1 /* 2 * QEMU KVM support 3 * 4 * Copyright (C) 2006-2008 Qumranet Technologies 5 * Copyright IBM, Corp. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or later. 11 * See the COPYING file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qapi/qapi-events-run-state.h" 17 #include "qapi/error.h" 18 #include "qapi/visitor.h" 19 #include <math.h> 20 #include <sys/ioctl.h> 21 #include <sys/utsname.h> 22 #include <sys/syscall.h> 23 #include <sys/resource.h> 24 #include <sys/time.h> 25 26 #include <linux/kvm.h> 27 #include <linux/kvm_para.h> 28 #include "standard-headers/asm-x86/kvm_para.h" 29 #include "hw/xen/interface/arch-x86/cpuid.h" 30 31 #include "cpu.h" 32 #include "host-cpu.h" 33 #include "vmsr_energy.h" 34 #include "system/system.h" 35 #include "system/hw_accel.h" 36 #include "system/kvm_int.h" 37 #include "system/runstate.h" 38 #include "kvm_i386.h" 39 #include "../confidential-guest.h" 40 #include "sev.h" 41 #include "tdx.h" 42 #include "xen-emu.h" 43 #include "hyperv.h" 44 #include "hyperv-proto.h" 45 46 #include "gdbstub/enums.h" 47 #include "qemu/host-utils.h" 48 #include "qemu/main-loop.h" 49 #include "qemu/ratelimit.h" 50 #include "qemu/config-file.h" 51 #include "qemu/error-report.h" 52 #include "qemu/memalign.h" 53 #include "hw/i386/x86.h" 54 #include "hw/i386/kvm/xen_evtchn.h" 55 #include "hw/i386/pc.h" 56 #include "hw/i386/apic.h" 57 #include "hw/i386/apic_internal.h" 58 #include "hw/i386/apic-msidef.h" 59 #include "hw/i386/intel_iommu.h" 60 #include "hw/i386/topology.h" 61 #include "hw/i386/x86-iommu.h" 62 #include "hw/i386/e820_memory_layout.h" 63 64 #include "hw/xen/xen.h" 65 66 #include "hw/pci/pci.h" 67 #include "hw/pci/msi.h" 68 #include "hw/pci/msix.h" 69 #include "migration/blocker.h" 70 #include "exec/memattrs.h" 71 #include "exec/target_page.h" 72 #include "trace.h" 73 74 #include CONFIG_DEVICES 75 76 //#define DEBUG_KVM 77 78 #ifdef DEBUG_KVM 79 #define DPRINTF(fmt, ...) \ 80 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 81 #else 82 #define DPRINTF(fmt, ...) \ 83 do { } while (0) 84 #endif 85 86 /* 87 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. 88 * In order to use vm86 mode, an EPT identity map and a TSS are needed. 89 * Since these must be part of guest physical memory, we need to allocate 90 * them, both by setting their start addresses in the kernel and by 91 * creating a corresponding e820 entry. We need 4 pages before the BIOS, 92 * so this value allows up to 16M BIOSes. 93 */ 94 #define KVM_IDENTITY_BASE 0xfeffc000 95 96 /* From arch/x86/kvm/lapic.h */ 97 #define KVM_APIC_BUS_CYCLE_NS 1 98 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS) 99 100 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus 101 * 255 kvm_msr_entry structs */ 102 #define MSR_BUF_SIZE 4096 103 104 typedef bool QEMURDMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t *val); 105 typedef bool QEMUWRMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t val); 106 typedef struct { 107 uint32_t msr; 108 QEMURDMSRHandler *rdmsr; 109 QEMUWRMSRHandler *wrmsr; 110 } KVMMSRHandlers; 111 112 static void kvm_init_msrs(X86CPU *cpu); 113 static int kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr, 114 QEMUWRMSRHandler *wrmsr); 115 116 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 117 KVM_CAP_INFO(SET_TSS_ADDR), 118 KVM_CAP_INFO(EXT_CPUID), 119 KVM_CAP_INFO(MP_STATE), 120 KVM_CAP_INFO(SIGNAL_MSI), 121 KVM_CAP_INFO(IRQ_ROUTING), 122 KVM_CAP_INFO(DEBUGREGS), 123 KVM_CAP_INFO(XSAVE), 124 KVM_CAP_INFO(VCPU_EVENTS), 125 KVM_CAP_INFO(X86_ROBUST_SINGLESTEP), 126 KVM_CAP_INFO(MCE), 127 KVM_CAP_INFO(ADJUST_CLOCK), 128 KVM_CAP_INFO(SET_IDENTITY_MAP_ADDR), 129 KVM_CAP_LAST_INFO 130 }; 131 132 static bool has_msr_star; 133 static bool has_msr_hsave_pa; 134 static bool has_msr_tsc_aux; 135 static bool has_msr_tsc_adjust; 136 static bool has_msr_tsc_deadline; 137 static bool has_msr_feature_control; 138 static bool has_msr_misc_enable; 139 static bool has_msr_smbase; 140 static bool has_msr_bndcfgs; 141 static int lm_capable_kernel; 142 static bool has_msr_hv_hypercall; 143 static bool has_msr_hv_crash; 144 static bool has_msr_hv_reset; 145 static bool has_msr_hv_vpindex; 146 static bool hv_vpindex_settable; 147 static bool has_msr_hv_runtime; 148 static bool has_msr_hv_synic; 149 static bool has_msr_hv_stimer; 150 static bool has_msr_hv_frequencies; 151 static bool has_msr_hv_reenlightenment; 152 static bool has_msr_hv_syndbg_options; 153 static bool has_msr_xss; 154 static bool has_msr_umwait; 155 static bool has_msr_spec_ctrl; 156 static bool has_tsc_scale_msr; 157 static bool has_msr_tsx_ctrl; 158 static bool has_msr_virt_ssbd; 159 static bool has_msr_smi_count; 160 static bool has_msr_arch_capabs; 161 static bool has_msr_core_capabs; 162 static bool has_msr_vmx_vmfunc; 163 static bool has_msr_ucode_rev; 164 static bool has_msr_vmx_procbased_ctls2; 165 static bool has_msr_perf_capabs; 166 static bool has_msr_pkrs; 167 static bool has_msr_hwcr; 168 169 static uint32_t has_architectural_pmu_version; 170 static uint32_t num_architectural_pmu_gp_counters; 171 static uint32_t num_architectural_pmu_fixed_counters; 172 173 static int has_xsave2; 174 static int has_xcrs; 175 static int has_sregs2; 176 static int has_exception_payload; 177 static int has_triple_fault_event; 178 179 static bool has_msr_mcg_ext_ctl; 180 181 static struct kvm_cpuid2 *cpuid_cache; 182 static struct kvm_cpuid2 *hv_cpuid_cache; 183 static struct kvm_msr_list *kvm_feature_msrs; 184 185 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES]; 186 187 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */ 188 static RateLimit bus_lock_ratelimit_ctrl; 189 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value); 190 191 static const char *vm_type_name[] = { 192 [KVM_X86_DEFAULT_VM] = "default", 193 [KVM_X86_SEV_VM] = "SEV", 194 [KVM_X86_SEV_ES_VM] = "SEV-ES", 195 [KVM_X86_SNP_VM] = "SEV-SNP", 196 [KVM_X86_TDX_VM] = "TDX", 197 }; 198 199 bool kvm_is_vm_type_supported(int type) 200 { 201 uint32_t machine_types; 202 203 /* 204 * old KVM doesn't support KVM_CAP_VM_TYPES but KVM_X86_DEFAULT_VM 205 * is always supported 206 */ 207 if (type == KVM_X86_DEFAULT_VM) { 208 return true; 209 } 210 211 machine_types = kvm_check_extension(KVM_STATE(current_machine->accelerator), 212 KVM_CAP_VM_TYPES); 213 return !!(machine_types & BIT(type)); 214 } 215 216 int kvm_get_vm_type(MachineState *ms) 217 { 218 int kvm_type = KVM_X86_DEFAULT_VM; 219 220 if (ms->cgs) { 221 if (!object_dynamic_cast(OBJECT(ms->cgs), TYPE_X86_CONFIDENTIAL_GUEST)) { 222 error_report("configuration type %s not supported for x86 guests", 223 object_get_typename(OBJECT(ms->cgs))); 224 exit(1); 225 } 226 kvm_type = x86_confidential_guest_kvm_type( 227 X86_CONFIDENTIAL_GUEST(ms->cgs)); 228 } 229 230 if (!kvm_is_vm_type_supported(kvm_type)) { 231 error_report("vm-type %s not supported by KVM", vm_type_name[kvm_type]); 232 exit(1); 233 } 234 235 return kvm_type; 236 } 237 238 bool kvm_enable_hypercall(uint64_t enable_mask) 239 { 240 KVMState *s = KVM_STATE(current_accel()); 241 242 return !kvm_vm_enable_cap(s, KVM_CAP_EXIT_HYPERCALL, 0, enable_mask); 243 } 244 245 bool kvm_has_smm(void) 246 { 247 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM); 248 } 249 250 bool kvm_has_adjust_clock_stable(void) 251 { 252 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); 253 254 return (ret & KVM_CLOCK_TSC_STABLE); 255 } 256 257 bool kvm_has_exception_payload(void) 258 { 259 return has_exception_payload; 260 } 261 262 static bool kvm_x2apic_api_set_flags(uint64_t flags) 263 { 264 KVMState *s = KVM_STATE(current_accel()); 265 266 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); 267 } 268 269 #define MEMORIZE(fn, _result) \ 270 ({ \ 271 static bool _memorized; \ 272 \ 273 if (_memorized) { \ 274 return _result; \ 275 } \ 276 _memorized = true; \ 277 _result = fn; \ 278 }) 279 280 static bool has_x2apic_api; 281 282 bool kvm_has_x2apic_api(void) 283 { 284 return has_x2apic_api; 285 } 286 287 bool kvm_enable_x2apic(void) 288 { 289 return MEMORIZE( 290 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | 291 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), 292 has_x2apic_api); 293 } 294 295 bool kvm_hv_vpindex_settable(void) 296 { 297 return hv_vpindex_settable; 298 } 299 300 static int kvm_get_tsc(CPUState *cs) 301 { 302 X86CPU *cpu = X86_CPU(cs); 303 CPUX86State *env = &cpu->env; 304 uint64_t value; 305 int ret; 306 307 if (env->tsc_valid) { 308 return 0; 309 } 310 311 env->tsc_valid = !runstate_is_running(); 312 313 ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value); 314 if (ret < 0) { 315 return ret; 316 } 317 318 env->tsc = value; 319 return 0; 320 } 321 322 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) 323 { 324 kvm_get_tsc(cpu); 325 } 326 327 void kvm_synchronize_all_tsc(void) 328 { 329 CPUState *cpu; 330 331 if (kvm_enabled() && !is_tdx_vm()) { 332 CPU_FOREACH(cpu) { 333 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); 334 } 335 } 336 } 337 338 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) 339 { 340 struct kvm_cpuid2 *cpuid; 341 int r, size; 342 343 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 344 cpuid = g_malloc0(size); 345 cpuid->nent = max; 346 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); 347 if (r == 0 && cpuid->nent >= max) { 348 r = -E2BIG; 349 } 350 if (r < 0) { 351 if (r == -E2BIG) { 352 g_free(cpuid); 353 return NULL; 354 } else { 355 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", 356 strerror(-r)); 357 exit(1); 358 } 359 } 360 return cpuid; 361 } 362 363 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough 364 * for all entries. 365 */ 366 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) 367 { 368 struct kvm_cpuid2 *cpuid; 369 int max = 1; 370 371 if (cpuid_cache != NULL) { 372 return cpuid_cache; 373 } 374 while ((cpuid = try_get_cpuid(s, max)) == NULL) { 375 max *= 2; 376 } 377 cpuid_cache = cpuid; 378 return cpuid; 379 } 380 381 static bool host_tsx_broken(void) 382 { 383 int family, model, stepping;\ 384 char vendor[CPUID_VENDOR_SZ + 1]; 385 386 host_cpu_vendor_fms(vendor, &family, &model, &stepping); 387 388 /* Check if we are running on a Haswell host known to have broken TSX */ 389 return !strcmp(vendor, CPUID_VENDOR_INTEL) && 390 (family == 6) && 391 ((model == 63 && stepping < 4) || 392 model == 60 || model == 69 || model == 70); 393 } 394 395 /* Returns the value for a specific register on the cpuid entry 396 */ 397 uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) 398 { 399 uint32_t ret = 0; 400 switch (reg) { 401 case R_EAX: 402 ret = entry->eax; 403 break; 404 case R_EBX: 405 ret = entry->ebx; 406 break; 407 case R_ECX: 408 ret = entry->ecx; 409 break; 410 case R_EDX: 411 ret = entry->edx; 412 break; 413 } 414 return ret; 415 } 416 417 /* Find matching entry for function/index on kvm_cpuid2 struct 418 */ 419 struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, 420 uint32_t function, 421 uint32_t index) 422 { 423 int i; 424 for (i = 0; i < cpuid->nent; ++i) { 425 if (cpuid->entries[i].function == function && 426 cpuid->entries[i].index == index) { 427 return &cpuid->entries[i]; 428 } 429 } 430 /* not found: */ 431 return NULL; 432 } 433 434 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, 435 uint32_t index, int reg) 436 { 437 struct kvm_cpuid2 *cpuid; 438 uint32_t ret = 0; 439 uint32_t cpuid_1_edx, unused; 440 uint64_t bitmask; 441 442 cpuid = get_supported_cpuid(s); 443 444 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); 445 if (entry) { 446 ret = cpuid_entry_get_reg(entry, reg); 447 } 448 449 /* Fixups for the data returned by KVM, below */ 450 451 if (function == 1 && reg == R_EDX) { 452 /* KVM before 2.6.30 misreports the following features */ 453 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; 454 /* KVM never reports CPUID_HT but QEMU can support when vcpus > 1 */ 455 ret |= CPUID_HT; 456 } else if (function == 1 && reg == R_ECX) { 457 /* We can set the hypervisor flag, even if KVM does not return it on 458 * GET_SUPPORTED_CPUID 459 */ 460 ret |= CPUID_EXT_HYPERVISOR; 461 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it 462 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, 463 * and the irqchip is in the kernel. 464 */ 465 if (kvm_irqchip_in_kernel() && 466 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { 467 ret |= CPUID_EXT_TSC_DEADLINE_TIMER; 468 } 469 470 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled 471 * without the in-kernel irqchip 472 */ 473 if (!kvm_irqchip_in_kernel()) { 474 ret &= ~CPUID_EXT_X2APIC; 475 } 476 477 if (enable_cpu_pm) { 478 int disable_exits = kvm_check_extension(s, 479 KVM_CAP_X86_DISABLE_EXITS); 480 481 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) { 482 ret |= CPUID_EXT_MONITOR; 483 } 484 } 485 } else if (function == 6 && reg == R_EAX) { 486 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ 487 } else if (function == 7 && index == 0 && reg == R_EBX) { 488 /* Not new instructions, just an optimization. */ 489 uint32_t ebx; 490 host_cpuid(7, 0, &unused, &ebx, &unused, &unused); 491 ret |= ebx & CPUID_7_0_EBX_ERMS; 492 493 if (host_tsx_broken()) { 494 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); 495 } 496 } else if (function == 7 && index == 0 && reg == R_EDX) { 497 /* Not new instructions, just an optimization. */ 498 uint32_t edx; 499 host_cpuid(7, 0, &unused, &unused, &unused, &edx); 500 ret |= edx & CPUID_7_0_EDX_FSRM; 501 502 /* 503 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts. 504 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is 505 * returned by KVM_GET_MSR_INDEX_LIST. 506 * 507 * But also, because Windows does not like ARCH_CAPABILITIES on AMD 508 * mcahines at all, do not show the fake ARCH_CAPABILITIES MSR that 509 * KVM sets up. 510 */ 511 if (!has_msr_arch_capabs || !(edx & CPUID_7_0_EDX_ARCH_CAPABILITIES)) { 512 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES; 513 } 514 } else if (function == 7 && index == 1 && reg == R_EAX) { 515 /* Not new instructions, just an optimization. */ 516 uint32_t eax; 517 host_cpuid(7, 1, &eax, &unused, &unused, &unused); 518 ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC); 519 } else if (function == 7 && index == 2 && reg == R_EDX) { 520 uint32_t edx; 521 host_cpuid(7, 2, &unused, &unused, &unused, &edx); 522 ret |= edx & CPUID_7_2_EDX_MCDT_NO; 523 } else if (function == 0xd && index == 0 && 524 (reg == R_EAX || reg == R_EDX)) { 525 /* 526 * The value returned by KVM_GET_SUPPORTED_CPUID does not include 527 * features that still have to be enabled with the arch_prctl 528 * system call. QEMU needs the full value, which is retrieved 529 * with KVM_GET_DEVICE_ATTR. 530 */ 531 struct kvm_device_attr attr = { 532 .group = 0, 533 .attr = KVM_X86_XCOMP_GUEST_SUPP, 534 .addr = (unsigned long) &bitmask 535 }; 536 537 bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES); 538 if (!sys_attr) { 539 return ret; 540 } 541 542 int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr); 543 if (rc < 0) { 544 if (rc != -ENXIO) { 545 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) " 546 "error: %d", rc); 547 } 548 return ret; 549 } 550 ret = (reg == R_EAX) ? bitmask : bitmask >> 32; 551 } else if (function == 0x80000001 && reg == R_ECX) { 552 /* 553 * It's safe to enable TOPOEXT even if it's not returned by 554 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows 555 * us to keep CPU models including TOPOEXT runnable on older kernels. 556 */ 557 ret |= CPUID_EXT3_TOPOEXT; 558 } else if (function == 0x80000001 && reg == R_EDX) { 559 /* On Intel, kvm returns cpuid according to the Intel spec, 560 * so add missing bits according to the AMD spec: 561 */ 562 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); 563 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; 564 } else if (function == 0x80000007 && reg == R_EBX) { 565 ret |= CPUID_8000_0007_EBX_OVERFLOW_RECOV | CPUID_8000_0007_EBX_SUCCOR; 566 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { 567 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't 568 * be enabled without the in-kernel irqchip 569 */ 570 if (!kvm_irqchip_in_kernel()) { 571 ret &= ~CPUID_KVM_PV_UNHALT; 572 } 573 if (kvm_irqchip_is_split()) { 574 ret |= CPUID_KVM_MSI_EXT_DEST_ID; 575 } 576 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) { 577 ret |= CPUID_KVM_HINTS_REALTIME; 578 } 579 580 if (current_machine->cgs) { 581 ret = x86_confidential_guest_adjust_cpuid_features( 582 X86_CONFIDENTIAL_GUEST(current_machine->cgs), 583 function, index, reg, ret); 584 } 585 return ret; 586 } 587 588 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index) 589 { 590 struct { 591 struct kvm_msrs info; 592 struct kvm_msr_entry entries[1]; 593 } msr_data = {}; 594 uint64_t value; 595 uint32_t ret, can_be_one, must_be_one; 596 597 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */ 598 return 0; 599 } 600 601 /* Check if requested MSR is supported feature MSR */ 602 int i; 603 for (i = 0; i < kvm_feature_msrs->nmsrs; i++) 604 if (kvm_feature_msrs->indices[i] == index) { 605 break; 606 } 607 if (i == kvm_feature_msrs->nmsrs) { 608 return 0; /* if the feature MSR is not supported, simply return 0 */ 609 } 610 611 msr_data.info.nmsrs = 1; 612 msr_data.entries[0].index = index; 613 614 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data); 615 if (ret != 1) { 616 error_report("KVM get MSR (index=0x%x) feature failed, %s", 617 index, strerror(-ret)); 618 exit(1); 619 } 620 621 value = msr_data.entries[0].data; 622 switch (index) { 623 case MSR_IA32_VMX_PROCBASED_CTLS2: 624 if (!has_msr_vmx_procbased_ctls2) { 625 /* KVM forgot to add these bits for some time, do this ourselves. */ 626 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) & 627 CPUID_XSAVE_XSAVES) { 628 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32; 629 } 630 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) & 631 CPUID_EXT_RDRAND) { 632 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32; 633 } 634 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 635 CPUID_7_0_EBX_INVPCID) { 636 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32; 637 } 638 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 639 CPUID_7_0_EBX_RDSEED) { 640 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32; 641 } 642 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) & 643 CPUID_EXT2_RDTSCP) { 644 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32; 645 } 646 } 647 /* fall through */ 648 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 649 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 650 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 651 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 652 /* 653 * Return true for bits that can be one, but do not have to be one. 654 * The SDM tells us which bits could have a "must be one" setting, 655 * so we can do the opposite transformation in make_vmx_msr_value. 656 */ 657 must_be_one = (uint32_t)value; 658 can_be_one = (uint32_t)(value >> 32); 659 return can_be_one & ~must_be_one; 660 661 default: 662 return value; 663 } 664 } 665 666 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, 667 int *max_banks) 668 { 669 *max_banks = kvm_check_extension(s, KVM_CAP_MCE); 670 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); 671 } 672 673 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) 674 { 675 CPUState *cs = CPU(cpu); 676 CPUX86State *env = &cpu->env; 677 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_EN | MCI_STATUS_MISCV | 678 MCI_STATUS_ADDRV; 679 uint64_t mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV; 680 int flags = 0; 681 682 if (!IS_AMD_CPU(env)) { 683 status |= MCI_STATUS_S | MCI_STATUS_UC; 684 if (code == BUS_MCEERR_AR) { 685 status |= MCI_STATUS_AR | 0x134; 686 mcg_status |= MCG_STATUS_EIPV; 687 } else { 688 status |= 0xc0; 689 } 690 } else { 691 if (code == BUS_MCEERR_AR) { 692 status |= MCI_STATUS_UC | MCI_STATUS_POISON; 693 mcg_status |= MCG_STATUS_EIPV; 694 } else { 695 /* Setting the POISON bit for deferred errors indicates to the 696 * guest kernel that the address provided by the MCE is valid 697 * and usable which will ensure that the guest kernel will send 698 * a SIGBUS_AO signal to the guest process. This allows for 699 * more desirable behavior in the case that the guest process 700 * with poisoned memory has set the MCE_KILL_EARLY prctl flag 701 * which indicates that the process would prefer to handle or 702 * shutdown due to the poisoned memory condition before the 703 * memory has been accessed. 704 * 705 * While the POISON bit would not be set in a deferred error 706 * sent from hardware, the bit is not meaningful for deferred 707 * errors and can be reused in this scenario. 