1 /* 2 * QEMU KVM support 3 * 4 * Copyright (C) 2006-2008 Qumranet Technologies 5 * Copyright IBM, Corp. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or later. 11 * See the COPYING file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qapi/qapi-events-run-state.h" 17 #include "qapi/error.h" 18 #include "qapi/visitor.h" 19 #include <sys/ioctl.h> 20 #include <sys/utsname.h> 21 #include <sys/syscall.h> 22 23 #include <linux/kvm.h> 24 #include "standard-headers/asm-x86/kvm_para.h" 25 #include "hw/xen/interface/arch-x86/cpuid.h" 26 27 #include "cpu.h" 28 #include "host-cpu.h" 29 #include "sysemu/sysemu.h" 30 #include "sysemu/hw_accel.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "kvm_i386.h" 34 #include "sev.h" 35 #include "xen-emu.h" 36 #include "hyperv.h" 37 #include "hyperv-proto.h" 38 39 #include "exec/gdbstub.h" 40 #include "qemu/host-utils.h" 41 #include "qemu/main-loop.h" 42 #include "qemu/ratelimit.h" 43 #include "qemu/config-file.h" 44 #include "qemu/error-report.h" 45 #include "qemu/memalign.h" 46 #include "hw/i386/x86.h" 47 #include "hw/i386/kvm/xen_evtchn.h" 48 #include "hw/i386/pc.h" 49 #include "hw/i386/apic.h" 50 #include "hw/i386/apic_internal.h" 51 #include "hw/i386/apic-msidef.h" 52 #include "hw/i386/intel_iommu.h" 53 #include "hw/i386/x86-iommu.h" 54 #include "hw/i386/e820_memory_layout.h" 55 56 #include "hw/xen/xen.h" 57 58 #include "hw/pci/pci.h" 59 #include "hw/pci/msi.h" 60 #include "hw/pci/msix.h" 61 #include "migration/blocker.h" 62 #include "exec/memattrs.h" 63 #include "trace.h" 64 65 #include CONFIG_DEVICES 66 67 //#define DEBUG_KVM 68 69 #ifdef DEBUG_KVM 70 #define DPRINTF(fmt, ...) \ 71 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 72 #else 73 #define DPRINTF(fmt, ...) \ 74 do { } while (0) 75 #endif 76 77 /* From arch/x86/kvm/lapic.h */ 78 #define KVM_APIC_BUS_CYCLE_NS 1 79 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS) 80 81 #define MSR_KVM_WALL_CLOCK 0x11 82 #define MSR_KVM_SYSTEM_TIME 0x12 83 84 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus 85 * 255 kvm_msr_entry structs */ 86 #define MSR_BUF_SIZE 4096 87 88 static void kvm_init_msrs(X86CPU *cpu); 89 90 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 91 KVM_CAP_INFO(SET_TSS_ADDR), 92 KVM_CAP_INFO(EXT_CPUID), 93 KVM_CAP_INFO(MP_STATE), 94 KVM_CAP_LAST_INFO 95 }; 96 97 static bool has_msr_star; 98 static bool has_msr_hsave_pa; 99 static bool has_msr_tsc_aux; 100 static bool has_msr_tsc_adjust; 101 static bool has_msr_tsc_deadline; 102 static bool has_msr_feature_control; 103 static bool has_msr_misc_enable; 104 static bool has_msr_smbase; 105 static bool has_msr_bndcfgs; 106 static int lm_capable_kernel; 107 static bool has_msr_hv_hypercall; 108 static bool has_msr_hv_crash; 109 static bool has_msr_hv_reset; 110 static bool has_msr_hv_vpindex; 111 static bool hv_vpindex_settable; 112 static bool has_msr_hv_runtime; 113 static bool has_msr_hv_synic; 114 static bool has_msr_hv_stimer; 115 static bool has_msr_hv_frequencies; 116 static bool has_msr_hv_reenlightenment; 117 static bool has_msr_hv_syndbg_options; 118 static bool has_msr_xss; 119 static bool has_msr_umwait; 120 static bool has_msr_spec_ctrl; 121 static bool has_tsc_scale_msr; 122 static bool has_msr_tsx_ctrl; 123 static bool has_msr_virt_ssbd; 124 static bool has_msr_smi_count; 125 static bool has_msr_arch_capabs; 126 static bool has_msr_core_capabs; 127 static bool has_msr_vmx_vmfunc; 128 static bool has_msr_ucode_rev; 129 static bool has_msr_vmx_procbased_ctls2; 130 static bool has_msr_perf_capabs; 131 static bool has_msr_pkrs; 132 133 static uint32_t has_architectural_pmu_version; 134 static uint32_t num_architectural_pmu_gp_counters; 135 static uint32_t num_architectural_pmu_fixed_counters; 136 137 static int has_xsave; 138 static int has_xsave2; 139 static int has_xcrs; 140 static int has_pit_state2; 141 static int has_sregs2; 142 static int has_exception_payload; 143 static int has_triple_fault_event; 144 145 static bool has_msr_mcg_ext_ctl; 146 147 static struct kvm_cpuid2 *cpuid_cache; 148 static struct kvm_cpuid2 *hv_cpuid_cache; 149 static struct kvm_msr_list *kvm_feature_msrs; 150 151 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES]; 152 153 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */ 154 static RateLimit bus_lock_ratelimit_ctrl; 155 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value); 156 157 int kvm_has_pit_state2(void) 158 { 159 return has_pit_state2; 160 } 161 162 bool kvm_has_smm(void) 163 { 164 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM); 165 } 166 167 bool kvm_has_adjust_clock_stable(void) 168 { 169 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); 170 171 return (ret & KVM_CLOCK_TSC_STABLE); 172 } 173 174 bool kvm_has_adjust_clock(void) 175 { 176 return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); 177 } 178 179 bool kvm_has_exception_payload(void) 180 { 181 return has_exception_payload; 182 } 183 184 static bool kvm_x2apic_api_set_flags(uint64_t flags) 185 { 186 KVMState *s = KVM_STATE(current_accel()); 187 188 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); 189 } 190 191 #define MEMORIZE(fn, _result) \ 192 ({ \ 193 static bool _memorized; \ 194 \ 195 if (_memorized) { \ 196 return _result; \ 197 } \ 198 _memorized = true; \ 199 _result = fn; \ 200 }) 201 202 static bool has_x2apic_api; 203 204 bool kvm_has_x2apic_api(void) 205 { 206 return has_x2apic_api; 207 } 208 209 bool kvm_enable_x2apic(void) 210 { 211 return MEMORIZE( 212 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | 213 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), 214 has_x2apic_api); 215 } 216 217 bool kvm_hv_vpindex_settable(void) 218 { 219 return hv_vpindex_settable; 220 } 221 222 static int kvm_get_tsc(CPUState *cs) 223 { 224 X86CPU *cpu = X86_CPU(cs); 225 CPUX86State *env = &cpu->env; 226 uint64_t value; 227 int ret; 228 229 if (env->tsc_valid) { 230 return 0; 231 } 232 233 env->tsc_valid = !runstate_is_running(); 234 235 ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value); 236 if (ret < 0) { 237 return ret; 238 } 239 240 env->tsc = value; 241 return 0; 242 } 243 244 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) 245 { 246 kvm_get_tsc(cpu); 247 } 248 249 void kvm_synchronize_all_tsc(void) 250 { 251 CPUState *cpu; 252 253 if (kvm_enabled()) { 254 CPU_FOREACH(cpu) { 255 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); 256 } 257 } 258 } 259 260 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) 261 { 262 struct kvm_cpuid2 *cpuid; 263 int r, size; 264 265 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 266 cpuid = g_malloc0(size); 267 cpuid->nent = max; 268 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); 269 if (r == 0 && cpuid->nent >= max) { 270 r = -E2BIG; 271 } 272 if (r < 0) { 273 if (r == -E2BIG) { 274 g_free(cpuid); 275 return NULL; 276 } else { 277 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", 278 strerror(-r)); 279 exit(1); 280 } 281 } 282 return cpuid; 283 } 284 285 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough 286 * for all entries. 287 */ 288 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) 289 { 290 struct kvm_cpuid2 *cpuid; 291 int max = 1; 292 293 if (cpuid_cache != NULL) { 294 return cpuid_cache; 295 } 296 while ((cpuid = try_get_cpuid(s, max)) == NULL) { 297 max *= 2; 298 } 299 cpuid_cache = cpuid; 300 return cpuid; 301 } 302 303 static bool host_tsx_broken(void) 304 { 305 int family, model, stepping;\ 306 char vendor[CPUID_VENDOR_SZ + 1]; 307 308 host_cpu_vendor_fms(vendor, &family, &model, &stepping); 309 310 /* Check if we are running on a Haswell host known to have broken TSX */ 311 return !strcmp(vendor, CPUID_VENDOR_INTEL) && 312 (family == 6) && 313 ((model == 63 && stepping < 4) || 314 model == 60 || model == 69 || model == 70); 315 } 316 317 /* Returns the value for a specific register on the cpuid entry 318 */ 319 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) 320 { 321 uint32_t ret = 0; 322 switch (reg) { 323 case R_EAX: 324 ret = entry->eax; 325 break; 326 case R_EBX: 327 ret = entry->ebx; 328 break; 329 case R_ECX: 330 ret = entry->ecx; 331 break; 332 case R_EDX: 333 ret = entry->edx; 334 break; 335 } 336 return ret; 337 } 338 339 /* Find matching entry for function/index on kvm_cpuid2 struct 340 */ 341 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, 342 uint32_t function, 343 uint32_t index) 344 { 345 int i; 346 for (i = 0; i < cpuid->nent; ++i) { 347 if (cpuid->entries[i].function == function && 348 cpuid->entries[i].index == index) { 349 return &cpuid->entries[i]; 350 } 351 } 352 /* not found: */ 353 return NULL; 354 } 355 356 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, 357 uint32_t index, int reg) 358 { 359 struct kvm_cpuid2 *cpuid; 360 uint32_t ret = 0; 361 uint32_t cpuid_1_edx, unused; 362 uint64_t bitmask; 363 364 cpuid = get_supported_cpuid(s); 365 366 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); 367 if (entry) { 368 ret = cpuid_entry_get_reg(entry, reg); 369 } 370 371 /* Fixups for the data returned by KVM, below */ 372 373 if (function == 1 && reg == R_EDX) { 374 /* KVM before 2.6.30 misreports the following features */ 375 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; 376 } else if (function == 1 && reg == R_ECX) { 377 /* We can set the hypervisor flag, even if KVM does not return it on 378 * GET_SUPPORTED_CPUID 379 */ 380 ret |= CPUID_EXT_HYPERVISOR; 381 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it 382 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, 383 * and the irqchip is in the kernel. 384 */ 385 if (kvm_irqchip_in_kernel() && 386 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { 387 ret |= CPUID_EXT_TSC_DEADLINE_TIMER; 388 } 389 390 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled 391 * without the in-kernel irqchip 392 */ 393 if (!kvm_irqchip_in_kernel()) { 394 ret &= ~CPUID_EXT_X2APIC; 395 } 396 397 if (enable_cpu_pm) { 398 int disable_exits = kvm_check_extension(s, 399 KVM_CAP_X86_DISABLE_EXITS); 400 401 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) { 402 ret |= CPUID_EXT_MONITOR; 403 } 404 } 405 } else if (function == 6 && reg == R_EAX) { 406 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ 407 } else if (function == 7 && index == 0 && reg == R_EBX) { 408 /* Not new instructions, just an optimization. */ 409 uint32_t ebx; 410 host_cpuid(7, 0, &unused, &ebx, &unused, &unused); 411 ret |= ebx & CPUID_7_0_EBX_ERMS; 412 413 if (host_tsx_broken()) { 414 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); 415 } 416 } else if (function == 7 && index == 0 && reg == R_EDX) { 417 /* Not new instructions, just an optimization. */ 418 uint32_t edx; 419 host_cpuid(7, 0, &unused, &unused, &unused, &edx); 420 ret |= edx & CPUID_7_0_EDX_FSRM; 421 422 /* 423 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts. 424 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is 425 * returned by KVM_GET_MSR_INDEX_LIST. 426 */ 427 if (!has_msr_arch_capabs) { 428 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES; 429 } 430 } else if (function == 7 && index == 1 && reg == R_EAX) { 431 /* Not new instructions, just an optimization. */ 432 uint32_t eax; 433 host_cpuid(7, 1, &eax, &unused, &unused, &unused); 434 ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC); 435 } else if (function == 7 && index == 2 && reg == R_EDX) { 436 uint32_t edx; 437 host_cpuid(7, 2, &unused, &unused, &unused, &edx); 438 ret |= edx & CPUID_7_2_EDX_MCDT_NO; 439 } else if (function == 0xd && index == 0 && 440 (reg == R_EAX || reg == R_EDX)) { 441 /* 442 * The value returned by KVM_GET_SUPPORTED_CPUID does not include 443 * features that still have to be enabled with the arch_prctl 444 * system call. QEMU needs the full value, which is retrieved 445 * with KVM_GET_DEVICE_ATTR. 446 */ 447 struct kvm_device_attr attr = { 448 .group = 0, 449 .attr = KVM_X86_XCOMP_GUEST_SUPP, 450 .addr = (unsigned long) &bitmask 451 }; 452 453 bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES); 454 if (!sys_attr) { 455 return ret; 456 } 457 458 int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr); 459 if (rc < 0) { 460 if (rc != -ENXIO) { 461 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) " 462 "error: %d", rc); 463 } 464 return ret; 465 } 466 ret = (reg == R_EAX) ? bitmask : bitmask >> 32; 467 } else if (function == 0x80000001 && reg == R_ECX) { 468 /* 469 * It's safe to enable TOPOEXT even if it's not returned by 470 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows 471 * us to keep CPU models including TOPOEXT runnable on older kernels. 472 */ 473 ret |= CPUID_EXT3_TOPOEXT; 474 } else if (function == 0x80000001 && reg == R_EDX) { 475 /* On Intel, kvm returns cpuid according to the Intel spec, 476 * so add missing bits according to the AMD spec: 477 */ 478 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); 479 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; 480 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { 481 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't 482 * be enabled without the in-kernel irqchip 483 */ 484 if (!kvm_irqchip_in_kernel()) { 485 ret &= ~(1U << KVM_FEATURE_PV_UNHALT); 486 } 487 if (kvm_irqchip_is_split()) { 488 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID; 489 } 490 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) { 491 ret |= 1U << KVM_HINTS_REALTIME; 492 } 493 494 return ret; 495 } 496 497 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index) 498 { 499 struct { 500 struct kvm_msrs info; 501 struct kvm_msr_entry entries[1]; 502 } msr_data = {}; 503 uint64_t value; 504 uint32_t ret, can_be_one, must_be_one; 505 506 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */ 507 return 0; 508 } 509 510 /* Check if requested MSR is supported feature MSR */ 511 int i; 512 for (i = 0; i < kvm_feature_msrs->nmsrs; i++) 513 if (kvm_feature_msrs->indices[i] == index) { 514 break; 515 } 516 if (i == kvm_feature_msrs->nmsrs) { 517 return 0; /* if the feature MSR is not supported, simply return 0 */ 518 } 519 520 msr_data.info.nmsrs = 1; 521 msr_data.entries[0].index = index; 522 523 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data); 524 if (ret != 1) { 525 error_report("KVM get MSR (index=0x%x) feature failed, %s", 526 index, strerror(-ret)); 527 exit(1); 528 } 529 530 value = msr_data.entries[0].data; 531 switch (index) { 532 case MSR_IA32_VMX_PROCBASED_CTLS2: 533 if (!has_msr_vmx_procbased_ctls2) { 534 /* KVM forgot to add these bits for some time, do this ourselves. */ 535 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) & 536 CPUID_XSAVE_XSAVES) { 537 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32; 538 } 539 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) & 540 CPUID_EXT_RDRAND) { 541 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32; 542 } 543 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 544 CPUID_7_0_EBX_INVPCID) { 545 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32; 546 } 547 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 548 CPUID_7_0_EBX_RDSEED) { 549 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32; 550 } 551 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) & 552 CPUID_EXT2_RDTSCP) { 553 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32; 554 } 555 } 556 /* fall through */ 557 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 558 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 559 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 560 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 561 /* 562 * Return true for bits that can be one, but do not have to be one. 563 * The SDM tells us which bits could have a "must be one" setting, 564 * so we can do the opposite transformation in make_vmx_msr_value. 565 */ 566 must_be_one = (uint32_t)value; 567 can_be_one = (uint32_t)(value >> 32); 568 return can_be_one & ~must_be_one; 569 570 default: 571 return value; 572 } 573 } 574 575 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, 576 int *max_banks) 577 { 578 int r; 579 580 r = kvm_check_extension(s, KVM_CAP_MCE); 581 if (r > 0) { 582 *max_banks = r; 583 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); 584 } 585 return -ENOSYS; 586 } 587 588 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) 589 { 590 CPUState *cs = CPU(cpu); 591 CPUX86State *env = &cpu->env; 592 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | 593 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; 594 uint64_t mcg_status = MCG_STATUS_MCIP; 595 int flags = 0; 596 597 if (code == BUS_MCEERR_AR) { 598 status |= MCI_STATUS_AR | 0x134; 599 mcg_status |= MCG_STATUS_RIPV | MCG_STATUS_EIPV; 600 } else { 601 status |= 0xc0; 602 mcg_status |= MCG_STATUS_RIPV; 603 } 604 605 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; 606 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the 607 * guest kernel back into env->mcg_ext_ctl. 608 */ 609 cpu_synchronize_state(cs); 610 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { 611 mcg_status |= MCG_STATUS_LMCE; 612 flags = 0; 613 } 614 615 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, 616 (MCM_ADDR_PHYS << 6) | 0xc, flags); 617 } 618 619 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar) 620 { 621 MemoryFailureFlags mff = {.action_required = ar, .recursive = false}; 622 623 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action, 624 &mff); 625 } 626 627 static void hardware_memory_error(void *host_addr) 628 { 629 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true); 630 error_report("QEMU got Hardware memory error at addr %p", host_addr); 631 exit(1); 632 } 633 634 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) 635 { 636 X86CPU *cpu = X86_CPU(c); 637 CPUX86State *env = &cpu->env; 638 ram_addr_t ram_addr; 639 hwaddr paddr; 640 641 /* If we get an action required MCE, it has been injected by KVM 642 * while the VM was running. An action optional MCE instead should 643 * be coming from the main thread, which qemu_init_sigbus identifies 644 * as the "early kill" thread. 645 */ 646 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); 647 648 if ((env->mcg_cap & MCG_SER_P) && addr) { 649 ram_addr = qemu_ram_addr_from_host(addr); 650 if (ram_addr != RAM_ADDR_INVALID && 651 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { 652 kvm_hwpoison_page_add(ram_addr); 653 kvm_mce_inject(cpu, paddr, code); 654 655 /* 656 * Use different logging severity based on error type. 657 * If there is additional MCE reporting on the hypervisor, QEMU VA 658 * could be another source to identify the PA and MCE details. 659 */ 660 if (code == BUS_MCEERR_AR) { 661 error_report("Guest MCE Memory Error at QEMU addr %p and " 662 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 663 addr, paddr, "BUS_MCEERR_AR"); 664 } else { 665 warn_report("Guest MCE Memory Error at QEMU addr %p and " 666 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 667 addr, paddr, "BUS_MCEERR_AO"); 668 } 669 670 return; 671 } 672 673 if (code == BUS_MCEERR_AO) { 674 warn_report("Hardware memory error at addr %p of type %s " 675 "for memory used by QEMU itself instead of guest system!", 676 addr, "BUS_MCEERR_AO"); 677 } 678 } 679 680 if (code == BUS_MCEERR_AR) { 681 hardware_memory_error(addr); 682 } 683 684 /* Hope we are lucky for AO MCE, just notify a event */ 685 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false); 686 } 687 688 static void kvm_reset_exception(CPUX86State *env) 689 { 690 env->exception_nr = -1; 691 env->exception_pending = 0; 692 env->exception_injected = 0; 693 env->exception_has_payload = false; 694 env->exception_payload = 0; 695 } 696 697 static void kvm_queue_exception(CPUX86State *env, 698 int32_t exception_nr, 699 uint8_t exception_has_payload, 700 uint64_t exception_payload) 701 { 702 assert(env->exception_nr == -1); 703 assert(!env->exception_pending); 704 assert(!env->exception_injected); 705 assert(!env->exception_has_payload); 706 707 env->exception_nr = exception_nr; 708 709 if (has_exception_payload) { 710 env->exception_pending = 1; 711 712 env->exception_has_payload = exception_has_payload; 713 env->exception_payload = exception_payload; 714 } else { 715 env->exception_injected = 1; 716 717 if (exception_nr == EXCP01_DB) { 718 assert(exception_has_payload); 719 env->dr[6] = exception_payload; 720 } else if (exception_nr == EXCP0E_PAGE) { 721 assert(exception_has_payload); 722 env->cr[2] = exception_payload; 723 } else { 724 assert(!exception_has_payload); 725 } 726 } 727 } 728 729 static int kvm_inject_mce_oldstyle(X86CPU *cpu) 730 { 731 CPUX86State *env = &cpu->env; 732 733 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) { 734 unsigned int bank, bank_num = env->mcg_cap & 0xff; 735 struct kvm_x86_mce mce; 736 737 kvm_reset_exception(env); 738 739 /* 740 * There must be at least one bank in use if an MCE is pending. 741 * Find it and use its values for the event injection. 742 */ 743 for (bank = 0; bank < bank_num; bank++) { 744 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { 745 break; 746 } 747 } 748 assert(bank < bank_num); 749 750 mce.bank = bank; 751 mce.status = env->mce_banks[bank * 4 + 1]; 752 mce.mcg_status = env->mcg_status; 753 mce.addr = env->mce_banks[bank * 4 + 2]; 754 mce.misc = env->mce_banks[bank * 4 + 3]; 755 756 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); 757 } 758 return 0; 759 } 760 761 static void cpu_update_state(void *opaque, bool running, RunState state) 762 { 763 CPUX86State *env = opaque; 764 765 if (running) { 766 env->tsc_valid = false; 767 } 768 } 769 770 unsigned long kvm_arch_vcpu_id(CPUState *cs) 771 { 772 X86CPU *cpu = X86_CPU(cs); 773 return cpu->apic_id; 774 } 775 776 #ifndef KVM_CPUID_SIGNATURE_NEXT 777 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 778 #endif 779 780 static bool hyperv_enabled(X86CPU *cpu) 781 { 782 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 && 783 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) || 784 cpu->hyperv_features || cpu->hyperv_passthrough); 785 } 786 787 /* 788 * Check whether target_freq is within conservative 789 * ntp correctable bounds (250ppm) of freq 790 */ 791 static inline bool freq_within_bounds(int freq, int target_freq) 792 { 793 int max_freq = freq + (freq * 250 / 1000000); 794 int min_freq = freq - (freq * 250 / 1000000); 795 796 if (target_freq >= min_freq && target_freq <= max_freq) { 797 return true; 798 } 799 800 return false; 801 } 802 803 static int kvm_arch_set_tsc_khz(CPUState *cs) 804 { 805 X86CPU *cpu = X86_CPU(cs); 806 CPUX86State *env = &cpu->env; 807 int r, cur_freq; 808 bool set_ioctl = false; 809 810 if (!env->tsc_khz) { 811 return 0; 812 } 813 814 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 815 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP; 816 817 /* 818 * If TSC scaling is supported, attempt to set TSC frequency. 