUX86State *env = &cpu->env;
2907     struct kvm_sregs sregs;
2908 
2909     /*
2910      * The interrupt_bitmap is ignored because KVM_SET_SREGS is
2911      * always followed by KVM_SET_VCPU_EVENTS.
2912      */
2913     memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2914 
2915     if ((env->eflags & VM_MASK)) {
2916         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2917         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2918         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2919         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2920         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2921         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2922     } else {
2923         set_seg(&sregs.cs, &env->segs[R_CS]);
2924         set_seg(&sregs.ds, &env->segs[R_DS]);
2925         set_seg(&sregs.es, &env->segs[R_ES]);
2926         set_seg(&sregs.fs, &env->segs[R_FS]);
2927         set_seg(&sregs.gs, &env->segs[R_GS]);
2928         set_seg(&sregs.ss, &env->segs[R_SS]);
2929     }
2930 
2931     set_seg(&sregs.tr, &env->tr);
2932     set_seg(&sregs.ldt, &env->ldt);
2933 
2934     sregs.idt.limit = env->idt.limit;
2935     sregs.idt.base = env->idt.base;
2936     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2937     sregs.gdt.limit = env->gdt.limit;
2938     sregs.gdt.base = env->gdt.base;
2939     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2940 
2941     sregs.cr0 = env->cr[0];
2942     sregs.cr2 = env->cr[2];
2943     sregs.cr3 = env->cr[3];
2944     sregs.cr4 = env->cr[4];
2945 
2946     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2947     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2948 
2949     sregs.efer = env->efer;
2950 
2951     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2952 }
2953 
2954 static int kvm_put_sregs2(X86CPU *cpu)
2955 {
2956     CPUX86State *env = &cpu->env;
2957     struct kvm_sregs2 sregs;
2958     int i;
2959 
2960     sregs.flags = 0;
2961 
2962     if ((env->eflags & VM_MASK)) {
2963         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2964         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2965         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2966         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2967         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2968         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2969     } else {
2970         set_seg(&sregs.cs, &env->segs[R_CS]);
2971         set_seg(&sregs.ds, &env->segs[R_DS]);
2972         set_seg(&sregs.es, &env->segs[R_ES]);
2973         set_seg(&sregs.fs, &env->segs[R_FS]);
2974         set_seg(&sregs.gs, &env->segs[R_GS]);
2975         set_seg(&sregs.ss, &env->segs[R_SS]);
2976     }
2977 
2978     set_seg(&sregs.tr, &env->tr);
2979     set_seg(&sregs.ldt, &env->ldt);
2980 
2981     sregs.idt.limit = env->idt.limit;
2982     sregs.idt.base = env->idt.base;
2983     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2984     sregs.gdt.limit = env->gdt.limit;
2985     sregs.gdt.base = env->gdt.base;
2986     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2987 
2988     sregs.cr0 = env->cr[0];
2989     sregs.cr2 = env->cr[2];
2990     sregs.cr3 = env->cr[3];
2991     sregs.cr4 = env->cr[4];
2992 
2993     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2994     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2995 
2996     sregs.efer = env->efer;
2997 
2998     if (env->pdptrs_valid) {
2999         for (i = 0; i < 4; i++) {
3000             sregs.pdptrs[i] = env->pdptrs[i];
3001         }
3002         sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
3003     }
3004 
3005     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
3006 }
3007 
3008 
3009 static void kvm_msr_buf_reset(X86CPU *cpu)
3010 {
3011     memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
3012 }
3013 
3014 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
3015 {
3016     struct kvm_msrs *msrs = cpu->kvm_msr_buf;
3017     void *limit = ((void *)msrs) + MSR_BUF_SIZE;
3018     struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
3019 
3020     assert((void *)(entry + 1) <= limit);
3021 
3022     entry->index = index;
3023     entry->reserved = 0;
3024     entry->data = value;
3025     msrs->nmsrs++;
3026 }
3027 
3028 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
3029 {
3030     kvm_msr_buf_reset(cpu);
3031     kvm_msr_entry_add(cpu, index, value);
3032 
3033     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3034 }
3035 
3036 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value)
3037 {
3038     int ret;
3039     struct {
3040         struct kvm_msrs info;
3041         struct kvm_msr_entry entries[1];
3042     } msr_data = {
3043         .info.nmsrs = 1,
3044         .entries[0].index = index,
3045     };
3046 
3047     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
3048     if (ret < 0) {
3049         return ret;
3050     }
3051     assert(ret == 1);
3052     *value = msr_data.entries[0].data;
3053     return ret;
3054 }
3055 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
3056 {
3057     int ret;
3058 
3059     ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
3060     assert(ret == 1);
3061 }
3062 
3063 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
3064 {
3065     CPUX86State *env = &cpu->env;
3066     int ret;
3067 
3068     if (!has_msr_tsc_deadline) {
3069         return 0;
3070     }
3071 
3072     ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
3073     if (ret < 0) {
3074         return ret;
3075     }
3076 
3077     assert(ret == 1);
3078     return 0;
3079 }
3080 
3081 /*
3082  * Provide a separate write service for the feature control MSR in order to
3083  * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
3084  * before writing any other state because forcibly leaving nested mode
3085  * invalidates the VCPU state.
3086  */
3087 static int kvm_put_msr_feature_control(X86CPU *cpu)
3088 {
3089     int ret;
3090 
3091     if (!has_msr_feature_control) {
3092         return 0;
3093     }
3094 
3095     ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
3096                           cpu->env.msr_ia32_feature_control);
3097     if (ret < 0) {
3098         return ret;
3099     }
3100 
3101     assert(ret == 1);
3102     return 0;
3103 }
3104 
3105 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
3106 {
3107     uint32_t default1, can_be_one, can_be_zero;
3108     uint32_t must_be_one;
3109 
3110     switch (index) {
3111     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3112         default1 = 0x00000016;
3113         break;
3114     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3115         default1 = 0x0401e172;
3116         break;
3117     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3118         default1 = 0x000011ff;
3119         break;
3120     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3121         default1 = 0x00036dff;
3122         break;
3123     case MSR_IA32_VMX_PROCBASED_CTLS2:
3124         default1 = 0;
3125         break;
3126     default:
3127         abort();
3128     }
3129 
3130     /* If a feature bit is set, the control can be either set or clear.
3131      * Otherwise the value is limited to either 0 or 1 by default1.
3132      */
3133     can_be_one = features | default1;
3134     can_be_zero = features | ~default1;
3135     must_be_one = ~can_be_zero;
3136 
3137     /*
3138      * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
3139      * Bit 32:63 -> 1 if the control bit can be one.
3140      */
3141     return must_be_one | (((uint64_t)can_be_one) << 32);
3142 }
3143 
3144 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
3145 {
3146     uint64_t kvm_vmx_basic =
3147         kvm_arch_get_supported_msr_feature(kvm_state,
3148                                            MSR_IA32_VMX_BASIC);
3149 
3150     if (!kvm_vmx_basic) {
3151         /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
3152          * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
3153          */
3154         return;
3155     }
3156 
3157     uint64_t kvm_vmx_misc =
3158         kvm_arch_get_supported_msr_feature(kvm_state,
3159                                            MSR_IA32_VMX_MISC);
3160     uint64_t kvm_vmx_ept_vpid =
3161         kvm_arch_get_supported_msr_feature(kvm_state,
3162                                            MSR_IA32_VMX_EPT_VPID_CAP);
3163 
3164     /*
3165      * If the guest is 64-bit, a value of 1 is allowed for the host address
3166      * space size vmexit control.
3167      */
3168     uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
3169         ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
3170 
3171     /*
3172      * Bits 0-30, 32-44 and 50-53 come from the host.  KVM should
3173      * not change them for backwards compatibility.
3174      */
3175     uint64_t fixed_vmx_basic = kvm_vmx_basic &
3176         (MSR_VMX_BASIC_VMCS_REVISION_MASK |
3177          MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
3178          MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
3179 
3180     /*
3181      * Same for bits 0-4 and 25-27.  Bits 16-24 (CR3 target count) can
3182      * change in the future but are always zero for now, clear them to be
3183      * future proof.  Bits 32-63 in theory could change, though KVM does
3184      * not support dual-monitor treatment and probably never will; mask
3185      * them out as well.
3186      */
3187     uint64_t fixed_vmx_misc = kvm_vmx_misc &
3188         (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
3189          MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
3190 
3191     /*
3192      * EPT memory types should not change either, so we do not bother
3193      * adding features for them.
3194      */
3195     uint64_t fixed_vmx_ept_mask =
3196             (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
3197              MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
3198     uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
3199 
3200     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3201                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3202                                          f[FEAT_VMX_PROCBASED_CTLS]));
3203     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3204                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3205                                          f[FEAT_VMX_PINBASED_CTLS]));
3206     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3207                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
3208                                          f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
3209     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3210                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3211                                          f[FEAT_VMX_ENTRY_CTLS]));
3212     kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
3213                       make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
3214                                          f[FEAT_VMX_SECONDARY_CTLS]));
3215     kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
3216                       f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
3217     kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
3218                       f[FEAT_VMX_BASIC] | fixed_vmx_basic);
3219     kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
3220                       f[FEAT_VMX_MISC] | fixed_vmx_misc);
3221     if (has_msr_vmx_vmfunc) {
3222         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
3223     }
3224 
3225     /*
3226      * Just to be safe, write these with constant values.  The CRn_FIXED1
3227      * MSRs are generated by KVM based on the vCPU's CPUID.
3228      */
3229     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
3230                       CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
3231     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
3232                       CR4_VMXE_MASK);
3233 
3234     if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
3235         /* TSC multiplier (0x2032).  */
3236         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
3237     } else {
3238         /* Preemption timer (0x482E).  */
3239         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
3240     }
3241 }
3242 
3243 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
3244 {
3245     uint64_t kvm_perf_cap =
3246         kvm_arch_get_supported_msr_feature(kvm_state,
3247                                            MSR_IA32_PERF_CAPABILITIES);
3248 
3249     if (kvm_perf_cap) {
3250         kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
3251                         kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
3252     }
3253 }
3254 
3255 static int kvm_buf_set_msrs(X86CPU *cpu)
3256 {
3257     int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3258     if (ret < 0) {
3259         return ret;
3260     }
3261 
3262     if (ret < cpu->kvm_msr_buf->nmsrs) {
3263         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3264         error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
3265                      (uint32_t)e->index, (uint64_t)e->data);
3266     }
3267 
3268     assert(ret == cpu->kvm_msr_buf->nmsrs);
3269     return 0;
3270 }
3271 
3272 static void kvm_init_msrs(X86CPU *cpu)
3273 {
3274     CPUX86State *env = &cpu->env;
3275 
3276     kvm_msr_buf_reset(cpu);
3277     if (has_msr_arch_capabs) {
3278         kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3279                           env->features[FEAT_ARCH_CAPABILITIES]);
3280     }
3281 
3282     if (has_msr_core_capabs) {
3283         kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3284                           env->features[FEAT_CORE_CAPABILITY]);
3285     }
3286 
3287     if (has_msr_perf_capabs && cpu->enable_pmu) {
3288         kvm_msr_entry_add_perf(cpu, env->features);
3289     }
3290 
3291     if (has_msr_ucode_rev) {
3292         kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3293     }
3294 
3295     /*
3296      * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3297      * all kernels with MSR features should have them.