708 */ 709 status |= MCI_STATUS_DEFERRED | MCI_STATUS_POISON; 710 } 711 } 712 713 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; 714 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the 715 * guest kernel back into env->mcg_ext_ctl. 716 */ 717 cpu_synchronize_state(cs); 718 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { 719 mcg_status |= MCG_STATUS_LMCE; 720 flags = 0; 721 } 722 723 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, 724 (MCM_ADDR_PHYS << 6) | 0xc, flags); 725 } 726 727 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar) 728 { 729 MemoryFailureFlags mff = {.action_required = ar, .recursive = false}; 730 731 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action, 732 &mff); 733 } 734 735 static void hardware_memory_error(void *host_addr) 736 { 737 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true); 738 error_report("QEMU got Hardware memory error at addr %p", host_addr); 739 exit(1); 740 } 741 742 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) 743 { 744 X86CPU *cpu = X86_CPU(c); 745 CPUX86State *env = &cpu->env; 746 ram_addr_t ram_addr; 747 hwaddr paddr; 748 749 /* If we get an action required MCE, it has been injected by KVM 750 * while the VM was running. An action optional MCE instead should 751 * be coming from the main thread, which qemu_init_sigbus identifies 752 * as the "early kill" thread. 753 */ 754 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); 755 756 if ((env->mcg_cap & MCG_SER_P) && addr) { 757 ram_addr = qemu_ram_addr_from_host(addr); 758 if (ram_addr != RAM_ADDR_INVALID && 759 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { 760 kvm_hwpoison_page_add(ram_addr); 761 kvm_mce_inject(cpu, paddr, code); 762 763 /* 764 * Use different logging severity based on error type. 765 * If there is additional MCE reporting on the hypervisor, QEMU VA 766 * could be another source to identify the PA and MCE details. 767 */ 768 if (code == BUS_MCEERR_AR) { 769 error_report("Guest MCE Memory Error at QEMU addr %p and " 770 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 771 addr, paddr, "BUS_MCEERR_AR"); 772 } else { 773 warn_report("Guest MCE Memory Error at QEMU addr %p and " 774 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 775 addr, paddr, "BUS_MCEERR_AO"); 776 } 777 778 return; 779 } 780 781 if (code == BUS_MCEERR_AO) { 782 warn_report("Hardware memory error at addr %p of type %s " 783 "for memory used by QEMU itself instead of guest system!", 784 addr, "BUS_MCEERR_AO"); 785 } 786 } 787 788 if (code == BUS_MCEERR_AR) { 789 hardware_memory_error(addr); 790 } 791 792 /* Hope we are lucky for AO MCE, just notify a event */ 793 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false); 794 } 795 796 static void kvm_queue_exception(CPUX86State *env, 797 int32_t exception_nr, 798 uint8_t exception_has_payload, 799 uint64_t exception_payload) 800 { 801 assert(env->exception_nr == -1); 802 assert(!env->exception_pending); 803 assert(!env->exception_injected); 804 assert(!env->exception_has_payload); 805 806 env->exception_nr = exception_nr; 807 808 if (has_exception_payload) { 809 env->exception_pending = 1; 810 811 env->exception_has_payload = exception_has_payload; 812 env->exception_payload = exception_payload; 813 } else { 814 env->exception_injected = 1; 815 816 if (exception_nr == EXCP01_DB) { 817 assert(exception_has_payload); 818 env->dr[6] = exception_payload; 819 } else if (exception_nr == EXCP0E_PAGE) { 820 assert(exception_has_payload); 821 env->cr[2] = exception_payload; 822 } else { 823 assert(!exception_has_payload); 824 } 825 } 826 } 827 828 static void cpu_update_state(void *opaque, bool running, RunState state) 829 { 830 CPUX86State *env = opaque; 831 832 if (running) { 833 env->tsc_valid = false; 834 } 835 } 836 837 unsigned long kvm_arch_vcpu_id(CPUState *cs) 838 { 839 X86CPU *cpu = X86_CPU(cs); 840 return cpu->apic_id; 841 } 842 843 #ifndef KVM_CPUID_SIGNATURE_NEXT 844 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 845 #endif 846 847 static bool hyperv_enabled(X86CPU *cpu) 848 { 849 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 && 850 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) || 851 cpu->hyperv_features || cpu->hyperv_passthrough); 852 } 853 854 /* 855 * Check whether target_freq is within conservative 856 * ntp correctable bounds (250ppm) of freq 857 */ 858 static inline bool freq_within_bounds(int freq, int target_freq) 859 { 860 int max_freq = freq + (freq * 250 / 1000000); 861 int min_freq = freq - (freq * 250 / 1000000); 862 863 if (target_freq >= min_freq && target_freq <= max_freq) { 864 return true; 865 } 866 867 return false; 868 } 869 870 static int kvm_arch_set_tsc_khz(CPUState *cs) 871 { 872 X86CPU *cpu = X86_CPU(cs); 873 CPUX86State *env = &cpu->env; 874 int r, cur_freq; 875 bool set_ioctl = false; 876 877 /* 878 * TSC of TD vcpu is immutable, it cannot be set/changed via vcpu scope 879 * VM_SET_TSC_KHZ, but only be initialized via VM scope VM_SET_TSC_KHZ 880 * before ioctl KVM_TDX_INIT_VM in tdx_pre_create_vcpu() 881 */ 882 if (is_tdx_vm()) { 883 return 0; 884 } 885 886 if (!env->tsc_khz) { 887 return 0; 888 } 889 890 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 891 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP; 892 893 /* 894 * If TSC scaling is supported, attempt to set TSC frequency. 895 */ 896 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) { 897 set_ioctl = true; 898 } 899 900 /* 901 * If desired TSC frequency is within bounds of NTP correction, 902 * attempt to set TSC frequency. 903 */ 904 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) { 905 set_ioctl = true; 906 } 907 908 r = set_ioctl ? 909 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : 910 -ENOTSUP; 911 912 if (r < 0) { 913 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current 914 * TSC frequency doesn't match the one we want. 915 */ 916 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 917 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 918 -ENOTSUP; 919 if (cur_freq <= 0 || cur_freq != env->tsc_khz) { 920 warn_report("TSC frequency mismatch between " 921 "VM (%" PRId64 " kHz) and host (%d kHz), " 922 "and TSC scaling unavailable", 923 env->tsc_khz, cur_freq); 924 return r; 925 } 926 } 927 928 return 0; 929 } 930 931 static bool tsc_is_stable_and_known(CPUX86State *env) 932 { 933 if (!env->tsc_khz) { 934 return false; 935 } 936 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) 937 || env->user_tsc_khz; 938 } 939 940 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1) 941 942 static struct { 943 const char *desc; 944 struct { 945 uint32_t func; 946 int reg; 947 uint32_t bits; 948 } flags[2]; 949 uint64_t dependencies; 950 bool skip_passthrough; 951 } kvm_hyperv_properties[] = { 952 [HYPERV_FEAT_RELAXED] = { 953 .desc = "relaxed timing (hv-relaxed)", 954 .flags = { 955 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 956 .bits = HV_RELAXED_TIMING_RECOMMENDED} 957 } 958 }, 959 [HYPERV_FEAT_VAPIC] = { 960 .desc = "virtual APIC (hv-vapic)", 961 .flags = { 962 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 963 .bits = HV_APIC_ACCESS_AVAILABLE} 964 } 965 }, 966 [HYPERV_FEAT_TIME] = { 967 .desc = "clocksources (hv-time)", 968 .flags = { 969 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 970 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE} 971 } 972 }, 973 [HYPERV_FEAT_CRASH] = { 974 .desc = "crash MSRs (hv-crash)", 975 .flags = { 976 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 977 .bits = HV_GUEST_CRASH_MSR_AVAILABLE} 978 } 979 }, 980 [HYPERV_FEAT_RESET] = { 981 .desc = "reset MSR (hv-reset)", 982 .flags = { 983 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 984 .bits = HV_RESET_AVAILABLE} 985 } 986 }, 987 [HYPERV_FEAT_VPINDEX] = { 988 .desc = "VP_INDEX MSR (hv-vpindex)", 989 .flags = { 990 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 991 .bits = HV_VP_INDEX_AVAILABLE} 992 } 993 }, 994 [HYPERV_FEAT_RUNTIME] = { 995 .desc = "VP_RUNTIME MSR (hv-runtime)", 996 .flags = { 997 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 998 .bits = HV_VP_RUNTIME_AVAILABLE} 999 } 1000 }, 1001 [HYPERV_FEAT_SYNIC] = { 1002 .desc = "synthetic interrupt controller (hv-synic)", 1003 .flags = { 1004 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 1005 .bits = HV_SYNIC_AVAILABLE} 1006 } 1007 }, 1008 [HYPERV_FEAT_STIMER] = { 1009 .desc = "synthetic timers (hv-stimer)", 1010 .flags = { 1011 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 1012 .bits = HV_SYNTIMERS_AVAILABLE} 1013 }, 1014 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME) 1015 }, 1016 [HYPERV_FEAT_FREQUENCIES] = { 1017 .desc = "frequency MSRs (hv-frequencies)", 1018 .flags = { 1019 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 1020 .bits = HV_ACCESS_FREQUENCY_MSRS}, 1021 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1022 .bits = HV_FREQUENCY_MSRS_AVAILABLE} 1023 } 1024 }, 1025 [HYPERV_FEAT_REENLIGHTENMENT] = { 1026 .desc = "reenlightenment MSRs (hv-reenlightenment)", 1027 .flags = { 1028 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 1029 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL} 1030 } 1031 }, 1032 [HYPERV_FEAT_TLBFLUSH] = { 1033 .desc = "paravirtualized TLB flush (hv-tlbflush)", 1034 .flags = { 1035 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1036 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED | 1037 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 1038 }, 1039 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 1040 }, 1041 [HYPERV_FEAT_EVMCS] = { 1042 .desc = "enlightened VMCS (hv-evmcs)", 1043 .flags = { 1044 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1045 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED} 1046 }, 1047 .dependencies = BIT(HYPERV_FEAT_VAPIC) 1048 }, 1049 [HYPERV_FEAT_IPI] = { 1050 .desc = "paravirtualized IPI (hv-ipi)", 1051 .flags = { 1052 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1053 .bits = HV_CLUSTER_IPI_RECOMMENDED | 1054 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 1055 }, 1056 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 1057 }, 1058 [HYPERV_FEAT_STIMER_DIRECT] = { 1059 .desc = "direct mode synthetic timers (hv-stimer-direct)", 1060 .flags = { 1061 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1062 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE} 1063 }, 1064 .dependencies = BIT(HYPERV_FEAT_STIMER) 1065 }, 1066 [HYPERV_FEAT_AVIC] = { 1067 .desc = "AVIC/APICv support (hv-avic/hv-apicv)", 1068 .flags = { 1069 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1070 .bits = HV_DEPRECATING_AEOI_RECOMMENDED} 1071 } 1072 }, 1073 [HYPERV_FEAT_SYNDBG] = { 1074 .desc = "Enable synthetic kernel debugger channel (hv-syndbg)", 1075 .flags = { 1076 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1077 .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE} 1078 }, 1079 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED), 1080 .skip_passthrough = true, 1081 }, 1082 [HYPERV_FEAT_MSR_BITMAP] = { 1083 .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)", 1084 .flags = { 1085 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX, 1086 .bits = HV_NESTED_MSR_BITMAP} 1087 } 1088 }, 1089 [HYPERV_FEAT_XMM_INPUT] = { 1090 .desc = "XMM fast hypercall input (hv-xmm-input)", 1091 .flags = { 1092 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1093 .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE} 1094 } 1095 }, 1096 [HYPERV_FEAT_TLBFLUSH_EXT] = { 1097 .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)", 1098 .flags = { 1099 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1100 .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE} 1101 }, 1102 .dependencies = BIT(HYPERV_FEAT_TLBFLUSH) 1103 }, 1104 [HYPERV_FEAT_TLBFLUSH_DIRECT] = { 1105 .desc = "direct TLB flush (hv-tlbflush-direct)", 1106 .flags = { 1107 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX, 1108 .bits = HV_NESTED_DIRECT_FLUSH} 1109 }, 1110 .dependencies = BIT(HYPERV_FEAT_VAPIC) 1111 }, 1112 }; 1113 1114 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max, 1115 bool do_sys_ioctl) 1116 { 1117 struct kvm_cpuid2 *cpuid; 1118 int r, size; 1119 1120 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 1121 cpuid = g_malloc0(size); 1122 cpuid->nent = max; 1123 1124 if (do_sys_ioctl) { 1125 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1126 } else { 1127 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1128 } 1129 if (r == 0 && cpuid->nent >= max) { 1130 r = -E2BIG; 1131 } 1132 if (r < 0) { 1133 if (r == -E2BIG) { 1134 g_free(cpuid); 1135 return NULL; 1136 } else { 1137 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n", 1138 strerror(-r)); 1139 exit(1); 1140 } 1141 } 1142 return cpuid; 1143 } 1144 1145 /* 1146 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough 1147 * for all entries. 1148 */ 1149 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs) 1150 { 1151 struct kvm_cpuid2 *cpuid; 1152 /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */ 1153 int max = 11; 1154 int i; 1155 bool do_sys_ioctl; 1156 1157 do_sys_ioctl = 1158 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0; 1159 1160 /* 1161 * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is 1162 * unsupported, kvm_hyperv_expand_features() checks for that. 1163 */ 1164 assert(do_sys_ioctl || cs->kvm_state); 1165 1166 /* 1167 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with 1168 * -E2BIG, however, it doesn't report back the right size. Keep increasing 1169 * it and re-trying until we succeed. 1170 */ 1171 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) { 1172 max++; 1173 } 1174 1175 /* 1176 * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before 1177 * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the 1178 * information early, just check for the capability and set the bit 1179 * manually. 1180 */ 1181 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state, 1182 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1183 for (i = 0; i < cpuid->nent; i++) { 1184 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) { 1185 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1186 } 1187 } 1188 } 1189 1190 return cpuid; 1191 } 1192 1193 /* 1194 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature 1195 * leaves from KVM_CAP_HYPERV* and present MSRs data. 1196 */ 1197 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs) 1198 { 1199 X86CPU *cpu = X86_CPU(cs); 1200 struct kvm_cpuid2 *cpuid; 1201 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm; 1202 1203 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */ 1204 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries)); 1205 cpuid->nent = 2; 1206 1207 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */ 1208 entry_feat = &cpuid->entries[0]; 1209 entry_feat->function = HV_CPUID_FEATURES; 1210 1211 entry_recomm = &cpuid->entries[1]; 1212 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO; 1213 entry_recomm->ebx = cpu->hyperv_spinlock_attempts; 1214 1215 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) { 1216 entry_feat->eax |= HV_HYPERCALL_AVAILABLE; 1217 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE; 1218 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1219 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED; 1220 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED; 1221 } 1222 1223 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { 1224 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE; 1225 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE; 1226 } 1227 1228 if (has_msr_hv_frequencies) { 1229 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS; 1230 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE; 1231 } 1232 1233 if (has_msr_hv_crash) { 1234 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE; 1235 } 1236 1237 if (has_msr_hv_reenlightenment) { 1238 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL; 1239 } 1240 1241 if (has_msr_hv_reset) { 1242 entry_feat->eax |= HV_RESET_AVAILABLE; 1243 } 1244 1245 if (has_msr_hv_vpindex) { 1246 entry_feat->eax |= HV_VP_INDEX_AVAILABLE; 1247 } 1248 1249 if (has_msr_hv_runtime) { 1250 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE; 1251 } 1252 1253 if (has_msr_hv_synic) { 1254 unsigned int cap = cpu->hyperv_synic_kvm_only ? 1255 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1256 1257 if (kvm_check_extension(cs->kvm_state, cap) > 0) { 1258 entry_feat->eax |= HV_SYNIC_AVAILABLE; 1259 } 1260 } 1261 1262 if (has_msr_hv_stimer) { 1263 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE; 1264 } 1265 1266 if (has_msr_hv_syndbg_options) { 1267 entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE; 1268 entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE; 1269 entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED; 1270 } 1271 1272 if (kvm_check_extension(cs->kvm_state, 1273 KVM_CAP_HYPERV_TLBFLUSH) > 0) { 1274 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED; 1275 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1276 } 1277 1278 if (kvm_check_extension(cs->kvm_state, 1279 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1280 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1281 } 1282 1283 if (kvm_check_extension(cs->kvm_state, 1284 KVM_CAP_HYPERV_SEND_IPI) > 0) { 1285 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED; 1286 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1287 } 1288 1289 return cpuid; 1290 } 1291 1292 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg) 1293 { 1294 struct kvm_cpuid_entry2 *entry; 1295 struct kvm_cpuid2 *cpuid; 1296 1297 if (hv_cpuid_cache) { 1298 cpuid = hv_cpuid_cache; 1299 } else { 1300 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) { 1301 cpuid = get_supported_hv_cpuid(cs); 1302 } else { 1303 /* 1304 * 'cs->kvm_state' may be NULL when Hyper-V features are expanded 1305 * before KVM context is created but this is only done when 1306 * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies 1307 * KVM_CAP_HYPERV_CPUID. 1308 */ 1309 assert(cs->kvm_state); 1310 1311 cpuid = get_supported_hv_cpuid_legacy(cs); 1312 } 1313 hv_cpuid_cache = cpuid; 1314 } 1315 1316 if (!cpuid) { 1317 return 0; 1318 } 1319 1320 entry = cpuid_find_entry(cpuid, func, 0); 1321 if (!entry) { 1322 return 0; 1323 } 1324 1325 return cpuid_entry_get_reg(entry, reg); 1326 } 1327 1328 static bool hyperv_feature_supported(CPUState *cs, int feature) 1329 { 1330 uint32_t func, bits; 1331 int i, reg; 1332 1333 /* 1334 * kvm_hyperv_properties needs to define at least one CPUID flag which 1335 * must be used to detect the feature, it's hard to say whether it is 1336 * supported or not otherwise. 1337 */ 1338 assert(kvm_hyperv_properties[feature].flags[0].func); 1339 1340 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) { 1341 1342 func = kvm_hyperv_properties[feature].flags[i].func; 1343 reg = kvm_hyperv_properties[feature].flags[i].reg; 1344 bits = kvm_hyperv_properties[feature].flags[i].bits; 1345 1346 if (!func) { 1347 continue; 1348 } 1349 1350 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) { 1351 return false; 1352 } 1353 } 1354 1355 return true; 1356 } 1357 1358 /* Checks that all feature dependencies are enabled */ 1359 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp) 1360 { 1361 uint64_t deps; 1362 int dep_feat; 1363 1364 deps = kvm_hyperv_properties[feature].dependencies; 1365 while (deps) { 1366 dep_feat = ctz64(deps); 1367 if (!(hyperv_feat_enabled(cpu, dep_feat))) { 1368 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1369 kvm_hyperv_properties[feature].desc, 1370 kvm_hyperv_properties[dep_feat].desc); 1371 return false; 1372 } 1373 deps &= ~(1ull << dep_feat); 1374 } 1375 1376 return true; 1377 } 1378 1379 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg) 1380 { 1381 X86CPU *cpu = X86_CPU(cs); 1382 uint32_t r = 0; 1383 int i, j; 1384 1385 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) { 1386 if (!hyperv_feat_enabled(cpu, i)) { 1387 continue; 1388 } 1389 1390 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) { 1391 if (kvm_hyperv_properties[i].flags[j].func != func) { 1392 continue; 1393 } 1394 if (kvm_hyperv_properties[i].flags[j].reg != reg) { 1395 continue; 1396 } 1397 1398 r |= kvm_hyperv_properties[i].flags[j].bits; 1399 } 1400 } 1401 1402 /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */ 1403 if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) { 1404 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1405 r |= DEFAULT_EVMCS_VERSION; 1406 } 1407 } 1408 1409 return r; 1410 } 1411 1412 /* 1413 * Expand Hyper-V CPU features. In partucular, check that all the requested 1414 * features are supported by the host and the sanity of the configuration 1415 * (that all the required dependencies are included). Also, this takes care 1416 * of 'hv_passthrough' mode and fills the environment with all supported 1417 * Hyper-V features. 