819 */ 820 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) { 821 set_ioctl = true; 822 } 823 824 /* 825 * If desired TSC frequency is within bounds of NTP correction, 826 * attempt to set TSC frequency. 827 */ 828 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) { 829 set_ioctl = true; 830 } 831 832 r = set_ioctl ? 833 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : 834 -ENOTSUP; 835 836 if (r < 0) { 837 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current 838 * TSC frequency doesn't match the one we want. 839 */ 840 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 841 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 842 -ENOTSUP; 843 if (cur_freq <= 0 || cur_freq != env->tsc_khz) { 844 warn_report("TSC frequency mismatch between " 845 "VM (%" PRId64 " kHz) and host (%d kHz), " 846 "and TSC scaling unavailable", 847 env->tsc_khz, cur_freq); 848 return r; 849 } 850 } 851 852 return 0; 853 } 854 855 static bool tsc_is_stable_and_known(CPUX86State *env) 856 { 857 if (!env->tsc_khz) { 858 return false; 859 } 860 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) 861 || env->user_tsc_khz; 862 } 863 864 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1) 865 866 static struct { 867 const char *desc; 868 struct { 869 uint32_t func; 870 int reg; 871 uint32_t bits; 872 } flags[2]; 873 uint64_t dependencies; 874 } kvm_hyperv_properties[] = { 875 [HYPERV_FEAT_RELAXED] = { 876 .desc = "relaxed timing (hv-relaxed)", 877 .flags = { 878 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 879 .bits = HV_RELAXED_TIMING_RECOMMENDED} 880 } 881 }, 882 [HYPERV_FEAT_VAPIC] = { 883 .desc = "virtual APIC (hv-vapic)", 884 .flags = { 885 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 886 .bits = HV_APIC_ACCESS_AVAILABLE} 887 } 888 }, 889 [HYPERV_FEAT_TIME] = { 890 .desc = "clocksources (hv-time)", 891 .flags = { 892 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 893 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE} 894 } 895 }, 896 [HYPERV_FEAT_CRASH] = { 897 .desc = "crash MSRs (hv-crash)", 898 .flags = { 899 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 900 .bits = HV_GUEST_CRASH_MSR_AVAILABLE} 901 } 902 }, 903 [HYPERV_FEAT_RESET] = { 904 .desc = "reset MSR (hv-reset)", 905 .flags = { 906 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 907 .bits = HV_RESET_AVAILABLE} 908 } 909 }, 910 [HYPERV_FEAT_VPINDEX] = { 911 .desc = "VP_INDEX MSR (hv-vpindex)", 912 .flags = { 913 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 914 .bits = HV_VP_INDEX_AVAILABLE} 915 } 916 }, 917 [HYPERV_FEAT_RUNTIME] = { 918 .desc = "VP_RUNTIME MSR (hv-runtime)", 919 .flags = { 920 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 921 .bits = HV_VP_RUNTIME_AVAILABLE} 922 } 923 }, 924 [HYPERV_FEAT_SYNIC] = { 925 .desc = "synthetic interrupt controller (hv-synic)", 926 .flags = { 927 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 928 .bits = HV_SYNIC_AVAILABLE} 929 } 930 }, 931 [HYPERV_FEAT_STIMER] = { 932 .desc = "synthetic timers (hv-stimer)", 933 .flags = { 934 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 935 .bits = HV_SYNTIMERS_AVAILABLE} 936 }, 937 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME) 938 }, 939 [HYPERV_FEAT_FREQUENCIES] = { 940 .desc = "frequency MSRs (hv-frequencies)", 941 .flags = { 942 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 943 .bits = HV_ACCESS_FREQUENCY_MSRS}, 944 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 945 .bits = HV_FREQUENCY_MSRS_AVAILABLE} 946 } 947 }, 948 [HYPERV_FEAT_REENLIGHTENMENT] = { 949 .desc = "reenlightenment MSRs (hv-reenlightenment)", 950 .flags = { 951 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 952 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL} 953 } 954 }, 955 [HYPERV_FEAT_TLBFLUSH] = { 956 .desc = "paravirtualized TLB flush (hv-tlbflush)", 957 .flags = { 958 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 959 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED | 960 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 961 }, 962 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 963 }, 964 [HYPERV_FEAT_EVMCS] = { 965 .desc = "enlightened VMCS (hv-evmcs)", 966 .flags = { 967 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 968 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED} 969 }, 970 .dependencies = BIT(HYPERV_FEAT_VAPIC) 971 }, 972 [HYPERV_FEAT_IPI] = { 973 .desc = "paravirtualized IPI (hv-ipi)", 974 .flags = { 975 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 976 .bits = HV_CLUSTER_IPI_RECOMMENDED | 977 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 978 }, 979 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 980 }, 981 [HYPERV_FEAT_STIMER_DIRECT] = { 982 .desc = "direct mode synthetic timers (hv-stimer-direct)", 983 .flags = { 984 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 985 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE} 986 }, 987 .dependencies = BIT(HYPERV_FEAT_STIMER) 988 }, 989 [HYPERV_FEAT_AVIC] = { 990 .desc = "AVIC/APICv support (hv-avic/hv-apicv)", 991 .flags = { 992 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 993 .bits = HV_DEPRECATING_AEOI_RECOMMENDED} 994 } 995 }, 996 #ifdef CONFIG_SYNDBG 997 [HYPERV_FEAT_SYNDBG] = { 998 .desc = "Enable synthetic kernel debugger channel (hv-syndbg)", 999 .flags = { 1000 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1001 .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE} 1002 }, 1003 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED) 1004 }, 1005 #endif 1006 [HYPERV_FEAT_MSR_BITMAP] = { 1007 .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)", 1008 .flags = { 1009 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX, 1010 .bits = HV_NESTED_MSR_BITMAP} 1011 } 1012 }, 1013 [HYPERV_FEAT_XMM_INPUT] = { 1014 .desc = "XMM fast hypercall input (hv-xmm-input)", 1015 .flags = { 1016 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1017 .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE} 1018 } 1019 }, 1020 [HYPERV_FEAT_TLBFLUSH_EXT] = { 1021 .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)", 1022 .flags = { 1023 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1024 .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE} 1025 }, 1026 .dependencies = BIT(HYPERV_FEAT_TLBFLUSH) 1027 }, 1028 [HYPERV_FEAT_TLBFLUSH_DIRECT] = { 1029 .desc = "direct TLB flush (hv-tlbflush-direct)", 1030 .flags = { 1031 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX, 1032 .bits = HV_NESTED_DIRECT_FLUSH} 1033 }, 1034 .dependencies = BIT(HYPERV_FEAT_VAPIC) 1035 }, 1036 }; 1037 1038 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max, 1039 bool do_sys_ioctl) 1040 { 1041 struct kvm_cpuid2 *cpuid; 1042 int r, size; 1043 1044 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 1045 cpuid = g_malloc0(size); 1046 cpuid->nent = max; 1047 1048 if (do_sys_ioctl) { 1049 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1050 } else { 1051 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1052 } 1053 if (r == 0 && cpuid->nent >= max) { 1054 r = -E2BIG; 1055 } 1056 if (r < 0) { 1057 if (r == -E2BIG) { 1058 g_free(cpuid); 1059 return NULL; 1060 } else { 1061 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n", 1062 strerror(-r)); 1063 exit(1); 1064 } 1065 } 1066 return cpuid; 1067 } 1068 1069 /* 1070 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough 1071 * for all entries. 1072 */ 1073 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs) 1074 { 1075 struct kvm_cpuid2 *cpuid; 1076 /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */ 1077 int max = 11; 1078 int i; 1079 bool do_sys_ioctl; 1080 1081 do_sys_ioctl = 1082 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0; 1083 1084 /* 1085 * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is 1086 * unsupported, kvm_hyperv_expand_features() checks for that. 1087 */ 1088 assert(do_sys_ioctl || cs->kvm_state); 1089 1090 /* 1091 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with 1092 * -E2BIG, however, it doesn't report back the right size. Keep increasing 1093 * it and re-trying until we succeed. 1094 */ 1095 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) { 1096 max++; 1097 } 1098 1099 /* 1100 * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before 1101 * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the 1102 * information early, just check for the capability and set the bit 1103 * manually. 1104 */ 1105 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state, 1106 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1107 for (i = 0; i < cpuid->nent; i++) { 1108 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) { 1109 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1110 } 1111 } 1112 } 1113 1114 return cpuid; 1115 } 1116 1117 /* 1118 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature 1119 * leaves from KVM_CAP_HYPERV* and present MSRs data. 1120 */ 1121 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs) 1122 { 1123 X86CPU *cpu = X86_CPU(cs); 1124 struct kvm_cpuid2 *cpuid; 1125 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm; 1126 1127 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */ 1128 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries)); 1129 cpuid->nent = 2; 1130 1131 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */ 1132 entry_feat = &cpuid->entries[0]; 1133 entry_feat->function = HV_CPUID_FEATURES; 1134 1135 entry_recomm = &cpuid->entries[1]; 1136 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO; 1137 entry_recomm->ebx = cpu->hyperv_spinlock_attempts; 1138 1139 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) { 1140 entry_feat->eax |= HV_HYPERCALL_AVAILABLE; 1141 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE; 1142 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1143 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED; 1144 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED; 1145 } 1146 1147 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { 1148 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE; 1149 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE; 1150 } 1151 1152 if (has_msr_hv_frequencies) { 1153 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS; 1154 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE; 1155 } 1156 1157 if (has_msr_hv_crash) { 1158 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE; 1159 } 1160 1161 if (has_msr_hv_reenlightenment) { 1162 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL; 1163 } 1164 1165 if (has_msr_hv_reset) { 1166 entry_feat->eax |= HV_RESET_AVAILABLE; 1167 } 1168 1169 if (has_msr_hv_vpindex) { 1170 entry_feat->eax |= HV_VP_INDEX_AVAILABLE; 1171 } 1172 1173 if (has_msr_hv_runtime) { 1174 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE; 1175 } 1176 1177 if (has_msr_hv_synic) { 1178 unsigned int cap = cpu->hyperv_synic_kvm_only ? 1179 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1180 1181 if (kvm_check_extension(cs->kvm_state, cap) > 0) { 1182 entry_feat->eax |= HV_SYNIC_AVAILABLE; 1183 } 1184 } 1185 1186 if (has_msr_hv_stimer) { 1187 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE; 1188 } 1189 1190 if (has_msr_hv_syndbg_options) { 1191 entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE; 1192 entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE; 1193 entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED; 1194 } 1195 1196 if (kvm_check_extension(cs->kvm_state, 1197 KVM_CAP_HYPERV_TLBFLUSH) > 0) { 1198 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED; 1199 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1200 } 1201 1202 if (kvm_check_extension(cs->kvm_state, 1203 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1204 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1205 } 1206 1207 if (kvm_check_extension(cs->kvm_state, 1208 KVM_CAP_HYPERV_SEND_IPI) > 0) { 1209 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED; 1210 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1211 } 1212 1213 return cpuid; 1214 } 1215 1216 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg) 1217 { 1218 struct kvm_cpuid_entry2 *entry; 1219 struct kvm_cpuid2 *cpuid; 1220 1221 if (hv_cpuid_cache) { 1222 cpuid = hv_cpuid_cache; 1223 } else { 1224 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) { 1225 cpuid = get_supported_hv_cpuid(cs); 1226 } else { 1227 /* 1228 * 'cs->kvm_state' may be NULL when Hyper-V features are expanded 1229 * before KVM context is created but this is only done when 1230 * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies 1231 * KVM_CAP_HYPERV_CPUID. 1232 */ 1233 assert(cs->kvm_state); 1234 1235 cpuid = get_supported_hv_cpuid_legacy(cs); 1236 } 1237 hv_cpuid_cache = cpuid; 1238 } 1239 1240 if (!cpuid) { 1241 return 0; 1242 } 1243 1244 entry = cpuid_find_entry(cpuid, func, 0); 1245 if (!entry) { 1246 return 0; 1247 } 1248 1249 return cpuid_entry_get_reg(entry, reg); 1250 } 1251 1252 static bool hyperv_feature_supported(CPUState *cs, int feature) 1253 { 1254 uint32_t func, bits; 1255 int i, reg; 1256 1257 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) { 1258 1259 func = kvm_hyperv_properties[feature].flags[i].func; 1260 reg = kvm_hyperv_properties[feature].flags[i].reg; 1261 bits = kvm_hyperv_properties[feature].flags[i].bits; 1262 1263 if (!func) { 1264 continue; 1265 } 1266 1267 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) { 1268 return false; 1269 } 1270 } 1271 1272 return true; 1273 } 1274 1275 /* Checks that all feature dependencies are enabled */ 1276 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp) 1277 { 1278 uint64_t deps; 1279 int dep_feat; 1280 1281 deps = kvm_hyperv_properties[feature].dependencies; 1282 while (deps) { 1283 dep_feat = ctz64(deps); 1284 if (!(hyperv_feat_enabled(cpu, dep_feat))) { 1285 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1286 kvm_hyperv_properties[feature].desc, 1287 kvm_hyperv_properties[dep_feat].desc); 1288 return false; 1289 } 1290 deps &= ~(1ull << dep_feat); 1291 } 1292 1293 return true; 1294 } 1295 1296 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg) 1297 { 1298 X86CPU *cpu = X86_CPU(cs); 1299 uint32_t r = 0; 1300 int i, j; 1301 1302 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) { 1303 if (!hyperv_feat_enabled(cpu, i)) { 1304 continue; 1305 } 1306 1307 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) { 1308 if (kvm_hyperv_properties[i].flags[j].func != func) { 1309 continue; 1310 } 1311 if (kvm_hyperv_properties[i].flags[j].reg != reg) { 1312 continue; 1313 } 1314 1315 r |= kvm_hyperv_properties[i].flags[j].bits; 1316 } 1317 } 1318 1319 /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */ 1320 if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) { 1321 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1322 r |= DEFAULT_EVMCS_VERSION; 1323 } 1324 } 1325 1326 return r; 1327 } 1328 1329 /* 1330 * Expand Hyper-V CPU features. In partucular, check that all the requested 1331 * features are supported by the host and the sanity of the configuration 1332 * (that all the required dependencies are included). Also, this takes care 1333 * of 'hv_passthrough' mode and fills the environment with all supported 1334 * Hyper-V features. 1335 */ 1336 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp) 1337 { 1338 CPUState *cs = CPU(cpu); 1339 Error *local_err = NULL; 1340 int feat; 1341 1342 if (!hyperv_enabled(cpu)) 1343 return true; 1344 1345 /* 1346 * When kvm_hyperv_expand_features is called at CPU feature expansion 1347 * time per-CPU kvm_state is not available yet so we can only proceed 1348 * when KVM_CAP_SYS_HYPERV_CPUID is supported. 1349 */ 1350 if (!cs->kvm_state && 1351 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID)) 1352 return true; 1353 1354 if (cpu->hyperv_passthrough) { 1355 cpu->hyperv_vendor_id[0] = 1356 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX); 1357 cpu->hyperv_vendor_id[1] = 1358 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX); 1359 cpu->hyperv_vendor_id[2] = 1360 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX); 1361 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor, 1362 sizeof(cpu->hyperv_vendor_id) + 1); 1363 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id, 1364 sizeof(cpu->hyperv_vendor_id)); 1365 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0; 1366 1367 cpu->hyperv_interface_id[0] = 1368 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX); 1369 cpu->hyperv_interface_id[1] = 1370 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX); 1371 cpu->hyperv_interface_id[2] = 1372 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX); 1373 cpu->hyperv_interface_id[3] = 1374 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX); 1375 1376 cpu->hyperv_ver_id_build = 1377 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX); 1378 cpu->hyperv_ver_id_major = 1379 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16; 1380 cpu->hyperv_ver_id_minor = 1381 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff; 1382 cpu->hyperv_ver_id_sp = 1383 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX); 1384 cpu->hyperv_ver_id_sb = 1385 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24; 1386 cpu->hyperv_ver_id_sn = 1387 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff; 1388 1389 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, 1390 R_EAX); 1391 cpu->hyperv_limits[0] = 1392 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX); 1393 cpu->hyperv_limits[1] = 1394 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX); 1395 cpu->hyperv_limits[2] = 1396 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX); 1397 1398 cpu->hyperv_spinlock_attempts = 1399 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX); 1400 1401 /* 1402 * Mark feature as enabled in 'cpu->hyperv_features' as 1403 * hv_build_cpuid_leaf() uses this info to build guest CPUIDs. 1404 */ 1405 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1406 if (hyperv_feature_supported(cs, feat)) { 1407 cpu->hyperv_features |= BIT(feat); 1408 } 1409 } 1410 } else { 1411 /* Check features availability and dependencies */ 1412 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1413 /* If the feature was not requested skip it. */ 1414 if (!hyperv_feat_enabled(cpu, feat)) { 1415 continue; 1416 } 1417 1418 /* Check if the feature is supported by KVM */ 1419 if (!hyperv_feature_supported(cs, feat)) { 1420 error_setg(errp, "Hyper-V %s is not supported by kernel", 1421 kvm_hyperv_properties[feat].desc); 1422 return false; 1423 } 1424 1425 /* Check dependencies */ 1426 if (!hv_feature_check_deps(cpu, feat, &local_err)) { 1427 error_propagate(errp, local_err); 1428 return false; 1429 } 1430 } 1431 } 1432 1433 /* Additional dependencies not covered by kvm_hyperv_properties[] */ 1434 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1435 !cpu->hyperv_synic_kvm_only && 1436 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) { 1437 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1438 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc, 1439 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc); 1440 return false; 1441 } 1442 1443 return true; 1444 } 1445 1446 /* 1447 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent. 1448 */ 1449 static int hyperv_fill_cpuids(CPUState *cs, 1450 struct kvm_cpuid_entry2 *cpuid_ent) 1451 { 1452 X86CPU *cpu = X86_CPU(cs); 1453 struct kvm_cpuid_entry2 *c; 1454 uint32_t signature[3]; 1455 uint32_t cpuid_i = 0, max_cpuid_leaf = 0; 1456 uint32_t nested_eax = 1457 hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX); 1458 1459 max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES : 1460 HV_CPUID_IMPLEMENT_LIMITS; 1461 1462 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) { 1463 max_cpuid_leaf = 1464 MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES); 1465 } 1466 1467 c = &cpuid_ent[cpuid_i++]; 1468 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS; 1469 c->eax = max_cpuid_leaf; 1470 c->ebx = cpu->hyperv_vendor_id[0]; 1471 c->ecx = cpu->hyperv_vendor_id[1]; 1472 c->edx = cpu->hyperv_vendor_id[2]; 1473 1474 c = &cpuid_ent[cpuid_i++]; 1475 c->function = HV_CPUID_INTERFACE; 1476 c->eax = cpu->hyperv_interface_id[0]; 1477 c->ebx = cpu->hyperv_interface_id[1]; 1478 c->ecx = cpu->hyperv_interface_id[2]; 1479 c->edx = cpu->hyperv_interface_id[3]; 1480 1481 c = &cpuid_ent[cpuid_i++]; 1482 c->function = HV_CPUID_VERSION; 1483 c->eax = cpu->hyperv_ver_id_build; 1484 c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 | 1485 cpu->hyperv_ver_id_minor; 1486 c->ecx = cpu->hyperv_ver_id_sp; 1487 c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 | 1488 (cpu->hyperv_ver_id_sn & 0xffffff); 1489 1490 c = &cpuid_ent[cpuid_i++]; 1491 c->function = HV_CPUID_FEATURES; 1492 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX); 1493 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX); 1494 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX); 1495 1496 /* Unconditionally required with any Hyper-V enlightenment */ 1497 c->eax |= HV_HYPERCALL_AVAILABLE; 1498 1499 /* SynIC and Vmbus devices require messages/signals hypercalls */ 1500 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1501 !cpu->hyperv_synic_kvm_only) { 1502 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS; 1503 } 1504 1505 1506 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */ 1507 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1508 1509 c = &cpuid_ent[cpuid_i++]; 1510 c->function = HV_CPUID_ENLIGHTMENT_INFO; 1511 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX); 1512 c->ebx = cpu->hyperv_spinlock_attempts; 1513 1514 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) && 1515 !