xref: /openbmc/qemu/target/i386/kvm/kvm.c (revision 361b056fe9dd830b421fe8959682dc5a3c35a32c)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright (C) 2006-2008 Qumranet Technologies
5  * Copyright IBM, Corp. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include "qapi/visitor.h"
19 #include <math.h>
20 #include <sys/ioctl.h>
21 #include <sys/utsname.h>
22 #include <sys/syscall.h>
23 #include <sys/resource.h>
24 #include <sys/time.h>
25 
26 #include <linux/kvm.h>
27 #include <linux/kvm_para.h>
28 #include "standard-headers/asm-x86/kvm_para.h"
29 #include "hw/xen/interface/arch-x86/cpuid.h"
30 
31 #include "cpu.h"
32 #include "host-cpu.h"
33 #include "vmsr_energy.h"
34 #include "system/system.h"
35 #include "system/hw_accel.h"
36 #include "system/kvm_int.h"
37 #include "system/runstate.h"
38 #include "kvm_i386.h"
39 #include "../confidential-guest.h"
40 #include "sev.h"
41 #include "tdx.h"
42 #include "xen-emu.h"
43 #include "hyperv.h"
44 #include "hyperv-proto.h"
45 
46 #include "gdbstub/enums.h"
47 #include "qemu/host-utils.h"
48 #include "qemu/main-loop.h"
49 #include "qemu/ratelimit.h"
50 #include "qemu/config-file.h"
51 #include "qemu/error-report.h"
52 #include "qemu/memalign.h"
53 #include "hw/i386/x86.h"
54 #include "hw/i386/kvm/xen_evtchn.h"
55 #include "hw/i386/pc.h"
56 #include "hw/i386/apic.h"
57 #include "hw/i386/apic_internal.h"
58 #include "hw/i386/apic-msidef.h"
59 #include "hw/i386/intel_iommu.h"
60 #include "hw/i386/topology.h"
61 #include "hw/i386/x86-iommu.h"
62 #include "hw/i386/e820_memory_layout.h"
63 
64 #include "hw/xen/xen.h"
65 
66 #include "hw/pci/pci.h"
67 #include "hw/pci/msi.h"
68 #include "hw/pci/msix.h"
69 #include "migration/blocker.h"
70 #include "exec/memattrs.h"
71 #include "exec/target_page.h"
72 #include "trace.h"
73 
74 #include CONFIG_DEVICES
75 
76 //#define DEBUG_KVM
77 
78 #ifdef DEBUG_KVM
79 #define DPRINTF(fmt, ...) \
80     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
81 #else
82 #define DPRINTF(fmt, ...) \
83     do { } while (0)
84 #endif
85 
86 /*
87  * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
88  * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
89  * Since these must be part of guest physical memory, we need to allocate
90  * them, both by setting their start addresses in the kernel and by
91  * creating a corresponding e820 entry. We need 4 pages before the BIOS,
92  * so this value allows up to 16M BIOSes.
93  */
94 #define KVM_IDENTITY_BASE 0xfeffc000
95 
96 /* From arch/x86/kvm/lapic.h */
97 #define KVM_APIC_BUS_CYCLE_NS       1
98 #define KVM_APIC_BUS_FREQUENCY      (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
99 
100 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
101  * 255 kvm_msr_entry structs */
102 #define MSR_BUF_SIZE 4096
103 
104 typedef bool QEMURDMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t *val);
105 typedef bool QEMUWRMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t val);
106 typedef struct {
107     uint32_t msr;
108     QEMURDMSRHandler *rdmsr;
109     QEMUWRMSRHandler *wrmsr;
110 } KVMMSRHandlers;
111 
112 static void kvm_init_msrs(X86CPU *cpu);
113 static int kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
114                           QEMUWRMSRHandler *wrmsr);
115 
116 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
117     KVM_CAP_INFO(SET_TSS_ADDR),
118     KVM_CAP_INFO(EXT_CPUID),
119     KVM_CAP_INFO(MP_STATE),
120     KVM_CAP_INFO(SIGNAL_MSI),
121     KVM_CAP_INFO(IRQ_ROUTING),
122     KVM_CAP_INFO(DEBUGREGS),
123     KVM_CAP_INFO(XSAVE),
124     KVM_CAP_INFO(VCPU_EVENTS),
125     KVM_CAP_INFO(X86_ROBUST_SINGLESTEP),
126     KVM_CAP_INFO(MCE),
127     KVM_CAP_INFO(ADJUST_CLOCK),
128     KVM_CAP_INFO(SET_IDENTITY_MAP_ADDR),
129     KVM_CAP_LAST_INFO
130 };
131 
132 static bool has_msr_star;
133 static bool has_msr_hsave_pa;
134 static bool has_msr_tsc_aux;
135 static bool has_msr_tsc_adjust;
136 static bool has_msr_tsc_deadline;
137 static bool has_msr_feature_control;
138 static bool has_msr_misc_enable;
139 static bool has_msr_smbase;
140 static bool has_msr_bndcfgs;
141 static int lm_capable_kernel;
142 static bool has_msr_hv_hypercall;
143 static bool has_msr_hv_crash;
144 static bool has_msr_hv_reset;
145 static bool has_msr_hv_vpindex;
146 static bool hv_vpindex_settable;
147 static bool has_msr_hv_runtime;
148 static bool has_msr_hv_synic;
149 static bool has_msr_hv_stimer;
150 static bool has_msr_hv_frequencies;
151 static bool has_msr_hv_reenlightenment;
152 static bool has_msr_hv_syndbg_options;
153 static bool has_msr_xss;
154 static bool has_msr_umwait;
155 static bool has_msr_spec_ctrl;
156 static bool has_tsc_scale_msr;
157 static bool has_msr_tsx_ctrl;
158 static bool has_msr_virt_ssbd;
159 static bool has_msr_smi_count;
160 static bool has_msr_arch_capabs;
161 static bool has_msr_core_capabs;
162 static bool has_msr_vmx_vmfunc;
163 static bool has_msr_ucode_rev;
164 static bool has_msr_vmx_procbased_ctls2;
165 static bool has_msr_perf_capabs;
166 static bool has_msr_pkrs;
167 static bool has_msr_hwcr;
168 
169 static uint32_t has_architectural_pmu_version;
170 static uint32_t num_architectural_pmu_gp_counters;
171 static uint32_t num_architectural_pmu_fixed_counters;
172 
173 static int has_xsave2;
174 static int has_xcrs;
175 static int has_sregs2;
176 static int has_exception_payload;
177 static int has_triple_fault_event;
178 
179 static bool has_msr_mcg_ext_ctl;
180 
181 static struct kvm_cpuid2 *cpuid_cache;
182 static struct kvm_cpuid2 *hv_cpuid_cache;
183 static struct kvm_msr_list *kvm_feature_msrs;
184 
185 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES];
186 
187 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
188 static RateLimit bus_lock_ratelimit_ctrl;
189 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value);
190 
191 static const char *vm_type_name[] = {
192     [KVM_X86_DEFAULT_VM] = "default",
193     [KVM_X86_SEV_VM] = "SEV",
194     [KVM_X86_SEV_ES_VM] = "SEV-ES",
195     [KVM_X86_SNP_VM] = "SEV-SNP",
196     [KVM_X86_TDX_VM] = "TDX",
197 };
198 
199 bool kvm_is_vm_type_supported(int type)
200 {
201     uint32_t machine_types;
202 
203     /*
204      * old KVM doesn't support KVM_CAP_VM_TYPES but KVM_X86_DEFAULT_VM
205      * is always supported
206      */
207     if (type == KVM_X86_DEFAULT_VM) {
208         return true;
209     }
210 
211     machine_types = kvm_check_extension(KVM_STATE(current_machine->accelerator),
212                                         KVM_CAP_VM_TYPES);
213     return !!(machine_types & BIT(type));
214 }
215 
216 int kvm_get_vm_type(MachineState *ms)
217 {
218     int kvm_type = KVM_X86_DEFAULT_VM;
219 
220     if (ms->cgs) {
221         if (!object_dynamic_cast(OBJECT(ms->cgs), TYPE_X86_CONFIDENTIAL_GUEST)) {
222             error_report("configuration type %s not supported for x86 guests",
223                          object_get_typename(OBJECT(ms->cgs)));
224             exit(1);
225         }
226         kvm_type = x86_confidential_guest_kvm_type(
227             X86_CONFIDENTIAL_GUEST(ms->cgs));
228     }
229 
230     if (!kvm_is_vm_type_supported(kvm_type)) {
231         error_report("vm-type %s not supported by KVM", vm_type_name[kvm_type]);
232         exit(1);
233     }
234 
235     return kvm_type;
236 }
237 
238 bool kvm_enable_hypercall(uint64_t enable_mask)
239 {
240     KVMState *s = KVM_STATE(current_accel());
241 
242     return !kvm_vm_enable_cap(s, KVM_CAP_EXIT_HYPERCALL, 0, enable_mask);
243 }
244 
245 bool kvm_has_smm(void)
246 {
247     return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
248 }
249 
250 bool kvm_has_adjust_clock_stable(void)
251 {
252     int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
253 
254     return (ret & KVM_CLOCK_TSC_STABLE);
255 }
256 
257 bool kvm_has_exception_payload(void)
258 {
259     return has_exception_payload;
260 }
261 
262 static bool kvm_x2apic_api_set_flags(uint64_t flags)
263 {
264     KVMState *s = KVM_STATE(current_accel());
265 
266     return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
267 }
268 
269 #define MEMORIZE(fn, _result) \
270     ({ \
271         static bool _memorized; \
272         \
273         if (_memorized) { \
274             return _result; \
275         } \
276         _memorized = true; \
277         _result = fn; \
278     })
279 
280 static bool has_x2apic_api;
281 
282 bool kvm_has_x2apic_api(void)
283 {
284     return has_x2apic_api;
285 }
286 
287 bool kvm_enable_x2apic(void)
288 {
289     return MEMORIZE(
290              kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
291                                       KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
292              has_x2apic_api);
293 }
294 
295 bool kvm_hv_vpindex_settable(void)
296 {
297     return hv_vpindex_settable;
298 }
299 
300 static int kvm_get_tsc(CPUState *cs)
301 {
302     X86CPU *cpu = X86_CPU(cs);
303     CPUX86State *env = &cpu->env;
304     uint64_t value;
305     int ret;
306 
307     if (env->tsc_valid) {
308         return 0;
309     }
310 
311     env->tsc_valid = !runstate_is_running();
312 
313     ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value);
314     if (ret < 0) {
315         return ret;
316     }
317 
318     env->tsc = value;
319     return 0;
320 }
321 
322 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
323 {
324     kvm_get_tsc(cpu);
325 }
326 
327 void kvm_synchronize_all_tsc(void)
328 {
329     CPUState *cpu;
330 
331     if (kvm_enabled() && !is_tdx_vm()) {
332         CPU_FOREACH(cpu) {
333             run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
334         }
335     }
336 }
337 
338 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
339 {
340     struct kvm_cpuid2 *cpuid;
341     int r, size;
342 
343     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
344     cpuid = g_malloc0(size);
345     cpuid->nent = max;
346     r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
347     if (r == 0 && cpuid->nent >= max) {
348         r = -E2BIG;
349     }
350     if (r < 0) {
351         if (r == -E2BIG) {
352             g_free(cpuid);
353             return NULL;
354         } else {
355             fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
356                     strerror(-r));
357             exit(1);
358         }
359     }
360     return cpuid;
361 }
362 
363 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
364  * for all entries.
365  */
366 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
367 {
368     struct kvm_cpuid2 *cpuid;
369     int max = 1;
370 
371     if (cpuid_cache != NULL) {
372         return cpuid_cache;
373     }
374     while ((cpuid = try_get_cpuid(s, max)) == NULL) {
375         max *= 2;
376     }
377     cpuid_cache = cpuid;
378     return cpuid;
379 }
380 
381 static bool host_tsx_broken(void)
382 {
383     int family, model, stepping;\
384     char vendor[CPUID_VENDOR_SZ + 1];
385 
386     host_cpu_vendor_fms(vendor, &family, &model, &stepping);
387 
388     /* Check if we are running on a Haswell host known to have broken TSX */
389     return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
390            (family == 6) &&
391            ((model == 63 && stepping < 4) ||
392             model == 60 || model == 69 || model == 70);
393 }
394 
395 /* Returns the value for a specific register on the cpuid entry
396  */
397 uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
398 {
399     uint32_t ret = 0;
400     switch (reg) {
401     case R_EAX:
402         ret = entry->eax;
403         break;
404     case R_EBX:
405         ret = entry->ebx;
406         break;
407     case R_ECX:
408         ret = entry->ecx;
409         break;
410     case R_EDX:
411         ret = entry->edx;
412         break;
413     }
414     return ret;
415 }
416 
417 /* Find matching entry for function/index on kvm_cpuid2 struct
418  */
419 struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
420                                           uint32_t function,
421                                           uint32_t index)
422 {
423     int i;
424     for (i = 0; i < cpuid->nent; ++i) {
425         if (cpuid->entries[i].function == function &&
426             cpuid->entries[i].index == index) {
427             return &cpuid->entries[i];
428         }
429     }
430     /* not found: */
431     return NULL;
432 }
433 
434 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
435                                       uint32_t index, int reg)
436 {
437     struct kvm_cpuid2 *cpuid;
438     uint32_t ret = 0;
439     uint32_t cpuid_1_edx, unused;
440     uint64_t bitmask;
441 
442     cpuid = get_supported_cpuid(s);
443 
444     struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
445     if (entry) {
446         ret = cpuid_entry_get_reg(entry, reg);
447     }
448 
449     /* Fixups for the data returned by KVM, below */
450 
451     if (function == 1 && reg == R_EDX) {
452         /* KVM before 2.6.30 misreports the following features */
453         ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
454         /* KVM never reports CPUID_HT but QEMU can support when vcpus > 1 */
455         ret |= CPUID_HT;
456     } else if (function == 1 && reg == R_ECX) {
457         /* We can set the hypervisor flag, even if KVM does not return it on
458          * GET_SUPPORTED_CPUID
459          */
460         ret |= CPUID_EXT_HYPERVISOR;
461         /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
462          * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
463          * and the irqchip is in the kernel.
464          */
465         if (kvm_irqchip_in_kernel() &&
466                 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
467             ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
468         }
469 
470         /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
471          * without the in-kernel irqchip
472          */
473         if (!kvm_irqchip_in_kernel()) {
474             ret &= ~CPUID_EXT_X2APIC;
475         }
476 
477         if (enable_cpu_pm) {
478             int disable_exits = kvm_check_extension(s,
479                                                     KVM_CAP_X86_DISABLE_EXITS);
480 
481             if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
482                 ret |= CPUID_EXT_MONITOR;
483             }
484         }
485     } else if (function == 6 && reg == R_EAX) {
486         ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
487     } else if (function == 7 && index == 0 && reg == R_EBX) {
488         /* Not new instructions, just an optimization.  */
489         uint32_t ebx;
490         host_cpuid(7, 0, &unused, &ebx, &unused, &unused);
491         ret |= ebx & CPUID_7_0_EBX_ERMS;
492 
493         if (host_tsx_broken()) {
494             ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
495         }
496     } else if (function == 7 && index == 0 && reg == R_EDX) {
497         /* Not new instructions, just an optimization.  */
498         uint32_t edx;
499         host_cpuid(7, 0, &unused, &unused, &unused, &edx);
500         ret |= edx & CPUID_7_0_EDX_FSRM;
501 
502         /*
503          * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
504          * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
505          * returned by KVM_GET_MSR_INDEX_LIST.
506          *
507          * But also, because Windows does not like ARCH_CAPABILITIES on AMD
508          * mcahines at all, do not show the fake ARCH_CAPABILITIES MSR that
509          * KVM sets up.
510          */
511         if (!has_msr_arch_capabs || !(edx & CPUID_7_0_EDX_ARCH_CAPABILITIES)) {
512             ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
513         }
514     } else if (function == 7 && index == 1 && reg == R_EAX) {
515         /* Not new instructions, just an optimization.  */
516         uint32_t eax;
517         host_cpuid(7, 1, &eax, &unused, &unused, &unused);
518         ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC);
519     } else if (function == 7 && index == 2 && reg == R_EDX) {
520         uint32_t edx;
521         host_cpuid(7, 2, &unused, &unused, &unused, &edx);
522         ret |= edx & CPUID_7_2_EDX_MCDT_NO;
523     } else if (function == 0xd && index == 0 &&
524                (reg == R_EAX || reg == R_EDX)) {
525         /*
526          * The value returned by KVM_GET_SUPPORTED_CPUID does not include
527          * features that still have to be enabled with the arch_prctl
528          * system call.  QEMU needs the full value, which is retrieved
529          * with KVM_GET_DEVICE_ATTR.
530          */
531         struct kvm_device_attr attr = {
532             .group = 0,
533             .attr = KVM_X86_XCOMP_GUEST_SUPP,
534             .addr = (unsigned long) &bitmask
535         };
536 
537         bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
538         if (!sys_attr) {
539             return ret;
540         }
541 
542         int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
543         if (rc < 0) {
544             if (rc != -ENXIO) {
545                 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
546                             "error: %d", rc);
547             }
548             return ret;
549         }
550         ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
551     } else if (function == 0x80000001 && reg == R_ECX) {
552         /*
553          * It's safe to enable TOPOEXT even if it's not returned by
554          * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
555          * us to keep CPU models including TOPOEXT runnable on older kernels.
556          */
557         ret |= CPUID_EXT3_TOPOEXT;
558     } else if (function == 0x80000001 && reg == R_EDX) {
559         /* On Intel, kvm returns cpuid according to the Intel spec,
560          * so add missing bits according to the AMD spec:
561          */
562         cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
563         ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
564     } else if (function == 0x80000007 && reg == R_EBX) {
565         ret |= CPUID_8000_0007_EBX_OVERFLOW_RECOV | CPUID_8000_0007_EBX_SUCCOR;
566     } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
567         /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
568          * be enabled without the in-kernel irqchip
569          */
570         if (!kvm_irqchip_in_kernel()) {
571             ret &= ~CPUID_KVM_PV_UNHALT;
572         }
573         if (kvm_irqchip_is_split()) {
574             ret |= CPUID_KVM_MSI_EXT_DEST_ID;
575         }
576     } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
577         ret |= CPUID_KVM_HINTS_REALTIME;
578     }
579 
580     if (current_machine->cgs) {
581         ret = x86_confidential_guest_adjust_cpuid_features(
582             X86_CONFIDENTIAL_GUEST(current_machine->cgs),
583             function, index, reg, ret);
584     }
585     return ret;
586 }
587 
588 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
589 {
590     struct {
591         struct kvm_msrs info;
592         struct kvm_msr_entry entries[1];
593     } msr_data = {};
594     uint64_t value;
595     uint32_t ret, can_be_one, must_be_one;
596 
597     if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
598         return 0;
599     }
600 
601     /* Check if requested MSR is supported feature MSR */
602     int i;
603     for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
604         if (kvm_feature_msrs->indices[i] == index) {
605             break;
606         }
607     if (i == kvm_feature_msrs->nmsrs) {
608         return 0; /* if the feature MSR is not supported, simply return 0 */
609     }
610 
611     msr_data.info.nmsrs = 1;
612     msr_data.entries[0].index = index;
613 
614     ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
615     if (ret != 1) {
616         error_report("KVM get MSR (index=0x%x) feature failed, %s",
617             index, strerror(-ret));
618         exit(1);
619     }
620 
621     value = msr_data.entries[0].data;
622     switch (index) {
623     case MSR_IA32_VMX_PROCBASED_CTLS2:
624         if (!has_msr_vmx_procbased_ctls2) {
625             /* KVM forgot to add these bits for some time, do this ourselves. */
626             if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
627                 CPUID_XSAVE_XSAVES) {
628                 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
629             }
630             if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
631                 CPUID_EXT_RDRAND) {
632                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
633             }
634             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
635                 CPUID_7_0_EBX_INVPCID) {
636                 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
637             }
638             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
639                 CPUID_7_0_EBX_RDSEED) {
640                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
641             }
642             if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
643                 CPUID_EXT2_RDTSCP) {
644                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
645             }
646         }
647         /* fall through */
648     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
649     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
650     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
651     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
652         /*
653          * Return true for bits that can be one, but do not have to be one.
654          * The SDM tells us which bits could have a "must be one" setting,
655          * so we can do the opposite transformation in make_vmx_msr_value.
656          */
657         must_be_one = (uint32_t)value;
658         can_be_one = (uint32_t)(value >> 32);
659         return can_be_one & ~must_be_one;
660 
661     default:
662         return value;
663     }
664 }
665 
666 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
667                                      int *max_banks)
668 {
669     *max_banks = kvm_check_extension(s, KVM_CAP_MCE);
670     return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
671 }
672 
673 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
674 {
675     CPUState *cs = CPU(cpu);
676     CPUX86State *env = &cpu->env;
677     uint64_t status = MCI_STATUS_VAL | MCI_STATUS_EN | MCI_STATUS_MISCV |
678                       MCI_STATUS_ADDRV;
679     uint64_t mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
680     int flags = 0;
681 
682     if (!IS_AMD_CPU(env)) {
683         status |= MCI_STATUS_S | MCI_STATUS_UC;
684         if (code == BUS_MCEERR_AR) {
685             status |= MCI_STATUS_AR | 0x134;
686             mcg_status |= MCG_STATUS_EIPV;
687         } else {
688             status |= 0xc0;
689         }
690     } else {
691         if (code == BUS_MCEERR_AR) {
692             status |= MCI_STATUS_UC | MCI_STATUS_POISON;
693             mcg_status |= MCG_STATUS_EIPV;
694         } else {
695             /* Setting the POISON bit for deferred errors indicates to the
696              * guest kernel that the address provided by the MCE is valid
697              * and usable which will ensure that the guest kernel will send
698              * a SIGBUS_AO signal to the guest process. This allows for
699              * more desirable behavior in the case that the guest process
700              * with poisoned memory has set the MCE_KILL_EARLY prctl flag
701              * which indicates that the process would prefer to handle or
702              * shutdown due to the poisoned memory condition before the
703              * memory has been accessed.
704              *
705              * While the POISON bit would not be set in a deferred error
706              * sent from hardware, the bit is not meaningful for deferred
707              * errors and can be reused in this scenario.
708              */
709             status |= MCI_STATUS_DEFERRED | MCI_STATUS_POISON;
710         }
711     }
712 
713     flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
714     /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
715      * guest kernel back into env->mcg_ext_ctl.
716      */
717     cpu_synchronize_state(cs);
718     if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
719         mcg_status |= MCG_STATUS_LMCE;
720         flags = 0;
721     }
722 
723     cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
724                        (MCM_ADDR_PHYS << 6) | 0xc, flags);
725 }
726 
727 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
728 {
729     MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
730 
731     qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
732                                    &mff);
733 }
734 
735 static void hardware_memory_error(void *host_addr)
736 {
737     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
738     error_report("QEMU got Hardware memory error at addr %p", host_addr);
739     exit(1);
740 }
741 
742 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
743 {
744     X86CPU *cpu = X86_CPU(c);
745     CPUX86State *env = &cpu->env;
746     ram_addr_t ram_addr;
747     hwaddr paddr;
748 
749     /* If we get an action required MCE, it has been injected by KVM
750      * while the VM was running.  An action optional MCE instead should
751      * be coming from the main thread, which qemu_init_sigbus identifies
752      * as the "early kill" thread.
753      */
754     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
755 
756     if ((env->mcg_cap & MCG_SER_P) && addr) {
757         ram_addr = qemu_ram_addr_from_host(addr);
758         if (ram_addr != RAM_ADDR_INVALID &&
759             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
760             kvm_hwpoison_page_add(ram_addr);
761             kvm_mce_inject(cpu, paddr, code);
762 
763             /*
764              * Use different logging severity based on error type.
765              * If there is additional MCE reporting on the hypervisor, QEMU VA
766              * could be another source to identify the PA and MCE details.