1418 */ 1419 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp) 1420 { 1421 CPUState *cs = CPU(cpu); 1422 Error *local_err = NULL; 1423 int feat; 1424 1425 if (!hyperv_enabled(cpu)) 1426 return true; 1427 1428 /* 1429 * When kvm_hyperv_expand_features is called at CPU feature expansion 1430 * time per-CPU kvm_state is not available yet so we can only proceed 1431 * when KVM_CAP_SYS_HYPERV_CPUID is supported. 1432 */ 1433 if (!cs->kvm_state && 1434 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID)) 1435 return true; 1436 1437 if (cpu->hyperv_passthrough) { 1438 cpu->hyperv_vendor_id[0] = 1439 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX); 1440 cpu->hyperv_vendor_id[1] = 1441 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX); 1442 cpu->hyperv_vendor_id[2] = 1443 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX); 1444 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor, 1445 sizeof(cpu->hyperv_vendor_id) + 1); 1446 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id, 1447 sizeof(cpu->hyperv_vendor_id)); 1448 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0; 1449 1450 cpu->hyperv_interface_id[0] = 1451 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX); 1452 cpu->hyperv_interface_id[1] = 1453 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX); 1454 cpu->hyperv_interface_id[2] = 1455 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX); 1456 cpu->hyperv_interface_id[3] = 1457 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX); 1458 1459 cpu->hyperv_ver_id_build = 1460 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX); 1461 cpu->hyperv_ver_id_major = 1462 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16; 1463 cpu->hyperv_ver_id_minor = 1464 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff; 1465 cpu->hyperv_ver_id_sp = 1466 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX); 1467 cpu->hyperv_ver_id_sb = 1468 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24; 1469 cpu->hyperv_ver_id_sn = 1470 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff; 1471 1472 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, 1473 R_EAX); 1474 cpu->hyperv_limits[0] = 1475 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX); 1476 cpu->hyperv_limits[1] = 1477 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX); 1478 cpu->hyperv_limits[2] = 1479 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX); 1480 1481 cpu->hyperv_spinlock_attempts = 1482 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX); 1483 1484 /* 1485 * Mark feature as enabled in 'cpu->hyperv_features' as 1486 * hv_build_cpuid_leaf() uses this info to build guest CPUIDs. 1487 */ 1488 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1489 if (hyperv_feature_supported(cs, feat) && 1490 !kvm_hyperv_properties[feat].skip_passthrough) { 1491 cpu->hyperv_features |= BIT(feat); 1492 } 1493 } 1494 } else { 1495 /* Check features availability and dependencies */ 1496 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1497 /* If the feature was not requested skip it. */ 1498 if (!hyperv_feat_enabled(cpu, feat)) { 1499 continue; 1500 } 1501 1502 /* Check if the feature is supported by KVM */ 1503 if (!hyperv_feature_supported(cs, feat)) { 1504 error_setg(errp, "Hyper-V %s is not supported by kernel", 1505 kvm_hyperv_properties[feat].desc); 1506 return false; 1507 } 1508 1509 /* Check dependencies */ 1510 if (!hv_feature_check_deps(cpu, feat, &local_err)) { 1511 error_propagate(errp, local_err); 1512 return false; 1513 } 1514 } 1515 } 1516 1517 /* Additional dependencies not covered by kvm_hyperv_properties[] */ 1518 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1519 !cpu->hyperv_synic_kvm_only && 1520 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) { 1521 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1522 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc, 1523 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc); 1524 return false; 1525 } 1526 1527 return true; 1528 } 1529 1530 /* 1531 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent. 1532 */ 1533 static int hyperv_fill_cpuids(CPUState *cs, 1534 struct kvm_cpuid_entry2 *cpuid_ent) 1535 { 1536 X86CPU *cpu = X86_CPU(cs); 1537 struct kvm_cpuid_entry2 *c; 1538 uint32_t signature[3]; 1539 uint32_t cpuid_i = 0, max_cpuid_leaf = 0; 1540 uint32_t nested_eax = 1541 hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX); 1542 1543 max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES : 1544 HV_CPUID_IMPLEMENT_LIMITS; 1545 1546 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) { 1547 max_cpuid_leaf = 1548 MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES); 1549 } 1550 1551 c = &cpuid_ent[cpuid_i++]; 1552 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS; 1553 c->eax = max_cpuid_leaf; 1554 c->ebx = cpu->hyperv_vendor_id[0]; 1555 c->ecx = cpu->hyperv_vendor_id[1]; 1556 c->edx = cpu->hyperv_vendor_id[2]; 1557 1558 c = &cpuid_ent[cpuid_i++]; 1559 c->function = HV_CPUID_INTERFACE; 1560 c->eax = cpu->hyperv_interface_id[0]; 1561 c->ebx = cpu->hyperv_interface_id[1]; 1562 c->ecx = cpu->hyperv_interface_id[2]; 1563 c->edx = cpu->hyperv_interface_id[3]; 1564 1565 c = &cpuid_ent[cpuid_i++]; 1566 c->function = HV_CPUID_VERSION; 1567 c->eax = cpu->hyperv_ver_id_build; 1568 c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 | 1569 cpu->hyperv_ver_id_minor; 1570 c->ecx = cpu->hyperv_ver_id_sp; 1571 c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 | 1572 (cpu->hyperv_ver_id_sn & 0xffffff); 1573 1574 c = &cpuid_ent[cpuid_i++]; 1575 c->function = HV_CPUID_FEATURES; 1576 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX); 1577 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX); 1578 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX); 1579 1580 /* Unconditionally required with any Hyper-V enlightenment */ 1581 c->eax |= HV_HYPERCALL_AVAILABLE; 1582 1583 /* SynIC and Vmbus devices require messages/signals hypercalls */ 1584 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1585 !cpu->hyperv_synic_kvm_only) { 1586 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS; 1587 } 1588 1589 1590 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */ 1591 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1592 1593 c = &cpuid_ent[cpuid_i++]; 1594 c->function = HV_CPUID_ENLIGHTMENT_INFO; 1595 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX); 1596 c->ebx = cpu->hyperv_spinlock_attempts; 1597 1598 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) && 1599 !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) { 1600 c->eax |= HV_APIC_ACCESS_RECOMMENDED; 1601 } 1602 1603 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) { 1604 c->eax |= HV_NO_NONARCH_CORESHARING; 1605 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) { 1606 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) & 1607 HV_NO_NONARCH_CORESHARING; 1608 } 1609 1610 c = &cpuid_ent[cpuid_i++]; 1611 c->function = HV_CPUID_IMPLEMENT_LIMITS; 1612 c->eax = cpu->hv_max_vps; 1613 c->ebx = cpu->hyperv_limits[0]; 1614 c->ecx = cpu->hyperv_limits[1]; 1615 c->edx = cpu->hyperv_limits[2]; 1616 1617 if (nested_eax) { 1618 uint32_t function; 1619 1620 /* Create zeroed 0x40000006..0x40000009 leaves */ 1621 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1; 1622 function < HV_CPUID_NESTED_FEATURES; function++) { 1623 c = &cpuid_ent[cpuid_i++]; 1624 c->function = function; 1625 } 1626 1627 c = &cpuid_ent[cpuid_i++]; 1628 c->function = HV_CPUID_NESTED_FEATURES; 1629 c->eax = nested_eax; 1630 } 1631 1632 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) { 1633 c = &cpuid_ent[cpuid_i++]; 1634 c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS; 1635 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ? 1636 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS; 1637 memcpy(signature, "Microsoft VS", 12); 1638 c->eax = 0; 1639 c->ebx = signature[0]; 1640 c->ecx = signature[1]; 1641 c->edx = signature[2]; 1642 1643 c = &cpuid_ent[cpuid_i++]; 1644 c->function = HV_CPUID_SYNDBG_INTERFACE; 1645 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12); 1646 c->eax = signature[0]; 1647 c->ebx = 0; 1648 c->ecx = 0; 1649 c->edx = 0; 1650 1651 c = &cpuid_ent[cpuid_i++]; 1652 c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES; 1653 c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING; 1654 c->ebx = 0; 1655 c->ecx = 0; 1656 c->edx = 0; 1657 } 1658 1659 return cpuid_i; 1660 } 1661 1662 static Error *hv_passthrough_mig_blocker; 1663 static Error *hv_no_nonarch_cs_mig_blocker; 1664 1665 /* Checks that the exposed eVMCS version range is supported by KVM */ 1666 static bool evmcs_version_supported(uint16_t evmcs_version, 1667 uint16_t supported_evmcs_version) 1668 { 1669 uint8_t min_version = evmcs_version & 0xff; 1670 uint8_t max_version = evmcs_version >> 8; 1671 uint8_t min_supported_version = supported_evmcs_version & 0xff; 1672 uint8_t max_supported_version = supported_evmcs_version >> 8; 1673 1674 return (min_version >= min_supported_version) && 1675 (max_version <= max_supported_version); 1676 } 1677 1678 static int hyperv_init_vcpu(X86CPU *cpu) 1679 { 1680 CPUState *cs = CPU(cpu); 1681 Error *local_err = NULL; 1682 int ret; 1683 1684 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) { 1685 error_setg(&hv_passthrough_mig_blocker, 1686 "'hv-passthrough' CPU flag prevents migration, use explicit" 1687 " set of hv-* flags instead"); 1688 ret = migrate_add_blocker(&hv_passthrough_mig_blocker, &local_err); 1689 if (ret < 0) { 1690 error_report_err(local_err); 1691 return ret; 1692 } 1693 } 1694 1695 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO && 1696 hv_no_nonarch_cs_mig_blocker == NULL) { 1697 error_setg(&hv_no_nonarch_cs_mig_blocker, 1698 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration" 1699 " use explicit 'hv-no-nonarch-coresharing=on' instead (but" 1700 " make sure SMT is disabled and/or that vCPUs are properly" 1701 " pinned)"); 1702 ret = migrate_add_blocker(&hv_no_nonarch_cs_mig_blocker, &local_err); 1703 if (ret < 0) { 1704 error_report_err(local_err); 1705 return ret; 1706 } 1707 } 1708 1709 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) { 1710 /* 1711 * the kernel doesn't support setting vp_index; assert that its value 1712 * is in sync 1713 */ 1714 uint64_t value; 1715 1716 ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value); 1717 if (ret < 0) { 1718 return ret; 1719 } 1720 1721 if (value != hyperv_vp_index(CPU(cpu))) { 1722 error_report("kernel's vp_index != QEMU's vp_index"); 1723 return -ENXIO; 1724 } 1725 } 1726 1727 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 1728 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ? 1729 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1730 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0); 1731 if (ret < 0) { 1732 error_report("failed to turn on HyperV SynIC in KVM: %s", 1733 strerror(-ret)); 1734 return ret; 1735 } 1736 1737 if (!cpu->hyperv_synic_kvm_only) { 1738 ret = hyperv_x86_synic_add(cpu); 1739 if (ret < 0) { 1740 error_report("failed to create HyperV SynIC: %s", 1741 strerror(-ret)); 1742 return ret; 1743 } 1744 } 1745 } 1746 1747 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1748 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION; 1749 uint16_t supported_evmcs_version; 1750 1751 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0, 1752 (uintptr_t)&supported_evmcs_version); 1753 1754 /* 1755 * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs' 1756 * option sets. Note: we hardcode the maximum supported eVMCS version 1757 * to '1' as well so 'hv-evmcs' feature is migratable even when (and if) 1758 * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have 1759 * to be added. 1760 */ 1761 if (ret < 0) { 1762 error_report("Hyper-V %s is not supported by kernel", 1763 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc); 1764 return ret; 1765 } 1766 1767 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) { 1768 error_report("eVMCS version range [%d..%d] is not supported by " 1769 "kernel (supported: [%d..%d])", evmcs_version & 0xff, 1770 evmcs_version >> 8, supported_evmcs_version & 0xff, 1771 supported_evmcs_version >> 8); 1772 return -ENOTSUP; 1773 } 1774 } 1775 1776 if (cpu->hyperv_enforce_cpuid) { 1777 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1); 1778 if (ret < 0) { 1779 error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s", 1780 strerror(-ret)); 1781 return ret; 1782 } 1783 } 1784 1785 /* Skip SynIC and VP_INDEX since they are hard deps already */ 1786 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_STIMER) && 1787 hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) && 1788 hyperv_feat_enabled(cpu, HYPERV_FEAT_RUNTIME)) { 1789 hyperv_x86_set_vmbus_recommended_features_enabled(); 1790 } 1791 1792 return 0; 1793 } 1794 1795 static Error *invtsc_mig_blocker; 1796 1797 static void kvm_init_xsave(CPUX86State *env) 1798 { 1799 if (has_xsave2) { 1800 env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096); 1801 } else { 1802 env->xsave_buf_len = sizeof(struct kvm_xsave); 1803 } 1804 1805 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len); 1806 memset(env->xsave_buf, 0, env->xsave_buf_len); 1807 /* 1808 * The allocated storage must be large enough for all of the 1809 * possible XSAVE state components. 1810 */ 1811 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <= 1812 env->xsave_buf_len); 1813 } 1814 1815 static void kvm_init_nested_state(CPUX86State *env) 1816 { 1817 struct kvm_vmx_nested_state_hdr *vmx_hdr; 1818 uint32_t size; 1819 1820 if (!env->nested_state) { 1821 return; 1822 } 1823 1824 size = env->nested_state->size; 1825 1826 memset(env->nested_state, 0, size); 1827 env->nested_state->size = size; 1828 1829 if (cpu_has_vmx(env)) { 1830 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX; 1831 vmx_hdr = &env->nested_state->hdr.vmx; 1832 vmx_hdr->vmxon_pa = -1ull; 1833 vmx_hdr->vmcs12_pa = -1ull; 1834 } else if (cpu_has_svm(env)) { 1835 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM; 1836 } 1837 } 1838 1839 uint32_t kvm_x86_build_cpuid(CPUX86State *env, struct kvm_cpuid_entry2 *entries, 1840 uint32_t cpuid_i) 1841 { 1842 uint32_t limit, i, j; 1843 uint32_t unused; 1844 struct kvm_cpuid_entry2 *c; 1845 1846 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); 1847 1848 for (i = 0; i <= limit; i++) { 1849 j = 0; 1850 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1851 goto full; 1852 } 1853 c = &entries[cpuid_i++]; 1854 switch (i) { 1855 case 2: { 1856 /* Keep reading function 2 till all the input is received */ 1857 int times; 1858 1859 c->function = i; 1860 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1861 times = c->eax & 0xff; 1862 if (times > 1) { 1863 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | 1864 KVM_CPUID_FLAG_STATE_READ_NEXT; 1865 } 1866 1867 for (j = 1; j < times; ++j) { 1868 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1869 goto full; 1870 } 1871 c = &entries[cpuid_i++]; 1872 c->function = i; 1873 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; 1874 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1875 } 1876 break; 1877 } 1878 case 0x1f: 1879 if (!x86_has_cpuid_0x1f(env_archcpu(env))) { 1880 cpuid_i--; 1881 break; 1882 } 1883 /* fallthrough */ 1884 case 4: 1885 case 0xb: 1886 case 0xd: 1887 for (j = 0; ; j++) { 1888 c->function = i; 1889 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1890 c->index = j; 1891 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1892 1893 if (i == 4 && c->eax == 0) { 1894 break; 1895 } 1896 if (i == 0xb && !(c->ecx & 0xff00)) { 1897 break; 1898 } 1899 if (i == 0x1f && !(c->ecx & 0xff00)) { 1900 break; 1901 } 1902 if (i == 0xd && c->eax == 0) { 1903 if (j < 63) { 1904 continue; 1905 } else { 1906 cpuid_i--; 1907 break; 1908 } 1909 } 1910 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1911 goto full; 1912 } 1913 c = &entries[cpuid_i++]; 1914 } 1915 break; 1916 case 0x12: 1917 for (j = 0; ; j++) { 1918 c->function = i; 1919 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1920 c->index = j; 1921 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1922 1923 if (j > 1 && (c->eax & 0xf) != 1) { 1924 break; 1925 } 1926 1927 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1928 goto full; 1929 } 1930 c = &entries[cpuid_i++]; 1931 } 1932 break; 1933 case 0x7: 1934 case 0x14: 1935 case 0x1d: 1936 case 0x1e: 1937 case 0x24: { 1938 uint32_t times; 1939 1940 c->function = i; 1941 c->index = 0; 1942 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1943 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1944 times = c->eax; 1945 1946 for (j = 1; j <= times; ++j) { 1947 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1948 goto full; 1949 } 1950 c = &entries[cpuid_i++]; 1951 c->function = i; 1952 c->index = j; 1953 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1954 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1955 } 1956 break; 1957 } 1958 default: 1959 c->function = i; 1960 c->flags = 0; 1961 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1962 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 1963 /* 1964 * KVM already returns all zeroes if a CPUID entry is missing, 1965 * so we can omit it and avoid hitting KVM's 80-entry limit. 1966 */ 1967 cpuid_i--; 1968 } 1969 break; 1970 } 1971 } 1972 1973 if (limit >= 0x0a) { 1974 uint32_t eax, edx; 1975 1976 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx); 1977 1978 has_architectural_pmu_version = eax & 0xff; 1979 if (has_architectural_pmu_version > 0) { 1980 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8; 1981 1982 /* Shouldn't be more than 32, since that's the number of bits 1983 * available in EBX to tell us _which_ counters are available. 1984 * Play it safe. 1985 */ 1986 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) { 1987 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS; 1988 } 1989 1990 if (has_architectural_pmu_version > 1) { 1991 num_architectural_pmu_fixed_counters = edx & 0x1f; 1992 1993 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) { 1994 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS; 1995 } 1996 } 1997 } 1998 } 1999 2000 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); 2001 2002 for (i = 0x80000000; i <= limit; i++) { 2003 j = 0; 2004 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2005 goto full; 2006 } 2007 c = &entries[cpuid_i++]; 2008 2009 switch (i) { 2010 case 0x8000001d: 2011 /* Query for all AMD cache information leaves */ 2012 for (j = 0; ; j++) { 2013 c->function = i; 2014 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 2015 c->index = j; 2016 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 2017 2018 if (c->eax == 0) { 2019 break; 2020 } 2021 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2022 goto full; 2023 } 2024 c = &entries[cpuid_i++]; 2025 } 2026 break; 2027 default: 2028 c->function = i; 2029 c->flags = 0; 2030 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 2031 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 2032 /* 2033 * KVM already returns all zeroes if a CPUID entry is missing, 2034 * so we can omit it and avoid hitting KVM's 80-entry limit. 2035 */ 2036 cpuid_i--; 2037 } 2038 break; 2039 } 2040 } 2041 2042 /* Call Centaur's CPUID instructions they are supported. */ 2043 if (env->cpuid_xlevel2 > 0) { 2044 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); 2045 2046 for (i = 0xC0000000; i <= limit; i++) { 2047 j = 0; 2048 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2049 goto full; 2050 } 2051 c = &entries[cpuid_i++]; 2052 2053 c->function = i; 2054 c->flags = 0; 2055 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 2056 } 2057 } 2058 2059 return cpuid_i; 2060 2061 full: 2062 fprintf(stderr, "cpuid_data is full, no space for " 2063 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 2064 abort(); 2065 } 2066 2067 int kvm_arch_pre_create_vcpu(CPUState *cpu, Error **errp) 2068 { 2069 if (is_tdx_vm()) { 2070 return tdx_pre_create_vcpu(cpu, errp); 2071 } 2072 2073 return 0; 2074 } 2075 2076 int kvm_arch_init_vcpu(CPUState *cs) 2077 { 2078 struct { 2079 struct kvm_cpuid2 cpuid; 2080 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; 2081 } cpuid_data; 2082 /* 2083 * The kernel defines these structs with padding fields so there 2084 * should be no extra padding in our cpuid_data struct. 