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) { 1516 c->eax |= HV_APIC_ACCESS_RECOMMENDED; 1517 } 1518 1519 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) { 1520 c->eax |= HV_NO_NONARCH_CORESHARING; 1521 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) { 1522 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) & 1523 HV_NO_NONARCH_CORESHARING; 1524 } 1525 1526 c = &cpuid_ent[cpuid_i++]; 1527 c->function = HV_CPUID_IMPLEMENT_LIMITS; 1528 c->eax = cpu->hv_max_vps; 1529 c->ebx = cpu->hyperv_limits[0]; 1530 c->ecx = cpu->hyperv_limits[1]; 1531 c->edx = cpu->hyperv_limits[2]; 1532 1533 if (nested_eax) { 1534 uint32_t function; 1535 1536 /* Create zeroed 0x40000006..0x40000009 leaves */ 1537 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1; 1538 function < HV_CPUID_NESTED_FEATURES; function++) { 1539 c = &cpuid_ent[cpuid_i++]; 1540 c->function = function; 1541 } 1542 1543 c = &cpuid_ent[cpuid_i++]; 1544 c->function = HV_CPUID_NESTED_FEATURES; 1545 c->eax = nested_eax; 1546 } 1547 1548 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) { 1549 c = &cpuid_ent[cpuid_i++]; 1550 c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS; 1551 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ? 1552 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS; 1553 memcpy(signature, "Microsoft VS", 12); 1554 c->eax = 0; 1555 c->ebx = signature[0]; 1556 c->ecx = signature[1]; 1557 c->edx = signature[2]; 1558 1559 c = &cpuid_ent[cpuid_i++]; 1560 c->function = HV_CPUID_SYNDBG_INTERFACE; 1561 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12); 1562 c->eax = signature[0]; 1563 c->ebx = 0; 1564 c->ecx = 0; 1565 c->edx = 0; 1566 1567 c = &cpuid_ent[cpuid_i++]; 1568 c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES; 1569 c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING; 1570 c->ebx = 0; 1571 c->ecx = 0; 1572 c->edx = 0; 1573 } 1574 1575 return cpuid_i; 1576 } 1577 1578 static Error *hv_passthrough_mig_blocker; 1579 static Error *hv_no_nonarch_cs_mig_blocker; 1580 1581 /* Checks that the exposed eVMCS version range is supported by KVM */ 1582 static bool evmcs_version_supported(uint16_t evmcs_version, 1583 uint16_t supported_evmcs_version) 1584 { 1585 uint8_t min_version = evmcs_version & 0xff; 1586 uint8_t max_version = evmcs_version >> 8; 1587 uint8_t min_supported_version = supported_evmcs_version & 0xff; 1588 uint8_t max_supported_version = supported_evmcs_version >> 8; 1589 1590 return (min_version >= min_supported_version) && 1591 (max_version <= max_supported_version); 1592 } 1593 1594 static int hyperv_init_vcpu(X86CPU *cpu) 1595 { 1596 CPUState *cs = CPU(cpu); 1597 Error *local_err = NULL; 1598 int ret; 1599 1600 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) { 1601 error_setg(&hv_passthrough_mig_blocker, 1602 "'hv-passthrough' CPU flag prevents migration, use explicit" 1603 " set of hv-* flags instead"); 1604 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err); 1605 if (ret < 0) { 1606 error_report_err(local_err); 1607 return ret; 1608 } 1609 } 1610 1611 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO && 1612 hv_no_nonarch_cs_mig_blocker == NULL) { 1613 error_setg(&hv_no_nonarch_cs_mig_blocker, 1614 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration" 1615 " use explicit 'hv-no-nonarch-coresharing=on' instead (but" 1616 " make sure SMT is disabled and/or that vCPUs are properly" 1617 " pinned)"); 1618 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err); 1619 if (ret < 0) { 1620 error_report_err(local_err); 1621 return ret; 1622 } 1623 } 1624 1625 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) { 1626 /* 1627 * the kernel doesn't support setting vp_index; assert that its value 1628 * is in sync 1629 */ 1630 uint64_t value; 1631 1632 ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value); 1633 if (ret < 0) { 1634 return ret; 1635 } 1636 1637 if (value != hyperv_vp_index(CPU(cpu))) { 1638 error_report("kernel's vp_index != QEMU's vp_index"); 1639 return -ENXIO; 1640 } 1641 } 1642 1643 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 1644 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ? 1645 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1646 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0); 1647 if (ret < 0) { 1648 error_report("failed to turn on HyperV SynIC in KVM: %s", 1649 strerror(-ret)); 1650 return ret; 1651 } 1652 1653 if (!cpu->hyperv_synic_kvm_only) { 1654 ret = hyperv_x86_synic_add(cpu); 1655 if (ret < 0) { 1656 error_report("failed to create HyperV SynIC: %s", 1657 strerror(-ret)); 1658 return ret; 1659 } 1660 } 1661 } 1662 1663 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1664 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION; 1665 uint16_t supported_evmcs_version; 1666 1667 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0, 1668 (uintptr_t)&supported_evmcs_version); 1669 1670 /* 1671 * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs' 1672 * option sets. Note: we hardcode the maximum supported eVMCS version 1673 * to '1' as well so 'hv-evmcs' feature is migratable even when (and if) 1674 * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have 1675 * to be added. 1676 */ 1677 if (ret < 0) { 1678 error_report("Hyper-V %s is not supported by kernel", 1679 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc); 1680 return ret; 1681 } 1682 1683 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) { 1684 error_report("eVMCS version range [%d..%d] is not supported by " 1685 "kernel (supported: [%d..%d])", evmcs_version & 0xff, 1686 evmcs_version >> 8, supported_evmcs_version & 0xff, 1687 supported_evmcs_version >> 8); 1688 return -ENOTSUP; 1689 } 1690 } 1691 1692 if (cpu->hyperv_enforce_cpuid) { 1693 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1); 1694 if (ret < 0) { 1695 error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s", 1696 strerror(-ret)); 1697 return ret; 1698 } 1699 } 1700 1701 return 0; 1702 } 1703 1704 static Error *invtsc_mig_blocker; 1705 1706 #define KVM_MAX_CPUID_ENTRIES 100 1707 1708 static void kvm_init_xsave(CPUX86State *env) 1709 { 1710 if (has_xsave2) { 1711 env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096); 1712 } else if (has_xsave) { 1713 env->xsave_buf_len = sizeof(struct kvm_xsave); 1714 } else { 1715 return; 1716 } 1717 1718 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len); 1719 memset(env->xsave_buf, 0, env->xsave_buf_len); 1720 /* 1721 * The allocated storage must be large enough for all of the 1722 * possible XSAVE state components. 1723 */ 1724 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <= 1725 env->xsave_buf_len); 1726 } 1727 1728 static void kvm_init_nested_state(CPUX86State *env) 1729 { 1730 struct kvm_vmx_nested_state_hdr *vmx_hdr; 1731 uint32_t size; 1732 1733 if (!env->nested_state) { 1734 return; 1735 } 1736 1737 size = env->nested_state->size; 1738 1739 memset(env->nested_state, 0, size); 1740 env->nested_state->size = size; 1741 1742 if (cpu_has_vmx(env)) { 1743 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX; 1744 vmx_hdr = &env->nested_state->hdr.vmx; 1745 vmx_hdr->vmxon_pa = -1ull; 1746 vmx_hdr->vmcs12_pa = -1ull; 1747 } else if (cpu_has_svm(env)) { 1748 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM; 1749 } 1750 } 1751 1752 int kvm_arch_init_vcpu(CPUState *cs) 1753 { 1754 struct { 1755 struct kvm_cpuid2 cpuid; 1756 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; 1757 } cpuid_data; 1758 /* 1759 * The kernel defines these structs with padding fields so there 1760 * should be no extra padding in our cpuid_data struct. 1761 */ 1762 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) != 1763 sizeof(struct kvm_cpuid2) + 1764 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES); 1765 1766 X86CPU *cpu = X86_CPU(cs); 1767 CPUX86State *env = &cpu->env; 1768 uint32_t limit, i, j, cpuid_i; 1769 uint32_t unused; 1770 struct kvm_cpuid_entry2 *c; 1771 uint32_t signature[3]; 1772 int kvm_base = KVM_CPUID_SIGNATURE; 1773 int max_nested_state_len; 1774 int r; 1775 Error *local_err = NULL; 1776 1777 memset(&cpuid_data, 0, sizeof(cpuid_data)); 1778 1779 cpuid_i = 0; 1780 1781 has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2); 1782 1783 r = kvm_arch_set_tsc_khz(cs); 1784 if (r < 0) { 1785 return r; 1786 } 1787 1788 /* vcpu's TSC frequency is either specified by user, or following 1789 * the value used by KVM if the former is not present. In the 1790 * latter case, we query it from KVM and record in env->tsc_khz, 1791 * so that vcpu's TSC frequency can be migrated later via this field. 1792 */ 1793 if (!env->tsc_khz) { 1794 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 1795 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 1796 -ENOTSUP; 1797 if (r > 0) { 1798 env->tsc_khz = r; 1799 } 1800 } 1801 1802 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY; 1803 1804 /* 1805 * kvm_hyperv_expand_features() is called here for the second time in case 1806 * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle 1807 * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to 1808 * check which Hyper-V enlightenments are supported and which are not, we 1809 * can still proceed and check/expand Hyper-V enlightenments here so legacy 1810 * behavior is preserved. 1811 */ 1812 if (!kvm_hyperv_expand_features(cpu, &local_err)) { 1813 error_report_err(local_err); 1814 return -ENOSYS; 1815 } 1816 1817 if (hyperv_enabled(cpu)) { 1818 r = hyperv_init_vcpu(cpu); 1819 if (r) { 1820 return r; 1821 } 1822 1823 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries); 1824 kvm_base = KVM_CPUID_SIGNATURE_NEXT; 1825 has_msr_hv_hypercall = true; 1826 } 1827 1828 if (cs->kvm_state->xen_version) { 1829 #ifdef CONFIG_XEN_EMU 1830 struct kvm_cpuid_entry2 *xen_max_leaf; 1831 1832 memcpy(signature, "XenVMMXenVMM", 12); 1833 1834 xen_max_leaf = c = &cpuid_data.entries[cpuid_i++]; 1835 c->function = kvm_base + XEN_CPUID_SIGNATURE; 1836 c->eax = kvm_base + XEN_CPUID_TIME; 1837 c->ebx = signature[0]; 1838 c->ecx = signature[1]; 1839 c->edx = signature[2]; 1840 1841 c = &cpuid_data.entries[cpuid_i++]; 1842 c->function = kvm_base + XEN_CPUID_VENDOR; 1843 c->eax = cs->kvm_state->xen_version; 1844 c->ebx = 0; 1845 c->ecx = 0; 1846 c->edx = 0; 1847 1848 c = &cpuid_data.entries[cpuid_i++]; 1849 c->function = kvm_base + XEN_CPUID_HVM_MSR; 1850 /* Number of hypercall-transfer pages */ 1851 c->eax = 1; 1852 /* Hypercall MSR base address */ 1853 if (hyperv_enabled(cpu)) { 1854 c->ebx = XEN_HYPERCALL_MSR_HYPERV; 1855 kvm_xen_init(cs->kvm_state, c->ebx); 1856 } else { 1857 c->ebx = XEN_HYPERCALL_MSR; 1858 } 1859 c->ecx = 0; 1860 c->edx = 0; 1861 1862 c = &cpuid_data.entries[cpuid_i++]; 1863 c->function = kvm_base + XEN_CPUID_TIME; 1864 c->eax = ((!!tsc_is_stable_and_known(env) << 1) | 1865 (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2)); 1866 /* default=0 (emulate if necessary) */ 1867 c->ebx = 0; 1868 /* guest tsc frequency */ 1869 c->ecx = env->user_tsc_khz; 1870 /* guest tsc incarnation (migration count) */ 1871 c->edx = 0; 1872 1873 c = &cpuid_data.entries[cpuid_i++]; 1874 c->function = kvm_base + XEN_CPUID_HVM; 1875 xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM; 1876 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) { 1877 c->function = kvm_base + XEN_CPUID_HVM; 1878 1879 if (cpu->xen_vapic) { 1880 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT; 1881 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT; 1882 } 1883 1884 c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS; 1885 1886 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) { 1887 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT; 1888 c->ebx = cs->cpu_index; 1889 } 1890 } 1891 1892 r = kvm_xen_init_vcpu(cs); 1893 if (r) { 1894 return r; 1895 } 1896 1897 kvm_base += 0x100; 1898 #else /* CONFIG_XEN_EMU */ 1899 /* This should never happen as kvm_arch_init() would have died first. */ 1900 fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n"); 1901 abort(); 1902 #endif 1903 } else if (cpu->expose_kvm) { 1904 memcpy(signature, "KVMKVMKVM\0\0\0", 12); 1905 c = &cpuid_data.entries[cpuid_i++]; 1906 c->function = KVM_CPUID_SIGNATURE | kvm_base; 1907 c->eax = KVM_CPUID_FEATURES | kvm_base; 1908 c->ebx = signature[0]; 1909 c->ecx = signature[1]; 1910 c->edx = signature[2]; 1911 1912 c = &cpuid_data.entries[cpuid_i++]; 1913 c->function = KVM_CPUID_FEATURES | kvm_base; 1914 c->eax = env->features[FEAT_KVM]; 1915 c->edx = env->features[FEAT_KVM_HINTS]; 1916 } 1917 1918 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); 1919 1920 if (cpu->kvm_pv_enforce_cpuid) { 1921 r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1); 1922 if (r < 0) { 1923 fprintf(stderr, 1924 "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s", 1925 strerror(-r)); 1926 abort(); 1927 } 1928 } 1929 1930 for (i = 0; i <= limit; i++) { 1931 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1932 fprintf(stderr, "unsupported level value: 0x%x\n", limit); 1933 abort(); 1934 } 1935 c = &cpuid_data.entries[cpuid_i++]; 1936 1937 switch (i) { 1938 case 2: { 1939 /* Keep reading function 2 till all the input is received */ 1940 int times; 1941 1942 c->function = i; 1943 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | 1944 KVM_CPUID_FLAG_STATE_READ_NEXT; 1945 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1946 times = c->eax & 0xff; 1947 1948 for (j = 1; j < times; ++j) { 1949 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1950 fprintf(stderr, "cpuid_data is full, no space for " 1951 "cpuid(eax:2):eax & 0xf = 0x%x\n", times); 1952 abort(); 1953 } 1954 c = &cpuid_data.entries[cpuid_i++]; 1955 c->function = i; 1956 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; 1957 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1958 } 1959 break; 1960 } 1961 case 0x1f: 1962 if (env->nr_dies < 2) { 1963 break; 1964 } 1965 /* fallthrough */ 1966 case 4: 1967 case 0xb: 1968 case 0xd: 1969 for (j = 0; ; j++) { 1970 if (i == 0xd && j == 64) { 1971 break; 1972 } 1973 1974 if (i == 0x1f && j == 64) { 1975 break; 1976 } 1977 1978 c->function = i; 1979 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1980 c->index = j; 1981 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1982 1983 if (i == 4 && c->eax == 0) { 1984 break; 1985 } 1986 if (i == 0xb && !(c->ecx & 0xff00)) { 1987 break; 1988 } 1989 if (i == 0x1f && !(c->ecx & 0xff00)) { 1990 break; 1991 } 1992 if (i == 0xd && c->eax == 0) { 1993 continue; 1994 } 1995 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1996 fprintf(stderr, "cpuid_data is full, no space for " 1997 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 1998 abort(); 1999 } 2000 c = &cpuid_data.entries[cpuid_i++]; 2001 } 2002 break; 2003 case 0x7: 2004 case 0x12: 2005 for (j = 0; ; j++) { 2006 c->function = i; 2007 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 2008 c->index = j; 2009 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 2010 2011 if (j > 1 && (c->eax & 0xf) != 1) { 2012 break; 2013 } 2014 2015 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2016 fprintf(stderr, "cpuid_data is full, no space for " 2017 "cpuid(eax:0x12,ecx:0x%x)\n", j); 2018 abort(); 2019 } 2020 c = &cpuid_data.entries[cpuid_i++]; 2021 } 2022 break; 2023 case 0x14: 2024 case 0x1d: 2025 case 0x1e: { 2026 uint32_t times; 2027 2028 c->function = i; 2029 c->index = 0; 2030 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 2031 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 2032 times = c->eax; 2033 2034 for (j = 1; j <= times; ++j) { 2035 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2036 fprintf(stderr, "cpuid_data is full, no space for " 2037 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 2038 abort(); 2039 } 2040 c = &cpuid_data.entries[cpuid_i++]; 2041 c->function = i; 2042 c->index = j; 2043 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 2044 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 2045 } 2046 break; 2047 } 2048 default: 2049 c->function = i; 2050 c->flags = 0; 2051 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 2052 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 2053 /* 2054 * KVM already returns all zeroes if a CPUID entry is missing, 2055 * so we can omit it and avoid hitting KVM's 80-entry limit. 2056 */ 2057 cpuid_i--; 2058 } 2059 break; 2060 } 2061 } 2062 2063 if (limit >= 0x0a) { 2064 uint32_t eax, edx; 2065 2066 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx); 2067 2068 has_architectural_pmu_version = eax & 0xff; 2069 if (has_architectural_pmu_version > 0) { 2070 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8; 2071 2072 /* Shouldn't be more than 32, since that's the number of bits 2073 * available in EBX to tell us _which_ counters are available. 2074 * Play it safe. 2075 */ 2076 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) { 2077 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS; 2078 } 2079 2080 if (has_architectural_pmu_version > 1) { 2081 num_architectural_pmu_fixed_counters = edx & 0x1f; 2082 2083 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) { 2084 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS; 2085 } 2086 } 2087 } 2088 } 2089 2090 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); 2091 2092 for (i = 0x80000000; i <= limit; i++) { 2093 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2094 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); 2095 abort(); 2096 } 2097 c = &cpuid_data.entries[cpuid_i++]; 2098 2099 switch (i) { 2100 case 0x8000001d: 2101 /* Query for all AMD cache information leaves */ 2102 for (j = 0; ; j++) { 2103 c->function = i; 2104 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 2105 c->index = j; 2106 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 2107 2108 if (c->eax == 0) { 2109 break; 2110 } 2111 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2112 fprintf(stderr, "cpuid_data is full, no space for " 2113 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 2114 abort(); 2115 } 2116 c = &cpuid_data.entries[cpuid_i++]; 2117 } 2118 break; 2119 default: 2120 c->function = i; 2121 c->flags = 0; 2122 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 2123 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 2124 /* 2125 * KVM already returns all zeroes if a CPUID entry is missing, 2126 * so we can omit it and avoid hitting KVM's 80-entry limit. 2127 */ 2128 cpuid_i--; 2129 } 2130 break; 2131 } 2132 } 2133 2134 /* Call Centaur's CPUID instructions they are supported. */ 2135 if (env->cpuid_xlevel2 > 0) { 2136 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); 2137 2138 for (i = 0xC0000000; i <= limit; i++) { 2139 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2140 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); 2141 abort(); 2142 } 2143 c = &cpuid_data.entries[cpuid_i++]; 2144 2145 c->function = i; 2146 c->flags = 0; 2147 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 2148 } 2149 } 2150 2151 cpuid_data.cpuid.nent = cpuid_i; 2152 2153 if (((env->cpuid_version >> 8)&0xF) >= 6 2154 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == 2155 (CPUID_MCE | CPUID_MCA) 2156 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { 2157 uint64_t mcg_cap, unsupported_caps; 2158 int banks; 2159 int ret; 2160 2161 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); 2162 if (ret < 0) { 2163 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); 2164 return ret; 2165 } 2166 2167 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { 2168 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", 2169 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); 2170 return -ENOTSUP; 2171 } 2172 2173 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); 2174 if (unsupported_caps) { 2175 if (unsupported_caps & MCG_LMCE_P) { 2176 error_report("kvm: LMCE not supported"); 2177 return -ENOTSUP; 2178 } 2179 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64, 2180 unsupported_caps); 2181 } 2182 2183 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; 2184 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); 2185 if (ret < 0) { 2186 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); 2187 return ret; 2188 } 2189 } 2190 2191 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env); 2192 2193 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); 2194 if (c) { 2195 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || 2196 !!