3298      */
3299     if (kvm_feature_msrs && cpu_has_vmx(env)) {
3300         kvm_msr_entry_add_vmx(cpu, env->features);
3301     }
3302 
3303     assert(kvm_buf_set_msrs(cpu) == 0);
3304 }
3305 
3306 static int kvm_put_msrs(X86CPU *cpu, int level)
3307 {
3308     CPUX86State *env = &cpu->env;
3309     int i;
3310 
3311     kvm_msr_buf_reset(cpu);
3312 
3313     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3314     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3315     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3316     kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3317     if (has_msr_star) {
3318         kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3319     }
3320     if (has_msr_hsave_pa) {
3321         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3322     }
3323     if (has_msr_tsc_aux) {
3324         kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3325     }
3326     if (has_msr_tsc_adjust) {
3327         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3328     }
3329     if (has_msr_misc_enable) {
3330         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3331                           env->msr_ia32_misc_enable);
3332     }
3333     if (has_msr_smbase) {
3334         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3335     }
3336     if (has_msr_smi_count) {
3337         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3338     }
3339     if (has_msr_pkrs) {
3340         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3341     }
3342     if (has_msr_bndcfgs) {
3343         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3344     }
3345     if (has_msr_xss) {
3346         kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3347     }
3348     if (has_msr_umwait) {
3349         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3350     }
3351     if (has_msr_spec_ctrl) {
3352         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3353     }
3354     if (has_tsc_scale_msr) {
3355         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3356     }
3357 
3358     if (has_msr_tsx_ctrl) {
3359         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3360     }
3361     if (has_msr_virt_ssbd) {
3362         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3363     }
3364 
3365 #ifdef TARGET_X86_64
3366     if (lm_capable_kernel) {
3367         kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3368         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3369         kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3370         kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3371     }
3372 #endif
3373 
3374     /*
3375      * The following MSRs have side effects on the guest or are too heavy
3376      * for normal writeback. Limit them to reset or full state updates.
3377      */
3378     if (level >= KVM_PUT_RESET_STATE) {
3379         kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3380         kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3381         kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3382         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3383             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3384         }
3385         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3386             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
3387         }
3388         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3389             kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
3390         }
3391         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3392             kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
3393         }
3394 
3395         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3396             kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3397         }
3398 
3399         if (has_architectural_pmu_version > 0) {
3400             if (has_architectural_pmu_version > 1) {
3401                 /* Stop the counter.  */
3402                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3403                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3404             }
3405 
3406             /* Set the counter values.  */
3407             for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3408                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
3409                                   env->msr_fixed_counters[i]);
3410             }
3411             for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3412                 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
3413                                   env->msr_gp_counters[i]);
3414                 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
3415                                   env->msr_gp_evtsel[i]);
3416             }
3417             if (has_architectural_pmu_version > 1) {
3418                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3419                                   env->msr_global_status);
3420                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3421                                   env->msr_global_ovf_ctrl);
3422 
3423                 /* Now start the PMU.  */
3424                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3425                                   env->msr_fixed_ctr_ctrl);
3426                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3427                                   env->msr_global_ctrl);
3428             }
3429         }
3430         /*
3431          * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3432          * only sync them to KVM on the first cpu
3433          */
3434         if (current_cpu == first_cpu) {
3435             if (has_msr_hv_hypercall) {
3436                 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
3437                                   env->msr_hv_guest_os_id);
3438                 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
3439                                   env->msr_hv_hypercall);
3440             }
3441             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3442                 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
3443                                   env->msr_hv_tsc);
3444             }
3445             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3446                 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
3447                                   env->msr_hv_reenlightenment_control);
3448                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
3449                                   env->msr_hv_tsc_emulation_control);
3450                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
3451                                   env->msr_hv_tsc_emulation_status);
3452             }
3453 #ifdef CONFIG_SYNDBG
3454             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) &&
3455                 has_msr_hv_syndbg_options) {
3456                 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS,
3457                                   hyperv_syndbg_query_options());
3458             }
3459 #endif
3460         }
3461         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3462             kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
3463                               env->msr_hv_vapic);
3464         }
3465         if (has_msr_hv_crash) {
3466             int j;
3467 
3468             for (j = 0; j < HV_CRASH_PARAMS; j++)
3469                 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
3470                                   env->msr_hv_crash_params[j]);
3471 
3472             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
3473         }
3474         if (has_msr_hv_runtime) {
3475             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
3476         }
3477         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
3478             && hv_vpindex_settable) {
3479             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
3480                               hyperv_vp_index(CPU(cpu)));
3481         }
3482         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3483             int j;
3484 
3485             kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
3486 
3487             kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
3488                               env->msr_hv_synic_control);
3489             kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
3490                               env->msr_hv_synic_evt_page);
3491             kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
3492                               env->msr_hv_synic_msg_page);
3493 
3494             for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
3495                 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
3496                                   env->msr_hv_synic_sint[j]);
3497             }
3498         }
3499         if (has_msr_hv_stimer) {
3500             int j;
3501 
3502             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
3503                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
3504                                 env->msr_hv_stimer_config[j]);
3505             }
3506 
3507             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
3508                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
3509                                 env->msr_hv_stimer_count[j]);
3510             }
3511         }
3512         if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3513             uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
3514 
3515             kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
3516             kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
3517             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
3518             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
3519             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
3520             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
3521             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
3522             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
3523             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
3524             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
3525             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3526             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
3527             for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3528                 /* The CPU GPs if we write to a bit above the physical limit of
3529                  * the host CPU (and KVM emulates that)
3530                  */
3531                 uint64_t mask = env->mtrr_var[i].mask;
3532                 mask &= phys_mask;
3533 
3534                 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3535                                   env->mtrr_var[i].base);
3536                 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
3537             }
3538         }
3539         if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3540             int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3541                                                     0x14, 1, R_EAX) & 0x7;
3542 
3543             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3544                             env->msr_rtit_ctrl);
3545             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3546                             env->msr_rtit_status);
3547             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3548                             env->msr_rtit_output_base);
3549             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3550                             env->msr_rtit_output_mask);
3551             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3552                             env->msr_rtit_cr3_match);
3553             for (i = 0; i < addr_num; i++) {
3554                 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3555                             env->msr_rtit_addrs[i]);
3556             }
3557         }
3558 
3559         if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3560             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
3561                               env->msr_ia32_sgxlepubkeyhash[0]);
3562             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
3563                               env->msr_ia32_sgxlepubkeyhash[1]);
3564             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
3565                               env->msr_ia32_sgxlepubkeyhash[2]);
3566             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
3567                               env->msr_ia32_sgxlepubkeyhash[3]);
3568         }
3569 
3570         if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3571             kvm_msr_entry_add(cpu, MSR_IA32_XFD,
3572                               env->msr_xfd);
3573             kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
3574                               env->msr_xfd_err);
3575         }
3576 
3577         if (kvm_enabled() && cpu->enable_pmu &&
3578             (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3579             uint64_t depth;
3580             int ret;
3581 
3582             /*
3583              * Only migrate Arch LBR states when the host Arch LBR depth
3584              * equals that of source guest's, this is to avoid mismatch
3585              * of guest/host config for the msr hence avoid unexpected
3586              * misbehavior.
3587              */
3588             ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3589 
3590             if (ret == 1 && !!depth && depth == env->msr_lbr_depth) {
3591                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl);
3592                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth);
3593 
3594                 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3595                     if (!env->lbr_records[i].from) {
3596                         continue;
3597                     }
3598                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i,
3599                                       env->lbr_records[i].from);
3600                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i,
3601                                       env->lbr_records[i].to);
3602                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i,
3603                                       env->lbr_records[i].info);
3604                 }
3605             }
3606         }
3607 
3608         /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3609          *       kvm_put_msr_feature_control. */
3610     }
3611 
3612     if (env->mcg_cap) {
3613         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3614         kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
3615         if (has_msr_mcg_ext_ctl) {
3616             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3617         }
3618         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3619             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
3620         }
3621     }
3622 
3623     return kvm_buf_set_msrs(cpu);
3624 }
3625 
3626 
3627 static int kvm_get_xsave(X86CPU *cpu)
3628 {
3629     CPUX86State *env = &cpu->env;
3630     void *xsave = env->xsave_buf;
3631     int type, ret;
3632 
3633     type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
3634     ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
3635     if (ret < 0) {
3636         return ret;
3637     }
3638     x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
3639 
3640     return 0;
3641 }
3642 
3643 static int kvm_get_xcrs(X86CPU *cpu)
3644 {
3645     CPUX86State *env = &cpu->env;
3646     int i, ret;
3647     struct kvm_xcrs xcrs;
3648 
3649     if (!has_xcrs) {
3650         return 0;
3651     }
3652 
3653     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3654     if (ret < 0) {
3655         return ret;
3656     }
3657 
3658     for (i = 0; i < xcrs.nr_xcrs; i++) {
3659         /* Only support xcr0 now */
3660         if (xcrs.xcrs[i].xcr == 0) {
3661             env->xcr0 = xcrs.xcrs[i].value;
3662             break;
3663         }
3664     }
3665     return 0;
3666 }
3667 
3668 static int kvm_get_sregs(X86CPU *cpu)
3669 {
3670     CPUX86State *env = &cpu->env;
3671     struct kvm_sregs sregs;
3672     int ret;
3673 
3674     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3675     if (ret < 0) {
3676         return ret;
3677     }
3678 
3679     /*
3680      * The interrupt_bitmap is ignored because KVM_GET_SREGS is
3681      * always preceded by KVM_GET_VCPU_EVENTS.