2085 */ 2086 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) != 2087 sizeof(struct kvm_cpuid2) + 2088 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES); 2089 2090 X86CPU *cpu = X86_CPU(cs); 2091 CPUX86State *env = &cpu->env; 2092 uint32_t cpuid_i; 2093 struct kvm_cpuid_entry2 *c; 2094 uint32_t signature[3]; 2095 int kvm_base = KVM_CPUID_SIGNATURE; 2096 int max_nested_state_len; 2097 int r; 2098 Error *local_err = NULL; 2099 2100 if (current_machine->cgs) { 2101 r = x86_confidential_guest_check_features( 2102 X86_CONFIDENTIAL_GUEST(current_machine->cgs), cs); 2103 if (r < 0) { 2104 return r; 2105 } 2106 } 2107 2108 memset(&cpuid_data, 0, sizeof(cpuid_data)); 2109 2110 cpuid_i = 0; 2111 2112 has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2); 2113 2114 r = kvm_arch_set_tsc_khz(cs); 2115 if (r < 0) { 2116 return r; 2117 } 2118 2119 /* vcpu's TSC frequency is either specified by user, or following 2120 * the value used by KVM if the former is not present. In the 2121 * latter case, we query it from KVM and record in env->tsc_khz, 2122 * so that vcpu's TSC frequency can be migrated later via this field. 2123 */ 2124 if (!env->tsc_khz) { 2125 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 2126 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 2127 -ENOTSUP; 2128 if (r > 0) { 2129 env->tsc_khz = r; 2130 } 2131 } 2132 2133 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY; 2134 2135 /* 2136 * kvm_hyperv_expand_features() is called here for the second time in case 2137 * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle 2138 * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to 2139 * check which Hyper-V enlightenments are supported and which are not, we 2140 * can still proceed and check/expand Hyper-V enlightenments here so legacy 2141 * behavior is preserved. 2142 */ 2143 if (!kvm_hyperv_expand_features(cpu, &local_err)) { 2144 error_report_err(local_err); 2145 return -ENOSYS; 2146 } 2147 2148 if (hyperv_enabled(cpu)) { 2149 r = hyperv_init_vcpu(cpu); 2150 if (r) { 2151 return r; 2152 } 2153 2154 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries); 2155 kvm_base = KVM_CPUID_SIGNATURE_NEXT; 2156 has_msr_hv_hypercall = true; 2157 } 2158 2159 if (cs->kvm_state->xen_version) { 2160 #ifdef CONFIG_XEN_EMU 2161 struct kvm_cpuid_entry2 *xen_max_leaf; 2162 2163 memcpy(signature, "XenVMMXenVMM", 12); 2164 2165 xen_max_leaf = c = &cpuid_data.entries[cpuid_i++]; 2166 c->function = kvm_base + XEN_CPUID_SIGNATURE; 2167 c->eax = kvm_base + XEN_CPUID_TIME; 2168 c->ebx = signature[0]; 2169 c->ecx = signature[1]; 2170 c->edx = signature[2]; 2171 2172 c = &cpuid_data.entries[cpuid_i++]; 2173 c->function = kvm_base + XEN_CPUID_VENDOR; 2174 c->eax = cs->kvm_state->xen_version; 2175 c->ebx = 0; 2176 c->ecx = 0; 2177 c->edx = 0; 2178 2179 c = &cpuid_data.entries[cpuid_i++]; 2180 c->function = kvm_base + XEN_CPUID_HVM_MSR; 2181 /* Number of hypercall-transfer pages */ 2182 c->eax = 1; 2183 /* Hypercall MSR base address */ 2184 if (hyperv_enabled(cpu)) { 2185 c->ebx = XEN_HYPERCALL_MSR_HYPERV; 2186 kvm_xen_init(cs->kvm_state, c->ebx); 2187 } else { 2188 c->ebx = XEN_HYPERCALL_MSR; 2189 } 2190 c->ecx = 0; 2191 c->edx = 0; 2192 2193 c = &cpuid_data.entries[cpuid_i++]; 2194 c->function = kvm_base + XEN_CPUID_TIME; 2195 c->eax = ((!!tsc_is_stable_and_known(env) << 1) | 2196 (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2)); 2197 /* default=0 (emulate if necessary) */ 2198 c->ebx = 0; 2199 /* guest tsc frequency */ 2200 c->ecx = env->user_tsc_khz; 2201 /* guest tsc incarnation (migration count) */ 2202 c->edx = 0; 2203 2204 c = &cpuid_data.entries[cpuid_i++]; 2205 c->function = kvm_base + XEN_CPUID_HVM; 2206 xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM; 2207 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) { 2208 c->function = kvm_base + XEN_CPUID_HVM; 2209 2210 if (cpu->xen_vapic) { 2211 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT; 2212 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT; 2213 } 2214 2215 c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS; 2216 2217 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) { 2218 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT; 2219 c->ebx = cs->cpu_index; 2220 } 2221 2222 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 17)) { 2223 c->eax |= XEN_HVM_CPUID_UPCALL_VECTOR; 2224 } 2225 } 2226 2227 r = kvm_xen_init_vcpu(cs); 2228 if (r) { 2229 return r; 2230 } 2231 2232 kvm_base += 0x100; 2233 #else /* CONFIG_XEN_EMU */ 2234 /* This should never happen as kvm_arch_init() would have died first. */ 2235 fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n"); 2236 abort(); 2237 #endif 2238 } else if (cpu->expose_kvm) { 2239 memcpy(signature, "KVMKVMKVM\0\0\0", 12); 2240 c = &cpuid_data.entries[cpuid_i++]; 2241 c->function = KVM_CPUID_SIGNATURE | kvm_base; 2242 c->eax = KVM_CPUID_FEATURES | kvm_base; 2243 c->ebx = signature[0]; 2244 c->ecx = signature[1]; 2245 c->edx = signature[2]; 2246 2247 c = &cpuid_data.entries[cpuid_i++]; 2248 c->function = KVM_CPUID_FEATURES | kvm_base; 2249 c->eax = env->features[FEAT_KVM]; 2250 c->edx = env->features[FEAT_KVM_HINTS]; 2251 } 2252 2253 if (cpu->kvm_pv_enforce_cpuid) { 2254 r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1); 2255 if (r < 0) { 2256 fprintf(stderr, 2257 "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s", 2258 strerror(-r)); 2259 abort(); 2260 } 2261 } 2262 2263 cpuid_i = kvm_x86_build_cpuid(env, cpuid_data.entries, cpuid_i); 2264 cpuid_data.cpuid.nent = cpuid_i; 2265 2266 if (x86_cpu_family(env->cpuid_version) >= 6 2267 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == 2268 (CPUID_MCE | CPUID_MCA)) { 2269 uint64_t mcg_cap, unsupported_caps; 2270 int banks; 2271 int ret; 2272 2273 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); 2274 if (ret < 0) { 2275 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); 2276 return ret; 2277 } 2278 2279 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { 2280 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", 2281 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); 2282 return -ENOTSUP; 2283 } 2284 2285 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); 2286 if (unsupported_caps) { 2287 if (unsupported_caps & MCG_LMCE_P) { 2288 error_report("kvm: LMCE not supported"); 2289 return -ENOTSUP; 2290 } 2291 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64, 2292 unsupported_caps); 2293 } 2294 2295 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; 2296 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); 2297 if (ret < 0) { 2298 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); 2299 return ret; 2300 } 2301 } 2302 2303 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env); 2304 2305 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); 2306 if (c) { 2307 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || 2308 !!(c->ecx & CPUID_EXT_SMX); 2309 } 2310 2311 c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0); 2312 if (c && (c->ebx & CPUID_7_0_EBX_SGX)) { 2313 has_msr_feature_control = true; 2314 } 2315 2316 if (env->mcg_cap & MCG_LMCE_P) { 2317 has_msr_mcg_ext_ctl = has_msr_feature_control = true; 2318 } 2319 2320 if (!env->user_tsc_khz) { 2321 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && 2322 invtsc_mig_blocker == NULL) { 2323 error_setg(&invtsc_mig_blocker, 2324 "State blocked by non-migratable CPU device" 2325 " (invtsc flag)"); 2326 r = migrate_add_blocker(&invtsc_mig_blocker, &local_err); 2327 if (r < 0) { 2328 error_report_err(local_err); 2329 return r; 2330 } 2331 } 2332 } 2333 2334 if (cpu->vmware_cpuid_freq 2335 /* Guests depend on 0x40000000 to detect this feature, so only expose 2336 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ 2337 && cpu->expose_kvm 2338 && kvm_base == KVM_CPUID_SIGNATURE 2339 /* TSC clock must be stable and known for this feature. */ 2340 && tsc_is_stable_and_known(env)) { 2341 2342 c = &cpuid_data.entries[cpuid_i++]; 2343 c->function = KVM_CPUID_SIGNATURE | 0x10; 2344 c->eax = env->tsc_khz; 2345 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */ 2346 c->ecx = c->edx = 0; 2347 2348 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); 2349 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); 2350 } 2351 2352 cpuid_data.cpuid.nent = cpuid_i; 2353 2354 cpuid_data.cpuid.padding = 0; 2355 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); 2356 if (r) { 2357 goto fail; 2358 } 2359 kvm_init_xsave(env); 2360 2361 max_nested_state_len = kvm_max_nested_state_length(); 2362 if (max_nested_state_len > 0) { 2363 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data)); 2364 2365 if (cpu_has_vmx(env) || cpu_has_svm(env)) { 2366 env->nested_state = g_malloc0(max_nested_state_len); 2367 env->nested_state->size = max_nested_state_len; 2368 2369 kvm_init_nested_state(env); 2370 } 2371 } 2372 2373 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); 2374 2375 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { 2376 has_msr_tsc_aux = false; 2377 } 2378 2379 kvm_init_msrs(cpu); 2380 2381 return 0; 2382 2383 fail: 2384 migrate_del_blocker(&invtsc_mig_blocker); 2385 2386 return r; 2387 } 2388 2389 int kvm_arch_destroy_vcpu(CPUState *cs) 2390 { 2391 X86CPU *cpu = X86_CPU(cs); 2392 CPUX86State *env = &cpu->env; 2393 2394 g_free(env->xsave_buf); 2395 2396 g_free(cpu->kvm_msr_buf); 2397 cpu->kvm_msr_buf = NULL; 2398 2399 g_free(env->nested_state); 2400 env->nested_state = NULL; 2401 2402 qemu_del_vm_change_state_handler(cpu->vmsentry); 2403 2404 return 0; 2405 } 2406 2407 void kvm_arch_reset_vcpu(X86CPU *cpu) 2408 { 2409 CPUX86State *env = &cpu->env; 2410 2411 env->xcr0 = 1; 2412 if (kvm_irqchip_in_kernel()) { 2413 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : 2414 KVM_MP_STATE_UNINITIALIZED; 2415 } else { 2416 env->mp_state = KVM_MP_STATE_RUNNABLE; 2417 } 2418 2419 /* enabled by default */ 2420 env->poll_control_msr = 1; 2421 2422 kvm_init_nested_state(env); 2423 2424 sev_es_set_reset_vector(CPU(cpu)); 2425 } 2426 2427 void kvm_arch_after_reset_vcpu(X86CPU *cpu) 2428 { 2429 CPUX86State *env = &cpu->env; 2430 int i; 2431 2432 /* 2433 * Reset SynIC after all other devices have been reset to let them remove 2434 * their SINT routes first. 2435 */ 2436 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 2437 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { 2438 env->msr_hv_synic_sint[i] = HV_SINT_MASKED; 2439 } 2440 2441 hyperv_x86_synic_reset(cpu); 2442 } 2443 } 2444 2445 void kvm_arch_reset_parked_vcpu(unsigned long vcpu_id, int kvm_fd) 2446 { 2447 g_autofree struct kvm_msrs *msrs = NULL; 2448 2449 msrs = g_malloc0(sizeof(*msrs) + sizeof(msrs->entries[0])); 2450 msrs->entries[0].index = MSR_IA32_TSC; 2451 msrs->entries[0].data = 1; /* match the value in x86_cpu_reset() */ 2452 msrs->nmsrs++; 2453 2454 if (ioctl(kvm_fd, KVM_SET_MSRS, msrs) != 1) { 2455 warn_report("parked vCPU %lu TSC reset failed: %d", 2456 vcpu_id, errno); 2457 } 2458 } 2459 2460 void kvm_arch_do_init_vcpu(X86CPU *cpu) 2461 { 2462 CPUX86State *env = &cpu->env; 2463 2464 /* APs get directly into wait-for-SIPI state. */ 2465 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { 2466 env->mp_state = KVM_MP_STATE_INIT_RECEIVED; 2467 } 2468 } 2469 2470 static int kvm_get_supported_feature_msrs(KVMState *s) 2471 { 2472 int ret = 0; 2473 2474 if (kvm_feature_msrs != NULL) { 2475 return 0; 2476 } 2477 2478 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) { 2479 return 0; 2480 } 2481 2482 struct kvm_msr_list msr_list; 2483 2484 msr_list.nmsrs = 0; 2485 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list); 2486 if (ret < 0 && ret != -E2BIG) { 2487 error_report("Fetch KVM feature MSR list failed: %s", 2488 strerror(-ret)); 2489 return ret; 2490 } 2491 2492 assert(msr_list.nmsrs > 0); 2493 kvm_feature_msrs = g_malloc0(sizeof(msr_list) + 2494 msr_list.nmsrs * sizeof(msr_list.indices[0])); 2495 2496 kvm_feature_msrs->nmsrs = msr_list.nmsrs; 2497 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs); 2498 2499 if (ret < 0) { 2500 error_report("Fetch KVM feature MSR list failed: %s", 2501 strerror(-ret)); 2502 g_free(kvm_feature_msrs); 2503 kvm_feature_msrs = NULL; 2504 return ret; 2505 } 2506 2507 return 0; 2508 } 2509 2510 static int kvm_get_supported_msrs(KVMState *s) 2511 { 2512 int ret = 0; 2513 struct kvm_msr_list msr_list, *kvm_msr_list; 2514 2515 /* 2516 * Obtain MSR list from KVM. These are the MSRs that we must 2517 * save/restore. 2518 */ 2519 msr_list.nmsrs = 0; 2520 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); 2521 if (ret < 0 && ret != -E2BIG) { 2522 return ret; 2523 } 2524 /* 2525 * Old kernel modules had a bug and could write beyond the provided 2526 * memory. Allocate at least a safe amount of 1K. 2527 */ 2528 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + 2529 msr_list.nmsrs * 2530 sizeof(msr_list.indices[0]))); 2531 2532 kvm_msr_list->nmsrs = msr_list.nmsrs; 2533 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); 2534 if (ret >= 0) { 2535 int i; 2536 2537 for (i = 0; i < kvm_msr_list->nmsrs; i++) { 2538 switch (kvm_msr_list->indices[i]) { 2539 case MSR_STAR: 2540 has_msr_star = true; 2541 break; 2542 case MSR_VM_HSAVE_PA: 2543 has_msr_hsave_pa = true; 2544 break; 2545 case MSR_TSC_AUX: 2546 has_msr_tsc_aux = true; 2547 break; 2548 case MSR_TSC_ADJUST: 2549 has_msr_tsc_adjust = true; 2550 break; 2551 case MSR_IA32_TSCDEADLINE: 2552 has_msr_tsc_deadline = true; 2553 break; 2554 case MSR_IA32_SMBASE: 2555 has_msr_smbase = true; 2556 break; 2557 case MSR_SMI_COUNT: 2558 has_msr_smi_count = true; 2559 break; 2560 case MSR_IA32_MISC_ENABLE: 2561 has_msr_misc_enable = true; 2562 break; 2563 case MSR_IA32_BNDCFGS: 2564 has_msr_bndcfgs = true; 2565 break; 2566 case MSR_IA32_XSS: 2567 has_msr_xss = true; 2568 break; 2569 case MSR_IA32_UMWAIT_CONTROL: 2570 has_msr_umwait = true; 2571 break; 2572 case HV_X64_MSR_CRASH_CTL: 2573 has_msr_hv_crash = true; 2574 break; 2575 case HV_X64_MSR_RESET: 2576 has_msr_hv_reset = true; 2577 break; 2578 case HV_X64_MSR_VP_INDEX: 2579 has_msr_hv_vpindex = true; 2580 break; 2581 case HV_X64_MSR_VP_RUNTIME: 2582 has_msr_hv_runtime = true; 2583 break; 2584 case HV_X64_MSR_SCONTROL: 2585 has_msr_hv_synic = true; 2586 break; 2587 case HV_X64_MSR_STIMER0_CONFIG: 2588 has_msr_hv_stimer = true; 2589 break; 2590 case HV_X64_MSR_TSC_FREQUENCY: 2591 has_msr_hv_frequencies = true; 2592 break; 2593 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 2594 has_msr_hv_reenlightenment = true; 2595 break; 2596 case HV_X64_MSR_SYNDBG_OPTIONS: 2597 has_msr_hv_syndbg_options = true; 2598 break; 2599 case MSR_IA32_SPEC_CTRL: 2600 has_msr_spec_ctrl = true; 2601 break; 2602 case MSR_AMD64_TSC_RATIO: 2603 has_tsc_scale_msr = true; 2604 break; 2605 case MSR_IA32_TSX_CTRL: 2606 has_msr_tsx_ctrl = true; 2607 break; 2608 case MSR_VIRT_SSBD: 2609 has_msr_virt_ssbd = true; 2610 break; 2611 case MSR_IA32_ARCH_CAPABILITIES: 2612 has_msr_arch_capabs = true; 2613 break; 2614 case MSR_IA32_CORE_CAPABILITY: 2615 has_msr_core_capabs = true; 2616 break; 2617 case MSR_IA32_PERF_CAPABILITIES: 2618 has_msr_perf_capabs = true; 2619 break; 2620 case MSR_IA32_VMX_VMFUNC: 2621 has_msr_vmx_vmfunc = true; 2622 break; 2623 case MSR_IA32_UCODE_REV: 2624 has_msr_ucode_rev = true; 2625 break; 2626 case MSR_IA32_VMX_PROCBASED_CTLS2: 2627 has_msr_vmx_procbased_ctls2 = true; 2628 break; 2629 case MSR_IA32_PKRS: 2630 has_msr_pkrs = true; 2631 break; 2632 case MSR_K7_HWCR: 2633 has_msr_hwcr = true; 2634 } 2635 } 2636 } 2637 2638 g_free(kvm_msr_list); 2639 2640 return ret; 2641 } 2642 2643 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu, 2644 uint32_t msr, 2645 uint64_t *val) 2646 { 2647 *val = cpu_x86_get_msr_core_thread_count(cpu); 2648 2649 return true; 2650 } 2651 2652 static bool kvm_rdmsr_rapl_power_unit(X86CPU *cpu, 2653 uint32_t msr, 2654 uint64_t *val) 2655 { 2656 2657 CPUState *cs = CPU(cpu); 2658 2659 *val = cs->kvm_state->msr_energy.msr_unit; 2660 2661 return true; 2662 } 2663 2664 static bool kvm_rdmsr_pkg_power_limit(X86CPU *cpu, 2665 uint32_t msr, 2666 uint64_t *val) 2667 { 2668 2669 CPUState *cs = CPU(cpu); 2670 2671 *val = cs->kvm_state->msr_energy.msr_limit; 2672 2673 return true; 2674 } 2675 2676 static bool kvm_rdmsr_pkg_power_info(X86CPU *cpu, 2677 uint32_t msr, 2678 uint64_t *val) 2679 { 2680 2681 CPUState *cs = CPU(cpu); 2682 2683 *val = cs->kvm_state->msr_energy.msr_info; 2684 2685 return true; 2686 } 2687 2688 static bool kvm_rdmsr_pkg_energy_status(X86CPU *cpu, 2689 uint32_t msr, 2690 uint64_t *val) 2691 { 2692 2693 CPUState *cs = CPU(cpu); 2694 *val = cs->kvm_state->msr_energy.msr_value[cs->cpu_index]; 2695 2696 return true; 2697 } 2698 2699 static Notifier smram_machine_done; 2700 static KVMMemoryListener smram_listener; 2701 static AddressSpace smram_address_space; 2702 static MemoryRegion smram_as_root; 2703 static MemoryRegion smram_as_mem; 2704 2705 static void register_smram_listener(Notifier *n, void *unused) 2706 { 2707 CPUState *cpu; 2708 MemoryRegion *smram = 2709 (MemoryRegion *) object_resolve_path("/machine/smram", NULL); 2710 2711 /* Outer container... */ 2712 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); 2713 memory_region_set_enabled(&smram_as_root, true); 2714 2715 /* ... with two regions inside: normal system memory with low 2716 * priority, and... 2717 */ 2718 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", 2719 get_system_memory(), 0, ~0ull); 2720 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); 2721 memory_region_set_enabled(&smram_as_mem, true); 2722 2723 if (smram) { 2724 /* ... SMRAM with higher priority */ 2725 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); 2726 memory_region_set_enabled(smram, true); 2727 } 2728 2729 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); 2730 kvm_memory_listener_register(kvm_state, &smram_listener, 2731 &smram_address_space, X86ASIdx_SMM, "kvm-smram"); 2732 2733 CPU_FOREACH(cpu) { 2734 cpu_address_space_init(cpu, X86ASIdx_SMM, "cpu-smm", &smram_as_root); 2735 } 2736 } 2737 2738 static void *kvm_msr_energy_thread(void *data) 2739 { 2740 KVMState *s = data; 2741 struct KVMMsrEnergy *vmsr = &s->msr_energy; 2742 2743 g_autofree vmsr_package_energy_stat *pkg_stat = NULL; 2744 g_autofree vmsr_thread_stat *thd_stat = NULL; 2745 g_autofree CPUState *cpu = NULL; 2746 g_autofree unsigned int *vpkgs_energy_stat = NULL; 2747 unsigned int num_threads = 0; 2748 2749 X86CPUTopoIDs topo_ids; 2750 2751 rcu_register_thread(); 2752 2753 /* Allocate memory for each package energy status */ 2754 pkg_stat = g_new0(vmsr_package_energy_stat, vmsr->host_topo.maxpkgs); 2755 2756 /* Allocate memory for thread stats */ 2757 thd_stat = g_new0(vmsr_thread_stat, 1); 2758 2759 /* Allocate memory for holding virtual package energy counter */ 2760 vpkgs_energy_stat = g_new0(unsigned int, vmsr->guest_vsockets); 2761 2762 /* Populate the max tick of each packages */ 2763 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) { 2764 /* 2765 * Max numbers of ticks per package 2766 * Time in second * Number of ticks/second * Number of cores/package 2767 * ex: 100 ticks/second/CPU, 12 CPUs per Package gives 1200 ticks max 2768 */ 2769 vmsr->host_topo.maxticks[i] = (MSR_ENERGY_THREAD_SLEEP_US / 1000000) 2770 * sysconf(_SC_CLK_TCK) 2771 * vmsr->host_topo.pkg_cpu_count[i]; 2772 } 2773 2774 while (true) { 2775 /* Get all qemu threads id */ 2776 g_autofree pid_t *thread_ids 2777 = vmsr_get_thread_ids(vmsr->pid, &num_threads); 2778 2779 if (thread_ids == NULL) { 2780 goto clean; 2781 } 2782 2783 thd_stat = g_renew(vmsr_thread_stat, thd_stat, num_threads); 2784 /* Unlike g_new0, g_renew0 function doesn't exist yet... */ 2785 memset(thd_stat, 0, num_threads * sizeof(vmsr_thread_stat)); 2786 2787 /* Populate all the thread stats */ 2788 for (int i = 0; i < num_threads; i++) { 2789 thd_stat[i].utime = g_new0(unsigned long long, 2); 2790 thd_stat[i].stime = g_new0(unsigned long long, 2); 2791 thd_stat[i].thread_id = thread_ids[i]; 2792 vmsr_read_thread_stat(vmsr->pid, 2793 thd_stat[i].thread_id, 2794 &thd_stat[i].utime[0], 2795 &thd_stat[i].stime[0], 2796 &thd_stat[i].cpu_id); 2797 thd_stat[i].pkg_id = 2798 vmsr_get_physical_package_id(thd_stat[i].cpu_id); 2799 } 2800 2801 /* Retrieve all packages power plane energy counter */ 2802 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) { 2803 for (int j = 0; j < num_threads; j++) { 2804 /* 2805 * Use the first thread we found that ran on the CPU 2806 * of the package to read the packages energy counter 2807 */ 2808 if (thd_stat[j].pkg_id == i) { 2809 pkg_stat[i].e_start = 2810 vmsr_read_msr(MSR_PKG_ENERGY_STATUS, 2811 thd_stat[j].cpu_id, 2812 thd_stat[j].thread_id, 2813 s->msr_energy.sioc); 2814 break; 2815 } 2816 } 2817 } 2818 2819 /* Sleep a short period while the other threads are working */ 2820 usleep(MSR_ENERGY_THREAD_SLEEP_US); 2821 2822 /* 2823 * Retrieve all packages power plane energy counter 2824 * Calculate the delta of all packages 2825 */ 2826 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) { 2827 for (int j = 0; j < num_threads; j++) { 2828 /* 2829 * Use the first thread we found that ran on the CPU 2830 * of the package to read the packages energy counter 2831 */ 2832 if (thd_stat[j].pkg_id == i) { 2833 pkg_stat[i].e_end = 2834 vmsr_read_msr(MSR_PKG_ENERGY_STATUS, 2835 thd_stat[j].cpu_id, 2836 thd_stat[j].thread_id, 2837 s->msr_energy.sioc); 2838 /* 2839 * Prevent the case we have migrate the VM 2840 * during the sleep period or any other cases 2841 * were energy counter might be lower after 2842 * the sleep period. 