767              */
768             if (code == BUS_MCEERR_AR) {
769                 error_report("Guest MCE Memory Error at QEMU addr %p and "
770                     "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
771                     addr, paddr, "BUS_MCEERR_AR");
772             } else {
773                  warn_report("Guest MCE Memory Error at QEMU addr %p and "
774                      "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
775                      addr, paddr, "BUS_MCEERR_AO");
776             }
777 
778             return;
779         }
780 
781         if (code == BUS_MCEERR_AO) {
782             warn_report("Hardware memory error at addr %p of type %s "
783                 "for memory used by QEMU itself instead of guest system!",
784                  addr, "BUS_MCEERR_AO");
785         }
786     }
787 
788     if (code == BUS_MCEERR_AR) {
789         hardware_memory_error(addr);
790     }
791 
792     /* Hope we are lucky for AO MCE, just notify a event */
793     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
794 }
795 
796 static void kvm_queue_exception(CPUX86State *env,
797                                 int32_t exception_nr,
798                                 uint8_t exception_has_payload,
799                                 uint64_t exception_payload)
800 {
801     assert(env->exception_nr == -1);
802     assert(!env->exception_pending);
803     assert(!env->exception_injected);
804     assert(!env->exception_has_payload);
805 
806     env->exception_nr = exception_nr;
807 
808     if (has_exception_payload) {
809         env->exception_pending = 1;
810 
811         env->exception_has_payload = exception_has_payload;
812         env->exception_payload = exception_payload;
813     } else {
814         env->exception_injected = 1;
815 
816         if (exception_nr == EXCP01_DB) {
817             assert(exception_has_payload);
818             env->dr[6] = exception_payload;
819         } else if (exception_nr == EXCP0E_PAGE) {
820             assert(exception_has_payload);
821             env->cr[2] = exception_payload;
822         } else {
823             assert(!exception_has_payload);
824         }
825     }
826 }
827 
828 static void cpu_update_state(void *opaque, bool running, RunState state)
829 {
830     CPUX86State *env = opaque;
831 
832     if (running) {
833         env->tsc_valid = false;
834     }
835 }
836 
837 unsigned long kvm_arch_vcpu_id(CPUState *cs)
838 {
839     X86CPU *cpu = X86_CPU(cs);
840     return cpu->apic_id;
841 }
842 
843 #ifndef KVM_CPUID_SIGNATURE_NEXT
844 #define KVM_CPUID_SIGNATURE_NEXT                0x40000100
845 #endif
846 
847 static bool hyperv_enabled(X86CPU *cpu)
848 {
849     return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
850         ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
851          cpu->hyperv_features || cpu->hyperv_passthrough);
852 }
853 
854 /*
855  * Check whether target_freq is within conservative
856  * ntp correctable bounds (250ppm) of freq
857  */
858 static inline bool freq_within_bounds(int freq, int target_freq)
859 {
860         int max_freq = freq + (freq * 250 / 1000000);
861         int min_freq = freq - (freq * 250 / 1000000);
862 
863         if (target_freq >= min_freq && target_freq <= max_freq) {
864                 return true;
865         }
866 
867         return false;
868 }
869 
870 static int kvm_arch_set_tsc_khz(CPUState *cs)
871 {
872     X86CPU *cpu = X86_CPU(cs);
873     CPUX86State *env = &cpu->env;
874     int r, cur_freq;
875     bool set_ioctl = false;
876 
877     /*
878      * TSC of TD vcpu is immutable, it cannot be set/changed via vcpu scope
879      * VM_SET_TSC_KHZ, but only be initialized via VM scope VM_SET_TSC_KHZ
880      * before ioctl KVM_TDX_INIT_VM in tdx_pre_create_vcpu()
881      */
882     if (is_tdx_vm()) {
883         return 0;
884     }
885 
886     if (!env->tsc_khz) {
887         return 0;
888     }
889 
890     cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
891                kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
892 
893     /*
894      * If TSC scaling is supported, attempt to set TSC frequency.
895      */
896     if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
897         set_ioctl = true;
898     }
899 
900     /*
901      * If desired TSC frequency is within bounds of NTP correction,
902      * attempt to set TSC frequency.
903      */
904     if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
905         set_ioctl = true;
906     }
907 
908     r = set_ioctl ?
909         kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
910         -ENOTSUP;
911 
912     if (r < 0) {
913         /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
914          * TSC frequency doesn't match the one we want.
915          */
916         cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
917                    kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
918                    -ENOTSUP;
919         if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
920             warn_report("TSC frequency mismatch between "
921                         "VM (%" PRId64 " kHz) and host (%d kHz), "
922                         "and TSC scaling unavailable",
923                         env->tsc_khz, cur_freq);
924             return r;
925         }
926     }
927 
928     return 0;
929 }
930 
931 static bool tsc_is_stable_and_known(CPUX86State *env)
932 {
933     if (!env->tsc_khz) {
934         return false;
935     }
936     return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
937         || env->user_tsc_khz;
938 }
939 
940 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
941 
942 static struct {
943     const char *desc;
944     struct {
945         uint32_t func;
946         int reg;
947         uint32_t bits;
948     } flags[2];
949     uint64_t dependencies;
950     bool skip_passthrough;
951 } kvm_hyperv_properties[] = {
952     [HYPERV_FEAT_RELAXED] = {
953         .desc = "relaxed timing (hv-relaxed)",
954         .flags = {
955             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
956              .bits = HV_RELAXED_TIMING_RECOMMENDED}
957         }
958     },
959     [HYPERV_FEAT_VAPIC] = {
960         .desc = "virtual APIC (hv-vapic)",
961         .flags = {
962             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
963              .bits = HV_APIC_ACCESS_AVAILABLE}
964         }
965     },
966     [HYPERV_FEAT_TIME] = {
967         .desc = "clocksources (hv-time)",
968         .flags = {
969             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
970              .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
971         }
972     },
973     [HYPERV_FEAT_CRASH] = {
974         .desc = "crash MSRs (hv-crash)",
975         .flags = {
976             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
977              .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
978         }
979     },
980     [HYPERV_FEAT_RESET] = {
981         .desc = "reset MSR (hv-reset)",
982         .flags = {
983             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
984              .bits = HV_RESET_AVAILABLE}
985         }
986     },
987     [HYPERV_FEAT_VPINDEX] = {
988         .desc = "VP_INDEX MSR (hv-vpindex)",
989         .flags = {
990             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
991              .bits = HV_VP_INDEX_AVAILABLE}
992         }
993     },
994     [HYPERV_FEAT_RUNTIME] = {
995         .desc = "VP_RUNTIME MSR (hv-runtime)",
996         .flags = {
997             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
998              .bits = HV_VP_RUNTIME_AVAILABLE}
999         }
1000     },
1001     [HYPERV_FEAT_SYNIC] = {
1002         .desc = "synthetic interrupt controller (hv-synic)",
1003         .flags = {
1004             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
1005              .bits = HV_SYNIC_AVAILABLE}
1006         }
1007     },
1008     [HYPERV_FEAT_STIMER] = {
1009         .desc = "synthetic timers (hv-stimer)",
1010         .flags = {
1011             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
1012              .bits = HV_SYNTIMERS_AVAILABLE}
1013         },
1014         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
1015     },
1016     [HYPERV_FEAT_FREQUENCIES] = {
1017         .desc = "frequency MSRs (hv-frequencies)",
1018         .flags = {
1019             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
1020              .bits = HV_ACCESS_FREQUENCY_MSRS},
1021             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1022              .bits = HV_FREQUENCY_MSRS_AVAILABLE}
1023         }
1024     },
1025     [HYPERV_FEAT_REENLIGHTENMENT] = {
1026         .desc = "reenlightenment MSRs (hv-reenlightenment)",
1027         .flags = {
1028             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
1029              .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
1030         }
1031     },
1032     [HYPERV_FEAT_TLBFLUSH] = {
1033         .desc = "paravirtualized TLB flush (hv-tlbflush)",
1034         .flags = {
1035             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1036              .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
1037              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
1038         },
1039         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
1040     },
1041     [HYPERV_FEAT_EVMCS] = {
1042         .desc = "enlightened VMCS (hv-evmcs)",
1043         .flags = {
1044             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1045              .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
1046         },
1047         .dependencies = BIT(HYPERV_FEAT_VAPIC)
1048     },
1049     [HYPERV_FEAT_IPI] = {
1050         .desc = "paravirtualized IPI (hv-ipi)",
1051         .flags = {
1052             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1053              .bits = HV_CLUSTER_IPI_RECOMMENDED |
1054              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
1055         },
1056         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
1057     },
1058     [HYPERV_FEAT_STIMER_DIRECT] = {
1059         .desc = "direct mode synthetic timers (hv-stimer-direct)",
1060         .flags = {
1061             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1062              .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
1063         },
1064         .dependencies = BIT(HYPERV_FEAT_STIMER)
1065     },
1066     [HYPERV_FEAT_AVIC] = {
1067         .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
1068         .flags = {
1069             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1070              .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
1071         }
1072     },
1073     [HYPERV_FEAT_SYNDBG] = {
1074         .desc = "Enable synthetic kernel debugger channel (hv-syndbg)",
1075         .flags = {
1076             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1077              .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE}
1078         },
1079         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED),
1080         .skip_passthrough = true,
1081     },
1082     [HYPERV_FEAT_MSR_BITMAP] = {
1083         .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)",
1084         .flags = {
1085             {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1086              .bits = HV_NESTED_MSR_BITMAP}
1087         }
1088     },
1089     [HYPERV_FEAT_XMM_INPUT] = {
1090         .desc = "XMM fast hypercall input (hv-xmm-input)",
1091         .flags = {
1092             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1093              .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE}
1094         }
1095     },
1096     [HYPERV_FEAT_TLBFLUSH_EXT] = {
1097         .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)",
1098         .flags = {
1099             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1100              .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE}
1101         },
1102         .dependencies = BIT(HYPERV_FEAT_TLBFLUSH)
1103     },
1104     [HYPERV_FEAT_TLBFLUSH_DIRECT] = {
1105         .desc = "direct TLB flush (hv-tlbflush-direct)",
1106         .flags = {
1107             {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1108              .bits = HV_NESTED_DIRECT_FLUSH}
1109         },
1110         .dependencies = BIT(HYPERV_FEAT_VAPIC)
1111     },
1112 };
1113 
1114 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
1115                                            bool do_sys_ioctl)
1116 {
1117     struct kvm_cpuid2 *cpuid;
1118     int r, size;
1119 
1120     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
1121     cpuid = g_malloc0(size);
1122     cpuid->nent = max;
1123 
1124     if (do_sys_ioctl) {
1125         r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1126     } else {
1127         r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1128     }
1129     if (r == 0 && cpuid->nent >= max) {
1130         r = -E2BIG;
1131     }
1132     if (r < 0) {
1133         if (r == -E2BIG) {
1134             g_free(cpuid);
1135             return NULL;
1136         } else {
1137             fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
1138                     strerror(-r));
1139             exit(1);
1140         }
1141     }
1142     return cpuid;
1143 }
1144 
1145 /*
1146  * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1147  * for all entries.
1148  */
1149 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1150 {
1151     struct kvm_cpuid2 *cpuid;
1152     /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */
1153     int max = 11;
1154     int i;
1155     bool do_sys_ioctl;
1156 
1157     do_sys_ioctl =
1158         kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1159 
1160     /*
1161      * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1162      * unsupported, kvm_hyperv_expand_features() checks for that.
1163      */
1164     assert(do_sys_ioctl || cs->kvm_state);
1165 
1166     /*
1167      * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1168      * -E2BIG, however, it doesn't report back the right size. Keep increasing
1169      * it and re-trying until we succeed.
1170      */
1171     while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1172         max++;
1173     }
1174 
1175     /*
1176      * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1177      * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1178      * information early, just check for the capability and set the bit
1179      * manually.
1180      */
1181     if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1182                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1183         for (i = 0; i < cpuid->nent; i++) {
1184             if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1185                 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1186             }
1187         }
1188     }
1189 
1190     return cpuid;
1191 }
1192 
1193 /*
1194  * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1195  * leaves from KVM_CAP_HYPERV* and present MSRs data.
1196  */
1197 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1198 {
1199     X86CPU *cpu = X86_CPU(cs);
1200     struct kvm_cpuid2 *cpuid;
1201     struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1202 
1203     /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1204     cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1205     cpuid->nent = 2;
1206 
1207     /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1208     entry_feat = &cpuid->entries[0];
1209     entry_feat->function = HV_CPUID_FEATURES;
1210 
1211     entry_recomm = &cpuid->entries[1];
1212     entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1213     entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1214 
1215     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1216         entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1217         entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1218         entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1219         entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1220         entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1221     }
1222 
1223     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1224         entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1225         entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1226     }
1227 
1228     if (has_msr_hv_frequencies) {
1229         entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1230         entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1231     }
1232 
1233     if (has_msr_hv_crash) {
1234         entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1235     }
1236 
1237     if (has_msr_hv_reenlightenment) {
1238         entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1239     }
1240 
1241     if (has_msr_hv_reset) {
1242         entry_feat->eax |= HV_RESET_AVAILABLE;
1243     }
1244 
1245     if (has_msr_hv_vpindex) {
1246         entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1247     }
1248 
1249     if (has_msr_hv_runtime) {
1250         entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1251     }
1252 
1253     if (has_msr_hv_synic) {
1254         unsigned int cap = cpu->hyperv_synic_kvm_only ?
1255             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1256 
1257         if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1258             entry_feat->eax |= HV_SYNIC_AVAILABLE;
1259         }
1260     }
1261 
1262     if (has_msr_hv_stimer) {
1263         entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1264     }
1265 
1266     if (has_msr_hv_syndbg_options) {
1267         entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE;
1268         entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1269         entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED;
1270     }
1271 
1272     if (kvm_check_extension(cs->kvm_state,
1273                             KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1274         entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1275         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1276     }
1277 
1278     if (kvm_check_extension(cs->kvm_state,
1279                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1280         entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1281     }
1282 
1283     if (kvm_check_extension(cs->kvm_state,
1284                             KVM_CAP_HYPERV_SEND_IPI) > 0) {
1285         entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1286         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1287     }
1288 
1289     return cpuid;
1290 }
1291 
1292 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1293 {
1294     struct kvm_cpuid_entry2 *entry;
1295     struct kvm_cpuid2 *cpuid;
1296 
1297     if (hv_cpuid_cache) {
1298         cpuid = hv_cpuid_cache;
1299     } else {
1300         if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1301             cpuid = get_supported_hv_cpuid(cs);
1302         } else {
1303             /*
1304              * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1305              * before KVM context is created but this is only done when
1306              * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1307              * KVM_CAP_HYPERV_CPUID.
1308              */
1309             assert(cs->kvm_state);
1310 
1311             cpuid = get_supported_hv_cpuid_legacy(cs);
1312         }
1313         hv_cpuid_cache = cpuid;
1314     }
1315 
1316     if (!cpuid) {
1317         return 0;
1318     }
1319 
1320     entry = cpuid_find_entry(cpuid, func, 0);
1321     if (!entry) {
1322         return 0;
1323     }
1324 
1325     return cpuid_entry_get_reg(entry, reg);
1326 }
1327 
1328 static bool hyperv_feature_supported(CPUState *cs, int feature)
1329 {
1330     uint32_t func, bits;
1331     int i, reg;
1332 
1333     /*
1334      * kvm_hyperv_properties needs to define at least one CPUID flag which
1335      * must be used to detect the feature, it's hard to say whether it is
1336      * supported or not otherwise.
1337      */
1338     assert(kvm_hyperv_properties[feature].flags[0].func);
1339 
1340     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1341 
1342         func = kvm_hyperv_properties[feature].flags[i].func;
1343         reg = kvm_hyperv_properties[feature].flags[i].reg;
1344         bits = kvm_hyperv_properties[feature].flags[i].bits;
1345 
1346         if (!func) {
1347             continue;
1348         }
1349 
1350         if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1351             return false;
1352         }
1353     }
1354 
1355     return true;
1356 }
1357 
1358 /* Checks that all feature dependencies are enabled */
1359 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1360 {
1361     uint64_t deps;
1362     int dep_feat;
1363 
1364     deps = kvm_hyperv_properties[feature].dependencies;
1365     while (deps) {
1366         dep_feat = ctz64(deps);
1367         if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1368             error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1369                        kvm_hyperv_properties[feature].desc,
1370                        kvm_hyperv_properties[dep_feat].desc);
1371             return false;
1372         }
1373         deps &= ~(1ull << dep_feat);
1374     }
1375 
1376     return true;
1377 }
1378 
1379 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1380 {
1381     X86CPU *cpu = X86_CPU(cs);
1382     uint32_t r = 0;
1383     int i, j;
1384 
1385     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1386         if (!hyperv_feat_enabled(cpu, i)) {
1387             continue;
1388         }
1389 
1390         for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1391             if (kvm_hyperv_properties[i].flags[j].func != func) {
1392                 continue;
1393             }
1394             if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1395                 continue;
1396             }
1397 
1398             r |= kvm_hyperv_properties[i].flags[j].bits;
1399         }
1400     }
1401 
1402     /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */
1403     if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) {
1404         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1405             r |= DEFAULT_EVMCS_VERSION;
1406         }
1407     }
1408 
1409     return r;
1410 }
1411 
1412 /*
1413  * Expand Hyper-V CPU features. In partucular, check that all the requested
1414  * features are supported by the host and the sanity of the configuration
1415  * (that all the required dependencies are included). Also, this takes care
1416  * of 'hv_passthrough' mode and fills the environment with all supported
1417  * Hyper-V features.
1418  */
1419 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1420 {
1421     CPUState *cs = CPU(cpu);
1422     Error *local_err = NULL;
1423     int feat;
1424 
1425     if (!hyperv_enabled(cpu))
1426         return true;
1427 
1428     /*
1429      * When kvm_hyperv_expand_features is called at CPU feature expansion
1430      * time per-CPU kvm_state is not available yet so we can only proceed
1431      * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1432      */
1433     if (!cs->kvm_state &&
1434         !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1435         return true;
1436 
1437     if (cpu->hyperv_passthrough) {
1438         cpu->hyperv_vendor_id[0] =
1439             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1440         cpu->hyperv_vendor_id[1] =
1441             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1442         cpu->hyperv_vendor_id[2] =
1443             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1444         cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1445                                        sizeof(cpu->hyperv_vendor_id) + 1);
1446         memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1447                sizeof(cpu->hyperv_vendor_id));
1448         cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1449 
1450         cpu->hyperv_interface_id[0] =
1451             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1452         cpu->hyperv_interface_id[1] =
1453             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1454         cpu->hyperv_interface_id[2] =
1455             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1456         cpu->hyperv_interface_id[3] =
1457             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1458 
1459         cpu->hyperv_ver_id_build =
1460             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1461         cpu->hyperv_ver_id_major =
1462             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1463         cpu->hyperv_ver_id_minor =
1464             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1465         cpu->hyperv_ver_id_sp =
1466             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1467         cpu->hyperv_ver_id_sb =
1468             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1469         cpu->hyperv_ver_id_sn =
1470             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1471 
1472         cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1473                                             R_EAX);
1474         cpu->hyperv_limits[0] =
1475             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1476         cpu->hyperv_limits[1] =
1477             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1478         cpu->hyperv_limits[2] =
1479             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1480 
1481         cpu->hyperv_spinlock_attempts =
1482             hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1483 
1484         /*
1485          * Mark feature as enabled in 'cpu->hyperv_features' as
1486          * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1487          */
1488         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1489             if (hyperv_feature_supported(cs, feat) &&
1490                 !kvm_hyperv_properties[feat].skip_passthrough) {
1491                 cpu->hyperv_features |= BIT(feat);
1492             }
1493         }
1494     } else {
1495         /* Check features availability and dependencies */
1496         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1497             /* If the feature was not requested skip it. */
1498             if (!hyperv_feat_enabled(cpu, feat)) {
1499                 continue;
1500             }
1501 
1502             /* Check if the feature is supported by KVM */
1503             if (!hyperv_feature_supported(cs, feat)) {
1504                 error_setg(errp, "Hyper-V %s is not supported by kernel",
1505                            kvm_hyperv_properties[feat].desc);
1506                 return false;
1507             }
1508 
1509             /* Check dependencies */
1510             if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1511                 error_propagate(errp, local_err);
1512                 return false;
1513             }
1514         }
1515     }
1516 
1517     /* Additional dependencies not covered by kvm_hyperv_properties[] */
1518     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1519         !cpu->hyperv_synic_kvm_only &&
1520         !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1521         error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1522                    kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1523                    kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1524         return false;
1525     }
1526 
1527     return true;
1528 }
1529 
1530 /*
1531  * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1532  */
1533 static int hyperv_fill_cpuids(CPUState *cs,
1534                               struct kvm_cpuid_entry2 *cpuid_ent)
1535 {
1536     X86CPU *cpu = X86_CPU(cs);
1537     struct kvm_cpuid_entry2 *c;
1538     uint32_t signature[3];
1539     uint32_t cpuid_i = 0, max_cpuid_leaf = 0;
1540     uint32_t nested_eax =
1541         hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX);
1542 
1543     max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES :
1544         HV_CPUID_IMPLEMENT_LIMITS;
1545 
1546     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1547         max_cpuid_leaf =
1548             MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
1549     }
1550 
1551     c = &cpuid_ent[cpuid_i++];
1552     c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1553     c->eax = max_cpuid_leaf;
1554     c->ebx = cpu->hyperv_vendor_id[0];
1555     c->ecx = cpu->hyperv_vendor_id[1];
1556     c->edx = cpu->hyperv_vendor_id[2];
1557 
1558     c = &cpuid_ent[cpuid_i++];
1559     c->function = HV_CPUID_INTERFACE;
1560     c->eax = cpu->hyperv_interface_id[0];
1561     c->ebx = cpu->hyperv_interface_id[1];
1562     c->ecx = cpu->hyperv_interface_id[2];
1563     c->edx = cpu->hyperv_interface_id[3];
1564 
1565     c = &cpuid_ent[cpuid_i++];
1566     c->function = HV_CPUID_VERSION;
1567     c->eax = cpu->hyperv_ver_id_build;
1568     c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1569         cpu->hyperv_ver_id_minor;
1570     c->ecx = cpu->hyperv_ver_id_sp;
1571     c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1572         (cpu->hyperv_ver_id_sn & 0xffffff);
1573 
1574     c = &cpuid_ent[cpuid_i++];
1575     c->function = HV_CPUID_FEATURES;
1576     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1577     c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1578     c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1579 
1580     /* Unconditionally required with any Hyper-V enlightenment */
1581     c->eax |= HV_HYPERCALL_AVAILABLE;
1582 
1583     /* SynIC and Vmbus devices require messages/signals hypercalls */
1584     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1585         !cpu->hyperv_synic_kvm_only) {
1586         c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1587     }
1588 
1589 
1590     /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1591     c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1592 
1593     c = &cpuid_ent[cpuid_i++];
1594     c->function = HV_CPUID_ENLIGHTMENT_INFO;
1595     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1596     c->ebx = cpu->hyperv_spinlock_attempts;
1597 
1598     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1599         !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1600         c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1601     }
1602 
1603     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1604         c->eax |= HV_NO_NONARCH_CORESHARING;
1605     } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1606         c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1607             HV_NO_NONARCH_CORESHARING;
1608     }
1609 
1610     c = &cpuid_ent[cpuid_i++];
1611     c->function = HV_CPUID_IMPLEMENT_LIMITS;
1612     c->eax = cpu->hv_max_vps;
1613     c->ebx = cpu->hyperv_limits[0];
1614     c->ecx = cpu->hyperv_limits[1];
1615     c->edx = cpu->hyperv_limits[2];
1616 
1617     if (nested_eax) {
1618         uint32_t function;
1619 
1620         /* Create zeroed 0x40000006..0x40000009 leaves */
1621         for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1622              function < HV_CPUID_NESTED_FEATURES; function++) {
1623             c = &cpuid_ent[cpuid_i++];
1624             c->function = function;
1625         }
1626 
1627         c = &cpuid_ent[cpuid_i++];
1628         c->function = HV_CPUID_NESTED_FEATURES;
1629         c->eax = nested_eax;
1630     }
1631 
1632     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1633         c = &cpuid_ent[cpuid_i++];
1634         c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS;
1635         c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1636             HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1637         memcpy(signature, "Microsoft VS", 12);
1638         c->eax = 0;
1639         c->ebx = signature[0];
1640         c->ecx = signature[1];
1641         c->edx = signature[2];
1642 
1643         c = &cpuid_ent[cpuid_i++];
1644         c->function = HV_CPUID_SYNDBG_INTERFACE;
1645         memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
1646         c->eax = signature[0];
1647         c->ebx = 0;
1648         c->ecx = 0;
1649         c->edx = 0;
1650 
1651         c = &cpuid_ent[cpuid_i++];
1652         c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1653         c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
1654         c->ebx = 0;
1655         c->ecx = 0;
1656         c->edx = 0;
1657     }
1658 
1659     return cpuid_i;
1660 }
1661 
1662 static Error *hv_passthrough_mig_blocker;
1663 static Error *hv_no_nonarch_cs_mig_blocker;
1664 
1665 /* Checks that the exposed eVMCS version range is supported by KVM */
1666 static bool evmcs_version_supported(uint16_t evmcs_version,
1667                                     uint16_t supported_evmcs_version)
1668 {
1669     uint8_t min_version = evmcs_version & 0xff;
1670     uint8_t max_version = evmcs_version >> 8;
1671     uint8_t min_supported_version = supported_evmcs_version & 0xff;
1672     uint8_t max_supported_version = supported_evmcs_version >> 8;
1673 
1674     return (min_version >= min_supported_version) &&
1675         (max_version <= max_supported_version);
1676 }
1677 
1678 static int hyperv_init_vcpu(X86CPU *cpu)
1679 {
1680     CPUState *cs = CPU(cpu);
1681     Error *local_err = NULL;
1682     int ret;
1683 
1684     if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1685         error_setg(&hv_passthrough_mig_blocker,
1686                    "'hv-passthrough' CPU flag prevents migration, use explicit"
1687                    " set of hv-* flags instead");
1688         ret = migrate_add_blocker(&hv_passthrough_mig_blocker, &local_err);
1689         if (ret < 0) {
1690             error_report_err(local_err);
1691             return ret;
1692         }
1693     }
1694 
1695     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1696         hv_no_nonarch_cs_mig_blocker == NULL) {
1697         error_setg(&hv_no_nonarch_cs_mig_blocker,
1698                    "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1699                    " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1700                    " make sure SMT is disabled and/or that vCPUs are properly"
1701                    " pinned)");
1702         ret = migrate_add_blocker(&hv_no_nonarch_cs_mig_blocker, &local_err);
1703         if (ret < 0) {
1704             error_report_err(local_err);
1705             return ret;
1706         }
1707     }
1708 
1709     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1710         /*
1711          * the kernel doesn't support setting vp_index; assert that its value
1712          * is in sync
1713          */
1714         uint64_t value;
1715 
1716         ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value);
1717         if (ret < 0) {
1718             return ret;
1719         }
1720 
1721         if (value != hyperv_vp_index(CPU(cpu))) {
1722             error_report("kernel's vp_index != QEMU's vp_index");
1723             return -ENXIO;
1724         }
1725     }
1726 
1727     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1728         uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1729             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1730         ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1731         if (ret < 0) {
1732             error_report("failed to turn on HyperV SynIC in KVM: %s",
1733                          strerror(-ret));
1734             return ret;
1735         }
1736 
1737         if (!cpu->hyperv_synic_kvm_only) {
1738             ret = hyperv_x86_synic_add(cpu);
1739             if (ret < 0) {
1740                 error_report("failed to create HyperV SynIC: %s",
1741                              strerror(-ret));
1742                 return ret;
1743             }
1744         }
1745     }
1746 
1747     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1748         uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1749         uint16_t supported_evmcs_version;
1750 
1751         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1752                                   (uintptr_t)&supported_evmcs_version);
1753 
1754         /*
1755          * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1756          * option sets. Note: we hardcode the maximum supported eVMCS version
1757          * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1758          * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1759          * to be added.