(c->ecx & CPUID_EXT_SMX); 2197 } 2198 2199 c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0); 2200 if (c && (c->ebx & CPUID_7_0_EBX_SGX)) { 2201 has_msr_feature_control = true; 2202 } 2203 2204 if (env->mcg_cap & MCG_LMCE_P) { 2205 has_msr_mcg_ext_ctl = has_msr_feature_control = true; 2206 } 2207 2208 if (!env->user_tsc_khz) { 2209 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && 2210 invtsc_mig_blocker == NULL) { 2211 error_setg(&invtsc_mig_blocker, 2212 "State blocked by non-migratable CPU device" 2213 " (invtsc flag)"); 2214 r = migrate_add_blocker(invtsc_mig_blocker, &local_err); 2215 if (r < 0) { 2216 error_report_err(local_err); 2217 return r; 2218 } 2219 } 2220 } 2221 2222 if (cpu->vmware_cpuid_freq 2223 /* Guests depend on 0x40000000 to detect this feature, so only expose 2224 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ 2225 && cpu->expose_kvm 2226 && kvm_base == KVM_CPUID_SIGNATURE 2227 /* TSC clock must be stable and known for this feature. */ 2228 && tsc_is_stable_and_known(env)) { 2229 2230 c = &cpuid_data.entries[cpuid_i++]; 2231 c->function = KVM_CPUID_SIGNATURE | 0x10; 2232 c->eax = env->tsc_khz; 2233 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */ 2234 c->ecx = c->edx = 0; 2235 2236 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); 2237 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); 2238 } 2239 2240 cpuid_data.cpuid.nent = cpuid_i; 2241 2242 cpuid_data.cpuid.padding = 0; 2243 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); 2244 if (r) { 2245 goto fail; 2246 } 2247 kvm_init_xsave(env); 2248 2249 max_nested_state_len = kvm_max_nested_state_length(); 2250 if (max_nested_state_len > 0) { 2251 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data)); 2252 2253 if (cpu_has_vmx(env) || cpu_has_svm(env)) { 2254 env->nested_state = g_malloc0(max_nested_state_len); 2255 env->nested_state->size = max_nested_state_len; 2256 2257 kvm_init_nested_state(env); 2258 } 2259 } 2260 2261 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); 2262 2263 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { 2264 has_msr_tsc_aux = false; 2265 } 2266 2267 kvm_init_msrs(cpu); 2268 2269 return 0; 2270 2271 fail: 2272 migrate_del_blocker(invtsc_mig_blocker); 2273 2274 return r; 2275 } 2276 2277 int kvm_arch_destroy_vcpu(CPUState *cs) 2278 { 2279 X86CPU *cpu = X86_CPU(cs); 2280 CPUX86State *env = &cpu->env; 2281 2282 g_free(env->xsave_buf); 2283 2284 g_free(cpu->kvm_msr_buf); 2285 cpu->kvm_msr_buf = NULL; 2286 2287 g_free(env->nested_state); 2288 env->nested_state = NULL; 2289 2290 qemu_del_vm_change_state_handler(cpu->vmsentry); 2291 2292 return 0; 2293 } 2294 2295 void kvm_arch_reset_vcpu(X86CPU *cpu) 2296 { 2297 CPUX86State *env = &cpu->env; 2298 2299 env->xcr0 = 1; 2300 if (kvm_irqchip_in_kernel()) { 2301 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : 2302 KVM_MP_STATE_UNINITIALIZED; 2303 } else { 2304 env->mp_state = KVM_MP_STATE_RUNNABLE; 2305 } 2306 2307 /* enabled by default */ 2308 env->poll_control_msr = 1; 2309 2310 kvm_init_nested_state(env); 2311 2312 sev_es_set_reset_vector(CPU(cpu)); 2313 } 2314 2315 void kvm_arch_after_reset_vcpu(X86CPU *cpu) 2316 { 2317 CPUX86State *env = &cpu->env; 2318 int i; 2319 2320 /* 2321 * Reset SynIC after all other devices have been reset to let them remove 2322 * their SINT routes first. 2323 */ 2324 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 2325 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { 2326 env->msr_hv_synic_sint[i] = HV_SINT_MASKED; 2327 } 2328 2329 hyperv_x86_synic_reset(cpu); 2330 } 2331 } 2332 2333 void kvm_arch_do_init_vcpu(X86CPU *cpu) 2334 { 2335 CPUX86State *env = &cpu->env; 2336 2337 /* APs get directly into wait-for-SIPI state. */ 2338 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { 2339 env->mp_state = KVM_MP_STATE_INIT_RECEIVED; 2340 } 2341 } 2342 2343 static int kvm_get_supported_feature_msrs(KVMState *s) 2344 { 2345 int ret = 0; 2346 2347 if (kvm_feature_msrs != NULL) { 2348 return 0; 2349 } 2350 2351 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) { 2352 return 0; 2353 } 2354 2355 struct kvm_msr_list msr_list; 2356 2357 msr_list.nmsrs = 0; 2358 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list); 2359 if (ret < 0 && ret != -E2BIG) { 2360 error_report("Fetch KVM feature MSR list failed: %s", 2361 strerror(-ret)); 2362 return ret; 2363 } 2364 2365 assert(msr_list.nmsrs > 0); 2366 kvm_feature_msrs = g_malloc0(sizeof(msr_list) + 2367 msr_list.nmsrs * sizeof(msr_list.indices[0])); 2368 2369 kvm_feature_msrs->nmsrs = msr_list.nmsrs; 2370 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs); 2371 2372 if (ret < 0) { 2373 error_report("Fetch KVM feature MSR list failed: %s", 2374 strerror(-ret)); 2375 g_free(kvm_feature_msrs); 2376 kvm_feature_msrs = NULL; 2377 return ret; 2378 } 2379 2380 return 0; 2381 } 2382 2383 static int kvm_get_supported_msrs(KVMState *s) 2384 { 2385 int ret = 0; 2386 struct kvm_msr_list msr_list, *kvm_msr_list; 2387 2388 /* 2389 * Obtain MSR list from KVM. These are the MSRs that we must 2390 * save/restore. 2391 */ 2392 msr_list.nmsrs = 0; 2393 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); 2394 if (ret < 0 && ret != -E2BIG) { 2395 return ret; 2396 } 2397 /* 2398 * Old kernel modules had a bug and could write beyond the provided 2399 * memory. Allocate at least a safe amount of 1K. 2400 */ 2401 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + 2402 msr_list.nmsrs * 2403 sizeof(msr_list.indices[0]))); 2404 2405 kvm_msr_list->nmsrs = msr_list.nmsrs; 2406 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); 2407 if (ret >= 0) { 2408 int i; 2409 2410 for (i = 0; i < kvm_msr_list->nmsrs; i++) { 2411 switch (kvm_msr_list->indices[i]) { 2412 case MSR_STAR: 2413 has_msr_star = true; 2414 break; 2415 case MSR_VM_HSAVE_PA: 2416 has_msr_hsave_pa = true; 2417 break; 2418 case MSR_TSC_AUX: 2419 has_msr_tsc_aux = true; 2420 break; 2421 case MSR_TSC_ADJUST: 2422 has_msr_tsc_adjust = true; 2423 break; 2424 case MSR_IA32_TSCDEADLINE: 2425 has_msr_tsc_deadline = true; 2426 break; 2427 case MSR_IA32_SMBASE: 2428 has_msr_smbase = true; 2429 break; 2430 case MSR_SMI_COUNT: 2431 has_msr_smi_count = true; 2432 break; 2433 case MSR_IA32_MISC_ENABLE: 2434 has_msr_misc_enable = true; 2435 break; 2436 case MSR_IA32_BNDCFGS: 2437 has_msr_bndcfgs = true; 2438 break; 2439 case MSR_IA32_XSS: 2440 has_msr_xss = true; 2441 break; 2442 case MSR_IA32_UMWAIT_CONTROL: 2443 has_msr_umwait = true; 2444 break; 2445 case HV_X64_MSR_CRASH_CTL: 2446 has_msr_hv_crash = true; 2447 break; 2448 case HV_X64_MSR_RESET: 2449 has_msr_hv_reset = true; 2450 break; 2451 case HV_X64_MSR_VP_INDEX: 2452 has_msr_hv_vpindex = true; 2453 break; 2454 case HV_X64_MSR_VP_RUNTIME: 2455 has_msr_hv_runtime = true; 2456 break; 2457 case HV_X64_MSR_SCONTROL: 2458 has_msr_hv_synic = true; 2459 break; 2460 case HV_X64_MSR_STIMER0_CONFIG: 2461 has_msr_hv_stimer = true; 2462 break; 2463 case HV_X64_MSR_TSC_FREQUENCY: 2464 has_msr_hv_frequencies = true; 2465 break; 2466 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 2467 has_msr_hv_reenlightenment = true; 2468 break; 2469 case HV_X64_MSR_SYNDBG_OPTIONS: 2470 has_msr_hv_syndbg_options = true; 2471 break; 2472 case MSR_IA32_SPEC_CTRL: 2473 has_msr_spec_ctrl = true; 2474 break; 2475 case MSR_AMD64_TSC_RATIO: 2476 has_tsc_scale_msr = true; 2477 break; 2478 case MSR_IA32_TSX_CTRL: 2479 has_msr_tsx_ctrl = true; 2480 break; 2481 case MSR_VIRT_SSBD: 2482 has_msr_virt_ssbd = true; 2483 break; 2484 case MSR_IA32_ARCH_CAPABILITIES: 2485 has_msr_arch_capabs = true; 2486 break; 2487 case MSR_IA32_CORE_CAPABILITY: 2488 has_msr_core_capabs = true; 2489 break; 2490 case MSR_IA32_PERF_CAPABILITIES: 2491 has_msr_perf_capabs = true; 2492 break; 2493 case MSR_IA32_VMX_VMFUNC: 2494 has_msr_vmx_vmfunc = true; 2495 break; 2496 case MSR_IA32_UCODE_REV: 2497 has_msr_ucode_rev = true; 2498 break; 2499 case MSR_IA32_VMX_PROCBASED_CTLS2: 2500 has_msr_vmx_procbased_ctls2 = true; 2501 break; 2502 case MSR_IA32_PKRS: 2503 has_msr_pkrs = true; 2504 break; 2505 } 2506 } 2507 } 2508 2509 g_free(kvm_msr_list); 2510 2511 return ret; 2512 } 2513 2514 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu, uint32_t msr, 2515 uint64_t *val) 2516 { 2517 CPUState *cs = CPU(cpu); 2518 2519 *val = cs->nr_threads * cs->nr_cores; /* thread count, bits 15..0 */ 2520 *val |= ((uint32_t)cs->nr_cores << 16); /* core count, bits 31..16 */ 2521 2522 return true; 2523 } 2524 2525 static Notifier smram_machine_done; 2526 static KVMMemoryListener smram_listener; 2527 static AddressSpace smram_address_space; 2528 static MemoryRegion smram_as_root; 2529 static MemoryRegion smram_as_mem; 2530 2531 static void register_smram_listener(Notifier *n, void *unused) 2532 { 2533 MemoryRegion *smram = 2534 (MemoryRegion *) object_resolve_path("/machine/smram", NULL); 2535 2536 /* Outer container... */ 2537 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); 2538 memory_region_set_enabled(&smram_as_root, true); 2539 2540 /* ... with two regions inside: normal system memory with low 2541 * priority, and... 2542 */ 2543 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", 2544 get_system_memory(), 0, ~0ull); 2545 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); 2546 memory_region_set_enabled(&smram_as_mem, true); 2547 2548 if (smram) { 2549 /* ... SMRAM with higher priority */ 2550 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); 2551 memory_region_set_enabled(smram, true); 2552 } 2553 2554 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); 2555 kvm_memory_listener_register(kvm_state, &smram_listener, 2556 &smram_address_space, 1, "kvm-smram"); 2557 } 2558 2559 int kvm_arch_get_default_type(MachineState *ms) 2560 { 2561 return 0; 2562 } 2563 2564 int kvm_arch_init(MachineState *ms, KVMState *s) 2565 { 2566 uint64_t identity_base = 0xfffbc000; 2567 uint64_t shadow_mem; 2568 int ret; 2569 struct utsname utsname; 2570 Error *local_err = NULL; 2571 2572 /* 2573 * Initialize SEV context, if required 2574 * 2575 * If no memory encryption is requested (ms->cgs == NULL) this is 2576 * a no-op. 2577 * 2578 * It's also a no-op if a non-SEV confidential guest support 2579 * mechanism is selected. SEV is the only mechanism available to 2580 * select on x86 at present, so this doesn't arise, but if new 2581 * mechanisms are supported in future (e.g. TDX), they'll need 2582 * their own initialization either here or elsewhere. 2583 */ 2584 ret = sev_kvm_init(ms->cgs, &local_err); 2585 if (ret < 0) { 2586 error_report_err(local_err); 2587 return ret; 2588 } 2589 2590 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { 2591 error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM"); 2592 return -ENOTSUP; 2593 } 2594 2595 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE); 2596 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); 2597 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); 2598 has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0; 2599 2600 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX); 2601 2602 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD); 2603 if (has_exception_payload) { 2604 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true); 2605 if (ret < 0) { 2606 error_report("kvm: Failed to enable exception payload cap: %s", 2607 strerror(-ret)); 2608 return ret; 2609 } 2610 } 2611 2612 has_triple_fault_event = kvm_check_extension(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT); 2613 if (has_triple_fault_event) { 2614 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true); 2615 if (ret < 0) { 2616 error_report("kvm: Failed to enable triple fault event cap: %s", 2617 strerror(-ret)); 2618 return ret; 2619 } 2620 } 2621 2622 if (s->xen_version) { 2623 #ifdef CONFIG_XEN_EMU 2624 if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) { 2625 error_report("kvm: Xen support only available in PC machine"); 2626 return -ENOTSUP; 2627 } 2628 /* hyperv_enabled() doesn't work yet. */ 2629 uint32_t msr = XEN_HYPERCALL_MSR; 2630 ret = kvm_xen_init(s, msr); 2631 if (ret < 0) { 2632 return ret; 2633 } 2634 #else 2635 error_report("kvm: Xen support not enabled in qemu"); 2636 return -ENOTSUP; 2637 #endif 2638 } 2639 2640 ret = kvm_get_supported_msrs(s); 2641 if (ret < 0) { 2642 return ret; 2643 } 2644 2645 kvm_get_supported_feature_msrs(s); 2646 2647 uname(&utsname); 2648 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; 2649 2650 /* 2651 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. 2652 * In order to use vm86 mode, an EPT identity map and a TSS are needed. 2653 * Since these must be part of guest physical memory, we need to allocate 2654 * them, both by setting their start addresses in the kernel and by 2655 * creating a corresponding e820 entry. We need 4 pages before the BIOS. 2656 * 2657 * Older KVM versions may not support setting the identity map base. In 2658 * that case we need to stick with the default, i.e. a 256K maximum BIOS 2659 * size. 2660 */ 2661 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { 2662 /* Allows up to 16M BIOSes. */ 2663 identity_base = 0xfeffc000; 2664 2665 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); 2666 if (ret < 0) { 2667 return ret; 2668 } 2669 } 2670 2671 /* Set TSS base one page after EPT identity map. */ 2672 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); 2673 if (ret < 0) { 2674 return ret; 2675 } 2676 2677 /* Tell fw_cfg to notify the BIOS to reserve the range. */ 2678 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); 2679 if (ret < 0) { 2680 fprintf(stderr, "e820_add_entry() table is full\n"); 2681 return ret; 2682 } 2683 2684 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort); 2685 if (shadow_mem != -1) { 2686 shadow_mem /= 4096; 2687 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); 2688 if (ret < 0) { 2689 return ret; 2690 } 2691 } 2692 2693 if (kvm_check_extension(s, KVM_CAP_X86_SMM) && 2694 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) && 2695 x86_machine_is_smm_enabled(X86_MACHINE(ms))) { 2696 smram_machine_done.notify = register_smram_listener; 2697 qemu_add_machine_init_done_notifier(&smram_machine_done); 2698 } 2699 2700 if (enable_cpu_pm) { 2701 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS); 2702 int ret; 2703 2704 /* Work around for kernel header with a typo. TODO: fix header and drop. */ 2705 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT) 2706 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL 2707 #endif 2708 if (disable_exits) { 2709 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT | 2710 KVM_X86_DISABLE_EXITS_HLT | 2711 KVM_X86_DISABLE_EXITS_PAUSE | 2712 KVM_X86_DISABLE_EXITS_CSTATE); 2713 } 2714 2715 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0, 2716 disable_exits); 2717 if (ret < 0) { 2718 error_report("kvm: guest stopping CPU not supported: %s", 2719 strerror(-ret)); 2720 } 2721 } 2722 2723 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) { 2724 X86MachineState *x86ms = X86_MACHINE(ms); 2725 2726 if (x86ms->bus_lock_ratelimit > 0) { 2727 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT); 2728 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) { 2729 error_report("kvm: bus lock detection unsupported"); 2730 return -ENOTSUP; 2731 } 2732 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0, 2733 KVM_BUS_LOCK_DETECTION_EXIT); 2734 if (ret < 0) { 2735 error_report("kvm: Failed to enable bus lock detection cap: %s", 2736 strerror(-ret)); 2737 return ret; 2738 } 2739 ratelimit_init(&bus_lock_ratelimit_ctrl); 2740 ratelimit_set_speed(&bus_lock_ratelimit_ctrl, 2741 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME); 2742 } 2743 } 2744 2745 if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE && 2746 kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) { 2747 uint64_t notify_window_flags = 2748 ((uint64_t)s->notify_window << 32) | 2749 KVM_X86_NOTIFY_VMEXIT_ENABLED | 2750 KVM_X86_NOTIFY_VMEXIT_USER; 2751 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0, 2752 notify_window_flags); 2753 if (ret < 0) { 2754 error_report("kvm: Failed to enable notify vmexit cap: %s", 2755 strerror(-ret)); 2756 return ret; 2757 } 2758 } 2759 if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) { 2760 bool r; 2761 2762 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0, 2763 KVM_MSR_EXIT_REASON_FILTER); 2764 if (ret) { 2765 error_report("Could not enable user space MSRs: %s", 2766 strerror(-ret)); 2767 exit(1); 2768 } 2769 2770 r = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT, 2771 kvm_rdmsr_core_thread_count, NULL); 2772 if (!r) { 2773 error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s", 2774 strerror(-ret)); 2775 exit(1); 2776 } 2777 } 2778 2779 return 0; 2780 } 2781 2782 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 2783 { 2784 lhs->selector = rhs->selector; 2785 lhs->base = rhs->base; 2786 lhs->limit = rhs->limit; 2787 lhs->type = 3; 2788 lhs->present = 1; 2789 lhs->dpl = 3; 2790 lhs->db = 0; 2791 lhs->s = 1; 2792 lhs->l = 0; 2793 lhs->g = 0; 2794 lhs->avl = 0; 2795 lhs->unusable = 0; 2796 } 2797 2798 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 2799 { 2800 unsigned flags = rhs->flags; 2801 lhs->selector = rhs->selector; 2802 lhs->base = rhs->base; 2803 lhs->limit = rhs->limit; 2804 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; 2805 lhs->present = (flags & DESC_P_MASK) != 0; 2806 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; 2807 lhs->db = (flags >> DESC_B_SHIFT) & 1; 2808 lhs->s = (flags & DESC_S_MASK) != 0; 2809 lhs->l = (flags >> DESC_L_SHIFT) & 1; 2810 lhs->g = (flags & DESC_G_MASK) != 0; 2811 lhs->avl = (flags & DESC_AVL_MASK) != 0; 2812 lhs->unusable = !lhs->present; 2813 lhs->padding = 0; 2814 } 2815 2816 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) 2817 { 2818 lhs->selector = rhs->selector; 2819 lhs->base = rhs->base; 2820 lhs->limit = rhs->limit; 2821 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | 2822 ((rhs->present && !rhs->unusable) * DESC_P_MASK) | 2823 (rhs->dpl << DESC_DPL_SHIFT) | 2824 (rhs->db << DESC_B_SHIFT) | 2825 (rhs->s * DESC_S_MASK) | 2826 (rhs->l << DESC_L_SHIFT) | 2827 (rhs->g * DESC_G_MASK) | 2828 (rhs->avl * DESC_AVL_MASK); 2829 } 2830 2831 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) 2832 { 2833 if (set) { 2834 *kvm_reg = *qemu_reg; 2835 } else { 2836 *qemu_reg = *kvm_reg; 2837 } 2838 } 2839 2840 static int kvm_getput_regs(X86CPU *cpu, int set) 2841 { 2842 CPUX86State *env = &cpu->env; 2843 struct kvm_regs regs; 2844 int ret = 0; 2845 2846 if (!set) { 2847 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); 2848 if (ret < 0) { 2849 return ret; 2850 } 2851 } 2852 2853 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); 2854 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); 2855 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); 2856 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); 2857 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); 2858 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); 2859 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); 2860 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); 2861 #ifdef TARGET_X86_64 2862 kvm_getput_reg(®s.r8, &env->regs[8], set); 2863 kvm_getput_reg(®s.r9, &env->regs[9], set); 2864 kvm_getput_reg(®s.r10, &env->regs[10], set); 2865 kvm_getput_reg(®s.r11, &env->regs[11], set); 2866 kvm_getput_reg(®s.r12, &env->regs[12], set); 2867 kvm_getput_reg(®s.r13, &env->regs[13], set); 2868 kvm_getput_reg(®s.r14, &env->regs[14], set); 2869 kvm_getput_reg(®s.r15, &env->regs[15], set); 2870 #endif 2871 2872 kvm_getput_reg(®s.rflags, &env->eflags, set); 2873 kvm_getput_reg(®s.rip, &env->eip, set); 2874 2875 if (set) { 2876 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); 2877 } 2878 2879 return ret; 2880 } 2881 2882 static int kvm_put_fpu(X86CPU *cpu) 2883 { 2884 CPUX86State *env = &cpu->env; 2885 struct kvm_fpu fpu; 2886 int i; 2887 2888 memset(&fpu, 0, sizeof fpu); 2889 fpu.fsw = env->fpus & ~(7 << 11); 2890 fpu.fsw |= (env->fpstt & 7) << 11; 2891 fpu.fcw = env->fpuc; 2892 fpu.last_opcode = env->fpop; 2893 fpu.last_ip = env->fpip; 2894 fpu.last_dp = env->fpdp; 2895 for (i = 0; i < 8; ++i) { 2896 fpu.ftwx |= (!env->fptags[i]) << i; 2897 } 2898 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); 2899 for (i = 0; i < CPU_NB_REGS; i++) { 2900 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0)); 2901 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1)); 2902 } 2903 fpu.mxcsr = env->mxcsr; 2904 2905 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); 2906 } 2907 2908 static int kvm_put_xsave(X86CPU *cpu) 2909 { 2910 CPUX86State *env = &cpu->env; 2911 void *xsave = env->xsave_buf; 2912 2913 if (!has_xsave) { 2914 return kvm_put_fpu(cpu); 2915 } 2916 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len); 2917 2918 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); 2919 } 2920 2921 static int kvm_put_xcrs(X86CPU *cpu) 2922 { 2923 CPUX86State *env = &cpu->env; 2924 struct kvm_xcrs xcrs = {}; 2925 2926 if (!has_xcrs) { 2927 return 0; 2928 } 2929 2930 xcrs.nr_xcrs = 1; 2931 xcrs.flags = 0; 2932 xcrs.xcrs[0].xcr = 0; 2933 xcrs.xcrs[0].value = env->xcr0; 2934 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); 2935 } 2936 2937 static int kvm_put_sregs(X86CPU *cpu) 2938 { 2939 CPUX86State *env = &cpu->env; 2940 struct kvm_sregs sregs; 2941 2942 /* 2943 * The interrupt_bitmap is ignored because KVM_SET_SREGS is 2944 * always followed by KVM_SET_VCPU_EVENTS. 