2843 */ 2844 if (pkg_stat[i].e_end > pkg_stat[i].e_start) { 2845 pkg_stat[i].e_delta = 2846 pkg_stat[i].e_end - pkg_stat[i].e_start; 2847 } else { 2848 pkg_stat[i].e_delta = 0; 2849 } 2850 break; 2851 } 2852 } 2853 } 2854 2855 /* Delta of ticks spend by each thread between the sample */ 2856 for (int i = 0; i < num_threads; i++) { 2857 vmsr_read_thread_stat(vmsr->pid, 2858 thd_stat[i].thread_id, 2859 &thd_stat[i].utime[1], 2860 &thd_stat[i].stime[1], 2861 &thd_stat[i].cpu_id); 2862 2863 if (vmsr->pid < 0) { 2864 /* 2865 * We don't count the dead thread 2866 * i.e threads that existed before the sleep 2867 * and not anymore 2868 */ 2869 thd_stat[i].delta_ticks = 0; 2870 } else { 2871 vmsr_delta_ticks(thd_stat, i); 2872 } 2873 } 2874 2875 /* 2876 * Identify the vcpu threads 2877 * Calculate the number of vcpu per package 2878 */ 2879 CPU_FOREACH(cpu) { 2880 for (int i = 0; i < num_threads; i++) { 2881 if (cpu->thread_id == thd_stat[i].thread_id) { 2882 thd_stat[i].is_vcpu = true; 2883 thd_stat[i].vcpu_id = cpu->cpu_index; 2884 pkg_stat[thd_stat[i].pkg_id].nb_vcpu++; 2885 thd_stat[i].acpi_id = kvm_arch_vcpu_id(cpu); 2886 break; 2887 } 2888 } 2889 } 2890 2891 /* Retrieve the virtual package number of each vCPU */ 2892 for (int i = 0; i < vmsr->guest_cpu_list->len; i++) { 2893 for (int j = 0; j < num_threads; j++) { 2894 if ((thd_stat[j].acpi_id == 2895 vmsr->guest_cpu_list->cpus[i].arch_id) 2896 && (thd_stat[j].is_vcpu == true)) { 2897 x86_topo_ids_from_apicid(thd_stat[j].acpi_id, 2898 &vmsr->guest_topo_info, &topo_ids); 2899 thd_stat[j].vpkg_id = topo_ids.pkg_id; 2900 } 2901 } 2902 } 2903 2904 /* Calculate the total energy of all non-vCPU thread */ 2905 for (int i = 0; i < num_threads; i++) { 2906 if ((thd_stat[i].is_vcpu != true) && 2907 (thd_stat[i].delta_ticks > 0)) { 2908 double temp; 2909 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta, 2910 thd_stat[i].delta_ticks, 2911 vmsr->host_topo.maxticks[thd_stat[i].pkg_id]); 2912 pkg_stat[thd_stat[i].pkg_id].e_ratio 2913 += (uint64_t)lround(temp); 2914 } 2915 } 2916 2917 /* Calculate the ratio per non-vCPU thread of each package */ 2918 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) { 2919 if (pkg_stat[i].nb_vcpu > 0) { 2920 pkg_stat[i].e_ratio = pkg_stat[i].e_ratio / pkg_stat[i].nb_vcpu; 2921 } 2922 } 2923 2924 /* 2925 * Calculate the energy for each Package: 2926 * Energy Package = sum of each vCPU energy that belongs to the package 2927 */ 2928 for (int i = 0; i < num_threads; i++) { 2929 if ((thd_stat[i].is_vcpu == true) && \ 2930 (thd_stat[i].delta_ticks > 0)) { 2931 double temp; 2932 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta, 2933 thd_stat[i].delta_ticks, 2934 vmsr->host_topo.maxticks[thd_stat[i].pkg_id]); 2935 vpkgs_energy_stat[thd_stat[i].vpkg_id] += 2936 (uint64_t)lround(temp); 2937 vpkgs_energy_stat[thd_stat[i].vpkg_id] += 2938 pkg_stat[thd_stat[i].pkg_id].e_ratio; 2939 } 2940 } 2941 2942 /* 2943 * Finally populate the vmsr register of each vCPU with the total 2944 * package value to emulate the real hardware where each CPU return the 2945 * value of the package it belongs. 2946 */ 2947 for (int i = 0; i < num_threads; i++) { 2948 if ((thd_stat[i].is_vcpu == true) && \ 2949 (thd_stat[i].delta_ticks > 0)) { 2950 vmsr->msr_value[thd_stat[i].vcpu_id] = \ 2951 vpkgs_energy_stat[thd_stat[i].vpkg_id]; 2952 } 2953 } 2954 2955 /* Freeing memory before zeroing the pointer */ 2956 for (int i = 0; i < num_threads; i++) { 2957 g_free(thd_stat[i].utime); 2958 g_free(thd_stat[i].stime); 2959 } 2960 } 2961 2962 clean: 2963 rcu_unregister_thread(); 2964 return NULL; 2965 } 2966 2967 static int kvm_msr_energy_thread_init(KVMState *s, MachineState *ms) 2968 { 2969 MachineClass *mc = MACHINE_GET_CLASS(ms); 2970 struct KVMMsrEnergy *r = &s->msr_energy; 2971 2972 /* 2973 * Sanity check 2974 * 1. Host cpu must be Intel cpu 2975 * 2. RAPL must be enabled on the Host 2976 */ 2977 if (!is_host_cpu_intel()) { 2978 error_report("The RAPL feature can only be enabled on hosts " 2979 "with Intel CPU models"); 2980 return -1; 2981 } 2982 2983 if (!is_rapl_enabled()) { 2984 return -1; 2985 } 2986 2987 /* Retrieve the virtual topology */ 2988 vmsr_init_topo_info(&r->guest_topo_info, ms); 2989 2990 /* Retrieve the number of vcpu */ 2991 r->guest_vcpus = ms->smp.cpus; 2992 2993 /* Retrieve the number of virtual sockets */ 2994 r->guest_vsockets = ms->smp.sockets; 2995 2996 /* Allocate register memory (MSR_PKG_STATUS) for each vcpu */ 2997 r->msr_value = g_new0(uint64_t, r->guest_vcpus); 2998 2999 /* Retrieve the CPUArchIDlist */ 3000 r->guest_cpu_list = mc->possible_cpu_arch_ids(ms); 3001 3002 /* Max number of cpus on the Host */ 3003 r->host_topo.maxcpus = vmsr_get_maxcpus(); 3004 if (r->host_topo.maxcpus == 0) { 3005 error_report("host max cpus = 0"); 3006 return -1; 3007 } 3008 3009 /* Max number of packages on the host */ 3010 r->host_topo.maxpkgs = vmsr_get_max_physical_package(r->host_topo.maxcpus); 3011 if (r->host_topo.maxpkgs == 0) { 3012 error_report("host max pkgs = 0"); 3013 return -1; 3014 } 3015 3016 /* Allocate memory for each package on the host */ 3017 r->host_topo.pkg_cpu_count = g_new0(unsigned int, r->host_topo.maxpkgs); 3018 r->host_topo.maxticks = g_new0(unsigned int, r->host_topo.maxpkgs); 3019 3020 vmsr_count_cpus_per_package(r->host_topo.pkg_cpu_count, 3021 r->host_topo.maxpkgs); 3022 for (int i = 0; i < r->host_topo.maxpkgs; i++) { 3023 if (r->host_topo.pkg_cpu_count[i] == 0) { 3024 error_report("cpu per packages = 0 on package_%d", i); 3025 return -1; 3026 } 3027 } 3028 3029 /* Get QEMU PID*/ 3030 r->pid = getpid(); 3031 3032 /* Compute the socket path if necessary */ 3033 if (s->msr_energy.socket_path == NULL) { 3034 s->msr_energy.socket_path = vmsr_compute_default_paths(); 3035 } 3036 3037 /* Open socket with vmsr helper */ 3038 s->msr_energy.sioc = vmsr_open_socket(s->msr_energy.socket_path); 3039 3040 if (s->msr_energy.sioc == NULL) { 3041 error_report("vmsr socket opening failed"); 3042 return -1; 3043 } 3044 3045 /* Those MSR values should not change */ 3046 r->msr_unit = vmsr_read_msr(MSR_RAPL_POWER_UNIT, 0, r->pid, 3047 s->msr_energy.sioc); 3048 r->msr_limit = vmsr_read_msr(MSR_PKG_POWER_LIMIT, 0, r->pid, 3049 s->msr_energy.sioc); 3050 r->msr_info = vmsr_read_msr(MSR_PKG_POWER_INFO, 0, r->pid, 3051 s->msr_energy.sioc); 3052 if (r->msr_unit == 0 || r->msr_limit == 0 || r->msr_info == 0) { 3053 error_report("can't read any virtual msr"); 3054 return -1; 3055 } 3056 3057 qemu_thread_create(&r->msr_thr, "kvm-msr", 3058 kvm_msr_energy_thread, 3059 s, QEMU_THREAD_JOINABLE); 3060 return 0; 3061 } 3062 3063 int kvm_arch_get_default_type(MachineState *ms) 3064 { 3065 return 0; 3066 } 3067 3068 static int kvm_vm_enable_exception_payload(KVMState *s) 3069 { 3070 int ret = 0; 3071 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD); 3072 if (has_exception_payload) { 3073 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true); 3074 if (ret < 0) { 3075 error_report("kvm: Failed to enable exception payload cap: %s", 3076 strerror(-ret)); 3077 } 3078 } 3079 3080 return ret; 3081 } 3082 3083 static int kvm_vm_enable_triple_fault_event(KVMState *s) 3084 { 3085 int ret = 0; 3086 has_triple_fault_event = \ 3087 kvm_check_extension(s, 3088 KVM_CAP_X86_TRIPLE_FAULT_EVENT); 3089 if (has_triple_fault_event) { 3090 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true); 3091 if (ret < 0) { 3092 error_report("kvm: Failed to enable triple fault event cap: %s", 3093 strerror(-ret)); 3094 } 3095 } 3096 return ret; 3097 } 3098 3099 static int kvm_vm_set_identity_map_addr(KVMState *s, uint64_t identity_base) 3100 { 3101 return kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); 3102 } 3103 3104 static int kvm_vm_set_nr_mmu_pages(KVMState *s) 3105 { 3106 uint64_t shadow_mem; 3107 int ret = 0; 3108 shadow_mem = object_property_get_int(OBJECT(s), 3109 "kvm-shadow-mem", 3110 &error_abort); 3111 if (shadow_mem != -1) { 3112 shadow_mem /= 4096; 3113 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); 3114 } 3115 return ret; 3116 } 3117 3118 static int kvm_vm_set_tss_addr(KVMState *s, uint64_t tss_base) 3119 { 3120 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, tss_base); 3121 } 3122 3123 static int kvm_vm_enable_disable_exits(KVMState *s) 3124 { 3125 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS); 3126 3127 if (disable_exits) { 3128 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT | 3129 KVM_X86_DISABLE_EXITS_HLT | 3130 KVM_X86_DISABLE_EXITS_PAUSE | 3131 KVM_X86_DISABLE_EXITS_CSTATE); 3132 } 3133 3134 return kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0, 3135 disable_exits); 3136 } 3137 3138 static int kvm_vm_enable_bus_lock_exit(KVMState *s) 3139 { 3140 int ret = 0; 3141 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT); 3142 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) { 3143 error_report("kvm: bus lock detection unsupported"); 3144 return -ENOTSUP; 3145 } 3146 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0, 3147 KVM_BUS_LOCK_DETECTION_EXIT); 3148 if (ret < 0) { 3149 error_report("kvm: Failed to enable bus lock detection cap: %s", 3150 strerror(-ret)); 3151 } 3152 3153 return ret; 3154 } 3155 3156 static int kvm_vm_enable_notify_vmexit(KVMState *s) 3157 { 3158 int ret = 0; 3159 if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE) { 3160 uint64_t notify_window_flags = 3161 ((uint64_t)s->notify_window << 32) | 3162 KVM_X86_NOTIFY_VMEXIT_ENABLED | 3163 KVM_X86_NOTIFY_VMEXIT_USER; 3164 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0, 3165 notify_window_flags); 3166 if (ret < 0) { 3167 error_report("kvm: Failed to enable notify vmexit cap: %s", 3168 strerror(-ret)); 3169 } 3170 } 3171 return ret; 3172 } 3173 3174 static int kvm_vm_enable_userspace_msr(KVMState *s) 3175 { 3176 int ret; 3177 3178 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0, 3179 KVM_MSR_EXIT_REASON_FILTER); 3180 if (ret < 0) { 3181 error_report("Could not enable user space MSRs: %s", 3182 strerror(-ret)); 3183 exit(1); 3184 } 3185 3186 ret = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT, 3187 kvm_rdmsr_core_thread_count, NULL); 3188 if (ret < 0) { 3189 error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s", 3190 strerror(-ret)); 3191 exit(1); 3192 } 3193 3194 return 0; 3195 } 3196 3197 static int kvm_vm_enable_energy_msrs(KVMState *s) 3198 { 3199 int ret; 3200 3201 if (s->msr_energy.enable == true) { 3202 ret = kvm_filter_msr(s, MSR_RAPL_POWER_UNIT, 3203 kvm_rdmsr_rapl_power_unit, NULL); 3204 if (ret < 0) { 3205 error_report("Could not install MSR_RAPL_POWER_UNIT handler: %s", 3206 strerror(-ret)); 3207 return ret; 3208 } 3209 3210 ret = kvm_filter_msr(s, MSR_PKG_POWER_LIMIT, 3211 kvm_rdmsr_pkg_power_limit, NULL); 3212 if (ret < 0) { 3213 error_report("Could not install MSR_PKG_POWER_LIMIT handler: %s", 3214 strerror(-ret)); 3215 return ret; 3216 } 3217 3218 ret = kvm_filter_msr(s, MSR_PKG_POWER_INFO, 3219 kvm_rdmsr_pkg_power_info, NULL); 3220 if (ret < 0) { 3221 error_report("Could not install MSR_PKG_POWER_INFO handler: %s", 3222 strerror(-ret)); 3223 return ret; 3224 } 3225 ret = kvm_filter_msr(s, MSR_PKG_ENERGY_STATUS, 3226 kvm_rdmsr_pkg_energy_status, NULL); 3227 if (ret < 0) { 3228 error_report("Could not install MSR_PKG_ENERGY_STATUS handler: %s", 3229 strerror(-ret)); 3230 return ret; 3231 } 3232 } 3233 return 0; 3234 } 3235 3236 int kvm_arch_init(MachineState *ms, KVMState *s) 3237 { 3238 int ret; 3239 struct utsname utsname; 3240 Error *local_err = NULL; 3241 3242 /* 3243 * Initialize confidential guest (SEV/TDX) context, if required 3244 */ 3245 if (ms->cgs) { 3246 ret = confidential_guest_kvm_init(ms->cgs, &local_err); 3247 if (ret < 0) { 3248 error_report_err(local_err); 3249 return ret; 3250 } 3251 } 3252 3253 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); 3254 has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0; 3255 3256 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX); 3257 3258 ret = kvm_vm_enable_exception_payload(s); 3259 if (ret < 0) { 3260 return ret; 3261 } 3262 3263 ret = kvm_vm_enable_triple_fault_event(s); 3264 if (ret < 0) { 3265 return ret; 3266 } 3267 3268 if (s->xen_version) { 3269 #ifdef CONFIG_XEN_EMU 3270 if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) { 3271 error_report("kvm: Xen support only available in PC machine"); 3272 return -ENOTSUP; 3273 } 3274 /* hyperv_enabled() doesn't work yet. */ 3275 uint32_t msr = XEN_HYPERCALL_MSR; 3276 ret = kvm_xen_init(s, msr); 3277 if (ret < 0) { 3278 return ret; 3279 } 3280 #else 3281 error_report("kvm: Xen support not enabled in qemu"); 3282 return -ENOTSUP; 3283 #endif 3284 } 3285 3286 ret = kvm_get_supported_msrs(s); 3287 if (ret < 0) { 3288 return ret; 3289 } 3290 3291 ret = kvm_get_supported_feature_msrs(s); 3292 if (ret < 0) { 3293 return ret; 3294 } 3295 3296 uname(&utsname); 3297 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; 3298 3299 ret = kvm_vm_set_identity_map_addr(s, KVM_IDENTITY_BASE); 3300 if (ret < 0) { 3301 return ret; 3302 } 3303 3304 /* Set TSS base one page after EPT identity map. */ 3305 ret = kvm_vm_set_tss_addr(s, KVM_IDENTITY_BASE + 0x1000); 3306 if (ret < 0) { 3307 return ret; 3308 } 3309 3310 /* Tell fw_cfg to notify the BIOS to reserve the range. */ 3311 e820_add_entry(KVM_IDENTITY_BASE, 0x4000, E820_RESERVED); 3312 3313 ret = kvm_vm_set_nr_mmu_pages(s); 3314 if (ret < 0) { 3315 return ret; 3316 } 3317 3318 if (kvm_check_extension(s, KVM_CAP_X86_SMM) && 3319 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) && 3320 x86_machine_is_smm_enabled(X86_MACHINE(ms))) { 3321 smram_machine_done.notify = register_smram_listener; 3322 qemu_add_machine_init_done_notifier(&smram_machine_done); 3323 } 3324 3325 if (enable_cpu_pm) { 3326 ret = kvm_vm_enable_disable_exits(s); 3327 if (ret < 0) { 3328 error_report("kvm: guest stopping CPU not supported: %s", 3329 strerror(-ret)); 3330 return ret; 3331 } 3332 } 3333 3334 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) { 3335 X86MachineState *x86ms = X86_MACHINE(ms); 3336 3337 if (x86ms->bus_lock_ratelimit > 0) { 3338 ret = kvm_vm_enable_bus_lock_exit(s); 3339 if (ret < 0) { 3340 return ret; 3341 } 3342 ratelimit_init(&bus_lock_ratelimit_ctrl); 3343 ratelimit_set_speed(&bus_lock_ratelimit_ctrl, 3344 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME); 3345 } 3346 } 3347 3348 if (kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) { 3349 ret = kvm_vm_enable_notify_vmexit(s); 3350 if (ret < 0) { 3351 return ret; 3352 } 3353 } 3354 3355 if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) { 3356 ret = kvm_vm_enable_userspace_msr(s); 3357 if (ret < 0) { 3358 return ret; 3359 } 3360 3361 if (s->msr_energy.enable == true) { 3362 ret = kvm_vm_enable_energy_msrs(s); 3363 if (ret < 0) { 3364 return ret; 3365 } 3366 3367 ret = kvm_msr_energy_thread_init(s, ms); 3368 if (ret < 0) { 3369 error_report("kvm : error RAPL feature requirement not met"); 3370 return ret; 3371 } 3372 } 3373 } 3374 3375 return 0; 3376 } 3377 3378 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 3379 { 3380 lhs->selector = rhs->selector; 3381 lhs->base = rhs->base; 3382 lhs->limit = rhs->limit; 3383 lhs->type = 3; 3384 lhs->present = 1; 3385 lhs->dpl = 3; 3386 lhs->db = 0; 3387 lhs->s = 1; 3388 lhs->l = 0; 3389 lhs->g = 0; 3390 lhs->avl = 0; 3391 lhs->unusable = 0; 3392 } 3393 3394 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 3395 { 3396 unsigned flags = rhs->flags; 3397 lhs->selector = rhs->selector; 3398 lhs->base = rhs->base; 3399 lhs->limit = rhs->limit; 3400 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; 3401 lhs->present = (flags & DESC_P_MASK) != 0; 3402 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; 3403 lhs->db = (flags >> DESC_B_SHIFT) & 1; 3404 lhs->s = (flags & DESC_S_MASK) != 0; 3405 lhs->l = (flags >> DESC_L_SHIFT) & 1; 3406 lhs->g = (flags & DESC_G_MASK) != 0; 3407 lhs->avl = (flags & DESC_AVL_MASK) != 0; 3408 lhs->unusable = !lhs->present; 3409 lhs->padding = 0; 3410 } 3411 3412 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) 3413 { 3414 lhs->selector = rhs->selector; 3415 lhs->base = rhs->base; 3416 lhs->limit = rhs->limit; 3417 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | 3418 ((rhs->present && !rhs->unusable) * DESC_P_MASK) | 3419 (rhs->dpl << DESC_DPL_SHIFT) | 3420 (rhs->db << DESC_B_SHIFT) | 3421 (rhs->s * DESC_S_MASK) | 3422 (rhs->l << DESC_L_SHIFT) | 3423 (rhs->g * DESC_G_MASK) | 3424 (rhs->avl * DESC_AVL_MASK); 3425 } 3426 3427 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) 3428 { 3429 if (set) { 3430 *kvm_reg = *qemu_reg; 3431 } else { 3432 *qemu_reg = *kvm_reg; 3433 } 3434 } 3435 3436 static int kvm_getput_regs(X86CPU *cpu, int set) 3437 { 3438 CPUX86State *env = &cpu->env; 3439 struct kvm_regs regs; 3440 int ret = 0; 3441 3442 if (!set) { 3443 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); 3444 if (ret < 0) { 3445 return ret; 3446 } 3447 } 3448 3449 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); 3450 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); 3451 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); 3452 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); 3453 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); 3454 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); 3455 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); 3456 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); 3457 #ifdef TARGET_X86_64 3458 kvm_getput_reg(®s.r8, &env->regs[8], set); 3459 kvm_getput_reg(®s.r9, &env->regs[9], set); 3460 kvm_getput_reg(®s.r10, &env->regs[10], set); 3461 kvm_getput_reg(®s.r11, &env->regs[11], set); 3462 kvm_getput_reg(®s.r12, &env->regs[12], set); 3463 kvm_getput_reg(®s.r13, &env->regs[13], set); 3464 kvm_getput_reg(®s.r14, &env->regs[14], set); 3465 kvm_getput_reg(®s.r15, &env->regs[15], set); 3466 #endif 3467 3468 kvm_getput_reg(®s.rflags, &env->eflags, set); 3469 kvm_getput_reg(®s.rip, &env->eip, set); 3470 3471 if (set) { 3472 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); 3473 } 3474 3475 return ret; 3476 } 3477 3478 static int kvm_put_xsave(X86CPU *cpu) 3479 { 3480 CPUX86State *env = &cpu->env; 3481 void *xsave = env->xsave_buf; 3482 3483 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len); 3484 3485 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); 3486 } 3487 3488 static int kvm_put_xcrs(X86CPU *cpu) 3489 { 3490 CPUX86State *env = &cpu->env; 3491 struct kvm_xcrs xcrs = {}; 3492 3493 if (!has_xcrs) { 3494 return 0; 3495 } 3496 3497 xcrs.nr_xcrs = 1; 3498 xcrs.flags = 0; 3499 xcrs.xcrs[0].xcr = 0; 3500 xcrs.xcrs[0].value = env->xcr0; 3501 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); 3502 } 3503 3504 static int kvm_put_sregs(X86CPU *cpu) 3505 { 3506 CPUX86State *env = &cpu->env; 3507 struct kvm_sregs sregs; 3508 3509 /* 3510 * The interrupt_bitmap is ignored because KVM_SET_SREGS is 3511 * always followed by KVM_SET_VCPU_EVENTS. 