1760          */
1761         if (ret < 0) {
1762             error_report("Hyper-V %s is not supported by kernel",
1763                          kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1764             return ret;
1765         }
1766 
1767         if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1768             error_report("eVMCS version range [%d..%d] is not supported by "
1769                          "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1770                          evmcs_version >> 8, supported_evmcs_version & 0xff,
1771                          supported_evmcs_version >> 8);
1772             return -ENOTSUP;
1773         }
1774     }
1775 
1776     if (cpu->hyperv_enforce_cpuid) {
1777         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1778         if (ret < 0) {
1779             error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1780                          strerror(-ret));
1781             return ret;
1782         }
1783     }
1784 
1785     /* Skip SynIC and VP_INDEX since they are hard deps already */
1786     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_STIMER) &&
1787         hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1788         hyperv_feat_enabled(cpu, HYPERV_FEAT_RUNTIME)) {
1789         hyperv_x86_set_vmbus_recommended_features_enabled();
1790     }
1791 
1792     return 0;
1793 }
1794 
1795 static Error *invtsc_mig_blocker;
1796 
1797 static void kvm_init_xsave(CPUX86State *env)
1798 {
1799     if (has_xsave2) {
1800         env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1801     } else {
1802         env->xsave_buf_len = sizeof(struct kvm_xsave);
1803     }
1804 
1805     env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1806     memset(env->xsave_buf, 0, env->xsave_buf_len);
1807     /*
1808      * The allocated storage must be large enough for all of the
1809      * possible XSAVE state components.
1810      */
1811     assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1812            env->xsave_buf_len);
1813 }
1814 
1815 static void kvm_init_nested_state(CPUX86State *env)
1816 {
1817     struct kvm_vmx_nested_state_hdr *vmx_hdr;
1818     uint32_t size;
1819 
1820     if (!env->nested_state) {
1821         return;
1822     }
1823 
1824     size = env->nested_state->size;
1825 
1826     memset(env->nested_state, 0, size);
1827     env->nested_state->size = size;
1828 
1829     if (cpu_has_vmx(env)) {
1830         env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1831         vmx_hdr = &env->nested_state->hdr.vmx;
1832         vmx_hdr->vmxon_pa = -1ull;
1833         vmx_hdr->vmcs12_pa = -1ull;
1834     } else if (cpu_has_svm(env)) {
1835         env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1836     }
1837 }
1838 
1839 uint32_t kvm_x86_build_cpuid(CPUX86State *env, struct kvm_cpuid_entry2 *entries,
1840                              uint32_t cpuid_i)
1841 {
1842     uint32_t limit, i, j;
1843     uint32_t unused;
1844     struct kvm_cpuid_entry2 *c;
1845 
1846     cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1847 
1848     for (i = 0; i <= limit; i++) {
1849         j = 0;
1850         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1851             goto full;
1852         }
1853         c = &entries[cpuid_i++];
1854         switch (i) {
1855         case 2: {
1856             /* Keep reading function 2 till all the input is received */
1857             int times;
1858 
1859             c->function = i;
1860             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1861             times = c->eax & 0xff;
1862             if (times > 1) {
1863                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1864                            KVM_CPUID_FLAG_STATE_READ_NEXT;
1865             }
1866 
1867             for (j = 1; j < times; ++j) {
1868                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1869                     goto full;
1870                 }
1871                 c = &entries[cpuid_i++];
1872                 c->function = i;
1873                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1874                 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1875             }
1876             break;
1877         }
1878         case 0x1f:
1879             if (!x86_has_cpuid_0x1f(env_archcpu(env))) {
1880                 cpuid_i--;
1881                 break;
1882             }
1883             /* fallthrough */
1884         case 4:
1885         case 0xb:
1886         case 0xd:
1887             for (j = 0; ; j++) {
1888                 c->function = i;
1889                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1890                 c->index = j;
1891                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1892 
1893                 if (i == 4 && c->eax == 0) {
1894                     break;
1895                 }
1896                 if (i == 0xb && !(c->ecx & 0xff00)) {
1897                     break;
1898                 }
1899                 if (i == 0x1f && !(c->ecx & 0xff00)) {
1900                     break;
1901                 }
1902                 if (i == 0xd && c->eax == 0) {
1903                     if (j < 63) {
1904                         continue;
1905                     } else {
1906                         cpuid_i--;
1907                         break;
1908                     }
1909                 }
1910                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1911                     goto full;
1912                 }
1913                 c = &entries[cpuid_i++];
1914             }
1915             break;
1916         case 0x12:
1917             for (j = 0; ; j++) {
1918                 c->function = i;
1919                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1920                 c->index = j;
1921                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1922 
1923                 if (j > 1 && (c->eax & 0xf) != 1) {
1924                     break;
1925                 }
1926 
1927                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1928                     goto full;
1929                 }
1930                 c = &entries[cpuid_i++];
1931             }
1932             break;
1933         case 0x7:
1934         case 0x14:
1935         case 0x1d:
1936         case 0x1e:
1937         case 0x24: {
1938             uint32_t times;
1939 
1940             c->function = i;
1941             c->index = 0;
1942             c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1943             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1944             times = c->eax;
1945 
1946             for (j = 1; j <= times; ++j) {
1947                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1948                     goto full;
1949                 }
1950                 c = &entries[cpuid_i++];
1951                 c->function = i;
1952                 c->index = j;
1953                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1954                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1955             }
1956             break;
1957         }
1958         default:
1959             c->function = i;
1960             c->flags = 0;
1961             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1962             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1963                 /*
1964                  * KVM already returns all zeroes if a CPUID entry is missing,
1965                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1966                  */
1967                 cpuid_i--;
1968             }
1969             break;
1970         }
1971     }
1972 
1973     if (limit >= 0x0a) {
1974         uint32_t eax, edx;
1975 
1976         cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1977 
1978         has_architectural_pmu_version = eax & 0xff;
1979         if (has_architectural_pmu_version > 0) {
1980             num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1981 
1982             /* Shouldn't be more than 32, since that's the number of bits
1983              * available in EBX to tell us _which_ counters are available.
1984              * Play it safe.
1985              */
1986             if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1987                 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1988             }
1989 
1990             if (has_architectural_pmu_version > 1) {
1991                 num_architectural_pmu_fixed_counters = edx & 0x1f;
1992 
1993                 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1994                     num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1995                 }
1996             }
1997         }
1998     }
1999 
2000     cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
2001 
2002     for (i = 0x80000000; i <= limit; i++) {
2003         j = 0;
2004         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2005             goto full;
2006         }
2007         c = &entries[cpuid_i++];
2008 
2009         switch (i) {
2010         case 0x8000001d:
2011             /* Query for all AMD cache information leaves */
2012             for (j = 0; ; j++) {
2013                 c->function = i;
2014                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2015                 c->index = j;
2016                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2017 
2018                 if (c->eax == 0) {
2019                     break;
2020                 }
2021                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2022                     goto full;
2023                 }
2024                 c = &entries[cpuid_i++];
2025             }
2026             break;
2027         default:
2028             c->function = i;
2029             c->flags = 0;
2030             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2031             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2032                 /*
2033                  * KVM already returns all zeroes if a CPUID entry is missing,
2034                  * so we can omit it and avoid hitting KVM's 80-entry limit.
2035                  */
2036                 cpuid_i--;
2037             }
2038             break;
2039         }
2040     }
2041 
2042     /* Call Centaur's CPUID instructions they are supported. */
2043     if (env->cpuid_xlevel2 > 0) {
2044         cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
2045 
2046         for (i = 0xC0000000; i <= limit; i++) {
2047             j = 0;
2048             if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2049                 goto full;
2050             }
2051             c = &entries[cpuid_i++];
2052 
2053             c->function = i;
2054             c->flags = 0;
2055             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2056         }
2057     }
2058 
2059     return cpuid_i;
2060 
2061 full:
2062     fprintf(stderr, "cpuid_data is full, no space for "
2063             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2064     abort();
2065 }
2066 
2067 int kvm_arch_pre_create_vcpu(CPUState *cpu, Error **errp)
2068 {
2069     if (is_tdx_vm()) {
2070         return tdx_pre_create_vcpu(cpu, errp);
2071     }
2072 
2073     return 0;
2074 }
2075 
2076 int kvm_arch_init_vcpu(CPUState *cs)
2077 {
2078     struct {
2079         struct kvm_cpuid2 cpuid;
2080         struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
2081     } cpuid_data;
2082     /*
2083      * The kernel defines these structs with padding fields so there
2084      * should be no extra padding in our cpuid_data struct.
2085      */
2086     QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
2087                       sizeof(struct kvm_cpuid2) +
2088                       sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
2089 
2090     X86CPU *cpu = X86_CPU(cs);
2091     CPUX86State *env = &cpu->env;
2092     uint32_t cpuid_i;
2093     struct kvm_cpuid_entry2 *c;
2094     uint32_t signature[3];
2095     int kvm_base = KVM_CPUID_SIGNATURE;
2096     int max_nested_state_len;
2097     int r;
2098     Error *local_err = NULL;
2099 
2100     if (current_machine->cgs) {
2101         r = x86_confidential_guest_check_features(
2102                 X86_CONFIDENTIAL_GUEST(current_machine->cgs), cs);
2103         if (r < 0) {
2104             return r;
2105         }
2106     }
2107 
2108     memset(&cpuid_data, 0, sizeof(cpuid_data));
2109 
2110     cpuid_i = 0;
2111 
2112     has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
2113 
2114     r = kvm_arch_set_tsc_khz(cs);
2115     if (r < 0) {
2116         return r;
2117     }
2118 
2119     /* vcpu's TSC frequency is either specified by user, or following
2120      * the value used by KVM if the former is not present. In the
2121      * latter case, we query it from KVM and record in env->tsc_khz,
2122      * so that vcpu's TSC frequency can be migrated later via this field.
2123      */
2124     if (!env->tsc_khz) {
2125         r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
2126             kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
2127             -ENOTSUP;
2128         if (r > 0) {
2129             env->tsc_khz = r;
2130         }
2131     }
2132 
2133     env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
2134 
2135     /*
2136      * kvm_hyperv_expand_features() is called here for the second time in case
2137      * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
2138      * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
2139      * check which Hyper-V enlightenments are supported and which are not, we
2140      * can still proceed and check/expand Hyper-V enlightenments here so legacy
2141      * behavior is preserved.
2142      */
2143     if (!kvm_hyperv_expand_features(cpu, &local_err)) {
2144         error_report_err(local_err);
2145         return -ENOSYS;
2146     }
2147 
2148     if (hyperv_enabled(cpu)) {
2149         r = hyperv_init_vcpu(cpu);
2150         if (r) {
2151             return r;
2152         }
2153 
2154         cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
2155         kvm_base = KVM_CPUID_SIGNATURE_NEXT;
2156         has_msr_hv_hypercall = true;
2157     }
2158 
2159     if (cs->kvm_state->xen_version) {
2160 #ifdef CONFIG_XEN_EMU
2161         struct kvm_cpuid_entry2 *xen_max_leaf;
2162 
2163         memcpy(signature, "XenVMMXenVMM", 12);
2164 
2165         xen_max_leaf = c = &cpuid_data.entries[cpuid_i++];
2166         c->function = kvm_base + XEN_CPUID_SIGNATURE;
2167         c->eax = kvm_base + XEN_CPUID_TIME;
2168         c->ebx = signature[0];
2169         c->ecx = signature[1];
2170         c->edx = signature[2];
2171 
2172         c = &cpuid_data.entries[cpuid_i++];
2173         c->function = kvm_base + XEN_CPUID_VENDOR;
2174         c->eax = cs->kvm_state->xen_version;
2175         c->ebx = 0;
2176         c->ecx = 0;
2177         c->edx = 0;
2178 
2179         c = &cpuid_data.entries[cpuid_i++];
2180         c->function = kvm_base + XEN_CPUID_HVM_MSR;
2181         /* Number of hypercall-transfer pages */
2182         c->eax = 1;
2183         /* Hypercall MSR base address */
2184         if (hyperv_enabled(cpu)) {
2185             c->ebx = XEN_HYPERCALL_MSR_HYPERV;
2186             kvm_xen_init(cs->kvm_state, c->ebx);
2187         } else {
2188             c->ebx = XEN_HYPERCALL_MSR;
2189         }
2190         c->ecx = 0;
2191         c->edx = 0;
2192 
2193         c = &cpuid_data.entries[cpuid_i++];
2194         c->function = kvm_base + XEN_CPUID_TIME;
2195         c->eax = ((!!tsc_is_stable_and_known(env) << 1) |
2196             (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2));
2197         /* default=0 (emulate if necessary) */
2198         c->ebx = 0;
2199         /* guest tsc frequency */
2200         c->ecx = env->user_tsc_khz;
2201         /* guest tsc incarnation (migration count) */
2202         c->edx = 0;
2203 
2204         c = &cpuid_data.entries[cpuid_i++];
2205         c->function = kvm_base + XEN_CPUID_HVM;
2206         xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM;
2207         if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) {
2208             c->function = kvm_base + XEN_CPUID_HVM;
2209 
2210             if (cpu->xen_vapic) {
2211                 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT;
2212                 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT;
2213             }
2214 
2215             c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS;
2216 
2217             if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) {
2218                 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT;
2219                 c->ebx = cs->cpu_index;
2220             }
2221 
2222             if (cs->kvm_state->xen_version >= XEN_VERSION(4, 17)) {
2223                 c->eax |= XEN_HVM_CPUID_UPCALL_VECTOR;
2224             }
2225         }
2226 
2227         r = kvm_xen_init_vcpu(cs);
2228         if (r) {
2229             return r;
2230         }
2231 
2232         kvm_base += 0x100;
2233 #else /* CONFIG_XEN_EMU */
2234         /* This should never happen as kvm_arch_init() would have died first. */
2235         fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n");
2236         abort();
2237 #endif
2238     } else if (cpu->expose_kvm) {
2239         memcpy(signature, "KVMKVMKVM\0\0\0", 12);
2240         c = &cpuid_data.entries[cpuid_i++];
2241         c->function = KVM_CPUID_SIGNATURE | kvm_base;
2242         c->eax = KVM_CPUID_FEATURES | kvm_base;
2243         c->ebx = signature[0];
2244         c->ecx = signature[1];
2245         c->edx = signature[2];
2246 
2247         c = &cpuid_data.entries[cpuid_i++];
2248         c->function = KVM_CPUID_FEATURES | kvm_base;
2249         c->eax = env->features[FEAT_KVM];
2250         c->edx = env->features[FEAT_KVM_HINTS];
2251     }
2252 
2253     if (cpu->kvm_pv_enforce_cpuid) {
2254         r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
2255         if (r < 0) {
2256             fprintf(stderr,
2257                     "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
2258                     strerror(-r));
2259             abort();
2260         }
2261     }
2262 
2263     cpuid_i = kvm_x86_build_cpuid(env, cpuid_data.entries, cpuid_i);
2264     cpuid_data.cpuid.nent = cpuid_i;
2265 
2266     if (x86_cpu_family(env->cpuid_version) >= 6
2267         && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
2268            (CPUID_MCE | CPUID_MCA)) {
2269         uint64_t mcg_cap, unsupported_caps;
2270         int banks;
2271         int ret;
2272 
2273         ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
2274         if (ret < 0) {
2275             fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
2276             return ret;
2277         }
2278 
2279         if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
2280             error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2281                          (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
2282             return -ENOTSUP;
2283         }
2284 
2285         unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
2286         if (unsupported_caps) {
2287             if (unsupported_caps & MCG_LMCE_P) {
2288                 error_report("kvm: LMCE not supported");
2289                 return -ENOTSUP;
2290             }
2291             warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
2292                         unsupported_caps);
2293         }
2294 
2295         env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
2296         ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
2297         if (ret < 0) {
2298             fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
2299             return ret;
2300         }
2301     }
2302 
2303     cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
2304 
2305     c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
2306     if (c) {
2307         has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
2308                                   !!(c->ecx & CPUID_EXT_SMX);
2309     }
2310 
2311     c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
2312     if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
2313         has_msr_feature_control = true;
2314     }
2315 
2316     if (env->mcg_cap & MCG_LMCE_P) {
2317         has_msr_mcg_ext_ctl = has_msr_feature_control = true;
2318     }
2319 
2320     if (!env->user_tsc_khz) {
2321         if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2322             invtsc_mig_blocker == NULL) {
2323             error_setg(&invtsc_mig_blocker,
2324                        "State blocked by non-migratable CPU device"
2325                        " (invtsc flag)");
2326             r = migrate_add_blocker(&invtsc_mig_blocker, &local_err);
2327             if (r < 0) {
2328                 error_report_err(local_err);
2329                 return r;
2330             }
2331         }
2332     }
2333 
2334     if (cpu->vmware_cpuid_freq
2335         /* Guests depend on 0x40000000 to detect this feature, so only expose
2336          * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2337         && cpu->expose_kvm
2338         && kvm_base == KVM_CPUID_SIGNATURE
2339         /* TSC clock must be stable and known for this feature. */
2340         && tsc_is_stable_and_known(env)) {
2341 
2342         c = &cpuid_data.entries[cpuid_i++];
2343         c->function = KVM_CPUID_SIGNATURE | 0x10;
2344         c->eax = env->tsc_khz;
2345         c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2346         c->ecx = c->edx = 0;
2347 
2348         c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2349         c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2350     }
2351 
2352     cpuid_data.cpuid.nent = cpuid_i;
2353 
2354     cpuid_data.cpuid.padding = 0;
2355     r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2356     if (r) {
2357         goto fail;
2358     }
2359     kvm_init_xsave(env);
2360 
2361     max_nested_state_len = kvm_max_nested_state_length();
2362     if (max_nested_state_len > 0) {
2363         assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2364 
2365         if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2366             env->nested_state = g_malloc0(max_nested_state_len);
2367             env->nested_state->size = max_nested_state_len;
2368 
2369             kvm_init_nested_state(env);
2370         }
2371     }
2372 
2373     cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2374 
2375     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2376         has_msr_tsc_aux = false;
2377     }
2378 
2379     kvm_init_msrs(cpu);
2380 
2381     return 0;
2382 
2383  fail:
2384     migrate_del_blocker(&invtsc_mig_blocker);
2385 
2386     return r;
2387 }
2388 
2389 int kvm_arch_destroy_vcpu(CPUState *cs)
2390 {
2391     X86CPU *cpu = X86_CPU(cs);
2392     CPUX86State *env = &cpu->env;
2393 
2394     g_free(env->xsave_buf);
2395 
2396     g_free(cpu->kvm_msr_buf);
2397     cpu->kvm_msr_buf = NULL;
2398 
2399     g_free(env->nested_state);
2400     env->nested_state = NULL;
2401 
2402     qemu_del_vm_change_state_handler(cpu->vmsentry);
2403 
2404     return 0;
2405 }
2406 
2407 void kvm_arch_reset_vcpu(X86CPU *cpu)
2408 {
2409     CPUX86State *env = &cpu->env;
2410 
2411     env->xcr0 = 1;
2412     if (kvm_irqchip_in_kernel()) {
2413         env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2414                                           KVM_MP_STATE_UNINITIALIZED;
2415     } else {
2416         env->mp_state = KVM_MP_STATE_RUNNABLE;
2417     }
2418 
2419     /* enabled by default */
2420     env->poll_control_msr = 1;
2421 
2422     kvm_init_nested_state(env);
2423 
2424     sev_es_set_reset_vector(CPU(cpu));
2425 }
2426 
2427 void kvm_arch_after_reset_vcpu(X86CPU *cpu)
2428 {
2429     CPUX86State *env = &cpu->env;
2430     int i;
2431 
2432     /*
2433      * Reset SynIC after all other devices have been reset to let them remove
2434      * their SINT routes first.
2435      */
2436     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2437         for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2438             env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2439         }
2440 
2441         hyperv_x86_synic_reset(cpu);
2442     }
2443 }
2444 
2445 void kvm_arch_reset_parked_vcpu(unsigned long vcpu_id, int kvm_fd)
2446 {
2447     g_autofree struct kvm_msrs *msrs = NULL;
2448 
2449     msrs = g_malloc0(sizeof(*msrs) + sizeof(msrs->entries[0]));
2450     msrs->entries[0].index = MSR_IA32_TSC;
2451     msrs->entries[0].data = 1; /* match the value in x86_cpu_reset() */
2452     msrs->nmsrs++;
2453 
2454     if (ioctl(kvm_fd, KVM_SET_MSRS, msrs) != 1) {
2455         warn_report("parked vCPU %lu TSC reset failed: %d",
2456                     vcpu_id, errno);
2457     }
2458 }
2459 
2460 void kvm_arch_do_init_vcpu(X86CPU *cpu)
2461 {
2462     CPUX86State *env = &cpu->env;
2463 
2464     /* APs get directly into wait-for-SIPI state.  */
2465     if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2466         env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2467     }
2468 }
2469 
2470 static int kvm_get_supported_feature_msrs(KVMState *s)
2471 {
2472     int ret = 0;
2473 
2474     if (kvm_feature_msrs != NULL) {
2475         return 0;
2476     }
2477 
2478     if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2479         return 0;
2480     }
2481 
2482     struct kvm_msr_list msr_list;
2483 
2484     msr_list.nmsrs = 0;
2485     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2486     if (ret < 0 && ret != -E2BIG) {
2487         error_report("Fetch KVM feature MSR list failed: %s",
2488             strerror(-ret));
2489         return ret;
2490     }
2491 
2492     assert(msr_list.nmsrs > 0);
2493     kvm_feature_msrs = g_malloc0(sizeof(msr_list) +
2494                  msr_list.nmsrs * sizeof(msr_list.indices[0]));
2495 
2496     kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2497     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2498 
2499     if (ret < 0) {
2500         error_report("Fetch KVM feature MSR list failed: %s",
2501             strerror(-ret));
2502         g_free(kvm_feature_msrs);
2503         kvm_feature_msrs = NULL;
2504         return ret;
2505     }
2506 
2507     return 0;
2508 }
2509 
2510 static int kvm_get_supported_msrs(KVMState *s)
2511 {
2512     int ret = 0;
2513     struct kvm_msr_list msr_list, *kvm_msr_list;
2514 
2515     /*
2516      *  Obtain MSR list from KVM.  These are the MSRs that we must
2517      *  save/restore.
2518      */
2519     msr_list.nmsrs = 0;
2520     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2521     if (ret < 0 && ret != -E2BIG) {
2522         return ret;
2523     }
2524     /*
2525      * Old kernel modules had a bug and could write beyond the provided
2526      * memory. Allocate at least a safe amount of 1K.