3682      */
3683 
3684     get_seg(&env->segs[R_CS], &sregs.cs);
3685     get_seg(&env->segs[R_DS], &sregs.ds);
3686     get_seg(&env->segs[R_ES], &sregs.es);
3687     get_seg(&env->segs[R_FS], &sregs.fs);
3688     get_seg(&env->segs[R_GS], &sregs.gs);
3689     get_seg(&env->segs[R_SS], &sregs.ss);
3690 
3691     get_seg(&env->tr, &sregs.tr);
3692     get_seg(&env->ldt, &sregs.ldt);
3693 
3694     env->idt.limit = sregs.idt.limit;
3695     env->idt.base = sregs.idt.base;
3696     env->gdt.limit = sregs.gdt.limit;
3697     env->gdt.base = sregs.gdt.base;
3698 
3699     env->cr[0] = sregs.cr0;
3700     env->cr[2] = sregs.cr2;
3701     env->cr[3] = sregs.cr3;
3702     env->cr[4] = sregs.cr4;
3703 
3704     env->efer = sregs.efer;
3705     if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
3706         env->cr[0] & CR0_PG_MASK) {
3707         env->efer |= MSR_EFER_LMA;
3708     }
3709 
3710     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3711     x86_update_hflags(env);
3712 
3713     return 0;
3714 }
3715 
3716 static int kvm_get_sregs2(X86CPU *cpu)
3717 {
3718     CPUX86State *env = &cpu->env;
3719     struct kvm_sregs2 sregs;
3720     int i, ret;
3721 
3722     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
3723     if (ret < 0) {
3724         return ret;
3725     }
3726 
3727     get_seg(&env->segs[R_CS], &sregs.cs);
3728     get_seg(&env->segs[R_DS], &sregs.ds);
3729     get_seg(&env->segs[R_ES], &sregs.es);
3730     get_seg(&env->segs[R_FS], &sregs.fs);
3731     get_seg(&env->segs[R_GS], &sregs.gs);
3732     get_seg(&env->segs[R_SS], &sregs.ss);
3733 
3734     get_seg(&env->tr, &sregs.tr);
3735     get_seg(&env->ldt, &sregs.ldt);
3736 
3737     env->idt.limit = sregs.idt.limit;
3738     env->idt.base = sregs.idt.base;
3739     env->gdt.limit = sregs.gdt.limit;
3740     env->gdt.base = sregs.gdt.base;
3741 
3742     env->cr[0] = sregs.cr0;
3743     env->cr[2] = sregs.cr2;
3744     env->cr[3] = sregs.cr3;
3745     env->cr[4] = sregs.cr4;
3746 
3747     env->efer = sregs.efer;
3748     if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
3749         env->cr[0] & CR0_PG_MASK) {
3750         env->efer |= MSR_EFER_LMA;
3751     }
3752 
3753     env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
3754 
3755     if (env->pdptrs_valid) {
3756         for (i = 0; i < 4; i++) {
3757             env->pdptrs[i] = sregs.pdptrs[i];
3758         }
3759     }
3760 
3761     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3762     x86_update_hflags(env);
3763 
3764     return 0;
3765 }
3766 
3767 static int kvm_get_msrs(X86CPU *cpu)
3768 {
3769     CPUX86State *env = &cpu->env;
3770     struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3771     int ret, i;
3772     uint64_t mtrr_top_bits;
3773 
3774     kvm_msr_buf_reset(cpu);
3775 
3776     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3777     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3778     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3779     kvm_msr_entry_add(cpu, MSR_PAT, 0);
3780     if (has_msr_star) {
3781         kvm_msr_entry_add(cpu, MSR_STAR, 0);
3782     }
3783     if (has_msr_hsave_pa) {
3784         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3785     }
3786     if (has_msr_tsc_aux) {
3787         kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3788     }
3789     if (has_msr_tsc_adjust) {
3790         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3791     }
3792     if (has_msr_tsc_deadline) {
3793         kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3794     }
3795     if (has_msr_misc_enable) {
3796         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3797     }
3798     if (has_msr_smbase) {
3799         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3800     }
3801     if (has_msr_smi_count) {
3802         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3803     }
3804     if (has_msr_feature_control) {
3805         kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3806     }
3807     if (has_msr_pkrs) {
3808         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3809     }
3810     if (has_msr_bndcfgs) {
3811         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3812     }
3813     if (has_msr_xss) {
3814         kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3815     }
3816     if (has_msr_umwait) {
3817         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3818     }
3819     if (has_msr_spec_ctrl) {
3820         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3821     }
3822     if (has_tsc_scale_msr) {
3823         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
3824     }
3825 
3826     if (has_msr_tsx_ctrl) {
3827         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3828     }
3829     if (has_msr_virt_ssbd) {
3830         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3831     }
3832     if (!env->tsc_valid) {
3833         kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3834         env->tsc_valid = !runstate_is_running();
3835     }
3836 
3837 #ifdef TARGET_X86_64
3838     if (lm_capable_kernel) {
3839         kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3840         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3841         kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3842         kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3843     }
3844 #endif
3845     kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3846     kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3847     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3848         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3849     }
3850     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3851         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3852     }
3853     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3854         kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3855     }
3856     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3857         kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3858     }
3859     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3860         kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3861     }
3862     if (has_architectural_pmu_version > 0) {
3863         if (has_architectural_pmu_version > 1) {
3864             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3865             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3866             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3867             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3868         }
3869         for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3870             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3871         }
3872         for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3873             kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3874             kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3875         }
3876     }
3877 
3878     if (env->mcg_cap) {
3879         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3880         kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3881         if (has_msr_mcg_ext_ctl) {
3882             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3883         }
3884         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3885             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3886         }
3887     }
3888 
3889     if (has_msr_hv_hypercall) {
3890         kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3891         kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3892     }
3893     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3894         kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3895     }
3896     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3897         kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3898     }
3899     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3900         kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3901         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3902         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3903     }
3904     if (has_msr_hv_syndbg_options) {
3905         kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0);
3906     }
3907     if (has_msr_hv_crash) {
3908         int j;
3909 
3910         for (j = 0; j < HV_CRASH_PARAMS; j++) {
3911             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3912         }
3913     }
3914     if (has_msr_hv_runtime) {
3915         kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3916     }
3917     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3918         uint32_t msr;
3919 
3920         kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3921         kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3922         kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3923         for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3924             kvm_msr_entry_add(cpu, msr, 0);
3925         }
3926     }
3927     if (has_msr_hv_stimer) {
3928         uint32_t msr;
3929 
3930         for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3931              msr++) {
3932             kvm_msr_entry_add(cpu, msr, 0);
3933         }
3934     }
3935     if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3936         kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3937         kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3938         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3939         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3940         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3941         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3942         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3943         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3944         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3945         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3946         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3947         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
3948         for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3949             kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3950             kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
3951         }
3952     }
3953 
3954     if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3955         int addr_num =
3956             kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3957 
3958         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3959         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3960         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3961         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3962         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3963         for (i = 0; i < addr_num; i++) {
3964             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3965         }
3966     }
3967 
3968     if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3969         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
3970         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
3971         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
3972         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
3973     }
3974 
3975     if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3976         kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
3977         kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
3978     }
3979 
3980     if (kvm_enabled() && cpu->enable_pmu &&
3981         (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3982         uint64_t depth;
3983 
3984         ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3985         if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) {
3986             kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0);
3987             kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0);
3988 
3989             for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3990                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0);
3991                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0);
3992                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0);
3993             }
3994         }
3995     }
3996 
3997     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
3998     if (ret < 0) {
3999         return ret;
4000     }
4001 
4002     if (ret < cpu->kvm_msr_buf->nmsrs) {
4003         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
4004         error_report("error: failed to get MSR 0x%" PRIx32,
4005                      (uint32_t)e->index);
4006     }
4007 
4008     assert(ret == cpu->kvm_msr_buf->nmsrs);
4009     /*
4010      * MTRR masks: Each mask consists of 5 parts
4011      * a  10..0: must be zero
4012      * b  11   : valid bit
4013      * c n-1.12: actual mask bits
4014      * d  51..n: reserved must be zero
4015      * e  63.52: reserved must be zero
4016      *
4017      * 'n' is the number of physical bits supported by the CPU and is
4018      * apparently always <= 52.   We know our 'n' but don't know what
4019      * the destinations 'n' is; it might be smaller, in which case
4020      * it masks (c) on loading. It might be larger, in which case
4021      * we fill 'd' so that d..c is consistent irrespetive of the 'n'
4022      * we're migrating to.
4023      */
4024 
4025     if (cpu->fill_mtrr_mask) {
4026         QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
4027         assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
4028         mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
4029     } else {
4030         mtrr_top_bits = 0;
4031     }
4032 
4033     for (i = 0; i < ret; i++) {
4034         uint32_t index = msrs[i].index;
4035         switch (index) {
4036         case MSR_IA32_SYSENTER_CS:
4037             env->sysenter_cs = msrs[i].data;
4038             break;
4039         case MSR_IA32_SYSENTER_ESP:
4040             env->sysenter_esp = msrs[i].data;
4041             break;
4042         case MSR_IA32_SYSENTER_EIP:
4043             env->sysenter_eip = msrs[i].data;
4044             break;
4045         case MSR_PAT:
4046             env->pat = msrs[i].data;