2945 */ 2946 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); 2947 2948 if ((env->eflags & VM_MASK)) { 2949 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 2950 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 2951 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 2952 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 2953 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 2954 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 2955 } else { 2956 set_seg(&sregs.cs, &env->segs[R_CS]); 2957 set_seg(&sregs.ds, &env->segs[R_DS]); 2958 set_seg(&sregs.es, &env->segs[R_ES]); 2959 set_seg(&sregs.fs, &env->segs[R_FS]); 2960 set_seg(&sregs.gs, &env->segs[R_GS]); 2961 set_seg(&sregs.ss, &env->segs[R_SS]); 2962 } 2963 2964 set_seg(&sregs.tr, &env->tr); 2965 set_seg(&sregs.ldt, &env->ldt); 2966 2967 sregs.idt.limit = env->idt.limit; 2968 sregs.idt.base = env->idt.base; 2969 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 2970 sregs.gdt.limit = env->gdt.limit; 2971 sregs.gdt.base = env->gdt.base; 2972 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 2973 2974 sregs.cr0 = env->cr[0]; 2975 sregs.cr2 = env->cr[2]; 2976 sregs.cr3 = env->cr[3]; 2977 sregs.cr4 = env->cr[4]; 2978 2979 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 2980 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 2981 2982 sregs.efer = env->efer; 2983 2984 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); 2985 } 2986 2987 static int kvm_put_sregs2(X86CPU *cpu) 2988 { 2989 CPUX86State *env = &cpu->env; 2990 struct kvm_sregs2 sregs; 2991 int i; 2992 2993 sregs.flags = 0; 2994 2995 if ((env->eflags & VM_MASK)) { 2996 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 2997 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 2998 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 2999 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 3000 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 3001 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 3002 } else { 3003 set_seg(&sregs.cs, &env->segs[R_CS]); 3004 set_seg(&sregs.ds, &env->segs[R_DS]); 3005 set_seg(&sregs.es, &env->segs[R_ES]); 3006 set_seg(&sregs.fs, &env->segs[R_FS]); 3007 set_seg(&sregs.gs, &env->segs[R_GS]); 3008 set_seg(&sregs.ss, &env->segs[R_SS]); 3009 } 3010 3011 set_seg(&sregs.tr, &env->tr); 3012 set_seg(&sregs.ldt, &env->ldt); 3013 3014 sregs.idt.limit = env->idt.limit; 3015 sregs.idt.base = env->idt.base; 3016 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 3017 sregs.gdt.limit = env->gdt.limit; 3018 sregs.gdt.base = env->gdt.base; 3019 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 3020 3021 sregs.cr0 = env->cr[0]; 3022 sregs.cr2 = env->cr[2]; 3023 sregs.cr3 = env->cr[3]; 3024 sregs.cr4 = env->cr[4]; 3025 3026 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 3027 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 3028 3029 sregs.efer = env->efer; 3030 3031 if (env->pdptrs_valid) { 3032 for (i = 0; i < 4; i++) { 3033 sregs.pdptrs[i] = env->pdptrs[i]; 3034 } 3035 sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 3036 } 3037 3038 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs); 3039 } 3040 3041 3042 static void kvm_msr_buf_reset(X86CPU *cpu) 3043 { 3044 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); 3045 } 3046 3047 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) 3048 { 3049 struct kvm_msrs *msrs = cpu->kvm_msr_buf; 3050 void *limit = ((void *)msrs) + MSR_BUF_SIZE; 3051 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; 3052 3053 assert((void *)(entry + 1) <= limit); 3054 3055 entry->index = index; 3056 entry->reserved = 0; 3057 entry->data = value; 3058 msrs->nmsrs++; 3059 } 3060 3061 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) 3062 { 3063 kvm_msr_buf_reset(cpu); 3064 kvm_msr_entry_add(cpu, index, value); 3065 3066 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 3067 } 3068 3069 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value) 3070 { 3071 int ret; 3072 struct { 3073 struct kvm_msrs info; 3074 struct kvm_msr_entry entries[1]; 3075 } msr_data = { 3076 .info.nmsrs = 1, 3077 .entries[0].index = index, 3078 }; 3079 3080 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); 3081 if (ret < 0) { 3082 return ret; 3083 } 3084 assert(ret == 1); 3085 *value = msr_data.entries[0].data; 3086 return ret; 3087 } 3088 void kvm_put_apicbase(X86CPU *cpu, uint64_t value) 3089 { 3090 int ret; 3091 3092 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); 3093 assert(ret == 1); 3094 } 3095 3096 static int kvm_put_tscdeadline_msr(X86CPU *cpu) 3097 { 3098 CPUX86State *env = &cpu->env; 3099 int ret; 3100 3101 if (!has_msr_tsc_deadline) { 3102 return 0; 3103 } 3104 3105 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); 3106 if (ret < 0) { 3107 return ret; 3108 } 3109 3110 assert(ret == 1); 3111 return 0; 3112 } 3113 3114 /* 3115 * Provide a separate write service for the feature control MSR in order to 3116 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done 3117 * before writing any other state because forcibly leaving nested mode 3118 * invalidates the VCPU state. 3119 */ 3120 static int kvm_put_msr_feature_control(X86CPU *cpu) 3121 { 3122 int ret; 3123 3124 if (!has_msr_feature_control) { 3125 return 0; 3126 } 3127 3128 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, 3129 cpu->env.msr_ia32_feature_control); 3130 if (ret < 0) { 3131 return ret; 3132 } 3133 3134 assert(ret == 1); 3135 return 0; 3136 } 3137 3138 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features) 3139 { 3140 uint32_t default1, can_be_one, can_be_zero; 3141 uint32_t must_be_one; 3142 3143 switch (index) { 3144 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 3145 default1 = 0x00000016; 3146 break; 3147 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 3148 default1 = 0x0401e172; 3149 break; 3150 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 3151 default1 = 0x000011ff; 3152 break; 3153 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 3154 default1 = 0x00036dff; 3155 break; 3156 case MSR_IA32_VMX_PROCBASED_CTLS2: 3157 default1 = 0; 3158 break; 3159 default: 3160 abort(); 3161 } 3162 3163 /* If a feature bit is set, the control can be either set or clear. 3164 * Otherwise the value is limited to either 0 or 1 by default1. 3165 */ 3166 can_be_one = features | default1; 3167 can_be_zero = features | ~default1; 3168 must_be_one = ~can_be_zero; 3169 3170 /* 3171 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one). 3172 * Bit 32:63 -> 1 if the control bit can be one. 3173 */ 3174 return must_be_one | (((uint64_t)can_be_one) << 32); 3175 } 3176 3177 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f) 3178 { 3179 uint64_t kvm_vmx_basic = 3180 kvm_arch_get_supported_msr_feature(kvm_state, 3181 MSR_IA32_VMX_BASIC); 3182 3183 if (!kvm_vmx_basic) { 3184 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0), 3185 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail. 3186 */ 3187 return; 3188 } 3189 3190 uint64_t kvm_vmx_misc = 3191 kvm_arch_get_supported_msr_feature(kvm_state, 3192 MSR_IA32_VMX_MISC); 3193 uint64_t kvm_vmx_ept_vpid = 3194 kvm_arch_get_supported_msr_feature(kvm_state, 3195 MSR_IA32_VMX_EPT_VPID_CAP); 3196 3197 /* 3198 * If the guest is 64-bit, a value of 1 is allowed for the host address 3199 * space size vmexit control. 3200 */ 3201 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM 3202 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0; 3203 3204 /* 3205 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should 3206 * not change them for backwards compatibility. 3207 */ 3208 uint64_t fixed_vmx_basic = kvm_vmx_basic & 3209 (MSR_VMX_BASIC_VMCS_REVISION_MASK | 3210 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK | 3211 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK); 3212 3213 /* 3214 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can 3215 * change in the future but are always zero for now, clear them to be 3216 * future proof. Bits 32-63 in theory could change, though KVM does 3217 * not support dual-monitor treatment and probably never will; mask 3218 * them out as well. 3219 */ 3220 uint64_t fixed_vmx_misc = kvm_vmx_misc & 3221 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK | 3222 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK); 3223 3224 /* 3225 * EPT memory types should not change either, so we do not bother 3226 * adding features for them. 3227 */ 3228 uint64_t fixed_vmx_ept_mask = 3229 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ? 3230 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0); 3231 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask; 3232 3233 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 3234 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 3235 f[FEAT_VMX_PROCBASED_CTLS])); 3236 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS, 3237 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS, 3238 f[FEAT_VMX_PINBASED_CTLS])); 3239 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS, 3240 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS, 3241 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit); 3242 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS, 3243 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS, 3244 f[FEAT_VMX_ENTRY_CTLS])); 3245 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2, 3246 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2, 3247 f[FEAT_VMX_SECONDARY_CTLS])); 3248 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP, 3249 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid); 3250 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC, 3251 f[FEAT_VMX_BASIC] | fixed_vmx_basic); 3252 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC, 3253 f[FEAT_VMX_MISC] | fixed_vmx_misc); 3254 if (has_msr_vmx_vmfunc) { 3255 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]); 3256 } 3257 3258 /* 3259 * Just to be safe, write these with constant values. The CRn_FIXED1 3260 * MSRs are generated by KVM based on the vCPU's CPUID. 3261 */ 3262 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0, 3263 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK); 3264 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0, 3265 CR4_VMXE_MASK); 3266 3267 if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) { 3268 /* TSC multiplier (0x2032). */ 3269 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32); 3270 } else { 3271 /* Preemption timer (0x482E). */ 3272 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E); 3273 } 3274 } 3275 3276 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f) 3277 { 3278 uint64_t kvm_perf_cap = 3279 kvm_arch_get_supported_msr_feature(kvm_state, 3280 MSR_IA32_PERF_CAPABILITIES); 3281 3282 if (kvm_perf_cap) { 3283 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES, 3284 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]); 3285 } 3286 } 3287 3288 static int kvm_buf_set_msrs(X86CPU *cpu) 3289 { 3290 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 3291 if (ret < 0) { 3292 return ret; 3293 } 3294 3295 if (ret < cpu->kvm_msr_buf->nmsrs) { 3296 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 3297 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, 3298 (uint32_t)e->index, (uint64_t)e->data); 3299 } 3300 3301 assert(ret == cpu->kvm_msr_buf->nmsrs); 3302 return 0; 3303 } 3304 3305 static void kvm_init_msrs(X86CPU *cpu) 3306 { 3307 CPUX86State *env = &cpu->env; 3308 3309 kvm_msr_buf_reset(cpu); 3310 if (has_msr_arch_capabs) { 3311 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES, 3312 env->features[FEAT_ARCH_CAPABILITIES]); 3313 } 3314 3315 if (has_msr_core_capabs) { 3316 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY, 3317 env->features[FEAT_CORE_CAPABILITY]); 3318 } 3319 3320 if (has_msr_perf_capabs && cpu->enable_pmu) { 3321 kvm_msr_entry_add_perf(cpu, env->features); 3322 } 3323 3324 if (has_msr_ucode_rev) { 3325 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev); 3326 } 3327 3328 /* 3329 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but 3330 * all kernels with MSR features should have them. 3331 */ 3332 if (kvm_feature_msrs && cpu_has_vmx(env)) { 3333 kvm_msr_entry_add_vmx(cpu, env->features); 3334 } 3335 3336 assert(kvm_buf_set_msrs(cpu) == 0); 3337 } 3338 3339 static int kvm_put_msrs(X86CPU *cpu, int level) 3340 { 3341 CPUX86State *env = &cpu->env; 3342 int i; 3343 3344 kvm_msr_buf_reset(cpu); 3345 3346 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); 3347 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); 3348 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); 3349 kvm_msr_entry_add(cpu, MSR_PAT, env->pat); 3350 if (has_msr_star) { 3351 kvm_msr_entry_add(cpu, MSR_STAR, env->star); 3352 } 3353 if (has_msr_hsave_pa) { 3354 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); 3355 } 3356 if (has_msr_tsc_aux) { 3357 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); 3358 } 3359 if (has_msr_tsc_adjust) { 3360 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); 3361 } 3362 if (has_msr_misc_enable) { 3363 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 3364 env->msr_ia32_misc_enable); 3365 } 3366 if (has_msr_smbase) { 3367 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); 3368 } 3369 if (has_msr_smi_count) { 3370 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count); 3371 } 3372 if (has_msr_pkrs) { 3373 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs); 3374 } 3375 if (has_msr_bndcfgs) { 3376 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); 3377 } 3378 if (has_msr_xss) { 3379 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); 3380 } 3381 if (has_msr_umwait) { 3382 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait); 3383 } 3384 if (has_msr_spec_ctrl) { 3385 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl); 3386 } 3387 if (has_tsc_scale_msr) { 3388 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr); 3389 } 3390 3391 if (has_msr_tsx_ctrl) { 3392 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl); 3393 } 3394 if (has_msr_virt_ssbd) { 3395 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd); 3396 } 3397 3398 #ifdef TARGET_X86_64 3399 if (lm_capable_kernel) { 3400 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); 3401 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); 3402 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); 3403 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); 3404 } 3405 #endif 3406 3407 /* 3408 * The following MSRs have side effects on the guest or are too heavy 3409 * for normal writeback. Limit them to reset or full state updates. 3410 */ 3411 if (level >= KVM_PUT_RESET_STATE) { 3412 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); 3413 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); 3414 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); 3415 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { 3416 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr); 3417 } 3418 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { 3419 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); 3420 } 3421 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { 3422 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); 3423 } 3424 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { 3425 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); 3426 } 3427 3428 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { 3429 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr); 3430 } 3431 3432 if (has_architectural_pmu_version > 0) { 3433 if (has_architectural_pmu_version > 1) { 3434 /* Stop the counter. */ 3435 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 3436 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 3437 } 3438 3439 /* Set the counter values. */ 3440 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 3441 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 3442 env->msr_fixed_counters[i]); 3443 } 3444 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 3445 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 3446 env->msr_gp_counters[i]); 3447 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 3448 env->msr_gp_evtsel[i]); 3449 } 3450 if (has_architectural_pmu_version > 1) { 3451 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 3452 env->msr_global_status); 3453 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 3454 env->msr_global_ovf_ctrl); 3455 3456 /* Now start the PMU. */ 3457 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 3458 env->msr_fixed_ctr_ctrl); 3459 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 3460 env->msr_global_ctrl); 3461 } 3462 } 3463 /* 3464 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add, 3465 * only sync them to KVM on the first cpu 3466 */ 3467 if (current_cpu == first_cpu) { 3468 if (has_msr_hv_hypercall) { 3469 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 3470 env->msr_hv_guest_os_id); 3471 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 3472 env->msr_hv_hypercall); 3473 } 3474 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 3475 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 3476 env->msr_hv_tsc); 3477 } 3478 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 3479 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 3480 env->msr_hv_reenlightenment_control); 3481 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 3482 env->msr_hv_tsc_emulation_control); 3483 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 3484 env->msr_hv_tsc_emulation_status); 3485 } 3486 #ifdef CONFIG_SYNDBG 3487 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) && 3488 has_msr_hv_syndbg_options) { 3489 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 3490 hyperv_syndbg_query_options()); 3491 } 3492 #endif 3493 } 3494 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 3495 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 3496 env->msr_hv_vapic); 3497 } 3498 if (has_msr_hv_crash) { 3499 int j; 3500 3501 for (j = 0; j < HV_CRASH_PARAMS; j++) 3502 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 3503 env->msr_hv_crash_params[j]); 3504 3505 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY); 3506 } 3507 if (has_msr_hv_runtime) { 3508 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); 3509 } 3510 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) 3511 && hv_vpindex_settable) { 3512 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX, 3513 hyperv_vp_index(CPU(cpu))); 3514 } 3515 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 3516 int j; 3517 3518 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION); 3519 3520 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 3521 env->msr_hv_synic_control); 3522 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 3523 env->msr_hv_synic_evt_page); 3524 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 3525 env->msr_hv_synic_msg_page); 3526 3527 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { 3528 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, 3529 env->msr_hv_synic_sint[j]); 3530 } 3531 } 3532 if (has_msr_hv_stimer) { 3533 int j; 3534 3535 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { 3536 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, 3537 env->msr_hv_stimer_config[j]); 3538 } 3539 3540 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { 3541 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, 3542 env->msr_hv_stimer_count[j]); 3543 } 3544 } 3545 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 3546 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); 3547 3548 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); 3549 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); 3550 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); 3551 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); 3552 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); 3553 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); 3554 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); 3555 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); 3556 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); 3557 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); 3558 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); 3559 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); 3560 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 3561 /* The CPU GPs if we write to a bit above the physical limit of 3562 * the host CPU (and KVM emulates that) 3563 */ 3564 uint64_t mask = env->mtrr_var[i].mask; 3565 mask &= phys_mask; 3566 3567 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 3568 env->mtrr_var[i].base); 3569 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); 3570 } 3571 } 3572 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 3573 int addr_num = kvm_arch_get_supported_cpuid(kvm_state, 3574 0x14, 1, R_EAX) & 0x7; 3575 3576 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 3577 env->msr_rtit_ctrl); 3578 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 3579 env->msr_rtit_status); 3580 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 3581 env->msr_rtit_output_base); 3582 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 3583 env->msr_rtit_output_mask); 3584 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 3585 env->msr_rtit_cr3_match); 3586 for (i = 0; i < addr_num; i++) { 3587 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 3588 env->msr_rtit_addrs[i]); 3589 } 3590 } 3591 3592 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 3593 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 3594 env->msr_ia32_sgxlepubkeyhash[0]); 3595 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 3596 env->msr_ia32_sgxlepubkeyhash[1]); 3597 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 3598 env->msr_ia32_sgxlepubkeyhash[2]); 3599 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 3600 env->msr_ia32_sgxlepubkeyhash[3]); 3601 } 3602 3603 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) { 3604 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 3605 env->msr_xfd); 3606 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 3607 env->msr_xfd_err); 3608 } 3609 3610 if (kvm_enabled() && cpu->enable_pmu && 3611 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) { 3612 uint64_t depth; 3613 int i, ret; 3614 3615 /* 3616 * Only migrate Arch LBR states when the host Arch LBR depth 3617 * equals that of source guest's, this is to avoid mismatch 3618 * of guest/host config for the msr hence avoid unexpected 3619 * misbehavior. 3620 */ 3621 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth); 3622 3623 if (ret == 1 && !!depth && depth == env->msr_lbr_depth) { 3624 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl); 3625 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth); 3626 3627 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) { 3628 if (!env->lbr_records[i].from) { 3629 continue; 3630 } 3631 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 3632 env->lbr_records[i].from); 3633 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 3634 env->lbr_records[i].to); 3635 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 3636 env->lbr_records[i].info); 3637 } 3638 } 3639 } 3640 3641 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see 3642 * kvm_put_msr_feature_control. */ 3643 } 3644 3645 if (env->mcg_cap) { 3646 int i; 3647 3648 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); 3649 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); 3650 if (has_msr_mcg_ext_ctl) { 3651 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); 3652 } 3653 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 3654 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); 3655 } 3656 } 3657 3658 return kvm_buf_set_msrs(cpu); 3659 } 3660 3661 3662 static int kvm_get_fpu(X86CPU *cpu) 3663 { 3664 CPUX86State *env = &cpu->env; 3665 struct kvm_fpu fpu; 3666 int i, ret; 3667 3668 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); 3669 if (ret < 0) { 3670 return ret; 3671 } 3672 3673 env->fpstt = (fpu.fsw >> 11) & 7; 3674 env->fpus = fpu.fsw; 3675 env->fpuc = fpu.fcw; 3676 env->fpop = fpu.last_opcode; 3677 env->fpip = fpu.last_ip; 3678 env->fpdp = fpu.last_dp; 3679 for (i = 0; i < 8; ++i) { 3680 env->fptags[i] = !