2527      */
2528     kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2529                                           msr_list.nmsrs *
2530                                           sizeof(msr_list.indices[0])));
2531 
2532     kvm_msr_list->nmsrs = msr_list.nmsrs;
2533     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2534     if (ret >= 0) {
2535         int i;
2536 
2537         for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2538             switch (kvm_msr_list->indices[i]) {
2539             case MSR_STAR:
2540                 has_msr_star = true;
2541                 break;
2542             case MSR_VM_HSAVE_PA:
2543                 has_msr_hsave_pa = true;
2544                 break;
2545             case MSR_TSC_AUX:
2546                 has_msr_tsc_aux = true;
2547                 break;
2548             case MSR_TSC_ADJUST:
2549                 has_msr_tsc_adjust = true;
2550                 break;
2551             case MSR_IA32_TSCDEADLINE:
2552                 has_msr_tsc_deadline = true;
2553                 break;
2554             case MSR_IA32_SMBASE:
2555                 has_msr_smbase = true;
2556                 break;
2557             case MSR_SMI_COUNT:
2558                 has_msr_smi_count = true;
2559                 break;
2560             case MSR_IA32_MISC_ENABLE:
2561                 has_msr_misc_enable = true;
2562                 break;
2563             case MSR_IA32_BNDCFGS:
2564                 has_msr_bndcfgs = true;
2565                 break;
2566             case MSR_IA32_XSS:
2567                 has_msr_xss = true;
2568                 break;
2569             case MSR_IA32_UMWAIT_CONTROL:
2570                 has_msr_umwait = true;
2571                 break;
2572             case HV_X64_MSR_CRASH_CTL:
2573                 has_msr_hv_crash = true;
2574                 break;
2575             case HV_X64_MSR_RESET:
2576                 has_msr_hv_reset = true;
2577                 break;
2578             case HV_X64_MSR_VP_INDEX:
2579                 has_msr_hv_vpindex = true;
2580                 break;
2581             case HV_X64_MSR_VP_RUNTIME:
2582                 has_msr_hv_runtime = true;
2583                 break;
2584             case HV_X64_MSR_SCONTROL:
2585                 has_msr_hv_synic = true;
2586                 break;
2587             case HV_X64_MSR_STIMER0_CONFIG:
2588                 has_msr_hv_stimer = true;
2589                 break;
2590             case HV_X64_MSR_TSC_FREQUENCY:
2591                 has_msr_hv_frequencies = true;
2592                 break;
2593             case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2594                 has_msr_hv_reenlightenment = true;
2595                 break;
2596             case HV_X64_MSR_SYNDBG_OPTIONS:
2597                 has_msr_hv_syndbg_options = true;
2598                 break;
2599             case MSR_IA32_SPEC_CTRL:
2600                 has_msr_spec_ctrl = true;
2601                 break;
2602             case MSR_AMD64_TSC_RATIO:
2603                 has_tsc_scale_msr = true;
2604                 break;
2605             case MSR_IA32_TSX_CTRL:
2606                 has_msr_tsx_ctrl = true;
2607                 break;
2608             case MSR_VIRT_SSBD:
2609                 has_msr_virt_ssbd = true;
2610                 break;
2611             case MSR_IA32_ARCH_CAPABILITIES:
2612                 has_msr_arch_capabs = true;
2613                 break;
2614             case MSR_IA32_CORE_CAPABILITY:
2615                 has_msr_core_capabs = true;
2616                 break;
2617             case MSR_IA32_PERF_CAPABILITIES:
2618                 has_msr_perf_capabs = true;
2619                 break;
2620             case MSR_IA32_VMX_VMFUNC:
2621                 has_msr_vmx_vmfunc = true;
2622                 break;
2623             case MSR_IA32_UCODE_REV:
2624                 has_msr_ucode_rev = true;
2625                 break;
2626             case MSR_IA32_VMX_PROCBASED_CTLS2:
2627                 has_msr_vmx_procbased_ctls2 = true;
2628                 break;
2629             case MSR_IA32_PKRS:
2630                 has_msr_pkrs = true;
2631                 break;
2632             case MSR_K7_HWCR:
2633                 has_msr_hwcr = true;
2634             }
2635         }
2636     }
2637 
2638     g_free(kvm_msr_list);
2639 
2640     return ret;
2641 }
2642 
2643 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu,
2644                                         uint32_t msr,
2645                                         uint64_t *val)
2646 {
2647     *val = cpu_x86_get_msr_core_thread_count(cpu);
2648 
2649     return true;
2650 }
2651 
2652 static bool kvm_rdmsr_rapl_power_unit(X86CPU *cpu,
2653                                       uint32_t msr,
2654                                       uint64_t *val)
2655 {
2656 
2657     CPUState *cs = CPU(cpu);
2658 
2659     *val = cs->kvm_state->msr_energy.msr_unit;
2660 
2661     return true;
2662 }
2663 
2664 static bool kvm_rdmsr_pkg_power_limit(X86CPU *cpu,
2665                                       uint32_t msr,
2666                                       uint64_t *val)
2667 {
2668 
2669     CPUState *cs = CPU(cpu);
2670 
2671     *val = cs->kvm_state->msr_energy.msr_limit;
2672 
2673     return true;
2674 }
2675 
2676 static bool kvm_rdmsr_pkg_power_info(X86CPU *cpu,
2677                                      uint32_t msr,
2678                                      uint64_t *val)
2679 {
2680 
2681     CPUState *cs = CPU(cpu);
2682 
2683     *val = cs->kvm_state->msr_energy.msr_info;
2684 
2685     return true;
2686 }
2687 
2688 static bool kvm_rdmsr_pkg_energy_status(X86CPU *cpu,
2689                                         uint32_t msr,
2690                                         uint64_t *val)
2691 {
2692 
2693     CPUState *cs = CPU(cpu);
2694     *val = cs->kvm_state->msr_energy.msr_value[cs->cpu_index];
2695 
2696     return true;
2697 }
2698 
2699 static Notifier smram_machine_done;
2700 static KVMMemoryListener smram_listener;
2701 static AddressSpace smram_address_space;
2702 static MemoryRegion smram_as_root;
2703 static MemoryRegion smram_as_mem;
2704 
2705 static void register_smram_listener(Notifier *n, void *unused)
2706 {
2707     CPUState *cpu;
2708     MemoryRegion *smram =
2709         (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2710 
2711     /* Outer container... */
2712     memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2713     memory_region_set_enabled(&smram_as_root, true);
2714 
2715     /* ... with two regions inside: normal system memory with low
2716      * priority, and...
2717      */
2718     memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2719                              get_system_memory(), 0, ~0ull);
2720     memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2721     memory_region_set_enabled(&smram_as_mem, true);
2722 
2723     if (smram) {
2724         /* ... SMRAM with higher priority */
2725         memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2726         memory_region_set_enabled(smram, true);
2727     }
2728 
2729     address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2730     kvm_memory_listener_register(kvm_state, &smram_listener,
2731                                  &smram_address_space, X86ASIdx_SMM, "kvm-smram");
2732 
2733     CPU_FOREACH(cpu) {
2734         cpu_address_space_init(cpu, X86ASIdx_SMM, "cpu-smm", &smram_as_root);
2735     }
2736 }
2737 
2738 static void *kvm_msr_energy_thread(void *data)
2739 {
2740     KVMState *s = data;
2741     struct KVMMsrEnergy *vmsr = &s->msr_energy;
2742 
2743     g_autofree vmsr_package_energy_stat *pkg_stat = NULL;
2744     g_autofree vmsr_thread_stat *thd_stat = NULL;
2745     g_autofree CPUState *cpu = NULL;
2746     g_autofree unsigned int *vpkgs_energy_stat = NULL;
2747     unsigned int num_threads = 0;
2748 
2749     X86CPUTopoIDs topo_ids;
2750 
2751     rcu_register_thread();
2752 
2753     /* Allocate memory for each package energy status */
2754     pkg_stat = g_new0(vmsr_package_energy_stat, vmsr->host_topo.maxpkgs);
2755 
2756     /* Allocate memory for thread stats */
2757     thd_stat = g_new0(vmsr_thread_stat, 1);
2758 
2759     /* Allocate memory for holding virtual package energy counter */
2760     vpkgs_energy_stat = g_new0(unsigned int, vmsr->guest_vsockets);
2761 
2762     /* Populate the max tick of each packages */
2763     for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2764         /*
2765          * Max numbers of ticks per package
2766          * Time in second * Number of ticks/second * Number of cores/package
2767          * ex: 100 ticks/second/CPU, 12 CPUs per Package gives 1200 ticks max
2768          */
2769         vmsr->host_topo.maxticks[i] = (MSR_ENERGY_THREAD_SLEEP_US / 1000000)
2770                         * sysconf(_SC_CLK_TCK)
2771                         * vmsr->host_topo.pkg_cpu_count[i];
2772     }
2773 
2774     while (true) {
2775         /* Get all qemu threads id */
2776         g_autofree pid_t *thread_ids
2777             = vmsr_get_thread_ids(vmsr->pid, &num_threads);
2778 
2779         if (thread_ids == NULL) {
2780             goto clean;
2781         }
2782 
2783         thd_stat = g_renew(vmsr_thread_stat, thd_stat, num_threads);
2784         /* Unlike g_new0, g_renew0 function doesn't exist yet... */
2785         memset(thd_stat, 0, num_threads * sizeof(vmsr_thread_stat));
2786 
2787         /* Populate all the thread stats */
2788         for (int i = 0; i < num_threads; i++) {
2789             thd_stat[i].utime = g_new0(unsigned long long, 2);
2790             thd_stat[i].stime = g_new0(unsigned long long, 2);
2791             thd_stat[i].thread_id = thread_ids[i];
2792             vmsr_read_thread_stat(vmsr->pid,
2793                                   thd_stat[i].thread_id,
2794                                   &thd_stat[i].utime[0],
2795                                   &thd_stat[i].stime[0],
2796                                   &thd_stat[i].cpu_id);
2797             thd_stat[i].pkg_id =
2798                 vmsr_get_physical_package_id(thd_stat[i].cpu_id);
2799         }
2800 
2801         /* Retrieve all packages power plane energy counter */
2802         for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2803             for (int j = 0; j < num_threads; j++) {
2804                 /*
2805                  * Use the first thread we found that ran on the CPU
2806                  * of the package to read the packages energy counter
2807                  */
2808                 if (thd_stat[j].pkg_id == i) {
2809                     pkg_stat[i].e_start =
2810                     vmsr_read_msr(MSR_PKG_ENERGY_STATUS,
2811                                   thd_stat[j].cpu_id,
2812                                   thd_stat[j].thread_id,
2813                                   s->msr_energy.sioc);
2814                     break;
2815                 }
2816             }
2817         }
2818 
2819         /* Sleep a short period while the other threads are working */
2820         usleep(MSR_ENERGY_THREAD_SLEEP_US);
2821 
2822         /*
2823          * Retrieve all packages power plane energy counter
2824          * Calculate the delta of all packages
2825          */
2826         for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2827             for (int j = 0; j < num_threads; j++) {
2828                 /*
2829                  * Use the first thread we found that ran on the CPU
2830                  * of the package to read the packages energy counter
2831                  */
2832                 if (thd_stat[j].pkg_id == i) {
2833                     pkg_stat[i].e_end =
2834                     vmsr_read_msr(MSR_PKG_ENERGY_STATUS,
2835                                   thd_stat[j].cpu_id,
2836                                   thd_stat[j].thread_id,
2837                                   s->msr_energy.sioc);
2838                     /*
2839                      * Prevent the case we have migrate the VM
2840                      * during the sleep period or any other cases
2841                      * were energy counter might be lower after
2842                      * the sleep period.
2843                      */
2844                     if (pkg_stat[i].e_end > pkg_stat[i].e_start) {
2845                         pkg_stat[i].e_delta =
2846                             pkg_stat[i].e_end - pkg_stat[i].e_start;
2847                     } else {
2848                         pkg_stat[i].e_delta = 0;
2849                     }
2850                     break;
2851                 }
2852             }
2853         }
2854 
2855         /* Delta of ticks spend by each thread between the sample */
2856         for (int i = 0; i < num_threads; i++) {
2857             vmsr_read_thread_stat(vmsr->pid,
2858                                   thd_stat[i].thread_id,
2859                                   &thd_stat[i].utime[1],
2860                                   &thd_stat[i].stime[1],
2861                                   &thd_stat[i].cpu_id);
2862 
2863             if (vmsr->pid < 0) {
2864                 /*
2865                  * We don't count the dead thread
2866                  * i.e threads that existed before the sleep
2867                  * and not anymore
2868                  */
2869                 thd_stat[i].delta_ticks = 0;
2870             } else {
2871                 vmsr_delta_ticks(thd_stat, i);
2872             }
2873         }
2874 
2875         /*
2876          * Identify the vcpu threads
2877          * Calculate the number of vcpu per package
2878          */
2879         CPU_FOREACH(cpu) {
2880             for (int i = 0; i < num_threads; i++) {
2881                 if (cpu->thread_id == thd_stat[i].thread_id) {
2882                     thd_stat[i].is_vcpu = true;
2883                     thd_stat[i].vcpu_id = cpu->cpu_index;
2884                     pkg_stat[thd_stat[i].pkg_id].nb_vcpu++;
2885                     thd_stat[i].acpi_id = kvm_arch_vcpu_id(cpu);
2886                     break;
2887                 }
2888             }
2889         }
2890 
2891         /* Retrieve the virtual package number of each vCPU */
2892         for (int i = 0; i < vmsr->guest_cpu_list->len; i++) {
2893             for (int j = 0; j < num_threads; j++) {
2894                 if ((thd_stat[j].acpi_id ==
2895                         vmsr->guest_cpu_list->cpus[i].arch_id)
2896                     && (thd_stat[j].is_vcpu == true)) {
2897                     x86_topo_ids_from_apicid(thd_stat[j].acpi_id,
2898                         &vmsr->guest_topo_info, &topo_ids);
2899                     thd_stat[j].vpkg_id = topo_ids.pkg_id;
2900                 }
2901             }
2902         }
2903 
2904         /* Calculate the total energy of all non-vCPU thread */
2905         for (int i = 0; i < num_threads; i++) {
2906             if ((thd_stat[i].is_vcpu != true) &&
2907                 (thd_stat[i].delta_ticks > 0)) {
2908                 double temp;
2909                 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta,
2910                     thd_stat[i].delta_ticks,
2911                     vmsr->host_topo.maxticks[thd_stat[i].pkg_id]);
2912                 pkg_stat[thd_stat[i].pkg_id].e_ratio
2913                     += (uint64_t)lround(temp);
2914             }
2915         }
2916 
2917         /* Calculate the ratio per non-vCPU thread of each package */
2918         for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2919             if (pkg_stat[i].nb_vcpu > 0) {
2920                 pkg_stat[i].e_ratio = pkg_stat[i].e_ratio / pkg_stat[i].nb_vcpu;
2921             }
2922         }
2923 
2924         /*
2925          * Calculate the energy for each Package:
2926          * Energy Package = sum of each vCPU energy that belongs to the package
2927          */
2928         for (int i = 0; i < num_threads; i++) {
2929             if ((thd_stat[i].is_vcpu == true) && \
2930                     (thd_stat[i].delta_ticks > 0)) {
2931                 double temp;
2932                 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta,
2933                     thd_stat[i].delta_ticks,
2934                     vmsr->host_topo.maxticks[thd_stat[i].pkg_id]);
2935                 vpkgs_energy_stat[thd_stat[i].vpkg_id] +=
2936                     (uint64_t)lround(temp);
2937                 vpkgs_energy_stat[thd_stat[i].vpkg_id] +=
2938                     pkg_stat[thd_stat[i].pkg_id].e_ratio;
2939             }
2940         }
2941 
2942         /*
2943          * Finally populate the vmsr register of each vCPU with the total
2944          * package value to emulate the real hardware where each CPU return the
2945          * value of the package it belongs.
2946          */
2947         for (int i = 0; i < num_threads; i++) {
2948             if ((thd_stat[i].is_vcpu == true) && \
2949                     (thd_stat[i].delta_ticks > 0)) {
2950                 vmsr->msr_value[thd_stat[i].vcpu_id] = \
2951                                         vpkgs_energy_stat[thd_stat[i].vpkg_id];
2952           }
2953         }
2954 
2955         /* Freeing memory before zeroing the pointer */
2956         for (int i = 0; i < num_threads; i++) {
2957             g_free(thd_stat[i].utime);
2958             g_free(thd_stat[i].stime);
2959         }
2960    }
2961 
2962 clean:
2963     rcu_unregister_thread();
2964     return NULL;
2965 }
2966 
2967 static int kvm_msr_energy_thread_init(KVMState *s, MachineState *ms)
2968 {
2969     MachineClass *mc = MACHINE_GET_CLASS(ms);
2970     struct KVMMsrEnergy *r = &s->msr_energy;
2971 
2972     /*
2973      * Sanity check
2974      * 1. Host cpu must be Intel cpu
2975      * 2. RAPL must be enabled on the Host
2976      */
2977     if (!is_host_cpu_intel()) {
2978         error_report("The RAPL feature can only be enabled on hosts "
2979                      "with Intel CPU models");
2980         return -1;
2981     }
2982 
2983     if (!is_rapl_enabled()) {
2984         return -1;
2985     }
2986 
2987     /* Retrieve the virtual topology */
2988     vmsr_init_topo_info(&r->guest_topo_info, ms);
2989 
2990     /* Retrieve the number of vcpu */
2991     r->guest_vcpus = ms->smp.cpus;
2992 
2993     /* Retrieve the number of virtual sockets */
2994     r->guest_vsockets = ms->smp.sockets;
2995 
2996     /* Allocate register memory (MSR_PKG_STATUS) for each vcpu */
2997     r->msr_value = g_new0(uint64_t, r->guest_vcpus);
2998 
2999     /* Retrieve the CPUArchIDlist */
3000     r->guest_cpu_list = mc->possible_cpu_arch_ids(ms);
3001 
3002     /* Max number of cpus on the Host */
3003     r->host_topo.maxcpus = vmsr_get_maxcpus();
3004     if (r->host_topo.maxcpus == 0) {
3005         error_report("host max cpus = 0");
3006         return -1;
3007     }
3008 
3009     /* Max number of packages on the host */
3010     r->host_topo.maxpkgs = vmsr_get_max_physical_package(r->host_topo.maxcpus);
3011     if (r->host_topo.maxpkgs == 0) {
3012         error_report("host max pkgs = 0");
3013         return -1;
3014     }
3015 
3016     /* Allocate memory for each package on the host */
3017     r->host_topo.pkg_cpu_count = g_new0(unsigned int, r->host_topo.maxpkgs);
3018     r->host_topo.maxticks = g_new0(unsigned int, r->host_topo.maxpkgs);
3019 
3020     vmsr_count_cpus_per_package(r->host_topo.pkg_cpu_count,
3021                                 r->host_topo.maxpkgs);
3022     for (int i = 0; i < r->host_topo.maxpkgs; i++) {
3023         if (r->host_topo.pkg_cpu_count[i] == 0) {
3024             error_report("cpu per packages = 0 on package_%d", i);
3025             return -1;
3026         }
3027     }
3028 
3029     /* Get QEMU PID*/
3030     r->pid = getpid();
3031 
3032     /* Compute the socket path if necessary */
3033     if (s->msr_energy.socket_path == NULL) {
3034         s->msr_energy.socket_path = vmsr_compute_default_paths();
3035     }
3036 
3037     /* Open socket with vmsr helper */
3038     s->msr_energy.sioc = vmsr_open_socket(s->msr_energy.socket_path);
3039 
3040     if (s->msr_energy.sioc == NULL) {
3041         error_report("vmsr socket opening failed");
3042         return -1;
3043     }
3044 
3045     /* Those MSR values should not change */
3046     r->msr_unit  = vmsr_read_msr(MSR_RAPL_POWER_UNIT, 0, r->pid,
3047                                     s->msr_energy.sioc);
3048     r->msr_limit = vmsr_read_msr(MSR_PKG_POWER_LIMIT, 0, r->pid,
3049                                     s->msr_energy.sioc);
3050     r->msr_info  = vmsr_read_msr(MSR_PKG_POWER_INFO, 0, r->pid,
3051                                     s->msr_energy.sioc);
3052     if (r->msr_unit == 0 || r->msr_limit == 0 || r->msr_info == 0) {
3053         error_report("can't read any virtual msr");
3054         return -1;
3055     }
3056 
3057     qemu_thread_create(&r->msr_thr, "kvm-msr",
3058                        kvm_msr_energy_thread,
3059                        s, QEMU_THREAD_JOINABLE);
3060     return 0;
3061 }
3062 
3063 int kvm_arch_get_default_type(MachineState *ms)
3064 {
3065     return 0;
3066 }
3067 
3068 static int kvm_vm_enable_exception_payload(KVMState *s)
3069 {
3070     int ret = 0;
3071     has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
3072     if (has_exception_payload) {
3073         ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
3074         if (ret < 0) {
3075             error_report("kvm: Failed to enable exception payload cap: %s",
3076                          strerror(-ret));
3077         }
3078     }
3079 
3080     return ret;
3081 }
3082 
3083 static int kvm_vm_enable_triple_fault_event(KVMState *s)
3084 {
3085     int ret = 0;
3086     has_triple_fault_event = \
3087         kvm_check_extension(s,
3088                             KVM_CAP_X86_TRIPLE_FAULT_EVENT);
3089     if (has_triple_fault_event) {
3090         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true);
3091         if (ret < 0) {
3092             error_report("kvm: Failed to enable triple fault event cap: %s",
3093                          strerror(-ret));
3094         }
3095     }
3096     return ret;
3097 }
3098 
3099 static int kvm_vm_set_identity_map_addr(KVMState *s, uint64_t identity_base)
3100 {
3101     return kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
3102 }
3103 
3104 static int kvm_vm_set_nr_mmu_pages(KVMState *s)
3105 {
3106     uint64_t shadow_mem;
3107     int ret = 0;
3108     shadow_mem = object_property_get_int(OBJECT(s),
3109                                          "kvm-shadow-mem",
3110                                          &error_abort);
3111     if (shadow_mem != -1) {
3112         shadow_mem /= 4096;
3113         ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
3114     }
3115     return ret;
3116 }
3117 
3118 static int kvm_vm_set_tss_addr(KVMState *s, uint64_t tss_base)
3119 {
3120     return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, tss_base);
3121 }
3122 
3123 static int kvm_vm_enable_disable_exits(KVMState *s)
3124 {
3125     int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
3126 
3127     if (disable_exits) {
3128         disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
3129                           KVM_X86_DISABLE_EXITS_HLT |
3130                           KVM_X86_DISABLE_EXITS_PAUSE |
3131                           KVM_X86_DISABLE_EXITS_CSTATE);
3132     }
3133 
3134     return kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
3135                              disable_exits);
3136 }
3137 
3138 static int kvm_vm_enable_bus_lock_exit(KVMState *s)
3139 {
3140     int ret = 0;
3141     ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
3142     if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
3143         error_report("kvm: bus lock detection unsupported");
3144         return -ENOTSUP;
3145     }
3146     ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
3147                             KVM_BUS_LOCK_DETECTION_EXIT);
3148     if (ret < 0) {
3149         error_report("kvm: Failed to enable bus lock detection cap: %s",
3150                      strerror(-ret));
3151     }
3152 
3153     return ret;
3154 }
3155 
3156 static int kvm_vm_enable_notify_vmexit(KVMState *s)
3157 {
3158     int ret = 0;
3159     if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE) {
3160         uint64_t notify_window_flags =
3161             ((uint64_t)s->notify_window << 32) |
3162             KVM_X86_NOTIFY_VMEXIT_ENABLED |
3163             KVM_X86_NOTIFY_VMEXIT_USER;
3164         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0,
3165                                 notify_window_flags);
3166         if (ret < 0) {
3167             error_report("kvm: Failed to enable notify vmexit cap: %s",
3168                          strerror(-ret));
3169         }
3170     }
3171     return ret;
3172 }
3173 
3174 static int kvm_vm_enable_userspace_msr(KVMState *s)
3175 {
3176     int ret;
3177 
3178     ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0,
3179                             KVM_MSR_EXIT_REASON_FILTER);
3180     if (ret < 0) {
3181         error_report("Could not enable user space MSRs: %s",
3182                      strerror(-ret));
3183         exit(1);
3184     }
3185 
3186     ret = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT,
3187                          kvm_rdmsr_core_thread_count, NULL);
3188     if (ret < 0) {
3189         error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s",
3190                      strerror(-ret));
3191         exit(1);
3192     }
3193 
3194     return 0;
3195 }
3196 
3197 static int kvm_vm_enable_energy_msrs(KVMState *s)
3198 {
3199     int ret;
3200 
3201     if (s->msr_energy.enable == true) {
3202         ret = kvm_filter_msr(s, MSR_RAPL_POWER_UNIT,
3203                              kvm_rdmsr_rapl_power_unit, NULL);
3204         if (ret < 0) {
3205             error_report("Could not install MSR_RAPL_POWER_UNIT handler: %s",
3206                          strerror(-ret));
3207             return ret;
3208         }
3209 
3210         ret = kvm_filter_msr(s, MSR_PKG_POWER_LIMIT,
3211                              kvm_rdmsr_pkg_power_limit, NULL);
3212         if (ret < 0) {
3213             error_report("Could not install MSR_PKG_POWER_LIMIT handler: %s",
3214                          strerror(-ret));
3215             return ret;
3216         }
3217 
3218         ret = kvm_filter_msr(s, MSR_PKG_POWER_INFO,
3219                              kvm_rdmsr_pkg_power_info, NULL);
3220         if (ret < 0) {
3221             error_report("Could not install MSR_PKG_POWER_INFO handler: %s",
3222                          strerror(-ret));
3223             return ret;
3224         }
3225         ret = kvm_filter_msr(s, MSR_PKG_ENERGY_STATUS,
3226                              kvm_rdmsr_pkg_energy_status, NULL);
3227         if (ret < 0) {
3228             error_report("Could not install MSR_PKG_ENERGY_STATUS handler: %s",
3229                          strerror(-ret));
3230             return ret;
3231         }
3232     }
3233     return 0;
3234 }
3235 
3236 int kvm_arch_init(MachineState *ms, KVMState *s)
3237 {
3238     int ret;
3239     struct utsname utsname;
3240     Error *local_err = NULL;
3241 
3242     /*
3243      * Initialize confidential guest (SEV/TDX) context, if required
3244      */
3245     if (ms->cgs) {
3246         ret = confidential_guest_kvm_init(ms->cgs, &local_err);
3247         if (ret < 0) {
3248             error_report_err(local_err);
3249             return ret;
3250         }
3251     }
3252 
3253     has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
3254     has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
3255 
3256     hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
3257 
3258     ret = kvm_vm_enable_exception_payload(s);
3259     if (ret < 0) {
3260         return ret;
3261     }
3262 
3263     ret = kvm_vm_enable_triple_fault_event(s);
3264     if (ret < 0) {
3265         return ret;
3266     }
3267 
3268     if (s->xen_version) {
3269 #ifdef CONFIG_XEN_EMU
3270         if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) {
3271             error_report("kvm: Xen support only available in PC machine");
3272             return -ENOTSUP;
3273         }
3274         /* hyperv_enabled() doesn't work yet. */
3275         uint32_t msr = XEN_HYPERCALL_MSR;
3276         ret = kvm_xen_init(s, msr);
3277         if (ret < 0) {
3278             return ret;
3279         }
3280 #else
3281         error_report("kvm: Xen support not enabled in qemu");
3282         return -ENOTSUP;
3283 #endif
3284     }
3285 
3286     ret = kvm_get_supported_msrs(s);
3287     if (ret < 0) {
3288         return ret;
3289     }
3290 
3291     ret = kvm_get_supported_feature_msrs(s);
3292     if (ret < 0) {
3293         return ret;
3294     }
3295 
3296     uname(&utsname);
3297     lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
3298 
3299     ret = kvm_vm_set_identity_map_addr(s, KVM_IDENTITY_BASE);
3300     if (ret < 0) {
3301         return ret;
3302     }
3303 
3304     /* Set TSS base one page after EPT identity map. */
3305     ret = kvm_vm_set_tss_addr(s, KVM_IDENTITY_BASE + 0x1000);
3306     if (ret < 0) {
3307         return ret;
3308     }
3309 
3310     /* Tell fw_cfg to notify the BIOS to reserve the range. */
3311     e820_add_entry(KVM_IDENTITY_BASE, 0x4000, E820_RESERVED);
3312 
3313     ret = kvm_vm_set_nr_mmu_pages(s);
3314     if (ret < 0) {
3315         return ret;
3316     }
3317 
3318     if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
3319         object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
3320         x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
3321         smram_machine_done.notify = register_smram_listener;
3322         qemu_add_machine_init_done_notifier(&smram_machine_done);
3323     }
3324 
3325     if (enable_cpu_pm) {
3326         ret = kvm_vm_enable_disable_exits(s);
3327         if (ret < 0) {
3328             error_report("kvm: guest stopping CPU not supported: %s",
3329                          strerror(-ret));
3330             return ret;
3331         }
3332     }
3333 
3334     if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
3335         X86MachineState *x86ms = X86_MACHINE(ms);
3336 
3337         if (x86ms->bus_lock_ratelimit > 0) {
3338             ret = kvm_vm_enable_bus_lock_exit(s);
3339             if (ret < 0) {
3340                 return ret;
3341             }
3342             ratelimit_init(&bus_lock_ratelimit_ctrl);
3343             ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
3344                                 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
3345         }
3346     }
3347 
3348     if (kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) {
3349         ret = kvm_vm_enable_notify_vmexit(s);
3350         if (ret < 0) {
3351             return ret;
3352         }
3353     }
3354 
3355     if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) {
3356         ret = kvm_vm_enable_userspace_msr(s);
3357         if (ret < 0) {
3358             return ret;
3359         }
3360 
3361         if (s->msr_energy.enable == true) {
3362             ret = kvm_vm_enable_energy_msrs(s);
3363             if (ret < 0) {
3364                 return ret;
3365             }
3366 
3367             ret = kvm_msr_energy_thread_init(s, ms);
3368             if (ret < 0) {
3369                 error_report("kvm : error RAPL feature requirement not met");
3370                 return ret;
3371             }
3372         }
3373     }
3374 
3375     return 0;
3376 }
3377 
3378 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
3379 {
3380     lhs->selector = rhs->selector;
3381     lhs->base = rhs->base;
3382     lhs->limit = rhs->limit;
3383     lhs->type = 3;
3384     lhs->present = 1;
3385     lhs->dpl = 3;
3386     lhs->db = 0;
3387     lhs->s = 1;
3388     lhs->l = 0;
3389     lhs->g = 0;
3390     lhs->avl = 0;
3391     lhs->unusable = 0;
3392 }
3393 
3394 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
3395 {
3396     unsigned flags = rhs->flags;
3397     lhs->selector = rhs->selector;
3398     lhs->base = rhs->base;
3399     lhs->limit = rhs->limit;
3400     lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
3401     lhs->present = (flags & DESC_P_MASK) != 0;
3402     lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
3403     lhs->db = (flags >> DESC_B_SHIFT) & 1;
3404     lhs->s = (flags & DESC_S_MASK) != 0;
3405     lhs->l = (flags >> DESC_L_SHIFT) & 1;
3406     lhs->g = (flags & DESC_G_MASK) != 0;
3407     lhs->avl = (flags & DESC_AVL_MASK) != 0;
3408     lhs->unusable = !lhs->present;
3409     lhs->padding = 0;
3410 }
3411 
3412 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
3413 {
3414     lhs->selector = rhs->selector;
3415     lhs->base = rhs->base;
3416     lhs->limit = rhs->limit;
3417     lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
3418                  ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
3419                  (rhs->dpl << DESC_DPL_SHIFT) |
3420                  (rhs->db << DESC_B_SHIFT) |
3421                  (rhs->s * DESC_S_MASK) |
3422                  (rhs->l << DESC_L_SHIFT) |
3423                  (rhs->g * DESC_G_MASK) |
3424                  (rhs->avl * DESC_AVL_MASK);
3425 }
3426 
3427 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
3428 {
3429     if (set) {
3430         *kvm_reg = *qemu_reg;
3431     } else {
3432         *qemu_reg = *kvm_reg;
3433     }
3434 }
3435 
3436 static int kvm_getput_regs(X86CPU *cpu, int set)
3437 {
3438     CPUX86State *env = &cpu->env;
3439     struct kvm_regs regs;
3440     int ret = 0;
3441 
3442     if (!set) {
3443         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
3444         if (ret < 0) {
3445             return ret;
3446         }
3447     }
3448 
3449     kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
3450     kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
3451     kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
3452     kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
3453     kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
3454     kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
3455     kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
3456     kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
3457 #ifdef TARGET_X86_64
3458     kvm_getput_reg(&regs.r8, &env->regs[8], set);
3459     kvm_getput_reg(&regs.r9, &env->regs[9], set);
3460     kvm_getput_reg(&regs.r10, &env->regs[10], set);
3461     kvm_getput_reg(&regs.r11, &env->regs[11], set);
3462     kvm_getput_reg(&regs.r12, &env->regs[12], set);
3463     kvm_getput_reg(&regs.r13, &env->regs[13], set);
3464     kvm_getput_reg(&regs.r14, &env->regs[14], set);
3465     kvm_getput_reg(&regs.r15, &env->regs[15], set);
3466 #endif
3467 
3468     kvm_getput_reg(&regs.rflags, &env->eflags, set);
3469     kvm_getput_reg(&regs.rip, &env->eip, set);
3470 
3471     if (set) {
3472         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
3473     }
3474 
3475     return ret;
3476 }
3477 
3478 static int kvm_put_xsave(X86CPU *cpu)
3479 {
3480     CPUX86State *env = &cpu->env;
3481     void *xsave = env->xsave_buf;
3482 
3483     x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
3484 
3485     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
3486 }
3487 
3488 static int kvm_put_xcrs(X86CPU *cpu)
3489 {
3490     CPUX86State *env = &cpu->env;
3491     struct kvm_xcrs xcrs = {};
3492 
3493     if (!has_xcrs) {
3494         return 0;
3495     }
3496 
3497     xcrs.nr_xcrs = 1;
3498     xcrs.flags = 0;
3499     xcrs.xcrs[0].xcr = 0;
3500     xcrs.xcrs[0].value = env->xcr0;
3501     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
3502 }
3503 
3504 static int kvm_put_sregs(X86CPU *cpu)
3505 {
3506     CPUX86State *env = &cpu->env;
3507     struct kvm_sregs sregs;
3508 
3509     /*
3510      * The interrupt_bitmap is ignored because KVM_SET_SREGS is
3511      * always followed by KVM_SET_VCPU_EVENTS.