4047             break;
4048         case MSR_STAR:
4049             env->star = msrs[i].data;
4050             break;
4051 #ifdef TARGET_X86_64
4052         case MSR_CSTAR:
4053             env->cstar = msrs[i].data;
4054             break;
4055         case MSR_KERNELGSBASE:
4056             env->kernelgsbase = msrs[i].data;
4057             break;
4058         case MSR_FMASK:
4059             env->fmask = msrs[i].data;
4060             break;
4061         case MSR_LSTAR:
4062             env->lstar = msrs[i].data;
4063             break;
4064 #endif
4065         case MSR_IA32_TSC:
4066             env->tsc = msrs[i].data;
4067             break;
4068         case MSR_TSC_AUX:
4069             env->tsc_aux = msrs[i].data;
4070             break;
4071         case MSR_TSC_ADJUST:
4072             env->tsc_adjust = msrs[i].data;
4073             break;
4074         case MSR_IA32_TSCDEADLINE:
4075             env->tsc_deadline = msrs[i].data;
4076             break;
4077         case MSR_VM_HSAVE_PA:
4078             env->vm_hsave = msrs[i].data;
4079             break;
4080         case MSR_KVM_SYSTEM_TIME:
4081             env->system_time_msr = msrs[i].data;
4082             break;
4083         case MSR_KVM_WALL_CLOCK:
4084             env->wall_clock_msr = msrs[i].data;
4085             break;
4086         case MSR_MCG_STATUS:
4087             env->mcg_status = msrs[i].data;
4088             break;
4089         case MSR_MCG_CTL:
4090             env->mcg_ctl = msrs[i].data;
4091             break;
4092         case MSR_MCG_EXT_CTL:
4093             env->mcg_ext_ctl = msrs[i].data;
4094             break;
4095         case MSR_IA32_MISC_ENABLE:
4096             env->msr_ia32_misc_enable = msrs[i].data;
4097             break;
4098         case MSR_IA32_SMBASE:
4099             env->smbase = msrs[i].data;
4100             break;
4101         case MSR_SMI_COUNT:
4102             env->msr_smi_count = msrs[i].data;
4103             break;
4104         case MSR_IA32_FEATURE_CONTROL:
4105             env->msr_ia32_feature_control = msrs[i].data;
4106             break;
4107         case MSR_IA32_BNDCFGS:
4108             env->msr_bndcfgs = msrs[i].data;
4109             break;
4110         case MSR_IA32_XSS:
4111             env->xss = msrs[i].data;
4112             break;
4113         case MSR_IA32_UMWAIT_CONTROL:
4114             env->umwait = msrs[i].data;
4115             break;
4116         case MSR_IA32_PKRS:
4117             env->pkrs = msrs[i].data;
4118             break;
4119         default:
4120             if (msrs[i].index >= MSR_MC0_CTL &&
4121                 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
4122                 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
4123             }
4124             break;
4125         case MSR_KVM_ASYNC_PF_EN:
4126             env->async_pf_en_msr = msrs[i].data;
4127             break;
4128         case MSR_KVM_ASYNC_PF_INT:
4129             env->async_pf_int_msr = msrs[i].data;
4130             break;
4131         case MSR_KVM_PV_EOI_EN:
4132             env->pv_eoi_en_msr = msrs[i].data;
4133             break;
4134         case MSR_KVM_STEAL_TIME:
4135             env->steal_time_msr = msrs[i].data;
4136             break;
4137         case MSR_KVM_POLL_CONTROL: {
4138             env->poll_control_msr = msrs[i].data;
4139             break;
4140         }
4141         case MSR_CORE_PERF_FIXED_CTR_CTRL:
4142             env->msr_fixed_ctr_ctrl = msrs[i].data;
4143             break;
4144         case MSR_CORE_PERF_GLOBAL_CTRL:
4145             env->msr_global_ctrl = msrs[i].data;
4146             break;
4147         case MSR_CORE_PERF_GLOBAL_STATUS:
4148             env->msr_global_status = msrs[i].data;
4149             break;
4150         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
4151             env->msr_global_ovf_ctrl = msrs[i].data;
4152             break;
4153         case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
4154             env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
4155             break;
4156         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
4157             env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
4158             break;
4159         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
4160             env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
4161             break;
4162         case HV_X64_MSR_HYPERCALL:
4163             env->msr_hv_hypercall = msrs[i].data;
4164             break;
4165         case HV_X64_MSR_GUEST_OS_ID:
4166             env->msr_hv_guest_os_id = msrs[i].data;
4167             break;
4168         case HV_X64_MSR_APIC_ASSIST_PAGE:
4169             env->msr_hv_vapic = msrs[i].data;
4170             break;
4171         case HV_X64_MSR_REFERENCE_TSC:
4172             env->msr_hv_tsc = msrs[i].data;
4173             break;
4174         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4175             env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
4176             break;
4177         case HV_X64_MSR_VP_RUNTIME:
4178             env->msr_hv_runtime = msrs[i].data;
4179             break;
4180         case HV_X64_MSR_SCONTROL:
4181             env->msr_hv_synic_control = msrs[i].data;
4182             break;
4183         case HV_X64_MSR_SIEFP:
4184             env->msr_hv_synic_evt_page = msrs[i].data;
4185             break;
4186         case HV_X64_MSR_SIMP:
4187             env->msr_hv_synic_msg_page = msrs[i].data;
4188             break;
4189         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
4190             env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
4191             break;
4192         case HV_X64_MSR_STIMER0_CONFIG:
4193         case HV_X64_MSR_STIMER1_CONFIG:
4194         case HV_X64_MSR_STIMER2_CONFIG:
4195         case HV_X64_MSR_STIMER3_CONFIG:
4196             env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
4197                                 msrs[i].data;
4198             break;
4199         case HV_X64_MSR_STIMER0_COUNT:
4200         case HV_X64_MSR_STIMER1_COUNT:
4201         case HV_X64_MSR_STIMER2_COUNT:
4202         case HV_X64_MSR_STIMER3_COUNT:
4203             env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
4204                                 msrs[i].data;
4205             break;
4206         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4207             env->msr_hv_reenlightenment_control = msrs[i].data;
4208             break;
4209         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4210             env->msr_hv_tsc_emulation_control = msrs[i].data;
4211             break;
4212         case HV_X64_MSR_TSC_EMULATION_STATUS:
4213             env->msr_hv_tsc_emulation_status = msrs[i].data;
4214             break;
4215         case HV_X64_MSR_SYNDBG_OPTIONS:
4216             env->msr_hv_syndbg_options = msrs[i].data;
4217             break;
4218         case MSR_MTRRdefType:
4219             env->mtrr_deftype = msrs[i].data;
4220             break;
4221         case MSR_MTRRfix64K_00000:
4222             env->mtrr_fixed[0] = msrs[i].data;
4223             break;
4224         case MSR_MTRRfix16K_80000:
4225             env->mtrr_fixed[1] = msrs[i].data;
4226             break;
4227         case MSR_MTRRfix16K_A0000:
4228             env->mtrr_fixed[2] = msrs[i].data;
4229             break;
4230         case MSR_MTRRfix4K_C0000:
4231             env->mtrr_fixed[3] = msrs[i].data;
4232             break;
4233         case MSR_MTRRfix4K_C8000:
4234             env->mtrr_fixed[4] = msrs[i].data;
4235             break;
4236         case MSR_MTRRfix4K_D0000:
4237             env->mtrr_fixed[5] = msrs[i].data;
4238             break;
4239         case MSR_MTRRfix4K_D8000:
4240             env->mtrr_fixed[6] = msrs[i].data;
4241             break;
4242         case MSR_MTRRfix4K_E0000:
4243             env->mtrr_fixed[7] = msrs[i].data;
4244             break;
4245         case MSR_MTRRfix4K_E8000:
4246             env->mtrr_fixed[8] = msrs[i].data;
4247             break;
4248         case MSR_MTRRfix4K_F0000:
4249             env->mtrr_fixed[9] = msrs[i].data;
4250             break;
4251         case MSR_MTRRfix4K_F8000:
4252             env->mtrr_fixed[10] = msrs[i].data;
4253             break;
4254         case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
4255             if (index & 1) {
4256                 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
4257                                                                mtrr_top_bits;
4258             } else {
4259                 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
4260             }
4261             break;
4262         case MSR_IA32_SPEC_CTRL:
4263             env->spec_ctrl = msrs[i].data;
4264             break;
4265         case MSR_AMD64_TSC_RATIO:
4266             env->amd_tsc_scale_msr = msrs[i].data;
4267             break;
4268         case MSR_IA32_TSX_CTRL:
4269             env->tsx_ctrl = msrs[i].data;
4270             break;
4271         case MSR_VIRT_SSBD:
4272             env->virt_ssbd = msrs[i].data;
4273             break;
4274         case MSR_IA32_RTIT_CTL:
4275             env->msr_rtit_ctrl = msrs[i].data;
4276             break;
4277         case MSR_IA32_RTIT_STATUS:
4278             env->msr_rtit_status = msrs[i].data;
4279             break;
4280         case MSR_IA32_RTIT_OUTPUT_BASE:
4281             env->msr_rtit_output_base = msrs[i].data;
4282             break;
4283         case MSR_IA32_RTIT_OUTPUT_MASK:
4284             env->msr_rtit_output_mask = msrs[i].data;
4285             break;
4286         case MSR_IA32_RTIT_CR3_MATCH:
4287             env->msr_rtit_cr3_match = msrs[i].data;
4288             break;
4289         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
4290             env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
4291             break;
4292         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
4293             env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
4294                            msrs[i].data;
4295             break;
4296         case MSR_IA32_XFD:
4297             env->msr_xfd = msrs[i].data;
4298             break;
4299         case MSR_IA32_XFD_ERR:
4300             env->msr_xfd_err = msrs[i].data;
4301             break;
4302         case MSR_ARCH_LBR_CTL:
4303             env->msr_lbr_ctl = msrs[i].data;
4304             break;
4305         case MSR_ARCH_LBR_DEPTH:
4306             env->msr_lbr_depth = msrs[i].data;
4307             break;
4308         case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31:
4309             env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data;
4310             break;
4311         case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31:
4312             env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data;
4313             break;
4314         case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31:
4315             env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data;
4316             break;
4317         }
4318     }
4319 
4320     return 0;
4321 }
4322 
4323 static int kvm_put_mp_state(X86CPU *cpu)
4324 {
4325     struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4326 
4327     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4328 }
4329 
4330 static int kvm_get_mp_state(X86CPU *cpu)
4331 {
4332     CPUState *cs = CPU(cpu);
4333     CPUX86State *env = &cpu->env;
4334     struct kvm_mp_state mp_state;
4335     int ret;
4336 
4337     ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
4338     if (ret < 0) {
4339         return ret;
4340     }
4341     env->mp_state = mp_state.mp_state;
4342     if (kvm_irqchip_in_kernel()) {
4343         cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
4344     }
4345     return 0;
4346 }
4347 
4348 static int kvm_get_apic(X86CPU *cpu)
4349 {
4350     DeviceState *apic = cpu->apic_state;
4351     struct kvm_lapic_state kapic;
4352     int ret;
4353 
4354     if (apic && kvm_irqchip_in_kernel()) {
4355         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
4356         if (ret < 0) {
4357             return ret;
4358         }
4359 
4360         kvm_get_apic_state(apic, &kapic);
4361     }
4362     return 0;
4363 }
4364 
4365 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
4366 {
4367     CPUState *cs = CPU(cpu);
4368     CPUX86State *env = &cpu->env;
4369     struct kvm_vcpu_events events = {};
4370 
4371     events.flags = 0;
4372 
4373     if (has_exception_payload) {
4374         events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4375         events.exception.pending = env->exception_pending;
4376         events.exception_has_payload = env->exception_has_payload;
4377         events.exception_payload = env->exception_payload;
4378     }
4379     events.exception.nr = env->exception_nr;
4380     events.exception.injected = env->exception_injected;
4381     events.exception.has_error_code = env->has_error_code;
4382     events.exception.error_code = env->error_code;
4383 
4384     events.interrupt.injected = (env->interrupt_injected >= 0);
4385     events.interrupt.nr = env->interrupt_injected;
4386     events.interrupt.soft = env->soft_interrupt;
4387 
4388     events.nmi.injected = env->nmi_injected;
4389     events.nmi.pending = env->nmi_pending;
4390     events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
4391 
4392     events.sipi_vector = env->sipi_vector;
4393 
4394     if (has_msr_smbase) {
4395         events.smi.smm = !!(env->hflags & HF_SMM_MASK);
4396         events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
4397         if (kvm_irqchip_in_kernel()) {
4398             /* As soon as these are moved to the kernel, remove them
4399              * from cs->interrupt_request.
4400              */
4401             events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
4402             events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
4403             cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
4404         } else {
4405             /* Keep these in cs->interrupt_request.  */
4406             events.smi.pending = 0;
4407             events.smi.latched_init = 0;
4408         }
4409         /* Stop SMI delivery on old machine types to avoid a reboot
4410          * on an inward migration of an old VM.