3512 */ 3513 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); 3514 3515 if ((env->eflags & VM_MASK)) { 3516 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 3517 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 3518 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 3519 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 3520 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 3521 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 3522 } else { 3523 set_seg(&sregs.cs, &env->segs[R_CS]); 3524 set_seg(&sregs.ds, &env->segs[R_DS]); 3525 set_seg(&sregs.es, &env->segs[R_ES]); 3526 set_seg(&sregs.fs, &env->segs[R_FS]); 3527 set_seg(&sregs.gs, &env->segs[R_GS]); 3528 set_seg(&sregs.ss, &env->segs[R_SS]); 3529 } 3530 3531 set_seg(&sregs.tr, &env->tr); 3532 set_seg(&sregs.ldt, &env->ldt); 3533 3534 sregs.idt.limit = env->idt.limit; 3535 sregs.idt.base = env->idt.base; 3536 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 3537 sregs.gdt.limit = env->gdt.limit; 3538 sregs.gdt.base = env->gdt.base; 3539 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 3540 3541 sregs.cr0 = env->cr[0]; 3542 sregs.cr2 = env->cr[2]; 3543 sregs.cr3 = env->cr[3]; 3544 sregs.cr4 = env->cr[4]; 3545 3546 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 3547 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 3548 3549 sregs.efer = env->efer; 3550 3551 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); 3552 } 3553 3554 static int kvm_put_sregs2(X86CPU *cpu) 3555 { 3556 CPUX86State *env = &cpu->env; 3557 struct kvm_sregs2 sregs; 3558 int i; 3559 3560 sregs.flags = 0; 3561 3562 if ((env->eflags & VM_MASK)) { 3563 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 3564 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 3565 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 3566 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 3567 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 3568 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 3569 } else { 3570 set_seg(&sregs.cs, &env->segs[R_CS]); 3571 set_seg(&sregs.ds, &env->segs[R_DS]); 3572 set_seg(&sregs.es, &env->segs[R_ES]); 3573 set_seg(&sregs.fs, &env->segs[R_FS]); 3574 set_seg(&sregs.gs, &env->segs[R_GS]); 3575 set_seg(&sregs.ss, &env->segs[R_SS]); 3576 } 3577 3578 set_seg(&sregs.tr, &env->tr); 3579 set_seg(&sregs.ldt, &env->ldt); 3580 3581 sregs.idt.limit = env->idt.limit; 3582 sregs.idt.base = env->idt.base; 3583 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 3584 sregs.gdt.limit = env->gdt.limit; 3585 sregs.gdt.base = env->gdt.base; 3586 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 3587 3588 sregs.cr0 = env->cr[0]; 3589 sregs.cr2 = env->cr[2]; 3590 sregs.cr3 = env->cr[3]; 3591 sregs.cr4 = env->cr[4]; 3592 3593 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 3594 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 3595 3596 sregs.efer = env->efer; 3597 3598 if (env->pdptrs_valid) { 3599 for (i = 0; i < 4; i++) { 3600 sregs.pdptrs[i] = env->pdptrs[i]; 3601 } 3602 sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 3603 } 3604 3605 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs); 3606 } 3607 3608 3609 static void kvm_msr_buf_reset(X86CPU *cpu) 3610 { 3611 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); 3612 } 3613 3614 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) 3615 { 3616 struct kvm_msrs *msrs = cpu->kvm_msr_buf; 3617 void *limit = ((void *)msrs) + MSR_BUF_SIZE; 3618 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; 3619 3620 assert((void *)(entry + 1) <= limit); 3621 3622 entry->index = index; 3623 entry->reserved = 0; 3624 entry->data = value; 3625 msrs->nmsrs++; 3626 } 3627 3628 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) 3629 { 3630 kvm_msr_buf_reset(cpu); 3631 kvm_msr_entry_add(cpu, index, value); 3632 3633 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 3634 } 3635 3636 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value) 3637 { 3638 int ret; 3639 struct { 3640 struct kvm_msrs info; 3641 struct kvm_msr_entry entries[1]; 3642 } msr_data = { 3643 .info.nmsrs = 1, 3644 .entries[0].index = index, 3645 }; 3646 3647 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); 3648 if (ret < 0) { 3649 return ret; 3650 } 3651 assert(ret == 1); 3652 *value = msr_data.entries[0].data; 3653 return ret; 3654 } 3655 void kvm_put_apicbase(X86CPU *cpu, uint64_t value) 3656 { 3657 int ret; 3658 3659 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); 3660 assert(ret == 1); 3661 } 3662 3663 static int kvm_put_tscdeadline_msr(X86CPU *cpu) 3664 { 3665 CPUX86State *env = &cpu->env; 3666 int ret; 3667 3668 if (!has_msr_tsc_deadline) { 3669 return 0; 3670 } 3671 3672 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); 3673 if (ret < 0) { 3674 return ret; 3675 } 3676 3677 assert(ret == 1); 3678 return 0; 3679 } 3680 3681 /* 3682 * Provide a separate write service for the feature control MSR in order to 3683 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done 3684 * before writing any other state because forcibly leaving nested mode 3685 * invalidates the VCPU state. 3686 */ 3687 static int kvm_put_msr_feature_control(X86CPU *cpu) 3688 { 3689 int ret; 3690 3691 if (!has_msr_feature_control) { 3692 return 0; 3693 } 3694 3695 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, 3696 cpu->env.msr_ia32_feature_control); 3697 if (ret < 0) { 3698 return ret; 3699 } 3700 3701 assert(ret == 1); 3702 return 0; 3703 } 3704 3705 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features) 3706 { 3707 uint32_t default1, can_be_one, can_be_zero; 3708 uint32_t must_be_one; 3709 3710 switch (index) { 3711 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 3712 default1 = 0x00000016; 3713 break; 3714 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 3715 default1 = 0x0401e172; 3716 break; 3717 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 3718 default1 = 0x000011ff; 3719 break; 3720 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 3721 default1 = 0x00036dff; 3722 break; 3723 case MSR_IA32_VMX_PROCBASED_CTLS2: 3724 default1 = 0; 3725 break; 3726 default: 3727 abort(); 3728 } 3729 3730 /* If a feature bit is set, the control can be either set or clear. 3731 * Otherwise the value is limited to either 0 or 1 by default1. 3732 */ 3733 can_be_one = features | default1; 3734 can_be_zero = features | ~default1; 3735 must_be_one = ~can_be_zero; 3736 3737 /* 3738 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one). 3739 * Bit 32:63 -> 1 if the control bit can be one. 3740 */ 3741 return must_be_one | (((uint64_t)can_be_one) << 32); 3742 } 3743 3744 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f) 3745 { 3746 uint64_t kvm_vmx_basic = 3747 kvm_arch_get_supported_msr_feature(kvm_state, 3748 MSR_IA32_VMX_BASIC); 3749 3750 if (!kvm_vmx_basic) { 3751 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0), 3752 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail. 3753 */ 3754 return; 3755 } 3756 3757 uint64_t kvm_vmx_misc = 3758 kvm_arch_get_supported_msr_feature(kvm_state, 3759 MSR_IA32_VMX_MISC); 3760 uint64_t kvm_vmx_ept_vpid = 3761 kvm_arch_get_supported_msr_feature(kvm_state, 3762 MSR_IA32_VMX_EPT_VPID_CAP); 3763 3764 /* 3765 * If the guest is 64-bit, a value of 1 is allowed for the host address 3766 * space size vmexit control. 3767 */ 3768 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM 3769 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0; 3770 3771 /* 3772 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should 3773 * not change them for backwards compatibility. 3774 */ 3775 uint64_t fixed_vmx_basic = kvm_vmx_basic & 3776 (MSR_VMX_BASIC_VMCS_REVISION_MASK | 3777 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK | 3778 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK); 3779 3780 /* 3781 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can 3782 * change in the future but are always zero for now, clear them to be 3783 * future proof. Bits 32-63 in theory could change, though KVM does 3784 * not support dual-monitor treatment and probably never will; mask 3785 * them out as well. 3786 */ 3787 uint64_t fixed_vmx_misc = kvm_vmx_misc & 3788 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK | 3789 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK); 3790 3791 /* 3792 * EPT memory types should not change either, so we do not bother 3793 * adding features for them. 3794 */ 3795 uint64_t fixed_vmx_ept_mask = 3796 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ? 3797 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0); 3798 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask; 3799 3800 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 3801 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 3802 f[FEAT_VMX_PROCBASED_CTLS])); 3803 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS, 3804 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS, 3805 f[FEAT_VMX_PINBASED_CTLS])); 3806 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS, 3807 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS, 3808 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit); 3809 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS, 3810 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS, 3811 f[FEAT_VMX_ENTRY_CTLS])); 3812 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2, 3813 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2, 3814 f[FEAT_VMX_SECONDARY_CTLS])); 3815 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP, 3816 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid); 3817 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC, 3818 f[FEAT_VMX_BASIC] | fixed_vmx_basic); 3819 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC, 3820 f[FEAT_VMX_MISC] | fixed_vmx_misc); 3821 if (has_msr_vmx_vmfunc) { 3822 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]); 3823 } 3824 3825 /* 3826 * Just to be safe, write these with constant values. The CRn_FIXED1 3827 * MSRs are generated by KVM based on the vCPU's CPUID. 3828 */ 3829 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0, 3830 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK); 3831 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0, 3832 CR4_VMXE_MASK); 3833 3834 if (f[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) { 3835 /* FRED injected-event data (0x2052). */ 3836 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x52); 3837 } else if (f[FEAT_VMX_EXIT_CTLS] & 3838 VMX_VM_EXIT_ACTIVATE_SECONDARY_CONTROLS) { 3839 /* Secondary VM-exit controls (0x2044). */ 3840 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x44); 3841 } else if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) { 3842 /* TSC multiplier (0x2032). */ 3843 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32); 3844 } else { 3845 /* Preemption timer (0x482E). */ 3846 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E); 3847 } 3848 } 3849 3850 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f) 3851 { 3852 uint64_t kvm_perf_cap = 3853 kvm_arch_get_supported_msr_feature(kvm_state, 3854 MSR_IA32_PERF_CAPABILITIES); 3855 3856 if (kvm_perf_cap) { 3857 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES, 3858 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]); 3859 } 3860 } 3861 3862 static int kvm_buf_set_msrs(X86CPU *cpu) 3863 { 3864 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 3865 if (ret < 0) { 3866 return ret; 3867 } 3868 3869 if (ret < cpu->kvm_msr_buf->nmsrs) { 3870 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 3871 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, 3872 (uint32_t)e->index, (uint64_t)e->data); 3873 } 3874 3875 assert(ret == cpu->kvm_msr_buf->nmsrs); 3876 return 0; 3877 } 3878 3879 static void kvm_init_msrs(X86CPU *cpu) 3880 { 3881 CPUX86State *env = &cpu->env; 3882 3883 kvm_msr_buf_reset(cpu); 3884 3885 if (!is_tdx_vm()) { 3886 if (has_msr_arch_capabs) { 3887 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES, 3888 env->features[FEAT_ARCH_CAPABILITIES]); 3889 } 3890 3891 if (has_msr_core_capabs) { 3892 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY, 3893 env->features[FEAT_CORE_CAPABILITY]); 3894 } 3895 3896 if (has_msr_perf_capabs && cpu->enable_pmu) { 3897 kvm_msr_entry_add_perf(cpu, env->features); 3898 } 3899 3900 /* 3901 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but 3902 * all kernels with MSR features should have them. 3903 */ 3904 if (kvm_feature_msrs && cpu_has_vmx(env)) { 3905 kvm_msr_entry_add_vmx(cpu, env->features); 3906 } 3907 } 3908 3909 if (has_msr_ucode_rev) { 3910 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev); 3911 } 3912 assert(kvm_buf_set_msrs(cpu) == 0); 3913 } 3914 3915 static int kvm_put_msrs(X86CPU *cpu, int level) 3916 { 3917 CPUX86State *env = &cpu->env; 3918 int i; 3919 3920 kvm_msr_buf_reset(cpu); 3921 3922 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); 3923 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); 3924 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); 3925 kvm_msr_entry_add(cpu, MSR_PAT, env->pat); 3926 if (has_msr_star) { 3927 kvm_msr_entry_add(cpu, MSR_STAR, env->star); 3928 } 3929 if (has_msr_hsave_pa) { 3930 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); 3931 } 3932 if (has_msr_tsc_aux) { 3933 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); 3934 } 3935 if (has_msr_tsc_adjust) { 3936 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); 3937 } 3938 if (has_msr_misc_enable) { 3939 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 3940 env->msr_ia32_misc_enable); 3941 } 3942 if (has_msr_smbase) { 3943 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); 3944 } 3945 if (has_msr_smi_count) { 3946 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count); 3947 } 3948 if (has_msr_pkrs) { 3949 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs); 3950 } 3951 if (has_msr_bndcfgs) { 3952 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); 3953 } 3954 if (has_msr_xss) { 3955 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); 3956 } 3957 if (has_msr_umwait) { 3958 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait); 3959 } 3960 if (has_msr_spec_ctrl) { 3961 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl); 3962 } 3963 if (has_tsc_scale_msr) { 3964 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr); 3965 } 3966 3967 if (has_msr_tsx_ctrl) { 3968 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl); 3969 } 3970 if (has_msr_virt_ssbd) { 3971 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd); 3972 } 3973 if (has_msr_hwcr) { 3974 kvm_msr_entry_add(cpu, MSR_K7_HWCR, env->msr_hwcr); 3975 } 3976 3977 #ifdef TARGET_X86_64 3978 if (lm_capable_kernel) { 3979 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); 3980 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); 3981 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); 3982 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); 3983 if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) { 3984 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, env->fred_rsp0); 3985 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, env->fred_rsp1); 3986 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, env->fred_rsp2); 3987 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, env->fred_rsp3); 3988 kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, env->fred_stklvls); 3989 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, env->fred_ssp1); 3990 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, env->fred_ssp2); 3991 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, env->fred_ssp3); 3992 kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, env->fred_config); 3993 } 3994 } 3995 #endif 3996 3997 /* 3998 * The following MSRs have side effects on the guest or are too heavy 3999 * for normal writeback. Limit them to reset or full state updates. 4000 */ 4001 if (level >= KVM_PUT_RESET_STATE) { 4002 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); 4003 if (env->features[FEAT_KVM] & (CPUID_KVM_CLOCK | CPUID_KVM_CLOCK2)) { 4004 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); 4005 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); 4006 } 4007 if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF_INT) { 4008 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr); 4009 } 4010 if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF) { 4011 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); 4012 } 4013 if (env->features[FEAT_KVM] & CPUID_KVM_PV_EOI) { 4014 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); 4015 } 4016 if (env->features[FEAT_KVM] & CPUID_KVM_STEAL_TIME) { 4017 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); 4018 } 4019 4020 if (env->features[FEAT_KVM] & CPUID_KVM_POLL_CONTROL) { 4021 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr); 4022 } 4023 4024 if (has_architectural_pmu_version > 0) { 4025 if (has_architectural_pmu_version > 1) { 4026 /* Stop the counter. */ 4027 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 4028 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 4029 } 4030 4031 /* Set the counter values. */ 4032 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 4033 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 4034 env->msr_fixed_counters[i]); 4035 } 4036 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 4037 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 4038 env->msr_gp_counters[i]); 4039 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 4040 env->msr_gp_evtsel[i]); 4041 } 4042 if (has_architectural_pmu_version > 1) { 4043 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 4044 env->msr_global_status); 4045 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 4046 env->msr_global_ovf_ctrl); 4047 4048 /* Now start the PMU. */ 4049 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 4050 env->msr_fixed_ctr_ctrl); 4051 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 4052 env->msr_global_ctrl); 4053 } 4054 } 4055 /* 4056 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add, 4057 * only sync them to KVM on the first cpu 4058 */ 4059 if (current_cpu == first_cpu) { 4060 if (has_msr_hv_hypercall) { 4061 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 4062 env->msr_hv_guest_os_id); 4063 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 4064 env->msr_hv_hypercall); 4065 } 4066 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 4067 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 4068 env->msr_hv_tsc); 4069 } 4070 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 4071 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 4072 env->msr_hv_reenlightenment_control); 4073 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 4074 env->msr_hv_tsc_emulation_control); 4075 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 4076 env->msr_hv_tsc_emulation_status); 4077 } 4078 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) && 4079 has_msr_hv_syndbg_options) { 4080 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 4081 hyperv_syndbg_query_options()); 4082 } 4083 } 4084 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 4085 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 4086 env->msr_hv_vapic); 4087 } 4088 if (has_msr_hv_crash) { 4089 int j; 4090 4091 for (j = 0; j < HV_CRASH_PARAMS; j++) 4092 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 4093 env->msr_hv_crash_params[j]); 4094 4095 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY); 4096 } 4097 if (has_msr_hv_runtime) { 4098 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); 4099 } 4100 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) 4101 && hv_vpindex_settable) { 4102 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX, 4103 hyperv_vp_index(CPU(cpu))); 4104 } 4105 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 4106 int j; 4107 4108 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION); 4109 4110 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 4111 env->msr_hv_synic_control); 4112 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 4113 env->msr_hv_synic_evt_page); 4114 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 4115 env->msr_hv_synic_msg_page); 4116 4117 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { 4118 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, 4119 env->msr_hv_synic_sint[j]); 4120 } 4121 } 4122 if (has_msr_hv_stimer) { 4123 int j; 4124 4125 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { 4126 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, 4127 env->msr_hv_stimer_config[j]); 4128 } 4129 4130 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { 4131 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, 4132 env->msr_hv_stimer_count[j]); 4133 } 4134 } 4135 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 4136 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); 4137 4138 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); 4139 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); 4140 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); 4141 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); 4142 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); 4143 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); 4144 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); 4145 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); 4146 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); 4147 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); 4148 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); 4149 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); 4150 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 4151 /* The CPU GPs if we write to a bit above the physical limit of 4152 * the host CPU (and KVM emulates that) 4153 */ 4154 uint64_t mask = env->mtrr_var[i].mask; 4155 mask &= phys_mask; 4156 4157 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 4158 env->mtrr_var[i].base); 4159 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); 4160 } 4161 } 4162 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 4163 int addr_num = kvm_arch_get_supported_cpuid(kvm_state, 4164 0x14, 1, R_EAX) & 0x7; 4165 4166 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 4167 env->msr_rtit_ctrl); 4168 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 4169 env->msr_rtit_status); 4170 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 4171 env->msr_rtit_output_base); 4172 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 4173 env->msr_rtit_output_mask); 4174 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 4175 env->msr_rtit_cr3_match); 4176 for (i = 0; i < addr_num; i++) { 4177 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 4178 env->msr_rtit_addrs[i]); 4179 } 4180 } 4181 4182 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 4183 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 4184 env->msr_ia32_sgxlepubkeyhash[0]); 4185 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 4186 env->msr_ia32_sgxlepubkeyhash[1]); 4187 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 4188 env->msr_ia32_sgxlepubkeyhash[2]); 4189 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 4190 env->msr_ia32_sgxlepubkeyhash[3]); 4191 } 4192 4193 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) { 4194 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 4195 env->msr_xfd); 4196 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 4197 env->msr_xfd_err); 4198 } 4199 4200 if (kvm_enabled() && cpu->enable_pmu && 4201 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) { 4202 uint64_t depth; 4203 int ret; 4204 4205 /* 4206 * Only migrate Arch LBR states when the host Arch LBR depth 4207 * equals that of source guest's, this is to avoid mismatch 4208 * of guest/host config for the msr hence avoid unexpected 4209 * misbehavior. 