3512      */
3513     memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
3514 
3515     if ((env->eflags & VM_MASK)) {
3516         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
3517         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
3518         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
3519         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
3520         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
3521         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
3522     } else {
3523         set_seg(&sregs.cs, &env->segs[R_CS]);
3524         set_seg(&sregs.ds, &env->segs[R_DS]);
3525         set_seg(&sregs.es, &env->segs[R_ES]);
3526         set_seg(&sregs.fs, &env->segs[R_FS]);
3527         set_seg(&sregs.gs, &env->segs[R_GS]);
3528         set_seg(&sregs.ss, &env->segs[R_SS]);
3529     }
3530 
3531     set_seg(&sregs.tr, &env->tr);
3532     set_seg(&sregs.ldt, &env->ldt);
3533 
3534     sregs.idt.limit = env->idt.limit;
3535     sregs.idt.base = env->idt.base;
3536     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
3537     sregs.gdt.limit = env->gdt.limit;
3538     sregs.gdt.base = env->gdt.base;
3539     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
3540 
3541     sregs.cr0 = env->cr[0];
3542     sregs.cr2 = env->cr[2];
3543     sregs.cr3 = env->cr[3];
3544     sregs.cr4 = env->cr[4];
3545 
3546     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
3547     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
3548 
3549     sregs.efer = env->efer;
3550 
3551     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
3552 }
3553 
3554 static int kvm_put_sregs2(X86CPU *cpu)
3555 {
3556     CPUX86State *env = &cpu->env;
3557     struct kvm_sregs2 sregs;
3558     int i;
3559 
3560     sregs.flags = 0;
3561 
3562     if ((env->eflags & VM_MASK)) {
3563         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
3564         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
3565         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
3566         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
3567         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
3568         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
3569     } else {
3570         set_seg(&sregs.cs, &env->segs[R_CS]);
3571         set_seg(&sregs.ds, &env->segs[R_DS]);
3572         set_seg(&sregs.es, &env->segs[R_ES]);
3573         set_seg(&sregs.fs, &env->segs[R_FS]);
3574         set_seg(&sregs.gs, &env->segs[R_GS]);
3575         set_seg(&sregs.ss, &env->segs[R_SS]);
3576     }
3577 
3578     set_seg(&sregs.tr, &env->tr);
3579     set_seg(&sregs.ldt, &env->ldt);
3580 
3581     sregs.idt.limit = env->idt.limit;
3582     sregs.idt.base = env->idt.base;
3583     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
3584     sregs.gdt.limit = env->gdt.limit;
3585     sregs.gdt.base = env->gdt.base;
3586     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
3587 
3588     sregs.cr0 = env->cr[0];
3589     sregs.cr2 = env->cr[2];
3590     sregs.cr3 = env->cr[3];
3591     sregs.cr4 = env->cr[4];
3592 
3593     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
3594     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
3595 
3596     sregs.efer = env->efer;
3597 
3598     if (env->pdptrs_valid) {
3599         for (i = 0; i < 4; i++) {
3600             sregs.pdptrs[i] = env->pdptrs[i];
3601         }
3602         sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
3603     }
3604 
3605     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
3606 }
3607 
3608 
3609 static void kvm_msr_buf_reset(X86CPU *cpu)
3610 {
3611     memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
3612 }
3613 
3614 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
3615 {
3616     struct kvm_msrs *msrs = cpu->kvm_msr_buf;
3617     void *limit = ((void *)msrs) + MSR_BUF_SIZE;
3618     struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
3619 
3620     assert((void *)(entry + 1) <= limit);
3621 
3622     entry->index = index;
3623     entry->reserved = 0;
3624     entry->data = value;
3625     msrs->nmsrs++;
3626 }
3627 
3628 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
3629 {
3630     kvm_msr_buf_reset(cpu);
3631     kvm_msr_entry_add(cpu, index, value);
3632 
3633     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3634 }
3635 
3636 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value)
3637 {
3638     int ret;
3639     struct {
3640         struct kvm_msrs info;
3641         struct kvm_msr_entry entries[1];
3642     } msr_data = {
3643         .info.nmsrs = 1,
3644         .entries[0].index = index,
3645     };
3646 
3647     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
3648     if (ret < 0) {
3649         return ret;
3650     }
3651     assert(ret == 1);
3652     *value = msr_data.entries[0].data;
3653     return ret;
3654 }
3655 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
3656 {
3657     int ret;
3658 
3659     ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
3660     assert(ret == 1);
3661 }
3662 
3663 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
3664 {
3665     CPUX86State *env = &cpu->env;
3666     int ret;
3667 
3668     if (!has_msr_tsc_deadline) {
3669         return 0;
3670     }
3671 
3672     ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
3673     if (ret < 0) {
3674         return ret;
3675     }
3676 
3677     assert(ret == 1);
3678     return 0;
3679 }
3680 
3681 /*
3682  * Provide a separate write service for the feature control MSR in order to
3683  * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
3684  * before writing any other state because forcibly leaving nested mode
3685  * invalidates the VCPU state.
3686  */
3687 static int kvm_put_msr_feature_control(X86CPU *cpu)
3688 {
3689     int ret;
3690 
3691     if (!has_msr_feature_control) {
3692         return 0;
3693     }
3694 
3695     ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
3696                           cpu->env.msr_ia32_feature_control);
3697     if (ret < 0) {
3698         return ret;
3699     }
3700 
3701     assert(ret == 1);
3702     return 0;
3703 }
3704 
3705 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
3706 {
3707     uint32_t default1, can_be_one, can_be_zero;
3708     uint32_t must_be_one;
3709 
3710     switch (index) {
3711     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3712         default1 = 0x00000016;
3713         break;
3714     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3715         default1 = 0x0401e172;
3716         break;
3717     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3718         default1 = 0x000011ff;
3719         break;
3720     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3721         default1 = 0x00036dff;
3722         break;
3723     case MSR_IA32_VMX_PROCBASED_CTLS2:
3724         default1 = 0;
3725         break;
3726     default:
3727         abort();
3728     }
3729 
3730     /* If a feature bit is set, the control can be either set or clear.
3731      * Otherwise the value is limited to either 0 or 1 by default1.
3732      */
3733     can_be_one = features | default1;
3734     can_be_zero = features | ~default1;
3735     must_be_one = ~can_be_zero;
3736 
3737     /*
3738      * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
3739      * Bit 32:63 -> 1 if the control bit can be one.
3740      */
3741     return must_be_one | (((uint64_t)can_be_one) << 32);
3742 }
3743 
3744 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
3745 {
3746     uint64_t kvm_vmx_basic =
3747         kvm_arch_get_supported_msr_feature(kvm_state,
3748                                            MSR_IA32_VMX_BASIC);
3749 
3750     if (!kvm_vmx_basic) {
3751         /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
3752          * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
3753          */
3754         return;
3755     }
3756 
3757     uint64_t kvm_vmx_misc =
3758         kvm_arch_get_supported_msr_feature(kvm_state,
3759                                            MSR_IA32_VMX_MISC);
3760     uint64_t kvm_vmx_ept_vpid =
3761         kvm_arch_get_supported_msr_feature(kvm_state,
3762                                            MSR_IA32_VMX_EPT_VPID_CAP);
3763 
3764     /*
3765      * If the guest is 64-bit, a value of 1 is allowed for the host address
3766      * space size vmexit control.
3767      */
3768     uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
3769         ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
3770 
3771     /*
3772      * Bits 0-30, 32-44 and 50-53 come from the host.  KVM should
3773      * not change them for backwards compatibility.
3774      */
3775     uint64_t fixed_vmx_basic = kvm_vmx_basic &
3776         (MSR_VMX_BASIC_VMCS_REVISION_MASK |
3777          MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
3778          MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
3779 
3780     /*
3781      * Same for bits 0-4 and 25-27.  Bits 16-24 (CR3 target count) can
3782      * change in the future but are always zero for now, clear them to be
3783      * future proof.  Bits 32-63 in theory could change, though KVM does
3784      * not support dual-monitor treatment and probably never will; mask
3785      * them out as well.
3786      */
3787     uint64_t fixed_vmx_misc = kvm_vmx_misc &
3788         (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
3789          MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
3790 
3791     /*
3792      * EPT memory types should not change either, so we do not bother
3793      * adding features for them.
3794      */
3795     uint64_t fixed_vmx_ept_mask =
3796             (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
3797              MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
3798     uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
3799 
3800     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3801                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3802                                          f[FEAT_VMX_PROCBASED_CTLS]));
3803     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3804                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3805                                          f[FEAT_VMX_PINBASED_CTLS]));
3806     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3807                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
3808                                          f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
3809     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3810                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3811                                          f[FEAT_VMX_ENTRY_CTLS]));
3812     kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
3813                       make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
3814                                          f[FEAT_VMX_SECONDARY_CTLS]));
3815     kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
3816                       f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
3817     kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
3818                       f[FEAT_VMX_BASIC] | fixed_vmx_basic);
3819     kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
3820                       f[FEAT_VMX_MISC] | fixed_vmx_misc);
3821     if (has_msr_vmx_vmfunc) {
3822         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
3823     }
3824 
3825     /*
3826      * Just to be safe, write these with constant values.  The CRn_FIXED1
3827      * MSRs are generated by KVM based on the vCPU's CPUID.
3828      */
3829     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
3830                       CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
3831     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
3832                       CR4_VMXE_MASK);
3833 
3834     if (f[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) {
3835         /* FRED injected-event data (0x2052).  */
3836         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x52);
3837     } else if (f[FEAT_VMX_EXIT_CTLS] &
3838                VMX_VM_EXIT_ACTIVATE_SECONDARY_CONTROLS) {
3839         /* Secondary VM-exit controls (0x2044).  */
3840         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x44);
3841     } else if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
3842         /* TSC multiplier (0x2032).  */
3843         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
3844     } else {
3845         /* Preemption timer (0x482E).  */
3846         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
3847     }
3848 }
3849 
3850 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
3851 {
3852     uint64_t kvm_perf_cap =
3853         kvm_arch_get_supported_msr_feature(kvm_state,
3854                                            MSR_IA32_PERF_CAPABILITIES);
3855 
3856     if (kvm_perf_cap) {
3857         kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
3858                         kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
3859     }
3860 }
3861 
3862 static int kvm_buf_set_msrs(X86CPU *cpu)
3863 {
3864     int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3865     if (ret < 0) {
3866         return ret;
3867     }
3868 
3869     if (ret < cpu->kvm_msr_buf->nmsrs) {
3870         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3871         error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
3872                      (uint32_t)e->index, (uint64_t)e->data);
3873     }
3874 
3875     assert(ret == cpu->kvm_msr_buf->nmsrs);
3876     return 0;
3877 }
3878 
3879 static void kvm_init_msrs(X86CPU *cpu)
3880 {
3881     CPUX86State *env = &cpu->env;
3882 
3883     kvm_msr_buf_reset(cpu);
3884 
3885     if (!is_tdx_vm()) {
3886         if (has_msr_arch_capabs) {
3887             kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3888                                 env->features[FEAT_ARCH_CAPABILITIES]);
3889         }
3890 
3891         if (has_msr_core_capabs) {
3892             kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3893                                 env->features[FEAT_CORE_CAPABILITY]);
3894         }
3895 
3896         if (has_msr_perf_capabs && cpu->enable_pmu) {
3897             kvm_msr_entry_add_perf(cpu, env->features);
3898         }
3899 
3900         /*
3901          * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3902          * all kernels with MSR features should have them.
3903          */
3904         if (kvm_feature_msrs && cpu_has_vmx(env)) {
3905             kvm_msr_entry_add_vmx(cpu, env->features);
3906         }
3907     }
3908 
3909     if (has_msr_ucode_rev) {
3910         kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3911     }
3912     assert(kvm_buf_set_msrs(cpu) == 0);
3913 }
3914 
3915 static int kvm_put_msrs(X86CPU *cpu, int level)
3916 {
3917     CPUX86State *env = &cpu->env;
3918     int i;
3919 
3920     kvm_msr_buf_reset(cpu);
3921 
3922     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3923     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3924     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3925     kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3926     if (has_msr_star) {
3927         kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3928     }
3929     if (has_msr_hsave_pa) {
3930         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3931     }
3932     if (has_msr_tsc_aux) {
3933         kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3934     }
3935     if (has_msr_tsc_adjust) {
3936         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3937     }
3938     if (has_msr_misc_enable) {
3939         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3940                           env->msr_ia32_misc_enable);
3941     }
3942     if (has_msr_smbase) {
3943         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3944     }
3945     if (has_msr_smi_count) {
3946         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3947     }
3948     if (has_msr_pkrs) {
3949         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3950     }
3951     if (has_msr_bndcfgs) {
3952         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3953     }
3954     if (has_msr_xss) {
3955         kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3956     }
3957     if (has_msr_umwait) {
3958         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3959     }
3960     if (has_msr_spec_ctrl) {
3961         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3962     }
3963     if (has_tsc_scale_msr) {
3964         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3965     }
3966 
3967     if (has_msr_tsx_ctrl) {
3968         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3969     }
3970     if (has_msr_virt_ssbd) {
3971         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3972     }
3973     if (has_msr_hwcr) {
3974         kvm_msr_entry_add(cpu, MSR_K7_HWCR, env->msr_hwcr);
3975     }
3976 
3977 #ifdef TARGET_X86_64
3978     if (lm_capable_kernel) {
3979         kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3980         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3981         kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3982         kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3983         if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) {
3984             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, env->fred_rsp0);
3985             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, env->fred_rsp1);
3986             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, env->fred_rsp2);
3987             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, env->fred_rsp3);
3988             kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, env->fred_stklvls);
3989             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, env->fred_ssp1);
3990             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, env->fred_ssp2);
3991             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, env->fred_ssp3);
3992             kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, env->fred_config);
3993         }
3994     }
3995 #endif
3996 
3997     /*
3998      * The following MSRs have side effects on the guest or are too heavy
3999      * for normal writeback. Limit them to reset or full state updates.
4000      */
4001     if (level >= KVM_PUT_RESET_STATE) {
4002         kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
4003         if (env->features[FEAT_KVM] & (CPUID_KVM_CLOCK | CPUID_KVM_CLOCK2)) {
4004             kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
4005             kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
4006         }
4007         if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF_INT) {
4008             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
4009         }
4010         if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF) {
4011             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
4012         }
4013         if (env->features[FEAT_KVM] & CPUID_KVM_PV_EOI) {
4014             kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
4015         }
4016         if (env->features[FEAT_KVM] & CPUID_KVM_STEAL_TIME) {
4017             kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
4018         }
4019 
4020         if (env->features[FEAT_KVM] & CPUID_KVM_POLL_CONTROL) {
4021             kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
4022         }
4023 
4024         if (has_architectural_pmu_version > 0) {
4025             if (has_architectural_pmu_version > 1) {
4026                 /* Stop the counter.  */
4027                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
4028                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
4029             }
4030 
4031             /* Set the counter values.  */
4032             for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
4033                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
4034                                   env->msr_fixed_counters[i]);
4035             }
4036             for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
4037                 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
4038                                   env->msr_gp_counters[i]);
4039                 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
4040                                   env->msr_gp_evtsel[i]);
4041             }
4042             if (has_architectural_pmu_version > 1) {
4043                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
4044                                   env->msr_global_status);
4045                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
4046                                   env->msr_global_ovf_ctrl);
4047 
4048                 /* Now start the PMU.  */
4049                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
4050                                   env->msr_fixed_ctr_ctrl);
4051                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
4052                                   env->msr_global_ctrl);
4053             }
4054         }
4055         /*
4056          * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
4057          * only sync them to KVM on the first cpu
4058          */
4059         if (current_cpu == first_cpu) {
4060             if (has_msr_hv_hypercall) {
4061                 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
4062                                   env->msr_hv_guest_os_id);
4063                 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
4064                                   env->msr_hv_hypercall);
4065             }
4066             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
4067                 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
4068                                   env->msr_hv_tsc);
4069             }
4070             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
4071                 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
4072                                   env->msr_hv_reenlightenment_control);
4073                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
4074                                   env->msr_hv_tsc_emulation_control);
4075                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
4076                                   env->msr_hv_tsc_emulation_status);
4077             }
4078             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) &&
4079                 has_msr_hv_syndbg_options) {
4080                 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS,
4081                                   hyperv_syndbg_query_options());
4082             }
4083         }
4084         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
4085             kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
4086                               env->msr_hv_vapic);
4087         }
4088         if (has_msr_hv_crash) {
4089             int j;
4090 
4091             for (j = 0; j < HV_CRASH_PARAMS; j++)
4092                 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
4093                                   env->msr_hv_crash_params[j]);
4094 
4095             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
4096         }
4097         if (has_msr_hv_runtime) {
4098             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
4099         }
4100         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
4101             && hv_vpindex_settable) {
4102             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
4103                               hyperv_vp_index(CPU(cpu)));
4104         }
4105         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
4106             int j;
4107 
4108             kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
4109 
4110             kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
4111                               env->msr_hv_synic_control);
4112             kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
4113                               env->msr_hv_synic_evt_page);
4114             kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
4115                               env->msr_hv_synic_msg_page);
4116 
4117             for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
4118                 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
4119                                   env->msr_hv_synic_sint[j]);
4120             }
4121         }
4122         if (has_msr_hv_stimer) {
4123             int j;
4124 
4125             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
4126                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
4127                                 env->msr_hv_stimer_config[j]);
4128             }
4129 
4130             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
4131                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
4132                                 env->msr_hv_stimer_count[j]);
4133             }
4134         }
4135         if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
4136             uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
4137 
4138             kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
4139             kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
4140             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
4141             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
4142             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
4143             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
4144             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
4145             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
4146             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
4147             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
4148             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
4149             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
4150             for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
4151                 /* The CPU GPs if we write to a bit above the physical limit of
4152                  * the host CPU (and KVM emulates that)
4153                  */
4154                 uint64_t mask = env->mtrr_var[i].mask;
4155                 mask &= phys_mask;
4156 
4157                 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
4158                                   env->mtrr_var[i].base);
4159                 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
4160             }
4161         }
4162         if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
4163             int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
4164                                                     0x14, 1, R_EAX) & 0x7;
4165 
4166             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
4167                             env->msr_rtit_ctrl);
4168             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
4169                             env->msr_rtit_status);
4170             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
4171                             env->msr_rtit_output_base);
4172             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
4173                             env->msr_rtit_output_mask);
4174             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
4175                             env->msr_rtit_cr3_match);
4176             for (i = 0; i < addr_num; i++) {
4177                 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
4178                             env->msr_rtit_addrs[i]);
4179             }
4180         }
4181 
4182         if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
4183             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
4184                               env->msr_ia32_sgxlepubkeyhash[0]);
4185             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
4186                               env->msr_ia32_sgxlepubkeyhash[1]);
4187             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
4188                               env->msr_ia32_sgxlepubkeyhash[2]);
4189             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
4190                               env->msr_ia32_sgxlepubkeyhash[3]);
4191         }
4192 
4193         if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
4194             kvm_msr_entry_add(cpu, MSR_IA32_XFD,
4195                               env->msr_xfd);
4196             kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
4197                               env->msr_xfd_err);
4198         }
4199 
4200         if (kvm_enabled() && cpu->enable_pmu &&
4201             (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
4202             uint64_t depth;
4203             int ret;
4204 
4205             /*
4206              * Only migrate Arch LBR states when the host Arch LBR depth
4207              * equals that of source guest's, this is to avoid mismatch
4208              * of guest/host config for the msr hence avoid unexpected
4209              * misbehavior.