4411          */
4412         if (!cpu->kvm_no_smi_migration) {
4413             events.flags |= KVM_VCPUEVENT_VALID_SMM;
4414         }
4415     }
4416 
4417     if (level >= KVM_PUT_RESET_STATE) {
4418         events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
4419         if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
4420             events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
4421         }
4422     }
4423 
4424     if (has_triple_fault_event) {
4425         events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
4426         events.triple_fault.pending = env->triple_fault_pending;
4427     }
4428 
4429     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
4430 }
4431 
4432 static int kvm_get_vcpu_events(X86CPU *cpu)
4433 {
4434     CPUX86State *env = &cpu->env;
4435     struct kvm_vcpu_events events;
4436     int ret;
4437 
4438     memset(&events, 0, sizeof(events));
4439     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
4440     if (ret < 0) {
4441        return ret;
4442     }
4443 
4444     if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4445         env->exception_pending = events.exception.pending;
4446         env->exception_has_payload = events.exception_has_payload;
4447         env->exception_payload = events.exception_payload;
4448     } else {
4449         env->exception_pending = 0;
4450         env->exception_has_payload = false;
4451     }
4452     env->exception_injected = events.exception.injected;
4453     env->exception_nr =
4454         (env->exception_pending || env->exception_injected) ?
4455         events.exception.nr : -1;
4456     env->has_error_code = events.exception.has_error_code;
4457     env->error_code = events.exception.error_code;
4458 
4459     env->interrupt_injected =
4460         events.interrupt.injected ? events.interrupt.nr : -1;
4461     env->soft_interrupt = events.interrupt.soft;
4462 
4463     env->nmi_injected = events.nmi.injected;
4464     env->nmi_pending = events.nmi.pending;
4465     if (events.nmi.masked) {
4466         env->hflags2 |= HF2_NMI_MASK;
4467     } else {
4468         env->hflags2 &= ~HF2_NMI_MASK;
4469     }
4470 
4471     if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
4472         if (events.smi.smm) {
4473             env->hflags |= HF_SMM_MASK;
4474         } else {
4475             env->hflags &= ~HF_SMM_MASK;
4476         }
4477         if (events.smi.pending) {
4478             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4479         } else {
4480             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4481         }
4482         if (events.smi.smm_inside_nmi) {
4483             env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
4484         } else {
4485             env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
4486         }
4487         if (events.smi.latched_init) {
4488             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4489         } else {
4490             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4491         }
4492     }
4493 
4494     if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
4495         env->triple_fault_pending = events.triple_fault.pending;
4496     }
4497 
4498     env->sipi_vector = events.sipi_vector;
4499 
4500     return 0;
4501 }
4502 
4503 static int kvm_put_debugregs(X86CPU *cpu)
4504 {
4505     CPUX86State *env = &cpu->env;
4506     struct kvm_debugregs dbgregs;
4507     int i;
4508 
4509     memset(&dbgregs, 0, sizeof(dbgregs));
4510     for (i = 0; i < 4; i++) {
4511         dbgregs.db[i] = env->dr[i];
4512     }
4513     dbgregs.dr6 = env->dr[6];
4514     dbgregs.dr7 = env->dr[7];
4515     dbgregs.flags = 0;
4516 
4517     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
4518 }
4519 
4520 static int kvm_get_debugregs(X86CPU *cpu)
4521 {
4522     CPUX86State *env = &cpu->env;
4523     struct kvm_debugregs dbgregs;
4524     int i, ret;
4525 
4526     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
4527     if (ret < 0) {
4528         return ret;
4529     }
4530     for (i = 0; i < 4; i++) {
4531         env->dr[i] = dbgregs.db[i];
4532     }
4533     env->dr[4] = env->dr[6] = dbgregs.dr6;
4534     env->dr[5] = env->dr[7] = dbgregs.dr7;
4535 
4536     return 0;
4537 }
4538 
4539 static int kvm_put_nested_state(X86CPU *cpu)
4540 {
4541     CPUX86State *env = &cpu->env;
4542     int max_nested_state_len = kvm_max_nested_state_length();
4543 
4544     if (!env->nested_state) {
4545         return 0;
4546     }
4547 
4548     /*
4549      * Copy flags that are affected by reset from env->hflags and env->hflags2.
4550      */
4551     if (env->hflags & HF_GUEST_MASK) {
4552         env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
4553     } else {
4554         env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
4555     }
4556 
4557     /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
4558     if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
4559         env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
4560     } else {
4561         env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
4562     }
4563 
4564     assert(env->nested_state->size <= max_nested_state_len);
4565     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
4566 }
4567 
4568 static int kvm_get_nested_state(X86CPU *cpu)
4569 {
4570     CPUX86State *env = &cpu->env;
4571     int max_nested_state_len = kvm_max_nested_state_length();
4572     int ret;
4573 
4574     if (!env->nested_state) {
4575         return 0;
4576     }
4577 
4578     /*
4579      * It is possible that migration restored a smaller size into
4580      * nested_state->hdr.size than what our kernel support.
4581      * We preserve migration origin nested_state->hdr.size for
4582      * call to KVM_SET_NESTED_STATE but wish that our next call
4583      * to KVM_GET_NESTED_STATE will use max size our kernel support.
4584      */
4585     env->nested_state->size = max_nested_state_len;
4586 
4587     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
4588     if (ret < 0) {
4589         return ret;
4590     }
4591 
4592     /*
4593      * Copy flags that are affected by reset to env->hflags and env->hflags2.
4594      */
4595     if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
4596         env->hflags |= HF_GUEST_MASK;
4597     } else {
4598         env->hflags &= ~HF_GUEST_MASK;
4599     }
4600 
4601     /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
4602     if (cpu_has_svm(env)) {
4603         if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
4604             env->hflags2 |= HF2_GIF_MASK;
4605         } else {
4606             env->hflags2 &= ~HF2_GIF_MASK;
4607         }
4608     }
4609 
4610     return ret;
4611 }
4612 
4613 int kvm_arch_put_registers(CPUState *cpu, int level)
4614 {
4615     X86CPU *x86_cpu = X86_CPU(cpu);
4616     int ret;
4617 
4618     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
4619 
4620     /*
4621      * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX
4622      * root operation upon vCPU reset. kvm_put_msr_feature_control() should also
4623      * precede kvm_put_nested_state() when 'real' nested state is set.
4624      */
4625     if (level >= KVM_PUT_RESET_STATE) {
4626         ret = kvm_put_msr_feature_control(x86_cpu);
4627         if (ret < 0) {
4628             return ret;
4629         }
4630     }
4631 
4632     /* must be before kvm_put_nested_state so that EFER.SVME is set */
4633     ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
4634     if (ret < 0) {
4635         return ret;
4636     }
4637 
4638     if (level >= KVM_PUT_RESET_STATE) {
4639         ret = kvm_put_nested_state(x86_cpu);
4640         if (ret < 0) {
4641             return ret;
4642         }
4643     }
4644 
4645     if (level == KVM_PUT_FULL_STATE) {
4646         /* We don't check for kvm_arch_set_tsc_khz() errors here,
4647          * because TSC frequency mismatch shouldn't abort migration,
4648          * unless the user explicitly asked for a more strict TSC
4649          * setting (e.g. using an explicit "tsc-freq" option).
4650          */
4651         kvm_arch_set_tsc_khz(cpu);
4652     }
4653 
4654 #ifdef CONFIG_XEN_EMU
4655     if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) {
4656         ret = kvm_put_xen_state(cpu);
4657         if (ret < 0) {
4658             return ret;
4659         }
4660     }
4661 #endif
4662 
4663     ret = kvm_getput_regs(x86_cpu, 1);
4664     if (ret < 0) {
4665         return ret;
4666     }
4667     ret = kvm_put_xsave(x86_cpu);
4668     if (ret < 0) {
4669         return ret;
4670     }
4671     ret = kvm_put_xcrs(x86_cpu);
4672     if (ret < 0) {
4673         return ret;
4674     }
4675     ret = kvm_put_msrs(x86_cpu, level);
4676     if (ret < 0) {
4677         return ret;
4678     }
4679     ret = kvm_put_vcpu_events(x86_cpu, level);
4680     if (ret < 0) {
4681         return ret;
4682     }
4683     if (level >= KVM_PUT_RESET_STATE) {
4684         ret = kvm_put_mp_state(x86_cpu);
4685         if (ret < 0) {
4686             return ret;
4687         }
4688     }
4689 
4690     ret = kvm_put_tscdeadline_msr(x86_cpu);
4691     if (ret < 0) {
4692         return ret;
4693     }
4694     ret = kvm_put_debugregs(x86_cpu);
4695     if (ret < 0) {
4696         return ret;
4697     }
4698     return 0;
4699 }
4700 
4701 int kvm_arch_get_registers(CPUState *cs)
4702 {
4703     X86CPU *cpu = X86_CPU(cs);
4704     int ret;
4705 
4706     assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4707 
4708     ret = kvm_get_vcpu_events(cpu);
4709     if (ret < 0) {
4710         goto out;
4711     }
4712     /*
4713      * KVM_GET_MPSTATE can modify CS and RIP, call it before
4714      * KVM_GET_REGS and KVM_GET_SREGS.
4715      */
4716     ret = kvm_get_mp_state(cpu);
4717     if (ret < 0) {
4718         goto out;
4719     }
4720     ret = kvm_getput_regs(cpu, 0);
4721     if (ret < 0) {
4722         goto out;
4723     }
4724     ret = kvm_get_xsave(cpu);
4725     if (ret < 0) {
4726         goto out;
4727     }
4728     ret = kvm_get_xcrs(cpu);
4729     if (ret < 0) {
4730         goto out;
4731     }
4732     ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
4733     if (ret < 0) {
4734         goto out;
4735     }
4736     ret = kvm_get_msrs(cpu);
4737     if (ret < 0) {
4738         goto out;
4739     }
4740     ret = kvm_get_apic(cpu);
4741     if (ret < 0) {
4742         goto out;
4743     }
4744     ret = kvm_get_debugregs(cpu);
4745     if (ret < 0) {
4746         goto out;
4747     }
4748     ret = kvm_get_nested_state(cpu);
4749     if (ret < 0) {
4750         goto out;
4751     }
4752 #ifdef CONFIG_XEN_EMU
4753     if (xen_mode == XEN_EMULATE) {
4754         ret = kvm_get_xen_state(cs);
4755         if (ret < 0) {
4756             goto out;
4757         }
4758     }
4759 #endif
4760     ret = 0;
4761  out:
4762     cpu_sync_bndcs_hflags(&cpu->env);
4763     return ret;
4764 }
4765 
4766 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4767 {
4768     X86CPU *x86_cpu = X86_CPU(cpu);
4769     CPUX86State *env = &x86_cpu->env;
4770     int ret;
4771 
4772     /* Inject NMI */
4773     if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4774         if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4775             bql_lock();
4776             cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4777             bql_unlock();
4778             DPRINTF("injected NMI\n");
4779             ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4780             if (ret < 0) {
4781                 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4782                         strerror(-ret));
4783             }
4784         }
4785         if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4786             bql_lock();
4787             cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4788             bql_unlock();
4789             DPRINTF("injected SMI\n");
4790             ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4791             if (ret < 0) {
4792                 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4793                         strerror(-ret));
4794             }
4795         }
4796     }
4797 
4798     if (!kvm_pic_in_kernel()) {
4799         bql_lock();
4800     }
4801 
4802     /* Force the VCPU out of its inner loop to process any INIT requests
4803      * or (for userspace APIC, but it is cheap to combine the checks here)
4804      * pending TPR access reports.