4210 */ 4211 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth); 4212 4213 if (ret == 1 && !!depth && depth == env->msr_lbr_depth) { 4214 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl); 4215 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth); 4216 4217 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) { 4218 if (!env->lbr_records[i].from) { 4219 continue; 4220 } 4221 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 4222 env->lbr_records[i].from); 4223 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 4224 env->lbr_records[i].to); 4225 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 4226 env->lbr_records[i].info); 4227 } 4228 } 4229 } 4230 4231 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see 4232 * kvm_put_msr_feature_control. */ 4233 } 4234 4235 if (env->mcg_cap) { 4236 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); 4237 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); 4238 if (has_msr_mcg_ext_ctl) { 4239 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); 4240 } 4241 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 4242 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); 4243 } 4244 } 4245 4246 return kvm_buf_set_msrs(cpu); 4247 } 4248 4249 4250 static int kvm_get_xsave(X86CPU *cpu) 4251 { 4252 CPUX86State *env = &cpu->env; 4253 void *xsave = env->xsave_buf; 4254 unsigned long type; 4255 int ret; 4256 4257 type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE; 4258 ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave); 4259 if (ret < 0) { 4260 return ret; 4261 } 4262 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len); 4263 4264 return 0; 4265 } 4266 4267 static int kvm_get_xcrs(X86CPU *cpu) 4268 { 4269 CPUX86State *env = &cpu->env; 4270 int i, ret; 4271 struct kvm_xcrs xcrs; 4272 4273 if (!has_xcrs) { 4274 return 0; 4275 } 4276 4277 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); 4278 if (ret < 0) { 4279 return ret; 4280 } 4281 4282 for (i = 0; i < xcrs.nr_xcrs; i++) { 4283 /* Only support xcr0 now */ 4284 if (xcrs.xcrs[i].xcr == 0) { 4285 env->xcr0 = xcrs.xcrs[i].value; 4286 break; 4287 } 4288 } 4289 return 0; 4290 } 4291 4292 static int kvm_get_sregs(X86CPU *cpu) 4293 { 4294 CPUX86State *env = &cpu->env; 4295 struct kvm_sregs sregs; 4296 int ret; 4297 4298 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); 4299 if (ret < 0) { 4300 return ret; 4301 } 4302 4303 /* 4304 * The interrupt_bitmap is ignored because KVM_GET_SREGS is 4305 * always preceded by KVM_GET_VCPU_EVENTS. 4306 */ 4307 4308 get_seg(&env->segs[R_CS], &sregs.cs); 4309 get_seg(&env->segs[R_DS], &sregs.ds); 4310 get_seg(&env->segs[R_ES], &sregs.es); 4311 get_seg(&env->segs[R_FS], &sregs.fs); 4312 get_seg(&env->segs[R_GS], &sregs.gs); 4313 get_seg(&env->segs[R_SS], &sregs.ss); 4314 4315 get_seg(&env->tr, &sregs.tr); 4316 get_seg(&env->ldt, &sregs.ldt); 4317 4318 env->idt.limit = sregs.idt.limit; 4319 env->idt.base = sregs.idt.base; 4320 env->gdt.limit = sregs.gdt.limit; 4321 env->gdt.base = sregs.gdt.base; 4322 4323 env->cr[0] = sregs.cr0; 4324 env->cr[2] = sregs.cr2; 4325 env->cr[3] = sregs.cr3; 4326 env->cr[4] = sregs.cr4; 4327 4328 env->efer = sregs.efer; 4329 if (sev_es_enabled() && env->efer & MSR_EFER_LME && 4330 env->cr[0] & CR0_PG_MASK) { 4331 env->efer |= MSR_EFER_LMA; 4332 } 4333 4334 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 4335 x86_update_hflags(env); 4336 4337 return 0; 4338 } 4339 4340 static int kvm_get_sregs2(X86CPU *cpu) 4341 { 4342 CPUX86State *env = &cpu->env; 4343 struct kvm_sregs2 sregs; 4344 int i, ret; 4345 4346 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs); 4347 if (ret < 0) { 4348 return ret; 4349 } 4350 4351 get_seg(&env->segs[R_CS], &sregs.cs); 4352 get_seg(&env->segs[R_DS], &sregs.ds); 4353 get_seg(&env->segs[R_ES], &sregs.es); 4354 get_seg(&env->segs[R_FS], &sregs.fs); 4355 get_seg(&env->segs[R_GS], &sregs.gs); 4356 get_seg(&env->segs[R_SS], &sregs.ss); 4357 4358 get_seg(&env->tr, &sregs.tr); 4359 get_seg(&env->ldt, &sregs.ldt); 4360 4361 env->idt.limit = sregs.idt.limit; 4362 env->idt.base = sregs.idt.base; 4363 env->gdt.limit = sregs.gdt.limit; 4364 env->gdt.base = sregs.gdt.base; 4365 4366 env->cr[0] = sregs.cr0; 4367 env->cr[2] = sregs.cr2; 4368 env->cr[3] = sregs.cr3; 4369 env->cr[4] = sregs.cr4; 4370 4371 env->efer = sregs.efer; 4372 if (sev_es_enabled() && env->efer & MSR_EFER_LME && 4373 env->cr[0] & CR0_PG_MASK) { 4374 env->efer |= MSR_EFER_LMA; 4375 } 4376 4377 env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 4378 4379 if (env->pdptrs_valid) { 4380 for (i = 0; i < 4; i++) { 4381 env->pdptrs[i] = sregs.pdptrs[i]; 4382 } 4383 } 4384 4385 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 4386 x86_update_hflags(env); 4387 4388 return 0; 4389 } 4390 4391 static int kvm_get_msrs(X86CPU *cpu) 4392 { 4393 CPUX86State *env = &cpu->env; 4394 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; 4395 int ret, i; 4396 uint64_t mtrr_top_bits; 4397 4398 kvm_msr_buf_reset(cpu); 4399 4400 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); 4401 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); 4402 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); 4403 kvm_msr_entry_add(cpu, MSR_PAT, 0); 4404 if (has_msr_star) { 4405 kvm_msr_entry_add(cpu, MSR_STAR, 0); 4406 } 4407 if (has_msr_hsave_pa) { 4408 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); 4409 } 4410 if (has_msr_tsc_aux) { 4411 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); 4412 } 4413 if (has_msr_tsc_adjust) { 4414 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); 4415 } 4416 if (has_msr_tsc_deadline) { 4417 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); 4418 } 4419 if (has_msr_misc_enable) { 4420 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); 4421 } 4422 if (has_msr_smbase) { 4423 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); 4424 } 4425 if (has_msr_smi_count) { 4426 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0); 4427 } 4428 if (has_msr_feature_control) { 4429 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); 4430 } 4431 if (has_msr_pkrs) { 4432 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0); 4433 } 4434 if (has_msr_bndcfgs) { 4435 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); 4436 } 4437 if (has_msr_xss) { 4438 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); 4439 } 4440 if (has_msr_umwait) { 4441 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0); 4442 } 4443 if (has_msr_spec_ctrl) { 4444 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0); 4445 } 4446 if (has_tsc_scale_msr) { 4447 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0); 4448 } 4449 4450 if (has_msr_tsx_ctrl) { 4451 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0); 4452 } 4453 if (has_msr_virt_ssbd) { 4454 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0); 4455 } 4456 if (!env->tsc_valid) { 4457 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); 4458 env->tsc_valid = !runstate_is_running(); 4459 } 4460 if (has_msr_hwcr) { 4461 kvm_msr_entry_add(cpu, MSR_K7_HWCR, 0); 4462 } 4463 4464 #ifdef TARGET_X86_64 4465 if (lm_capable_kernel) { 4466 kvm_msr_entry_add(cpu, MSR_CSTAR, 0); 4467 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); 4468 kvm_msr_entry_add(cpu, MSR_FMASK, 0); 4469 kvm_msr_entry_add(cpu, MSR_LSTAR, 0); 4470 if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) { 4471 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, 0); 4472 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, 0); 4473 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, 0); 4474 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, 0); 4475 kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, 0); 4476 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, 0); 4477 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, 0); 4478 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, 0); 4479 kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, 0); 4480 } 4481 } 4482 #endif 4483 if (env->features[FEAT_KVM] & (CPUID_KVM_CLOCK | CPUID_KVM_CLOCK2)) { 4484 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); 4485 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); 4486 } 4487 if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF_INT) { 4488 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0); 4489 } 4490 if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF) { 4491 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); 4492 } 4493 if (env->features[FEAT_KVM] & CPUID_KVM_PV_EOI) { 4494 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); 4495 } 4496 if (env->features[FEAT_KVM] & CPUID_KVM_STEAL_TIME) { 4497 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); 4498 } 4499 if (env->features[FEAT_KVM] & CPUID_KVM_POLL_CONTROL) { 4500 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1); 4501 } 4502 if (has_architectural_pmu_version > 0) { 4503 if (has_architectural_pmu_version > 1) { 4504 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 4505 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 4506 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); 4507 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); 4508 } 4509 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 4510 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); 4511 } 4512 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 4513 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); 4514 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); 4515 } 4516 } 4517 4518 if (env->mcg_cap) { 4519 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); 4520 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); 4521 if (has_msr_mcg_ext_ctl) { 4522 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); 4523 } 4524 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 4525 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); 4526 } 4527 } 4528 4529 if (has_msr_hv_hypercall) { 4530 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); 4531 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); 4532 } 4533 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 4534 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); 4535 } 4536 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 4537 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); 4538 } 4539 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 4540 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0); 4541 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0); 4542 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0); 4543 } 4544 if (has_msr_hv_syndbg_options) { 4545 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0); 4546 } 4547 if (has_msr_hv_crash) { 4548 int j; 4549 4550 for (j = 0; j < HV_CRASH_PARAMS; j++) { 4551 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); 4552 } 4553 } 4554 if (has_msr_hv_runtime) { 4555 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); 4556 } 4557 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 4558 uint32_t msr; 4559 4560 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); 4561 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); 4562 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); 4563 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { 4564 kvm_msr_entry_add(cpu, msr, 0); 4565 } 4566 } 4567 if (has_msr_hv_stimer) { 4568 uint32_t msr; 4569 4570 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; 4571 msr++) { 4572 kvm_msr_entry_add(cpu, msr, 0); 4573 } 4574 } 4575 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 4576 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); 4577 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); 4578 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); 4579 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); 4580 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); 4581 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); 4582 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); 4583 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); 4584 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); 4585 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); 4586 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); 4587 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); 4588 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 4589 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); 4590 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); 4591 } 4592 } 4593 4594 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 4595 int addr_num = 4596 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7; 4597 4598 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0); 4599 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0); 4600 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0); 4601 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0); 4602 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0); 4603 for (i = 0; i < addr_num; i++) { 4604 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0); 4605 } 4606 } 4607 4608 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 4609 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0); 4610 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0); 4611 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0); 4612 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0); 4613 } 4614 4615 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) { 4616 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0); 4617 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0); 4618 } 4619 4620 if (kvm_enabled() && cpu->enable_pmu && 4621 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) { 4622 uint64_t depth; 4623 4624 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth); 4625 if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) { 4626 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0); 4627 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0); 4628 4629 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) { 4630 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0); 4631 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0); 4632 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0); 4633 } 4634 } 4635 } 4636 4637 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); 4638 if (ret < 0) { 4639 return ret; 4640 } 4641 4642 if (ret < cpu->kvm_msr_buf->nmsrs) { 4643 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 4644 error_report("error: failed to get MSR 0x%" PRIx32, 4645 (uint32_t)e->index); 4646 } 4647 4648 assert(ret == cpu->kvm_msr_buf->nmsrs); 4649 /* 4650 * MTRR masks: Each mask consists of 5 parts 4651 * a 10..0: must be zero 4652 * b 11 : valid bit 4653 * c n-1.12: actual mask bits 4654 * d 51..n: reserved must be zero 4655 * e 63.52: reserved must be zero 4656 * 4657 * 'n' is the number of physical bits supported by the CPU and is 4658 * apparently always <= 52. We know our 'n' but don't know what 4659 * the destinations 'n' is; it might be smaller, in which case 4660 * it masks (c) on loading. It might be larger, in which case 4661 * we fill 'd' so that d..c is consistent irrespetive of the 'n' 4662 * we're migrating to. 4663 */ 4664 4665 if (cpu->fill_mtrr_mask) { 4666 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); 4667 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); 4668 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); 4669 } else { 4670 mtrr_top_bits = 0; 4671 } 4672 4673 for (i = 0; i < ret; i++) { 4674 uint32_t index = msrs[i].index; 4675 switch (index) { 4676 case MSR_IA32_SYSENTER_CS: 4677 env->sysenter_cs = msrs[i].data; 4678 break; 4679 case MSR_IA32_SYSENTER_ESP: 4680 env->sysenter_esp = msrs[i].data; 4681 break; 4682 case MSR_IA32_SYSENTER_EIP: 4683 env->sysenter_eip = msrs[i].data; 4684 break; 4685 case MSR_PAT: 4686 env->pat = msrs[i].data; 4687 break; 4688 case MSR_STAR: 4689 env->star = msrs[i].data; 4690 break; 4691 #ifdef TARGET_X86_64 4692 case MSR_CSTAR: 4693 env->cstar = msrs[i].data; 4694 break; 4695 case MSR_KERNELGSBASE: 4696 env->kernelgsbase = msrs[i].data; 4697 break; 4698 case MSR_FMASK: 4699 env->fmask = msrs[i].data; 4700 break; 4701 case MSR_LSTAR: 4702 env->lstar = msrs[i].data; 4703 break; 4704 case MSR_IA32_FRED_RSP0: 4705 env->fred_rsp0 = msrs[i].data; 4706 break; 4707 case MSR_IA32_FRED_RSP1: 4708 env->fred_rsp1 = msrs[i].data; 4709 break; 4710 case MSR_IA32_FRED_RSP2: 4711 env->fred_rsp2 = msrs[i].data; 4712 break; 4713 case MSR_IA32_FRED_RSP3: 4714 env->fred_rsp3 = msrs[i].data; 4715 break; 4716 case MSR_IA32_FRED_STKLVLS: 4717 env->fred_stklvls = msrs[i].data; 4718 break; 4719 case MSR_IA32_FRED_SSP1: 4720 env->fred_ssp1 = msrs[i].data; 4721 break; 4722 case MSR_IA32_FRED_SSP2: 4723 env->fred_ssp2 = msrs[i].data; 4724 break; 4725 case MSR_IA32_FRED_SSP3: 4726 env->fred_ssp3 = msrs[i].data; 4727 break; 4728 case MSR_IA32_FRED_CONFIG: 4729 env->fred_config = msrs[i].data; 4730 break; 4731 #endif 4732 case MSR_IA32_TSC: 4733 env->tsc = msrs[i].data; 4734 break; 4735 case MSR_TSC_AUX: 4736 env->tsc_aux = msrs[i].data; 4737 break; 4738 case MSR_TSC_ADJUST: 4739 env->tsc_adjust = msrs[i].data; 4740 break; 4741 case MSR_IA32_TSCDEADLINE: 4742 env->tsc_deadline = msrs[i].data; 4743 break; 4744 case MSR_VM_HSAVE_PA: 4745 env->vm_hsave = msrs[i].data; 4746 break; 4747 case MSR_KVM_SYSTEM_TIME: 4748 env->system_time_msr = msrs[i].data; 4749 break; 4750 case MSR_KVM_WALL_CLOCK: 4751 env->wall_clock_msr = msrs[i].data; 4752 break; 4753 case MSR_MCG_STATUS: 4754 env->mcg_status = msrs[i].data; 4755 break; 4756 case MSR_MCG_CTL: 4757 env->mcg_ctl = msrs[i].data; 4758 break; 4759 case MSR_MCG_EXT_CTL: 4760 env->mcg_ext_ctl = msrs[i].data; 4761 break; 4762 case MSR_IA32_MISC_ENABLE: 4763 env->msr_ia32_misc_enable = msrs[i].data; 4764 break; 4765 case MSR_IA32_SMBASE: 4766 env->smbase = msrs[i].data; 4767 break; 4768 case MSR_SMI_COUNT: 4769 env->msr_smi_count = msrs[i].data; 4770 break; 4771 case MSR_IA32_FEATURE_CONTROL: 4772 env->msr_ia32_feature_control = msrs[i].data; 4773 break; 4774 case MSR_IA32_BNDCFGS: 4775 env->msr_bndcfgs = msrs[i].data; 4776 break; 4777 case MSR_IA32_XSS: 4778 env->xss = msrs[i].data; 4779 break; 4780 case MSR_IA32_UMWAIT_CONTROL: 4781 env->umwait = msrs[i].data; 4782 break; 4783 case MSR_IA32_PKRS: 4784 env->pkrs = msrs[i].data; 4785 break; 4786 default: 4787 if (msrs[i].index >= MSR_MC0_CTL && 4788 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { 4789 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; 4790 } 4791 break; 4792 case