4210              */
4211             ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
4212 
4213             if (ret == 1 && !!depth && depth == env->msr_lbr_depth) {
4214                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl);
4215                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth);
4216 
4217                 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
4218                     if (!env->lbr_records[i].from) {
4219                         continue;
4220                     }
4221                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i,
4222                                       env->lbr_records[i].from);
4223                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i,
4224                                       env->lbr_records[i].to);
4225                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i,
4226                                       env->lbr_records[i].info);
4227                 }
4228             }
4229         }
4230 
4231         /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
4232          *       kvm_put_msr_feature_control. */
4233     }
4234 
4235     if (env->mcg_cap) {
4236         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
4237         kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
4238         if (has_msr_mcg_ext_ctl) {
4239             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
4240         }
4241         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
4242             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
4243         }
4244     }
4245 
4246     return kvm_buf_set_msrs(cpu);
4247 }
4248 
4249 
4250 static int kvm_get_xsave(X86CPU *cpu)
4251 {
4252     CPUX86State *env = &cpu->env;
4253     void *xsave = env->xsave_buf;
4254     unsigned long type;
4255     int ret;
4256 
4257     type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
4258     ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
4259     if (ret < 0) {
4260         return ret;
4261     }
4262     x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
4263 
4264     return 0;
4265 }
4266 
4267 static int kvm_get_xcrs(X86CPU *cpu)
4268 {
4269     CPUX86State *env = &cpu->env;
4270     int i, ret;
4271     struct kvm_xcrs xcrs;
4272 
4273     if (!has_xcrs) {
4274         return 0;
4275     }
4276 
4277     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
4278     if (ret < 0) {
4279         return ret;
4280     }
4281 
4282     for (i = 0; i < xcrs.nr_xcrs; i++) {
4283         /* Only support xcr0 now */
4284         if (xcrs.xcrs[i].xcr == 0) {
4285             env->xcr0 = xcrs.xcrs[i].value;
4286             break;
4287         }
4288     }
4289     return 0;
4290 }
4291 
4292 static int kvm_get_sregs(X86CPU *cpu)
4293 {
4294     CPUX86State *env = &cpu->env;
4295     struct kvm_sregs sregs;
4296     int ret;
4297 
4298     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
4299     if (ret < 0) {
4300         return ret;
4301     }
4302 
4303     /*
4304      * The interrupt_bitmap is ignored because KVM_GET_SREGS is
4305      * always preceded by KVM_GET_VCPU_EVENTS.
4306      */
4307 
4308     get_seg(&env->segs[R_CS], &sregs.cs);
4309     get_seg(&env->segs[R_DS], &sregs.ds);
4310     get_seg(&env->segs[R_ES], &sregs.es);
4311     get_seg(&env->segs[R_FS], &sregs.fs);
4312     get_seg(&env->segs[R_GS], &sregs.gs);
4313     get_seg(&env->segs[R_SS], &sregs.ss);
4314 
4315     get_seg(&env->tr, &sregs.tr);
4316     get_seg(&env->ldt, &sregs.ldt);
4317 
4318     env->idt.limit = sregs.idt.limit;
4319     env->idt.base = sregs.idt.base;
4320     env->gdt.limit = sregs.gdt.limit;
4321     env->gdt.base = sregs.gdt.base;
4322 
4323     env->cr[0] = sregs.cr0;
4324     env->cr[2] = sregs.cr2;
4325     env->cr[3] = sregs.cr3;
4326     env->cr[4] = sregs.cr4;
4327 
4328     env->efer = sregs.efer;
4329     if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
4330         env->cr[0] & CR0_PG_MASK) {
4331         env->efer |= MSR_EFER_LMA;
4332     }
4333 
4334     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
4335     x86_update_hflags(env);
4336 
4337     return 0;
4338 }
4339 
4340 static int kvm_get_sregs2(X86CPU *cpu)
4341 {
4342     CPUX86State *env = &cpu->env;
4343     struct kvm_sregs2 sregs;
4344     int i, ret;
4345 
4346     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
4347     if (ret < 0) {
4348         return ret;
4349     }
4350 
4351     get_seg(&env->segs[R_CS], &sregs.cs);
4352     get_seg(&env->segs[R_DS], &sregs.ds);
4353     get_seg(&env->segs[R_ES], &sregs.es);
4354     get_seg(&env->segs[R_FS], &sregs.fs);
4355     get_seg(&env->segs[R_GS], &sregs.gs);
4356     get_seg(&env->segs[R_SS], &sregs.ss);
4357 
4358     get_seg(&env->tr, &sregs.tr);
4359     get_seg(&env->ldt, &sregs.ldt);
4360 
4361     env->idt.limit = sregs.idt.limit;
4362     env->idt.base = sregs.idt.base;
4363     env->gdt.limit = sregs.gdt.limit;
4364     env->gdt.base = sregs.gdt.base;
4365 
4366     env->cr[0] = sregs.cr0;
4367     env->cr[2] = sregs.cr2;
4368     env->cr[3] = sregs.cr3;
4369     env->cr[4] = sregs.cr4;
4370 
4371     env->efer = sregs.efer;
4372     if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
4373         env->cr[0] & CR0_PG_MASK) {
4374         env->efer |= MSR_EFER_LMA;
4375     }
4376 
4377     env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
4378 
4379     if (env->pdptrs_valid) {
4380         for (i = 0; i < 4; i++) {
4381             env->pdptrs[i] = sregs.pdptrs[i];
4382         }
4383     }
4384 
4385     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
4386     x86_update_hflags(env);
4387 
4388     return 0;
4389 }
4390 
4391 static int kvm_get_msrs(X86CPU *cpu)
4392 {
4393     CPUX86State *env = &cpu->env;
4394     struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
4395     int ret, i;
4396     uint64_t mtrr_top_bits;
4397 
4398     kvm_msr_buf_reset(cpu);
4399 
4400     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
4401     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
4402     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
4403     kvm_msr_entry_add(cpu, MSR_PAT, 0);
4404     if (has_msr_star) {
4405         kvm_msr_entry_add(cpu, MSR_STAR, 0);
4406     }
4407     if (has_msr_hsave_pa) {
4408         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
4409     }
4410     if (has_msr_tsc_aux) {
4411         kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
4412     }
4413     if (has_msr_tsc_adjust) {
4414         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
4415     }
4416     if (has_msr_tsc_deadline) {
4417         kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
4418     }
4419     if (has_msr_misc_enable) {
4420         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
4421     }
4422     if (has_msr_smbase) {
4423         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
4424     }
4425     if (has_msr_smi_count) {
4426         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
4427     }
4428     if (has_msr_feature_control) {
4429         kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
4430     }
4431     if (has_msr_pkrs) {
4432         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
4433     }
4434     if (has_msr_bndcfgs) {
4435         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
4436     }
4437     if (has_msr_xss) {
4438         kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
4439     }
4440     if (has_msr_umwait) {
4441         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
4442     }
4443     if (has_msr_spec_ctrl) {
4444         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
4445     }
4446     if (has_tsc_scale_msr) {
4447         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
4448     }
4449 
4450     if (has_msr_tsx_ctrl) {
4451         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
4452     }
4453     if (has_msr_virt_ssbd) {
4454         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
4455     }
4456     if (!env->tsc_valid) {
4457         kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
4458         env->tsc_valid = !runstate_is_running();
4459     }
4460     if (has_msr_hwcr) {
4461         kvm_msr_entry_add(cpu, MSR_K7_HWCR, 0);
4462     }
4463 
4464 #ifdef TARGET_X86_64
4465     if (lm_capable_kernel) {
4466         kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
4467         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
4468         kvm_msr_entry_add(cpu, MSR_FMASK, 0);
4469         kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
4470         if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) {
4471             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, 0);
4472             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, 0);
4473             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, 0);
4474             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, 0);
4475             kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, 0);
4476             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, 0);
4477             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, 0);
4478             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, 0);
4479             kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, 0);
4480         }
4481     }
4482 #endif
4483     if (env->features[FEAT_KVM] & (CPUID_KVM_CLOCK | CPUID_KVM_CLOCK2)) {
4484         kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
4485         kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
4486     }
4487     if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF_INT) {
4488         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
4489     }
4490     if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF) {
4491         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
4492     }
4493     if (env->features[FEAT_KVM] & CPUID_KVM_PV_EOI) {
4494         kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
4495     }
4496     if (env->features[FEAT_KVM] & CPUID_KVM_STEAL_TIME) {
4497         kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
4498     }
4499     if (env->features[FEAT_KVM] & CPUID_KVM_POLL_CONTROL) {
4500         kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
4501     }
4502     if (has_architectural_pmu_version > 0) {
4503         if (has_architectural_pmu_version > 1) {
4504             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
4505             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
4506             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
4507             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
4508         }
4509         for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
4510             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
4511         }
4512         for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
4513             kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
4514             kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
4515         }
4516     }
4517 
4518     if (env->mcg_cap) {
4519         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
4520         kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
4521         if (has_msr_mcg_ext_ctl) {
4522             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
4523         }
4524         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
4525             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
4526         }
4527     }
4528 
4529     if (has_msr_hv_hypercall) {
4530         kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
4531         kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
4532     }
4533     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
4534         kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
4535     }
4536     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
4537         kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
4538     }
4539     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
4540         kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
4541         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
4542         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
4543     }
4544     if (has_msr_hv_syndbg_options) {
4545         kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0);
4546     }
4547     if (has_msr_hv_crash) {
4548         int j;
4549 
4550         for (j = 0; j < HV_CRASH_PARAMS; j++) {
4551             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
4552         }
4553     }
4554     if (has_msr_hv_runtime) {
4555         kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
4556     }
4557     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
4558         uint32_t msr;
4559 
4560         kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
4561         kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
4562         kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
4563         for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
4564             kvm_msr_entry_add(cpu, msr, 0);
4565         }
4566     }
4567     if (has_msr_hv_stimer) {
4568         uint32_t msr;
4569 
4570         for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
4571              msr++) {
4572             kvm_msr_entry_add(cpu, msr, 0);
4573         }
4574     }
4575     if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
4576         kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
4577         kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
4578         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
4579         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
4580         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
4581         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
4582         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
4583         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
4584         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
4585         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
4586         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
4587         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
4588         for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
4589             kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
4590             kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
4591         }
4592     }
4593 
4594     if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
4595         int addr_num =
4596             kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
4597 
4598         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
4599         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
4600         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
4601         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
4602         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
4603         for (i = 0; i < addr_num; i++) {
4604             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
4605         }
4606     }
4607 
4608     if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
4609         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
4610         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
4611         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
4612         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
4613     }
4614 
4615     if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
4616         kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
4617         kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
4618     }
4619 
4620     if (kvm_enabled() && cpu->enable_pmu &&
4621         (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
4622         uint64_t depth;
4623 
4624         ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
4625         if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) {
4626             kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0);
4627             kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0);
4628 
4629             for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
4630                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0);
4631                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0);
4632                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0);
4633             }
4634         }
4635     }
4636 
4637     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
4638     if (ret < 0) {
4639         return ret;
4640     }
4641 
4642     if (ret < cpu->kvm_msr_buf->nmsrs) {
4643         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
4644         error_report("error: failed to get MSR 0x%" PRIx32,
4645                      (uint32_t)e->index);
4646     }
4647 
4648     assert(ret == cpu->kvm_msr_buf->nmsrs);
4649     /*
4650      * MTRR masks: Each mask consists of 5 parts
4651      * a  10..0: must be zero
4652      * b  11   : valid bit
4653      * c n-1.12: actual mask bits
4654      * d  51..n: reserved must be zero
4655      * e  63.52: reserved must be zero
4656      *
4657      * 'n' is the number of physical bits supported by the CPU and is
4658      * apparently always <= 52.   We know our 'n' but don't know what
4659      * the destinations 'n' is; it might be smaller, in which case
4660      * it masks (c) on loading. It might be larger, in which case
4661      * we fill 'd' so that d..c is consistent irrespetive of the 'n'
4662      * we're migrating to.
4663      */
4664 
4665     if (cpu->fill_mtrr_mask) {
4666         QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
4667         assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
4668         mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
4669     } else {
4670         mtrr_top_bits = 0;
4671     }
4672 
4673     for (i = 0; i < ret; i++) {
4674         uint32_t index = msrs[i].index;
4675         switch (index) {
4676         case MSR_IA32_SYSENTER_CS:
4677             env->sysenter_cs = msrs[i].data;
4678             break;
4679         case MSR_IA32_SYSENTER_ESP:
4680             env->sysenter_esp = msrs[i].data;
4681             break;
4682         case MSR_IA32_SYSENTER_EIP:
4683             env->sysenter_eip = msrs[i].data;
4684             break;
4685         case MSR_PAT:
4686             env->pat = msrs[i].data;
4687             break;
4688         case MSR_STAR:
4689             env->star = msrs[i].data;
4690             break;
4691 #ifdef TARGET_X86_64
4692         case MSR_CSTAR:
4693             env->cstar = msrs[i].data;
4694             break;
4695         case MSR_KERNELGSBASE:
4696             env->kernelgsbase = msrs[i].data;
4697             break;
4698         case MSR_FMASK:
4699             env->fmask = msrs[i].data;
4700             break;
4701         case MSR_LSTAR:
4702             env->lstar = msrs[i].data;
4703             break;
4704         case MSR_IA32_FRED_RSP0:
4705             env->fred_rsp0 = msrs[i].data;
4706             break;
4707         case MSR_IA32_FRED_RSP1:
4708             env->fred_rsp1 = msrs[i].data;
4709             break;
4710         case MSR_IA32_FRED_RSP2:
4711             env->fred_rsp2 = msrs[i].data;
4712             break;
4713         case MSR_IA32_FRED_RSP3:
4714             env->fred_rsp3 = msrs[i].data;
4715             break;
4716         case MSR_IA32_FRED_STKLVLS:
4717             env->fred_stklvls = msrs[i].data;
4718             break;
4719         case MSR_IA32_FRED_SSP1:
4720             env->fred_ssp1 = msrs[i].data;
4721             break;
4722         case MSR_IA32_FRED_SSP2:
4723             env->fred_ssp2 = msrs[i].data;
4724             break;
4725         case MSR_IA32_FRED_SSP3:
4726             env->fred_ssp3 = msrs[i].data;
4727             break;
4728         case MSR_IA32_FRED_CONFIG:
4729             env->fred_config = msrs[i].data;
4730             break;
4731 #endif
4732         case MSR_IA32_TSC:
4733             env->tsc = msrs[i].data;
4734             break;
4735         case MSR_TSC_AUX:
4736             env->tsc_aux = msrs[i].data;
4737             break;
4738         case MSR_TSC_ADJUST:
4739             env->tsc_adjust = msrs[i].data;
4740             break;
4741         case MSR_IA32_TSCDEADLINE:
4742             env->tsc_deadline = msrs[i].data;
4743             break;
4744         case MSR_VM_HSAVE_PA:
4745             env->vm_hsave = msrs[i].data;
4746             break;
4747         case MSR_KVM_SYSTEM_TIME:
4748             env->system_time_msr = msrs[i].data;
4749             break;
4750         case MSR_KVM_WALL_CLOCK:
4751             env->wall_clock_msr = msrs[i].data;
4752             break;
4753         case MSR_MCG_STATUS:
4754             env->mcg_status = msrs[i].data;
4755             break;
4756         case MSR_MCG_CTL:
4757             env->mcg_ctl = msrs[i].data;
4758             break;
4759         case MSR_MCG_EXT_CTL:
4760             env->mcg_ext_ctl = msrs[i].data;
4761             break;
4762         case MSR_IA32_MISC_ENABLE:
4763             env->msr_ia32_misc_enable = msrs[i].data;
4764             break;
4765         case MSR_IA32_SMBASE:
4766             env->smbase = msrs[i].data;
4767             break;
4768         case MSR_SMI_COUNT:
4769             env->msr_smi_count = msrs[i].data;
4770             break;
4771         case MSR_IA32_FEATURE_CONTROL:
4772             env->msr_ia32_feature_control = msrs[i].data;
4773             break;
4774         case MSR_IA32_BNDCFGS:
4775             env->msr_bndcfgs = msrs[i].data;
4776             break;
4777         case MSR_IA32_XSS:
4778             env->xss = msrs[i].data;
4779             break;
4780         case MSR_IA32_UMWAIT_CONTROL:
4781             env->umwait = msrs[i].data;
4782             break;
4783         case MSR_IA32_PKRS:
4784             env->pkrs = msrs[i].data;
4785             break;
4786         default:
4787             if (msrs[i].index >= MSR_MC0_CTL &&
4788                 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
4789                 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
4790             }
4791             break;
4792         case MSR_KVM_ASYNC_PF_EN:
4793             env->async_pf_en_msr = msrs[i].data;
4794             break;
4795         case MSR_KVM_ASYNC_PF_INT:
4796             env->async_pf_int_msr = msrs[i].data;
4797             break;
4798         case MSR_KVM_PV_EOI_EN:
4799             env->pv_eoi_en_msr = msrs[i].data;
4800             break;
4801         case MSR_KVM_STEAL_TIME:
4802             env->steal_time_msr = msrs[i].data;
4803             break;
4804         case MSR_KVM_POLL_CONTROL: {
4805             env->poll_control_msr = msrs[i].data;
4806             break;
4807         }
4808         case MSR_CORE_PERF_FIXED_CTR_CTRL:
4809             env->msr_fixed_ctr_ctrl = msrs[i].data;
4810             break;
4811         case MSR_CORE_PERF_GLOBAL_CTRL:
4812             env->msr_global_ctrl = msrs[i].data;
4813             break;
4814         case MSR_CORE_PERF_GLOBAL_STATUS:
4815             env->msr_global_status = msrs[i].data;
4816             break;
4817         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
4818             env->msr_global_ovf_ctrl = msrs[i].data;
4819             break;
4820         case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
4821             env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
4822             break;
4823         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
4824             env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
4825             break;
4826         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
4827             env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
4828             break;
4829         case HV_X64_MSR_HYPERCALL:
4830             env->msr_hv_hypercall = msrs[i].data;
4831             break;
4832         case HV_X64_MSR_GUEST_OS_ID:
4833             env->msr_hv_guest_os_id = msrs[i].data;
4834             break;
4835         case HV_X64_MSR_APIC_ASSIST_PAGE:
4836             env->msr_hv_vapic = msrs[i].data;
4837             break;
4838         case HV_X64_MSR_REFERENCE_TSC:
4839             env->msr_hv_tsc = msrs[i].data;
4840             break;
4841         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4842             env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
4843             break;
4844         case HV_X64_MSR_VP_RUNTIME:
4845             env->msr_hv_runtime = msrs[i].data;
4846             break;
4847         case HV_X64_MSR_SCONTROL:
4848             env->msr_hv_synic_control = msrs[i].data;
4849             break;
4850         case HV_X64_MSR_SIEFP:
4851             env->msr_hv_synic_evt_page = msrs[i].data;
4852             break;
4853         case HV_X64_MSR_SIMP:
4854             env->msr_hv_synic_msg_page = msrs[i].data;
4855             break;
4856         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
4857             env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
4858             break;
4859         case HV_X64_MSR_STIMER0_CONFIG:
4860         case HV_X64_MSR_STIMER1_CONFIG:
4861         case HV_X64_MSR_STIMER2_CONFIG:
4862         case HV_X64_MSR_STIMER3_CONFIG:
4863             env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
4864                                 msrs[i].data;
4865             break;
4866         case HV_X64_MSR_STIMER0_COUNT:
4867         case HV_X64_MSR_STIMER1_COUNT:
4868         case HV_X64_MSR_STIMER2_COUNT:
4869         case HV_X64_MSR_STIMER3_COUNT:
4870             env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
4871                                 msrs[i].data;
4872             break;
4873         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4874             env->msr_hv_reenlightenment_control = msrs[i].data;
4875             break;
4876         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4877             env->msr_hv_tsc_emulation_control = msrs[i].data;
4878             break;
4879         case HV_X64_MSR_TSC_EMULATION_STATUS:
4880             env->msr_hv_tsc_emulation_status = msrs[i].data;
4881             break;
4882         case HV_X64_MSR_SYNDBG_OPTIONS:
4883             env->msr_hv_syndbg_options = msrs[i].data;
4884             break;
4885         case MSR_MTRRdefType:
4886             env->mtrr_deftype = msrs[i].data;
4887             break;
4888         case MSR_MTRRfix64K_00000:
4889             env->mtrr_fixed[0] = msrs[i].data;
4890             break;
4891         case MSR_MTRRfix16K_80000:
4892             env->mtrr_fixed[1] = msrs[i].data;
4893             break;
4894         case MSR_MTRRfix16K_A0000:
4895             env->mtrr_fixed[2] = msrs[i].data;
4896             break;
4897         case MSR_MTRRfix4K_C0000:
4898             env->mtrr_fixed[3] = msrs[i].data;
4899             break;
4900         case MSR_MTRRfix4K_C8000:
4901             env->mtrr_fixed[4] = msrs[i].data;
4902             break;
4903         case MSR_MTRRfix4K_D0000:
4904             env->mtrr_fixed[5] = msrs[i].data;
4905             break;
4906         case MSR_MTRRfix4K_D8000:
4907             env->mtrr_fixed[6] = msrs[i].data;
4908             break;
4909         case MSR_MTRRfix4K_E0000:
4910             env->mtrr_fixed[7] = msrs[i].data;
4911             break;
4912         case MSR_MTRRfix4K_E8000:
4913             env->mtrr_fixed[8] = msrs[i].data;
4914             break;
4915         case MSR_MTRRfix4K_F0000:
4916             env->mtrr_fixed[9] = msrs[i].data;
4917             break;
4918         case MSR_MTRRfix4K_F8000:
4919             env->mtrr_fixed[10] = msrs[i].data;
4920             break;
4921         case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
4922             if (index & 1) {
4923                 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
4924                                                                mtrr_top_bits;
4925             } else {
4926                 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
4927             }
4928             break;
4929         case MSR_IA32_SPEC_CTRL:
4930             env->spec_ctrl = msrs[i].data;
4931             break;
4932         case MSR_AMD64_TSC_RATIO:
4933             env->amd_tsc_scale_msr = msrs[i].data;
4934             break;
4935         case MSR_IA32_TSX_CTRL:
4936             env->tsx_ctrl = msrs[i].data;
4937             break;
4938         case MSR_VIRT_SSBD:
4939             env->virt_ssbd = msrs[i].data;
4940             break;
4941         case MSR_IA32_RTIT_CTL:
4942             env->msr_rtit_ctrl = msrs[i].data;
4943             break;
4944         case MSR_IA32_RTIT_STATUS:
4945             env->msr_rtit_status = msrs[i].data;
4946             break;
4947         case MSR_IA32_RTIT_OUTPUT_BASE:
4948             env->msr_rtit_output_base = msrs[i].data;
4949             break;
4950         case MSR_IA32_RTIT_OUTPUT_MASK:
4951             env->msr_rtit_output_mask = msrs[i].data;
4952             break;
4953         case MSR_IA32_RTIT_CR3_MATCH:
4954             env->msr_rtit_cr3_match = msrs[i].data;
4955             break;
4956         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
4957             env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
4958             break;
4959         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
4960             env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
4961                            msrs[i].data;
4962             break;
4963         case MSR_IA32_XFD:
4964             env->msr_xfd = msrs[i].data;
4965             break;
4966         case MSR_IA32_XFD_ERR:
4967             env->msr_xfd_err = msrs[i].data;
4968             break;
4969         case MSR_ARCH_LBR_CTL:
4970             env->msr_lbr_ctl = msrs[i].data;
4971             break;
4972         case MSR_ARCH_LBR_DEPTH:
4973             env->msr_lbr_depth = msrs[i].data;
4974             break;
4975         case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31:
4976             env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data;
4977             break;
4978         case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31:
4979             env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data;
4980             break;
4981         case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31:
4982             env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data;
4983             break;
4984         case MSR_K7_HWCR:
4985             env->msr_hwcr = msrs[i].data;
4986             break;
4987         }
4988     }
4989 
4990     return 0;
4991 }
4992 
4993 static int kvm_put_mp_state(X86CPU *cpu)
4994 {
4995     struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4996 
4997     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4998 }
4999 
5000 static int kvm_get_mp_state(X86CPU *cpu)
5001 {
5002     CPUState *cs = CPU(cpu);
5003     CPUX86State *env = &cpu->env;
5004     struct kvm_mp_state mp_state;
5005     int ret;
5006 
5007     ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
5008     if (ret < 0) {
5009         return ret;
5010     }
5011     env->mp_state = mp_state.mp_state;
5012     if (kvm_irqchip_in_kernel()) {
5013         cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
5014     }
5015     return 0;
5016 }
5017 
5018 static int kvm_get_apic(X86CPU *cpu)
5019 {
5020     DeviceState *apic = cpu->apic_state;
5021     struct kvm_lapic_state kapic;
5022     int ret;
5023 
5024     if (apic && kvm_irqchip_in_kernel()) {
5025         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
5026         if (ret < 0) {
5027             return ret;
5028         }
5029 
5030         kvm_get_apic_state(apic, &kapic);
5031     }
5032     return 0;
5033 }
5034 
5035 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
5036 {
5037     CPUState *cs = CPU(cpu);
5038     CPUX86State *env = &cpu->env;
5039     struct kvm_vcpu_events events = {};
5040 
5041     events.flags = 0;
5042 
5043     if (has_exception_payload) {
5044         events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5045         events.exception.pending = env->exception_pending;
5046         events.exception_has_payload = env->exception_has_payload;
5047         events.exception_payload = env->exception_payload;
5048     }
5049     events.exception.nr = env->exception_nr;
5050     events.exception.injected = env->exception_injected;
5051     events.exception.has_error_code = env->has_error_code;
5052     events.exception.error_code = env->error_code;
5053 
5054     events.interrupt.injected = (env->interrupt_injected >= 0);
5055     events.interrupt.nr = env->interrupt_injected;
5056     events.interrupt.soft = env->soft_interrupt;
5057 
5058     events.nmi.injected = env->nmi_injected;
5059     events.nmi.pending = env->nmi_pending;
5060     events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
5061 
5062     events.sipi_vector = env->sipi_vector;
5063 
5064     if (has_msr_smbase) {
5065         events.flags |= KVM_VCPUEVENT_VALID_SMM;
5066         events.smi.smm = !!(env->hflags & HF_SMM_MASK);
5067         events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
5068         if (kvm_irqchip_in_kernel()) {
5069             /* As soon as these are moved to the kernel, remove them
5070              * from cs->interrupt_request.