((fpu.ftwx >> i) & 1); 3681 } 3682 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); 3683 for (i = 0; i < CPU_NB_REGS; i++) { 3684 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]); 3685 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]); 3686 } 3687 env->mxcsr = fpu.mxcsr; 3688 3689 return 0; 3690 } 3691 3692 static int kvm_get_xsave(X86CPU *cpu) 3693 { 3694 CPUX86State *env = &cpu->env; 3695 void *xsave = env->xsave_buf; 3696 int type, ret; 3697 3698 if (!has_xsave) { 3699 return kvm_get_fpu(cpu); 3700 } 3701 3702 type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE; 3703 ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave); 3704 if (ret < 0) { 3705 return ret; 3706 } 3707 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len); 3708 3709 return 0; 3710 } 3711 3712 static int kvm_get_xcrs(X86CPU *cpu) 3713 { 3714 CPUX86State *env = &cpu->env; 3715 int i, ret; 3716 struct kvm_xcrs xcrs; 3717 3718 if (!has_xcrs) { 3719 return 0; 3720 } 3721 3722 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); 3723 if (ret < 0) { 3724 return ret; 3725 } 3726 3727 for (i = 0; i < xcrs.nr_xcrs; i++) { 3728 /* Only support xcr0 now */ 3729 if (xcrs.xcrs[i].xcr == 0) { 3730 env->xcr0 = xcrs.xcrs[i].value; 3731 break; 3732 } 3733 } 3734 return 0; 3735 } 3736 3737 static int kvm_get_sregs(X86CPU *cpu) 3738 { 3739 CPUX86State *env = &cpu->env; 3740 struct kvm_sregs sregs; 3741 int ret; 3742 3743 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); 3744 if (ret < 0) { 3745 return ret; 3746 } 3747 3748 /* 3749 * The interrupt_bitmap is ignored because KVM_GET_SREGS is 3750 * always preceded by KVM_GET_VCPU_EVENTS. 3751 */ 3752 3753 get_seg(&env->segs[R_CS], &sregs.cs); 3754 get_seg(&env->segs[R_DS], &sregs.ds); 3755 get_seg(&env->segs[R_ES], &sregs.es); 3756 get_seg(&env->segs[R_FS], &sregs.fs); 3757 get_seg(&env->segs[R_GS], &sregs.gs); 3758 get_seg(&env->segs[R_SS], &sregs.ss); 3759 3760 get_seg(&env->tr, &sregs.tr); 3761 get_seg(&env->ldt, &sregs.ldt); 3762 3763 env->idt.limit = sregs.idt.limit; 3764 env->idt.base = sregs.idt.base; 3765 env->gdt.limit = sregs.gdt.limit; 3766 env->gdt.base = sregs.gdt.base; 3767 3768 env->cr[0] = sregs.cr0; 3769 env->cr[2] = sregs.cr2; 3770 env->cr[3] = sregs.cr3; 3771 env->cr[4] = sregs.cr4; 3772 3773 env->efer = sregs.efer; 3774 3775 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 3776 x86_update_hflags(env); 3777 3778 return 0; 3779 } 3780 3781 static int kvm_get_sregs2(X86CPU *cpu) 3782 { 3783 CPUX86State *env = &cpu->env; 3784 struct kvm_sregs2 sregs; 3785 int i, ret; 3786 3787 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs); 3788 if (ret < 0) { 3789 return ret; 3790 } 3791 3792 get_seg(&env->segs[R_CS], &sregs.cs); 3793 get_seg(&env->segs[R_DS], &sregs.ds); 3794 get_seg(&env->segs[R_ES], &sregs.es); 3795 get_seg(&env->segs[R_FS], &sregs.fs); 3796 get_seg(&env->segs[R_GS], &sregs.gs); 3797 get_seg(&env->segs[R_SS], &sregs.ss); 3798 3799 get_seg(&env->tr, &sregs.tr); 3800 get_seg(&env->ldt, &sregs.ldt); 3801 3802 env->idt.limit = sregs.idt.limit; 3803 env->idt.base = sregs.idt.base; 3804 env->gdt.limit = sregs.gdt.limit; 3805 env->gdt.base = sregs.gdt.base; 3806 3807 env->cr[0] = sregs.cr0; 3808 env->cr[2] = sregs.cr2; 3809 env->cr[3] = sregs.cr3; 3810 env->cr[4] = sregs.cr4; 3811 3812 env->efer = sregs.efer; 3813 3814 env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 3815 3816 if (env->pdptrs_valid) { 3817 for (i = 0; i < 4; i++) { 3818 env->pdptrs[i] = sregs.pdptrs[i]; 3819 } 3820 } 3821 3822 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 3823 x86_update_hflags(env); 3824 3825 return 0; 3826 } 3827 3828 static int kvm_get_msrs(X86CPU *cpu) 3829 { 3830 CPUX86State *env = &cpu->env; 3831 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; 3832 int ret, i; 3833 uint64_t mtrr_top_bits; 3834 3835 kvm_msr_buf_reset(cpu); 3836 3837 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); 3838 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); 3839 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); 3840 kvm_msr_entry_add(cpu, MSR_PAT, 0); 3841 if (has_msr_star) { 3842 kvm_msr_entry_add(cpu, MSR_STAR, 0); 3843 } 3844 if (has_msr_hsave_pa) { 3845 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); 3846 } 3847 if (has_msr_tsc_aux) { 3848 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); 3849 } 3850 if (has_msr_tsc_adjust) { 3851 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); 3852 } 3853 if (has_msr_tsc_deadline) { 3854 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); 3855 } 3856 if (has_msr_misc_enable) { 3857 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); 3858 } 3859 if (has_msr_smbase) { 3860 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); 3861 } 3862 if (has_msr_smi_count) { 3863 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0); 3864 } 3865 if (has_msr_feature_control) { 3866 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); 3867 } 3868 if (has_msr_pkrs) { 3869 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0); 3870 } 3871 if (has_msr_bndcfgs) { 3872 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); 3873 } 3874 if (has_msr_xss) { 3875 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); 3876 } 3877 if (has_msr_umwait) { 3878 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0); 3879 } 3880 if (has_msr_spec_ctrl) { 3881 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0); 3882 } 3883 if (has_tsc_scale_msr) { 3884 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0); 3885 } 3886 3887 if (has_msr_tsx_ctrl) { 3888 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0); 3889 } 3890 if (has_msr_virt_ssbd) { 3891 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0); 3892 } 3893 if (!env->tsc_valid) { 3894 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); 3895 env->tsc_valid = !runstate_is_running(); 3896 } 3897 3898 #ifdef TARGET_X86_64 3899 if (lm_capable_kernel) { 3900 kvm_msr_entry_add(cpu, MSR_CSTAR, 0); 3901 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); 3902 kvm_msr_entry_add(cpu, MSR_FMASK, 0); 3903 kvm_msr_entry_add(cpu, MSR_LSTAR, 0); 3904 } 3905 #endif 3906 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); 3907 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); 3908 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { 3909 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0); 3910 } 3911 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { 3912 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); 3913 } 3914 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { 3915 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); 3916 } 3917 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { 3918 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); 3919 } 3920 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { 3921 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1); 3922 } 3923 if (has_architectural_pmu_version > 0) { 3924 if (has_architectural_pmu_version > 1) { 3925 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 3926 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 3927 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); 3928 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); 3929 } 3930 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 3931 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); 3932 } 3933 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 3934 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); 3935 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); 3936 } 3937 } 3938 3939 if (env->mcg_cap) { 3940 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); 3941 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); 3942 if (has_msr_mcg_ext_ctl) { 3943 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); 3944 } 3945 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 3946 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); 3947 } 3948 } 3949 3950 if (has_msr_hv_hypercall) { 3951 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); 3952 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); 3953 } 3954 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 3955 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); 3956 } 3957 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 3958 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); 3959 } 3960 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 3961 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0); 3962 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0); 3963 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0); 3964 } 3965 if (has_msr_hv_syndbg_options) { 3966 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0); 3967 } 3968 if (has_msr_hv_crash) { 3969 int j; 3970 3971 for (j = 0; j < HV_CRASH_PARAMS; j++) { 3972 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); 3973 } 3974 } 3975 if (has_msr_hv_runtime) { 3976 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); 3977 } 3978 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 3979 uint32_t msr; 3980 3981 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); 3982 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); 3983 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); 3984 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { 3985 kvm_msr_entry_add(cpu, msr, 0); 3986 } 3987 } 3988 if (has_msr_hv_stimer) { 3989 uint32_t msr; 3990 3991 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; 3992 msr++) { 3993 kvm_msr_entry_add(cpu, msr, 0); 3994 } 3995 } 3996 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 3997 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); 3998 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); 3999 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); 4000 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); 4001 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); 4002 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); 4003 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); 4004 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); 4005 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); 4006 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); 4007 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); 4008 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); 4009 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 4010 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); 4011 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); 4012 } 4013 } 4014 4015 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 4016 int addr_num = 4017 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7; 4018 4019 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0); 4020 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0); 4021 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0); 4022 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0); 4023 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0); 4024 for (i = 0; i < addr_num; i++) { 4025 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0); 4026 } 4027 } 4028 4029 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 4030 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0); 4031 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0); 4032 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0); 4033 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0); 4034 } 4035 4036 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) { 4037 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0); 4038 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0); 4039 } 4040 4041 if (kvm_enabled() && cpu->enable_pmu && 4042 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) { 4043 uint64_t depth; 4044 int i, ret; 4045 4046 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth); 4047 if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) { 4048 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0); 4049 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0); 4050 4051 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) { 4052 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0); 4053 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0); 4054 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0); 4055 } 4056 } 4057 } 4058 4059 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); 4060 if (ret < 0) { 4061 return ret; 4062 } 4063 4064 if (ret < cpu->kvm_msr_buf->nmsrs) { 4065 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 4066 error_report("error: failed to get MSR 0x%" PRIx32, 4067 (uint32_t)e->index); 4068 } 4069 4070 assert(ret == cpu->kvm_msr_buf->nmsrs); 4071 /* 4072 * MTRR masks: Each mask consists of 5 parts 4073 * a 10..0: must be zero 4074 * b 11 : valid bit 4075 * c n-1.12: actual mask bits 4076 * d 51..n: reserved must be zero 4077 * e 63.52: reserved must be zero 4078 * 4079 * 'n' is the number of physical bits supported by the CPU and is 4080 * apparently always <= 52. We know our 'n' but don't know what 4081 * the destinations 'n' is; it might be smaller, in which case 4082 * it masks (c) on loading. It might be larger, in which case 4083 * we fill 'd' so that d..c is consistent irrespetive of the 'n' 4084 * we're migrating to. 4085 */ 4086 4087 if (cpu->fill_mtrr_mask) { 4088 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); 4089 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); 4090 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); 4091 } else { 4092 mtrr_top_bits = 0; 4093 } 4094 4095 for (i = 0; i < ret; i++) { 4096 uint32_t index = msrs[i].index; 4097 switch (index) { 4098 case MSR_IA32_SYSENTER_CS: 4099 env->sysenter_cs = msrs[i].data; 4100 break; 4101 case MSR_IA32_SYSENTER_ESP: 4102 env->sysenter_esp = msrs[i].data; 4103 break; 4104 case MSR_IA32_SYSENTER_EIP: 4105 env->sysenter_eip = msrs[i].data; 4106 break; 4107 case MSR_PAT: 4108 env->pat = msrs[i].data; 4109 break; 4110 case MSR_STAR: 4111 env->star = msrs[i].data; 4112 break; 4113 #ifdef TARGET_X86_64 4114 case MSR_CSTAR: 4115 env->cstar = msrs[i].data; 4116 break; 4117 case MSR_KERNELGSBASE: 4118 env->kernelgsbase = msrs[i].data; 4119 break; 4120 case MSR_FMASK: 4121 env->fmask = msrs[i].data; 4122 break; 4123 case MSR_LSTAR: 4124 env->lstar = msrs[i].data; 4125 break; 4126 #endif 4127 case MSR_IA32_TSC: 4128 env->tsc = msrs[i].data; 4129 break; 4130 case MSR_TSC_AUX: 4131 env->tsc_aux = msrs[i].data; 4132 break; 4133 case MSR_TSC_ADJUST: 4134 env->tsc_adjust = msrs[i].data; 4135 break; 4136 case MSR_IA32_TSCDEADLINE: 4137 env->tsc_deadline = msrs[i].data; 4138 break; 4139 case MSR_VM_HSAVE_PA: 4140 env->vm_hsave = msrs[i].data; 4141 break; 4142 case MSR_KVM_SYSTEM_TIME: 4143 env->system_time_msr = msrs[i].data; 4144 break; 4145 case MSR_KVM_WALL_CLOCK: 4146 env->wall_clock_msr = msrs[i].data; 4147 break; 4148 case MSR_MCG_STATUS: 4149 env->mcg_status = msrs[i].data; 4150 break; 4151 case MSR_MCG_CTL: 4152 env->mcg_ctl = msrs[i].data; 4153 break; 4154 case MSR_MCG_EXT_CTL: 4155 env->mcg_ext_ctl = msrs[i].data; 4156 break; 4157 case MSR_IA32_MISC_ENABLE: 4158 env->msr_ia32_misc_enable = msrs[i].data; 4159 break; 4160 case MSR_IA32_SMBASE: 4161 env->smbase = msrs[i].data; 4162 break; 4163 case MSR_SMI_COUNT: 4164 env->msr_smi_count = msrs[i].data; 4165 break; 4166 case MSR_IA32_FEATURE_CONTROL: 4167 env->msr_ia32_feature_control = msrs[i].data; 4168 break; 4169 case MSR_IA32_BNDCFGS: 4170 env->msr_bndcfgs = msrs[i].data; 4171 break; 4172 case MSR_IA32_XSS: 4173 env->xss = msrs[i].data; 4174 break; 4175 case MSR_IA32_UMWAIT_CONTROL: 4176 env->umwait = msrs[i].data; 4177 break; 4178 case MSR_IA32_PKRS: 4179 env->pkrs = msrs[i].data; 4180 break; 4181 default: 4182 if (msrs[i].index >= MSR_MC0_CTL && 4183 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { 4184 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; 4185 } 4186 break; 4187 case MSR_KVM_ASYNC_PF_EN: 4188 env->async_pf_en_msr = msrs[i].data; 4189 break; 4190 case MSR_KVM_ASYNC_PF_INT: 4191 env->async_pf_int_msr = msrs[i].data; 4192 break; 4193 case MSR_KVM_PV_EOI_EN: 4194 env->pv_eoi_en_msr = msrs[i].data; 4195 break; 4196 case MSR_KVM_STEAL_TIME: 4197 env->steal_time_msr = msrs[i].data; 4198 break; 4199 case MSR_KVM_POLL_CONTROL: { 4200 env->poll_control_msr = msrs[i].data; 4201 break; 4202 } 4203 case MSR_CORE_PERF_FIXED_CTR_CTRL: 4204 env->msr_fixed_ctr_ctrl = msrs[i].data; 4205 break; 4206 case MSR_CORE_PERF_GLOBAL_CTRL: 4207 env->msr_global_ctrl = msrs[i].data; 4208 break; 4209 case MSR_CORE_PERF_GLOBAL_STATUS: 4210 env->msr_global_status = msrs[i].data; 4211 break; 4212 case MSR_CORE_PERF_GLOBAL_OVF_CTRL: 4213 env->msr_global_ovf_ctrl = msrs[i].data; 4214 break; 4215 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: 4216 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; 4217 break; 4218 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: 4219 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; 4220 break; 4221 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: 4222 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; 4223 break; 4224 case HV_X64_MSR_HYPERCALL: 4225 env->msr_hv_hypercall = msrs[i].data; 4226 break; 4227 case HV_X64_MSR_GUEST_OS_ID: 4228 env->msr_hv_guest_os_id = msrs[i].data; 4229 break; 4230 case HV_X64_MSR_APIC_ASSIST_PAGE: 4231 env->msr_hv_vapic = msrs[i].data; 4232 break; 4233 case HV_X64_MSR_REFERENCE_TSC: 4234 env->msr_hv_tsc = msrs[i].data; 4235 break; 4236 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4237 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; 4238 break; 4239 case HV_X64_MSR_VP_RUNTIME: 4240 env->msr_hv_runtime = msrs[i].data; 4241 break; 4242 case HV_X64_MSR_SCONTROL: 4243 env->msr_hv_synic_control = msrs[i].data; 4244 break; 4245 case HV_X64_MSR_SIEFP: 4246 env->msr_hv_synic_evt_page = msrs[i].data; 4247 break; 4248 case HV_X64_MSR_SIMP: 4249 env->msr_hv_synic_msg_page = msrs[i].data; 4250 break; 4251 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 4252 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; 4253 break; 4254 case HV_X64_MSR_STIMER0_CONFIG: 4255 case HV_X64_MSR_STIMER1_CONFIG: 4256 case HV_X64_MSR_STIMER2_CONFIG: 4257 case HV_X64_MSR_STIMER3_CONFIG: 4258 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = 4259 msrs[i].data; 4260 break; 4261 case HV_X64_MSR_STIMER0_COUNT: 4262 case HV_X64_MSR_STIMER1_COUNT: 4263 case HV_X64_MSR_STIMER2_COUNT: 4264 case HV_X64_MSR_STIMER3_COUNT: 4265 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = 4266 msrs[i].data; 4267 break; 4268 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4269 env->msr_hv_reenlightenment_control = msrs[i].data; 4270 break; 4271 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4272 env->msr_hv_tsc_emulation_control = msrs[i].data; 4273 break; 4274 case HV_X64_MSR_TSC_EMULATION_STATUS: 4275 env->msr_hv_tsc_emulation_status = msrs[i].data; 4276 break; 4277 case HV_X64_MSR_SYNDBG_OPTIONS: 4278 env->msr_hv_syndbg_options = msrs[i].data; 4279 break; 4280 case MSR_MTRRdefType: 4281 env->mtrr_deftype = msrs[i].data; 4282 break; 4283 case MSR_MTRRfix64K_00000: 4284 env->mtrr_fixed[0] = msrs[i].data; 4285 break; 4286 case MSR_MTRRfix16K_80000: 4287 env->mtrr_fixed[1] = msrs[i].data; 4288 break; 4289 case MSR_MTRRfix16K_A0000: 4290 env->mtrr_fixed[2] = msrs[i].data; 4291 break; 4292 case MSR_MTRRfix4K_C0000: 4293 env->mtrr_fixed[3] = msrs[i].data; 4294 break; 4295 case MSR_MTRRfix4K_C8000: 4296 env->mtrr_fixed[4] = msrs[i].data; 4297 break; 4298 case MSR_MTRRfix4K_D0000: 4299 env->mtrr_fixed[5] = msrs[i].data; 4300 break; 4301 case MSR_MTRRfix4K_D8000: 4302 env->mtrr_fixed[6] = msrs[i].data; 4303 break; 4304 case MSR_MTRRfix4K_E0000: 4305 env->mtrr_fixed[7] = msrs[i].data; 4306 break; 4307 case MSR_MTRRfix4K_E8000: 4308 env->mtrr_fixed[8] = msrs[i].data; 4309 break; 4310 case MSR_MTRRfix4K_F0000: 4311 env->mtrr_fixed[9] = msrs[i].data; 4312 break; 4313 case MSR_MTRRfix4K_F8000: 4314 env->mtrr_fixed[10] = msrs[i].data; 4315 break; 4316 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): 4317 if (index & 1) { 4318 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | 4319 mtrr_top_bits; 4320 } else { 4321 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; 4322 } 4323 break; 4324 case MSR_IA32_SPEC_CTRL: 4325 env->spec_ctrl = msrs[i].data; 4326 break; 4327 case MSR_AMD64_TSC_RATIO: 4328 env->amd_tsc_scale_msr = msrs[i].data; 4329 break; 4330 case MSR_IA32_TSX_CTRL: 4331 env->tsx_ctrl = msrs[i].data; 4332 break; 4333 case MSR_VIRT_SSBD: 4334 env->virt_ssbd = msrs[i].data; 4335 break; 4336 case MSR_IA32_RTIT_CTL: 4337 env->msr_rtit_ctrl = msrs[i].data; 4338 break; 4339 case MSR_IA32_RTIT_STATUS: 4340 env->msr_rtit_status = msrs[i].data; 4341 break; 4342 case MSR_IA32_RTIT_OUTPUT_BASE: 4343 env->msr_rtit_output_base = msrs[i].data; 4344 break; 4345 case MSR_IA32_RTIT_OUTPUT_MASK: 4346 env->msr_rtit_output_mask = msrs[i].data; 4347 break; 4348 case MSR_IA32_RTIT_CR3_MATCH: 4349 env->msr_rtit_cr3_match = msrs[i].data; 4350 break; 4351 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 4352 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data; 4353 break; 4354 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 4355 env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] = 4356 msrs[i].data; 4357 break; 4358 case MSR_IA32_XFD: 4359 env->msr_xfd = msrs[i].data; 4360 break; 4361 case MSR_IA32_XFD_ERR: 4362 env->msr_xfd_err = msrs[i].data; 4363 break; 4364 case MSR_ARCH_LBR_CTL: 4365 env->msr_lbr_ctl = msrs[i].data; 4366 break; 4367 case MSR_ARCH_LBR_DEPTH: 4368 env->msr_lbr_depth = msrs[i].data; 4369 break; 4370 case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31: 4371 env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data; 4372 break; 4373 case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31: 4374 env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data; 4375 break; 4376 case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31: 4377 env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data; 4378 break; 4379 } 4380 } 4381 4382 return 0; 4383 } 4384 4385 static int kvm_put_mp_state(X86CPU *cpu) 4386 { 4387 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; 4388 4389 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 4390 } 4391 4392 static int kvm_get_mp_state(X86CPU *cpu) 4393 { 4394 CPUState *cs = CPU(cpu); 4395 CPUX86State *env = &cpu->env; 4396 struct kvm_mp_state mp_state; 4397 int ret; 4398 4399 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); 4400 if (ret < 0) { 4401 return ret; 4402 } 4403 env->mp_state = mp_state.mp_state; 4404 if (kvm_irqchip_in_kernel()) { 4405 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); 4406 } 4407 return 0; 4408 } 4409 4410 static int kvm_get_apic(X86CPU *cpu) 4411 { 4412 DeviceState *apic = cpu->apic_state; 4413 struct kvm_lapic_state kapic; 4414 int ret; 4415 4416 if (apic && kvm_irqchip_in_kernel()) { 4417 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); 4418 if (ret < 0) { 4419 return ret; 4420 } 4421 4422 kvm_get_apic_state(apic, &kapic); 4423 } 4424 return 0; 4425 } 4426 4427 static int kvm_put_vcpu_events(X86CPU *cpu, int level) 4428 { 4429 CPUState *cs = CPU(cpu); 4430 CPUX86State *env = &cpu->env; 4431 struct kvm_vcpu_events events = {}; 4432 4433 if (!kvm_has_vcpu_events()) { 4434 return 0; 4435 } 4436 4437 events.flags = 0; 4438 4439 if (has_exception_payload) { 4440 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 4441 events.exception.pending = env->exception_pending; 4442 events.exception_has_payload = env->exception_has_payload; 4443 events.exception_payload = env->exception_payload; 4444 } 4445 events.exception.nr = env->exception_nr; 4446 events.exception.injected = env->exception_injected; 4447 events.exception.has_error_code = env->has_error_code; 4448 events.exception.error_code = env->error_code; 4449 4450 events.interrupt.injected = (env->interrupt_injected >= 0); 4451 events.interrupt.nr = env->interrupt_injected; 4452 events.interrupt.soft = env->soft_interrupt; 4453 4454 events.nmi.injected = env->nmi_injected; 4455 events.nmi.pending = env->nmi_pending; 4456 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); 4457 4458 events.sipi_vector = env->sipi_vector; 4459 4460 if (has_msr_smbase) { 4461 events.smi.smm = !!