4805      */
4806     if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4807         if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4808             !(env->hflags & HF_SMM_MASK)) {
4809             cpu->exit_request = 1;
4810         }
4811         if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4812             cpu->exit_request = 1;
4813         }
4814     }
4815 
4816     if (!kvm_pic_in_kernel()) {
4817         /* Try to inject an interrupt if the guest can accept it */
4818         if (run->ready_for_interrupt_injection &&
4819             (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4820             (env->eflags & IF_MASK)) {
4821             int irq;
4822 
4823             cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4824             irq = cpu_get_pic_interrupt(env);
4825             if (irq >= 0) {
4826                 struct kvm_interrupt intr;
4827 
4828                 intr.irq = irq;
4829                 DPRINTF("injected interrupt %d\n", irq);
4830                 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4831                 if (ret < 0) {
4832                     fprintf(stderr,
4833                             "KVM: injection failed, interrupt lost (%s)\n",
4834                             strerror(-ret));
4835                 }
4836             }
4837         }
4838 
4839         /* If we have an interrupt but the guest is not ready to receive an
4840          * interrupt, request an interrupt window exit.  This will
4841          * cause a return to userspace as soon as the guest is ready to
4842          * receive interrupts. */
4843         if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4844             run->request_interrupt_window = 1;
4845         } else {
4846             run->request_interrupt_window = 0;
4847         }
4848 
4849         DPRINTF("setting tpr\n");
4850         run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4851 
4852         bql_unlock();
4853     }
4854 }
4855 
4856 static void kvm_rate_limit_on_bus_lock(void)
4857 {
4858     uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
4859 
4860     if (delay_ns) {
4861         g_usleep(delay_ns / SCALE_US);
4862     }
4863 }
4864 
4865 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4866 {
4867     X86CPU *x86_cpu = X86_CPU(cpu);
4868     CPUX86State *env = &x86_cpu->env;
4869 
4870     if (run->flags & KVM_RUN_X86_SMM) {
4871         env->hflags |= HF_SMM_MASK;
4872     } else {
4873         env->hflags &= ~HF_SMM_MASK;
4874     }
4875     if (run->if_flag) {
4876         env->eflags |= IF_MASK;
4877     } else {
4878         env->eflags &= ~IF_MASK;
4879     }
4880     if (run->flags & KVM_RUN_X86_BUS_LOCK) {
4881         kvm_rate_limit_on_bus_lock();
4882     }
4883 
4884 #ifdef CONFIG_XEN_EMU
4885     /*
4886      * If the callback is asserted as a GSI (or PCI INTx) then check if
4887      * vcpu_info->evtchn_upcall_pending has been cleared, and deassert
4888      * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC
4889      * EOI and only resample then, exactly how the VFIO eventfd pairs
4890      * are designed to work for level triggered interrupts.
4891      */
4892     if (x86_cpu->env.xen_callback_asserted) {
4893         kvm_xen_maybe_deassert_callback(cpu);
4894     }
4895 #endif
4896 
4897     /* We need to protect the apic state against concurrent accesses from
4898      * different threads in case the userspace irqchip is used. */
4899     if (!kvm_irqchip_in_kernel()) {
4900         bql_lock();
4901     }
4902     cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4903     cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4904     if (!kvm_irqchip_in_kernel()) {
4905         bql_unlock();
4906     }
4907     return cpu_get_mem_attrs(env);
4908 }
4909 
4910 int kvm_arch_process_async_events(CPUState *cs)
4911 {
4912     X86CPU *cpu = X86_CPU(cs);
4913     CPUX86State *env = &cpu->env;
4914 
4915     if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
4916         /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4917         assert(env->mcg_cap);
4918 
4919         cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
4920 
4921         kvm_cpu_synchronize_state(cs);
4922 
4923         if (env->exception_nr == EXCP08_DBLE) {
4924             /* this means triple fault */
4925             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
4926             cs->exit_request = 1;
4927             return 0;
4928         }
4929         kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
4930         env->has_error_code = 0;
4931 
4932         cs->halted = 0;
4933         if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4934             env->mp_state = KVM_MP_STATE_RUNNABLE;
4935         }
4936     }
4937 
4938     if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4939         !(env->hflags & HF_SMM_MASK)) {
4940         kvm_cpu_synchronize_state(cs);
4941         do_cpu_init(cpu);
4942     }
4943 
4944     if (kvm_irqchip_in_kernel()) {
4945         return 0;
4946     }
4947 
4948     if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4949         cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
4950         apic_poll_irq(cpu->apic_state);
4951     }
4952     if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4953          (env->eflags & IF_MASK)) ||
4954         (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4955         cs->halted = 0;
4956     }
4957     if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
4958         kvm_cpu_synchronize_state(cs);
4959         do_cpu_sipi(cpu);
4960     }
4961     if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4962         cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
4963         kvm_cpu_synchronize_state(cs);
4964         apic_handle_tpr_access_report(cpu->apic_state, env->eip,
4965                                       env->tpr_access_type);
4966     }
4967 
4968     return cs->halted;
4969 }
4970 
4971 static int kvm_handle_halt(X86CPU *cpu)
4972 {
4973     CPUState *cs = CPU(cpu);
4974     CPUX86State *env = &cpu->env;
4975 
4976     if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4977           (env->eflags & IF_MASK)) &&
4978         !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4979         cs->halted = 1;
4980         return EXCP_HLT;
4981     }
4982 
4983     return 0;
4984 }
4985 
4986 static int kvm_handle_tpr_access(X86CPU *cpu)
4987 {
4988     CPUState *cs = CPU(cpu);
4989     struct kvm_run *run = cs->kvm_run;
4990 
4991     apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
4992                                   run->tpr_access.is_write ? TPR_ACCESS_WRITE
4993                                                            : TPR_ACCESS_READ);
4994     return 1;
4995 }
4996 
4997 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4998 {
4999     static const uint8_t int3 = 0xcc;
5000 
5001     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
5002         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
5003         return -EINVAL;
5004     }
5005     return 0;
5006 }
5007 
5008 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5009 {
5010     uint8_t int3;
5011 
5012     if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
5013         return -EINVAL;
5014     }
5015     if (int3 != 0xcc) {
5016         return 0;
5017     }
5018     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
5019         return -EINVAL;
5020     }
5021     return 0;
5022 }
5023 
5024 static struct {
5025     target_ulong addr;
5026     int len;
5027     int type;
5028 } hw_breakpoint[4];
5029 
5030 static int nb_hw_breakpoint;
5031 
5032 static int find_hw_breakpoint(target_ulong addr, int len, int type)
5033 {
5034     int n;
5035 
5036     for (n = 0; n < nb_hw_breakpoint; n++) {
5037         if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
5038             (hw_breakpoint[n].len == len || len == -1)) {
5039             return n;
5040         }
5041     }
5042     return -1;
5043 }
5044 
5045 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
5046 {
5047     switch (type) {
5048     case GDB_BREAKPOINT_HW:
5049         len = 1;
5050         break;
5051     case GDB_WATCHPOINT_WRITE:
5052     case GDB_WATCHPOINT_ACCESS:
5053         switch (len) {
5054         case 1:
5055             break;
5056         case 2:
5057         case 4:
5058         case 8:
5059             if (addr & (len - 1)) {
5060                 return -EINVAL;
5061             }
5062             break;
5063         default:
5064             return -EINVAL;
5065         }
5066         break;
5067     default:
5068         return -ENOSYS;
5069     }
5070 
5071     if (nb_hw_breakpoint == 4) {
5072         return -ENOBUFS;
5073     }
5074     if (find_hw_breakpoint(addr, len, type) >= 0) {
5075         return -EEXIST;
5076     }
5077     hw_breakpoint[nb_hw_breakpoint].addr = addr;
5078     hw_breakpoint[nb_hw_breakpoint].len = len;
5079     hw_breakpoint[nb_hw_breakpoint].type = type;
5080     nb_hw_breakpoint++;
5081 
5082     return 0;
5083 }
5084 
5085 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
5086 {
5087     int n;
5088 
5089     n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
5090     if (n < 0) {
5091         return -ENOENT;
5092     }
5093     nb_hw_breakpoint--;
5094     hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
5095 
5096     return 0;
5097 }
5098 
5099 void kvm_arch_remove_all_hw_breakpoints(void)
5100 {
5101     nb_hw_breakpoint = 0;
5102 }
5103 
5104 static CPUWatchpoint hw_watchpoint;
5105 
5106 static int kvm_handle_debug(X86CPU *cpu,
5107                             struct kvm_debug_exit_arch *arch_info)
5108 {
5109     CPUState *cs = CPU(cpu);
5110     CPUX86State *env = &cpu->env;
5111     int ret = 0;
5112     int n;
5113 
5114     if (arch_info->exception == EXCP01_DB) {
5115         if (arch_info->dr6 & DR6_BS) {
5116             if (cs->singlestep_enabled) {
5117                 ret = EXCP_DEBUG;
5118             }
5119         } else {
5120             for (n = 0; n < 4; n++) {
5121                 if (arch_info->dr6 & (1 << n)) {
5122                     switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
5123                     case 0x0:
5124                         ret = EXCP_DEBUG;
5125                         break;
5126                     case 0x1:
5127                         ret = EXCP_DEBUG;
5128                         cs->watchpoint_hit = &hw_watchpoint;
5129                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5130                         hw_watchpoint.flags = BP_MEM_WRITE;
5131                         break;
5132                     case 0x3:
5133                         ret = EXCP_DEBUG;
5134                         cs->watchpoint_hit = &hw_watchpoint;
5135                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5136                         hw_watchpoint.flags = BP_MEM_ACCESS;
5137                         break;
5138                     }
5139                 }
5140             }
5141         }
5142     } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
5143         ret = EXCP_DEBUG;
5144     }
5145     if (ret == 0) {
5146         cpu_synchronize_state(cs);
5147         assert(env->exception_nr == -1);
5148 
5149         /* pass to guest */
5150         kvm_queue_exception(env, arch_info->exception,
5151                             arch_info->exception == EXCP01_DB,
5152                             arch_info->dr6);
5153         env->has_error_code = 0;
5154     }
5155 
5156     return ret;
5157 }
5158 
5159 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
5160 {
5161     const uint8_t type_code[] = {
5162         [GDB_BREAKPOINT_HW] = 0x0,
5163         [GDB_WATCHPOINT_WRITE] = 0x1,
5164         [GDB_WATCHPOINT_ACCESS] = 0x3
5165     };
5166     const uint8_t len_code[] = {
5167         [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
5168     };
5169     int n;
5170 
5171     if (kvm_sw_breakpoints_active(cpu)) {
5172         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
5173     }
5174     if (nb_hw_breakpoint > 0) {
5175         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
5176         dbg->arch.debugreg[7] = 0x0600;
5177         for (n = 0; n < nb_hw_breakpoint; n++) {
5178             dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
5179             dbg->arch.debugreg[7] |= (2 << (n * 2)) |
5180                 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