5071              */
5072             events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
5073             events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
5074             cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
5075         } else {
5076             /* Keep these in cs->interrupt_request.  */
5077             events.smi.pending = 0;
5078             events.smi.latched_init = 0;
5079         }
5080     }
5081 
5082     if (level >= KVM_PUT_RESET_STATE) {
5083         events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
5084         if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
5085             events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
5086         }
5087     }
5088 
5089     if (has_triple_fault_event) {
5090         events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5091         events.triple_fault.pending = env->triple_fault_pending;
5092     }
5093 
5094     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
5095 }
5096 
5097 static int kvm_get_vcpu_events(X86CPU *cpu)
5098 {
5099     CPUX86State *env = &cpu->env;
5100     struct kvm_vcpu_events events;
5101     int ret;
5102 
5103     memset(&events, 0, sizeof(events));
5104     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
5105     if (ret < 0) {
5106        return ret;
5107     }
5108 
5109     if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5110         env->exception_pending = events.exception.pending;
5111         env->exception_has_payload = events.exception_has_payload;
5112         env->exception_payload = events.exception_payload;
5113     } else {
5114         env->exception_pending = 0;
5115         env->exception_has_payload = false;
5116     }
5117     env->exception_injected = events.exception.injected;
5118     env->exception_nr =
5119         (env->exception_pending || env->exception_injected) ?
5120         events.exception.nr : -1;
5121     env->has_error_code = events.exception.has_error_code;
5122     env->error_code = events.exception.error_code;
5123 
5124     env->interrupt_injected =
5125         events.interrupt.injected ? events.interrupt.nr : -1;
5126     env->soft_interrupt = events.interrupt.soft;
5127 
5128     env->nmi_injected = events.nmi.injected;
5129     env->nmi_pending = events.nmi.pending;
5130     if (events.nmi.masked) {
5131         env->hflags2 |= HF2_NMI_MASK;
5132     } else {
5133         env->hflags2 &= ~HF2_NMI_MASK;
5134     }
5135 
5136     if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
5137         if (events.smi.smm) {
5138             env->hflags |= HF_SMM_MASK;
5139         } else {
5140             env->hflags &= ~HF_SMM_MASK;
5141         }
5142         if (events.smi.pending) {
5143             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
5144         } else {
5145             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
5146         }
5147         if (events.smi.smm_inside_nmi) {
5148             env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
5149         } else {
5150             env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
5151         }
5152         if (events.smi.latched_init) {
5153             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
5154         } else {
5155             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
5156         }
5157     }
5158 
5159     if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5160         env->triple_fault_pending = events.triple_fault.pending;
5161     }
5162 
5163     env->sipi_vector = events.sipi_vector;
5164 
5165     return 0;
5166 }
5167 
5168 static int kvm_put_debugregs(X86CPU *cpu)
5169 {
5170     CPUX86State *env = &cpu->env;
5171     struct kvm_debugregs dbgregs;
5172     int i;
5173 
5174     memset(&dbgregs, 0, sizeof(dbgregs));
5175     for (i = 0; i < 4; i++) {
5176         dbgregs.db[i] = env->dr[i];
5177     }
5178     dbgregs.dr6 = env->dr[6];
5179     dbgregs.dr7 = env->dr[7];
5180     dbgregs.flags = 0;
5181 
5182     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
5183 }
5184 
5185 static int kvm_get_debugregs(X86CPU *cpu)
5186 {
5187     CPUX86State *env = &cpu->env;
5188     struct kvm_debugregs dbgregs;
5189     int i, ret;
5190 
5191     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
5192     if (ret < 0) {
5193         return ret;
5194     }
5195     for (i = 0; i < 4; i++) {
5196         env->dr[i] = dbgregs.db[i];
5197     }
5198     env->dr[4] = env->dr[6] = dbgregs.dr6;
5199     env->dr[5] = env->dr[7] = dbgregs.dr7;
5200 
5201     return 0;
5202 }
5203 
5204 static int kvm_put_nested_state(X86CPU *cpu)
5205 {
5206     CPUX86State *env = &cpu->env;
5207     int max_nested_state_len = kvm_max_nested_state_length();
5208 
5209     if (!env->nested_state) {
5210         return 0;
5211     }
5212 
5213     /*
5214      * Copy flags that are affected by reset from env->hflags and env->hflags2.
5215      */
5216     if (env->hflags & HF_GUEST_MASK) {
5217         env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
5218     } else {
5219         env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
5220     }
5221 
5222     /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
5223     if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
5224         env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
5225     } else {
5226         env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
5227     }
5228 
5229     assert(env->nested_state->size <= max_nested_state_len);
5230     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
5231 }
5232 
5233 static int kvm_get_nested_state(X86CPU *cpu)
5234 {
5235     CPUX86State *env = &cpu->env;
5236     int max_nested_state_len = kvm_max_nested_state_length();
5237     int ret;
5238 
5239     if (!env->nested_state) {
5240         return 0;
5241     }
5242 
5243     /*
5244      * It is possible that migration restored a smaller size into
5245      * nested_state->hdr.size than what our kernel support.
5246      * We preserve migration origin nested_state->hdr.size for
5247      * call to KVM_SET_NESTED_STATE but wish that our next call
5248      * to KVM_GET_NESTED_STATE will use max size our kernel support.
5249      */
5250     env->nested_state->size = max_nested_state_len;
5251 
5252     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
5253     if (ret < 0) {
5254         return ret;
5255     }
5256 
5257     /*
5258      * Copy flags that are affected by reset to env->hflags and env->hflags2.
5259      */
5260     if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
5261         env->hflags |= HF_GUEST_MASK;
5262     } else {
5263         env->hflags &= ~HF_GUEST_MASK;
5264     }
5265 
5266     /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
5267     if (cpu_has_svm(env)) {
5268         if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
5269             env->hflags2 |= HF2_GIF_MASK;
5270         } else {
5271             env->hflags2 &= ~HF2_GIF_MASK;
5272         }
5273     }
5274 
5275     return ret;
5276 }
5277 
5278 int kvm_arch_put_registers(CPUState *cpu, int level, Error **errp)
5279 {
5280     X86CPU *x86_cpu = X86_CPU(cpu);
5281     int ret;
5282 
5283     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
5284 
5285     /*
5286      * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX
5287      * root operation upon vCPU reset. kvm_put_msr_feature_control() should also
5288      * precede kvm_put_nested_state() when 'real' nested state is set.
5289      */
5290     if (level >= KVM_PUT_RESET_STATE) {
5291         ret = kvm_put_msr_feature_control(x86_cpu);
5292         if (ret < 0) {
5293             error_setg_errno(errp, -ret, "Failed to set feature control MSR");
5294             return ret;
5295         }
5296     }
5297 
5298     /* must be before kvm_put_nested_state so that EFER.SVME is set */
5299     ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
5300     if (ret < 0) {
5301         error_setg_errno(errp, -ret, "Failed to set special registers");
5302         return ret;
5303     }
5304 
5305     if (level >= KVM_PUT_RESET_STATE) {
5306         ret = kvm_put_nested_state(x86_cpu);
5307         if (ret < 0) {
5308             error_setg_errno(errp, -ret, "Failed to set nested state");
5309             return ret;
5310         }
5311     }
5312 
5313     if (level == KVM_PUT_FULL_STATE) {
5314         /* We don't check for kvm_arch_set_tsc_khz() errors here,
5315          * because TSC frequency mismatch shouldn't abort migration,
5316          * unless the user explicitly asked for a more strict TSC
5317          * setting (e.g. using an explicit "tsc-freq" option).
5318          */
5319         kvm_arch_set_tsc_khz(cpu);
5320     }
5321 
5322 #ifdef CONFIG_XEN_EMU
5323     if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) {
5324         ret = kvm_put_xen_state(cpu);
5325         if (ret < 0) {
5326             error_setg_errno(errp, -ret, "Failed to set Xen state");
5327             return ret;
5328         }
5329     }
5330 #endif
5331 
5332     ret = kvm_getput_regs(x86_cpu, 1);
5333     if (ret < 0) {
5334         error_setg_errno(errp, -ret, "Failed to set general purpose registers");
5335         return ret;
5336     }
5337     ret = kvm_put_xsave(x86_cpu);
5338     if (ret < 0) {
5339         error_setg_errno(errp, -ret, "Failed to set XSAVE");
5340         return ret;
5341     }
5342     ret = kvm_put_xcrs(x86_cpu);
5343     if (ret < 0) {
5344         error_setg_errno(errp, -ret, "Failed to set XCRs");
5345         return ret;
5346     }
5347     ret = kvm_put_msrs(x86_cpu, level);
5348     if (ret < 0) {
5349         error_setg_errno(errp, -ret, "Failed to set MSRs");
5350         return ret;
5351     }
5352     ret = kvm_put_vcpu_events(x86_cpu, level);
5353     if (ret < 0) {
5354         error_setg_errno(errp, -ret, "Failed to set vCPU events");
5355         return ret;
5356     }
5357     if (level >= KVM_PUT_RESET_STATE) {
5358         ret = kvm_put_mp_state(x86_cpu);
5359         if (ret < 0) {
5360             error_setg_errno(errp, -ret, "Failed to set MP state");
5361             return ret;
5362         }
5363     }
5364 
5365     ret = kvm_put_tscdeadline_msr(x86_cpu);
5366     if (ret < 0) {
5367         error_setg_errno(errp, -ret, "Failed to set TSC deadline MSR");
5368         return ret;
5369     }
5370     ret = kvm_put_debugregs(x86_cpu);
5371     if (ret < 0) {
5372         error_setg_errno(errp, -ret, "Failed to set debug registers");
5373         return ret;
5374     }
5375     return 0;
5376 }
5377 
5378 int kvm_arch_get_registers(CPUState *cs, Error **errp)
5379 {
5380     X86CPU *cpu = X86_CPU(cs);
5381     int ret;
5382 
5383     assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
5384 
5385     ret = kvm_get_vcpu_events(cpu);
5386     if (ret < 0) {
5387         error_setg_errno(errp, -ret, "Failed to get vCPU events");
5388         goto out;
5389     }
5390     /*
5391      * KVM_GET_MPSTATE can modify CS and RIP, call it before
5392      * KVM_GET_REGS and KVM_GET_SREGS.
5393      */
5394     ret = kvm_get_mp_state(cpu);
5395     if (ret < 0) {
5396         error_setg_errno(errp, -ret, "Failed to get MP state");
5397         goto out;
5398     }
5399     ret = kvm_getput_regs(cpu, 0);
5400     if (ret < 0) {
5401         error_setg_errno(errp, -ret, "Failed to get general purpose registers");
5402         goto out;
5403     }
5404     ret = kvm_get_xsave(cpu);
5405     if (ret < 0) {
5406         error_setg_errno(errp, -ret, "Failed to get XSAVE");
5407         goto out;
5408     }
5409     ret = kvm_get_xcrs(cpu);
5410     if (ret < 0) {
5411         error_setg_errno(errp, -ret, "Failed to get XCRs");
5412         goto out;
5413     }
5414     ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
5415     if (ret < 0) {
5416         error_setg_errno(errp, -ret, "Failed to get special registers");
5417         goto out;
5418     }
5419     ret = kvm_get_msrs(cpu);
5420     if (ret < 0) {
5421         error_setg_errno(errp, -ret, "Failed to get MSRs");
5422         goto out;
5423     }
5424     ret = kvm_get_apic(cpu);
5425     if (ret < 0) {
5426         error_setg_errno(errp, -ret, "Failed to get APIC");
5427         goto out;
5428     }
5429     ret = kvm_get_debugregs(cpu);
5430     if (ret < 0) {
5431         error_setg_errno(errp, -ret, "Failed to get debug registers");
5432         goto out;
5433     }
5434     ret = kvm_get_nested_state(cpu);
5435     if (ret < 0) {
5436         error_setg_errno(errp, -ret, "Failed to get nested state");
5437         goto out;
5438     }
5439 #ifdef CONFIG_XEN_EMU
5440     if (xen_mode == XEN_EMULATE) {
5441         ret = kvm_get_xen_state(cs);
5442         if (ret < 0) {
5443             error_setg_errno(errp, -ret, "Failed to get Xen state");
5444             goto out;
5445         }
5446     }
5447 #endif
5448     ret = 0;
5449  out:
5450     cpu_sync_bndcs_hflags(&cpu->env);
5451     return ret;
5452 }
5453 
5454 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
5455 {
5456     X86CPU *x86_cpu = X86_CPU(cpu);
5457     CPUX86State *env = &x86_cpu->env;
5458     int ret;
5459 
5460     /* Inject NMI */
5461     if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
5462         if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
5463             bql_lock();
5464             cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
5465             bql_unlock();
5466             DPRINTF("injected NMI\n");
5467             ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
5468             if (ret < 0) {
5469                 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
5470                         strerror(-ret));
5471             }
5472         }
5473         if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
5474             bql_lock();
5475             cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
5476             bql_unlock();
5477             DPRINTF("injected SMI\n");
5478             ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
5479             if (ret < 0) {
5480                 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
5481                         strerror(-ret));
5482             }
5483         }
5484     }
5485 
5486     if (!kvm_pic_in_kernel()) {
5487         bql_lock();
5488     }
5489 
5490     /* Force the VCPU out of its inner loop to process any INIT requests
5491      * or (for userspace APIC, but it is cheap to combine the checks here)
5492      * pending TPR access reports.
5493      */
5494     if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
5495         if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
5496             !(env->hflags & HF_SMM_MASK)) {
5497             cpu->exit_request = 1;
5498         }
5499         if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
5500             cpu->exit_request = 1;
5501         }
5502     }
5503 
5504     if (!kvm_pic_in_kernel()) {
5505         /* Try to inject an interrupt if the guest can accept it */
5506         if (run->ready_for_interrupt_injection &&
5507             (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
5508             (env->eflags & IF_MASK)) {
5509             int irq;
5510 
5511             cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
5512             irq = cpu_get_pic_interrupt(env);
5513             if (irq >= 0) {
5514                 struct kvm_interrupt intr;
5515 
5516                 intr.irq = irq;
5517                 DPRINTF("injected interrupt %d\n", irq);
5518                 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
5519                 if (ret < 0) {
5520                     fprintf(stderr,
5521                             "KVM: injection failed, interrupt lost (%s)\n",
5522                             strerror(-ret));
5523                 }
5524             }
5525         }
5526 
5527         /* If we have an interrupt but the guest is not ready to receive an
5528          * interrupt, request an interrupt window exit.  This will
5529          * cause a return to userspace as soon as the guest is ready to
5530          * receive interrupts. */
5531         if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
5532             run->request_interrupt_window = 1;
5533         } else {
5534             run->request_interrupt_window = 0;
5535         }
5536 
5537         DPRINTF("setting tpr\n");
5538         run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
5539 
5540         bql_unlock();
5541     }
5542 }
5543 
5544 static void kvm_rate_limit_on_bus_lock(void)
5545 {
5546     uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
5547 
5548     if (delay_ns) {
5549         g_usleep(delay_ns / SCALE_US);
5550     }
5551 }
5552 
5553 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
5554 {
5555     X86CPU *x86_cpu = X86_CPU(cpu);
5556     CPUX86State *env = &x86_cpu->env;
5557 
5558     if (run->flags & KVM_RUN_X86_SMM) {
5559         env->hflags |= HF_SMM_MASK;
5560     } else {
5561         env->hflags &= ~HF_SMM_MASK;
5562     }
5563     if (run->if_flag) {
5564         env->eflags |= IF_MASK;
5565     } else {
5566         env->eflags &= ~IF_MASK;
5567     }
5568     if (run->flags & KVM_RUN_X86_BUS_LOCK) {
5569         kvm_rate_limit_on_bus_lock();
5570     }
5571 
5572 #ifdef CONFIG_XEN_EMU
5573     /*
5574      * If the callback is asserted as a GSI (or PCI INTx) then check if
5575      * vcpu_info->evtchn_upcall_pending has been cleared, and deassert
5576      * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC
5577      * EOI and only resample then, exactly how the VFIO eventfd pairs
5578      * are designed to work for level triggered interrupts.
5579      */
5580     if (x86_cpu->env.xen_callback_asserted) {
5581         kvm_xen_maybe_deassert_callback(cpu);
5582     }
5583 #endif
5584 
5585     /* We need to protect the apic state against concurrent accesses from
5586      * different threads in case the userspace irqchip is used. */
5587     if (!kvm_irqchip_in_kernel()) {
5588         bql_lock();
5589     }
5590     cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
5591     cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
5592     if (!kvm_irqchip_in_kernel()) {
5593         bql_unlock();
5594     }
5595     return cpu_get_mem_attrs(env);
5596 }
5597 
5598 int kvm_arch_process_async_events(CPUState *cs)
5599 {
5600     X86CPU *cpu = X86_CPU(cs);
5601     CPUX86State *env = &cpu->env;
5602 
5603     if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
5604         /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
5605         assert(env->mcg_cap);
5606 
5607         cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
5608 
5609         kvm_cpu_synchronize_state(cs);
5610 
5611         if (env->exception_nr == EXCP08_DBLE) {
5612             /* this means triple fault */
5613             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
5614             cs->exit_request = 1;
5615             return 0;
5616         }
5617         kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
5618         env->has_error_code = 0;
5619 
5620         cs->halted = 0;
5621         if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
5622             env->mp_state = KVM_MP_STATE_RUNNABLE;
5623         }
5624     }
5625 
5626     if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
5627         !(env->hflags & HF_SMM_MASK)) {
5628         kvm_cpu_synchronize_state(cs);
5629         do_cpu_init(cpu);
5630     }
5631 
5632     if (kvm_irqchip_in_kernel()) {
5633         return 0;
5634     }
5635 
5636     if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
5637         cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
5638         apic_poll_irq(cpu->apic_state);
5639     }
5640     if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5641          (env->eflags & IF_MASK)) ||
5642         (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5643         cs->halted = 0;
5644     }
5645     if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
5646         kvm_cpu_synchronize_state(cs);
5647         do_cpu_sipi(cpu);
5648     }
5649     if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
5650         cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
5651         kvm_cpu_synchronize_state(cs);
5652         apic_handle_tpr_access_report(cpu->apic_state, env->eip,
5653                                       env->tpr_access_type);
5654     }
5655 
5656     return cs->halted;
5657 }
5658 
5659 static int kvm_handle_halt(X86CPU *cpu)
5660 {
5661     CPUState *cs = CPU(cpu);
5662     CPUX86State *env = &cpu->env;
5663 
5664     if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5665           (env->eflags & IF_MASK)) &&
5666         !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5667         cs->halted = 1;
5668         return EXCP_HLT;
5669     }
5670 
5671     return 0;
5672 }
5673 
5674 static int kvm_handle_tpr_access(X86CPU *cpu)
5675 {
5676     CPUState *cs = CPU(cpu);
5677     struct kvm_run *run = cs->kvm_run;
5678 
5679     apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
5680                                   run->tpr_access.is_write ? TPR_ACCESS_WRITE
5681                                                            : TPR_ACCESS_READ);
5682     return 1;
5683 }
5684 
5685 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5686 {
5687     static const uint8_t int3 = 0xcc;
5688 
5689     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
5690         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
5691         return -EINVAL;
5692     }
5693     return 0;
5694 }
5695 
5696 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5697 {
5698     uint8_t int3;
5699 
5700     if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
5701         return -EINVAL;
5702     }
5703     if (int3 != 0xcc) {
5704         return 0;
5705     }
5706     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
5707         return -EINVAL;
5708     }
5709     return 0;
5710 }
5711 
5712 static struct {
5713     target_ulong addr;
5714     int len;
5715     int type;
5716 } hw_breakpoint[4];
5717 
5718 static int nb_hw_breakpoint;
5719 
5720 static int find_hw_breakpoint(target_ulong addr, int len, int type)
5721 {
5722     int n;
5723 
5724     for (n = 0; n < nb_hw_breakpoint; n++) {
5725         if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
5726             (hw_breakpoint[n].len == len || len == -1)) {
5727             return n;
5728         }
5729     }
5730     return -1;
5731 }
5732 
5733 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
5734 {
5735     switch (type) {
5736     case GDB_BREAKPOINT_HW:
5737         len = 1;
5738         break;
5739     case GDB_WATCHPOINT_WRITE:
5740     case GDB_WATCHPOINT_ACCESS:
5741         switch (len) {
5742         case 1:
5743             break;
5744         case 2:
5745         case 4:
5746         case 8:
5747             if (addr & (len - 1)) {
5748                 return -EINVAL;
5749             }
5750             break;
5751         default:
5752             return -EINVAL;
5753         }
5754         break;
5755     default:
5756         return -ENOSYS;
5757     }
5758 
5759     if (nb_hw_breakpoint == 4) {
5760         return -ENOBUFS;
5761     }
5762     if (find_hw_breakpoint(addr, len, type) >= 0) {
5763         return -EEXIST;
5764     }
5765     hw_breakpoint[nb_hw_breakpoint].addr = addr;
5766     hw_breakpoint[nb_hw_breakpoint].len = len;
5767     hw_breakpoint[nb_hw_breakpoint].type = type;
5768     nb_hw_breakpoint++;
5769 
5770     return 0;
5771 }
5772 
5773 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
5774 {
5775     int n;
5776 
5777     n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
5778     if (n < 0) {
5779         return -ENOENT;
5780     }
5781     nb_hw_breakpoint--;
5782     hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
5783 
5784     return 0;
5785 }
5786 
5787 void kvm_arch_remove_all_hw_breakpoints(void)
5788 {
5789     nb_hw_breakpoint = 0;
5790 }
5791 
5792 static CPUWatchpoint hw_watchpoint;
5793 
5794 static int kvm_handle_debug(X86CPU *cpu,
5795                             struct kvm_debug_exit_arch *arch_info)
5796 {
5797     CPUState *cs = CPU(cpu);
5798     CPUX86State *env = &cpu->env;
5799     int ret = 0;
5800     int n;
5801 
5802     if (arch_info->exception == EXCP01_DB) {
5803         if (arch_info->dr6 & DR6_BS) {
5804             if (cs->singlestep_enabled) {
5805                 ret = EXCP_DEBUG;
5806             }
5807         } else {
5808             for (n = 0; n < 4; n++) {
5809                 if (arch_info->dr6 & (1 << n)) {
5810                     switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
5811                     case 0x0:
5812                         ret = EXCP_DEBUG;
5813                         break;
5814                     case 0x1:
5815                         ret = EXCP_DEBUG;
5816                         cs->watchpoint_hit = &hw_watchpoint;
5817                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5818                         hw_watchpoint.flags = BP_MEM_WRITE;
5819                         break;
5820                     case 0x3:
5821                         ret = EXCP_DEBUG;
5822                         cs->watchpoint_hit = &hw_watchpoint;
5823                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5824                         hw_watchpoint.flags = BP_MEM_ACCESS;
5825                         break;
5826                     }
5827                 }
5828             }
5829         }
5830     } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
5831         ret = EXCP_DEBUG;
5832     }
5833     if (ret == 0) {
5834         cpu_synchronize_state(cs);
5835         assert(env->exception_nr == -1);
5836 
5837         /* pass to guest */
5838         kvm_queue_exception(env, arch_info->exception,
5839                             arch_info->exception == EXCP01_DB,
5840                             arch_info->dr6);
5841         env->has_error_code = 0;
5842     }
5843 
5844     return ret;
5845 }
5846 
5847 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
5848 {
5849     const uint8_t type_code[] = {
5850         [GDB_BREAKPOINT_HW] = 0x0,
5851         [GDB_WATCHPOINT_WRITE] = 0x1,
5852         [GDB_WATCHPOINT_ACCESS] = 0x3
5853     };
5854     const uint8_t len_code[] = {
5855         [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
5856     };
5857     int n;
5858 
5859     if (kvm_sw_breakpoints_active(cpu)) {
5860         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
5861     }
5862     if (nb_hw_breakpoint > 0) {
5863         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
5864         dbg->arch.debugreg[7] = 0x0600;
5865         for (n = 0; n < nb_hw_breakpoint; n++) {
5866             dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
5867             dbg->arch.debugreg[7] |= (2 << (n * 2)) |
5868                 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
5869                 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
5870         }
5871     }
5872 }
5873 
5874 static int kvm_install_msr_filters(KVMState *s)
5875 {
5876     uint64_t zero = 0;
5877     struct kvm_msr_filter filter = {
5878         .flags = KVM_MSR_FILTER_DEFAULT_ALLOW,
5879     };
5880     int i, j = 0;
5881 
5882     QEMU_BUILD_BUG_ON(ARRAY_SIZE(msr_handlers) != ARRAY_SIZE(filter.ranges));
5883     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5884         KVMMSRHandlers *handler = &msr_handlers[i];
5885         if (handler->msr) {
5886             struct kvm_msr_filter_range *range = &filter.ranges[j++];
5887 
5888             *range = (struct kvm_msr_filter_range) {
5889                 .flags = 0,
5890                 .nmsrs = 1,
5891                 .base = handler->msr,
5892                 .bitmap = (__u8 *)&zero,
5893             };
5894 
5895             if (handler->rdmsr) {
5896                 range->flags |= KVM_MSR_FILTER_READ;
5897             }
5898 
5899             if (handler->wrmsr) {
5900                 range->flags |= KVM_MSR_FILTER_WRITE;
5901             }
5902         }
5903     }
5904 
5905     return kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter);
5906 }
5907 
5908 static int kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
5909                           QEMUWRMSRHandler *wrmsr)
5910 {
5911     int i, ret;
5912 
5913     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5914         if (!msr_handlers[i].msr) {
5915             msr_handlers[i] = (KVMMSRHandlers) {
5916                 .msr = msr,
5917                 .rdmsr = rdmsr,
5918                 .wrmsr = wrmsr,
5919             };
5920 
5921             ret = kvm_install_msr_filters(s);
5922             if (ret) {
5923                 msr_handlers[i] = (KVMMSRHandlers) { };
5924                 return ret;
5925             }
5926 
5927             return 0;
5928         }
5929     }
5930 
5931     return -EINVAL;
5932 }
5933 
5934 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run)
5935 {
5936     int i;
5937     bool r;
5938 
5939     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5940         KVMMSRHandlers *handler = &msr_handlers[i];
5941         if (run->msr.index == handler->msr) {
5942             if (handler->rdmsr) {
5943                 r = handler->rdmsr(cpu, handler->msr,
5944                                    (uint64_t *)&run->msr.data);
5945                 run->msr.error = r ? 0 : 1;
5946                 return 0;
5947             }
5948         }
5949     }
5950 
5951     g_assert_not_reached();
5952 }
5953 
5954 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run)
5955 {
5956     int i;
5957     bool r;
5958 
5959     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5960         KVMMSRHandlers *handler = &msr_handlers[i];
5961         if (run->msr.index == handler->msr) {
5962             if (handler->wrmsr) {
5963                 r = handler->wrmsr(cpu, handler->msr, run->msr.data);
5964                 run->msr.error = r ? 0 : 1;
5965                 return 0;
5966             }
5967         }
5968     }
5969 
5970     g_assert_not_reached();
5971 }
5972 
5973 static bool has_sgx_provisioning;
5974 
5975 static bool __kvm_enable_sgx_provisioning(KVMState *s)
5976 {
5977     int fd, ret;
5978 
5979     if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
5980         return false;
5981     }
5982 
5983     fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
5984     if (fd < 0) {
5985         return false;
5986     }
5987 
5988     ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
5989     if (ret) {
5990         error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
5991         exit(1);
5992     }
5993     close(fd);
5994     return true;
5995 }
5996 
5997 bool kvm_enable_sgx_provisioning(KVMState *s)
5998 {
5999     return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
6000 }
6001 
6002 static bool host_supports_vmx(void)
6003 {
6004     uint32_t ecx, unused;
6005 
6006     host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
6007     return ecx & CPUID_EXT_VMX;
6008 }
6009 
6010 /*
6011  * Currently the handling here only supports use of KVM_HC_MAP_GPA_RANGE
6012  * to service guest-initiated memory attribute update requests so that
6013  * KVM_SET_MEMORY_ATTRIBUTES can update whether or not a page should be
6014  * backed by the private memory pool provided by guest_memfd, and as such
6015  * is only applicable to guest_memfd-backed guests (e.g. SNP/TDX).