(env->hflags & HF_SMM_MASK); 4462 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); 4463 if (kvm_irqchip_in_kernel()) { 4464 /* As soon as these are moved to the kernel, remove them 4465 * from cs->interrupt_request. 4466 */ 4467 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; 4468 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; 4469 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); 4470 } else { 4471 /* Keep these in cs->interrupt_request. */ 4472 events.smi.pending = 0; 4473 events.smi.latched_init = 0; 4474 } 4475 /* Stop SMI delivery on old machine types to avoid a reboot 4476 * on an inward migration of an old VM. 4477 */ 4478 if (!cpu->kvm_no_smi_migration) { 4479 events.flags |= KVM_VCPUEVENT_VALID_SMM; 4480 } 4481 } 4482 4483 if (level >= KVM_PUT_RESET_STATE) { 4484 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; 4485 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 4486 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR; 4487 } 4488 } 4489 4490 if (has_triple_fault_event) { 4491 events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 4492 events.triple_fault.pending = env->triple_fault_pending; 4493 } 4494 4495 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 4496 } 4497 4498 static int kvm_get_vcpu_events(X86CPU *cpu) 4499 { 4500 CPUX86State *env = &cpu->env; 4501 struct kvm_vcpu_events events; 4502 int ret; 4503 4504 if (!kvm_has_vcpu_events()) { 4505 return 0; 4506 } 4507 4508 memset(&events, 0, sizeof(events)); 4509 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 4510 if (ret < 0) { 4511 return ret; 4512 } 4513 4514 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 4515 env->exception_pending = events.exception.pending; 4516 env->exception_has_payload = events.exception_has_payload; 4517 env->exception_payload = events.exception_payload; 4518 } else { 4519 env->exception_pending = 0; 4520 env->exception_has_payload = false; 4521 } 4522 env->exception_injected = events.exception.injected; 4523 env->exception_nr = 4524 (env->exception_pending || env->exception_injected) ? 4525 events.exception.nr : -1; 4526 env->has_error_code = events.exception.has_error_code; 4527 env->error_code = events.exception.error_code; 4528 4529 env->interrupt_injected = 4530 events.interrupt.injected ? events.interrupt.nr : -1; 4531 env->soft_interrupt = events.interrupt.soft; 4532 4533 env->nmi_injected = events.nmi.injected; 4534 env->nmi_pending = events.nmi.pending; 4535 if (events.nmi.masked) { 4536 env->hflags2 |= HF2_NMI_MASK; 4537 } else { 4538 env->hflags2 &= ~HF2_NMI_MASK; 4539 } 4540 4541 if (events.flags & KVM_VCPUEVENT_VALID_SMM) { 4542 if (events.smi.smm) { 4543 env->hflags |= HF_SMM_MASK; 4544 } else { 4545 env->hflags &= ~HF_SMM_MASK; 4546 } 4547 if (events.smi.pending) { 4548 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 4549 } else { 4550 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 4551 } 4552 if (events.smi.smm_inside_nmi) { 4553 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; 4554 } else { 4555 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; 4556 } 4557 if (events.smi.latched_init) { 4558 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 4559 } else { 4560 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 4561 } 4562 } 4563 4564 if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 4565 env->triple_fault_pending = events.triple_fault.pending; 4566 } 4567 4568 env->sipi_vector = events.sipi_vector; 4569 4570 return 0; 4571 } 4572 4573 static int kvm_guest_debug_workarounds(X86CPU *cpu) 4574 { 4575 CPUState *cs = CPU(cpu); 4576 CPUX86State *env = &cpu->env; 4577 int ret = 0; 4578 unsigned long reinject_trap = 0; 4579 4580 if (!kvm_has_vcpu_events()) { 4581 if (env->exception_nr == EXCP01_DB) { 4582 reinject_trap = KVM_GUESTDBG_INJECT_DB; 4583 } else if (env->exception_injected == EXCP03_INT3) { 4584 reinject_trap = KVM_GUESTDBG_INJECT_BP; 4585 } 4586 kvm_reset_exception(env); 4587 } 4588 4589 /* 4590 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF 4591 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this 4592 * by updating the debug state once again if single-stepping is on. 4593 * Another reason to call kvm_update_guest_debug here is a pending debug 4594 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to 4595 * reinject them via SET_GUEST_DEBUG. 4596 */ 4597 if (reinject_trap || 4598 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { 4599 ret = kvm_update_guest_debug(cs, reinject_trap); 4600 } 4601 return ret; 4602 } 4603 4604 static int kvm_put_debugregs(X86CPU *cpu) 4605 { 4606 CPUX86State *env = &cpu->env; 4607 struct kvm_debugregs dbgregs; 4608 int i; 4609 4610 if (!kvm_has_debugregs()) { 4611 return 0; 4612 } 4613 4614 memset(&dbgregs, 0, sizeof(dbgregs)); 4615 for (i = 0; i < 4; i++) { 4616 dbgregs.db[i] = env->dr[i]; 4617 } 4618 dbgregs.dr6 = env->dr[6]; 4619 dbgregs.dr7 = env->dr[7]; 4620 dbgregs.flags = 0; 4621 4622 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); 4623 } 4624 4625 static int kvm_get_debugregs(X86CPU *cpu) 4626 { 4627 CPUX86State *env = &cpu->env; 4628 struct kvm_debugregs dbgregs; 4629 int i, ret; 4630 4631 if (!kvm_has_debugregs()) { 4632 return 0; 4633 } 4634 4635 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); 4636 if (ret < 0) { 4637 return ret; 4638 } 4639 for (i = 0; i < 4; i++) { 4640 env->dr[i] = dbgregs.db[i]; 4641 } 4642 env->dr[4] = env->dr[6] = dbgregs.dr6; 4643 env->dr[5] = env->dr[7] = dbgregs.dr7; 4644 4645 return 0; 4646 } 4647 4648 static int kvm_put_nested_state(X86CPU *cpu) 4649 { 4650 CPUX86State *env = &cpu->env; 4651 int max_nested_state_len = kvm_max_nested_state_length(); 4652 4653 if (!env->nested_state) { 4654 return 0; 4655 } 4656 4657 /* 4658 * Copy flags that are affected by reset from env->hflags and env->hflags2. 4659 */ 4660 if (env->hflags & HF_GUEST_MASK) { 4661 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE; 4662 } else { 4663 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE; 4664 } 4665 4666 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */ 4667 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) { 4668 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET; 4669 } else { 4670 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET; 4671 } 4672 4673 assert(env->nested_state->size <= max_nested_state_len); 4674 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state); 4675 } 4676 4677 static int kvm_get_nested_state(X86CPU *cpu) 4678 { 4679 CPUX86State *env = &cpu->env; 4680 int max_nested_state_len = kvm_max_nested_state_length(); 4681 int ret; 4682 4683 if (!env->nested_state) { 4684 return 0; 4685 } 4686 4687 /* 4688 * It is possible that migration restored a smaller size into 4689 * nested_state->hdr.size than what our kernel support. 4690 * We preserve migration origin nested_state->hdr.size for 4691 * call to KVM_SET_NESTED_STATE but wish that our next call 4692 * to KVM_GET_NESTED_STATE will use max size our kernel support. 4693 */ 4694 env->nested_state->size = max_nested_state_len; 4695 4696 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state); 4697 if (ret < 0) { 4698 return ret; 4699 } 4700 4701 /* 4702 * Copy flags that are affected by reset to env->hflags and env->hflags2. 4703 */ 4704 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) { 4705 env->hflags |= HF_GUEST_MASK; 4706 } else { 4707 env->hflags &= ~HF_GUEST_MASK; 4708 } 4709 4710 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */ 4711 if (cpu_has_svm(env)) { 4712 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) { 4713 env->hflags2 |= HF2_GIF_MASK; 4714 } else { 4715 env->hflags2 &= ~HF2_GIF_MASK; 4716 } 4717 } 4718 4719 return ret; 4720 } 4721 4722 int kvm_arch_put_registers(CPUState *cpu, int level) 4723 { 4724 X86CPU *x86_cpu = X86_CPU(cpu); 4725 int ret; 4726 4727 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); 4728 4729 /* 4730 * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX 4731 * root operation upon vCPU reset. kvm_put_msr_feature_control() should also 4732 * preceed kvm_put_nested_state() when 'real' nested state is set. 4733 */ 4734 if (level >= KVM_PUT_RESET_STATE) { 4735 ret = kvm_put_msr_feature_control(x86_cpu); 4736 if (ret < 0) { 4737 return ret; 4738 } 4739 } 4740 4741 /* must be before kvm_put_nested_state so that EFER.SVME is set */ 4742 ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu); 4743 if (ret < 0) { 4744 return ret; 4745 } 4746 4747 if (level >= KVM_PUT_RESET_STATE) { 4748 ret = kvm_put_nested_state(x86_cpu); 4749 if (ret < 0) { 4750 return ret; 4751 } 4752 } 4753 4754 if (level == KVM_PUT_FULL_STATE) { 4755 /* We don't check for kvm_arch_set_tsc_khz() errors here, 4756 * because TSC frequency mismatch shouldn't abort migration, 4757 * unless the user explicitly asked for a more strict TSC 4758 * setting (e.g. using an explicit "tsc-freq" option). 4759 */ 4760 kvm_arch_set_tsc_khz(cpu); 4761 } 4762 4763 #ifdef CONFIG_XEN_EMU 4764 if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) { 4765 ret = kvm_put_xen_state(cpu); 4766 if (ret < 0) { 4767 return ret; 4768 } 4769 } 4770 #endif 4771 4772 ret = kvm_getput_regs(x86_cpu, 1); 4773 if (ret < 0) { 4774 return ret; 4775 } 4776 ret = kvm_put_xsave(x86_cpu); 4777 if (ret < 0) { 4778 return ret; 4779 } 4780 ret = kvm_put_xcrs(x86_cpu); 4781 if (ret < 0) { 4782 return ret; 4783 } 4784 /* must be before kvm_put_msrs */ 4785 ret = kvm_inject_mce_oldstyle(x86_cpu); 4786 if (ret < 0) { 4787 return ret; 4788 } 4789 ret = kvm_put_msrs(x86_cpu, level); 4790 if (ret < 0) { 4791 return ret; 4792 } 4793 ret = kvm_put_vcpu_events(x86_cpu, level); 4794 if (ret < 0) { 4795 return ret; 4796 } 4797 if (level >= KVM_PUT_RESET_STATE) { 4798 ret = kvm_put_mp_state(x86_cpu); 4799 if (ret < 0) { 4800 return ret; 4801 } 4802 } 4803 4804 ret = kvm_put_tscdeadline_msr(x86_cpu); 4805 if (ret < 0) { 4806 return ret; 4807 } 4808 ret = kvm_put_debugregs(x86_cpu); 4809 if (ret < 0) { 4810 return ret; 4811 } 4812 /* must be last */ 4813 ret = kvm_guest_debug_workarounds(x86_cpu); 4814 if (ret < 0) { 4815 return ret; 4816 } 4817 return 0; 4818 } 4819 4820 int kvm_arch_get_registers(CPUState *cs) 4821 { 4822 X86CPU *cpu = X86_CPU(cs); 4823 int ret; 4824 4825 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); 4826 4827 ret = kvm_get_vcpu_events(cpu); 4828 if (ret < 0) { 4829 goto out; 4830 } 4831 /* 4832 * KVM_GET_MPSTATE can modify CS and RIP, call it before 4833 * KVM_GET_REGS and KVM_GET_SREGS. 4834 */ 4835 ret = kvm_get_mp_state(cpu); 4836 if (ret < 0) { 4837 goto out; 4838 } 4839 ret = kvm_getput_regs(cpu, 0); 4840 if (ret < 0) { 4841 goto out; 4842 } 4843 ret = kvm_get_xsave(cpu); 4844 if (ret < 0) { 4845 goto out; 4846 } 4847 ret = kvm_get_xcrs(cpu); 4848 if (ret < 0) { 4849 goto out; 4850 } 4851 ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu); 4852 if (ret < 0) { 4853 goto out; 4854 } 4855 ret = kvm_get_msrs(cpu); 4856 if (ret < 0) { 4857 goto out; 4858 } 4859 ret = kvm_get_apic(cpu); 4860 if (ret < 0) { 4861 goto out; 4862 } 4863 ret = kvm_get_debugregs(cpu); 4864 if (ret < 0) { 4865 goto out; 4866 } 4867 ret = kvm_get_nested_state(cpu); 4868 if (ret < 0) { 4869 goto out; 4870 } 4871 #ifdef CONFIG_XEN_EMU 4872 if (xen_mode == XEN_EMULATE) { 4873 ret = kvm_get_xen_state(cs); 4874 if (ret < 0) { 4875 goto out; 4876 } 4877 } 4878 #endif 4879 ret = 0; 4880 out: 4881 cpu_sync_bndcs_hflags(&cpu->env); 4882 return ret; 4883 } 4884 4885 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 4886 { 4887 X86CPU *x86_cpu = X86_CPU(cpu); 4888 CPUX86State *env = &x86_cpu->env; 4889 int ret; 4890 4891 /* Inject NMI */ 4892 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { 4893 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { 4894 qemu_mutex_lock_iothread(); 4895 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; 4896 qemu_mutex_unlock_iothread(); 4897 DPRINTF("injected NMI\n"); 4898 ret = kvm_vcpu_ioctl(cpu, KVM_NMI); 4899 if (ret < 0) { 4900 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", 4901 strerror(-ret)); 4902 } 4903 } 4904 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { 4905 qemu_mutex_lock_iothread(); 4906 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; 4907 qemu_mutex_unlock_iothread(); 4908 DPRINTF("injected SMI\n"); 4909 ret = kvm_vcpu_ioctl(cpu, KVM_SMI); 4910 if (ret < 0) { 4911 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", 4912 strerror(-ret)); 4913 } 4914 } 4915 } 4916 4917 if (!kvm_pic_in_kernel()) { 4918 qemu_mutex_lock_iothread(); 4919 } 4920 4921 /* Force the VCPU out of its inner loop to process any INIT requests 4922 * or (for userspace APIC, but it is cheap to combine the checks here) 4923 * pending TPR access reports. 4924 */ 4925 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { 4926 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && 4927 !(env->hflags & HF_SMM_MASK)) { 4928 cpu->exit_request = 1; 4929 } 4930 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { 4931 cpu->exit_request = 1; 4932 } 4933 } 4934 4935 if (!kvm_pic_in_kernel()) { 4936 /* Try to inject an interrupt if the guest can accept it */ 4937 if (run->ready_for_interrupt_injection && 4938 (cpu->interrupt_request & CPU_INTERRUPT_HARD) && 4939 (env->eflags & IF_MASK)) { 4940 int irq; 4941 4942 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; 4943 irq = cpu_get_pic_interrupt(env); 4944 if (irq >= 0) { 4945 struct kvm_interrupt intr; 4946 4947 intr.irq = irq; 4948 DPRINTF("injected interrupt %d\n", irq); 4949 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); 4950 if (ret < 0) { 4951 fprintf(stderr, 4952 "KVM: injection failed, interrupt lost (%s)\n", 4953 strerror(-ret)); 4954 } 4955 } 4956 } 4957 4958 /* If we have an interrupt but the guest is not ready to receive an 4959 * interrupt, request an interrupt window exit. This will 4960 * cause a return to userspace as soon as the guest is ready to 4961 * receive interrupts. */ 4962 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { 4963 run->request_interrupt_window = 1; 4964 } else { 4965 run->request_interrupt_window = 0; 4966 } 4967 4968 DPRINTF("setting tpr\n"); 4969 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); 4970 4971 qemu_mutex_unlock_iothread(); 4972 } 4973 } 4974 4975 static void kvm_rate_limit_on_bus_lock(void) 4976 { 4977 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1); 4978 4979 if (delay_ns) { 4980 g_usleep(delay_ns / SCALE_US); 4981 } 4982 } 4983 4984 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) 4985 { 4986 X86CPU *x86_cpu = X86_CPU(cpu); 4987 CPUX86State *env = &x86_cpu->env; 4988 4989 if (run->flags & KVM_RUN_X86_SMM) { 4990 env->hflags |= HF_SMM_MASK; 4991 } else { 4992 env->hflags &= ~HF_SMM_MASK; 4993 } 4994 if (run->if_flag) { 4995 env->eflags |= IF_MASK; 4996 } else { 4997 env->eflags &= ~IF_MASK; 4998 } 4999 if (run->flags & KVM_RUN_X86_BUS_LOCK) { 5000 kvm_rate_limit_on_bus_lock(); 5001 } 5002 5003 #ifdef CONFIG_XEN_EMU 5004 /* 5005 * If the callback is asserted as a GSI (or PCI INTx) then check if 5006 * vcpu_info->evtchn_upcall_pending has been cleared, and deassert 5007 * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC 5008 * EOI and only resample then, exactly how the VFIO eventfd pairs 5009 * are designed to work for level triggered interrupts. 5010 */ 5011 if (x86_cpu->env.xen_callback_asserted) { 5012 kvm_xen_maybe_deassert_callback(cpu); 5013 } 5014 #endif 5015 5016 /* We need to protect the apic state against concurrent accesses from 5017 * different threads in case the userspace irqchip is used. */ 5018 if (!kvm_irqchip_in_kernel()) { 5019 qemu_mutex_lock_iothread(); 5020 } 5021 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); 5022 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); 5023 if (!kvm_irqchip_in_kernel()) { 5024 qemu_mutex_unlock_iothread(); 5025 } 5026 return cpu_get_mem_attrs(env); 5027 } 5028 5029 int kvm_arch_process_async_events(CPUState *cs) 5030 { 5031 X86CPU *cpu = X86_CPU(cs); 5032 CPUX86State *env = &cpu->env; 5033 5034 if (cs->interrupt_request & CPU_INTERRUPT_MCE) { 5035 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ 5036 assert(env->mcg_cap); 5037 5038 cs->interrupt_request &= ~CPU_INTERRUPT_MCE; 5039 5040 kvm_cpu_synchronize_state(cs); 5041 5042 if (env->exception_nr == EXCP08_DBLE) { 5043 /* this means triple fault */ 5044 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 5045 cs->exit_request = 1; 5046 return 0; 5047 } 5048 kvm_queue_exception(env, EXCP12_MCHK, 0, 0); 5049 env->has_error_code = 0; 5050 5051 cs->halted = 0; 5052 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { 5053 env->mp_state = KVM_MP_STATE_RUNNABLE; 5054 } 5055 } 5056 5057 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && 5058 !