5181                 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
5182         }
5183     }
5184 }
5185 
5186 static bool kvm_install_msr_filters(KVMState *s)
5187 {
5188     uint64_t zero = 0;
5189     struct kvm_msr_filter filter = {
5190         .flags = KVM_MSR_FILTER_DEFAULT_ALLOW,
5191     };
5192     int r, i, j = 0;
5193 
5194     for (i = 0; i < KVM_MSR_FILTER_MAX_RANGES; i++) {
5195         KVMMSRHandlers *handler = &msr_handlers[i];
5196         if (handler->msr) {
5197             struct kvm_msr_filter_range *range = &filter.ranges[j++];
5198 
5199             *range = (struct kvm_msr_filter_range) {
5200                 .flags = 0,
5201                 .nmsrs = 1,
5202                 .base = handler->msr,
5203                 .bitmap = (__u8 *)&zero,
5204             };
5205 
5206             if (handler->rdmsr) {
5207                 range->flags |= KVM_MSR_FILTER_READ;
5208             }
5209 
5210             if (handler->wrmsr) {
5211                 range->flags |= KVM_MSR_FILTER_WRITE;
5212             }
5213         }
5214     }
5215 
5216     r = kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter);
5217     if (r) {
5218         return false;
5219     }
5220 
5221     return true;
5222 }
5223 
5224 bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
5225                     QEMUWRMSRHandler *wrmsr)
5226 {
5227     int i;
5228 
5229     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5230         if (!msr_handlers[i].msr) {
5231             msr_handlers[i] = (KVMMSRHandlers) {
5232                 .msr = msr,
5233                 .rdmsr = rdmsr,
5234                 .wrmsr = wrmsr,
5235             };
5236 
5237             if (!kvm_install_msr_filters(s)) {
5238                 msr_handlers[i] = (KVMMSRHandlers) { };
5239                 return false;
5240             }
5241 
5242             return true;
5243         }
5244     }
5245 
5246     return false;
5247 }
5248 
5249 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run)
5250 {
5251     int i;
5252     bool r;
5253 
5254     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5255         KVMMSRHandlers *handler = &msr_handlers[i];
5256         if (run->msr.index == handler->msr) {
5257             if (handler->rdmsr) {
5258                 r = handler->rdmsr(cpu, handler->msr,
5259                                    (uint64_t *)&run->msr.data);
5260                 run->msr.error = r ? 0 : 1;
5261                 return 0;
5262             }
5263         }
5264     }
5265 
5266     assert(false);
5267 }
5268 
5269 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run)
5270 {
5271     int i;
5272     bool r;
5273 
5274     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5275         KVMMSRHandlers *handler = &msr_handlers[i];
5276         if (run->msr.index == handler->msr) {
5277             if (handler->wrmsr) {
5278                 r = handler->wrmsr(cpu, handler->msr, run->msr.data);
5279                 run->msr.error = r ? 0 : 1;
5280                 return 0;
5281             }
5282         }
5283     }
5284 
5285     assert(false);
5286 }
5287 
5288 static bool has_sgx_provisioning;
5289 
5290 static bool __kvm_enable_sgx_provisioning(KVMState *s)
5291 {
5292     int fd, ret;
5293 
5294     if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
5295         return false;
5296     }
5297 
5298     fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
5299     if (fd < 0) {
5300         return false;
5301     }
5302 
5303     ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
5304     if (ret) {
5305         error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
5306         exit(1);
5307     }
5308     close(fd);
5309     return true;
5310 }
5311 
5312 bool kvm_enable_sgx_provisioning(KVMState *s)
5313 {
5314     return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
5315 }
5316 
5317 static bool host_supports_vmx(void)
5318 {
5319     uint32_t ecx, unused;
5320 
5321     host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
5322     return ecx & CPUID_EXT_VMX;
5323 }
5324 
5325 #define VMX_INVALID_GUEST_STATE 0x80000021
5326 
5327 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
5328 {
5329     X86CPU *cpu = X86_CPU(cs);
5330     uint64_t code;
5331     int ret;
5332     bool ctx_invalid;
5333     char str[256];
5334     KVMState *state;
5335 
5336     switch (run->exit_reason) {
5337     case KVM_EXIT_HLT:
5338         DPRINTF("handle_hlt\n");
5339         bql_lock();
5340         ret = kvm_handle_halt(cpu);
5341         bql_unlock();
5342         break;
5343     case KVM_EXIT_SET_TPR:
5344         ret = 0;
5345         break;
5346     case KVM_EXIT_TPR_ACCESS:
5347         bql_lock();
5348         ret = kvm_handle_tpr_access(cpu);
5349         bql_unlock();
5350         break;
5351     case KVM_EXIT_FAIL_ENTRY:
5352         code = run->fail_entry.hardware_entry_failure_reason;
5353         fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
5354                 code);
5355         if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
5356             fprintf(stderr,
5357                     "\nIf you're running a guest on an Intel machine without "
5358                         "unrestricted mode\n"
5359                     "support, the failure can be most likely due to the guest "
5360                         "entering an invalid\n"
5361                     "state for Intel VT. For example, the guest maybe running "
5362                         "in big real mode\n"
5363                     "which is not supported on less recent Intel processors."
5364                         "\n\n");
5365         }
5366         ret = -1;
5367         break;
5368     case KVM_EXIT_EXCEPTION:
5369         fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
5370                 run->ex.exception, run->ex.error_code);
5371         ret = -1;
5372         break;
5373     case KVM_EXIT_DEBUG:
5374         DPRINTF("kvm_exit_debug\n");
5375         bql_lock();
5376         ret = kvm_handle_debug(cpu, &run->debug.arch);
5377         bql_unlock();
5378         break;
5379     case KVM_EXIT_HYPERV:
5380         ret = kvm_hv_handle_exit(cpu, &run->hyperv);
5381         break;
5382     case KVM_EXIT_IOAPIC_EOI:
5383         ioapic_eoi_broadcast(run->eoi.vector);
5384         ret = 0;
5385         break;
5386     case KVM_EXIT_X86_BUS_LOCK:
5387         /* already handled in kvm_arch_post_run */
5388         ret = 0;
5389         break;
5390     case KVM_EXIT_NOTIFY:
5391         ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID);
5392         state = KVM_STATE(current_accel());
5393         sprintf(str, "Encounter a notify exit with %svalid context in"
5394                      " guest. There can be possible misbehaves in guest."
5395                      " Please have a look.", ctx_invalid ? "in" : "");
5396         if (ctx_invalid ||
5397             state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) {
5398             warn_report("KVM internal error: %s", str);
5399             ret = -1;
5400         } else {
5401             warn_report_once("KVM: %s", str);
5402             ret = 0;
5403         }
5404         break;
5405     case KVM_EXIT_X86_RDMSR:
5406         /* We only enable MSR filtering, any other exit is bogus */
5407         assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5408         ret = kvm_handle_rdmsr(cpu, run);
5409         break;
5410     case KVM_EXIT_X86_WRMSR:
5411         /* We only enable MSR filtering, any other exit is bogus */
5412         assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5413         ret = kvm_handle_wrmsr(cpu, run);
5414         break;
5415 #ifdef CONFIG_XEN_EMU
5416     case KVM_EXIT_XEN:
5417         ret = kvm_xen_handle_exit(cpu, &run->xen);
5418         break;
5419 #endif
5420     default:
5421         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
5422         ret = -1;
5423         break;
5424     }
5425 
5426     return ret;
5427 }
5428 
5429 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
5430 {
5431     X86CPU *cpu = X86_CPU(cs);
5432     CPUX86State *env = &cpu->env;
5433 
5434     kvm_cpu_synchronize_state(cs);
5435     return !(env->cr[0] & CR0_PE_MASK) ||
5436            ((env->segs[R_CS].selector  & 3) != 3);
5437 }
5438 
5439 void kvm_arch_init_irq_routing(KVMState *s)
5440 {
5441     /* We know at this point that we're using the in-kernel
5442      * irqchip, so we can use irqfds, and on x86 we know
5443      * we can use msi via irqfd and GSI routing.
5444      */
5445     kvm_msi_via_irqfd_allowed = true;
5446     kvm_gsi_routing_allowed = true;
5447 
5448     if (kvm_irqchip_is_split()) {
5449         KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
5450         int i;
5451 
5452         /* If the ioapic is in QEMU and the lapics are in KVM, reserve
5453            MSI routes for signaling interrupts to the local apics. */
5454         for (i = 0; i < IOAPIC_NUM_PINS; i++) {
5455             if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
5456                 error_report("Could not enable split IRQ mode.");
5457                 exit(1);
5458             }
5459         }
5460         kvm_irqchip_commit_route_changes(&c);
5461     }
5462 }
5463 
5464 int kvm_arch_irqchip_create(KVMState *s)
5465 {
5466     int ret;
5467     if (kvm_kernel_irqchip_split()) {
5468         ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
5469         if (ret) {
5470             error_report("Could not enable split irqchip mode: %s",
5471                          strerror(-ret));
5472             exit(1);
5473         } else {
5474             DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
5475             kvm_split_irqchip = true;
5476             return 1;
5477         }
5478     } else {
5479         return 0;
5480     }
5481 }
5482 
5483 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
5484 {
5485     CPUX86State *env;
5486     uint64_t ext_id;
5487 
5488     if (!first_cpu) {
5489         return address;
5490     }
5491     env = &X86_CPU(first_cpu)->env;
5492     if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
5493         return address;
5494     }
5495 
5496     /*
5497      * If the remappable format bit is set, or the upper bits are
5498      * already set in address_hi, or the low extended bits aren't
5499      * there anyway, do nothing.
5500      */
5501     ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
5502     if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
5503         return address;
5504     }
5505 
5506     address &= ~ext_id;
5507     address |= ext_id << 35;
5508     return address;
5509 }
5510 
5511 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
5512                              uint64_t address, uint32_t data, PCIDevice *dev)
5513 {
5514     X86IOMMUState *iommu = x86_iommu_get_default();
5515 
5516     if (iommu) {
5517         X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
5518 
5519         if (class->int_remap) {
5520             int ret;
5521             MSIMessage src, dst;
5522 
5523             src.address = route->u.msi.address_hi;
5524             src.address <<= VTD_MSI_ADDR_HI_SHIFT;
5525             src.address |= route->u.msi.address_lo;
5526             src.data = route->u.msi.data;
5527 
5528             ret = class->int_remap(iommu, &src, &dst, dev ?     \
5529                                    pci_requester_id(dev) :      \
5530                                    X86_IOMMU_SID_INVALID);
5531             if (ret) {
5532                 trace_kvm_x86_fixup_msi_error(route->gsi);
5533                 return 1;
5534             }
5535 
5536             /*
5537              * Handled untranslated compatibility format interrupt with
5538              * extended destination ID in the low bits 11-5. */
5539             dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
5540 
5541             route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
5542             route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
5543             route->u.msi.data = dst.data;
5544             return 0;
5545         }
5546     }
5547 
5548 #ifdef CONFIG_XEN_EMU
5549     if (xen_mode == XEN_EMULATE) {
5550         int handled = xen_evtchn_translate_pirq_msi(route, address, data);
5551 
5552         /*
5553          * If it was a PIRQ and successfully routed (handled == 0) or it was
5554          * an error (handled < 0), return. If it wasn't a PIRQ, keep going.