6016  *
6017  * Other other use-cases for KVM_HC_MAP_GPA_RANGE, such as for SEV live
6018  * migration, are not implemented here currently.
6019  *
6020  * For the guest_memfd use-case, these exits will generally be synthesized
6021  * by KVM based on platform-specific hypercalls, like GHCB requests in the
6022  * case of SEV-SNP, and not issued directly within the guest though the
6023  * KVM_HC_MAP_GPA_RANGE hypercall. So in this case, KVM_HC_MAP_GPA_RANGE is
6024  * not actually advertised to guests via the KVM CPUID feature bit, as
6025  * opposed to SEV live migration where it would be. Since it is unlikely the
6026  * SEV live migration use-case would be useful for guest-memfd backed guests,
6027  * because private/shared page tracking is already provided through other
6028  * means, these 2 use-cases should be treated as being mutually-exclusive.
6029  */
6030 static int kvm_handle_hc_map_gpa_range(X86CPU *cpu, struct kvm_run *run)
6031 {
6032     struct kvm_pre_fault_memory mem;
6033     uint64_t gpa, size, attributes;
6034     int ret;
6035 
6036     if (!machine_require_guest_memfd(current_machine))
6037         return -EINVAL;
6038 
6039     gpa = run->hypercall.args[0];
6040     size = run->hypercall.args[1] * TARGET_PAGE_SIZE;
6041     attributes = run->hypercall.args[2];
6042 
6043     trace_kvm_hc_map_gpa_range(gpa, size, attributes, run->hypercall.flags);
6044 
6045     ret = kvm_convert_memory(gpa, size, attributes & KVM_MAP_GPA_RANGE_ENCRYPTED);
6046     if (ret || !kvm_pre_fault_memory_supported) {
6047         return ret;
6048     }
6049 
6050     /*
6051      * Opportunistically pre-fault memory in. Failures are ignored so that any
6052      * errors in faulting in the memory will get captured in KVM page fault
6053      * path when the guest first accesses the page.
6054      */
6055     memset(&mem, 0, sizeof(mem));
6056     mem.gpa = gpa;
6057     mem.size = size;
6058     while (mem.size) {
6059         if (kvm_vcpu_ioctl(CPU(cpu), KVM_PRE_FAULT_MEMORY, &mem)) {
6060             break;
6061         }
6062     }
6063 
6064     return 0;
6065 }
6066 
6067 static int kvm_handle_hypercall(X86CPU *cpu, struct kvm_run *run)
6068 {
6069     if (run->hypercall.nr == KVM_HC_MAP_GPA_RANGE)
6070         return kvm_handle_hc_map_gpa_range(cpu, run);
6071 
6072     return -EINVAL;
6073 }
6074 
6075 #define VMX_INVALID_GUEST_STATE 0x80000021
6076 
6077 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
6078 {
6079     X86CPU *cpu = X86_CPU(cs);
6080     uint64_t code;
6081     int ret;
6082     bool ctx_invalid;
6083     KVMState *state;
6084 
6085     switch (run->exit_reason) {
6086     case KVM_EXIT_HLT:
6087         DPRINTF("handle_hlt\n");
6088         bql_lock();
6089         ret = kvm_handle_halt(cpu);
6090         bql_unlock();
6091         break;
6092     case KVM_EXIT_SET_TPR:
6093         ret = 0;
6094         break;
6095     case KVM_EXIT_TPR_ACCESS:
6096         bql_lock();
6097         ret = kvm_handle_tpr_access(cpu);
6098         bql_unlock();
6099         break;
6100     case KVM_EXIT_FAIL_ENTRY:
6101         code = run->fail_entry.hardware_entry_failure_reason;
6102         fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
6103                 code);
6104         if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
6105             fprintf(stderr,
6106                     "\nIf you're running a guest on an Intel machine without "
6107                         "unrestricted mode\n"
6108                     "support, the failure can be most likely due to the guest "
6109                         "entering an invalid\n"
6110                     "state for Intel VT. For example, the guest maybe running "
6111                         "in big real mode\n"
6112                     "which is not supported on less recent Intel processors."
6113                         "\n\n");
6114         }
6115         ret = -1;
6116         break;
6117     case KVM_EXIT_EXCEPTION:
6118         fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
6119                 run->ex.exception, run->ex.error_code);
6120         ret = -1;
6121         break;
6122     case KVM_EXIT_DEBUG:
6123         DPRINTF("kvm_exit_debug\n");
6124         bql_lock();
6125         ret = kvm_handle_debug(cpu, &run->debug.arch);
6126         bql_unlock();
6127         break;
6128     case KVM_EXIT_HYPERV:
6129         ret = kvm_hv_handle_exit(cpu, &run->hyperv);
6130         break;
6131     case KVM_EXIT_IOAPIC_EOI:
6132         ioapic_eoi_broadcast(run->eoi.vector);
6133         ret = 0;
6134         break;
6135     case KVM_EXIT_X86_BUS_LOCK:
6136         /* already handled in kvm_arch_post_run */
6137         ret = 0;
6138         break;
6139     case KVM_EXIT_NOTIFY:
6140         ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID);
6141         state = KVM_STATE(current_accel());
6142         if (ctx_invalid ||
6143             state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) {
6144             warn_report("KVM internal error: Encountered a notify exit "
6145                         "with invalid context in guest.");
6146             ret = -1;
6147         } else {
6148             warn_report_once("KVM: Encountered a notify exit with valid "
6149                              "context in guest. "
6150                              "The guest could be misbehaving.");
6151             ret = 0;
6152         }
6153         break;
6154     case KVM_EXIT_X86_RDMSR:
6155         /* We only enable MSR filtering, any other exit is bogus */
6156         assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
6157         ret = kvm_handle_rdmsr(cpu, run);
6158         break;
6159     case KVM_EXIT_X86_WRMSR:
6160         /* We only enable MSR filtering, any other exit is bogus */
6161         assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
6162         ret = kvm_handle_wrmsr(cpu, run);
6163         break;
6164 #ifdef CONFIG_XEN_EMU
6165     case KVM_EXIT_XEN:
6166         ret = kvm_xen_handle_exit(cpu, &run->xen);
6167         break;
6168 #endif
6169     case KVM_EXIT_HYPERCALL:
6170         ret = kvm_handle_hypercall(cpu, run);
6171         break;
6172     case KVM_EXIT_SYSTEM_EVENT:
6173         switch (run->system_event.type) {
6174         case KVM_SYSTEM_EVENT_TDX_FATAL:
6175             ret = tdx_handle_report_fatal_error(cpu, run);
6176             break;
6177         default:
6178             ret = -1;
6179             break;
6180         }
6181         break;
6182     case KVM_EXIT_TDX:
6183         /*
6184          * run->tdx is already set up for the case where userspace
6185          * does not handle the TDVMCALL.
6186          */
6187         switch (run->tdx.nr) {
6188         case TDVMCALL_GET_QUOTE:
6189             tdx_handle_get_quote(cpu, run);
6190             break;
6191         case TDVMCALL_GET_TD_VM_CALL_INFO:
6192             tdx_handle_get_tdvmcall_info(cpu, run);
6193             break;
6194         case TDVMCALL_SETUP_EVENT_NOTIFY_INTERRUPT:
6195             tdx_handle_setup_event_notify_interrupt(cpu, run);
6196             break;
6197         }
6198         ret = 0;
6199         break;
6200     default:
6201         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
6202         ret = -1;
6203         break;
6204     }
6205 
6206     return ret;
6207 }
6208 
6209 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
6210 {
6211     X86CPU *cpu = X86_CPU(cs);
6212     CPUX86State *env = &cpu->env;
6213 
6214     kvm_cpu_synchronize_state(cs);
6215     return !(env->cr[0] & CR0_PE_MASK) ||
6216            ((env->segs[R_CS].selector  & 3) != 3);
6217 }
6218 
6219 void kvm_arch_init_irq_routing(KVMState *s)
6220 {
6221     /* We know at this point that we're using the in-kernel
6222      * irqchip, so we can use irqfds, and on x86 we know
6223      * we can use msi via irqfd and GSI routing.
6224      */
6225     kvm_msi_via_irqfd_allowed = true;
6226     kvm_gsi_routing_allowed = true;
6227 
6228     if (kvm_irqchip_is_split()) {
6229         KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
6230         int i;
6231 
6232         /* If the ioapic is in QEMU and the lapics are in KVM, reserve
6233            MSI routes for signaling interrupts to the local apics. */
6234         for (i = 0; i < IOAPIC_NUM_PINS; i++) {
6235             if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
6236                 error_report("Could not enable split IRQ mode.");
6237                 exit(1);
6238             }
6239         }
6240         kvm_irqchip_commit_route_changes(&c);
6241     }
6242 }
6243 
6244 int kvm_arch_irqchip_create(KVMState *s)
6245 {
6246     int ret;
6247     if (kvm_kernel_irqchip_split()) {
6248         ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
6249         if (ret) {
6250             error_report("Could not enable split irqchip mode: %s",
6251                          strerror(-ret));
6252             exit(1);
6253         } else {
6254             DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
6255             kvm_split_irqchip = true;
6256             return 1;
6257         }
6258     } else {
6259         return 0;
6260     }
6261 }
6262 
6263 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
6264 {
6265     CPUX86State *env;
6266     uint64_t ext_id;
6267 
6268     if (!first_cpu) {
6269         return address;
6270     }
6271     env = &X86_CPU(first_cpu)->env;
6272     if (!(env->features[FEAT_KVM] & CPUID_KVM_MSI_EXT_DEST_ID)) {
6273         return address;
6274     }
6275 
6276     /*
6277      * If the remappable format bit is set, or the upper bits are
6278      * already set in address_hi, or the low extended bits aren't
6279      * there anyway, do nothing.
6280      */
6281     ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
6282     if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
6283         return address;
6284     }
6285 
6286     address &= ~ext_id;
6287     address |= ext_id << 35;
6288     return address;
6289 }
6290 
6291 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
6292                              uint64_t address, uint32_t data, PCIDevice *dev)
6293 {
6294     X86IOMMUState *iommu = x86_iommu_get_default();
6295 
6296     if (iommu) {
6297         X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
6298 
6299         if (class->int_remap) {
6300             int ret;
6301             MSIMessage src, dst;
6302 
6303             src.address = route->u.msi.address_hi;
6304             src.address <<= VTD_MSI_ADDR_HI_SHIFT;
6305             src.address |= route->u.msi.address_lo;
6306             src.data = route->u.msi.data;
6307 
6308             ret = class->int_remap(iommu, &src, &dst, dev ?     \
6309                                    pci_requester_id(dev) :      \
6310                                    X86_IOMMU_SID_INVALID);
6311             if (ret) {
6312                 trace_kvm_x86_fixup_msi_error(route->gsi);
6313                 return 1;
6314             }
6315 
6316             /*
6317              * Handled untranslated compatibility format interrupt with
6318              * extended destination ID in the low bits 11-5. */
6319             dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
6320 
6321             route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
6322             route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
6323             route->u.msi.data = dst.data;
6324             return 0;
6325         }
6326     }
6327 
6328 #ifdef CONFIG_XEN_EMU
6329     if (xen_mode == XEN_EMULATE) {
6330         int handled = xen_evtchn_translate_pirq_msi(route, address, data);
6331 
6332         /*
6333          * If it was a PIRQ and successfully routed (handled == 0) or it was
6334          * an error (handled < 0), return. If it wasn't a PIRQ, keep going.
6335          */
6336         if (handled <= 0) {
6337             return handled;
6338         }
6339     }
6340 #endif
6341 
6342     address = kvm_swizzle_msi_ext_dest_id(address);
6343     route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
6344     route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
6345     return 0;
6346 }
6347 
6348 typedef struct MSIRouteEntry MSIRouteEntry;
6349 
6350 struct MSIRouteEntry {
6351     PCIDevice *dev;             /* Device pointer */
6352     int vector;                 /* MSI/MSIX vector index */
6353     int virq;                   /* Virtual IRQ index */
6354     QLIST_ENTRY(MSIRouteEntry) list;
6355 };
6356 
6357 /* List of used GSI routes */
6358 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
6359     QLIST_HEAD_INITIALIZER(msi_route_list);
6360 
6361 void kvm_update_msi_routes_all(void *private, bool global,
6362                                uint32_t index, uint32_t mask)
6363 {
6364     int cnt = 0, vector;
6365     MSIRouteEntry *entry;
6366     MSIMessage msg;
6367     PCIDevice *dev;
6368 
6369     /* TODO: explicit route update */
6370     QLIST_FOREACH(entry, &msi_route_list, list) {
6371         cnt++;
6372         vector = entry->vector;
6373         dev = entry->dev;
6374         if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
6375             msg = msix_get_message(dev, vector);
6376         } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
6377             msg = msi_get_message(dev, vector);
6378         } else {
6379             /*
6380              * Either MSI/MSIX is disabled for the device, or the
6381              * specific message was masked out.  Skip this one.
6382              */
6383             continue;
6384         }
6385         kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
6386     }
6387     kvm_irqchip_commit_routes(kvm_state);
6388     trace_kvm_x86_update_msi_routes(cnt);
6389 }
6390 
6391 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
6392                                 int vector, PCIDevice *dev)
6393 {
6394     static bool notify_list_inited = false;
6395     MSIRouteEntry *entry;
6396 
6397     if (!dev) {
6398         /* These are (possibly) IOAPIC routes only used for split
6399          * kernel irqchip mode, while what we are housekeeping are
6400          * PCI devices only. */
6401         return 0;
6402     }
6403 
6404     entry = g_new0(MSIRouteEntry, 1);
6405     entry->dev = dev;
6406     entry->vector = vector;
6407     entry->virq = route->gsi;
6408     QLIST_INSERT_HEAD(&msi_route_list, entry, list);
6409 
6410     trace_kvm_x86_add_msi_route(route->gsi);
6411 
6412     if (!notify_list_inited) {
6413         /* For the first time we do add route, add ourselves into
6414          * IOMMU's IEC notify list if needed. */
6415         X86IOMMUState *iommu = x86_iommu_get_default();
6416         if (iommu) {
6417             x86_iommu_iec_register_notifier(iommu,
6418                                             kvm_update_msi_routes_all,
6419                                             NULL);
6420         }
6421         notify_list_inited = true;
6422     }
6423     return 0;
6424 }
6425 
6426 int kvm_arch_release_virq_post(int virq)
6427 {
6428     MSIRouteEntry *entry, *next;
6429     QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
6430         if (entry->virq == virq) {
6431             trace_kvm_x86_remove_msi_route(virq);
6432             QLIST_REMOVE(entry, list);
6433             g_free(entry);
6434             break;
6435         }
6436     }
6437     return 0;
6438 }
6439 
6440 int kvm_arch_msi_data_to_gsi(uint32_t data)
6441 {
6442     abort();
6443 }
6444 
6445 bool kvm_has_waitpkg(void)
6446 {
6447     return has_msr_umwait;
6448 }
6449 
6450 #define ARCH_REQ_XCOMP_GUEST_PERM       0x1025
6451 
6452 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
6453 {
6454     KVMState *s = kvm_state;
6455     uint64_t supported;
6456 
6457     mask &= XSTATE_DYNAMIC_MASK;
6458     if (!mask) {
6459         return;
6460     }
6461     /*
6462      * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
6463      * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
6464      * about them already because they are not supported features.
6465      */
6466     supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
6467     supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
6468     mask &= supported;
6469 
6470     while (mask) {
6471         int bit = ctz64(mask);
6472         int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
6473         if (rc) {
6474             /*
6475              * Older kernel version (<5.17) do not support
6476              * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
6477              * any dynamic feature from kvm_arch_get_supported_cpuid.
6478              */
6479             warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
6480                         "for feature bit %d", bit);
6481         }
6482         mask &= ~BIT_ULL(bit);
6483     }
6484 }
6485 
6486 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp)
6487 {
6488     KVMState *s = KVM_STATE(obj);
6489     return s->notify_vmexit;
6490 }
6491 
6492 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp)
6493 {
6494     KVMState *s = KVM_STATE(obj);
6495 
6496     if (s->fd != -1) {
6497         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
6498         return;
6499     }
6500 
6501     s->notify_vmexit = value;
6502 }
6503 
6504 static void kvm_arch_get_notify_window(Object *obj, Visitor *v,
6505                                        const char *name, void *opaque,
6506                                        Error **errp)
6507 {
6508     KVMState *s = KVM_STATE(obj);
6509     uint32_t value = s->notify_window;
6510 
6511     visit_type_uint32(v, name, &value, errp);
6512 }
6513 
6514 static void kvm_arch_set_notify_window(Object *obj, Visitor *v,
6515                                        const char *name, void *opaque,
6516                                        Error **errp)
6517 {
6518     KVMState *s = KVM_STATE(obj);
6519     uint32_t value;
6520 
6521     if (s->fd != -1) {
6522         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
6523         return;
6524     }
6525 
6526     if (!visit_type_uint32(v, name, &value, errp)) {
6527         return;
6528     }
6529 
6530     s->notify_window = value;
6531 }
6532 
6533 static void kvm_arch_get_xen_version(Object *obj, Visitor *v,
6534                                      const char *name, void *opaque,
6535                                      Error **errp)
6536 {
6537     KVMState *s = KVM_STATE(obj);
6538     uint32_t value = s->xen_version;
6539 
6540     visit_type_uint32(v, name, &value, errp);
6541 }
6542 
6543 static void kvm_arch_set_xen_version(Object *obj, Visitor *v,
6544                                      const char *name, void *opaque,
6545                                      Error **errp)
6546 {
6547     KVMState *s = KVM_STATE(obj);
6548     Error *error = NULL;
6549     uint32_t value;
6550 
6551     visit_type_uint32(v, name, &value, &error);
6552     if (error) {
6553         error_propagate(errp, error);
6554         return;
6555     }
6556 
6557     s->xen_version = value;
6558     if (value && xen_mode == XEN_DISABLED) {
6559         xen_mode = XEN_EMULATE;
6560     }
6561 }
6562 
6563 static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v,
6564                                                const char *name, void *opaque,
6565                                                Error **errp)
6566 {
6567     KVMState *s = KVM_STATE(obj);
6568     uint16_t value = s->xen_gnttab_max_frames;
6569 
6570     visit_type_uint16(v, name, &value, errp);
6571 }
6572 
6573 static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v,
6574                                                const char *name, void *opaque,
6575                                                Error **errp)
6576 {
6577     KVMState *s = KVM_STATE(obj);
6578     Error *error = NULL;
6579     uint16_t value;
6580 
6581     visit_type_uint16(v, name, &value, &error);
6582     if (error) {
6583         error_propagate(errp, error);
6584         return;
6585     }
6586 
6587     s->xen_gnttab_max_frames = value;
6588 }
6589 
6590 static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v,
6591                                              const char *name, void *opaque,
6592                                              Error **errp)
6593 {
6594     KVMState *s = KVM_STATE(obj);
6595     uint16_t value = s->xen_evtchn_max_pirq;
6596 
6597     visit_type_uint16(v, name, &value, errp);
6598 }
6599 
6600 static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v,
6601                                              const char *name, void *opaque,
6602                                              Error **errp)
6603 {
6604     KVMState *s = KVM_STATE(obj);
6605     Error *error = NULL;
6606     uint16_t value;
6607 
6608     visit_type_uint16(v, name, &value, &error);
6609     if (error) {
6610         error_propagate(errp, error);
6611         return;
6612     }
6613 
6614     s->xen_evtchn_max_pirq = value;
6615 }
6616 
6617 void kvm_arch_accel_class_init(ObjectClass *oc)
6618 {
6619     object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption",
6620                                    &NotifyVmexitOption_lookup,
6621                                    kvm_arch_get_notify_vmexit,
6622                                    kvm_arch_set_notify_vmexit);
6623     object_class_property_set_description(oc, "notify-vmexit",
6624                                           "Enable notify VM exit");
6625 
6626     object_class_property_add(oc, "notify-window", "uint32",
6627                               kvm_arch_get_notify_window,
6628                               kvm_arch_set_notify_window,
6629                               NULL, NULL);
6630     object_class_property_set_description(oc, "notify-window",
6631                                           "Clock cycles without an event window "
6632                                           "after which a notification VM exit occurs");
6633 
6634     object_class_property_add(oc, "xen-version", "uint32",
6635                               kvm_arch_get_xen_version,
6636                               kvm_arch_set_xen_version,
6637                               NULL, NULL);
6638     object_class_property_set_description(oc, "xen-version",
6639                                           "Xen version to be emulated "
6640                                           "(in XENVER_version form "
6641                                           "e.g. 0x4000a for 4.10)");
6642 
6643     object_class_property_add(oc, "xen-gnttab-max-frames", "uint16",
6644                               kvm_arch_get_xen_gnttab_max_frames,
6645                               kvm_arch_set_xen_gnttab_max_frames,
6646                               NULL, NULL);
6647     object_class_property_set_description(oc, "xen-gnttab-max-frames",
6648                                           "Maximum number of grant table frames");
6649 
6650     object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16",
6651                               kvm_arch_get_xen_evtchn_max_pirq,
6652                               kvm_arch_set_xen_evtchn_max_pirq,
6653                               NULL, NULL);
6654     object_class_property_set_description(oc, "xen-evtchn-max-pirq",
6655                                           "Maximum number of Xen PIRQs");
6656 }
6657 
6658 void kvm_set_max_apic_id(uint32_t max_apic_id)
6659 {
6660     kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id);
6661 }
6662