(env->hflags & HF_SMM_MASK)) { 5059 kvm_cpu_synchronize_state(cs); 5060 do_cpu_init(cpu); 5061 } 5062 5063 if (kvm_irqchip_in_kernel()) { 5064 return 0; 5065 } 5066 5067 if (cs->interrupt_request & CPU_INTERRUPT_POLL) { 5068 cs->interrupt_request &= ~CPU_INTERRUPT_POLL; 5069 apic_poll_irq(cpu->apic_state); 5070 } 5071 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && 5072 (env->eflags & IF_MASK)) || 5073 (cs->interrupt_request & CPU_INTERRUPT_NMI)) { 5074 cs->halted = 0; 5075 } 5076 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { 5077 kvm_cpu_synchronize_state(cs); 5078 do_cpu_sipi(cpu); 5079 } 5080 if (cs->interrupt_request & CPU_INTERRUPT_TPR) { 5081 cs->interrupt_request &= ~CPU_INTERRUPT_TPR; 5082 kvm_cpu_synchronize_state(cs); 5083 apic_handle_tpr_access_report(cpu->apic_state, env->eip, 5084 env->tpr_access_type); 5085 } 5086 5087 return cs->halted; 5088 } 5089 5090 static int kvm_handle_halt(X86CPU *cpu) 5091 { 5092 CPUState *cs = CPU(cpu); 5093 CPUX86State *env = &cpu->env; 5094 5095 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && 5096 (env->eflags & IF_MASK)) && 5097 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { 5098 cs->halted = 1; 5099 return EXCP_HLT; 5100 } 5101 5102 return 0; 5103 } 5104 5105 static int kvm_handle_tpr_access(X86CPU *cpu) 5106 { 5107 CPUState *cs = CPU(cpu); 5108 struct kvm_run *run = cs->kvm_run; 5109 5110 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, 5111 run->tpr_access.is_write ? TPR_ACCESS_WRITE 5112 : TPR_ACCESS_READ); 5113 return 1; 5114 } 5115 5116 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 5117 { 5118 static const uint8_t int3 = 0xcc; 5119 5120 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || 5121 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { 5122 return -EINVAL; 5123 } 5124 return 0; 5125 } 5126 5127 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 5128 { 5129 uint8_t int3; 5130 5131 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) { 5132 return -EINVAL; 5133 } 5134 if (int3 != 0xcc) { 5135 return 0; 5136 } 5137 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { 5138 return -EINVAL; 5139 } 5140 return 0; 5141 } 5142 5143 static struct { 5144 target_ulong addr; 5145 int len; 5146 int type; 5147 } hw_breakpoint[4]; 5148 5149 static int nb_hw_breakpoint; 5150 5151 static int find_hw_breakpoint(target_ulong addr, int len, int type) 5152 { 5153 int n; 5154 5155 for (n = 0; n < nb_hw_breakpoint; n++) { 5156 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && 5157 (hw_breakpoint[n].len == len || len == -1)) { 5158 return n; 5159 } 5160 } 5161 return -1; 5162 } 5163 5164 int kvm_arch_insert_hw_breakpoint(target_ulong addr, 5165 target_ulong len, int type) 5166 { 5167 switch (type) { 5168 case GDB_BREAKPOINT_HW: 5169 len = 1; 5170 break; 5171 case GDB_WATCHPOINT_WRITE: 5172 case GDB_WATCHPOINT_ACCESS: 5173 switch (len) { 5174 case 1: 5175 break; 5176 case 2: 5177 case 4: 5178 case 8: 5179 if (addr & (len - 1)) { 5180 return -EINVAL; 5181 } 5182 break; 5183 default: 5184 return -EINVAL; 5185 } 5186 break; 5187 default: 5188 return -ENOSYS; 5189 } 5190 5191 if (nb_hw_breakpoint == 4) { 5192 return -ENOBUFS; 5193 } 5194 if (find_hw_breakpoint(addr, len, type) >= 0) { 5195 return -EEXIST; 5196 } 5197 hw_breakpoint[nb_hw_breakpoint].addr = addr; 5198 hw_breakpoint[nb_hw_breakpoint].len = len; 5199 hw_breakpoint[nb_hw_breakpoint].type = type; 5200 nb_hw_breakpoint++; 5201 5202 return 0; 5203 } 5204 5205 int kvm_arch_remove_hw_breakpoint(target_ulong addr, 5206 target_ulong len, int type) 5207 { 5208 int n; 5209 5210 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); 5211 if (n < 0) { 5212 return -ENOENT; 5213 } 5214 nb_hw_breakpoint--; 5215 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; 5216 5217 return 0; 5218 } 5219 5220 void kvm_arch_remove_all_hw_breakpoints(void) 5221 { 5222 nb_hw_breakpoint = 0; 5223 } 5224 5225 static CPUWatchpoint hw_watchpoint; 5226 5227 static int kvm_handle_debug(X86CPU *cpu, 5228 struct kvm_debug_exit_arch *arch_info) 5229 { 5230 CPUState *cs = CPU(cpu); 5231 CPUX86State *env = &cpu->env; 5232 int ret = 0; 5233 int n; 5234 5235 if (arch_info->exception == EXCP01_DB) { 5236 if (arch_info->dr6 & DR6_BS) { 5237 if (cs->singlestep_enabled) { 5238 ret = EXCP_DEBUG; 5239 } 5240 } else { 5241 for (n = 0; n < 4; n++) { 5242 if (arch_info->dr6 & (1 << n)) { 5243 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { 5244 case 0x0: 5245 ret = EXCP_DEBUG; 5246 break; 5247 case 0x1: 5248 ret = EXCP_DEBUG; 5249 cs->watchpoint_hit = &hw_watchpoint; 5250 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 5251 hw_watchpoint.flags = BP_MEM_WRITE; 5252 break; 5253 case 0x3: 5254 ret = EXCP_DEBUG; 5255 cs->watchpoint_hit = &hw_watchpoint; 5256 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 5257 hw_watchpoint.flags = BP_MEM_ACCESS; 5258 break; 5259 } 5260 } 5261 } 5262 } 5263 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { 5264 ret = EXCP_DEBUG; 5265 } 5266 if (ret == 0) { 5267 cpu_synchronize_state(cs); 5268 assert(env->exception_nr == -1); 5269 5270 /* pass to guest */ 5271 kvm_queue_exception(env, arch_info->exception, 5272 arch_info->exception == EXCP01_DB, 5273 arch_info->dr6); 5274 env->has_error_code = 0; 5275 } 5276 5277 return ret; 5278 } 5279 5280 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 5281 { 5282 const uint8_t type_code[] = { 5283 [GDB_BREAKPOINT_HW] = 0x0, 5284 [GDB_WATCHPOINT_WRITE] = 0x1, 5285 [GDB_WATCHPOINT_ACCESS] = 0x3 5286 }; 5287 const uint8_t len_code[] = { 5288 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 5289 }; 5290 int n; 5291 5292 if (kvm_sw_breakpoints_active(cpu)) { 5293 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 5294 } 5295 if (nb_hw_breakpoint > 0) { 5296 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 5297 dbg->arch.debugreg[7] = 0x0600; 5298 for (n = 0; n < nb_hw_breakpoint; n++) { 5299 dbg->arch.debugreg[n] = hw_breakpoint[n].addr; 5300 dbg->arch.debugreg[7] |= (2 << (n * 2)) | 5301 (type_code[hw_breakpoint[n].type] << (16 + n*4)) | 5302 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); 5303 } 5304 } 5305 } 5306 5307 static bool kvm_install_msr_filters(KVMState *s) 5308 { 5309 uint64_t zero = 0; 5310 struct kvm_msr_filter filter = { 5311 .flags = KVM_MSR_FILTER_DEFAULT_ALLOW, 5312 }; 5313 int r, i, j = 0; 5314 5315 for (i = 0; i < KVM_MSR_FILTER_MAX_RANGES; i++) { 5316 KVMMSRHandlers *handler = &msr_handlers[i]; 5317 if (handler->msr) { 5318 struct kvm_msr_filter_range *range = &filter.ranges[j++]; 5319 5320 *range = (struct kvm_msr_filter_range) { 5321 .flags = 0, 5322 .nmsrs = 1, 5323 .base = handler->msr, 5324 .bitmap = (__u8 *)&zero, 5325 }; 5326 5327 if (handler->rdmsr) { 5328 range->flags |= KVM_MSR_FILTER_READ; 5329 } 5330 5331 if (handler->wrmsr) { 5332 range->flags |= KVM_MSR_FILTER_WRITE; 5333 } 5334 } 5335 } 5336 5337 r = kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter); 5338 if (r) { 5339 return false; 5340 } 5341 5342 return true; 5343 } 5344 5345 bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr, 5346 QEMUWRMSRHandler *wrmsr) 5347 { 5348 int i; 5349 5350 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5351 if (!msr_handlers[i].msr) { 5352 msr_handlers[i] = (KVMMSRHandlers) { 5353 .msr = msr, 5354 .rdmsr = rdmsr, 5355 .wrmsr = wrmsr, 5356 }; 5357 5358 if (!kvm_install_msr_filters(s)) { 5359 msr_handlers[i] = (KVMMSRHandlers) { }; 5360 return false; 5361 } 5362 5363 return true; 5364 } 5365 } 5366 5367 return false; 5368 } 5369 5370 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run) 5371 { 5372 int i; 5373 bool r; 5374 5375 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5376 KVMMSRHandlers *handler = &msr_handlers[i]; 5377 if (run->msr.index == handler->msr) { 5378 if (handler->rdmsr) { 5379 r = handler->rdmsr(cpu, handler->msr, 5380 (uint64_t *)&run->msr.data); 5381 run->msr.error = r ? 0 : 1; 5382 return 0; 5383 } 5384 } 5385 } 5386 5387 assert(false); 5388 } 5389 5390 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run) 5391 { 5392 int i; 5393 bool r; 5394 5395 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5396 KVMMSRHandlers *handler = &msr_handlers[i]; 5397 if (run->msr.index == handler->msr) { 5398 if (handler->wrmsr) { 5399 r = handler->wrmsr(cpu, handler->msr, run->msr.data); 5400 run->msr.error = r ? 0 : 1; 5401 return 0; 5402 } 5403 } 5404 } 5405 5406 assert(false); 5407 } 5408 5409 static bool has_sgx_provisioning; 5410 5411 static bool __kvm_enable_sgx_provisioning(KVMState *s) 5412 { 5413 int fd, ret; 5414 5415 if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) { 5416 return false; 5417 } 5418 5419 fd = qemu_open_old("/dev/sgx_provision", O_RDONLY); 5420 if (fd < 0) { 5421 return false; 5422 } 5423 5424 ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd); 5425 if (ret) { 5426 error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret)); 5427 exit(1); 5428 } 5429 close(fd); 5430 return true; 5431 } 5432 5433 bool kvm_enable_sgx_provisioning(KVMState *s) 5434 { 5435 return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning); 5436 } 5437 5438 static bool host_supports_vmx(void) 5439 { 5440 uint32_t ecx, unused; 5441 5442 host_cpuid(1, 0, &unused, &unused, &ecx, &unused); 5443 return ecx & CPUID_EXT_VMX; 5444 } 5445 5446 #define VMX_INVALID_GUEST_STATE 0x80000021 5447 5448 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 5449 { 5450 X86CPU *cpu = X86_CPU(cs); 5451 uint64_t code; 5452 int ret; 5453 bool ctx_invalid; 5454 char str[256]; 5455 KVMState *state; 5456 5457 switch (run->exit_reason) { 5458 case KVM_EXIT_HLT: 5459 DPRINTF("handle_hlt\n"); 5460 qemu_mutex_lock_iothread(); 5461 ret = kvm_handle_halt(cpu); 5462 qemu_mutex_unlock_iothread(); 5463 break; 5464 case KVM_EXIT_SET_TPR: 5465 ret = 0; 5466 break; 5467 case KVM_EXIT_TPR_ACCESS: 5468 qemu_mutex_lock_iothread(); 5469 ret = kvm_handle_tpr_access(cpu); 5470 qemu_mutex_unlock_iothread(); 5471 break; 5472 case KVM_EXIT_FAIL_ENTRY: 5473 code = run->fail_entry.hardware_entry_failure_reason; 5474 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", 5475 code); 5476 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { 5477 fprintf(stderr, 5478 "\nIf you're running a guest on an Intel machine without " 5479 "unrestricted mode\n" 5480 "support, the failure can be most likely due to the guest " 5481 "entering an invalid\n" 5482 "state for Intel VT. For example, the guest maybe running " 5483 "in big real mode\n" 5484 "which is not supported on less recent Intel processors." 5485 "\n\n"); 5486 } 5487 ret = -1; 5488 break; 5489 case KVM_EXIT_EXCEPTION: 5490 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", 5491 run->ex.exception, run->ex.error_code); 5492 ret = -1; 5493 break; 5494 case KVM_EXIT_DEBUG: 5495 DPRINTF("kvm_exit_debug\n"); 5496 qemu_mutex_lock_iothread(); 5497 ret = kvm_handle_debug(cpu, &run->debug.arch); 5498 qemu_mutex_unlock_iothread(); 5499 break; 5500 case KVM_EXIT_HYPERV: 5501 ret = kvm_hv_handle_exit(cpu, &run->hyperv); 5502 break; 5503 case KVM_EXIT_IOAPIC_EOI: 5504 ioapic_eoi_broadcast(run->eoi.vector); 5505 ret = 0; 5506 break; 5507 case KVM_EXIT_X86_BUS_LOCK: 5508 /* already handled in kvm_arch_post_run */ 5509 ret = 0; 5510 break; 5511 case KVM_EXIT_NOTIFY: 5512 ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID); 5513 state = KVM_STATE(current_accel()); 5514 sprintf(str, "Encounter a notify exit with %svalid context in" 5515 " guest. There can be possible misbehaves in guest." 5516 " Please have a look.", ctx_invalid ? "in" : ""); 5517 if (ctx_invalid || 5518 state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) { 5519 warn_report("KVM internal error: %s", str); 5520 ret = -1; 5521 } else { 5522 warn_report_once("KVM: %s", str); 5523 ret = 0; 5524 } 5525 break; 5526 case KVM_EXIT_X86_RDMSR: 5527 /* We only enable MSR filtering, any other exit is bogus */ 5528 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER); 5529 ret = kvm_handle_rdmsr(cpu, run); 5530 break; 5531 case KVM_EXIT_X86_WRMSR: 5532 /* We only enable MSR filtering, any other exit is bogus */ 5533 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER); 5534 ret = kvm_handle_wrmsr(cpu, run); 5535 break; 5536 #ifdef CONFIG_XEN_EMU 5537 case KVM_EXIT_XEN: 5538 ret = kvm_xen_handle_exit(cpu, &run->xen); 5539 break; 5540 #endif 5541 default: 5542 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); 5543 ret = -1; 5544 break; 5545 } 5546 5547 return ret; 5548 } 5549 5550 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 5551 { 5552 X86CPU *cpu = X86_CPU(cs); 5553 CPUX86State *env = &cpu->env; 5554 5555 kvm_cpu_synchronize_state(cs); 5556 return !(env->cr[0] & CR0_PE_MASK) || 5557 ((env->segs[R_CS].selector & 3) != 3); 5558 } 5559 5560 void kvm_arch_init_irq_routing(KVMState *s) 5561 { 5562 /* We know at this point that we're using the in-kernel 5563 * irqchip, so we can use irqfds, and on x86 we know 5564 * we can use msi via irqfd and GSI routing. 5565 */ 5566 kvm_msi_via_irqfd_allowed = true; 5567 kvm_gsi_routing_allowed = true; 5568 5569 if (kvm_irqchip_is_split()) { 5570 KVMRouteChange c = kvm_irqchip_begin_route_changes(s); 5571 int i; 5572 5573 /* If the ioapic is in QEMU and the lapics are in KVM, reserve 5574 MSI routes for signaling interrupts to the local apics. */ 5575 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 5576 if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) { 5577 error_report("Could not enable split IRQ mode."); 5578 exit(1); 5579 } 5580 } 5581 kvm_irqchip_commit_route_changes(&c); 5582 } 5583 } 5584 5585 int kvm_arch_irqchip_create(KVMState *s) 5586 { 5587 int ret; 5588 if (kvm_kernel_irqchip_split()) { 5589 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); 5590 if (ret) { 5591 error_report("Could not enable split irqchip mode: %s", 5592 strerror(-ret)); 5593 exit(1); 5594 } else { 5595 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); 5596 kvm_split_irqchip = true; 5597 return 1; 5598 } 5599 } else { 5600 return 0; 5601 } 5602 } 5603 5604 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address) 5605 { 5606 CPUX86State *env; 5607 uint64_t ext_id; 5608 5609 if (!first_cpu) { 5610 return address; 5611 } 5612 env = &X86_CPU(first_cpu)->env; 5613 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) { 5614 return address; 5615 } 5616 5617 /* 5618 * If the remappable format bit is set, or the upper bits are 5619 * already set in address_hi, or the low extended bits aren't 5620 * there anyway, do nothing. 5621 */ 5622 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT); 5623 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) { 5624 return address; 5625 } 5626 5627 address &= ~ext_id; 5628 address |= ext_id << 35; 5629 return address; 5630 } 5631 5632 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 5633 uint64_t address, uint32_t data, PCIDevice *dev) 5634 { 5635 X86IOMMUState *iommu = x86_iommu_get_default(); 5636 5637 if (iommu) { 5638 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu); 5639 5640 if (class->int_remap) { 5641 int ret; 5642 MSIMessage src, dst; 5643 5644 src.address = route->u.msi.address_hi; 5645 src.address <<= VTD_MSI_ADDR_HI_SHIFT; 5646 src.address |= route->u.msi.address_lo; 5647 src.data = route->u.msi.data; 5648 5649 ret = class->int_remap(iommu, &src, &dst, dev ? \ 5650 pci_requester_id(dev) : \ 5651 X86_IOMMU_SID_INVALID); 5652 if (ret) { 5653 trace_kvm_x86_fixup_msi_error(route->gsi); 5654 return 1; 5655 } 5656 5657 /* 5658 * Handled untranslated compatibilty format interrupt with 5659 * extended destination ID in the low bits 11-5. */ 5660 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address); 5661 5662 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; 5663 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; 5664 route->u.msi.data = dst.data; 5665 return 0; 5666 } 5667 } 5668 5669 #ifdef CONFIG_XEN_EMU 5670 if (xen_mode == XEN_EMULATE) { 5671 int handled = xen_evtchn_translate_pirq_msi(route, address, data); 5672 5673 /* 5674 * If it was a PIRQ and successfully routed (handled == 0) or it was 5675 * an error (handled < 0), return. If it wasn't a PIRQ, keep going. 5676 */ 5677 if (handled <= 0) { 5678 return handled; 5679 } 5680 } 5681 #endif 5682 5683 address = kvm_swizzle_msi_ext_dest_id(address); 5684 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT; 5685 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK; 5686 return 0; 5687 } 5688 5689 typedef struct MSIRouteEntry MSIRouteEntry; 5690 5691 struct MSIRouteEntry { 5692 PCIDevice *dev; /* Device pointer */ 5693 int vector; /* MSI/MSIX vector index */ 5694 int virq; /* Virtual IRQ index */ 5695 QLIST_ENTRY(MSIRouteEntry) list; 5696 }; 5697 5698 /* List of used GSI routes */ 5699 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ 5700 QLIST_HEAD_INITIALIZER(msi_route_list); 5701 5702 void kvm_update_msi_routes_all(void *private, bool global, 5703 uint32_t index, uint32_t mask) 5704 { 5705 int cnt = 0, vector; 5706 MSIRouteEntry *entry; 5707 MSIMessage msg; 5708 PCIDevice *dev; 5709 5710 /* TODO: explicit route update */ 5711 QLIST_FOREACH(entry, &msi_route_list, list) { 5712 cnt++; 5713 vector = entry->vector; 5714 dev = entry->dev; 5715 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) { 5716 msg = msix_get_message(dev, vector); 5717 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) { 5718 msg = msi_get_message(dev, vector); 5719 } else { 5720 /* 5721 * Either MSI/MSIX is disabled for the device, or the 5722 * specific message was masked out. Skip this one. 5723 */ 5724 continue; 5725 } 5726 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); 5727 } 5728 kvm_irqchip_commit_routes(kvm_state); 5729 trace_kvm_x86_update_msi_routes(cnt); 5730 } 5731 5732 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 5733 int vector, PCIDevice *dev) 5734 { 5735 static bool notify_list_inited = false; 5736 MSIRouteEntry *entry; 5737 5738 if (!dev) { 5739 /* These are (possibly) IOAPIC routes only used for split 5740 * kernel irqchip mode, while what we are housekeeping are 5741 * PCI devices only. */ 5742 return 0; 5743 } 5744 5745 entry = g_new0(MSIRouteEntry, 1); 5746 entry->dev = dev; 5747 entry->vector = vector; 5748 entry->virq = route->gsi; 5749 QLIST_INSERT_HEAD(&msi_route_list, entry, list); 5750 5751 trace_kvm_x86_add_msi_route(route->gsi); 5752 5753 if (!notify_list_inited) { 5754 /* For the first time we do add route, add ourselves into 5755 * IOMMU's IEC notify list if needed. */ 5756 X86IOMMUState *iommu = x86_iommu_get_default(); 5757 if (iommu) { 5758 x86_iommu_iec_register_notifier(iommu, 5759 kvm_update_msi_routes_all, 5760 NULL); 5761 } 5762 notify_list_inited = true; 5763 } 5764 return 0; 5765 } 5766 5767 int kvm_arch_release_virq_post(int virq) 5768 { 5769 MSIRouteEntry *entry, *next; 5770 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { 5771 if (entry->virq == virq) { 5772 trace_kvm_x86_remove_msi_route(virq); 5773 QLIST_REMOVE(entry, list); 5774 g_free(entry); 5775 break; 5776 } 5777 } 5778 return 0; 5779 } 5780 5781 int kvm_arch_msi_data_to_gsi(uint32_t data) 5782 { 5783 abort(); 5784 } 5785 5786 bool kvm_has_waitpkg(void) 5787 { 5788 return has_msr_umwait; 5789 } 5790 5791 bool kvm_arch_cpu_check_are_resettable(void) 5792 { 5793 return !sev_es_enabled(); 5794 } 5795 5796 #define ARCH_REQ_XCOMP_GUEST_PERM 0x1025 5797 5798 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask) 5799 { 5800 KVMState *s = kvm_state; 5801 uint64_t supported; 5802 5803 mask &= XSTATE_DYNAMIC_MASK; 5804 if (!mask) { 5805 return; 5806 } 5807 /* 5808 * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0]. 5809 * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned 5810 * about them already because they are not supported features. 5811 */ 5812 supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX); 5813 supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32; 5814 mask &= supported; 5815 5816 while (mask) { 5817 int bit = ctz64(mask); 5818 int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit); 5819 if (rc) { 5820 /* 5821 * Older kernel version (<5.17) do not support 5822 * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return 5823 * any dynamic feature from kvm_arch_get_supported_cpuid. 5824 */ 5825 warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure " 5826 "for feature bit %d", bit); 5827 } 5828 mask &= ~BIT_ULL(bit); 5829 } 5830 } 5831 5832 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp) 5833 { 5834 KVMState *s = KVM_STATE(obj); 5835 return s->notify_vmexit; 5836 } 5837 5838 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp) 5839 { 5840 KVMState *s = KVM_STATE(obj); 5841 5842 if (s->fd != -1) { 5843 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 5844 return; 5845 } 5846 5847 s->notify_vmexit = value; 5848 } 5849 5850 static void kvm_arch_get_notify_window(Object *obj, Visitor *v, 5851 const char *name, void *opaque, 5852 Error **errp) 5853 { 5854 KVMState *s = KVM_STATE(obj); 5855 uint32_t value = s->notify_window; 5856 5857 visit_type_uint32(v, name, &value, errp); 5858 } 5859 5860 static void kvm_arch_set_notify_window(Object *obj, Visitor *v, 5861 const char *name, void *opaque, 5862 Error **errp) 5863 { 5864 KVMState *s = KVM_STATE(obj); 5865 uint32_t value; 5866 5867 if (s->fd != -1) { 5868 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 5869 return; 5870 } 5871 5872 if (!visit_type_uint32(v, name, &value, errp)) { 5873 return; 5874 } 5875 5876 s->notify_window = value; 5877 } 5878 5879 static void kvm_arch_get_xen_version(Object *obj, Visitor *v, 5880 const char *name, void *opaque, 5881 Error **errp) 5882 { 5883 KVMState *s = KVM_STATE(obj); 5884 uint32_t value = s->xen_version; 5885 5886 visit_type_uint32(v, name, &value, errp); 5887 } 5888 5889 static void kvm_arch_set_xen_version(Object *obj, Visitor *v, 5890 const char *name, void *opaque, 5891 Error **errp) 5892 { 5893 KVMState *s = KVM_STATE(obj); 5894 Error *error = NULL; 5895 uint32_t value; 5896 5897 visit_type_uint32(v, name, &value, &error); 5898 if (error) { 5899 error_propagate(errp, error); 5900 return; 5901 } 5902 5903 s->xen_version = value; 5904 if (value && xen_mode == XEN_DISABLED) { 5905 xen_mode = XEN_EMULATE; 5906 } 5907 } 5908 5909 static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v, 5910 const char *name, void *opaque, 5911 Error **errp) 5912 { 5913 KVMState *s = KVM_STATE(obj); 5914 uint16_t value = s->xen_gnttab_max_frames; 5915 5916 visit_type_uint16(v, name, &value, errp); 5917 } 5918 5919 static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v, 5920 const char *name, void *opaque, 5921 Error **errp) 5922 { 5923 KVMState *s = KVM_STATE(obj); 5924 Error *error = NULL; 5925 uint16_t value; 5926 5927 visit_type_uint16(v, name, &value, &error); 5928 if (error) { 5929 error_propagate(errp, error); 5930 return; 5931 } 5932 5933 s->xen_gnttab_max_frames = value; 5934 } 5935 5936 static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v, 5937 const char *name, void *opaque, 5938 Error **errp) 5939 { 5940 KVMState *s = KVM_STATE(obj); 5941 uint16_t value = s->xen_evtchn_max_pirq; 5942 5943 visit_type_uint16(v, name, &value, errp); 5944 } 5945 5946 static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v, 5947 const char *name, void *opaque, 5948 Error **errp) 5949 { 5950 KVMState *s = KVM_STATE(obj); 5951 Error *error = NULL; 5952 uint16_t value; 5953 5954 visit_type_uint16(v, name, &value, &error); 5955 if (error) { 5956 error_propagate(errp, error); 5957 return; 5958 } 5959 5960 s->xen_evtchn_max_pirq = value; 5961 } 5962 5963 void kvm_arch_accel_class_init(ObjectClass *oc) 5964 { 5965 object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption", 5966 &NotifyVmexitOption_lookup, 5967 kvm_arch_get_notify_vmexit, 5968 kvm_arch_set_notify_vmexit); 5969 object_class_property_set_description(oc, "notify-vmexit", 5970 "Enable notify VM exit"); 5971 5972 object_class_property_add(oc, "notify-window", "uint32", 5973 kvm_arch_get_notify_window, 5974 kvm_arch_set_notify_window, 5975 NULL, NULL); 5976 object_class_property_set_description(oc, "notify-window", 5977 "Clock cycles without an event window " 5978 "after which a notification VM exit occurs"); 5979 5980 object_class_property_add(oc, "xen-version", "uint32", 5981 kvm_arch_get_xen_version, 5982 kvm_arch_set_xen_version, 5983 NULL, NULL); 5984 object_class_property_set_description(oc, "xen-version", 5985 "Xen version to be emulated " 5986 "(in XENVER_version form " 5987 "e.g. 0x4000a for 4.10)"); 5988 5989 object_class_property_add(oc, "xen-gnttab-max-frames", "uint16", 5990 kvm_arch_get_xen_gnttab_max_frames, 5991 kvm_arch_set_xen_gnttab_max_frames, 5992 NULL, NULL); 5993 object_class_property_set_description(oc, "xen-gnttab-max-frames", 5994 "Maximum number of grant table frames"); 5995 5996 object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16", 5997 kvm_arch_get_xen_evtchn_max_pirq, 5998 kvm_arch_set_xen_evtchn_max_pirq, 5999 NULL, NULL); 6000 object_class_property_set_description(oc, "xen-evtchn-max-pirq", 6001 "Maximum number of Xen PIRQs"); 6002 } 6003 6004 void kvm_set_max_apic_id(uint32_t max_apic_id) 6005 { 6006 kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id); 6007 } 6008