5555          */
5556         if (handled <= 0) {
5557             return handled;
5558         }
5559     }
5560 #endif
5561 
5562     address = kvm_swizzle_msi_ext_dest_id(address);
5563     route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
5564     route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
5565     return 0;
5566 }
5567 
5568 typedef struct MSIRouteEntry MSIRouteEntry;
5569 
5570 struct MSIRouteEntry {
5571     PCIDevice *dev;             /* Device pointer */
5572     int vector;                 /* MSI/MSIX vector index */
5573     int virq;                   /* Virtual IRQ index */
5574     QLIST_ENTRY(MSIRouteEntry) list;
5575 };
5576 
5577 /* List of used GSI routes */
5578 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
5579     QLIST_HEAD_INITIALIZER(msi_route_list);
5580 
5581 void kvm_update_msi_routes_all(void *private, bool global,
5582                                uint32_t index, uint32_t mask)
5583 {
5584     int cnt = 0, vector;
5585     MSIRouteEntry *entry;
5586     MSIMessage msg;
5587     PCIDevice *dev;
5588 
5589     /* TODO: explicit route update */
5590     QLIST_FOREACH(entry, &msi_route_list, list) {
5591         cnt++;
5592         vector = entry->vector;
5593         dev = entry->dev;
5594         if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
5595             msg = msix_get_message(dev, vector);
5596         } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
5597             msg = msi_get_message(dev, vector);
5598         } else {
5599             /*
5600              * Either MSI/MSIX is disabled for the device, or the
5601              * specific message was masked out.  Skip this one.
5602              */
5603             continue;
5604         }
5605         kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
5606     }
5607     kvm_irqchip_commit_routes(kvm_state);
5608     trace_kvm_x86_update_msi_routes(cnt);
5609 }
5610 
5611 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
5612                                 int vector, PCIDevice *dev)
5613 {
5614     static bool notify_list_inited = false;
5615     MSIRouteEntry *entry;
5616 
5617     if (!dev) {
5618         /* These are (possibly) IOAPIC routes only used for split
5619          * kernel irqchip mode, while what we are housekeeping are
5620          * PCI devices only. */
5621         return 0;
5622     }
5623 
5624     entry = g_new0(MSIRouteEntry, 1);
5625     entry->dev = dev;
5626     entry->vector = vector;
5627     entry->virq = route->gsi;
5628     QLIST_INSERT_HEAD(&msi_route_list, entry, list);
5629 
5630     trace_kvm_x86_add_msi_route(route->gsi);
5631 
5632     if (!notify_list_inited) {
5633         /* For the first time we do add route, add ourselves into
5634          * IOMMU's IEC notify list if needed. */
5635         X86IOMMUState *iommu = x86_iommu_get_default();
5636         if (iommu) {
5637             x86_iommu_iec_register_notifier(iommu,
5638                                             kvm_update_msi_routes_all,
5639                                             NULL);
5640         }
5641         notify_list_inited = true;
5642     }
5643     return 0;
5644 }
5645 
5646 int kvm_arch_release_virq_post(int virq)
5647 {
5648     MSIRouteEntry *entry, *next;
5649     QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
5650         if (entry->virq == virq) {
5651             trace_kvm_x86_remove_msi_route(virq);
5652             QLIST_REMOVE(entry, list);
5653             g_free(entry);
5654             break;
5655         }
5656     }
5657     return 0;
5658 }
5659 
5660 int kvm_arch_msi_data_to_gsi(uint32_t data)
5661 {
5662     abort();
5663 }
5664 
5665 bool kvm_has_waitpkg(void)
5666 {
5667     return has_msr_umwait;
5668 }
5669 
5670 #define ARCH_REQ_XCOMP_GUEST_PERM       0x1025
5671 
5672 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
5673 {
5674     KVMState *s = kvm_state;
5675     uint64_t supported;
5676 
5677     mask &= XSTATE_DYNAMIC_MASK;
5678     if (!mask) {
5679         return;
5680     }
5681     /*
5682      * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
5683      * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
5684      * about them already because they are not supported features.
5685      */
5686     supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
5687     supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
5688     mask &= supported;
5689 
5690     while (mask) {
5691         int bit = ctz64(mask);
5692         int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
5693         if (rc) {
5694             /*
5695              * Older kernel version (<5.17) do not support
5696              * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
5697              * any dynamic feature from kvm_arch_get_supported_cpuid.
5698              */
5699             warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
5700                         "for feature bit %d", bit);
5701         }
5702         mask &= ~BIT_ULL(bit);
5703     }
5704 }
5705 
5706 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp)
5707 {
5708     KVMState *s = KVM_STATE(obj);
5709     return s->notify_vmexit;
5710 }
5711 
5712 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp)
5713 {
5714     KVMState *s = KVM_STATE(obj);
5715 
5716     if (s->fd != -1) {
5717         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5718         return;
5719     }
5720 
5721     s->notify_vmexit = value;
5722 }
5723 
5724 static void kvm_arch_get_notify_window(Object *obj, Visitor *v,
5725                                        const char *name, void *opaque,
5726                                        Error **errp)
5727 {
5728     KVMState *s = KVM_STATE(obj);
5729     uint32_t value = s->notify_window;
5730 
5731     visit_type_uint32(v, name, &value, errp);
5732 }
5733 
5734 static void kvm_arch_set_notify_window(Object *obj, Visitor *v,
5735                                        const char *name, void *opaque,
5736                                        Error **errp)
5737 {
5738     KVMState *s = KVM_STATE(obj);
5739     uint32_t value;
5740 
5741     if (s->fd != -1) {
5742         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5743         return;
5744     }
5745 
5746     if (!visit_type_uint32(v, name, &value, errp)) {
5747         return;
5748     }
5749 
5750     s->notify_window = value;
5751 }
5752 
5753 static void kvm_arch_get_xen_version(Object *obj, Visitor *v,
5754                                      const char *name, void *opaque,
5755                                      Error **errp)
5756 {
5757     KVMState *s = KVM_STATE(obj);
5758     uint32_t value = s->xen_version;
5759 
5760     visit_type_uint32(v, name, &value, errp);
5761 }
5762 
5763 static void kvm_arch_set_xen_version(Object *obj, Visitor *v,
5764                                      const char *name, void *opaque,
5765                                      Error **errp)
5766 {
5767     KVMState *s = KVM_STATE(obj);
5768     Error *error = NULL;
5769     uint32_t value;
5770 
5771     visit_type_uint32(v, name, &value, &error);
5772     if (error) {
5773         error_propagate(errp, error);
5774         return;
5775     }
5776 
5777     s->xen_version = value;
5778     if (value && xen_mode == XEN_DISABLED) {
5779         xen_mode = XEN_EMULATE;
5780     }
5781 }
5782 
5783 static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v,
5784                                                const char *name, void *opaque,
5785                                                Error **errp)
5786 {
5787     KVMState *s = KVM_STATE(obj);
5788     uint16_t value = s->xen_gnttab_max_frames;
5789 
5790     visit_type_uint16(v, name, &value, errp);
5791 }
5792 
5793 static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v,
5794                                                const char *name, void *opaque,
5795                                                Error **errp)
5796 {
5797     KVMState *s = KVM_STATE(obj);
5798     Error *error = NULL;
5799     uint16_t value;
5800 
5801     visit_type_uint16(v, name, &value, &error);
5802     if (error) {
5803         error_propagate(errp, error);
5804         return;
5805     }
5806 
5807     s->xen_gnttab_max_frames = value;
5808 }
5809 
5810 static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v,
5811                                              const char *name, void *opaque,
5812                                              Error **errp)
5813 {
5814     KVMState *s = KVM_STATE(obj);
5815     uint16_t value = s->xen_evtchn_max_pirq;
5816 
5817     visit_type_uint16(v, name, &value, errp);
5818 }
5819 
5820 static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v,
5821                                              const char *name, void *opaque,
5822                                              Error **errp)
5823 {
5824     KVMState *s = KVM_STATE(obj);
5825     Error *error = NULL;
5826     uint16_t value;
5827 
5828     visit_type_uint16(v, name, &value, &error);
5829     if (error) {
5830         error_propagate(errp, error);
5831         return;
5832     }
5833 
5834     s->xen_evtchn_max_pirq = value;
5835 }
5836 
5837 void kvm_arch_accel_class_init(ObjectClass *oc)
5838 {
5839     object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption",
5840                                    &NotifyVmexitOption_lookup,
5841                                    kvm_arch_get_notify_vmexit,
5842                                    kvm_arch_set_notify_vmexit);
5843     object_class_property_set_description(oc, "notify-vmexit",
5844                                           "Enable notify VM exit");
5845 
5846     object_class_property_add(oc, "notify-window", "uint32",
5847                               kvm_arch_get_notify_window,
5848                               kvm_arch_set_notify_window,
5849                               NULL, NULL);
5850     object_class_property_set_description(oc, "notify-window",
5851                                           "Clock cycles without an event window "
5852                                           "after which a notification VM exit occurs");
5853 
5854     object_class_property_add(oc, "xen-version", "uint32",
5855                               kvm_arch_get_xen_version,
5856                               kvm_arch_set_xen_version,
5857                               NULL, NULL);
5858     object_class_property_set_description(oc, "xen-version",
5859                                           "Xen version to be emulated "
5860                                           "(in XENVER_version form "
5861                                           "e.g. 0x4000a for 4.10)");
5862 
5863     object_class_property_add(oc, "xen-gnttab-max-frames", "uint16",
5864                               kvm_arch_get_xen_gnttab_max_frames,
5865                               kvm_arch_set_xen_gnttab_max_frames,
5866                               NULL, NULL);
5867     object_class_property_set_description(oc, "xen-gnttab-max-frames",
5868                                           "Maximum number of grant table frames");
5869 
5870     object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16",
5871                               kvm_arch_get_xen_evtchn_max_pirq,
5872                               kvm_arch_set_xen_evtchn_max_pirq,
5873                               NULL, NULL);
5874     object_class_property_set_description(oc, "xen-evtchn-max-pirq",
5875                                           "Maximum number of Xen PIRQs");
5876 }
5877 
5878 void kvm_set_max_apic_id(uint32_t max_apic_id)
5879 {
5880     kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id);
5881 }
5882