MSR_KVM_ASYNC_PF_EN: 4793 env->async_pf_en_msr = msrs[i].data; 4794 break; 4795 case MSR_KVM_ASYNC_PF_INT: 4796 env->async_pf_int_msr = msrs[i].data; 4797 break; 4798 case MSR_KVM_PV_EOI_EN: 4799 env->pv_eoi_en_msr = msrs[i].data; 4800 break; 4801 case MSR_KVM_STEAL_TIME: 4802 env->steal_time_msr = msrs[i].data; 4803 break; 4804 case MSR_KVM_POLL_CONTROL: { 4805 env->poll_control_msr = msrs[i].data; 4806 break; 4807 } 4808 case MSR_CORE_PERF_FIXED_CTR_CTRL: 4809 env->msr_fixed_ctr_ctrl = msrs[i].data; 4810 break; 4811 case MSR_CORE_PERF_GLOBAL_CTRL: 4812 env->msr_global_ctrl = msrs[i].data; 4813 break; 4814 case MSR_CORE_PERF_GLOBAL_STATUS: 4815 env->msr_global_status = msrs[i].data; 4816 break; 4817 case MSR_CORE_PERF_GLOBAL_OVF_CTRL: 4818 env->msr_global_ovf_ctrl = msrs[i].data; 4819 break; 4820 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: 4821 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; 4822 break; 4823 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: 4824 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; 4825 break; 4826 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: 4827 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; 4828 break; 4829 case HV_X64_MSR_HYPERCALL: 4830 env->msr_hv_hypercall = msrs[i].data; 4831 break; 4832 case HV_X64_MSR_GUEST_OS_ID: 4833 env->msr_hv_guest_os_id = msrs[i].data; 4834 break; 4835 case HV_X64_MSR_APIC_ASSIST_PAGE: 4836 env->msr_hv_vapic = msrs[i].data; 4837 break; 4838 case HV_X64_MSR_REFERENCE_TSC: 4839 env->msr_hv_tsc = msrs[i].data; 4840 break; 4841 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4842 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; 4843 break; 4844 case HV_X64_MSR_VP_RUNTIME: 4845 env->msr_hv_runtime = msrs[i].data; 4846 break; 4847 case HV_X64_MSR_SCONTROL: 4848 env->msr_hv_synic_control = msrs[i].data; 4849 break; 4850 case HV_X64_MSR_SIEFP: 4851 env->msr_hv_synic_evt_page = msrs[i].data; 4852 break; 4853 case HV_X64_MSR_SIMP: 4854 env->msr_hv_synic_msg_page = msrs[i].data; 4855 break; 4856 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 4857 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; 4858 break; 4859 case HV_X64_MSR_STIMER0_CONFIG: 4860 case HV_X64_MSR_STIMER1_CONFIG: 4861 case HV_X64_MSR_STIMER2_CONFIG: 4862 case HV_X64_MSR_STIMER3_CONFIG: 4863 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = 4864 msrs[i].data; 4865 break; 4866 case HV_X64_MSR_STIMER0_COUNT: 4867 case HV_X64_MSR_STIMER1_COUNT: 4868 case HV_X64_MSR_STIMER2_COUNT: 4869 case HV_X64_MSR_STIMER3_COUNT: 4870 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = 4871 msrs[i].data; 4872 break; 4873 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4874 env->msr_hv_reenlightenment_control = msrs[i].data; 4875 break; 4876 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4877 env->msr_hv_tsc_emulation_control = msrs[i].data; 4878 break; 4879 case HV_X64_MSR_TSC_EMULATION_STATUS: 4880 env->msr_hv_tsc_emulation_status = msrs[i].data; 4881 break; 4882 case HV_X64_MSR_SYNDBG_OPTIONS: 4883 env->msr_hv_syndbg_options = msrs[i].data; 4884 break; 4885 case MSR_MTRRdefType: 4886 env->mtrr_deftype = msrs[i].data; 4887 break; 4888 case MSR_MTRRfix64K_00000: 4889 env->mtrr_fixed[0] = msrs[i].data; 4890 break; 4891 case MSR_MTRRfix16K_80000: 4892 env->mtrr_fixed[1] = msrs[i].data; 4893 break; 4894 case MSR_MTRRfix16K_A0000: 4895 env->mtrr_fixed[2] = msrs[i].data; 4896 break; 4897 case MSR_MTRRfix4K_C0000: 4898 env->mtrr_fixed[3] = msrs[i].data; 4899 break; 4900 case MSR_MTRRfix4K_C8000: 4901 env->mtrr_fixed[4] = msrs[i].data; 4902 break; 4903 case MSR_MTRRfix4K_D0000: 4904 env->mtrr_fixed[5] = msrs[i].data; 4905 break; 4906 case MSR_MTRRfix4K_D8000: 4907 env->mtrr_fixed[6] = msrs[i].data; 4908 break; 4909 case MSR_MTRRfix4K_E0000: 4910 env->mtrr_fixed[7] = msrs[i].data; 4911 break; 4912 case MSR_MTRRfix4K_E8000: 4913 env->mtrr_fixed[8] = msrs[i].data; 4914 break; 4915 case MSR_MTRRfix4K_F0000: 4916 env->mtrr_fixed[9] = msrs[i].data; 4917 break; 4918 case MSR_MTRRfix4K_F8000: 4919 env->mtrr_fixed[10] = msrs[i].data; 4920 break; 4921 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): 4922 if (index & 1) { 4923 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | 4924 mtrr_top_bits; 4925 } else { 4926 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; 4927 } 4928 break; 4929 case MSR_IA32_SPEC_CTRL: 4930 env->spec_ctrl = msrs[i].data; 4931 break; 4932 case MSR_AMD64_TSC_RATIO: 4933 env->amd_tsc_scale_msr = msrs[i].data; 4934 break; 4935 case MSR_IA32_TSX_CTRL: 4936 env->tsx_ctrl = msrs[i].data; 4937 break; 4938 case MSR_VIRT_SSBD: 4939 env->virt_ssbd = msrs[i].data; 4940 break; 4941 case MSR_IA32_RTIT_CTL: 4942 env->msr_rtit_ctrl = msrs[i].data; 4943 break; 4944 case MSR_IA32_RTIT_STATUS: 4945 env->msr_rtit_status = msrs[i].data; 4946 break; 4947 case MSR_IA32_RTIT_OUTPUT_BASE: 4948 env->msr_rtit_output_base = msrs[i].data; 4949 break; 4950 case MSR_IA32_RTIT_OUTPUT_MASK: 4951 env->msr_rtit_output_mask = msrs[i].data; 4952 break; 4953 case MSR_IA32_RTIT_CR3_MATCH: 4954 env->msr_rtit_cr3_match = msrs[i].data; 4955 break; 4956 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 4957 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data; 4958 break; 4959 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 4960 env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] = 4961 msrs[i].data; 4962 break; 4963 case MSR_IA32_XFD: 4964 env->msr_xfd = msrs[i].data; 4965 break; 4966 case MSR_IA32_XFD_ERR: 4967 env->msr_xfd_err = msrs[i].data; 4968 break; 4969 case MSR_ARCH_LBR_CTL: 4970 env->msr_lbr_ctl = msrs[i].data; 4971 break; 4972 case MSR_ARCH_LBR_DEPTH: 4973 env->msr_lbr_depth = msrs[i].data; 4974 break; 4975 case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31: 4976 env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data; 4977 break; 4978 case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31: 4979 env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data; 4980 break; 4981 case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31: 4982 env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data; 4983 break; 4984 case MSR_K7_HWCR: 4985 env->msr_hwcr = msrs[i].data; 4986 break; 4987 } 4988 } 4989 4990 return 0; 4991 } 4992 4993 static int kvm_put_mp_state(X86CPU *cpu) 4994 { 4995 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; 4996 4997 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 4998 } 4999 5000 static int kvm_get_mp_state(X86CPU *cpu) 5001 { 5002 CPUState *cs = CPU(cpu); 5003 CPUX86State *env = &cpu->env; 5004 struct kvm_mp_state mp_state; 5005 int ret; 5006 5007 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); 5008 if (ret < 0) { 5009 return ret; 5010 } 5011 env->mp_state = mp_state.mp_state; 5012 if (kvm_irqchip_in_kernel()) { 5013 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); 5014 } 5015 return 0; 5016 } 5017 5018 static int kvm_get_apic(X86CPU *cpu) 5019 { 5020 DeviceState *apic = cpu->apic_state; 5021 struct kvm_lapic_state kapic; 5022 int ret; 5023 5024 if (apic && kvm_irqchip_in_kernel()) { 5025 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); 5026 if (ret < 0) { 5027 return ret; 5028 } 5029 5030 kvm_get_apic_state(apic, &kapic); 5031 } 5032 return 0; 5033 } 5034 5035 static int kvm_put_vcpu_events(X86CPU *cpu, int level) 5036 { 5037 CPUState *cs = CPU(cpu); 5038 CPUX86State *env = &cpu->env; 5039 struct kvm_vcpu_events events = {}; 5040 5041 events.flags = 0; 5042 5043 if (has_exception_payload) { 5044 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5045 events.exception.pending = env->exception_pending; 5046 events.exception_has_payload = env->exception_has_payload; 5047 events.exception_payload = env->exception_payload; 5048 } 5049 events.exception.nr = env->exception_nr; 5050 events.exception.injected = env->exception_injected; 5051 events.exception.has_error_code = env->has_error_code; 5052 events.exception.error_code = env->error_code; 5053 5054 events.interrupt.injected = (env->interrupt_injected >= 0); 5055 events.interrupt.nr = env->interrupt_injected; 5056 events.interrupt.soft = env->soft_interrupt; 5057 5058 events.nmi.injected = env->nmi_injected; 5059 events.nmi.pending = env->nmi_pending; 5060 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); 5061 5062 events.sipi_vector = env->sipi_vector; 5063 5064 if (has_msr_smbase) { 5065 events.flags |= KVM_VCPUEVENT_VALID_SMM; 5066 events.smi.smm = !!(env->hflags & HF_SMM_MASK); 5067 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); 5068 if (kvm_irqchip_in_kernel()) { 5069 /* As soon as these are moved to the kernel, remove them 5070 * from cs->interrupt_request. 5071 */ 5072 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; 5073 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; 5074 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); 5075 } else { 5076 /* Keep these in cs->interrupt_request. */ 5077 events.smi.pending = 0; 5078 events.smi.latched_init = 0; 5079 } 5080 } 5081 5082 if (level >= KVM_PUT_RESET_STATE) { 5083 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; 5084 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 5085 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR; 5086 } 5087 } 5088 5089 if (has_triple_fault_event) { 5090 events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5091 events.triple_fault.pending = env->triple_fault_pending; 5092 } 5093 5094 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 5095 } 5096 5097 static int kvm_get_vcpu_events(X86CPU *cpu) 5098 { 5099 CPUX86State *env = &cpu->env; 5100 struct kvm_vcpu_events events; 5101 int ret; 5102 5103 memset(&events, 0, sizeof(events)); 5104 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 5105 if (ret < 0) { 5106 return ret; 5107 } 5108 5109 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5110 env->exception_pending = events.exception.pending; 5111 env->exception_has_payload = events.exception_has_payload; 5112 env->exception_payload = events.exception_payload; 5113 } else { 5114 env->exception_pending = 0; 5115 env->exception_has_payload = false; 5116 } 5117 env->exception_injected = events.exception.injected; 5118 env->exception_nr = 5119 (env->exception_pending || env->exception_injected) ? 5120 events.exception.nr : -1; 5121 env->has_error_code = events.exception.has_error_code; 5122 env->error_code = events.exception.error_code; 5123 5124 env->interrupt_injected = 5125 events.interrupt.injected ? events.interrupt.nr : -1; 5126 env->soft_interrupt = events.interrupt.soft; 5127 5128 env->nmi_injected = events.nmi.injected; 5129 env->nmi_pending = events.nmi.pending; 5130 if (events.nmi.masked) { 5131 env->hflags2 |= HF2_NMI_MASK; 5132 } else { 5133 env->hflags2 &= ~HF2_NMI_MASK; 5134 } 5135 5136 if (events.flags & KVM_VCPUEVENT_VALID_SMM) { 5137 if (events.smi.smm) { 5138 env->hflags |= HF_SMM_MASK; 5139 } else { 5140 env->hflags &= ~HF_SMM_MASK; 5141 } 5142 if (events.smi.pending) { 5143 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 5144 } else { 5145 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 5146 } 5147 if (events.smi.smm_inside_nmi) { 5148 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; 5149 } else { 5150 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; 5151 } 5152 if (events.smi.latched_init) { 5153 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 5154 } else { 5155 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 5156 } 5157 } 5158 5159 if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5160 env->triple_fault_pending = events.triple_fault.pending; 5161 } 5162 5163 env->sipi_vector = events.sipi_vector; 5164 5165 return 0; 5166 } 5167 5168 static int kvm_put_debugregs(X86CPU *cpu) 5169 { 5170 CPUX86State *env = &cpu->env; 5171 struct kvm_debugregs dbgregs; 5172 int i; 5173 5174 memset(&dbgregs, 0, sizeof(dbgregs)); 5175 for (i = 0; i < 4; i++) { 5176 dbgregs.db[i] = env->dr[i]; 5177 } 5178 dbgregs.dr6 = env->dr[6]; 5179 dbgregs.dr7 = env->dr[7]; 5180 dbgregs.flags = 0; 5181 5182 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); 5183 } 5184 5185 static int kvm_get_debugregs(X86CPU *cpu) 5186 { 5187 CPUX86State *env = &cpu->env; 5188 struct kvm_debugregs dbgregs; 5189 int i, ret; 5190 5191 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); 5192 if (ret < 0) { 5193 return ret; 5194 } 5195 for (i = 0; i < 4; i++) { 5196 env->dr[i] = dbgregs.db[i]; 5197 } 5198 env->dr[4] = env->dr[6] = dbgregs.dr6; 5199 env->dr[5] = env->dr[7] = dbgregs.dr7; 5200 5201 return 0; 5202 } 5203 5204 static int kvm_put_nested_state(X86CPU *cpu) 5205 { 5206 CPUX86State *env = &cpu->env; 5207 int max_nested_state_len = kvm_max_nested_state_length(); 5208 5209 if (!env->nested_state) { 5210 return 0; 5211 } 5212 5213 /* 5214 * Copy flags that are affected by reset from env->hflags and env->hflags2. 5215 */ 5216 if (env->hflags & HF_GUEST_MASK) { 5217 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE; 5218 } else { 5219 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE; 5220 } 5221 5222 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */ 5223 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) { 5224 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET; 5225 } else { 5226 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET; 5227 } 5228 5229 assert(env->nested_state->size <= max_nested_state_len); 5230 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state); 5231 } 5232 5233 static int kvm_get_nested_state(X86CPU *cpu) 5234 { 5235 CPUX86State *env = &cpu->env; 5236 int max_nested_state_len = kvm_max_nested_state_length(); 5237 int ret; 5238 5239 if (!env->nested_state) { 5240 return 0; 5241 } 5242 5243 /* 5244 * It is possible that migration restored a smaller size into 5245 * nested_state->hdr.size than what our kernel support. 5246 * We preserve migration origin nested_state->hdr.size for 5247 * call to KVM_SET_NESTED_STATE but wish that our next call 5248 * to KVM_GET_NESTED_STATE will use max size our kernel support. 5249 */ 5250 env->nested_state->size = max_nested_state_len; 5251 5252 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state); 5253 if (ret < 0) { 5254 return ret; 5255 } 5256 5257 /* 5258 * Copy flags that are affected by reset to env->hflags and env->hflags2. 5259 */ 5260 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) { 5261 env->hflags |= HF_GUEST_MASK; 5262 } else { 5263 env->hflags &= ~HF_GUEST_MASK; 5264 } 5265 5266 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */ 5267 if (cpu_has_svm(env)) { 5268 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) { 5269 env->hflags2 |= HF2_GIF_MASK; 5270 } else { 5271 env->hflags2 &= ~HF2_GIF_MASK; 5272 } 5273 } 5274 5275 return ret; 5276 } 5277 5278 int kvm_arch_put_registers(CPUState *cpu, int level, Error **errp) 5279 { 5280 X86CPU *x86_cpu = X86_CPU(cpu); 5281 int ret; 5282 5283 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); 5284 5285 /* 5286 * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX 5287 * root operation upon vCPU reset. kvm_put_msr_feature_control() should also 5288 * precede kvm_put_nested_state() when 'real' nested state is set. 5289 */ 5290 if (level >= KVM_PUT_RESET_STATE) { 5291 ret = kvm_put_msr_feature_control(x86_cpu); 5292 if (ret < 0) { 5293 error_setg_errno(errp, -ret, "Failed to set feature control MSR"); 5294 return ret; 5295 } 5296 } 5297 5298 /* must be before kvm_put_nested_state so that EFER.SVME is set */ 5299 ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu); 5300 if (ret < 0) { 5301 error_setg_errno(errp, -ret, "Failed to set special registers"); 5302 return ret; 5303 } 5304 5305 if (level >= KVM_PUT_RESET_STATE) { 5306 ret = kvm_put_nested_state(x86_cpu); 5307 if (ret < 0) { 5308 error_setg_errno(errp, -ret, "Failed to set nested state"); 5309 return ret; 5310 } 5311 } 5312 5313 if (level == KVM_PUT_FULL_STATE) { 5314 /* We don't check for kvm_arch_set_tsc_khz() errors here, 5315 * because TSC frequency mismatch shouldn't abort migration, 5316 * unless the user explicitly asked for a more strict TSC 5317 * setting (e.g. using an explicit "tsc-freq" option). 5318 */ 5319 kvm_arch_set_tsc_khz(cpu); 5320 } 5321 5322 #ifdef CONFIG_XEN_EMU 5323 if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) { 5324 ret = kvm_put_xen_state(cpu); 5325 if (ret < 0) { 5326 error_setg_errno(errp, -ret, "Failed to set Xen state"); 5327 return ret; 5328 } 5329 } 5330 #endif 5331 5332 ret = kvm_getput_regs(x86_cpu, 1); 5333 if (ret < 0) { 5334 error_setg_errno(errp, -ret, "Failed to set general purpose registers"); 5335 return ret; 5336 } 5337 ret = kvm_put_xsave(x86_cpu); 5338 if (ret < 0) { 5339 error_setg_errno(errp, -ret, "Failed to set XSAVE"); 5340 return ret; 5341 } 5342 ret = kvm_put_xcrs(x86_cpu); 5343 if (ret < 0) { 5344 error_setg_errno(errp, -ret, "Failed to set XCRs"); 5345 return ret; 5346 } 5347 ret = kvm_put_msrs(x86_cpu, level); 5348 if (ret < 0) { 5349 error_setg_errno(errp, -ret, "Failed to set MSRs"); 5350 return ret; 5351 } 5352 ret = kvm_put_vcpu_events(x86_cpu, level); 5353 if (ret < 0) { 5354 error_setg_errno(errp, -ret, "Failed to set vCPU events"); 5355 return ret; 5356 } 5357 if (level >= KVM_PUT_RESET_STATE) { 5358 ret = kvm_put_mp_state(x86_cpu); 5359 if (ret < 0) { 5360 error_setg_errno(errp, -ret, "Failed to set MP state"); 5361 return ret; 5362 } 5363 } 5364 5365 ret = kvm_put_tscdeadline_msr(x86_cpu); 5366 if (ret < 0) { 5367 error_setg_errno(errp, -ret, "Failed to set TSC deadline MSR"); 5368 return ret; 5369 } 5370 ret = kvm_put_debugregs(x86_cpu); 5371 if (ret < 0) { 5372 error_setg_errno(errp, -ret, "Failed to set debug registers"); 5373 return ret; 5374 } 5375 return 0; 5376 } 5377 5378 int kvm_arch_get_registers(CPUState *cs, Error **errp) 5379 { 5380 X86CPU *cpu = X86_CPU(cs); 5381 int ret; 5382 5383 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); 5384 5385 ret = kvm_get_vcpu_events(cpu); 5386 if (ret < 0) { 5387 error_setg_errno(errp, -ret, "Failed to get vCPU events"); 5388 goto out; 5389 } 5390 /* 5391 * KVM_GET_MPSTATE can modify CS and RIP, call it before 5392 * KVM_GET_REGS and KVM_GET_SREGS. 5393 */ 5394 ret = kvm_get_mp_state(cpu); 5395 if (ret < 0) { 5396 error_setg_errno(errp, -ret, "Failed to get MP state"); 5397 goto out; 5398 } 5399 ret = kvm_getput_regs(cpu, 0); 5400 if (ret < 0) { 5401 error_setg_errno(errp, -ret, "Failed to get general purpose registers"); 5402 goto out; 5403 } 5404 ret = kvm_get_xsave(cpu); 5405 if (ret < 0) { 5406 error_setg_errno(errp, -ret, "Failed to get XSAVE"); 5407 goto out; 5408 } 5409 ret = kvm_get_xcrs(cpu); 5410 if (ret < 0) { 5411 error_setg_errno(errp, -ret, "Failed to get XCRs"); 5412 goto out; 5413 } 5414 ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu); 5415 if (ret < 0) { 5416 error_setg_errno(errp, -ret, "Failed to get special registers"); 5417 goto out; 5418 } 5419 ret = kvm_get_msrs(cpu); 5420 if (ret < 0) { 5421 error_setg_errno(errp, -ret, "Failed to get MSRs"); 5422 goto out; 5423 } 5424 ret = kvm_get_apic(cpu); 5425 if (ret < 0) { 5426 error_setg_errno(errp, -ret, "Failed to get APIC"); 5427 goto out; 5428 } 5429 ret = kvm_get_debugregs(cpu); 5430 if (ret < 0) { 5431 error_setg_errno(errp, -ret, "Failed to get debug registers"); 5432 goto out; 5433 } 5434 ret = kvm_get_nested_state(cpu); 5435 if (ret < 0) { 5436 error_setg_errno(errp, -ret, "Failed to get nested state"); 5437 goto out; 5438 } 5439 #ifdef CONFIG_XEN_EMU 5440 if (xen_mode == XEN_EMULATE) { 5441 ret = kvm_get_xen_state(cs); 5442 if (ret < 0) { 5443 error_setg_errno(errp, -ret, "Failed to get Xen state"); 5444 goto out; 5445 } 5446 } 5447 #endif 5448 ret = 0; 5449 out: 5450 cpu_sync_bndcs_hflags(&cpu->env); 5451 return ret; 5452 } 5453 5454 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 5455 { 5456 X86CPU *x86_cpu = X86_CPU(cpu); 5457 CPUX86State *env = &x86_cpu->env; 5458 int ret; 5459 5460 /* Inject NMI */ 5461 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { 5462 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { 5463 bql_lock(); 5464 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; 5465 bql_unlock(); 5466 DPRINTF("injected NMI\n"); 5467 ret = kvm_vcpu_ioctl(cpu, KVM_NMI); 5468 if (ret < 0) { 5469 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", 5470 strerror(-ret)); 5471 } 5472 } 5473 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { 5474 bql_lock(); 5475 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; 5476 bql_unlock(); 5477 DPRINTF("injected SMI\n"); 5478 ret = kvm_vcpu_ioctl(cpu, KVM_SMI); 5479 if (ret < 0) { 5480 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", 5481 strerror(-ret)); 5482 } 5483 } 5484 } 5485 5486 if (!kvm_pic_in_kernel()) { 5487 bql_lock(); 5488 } 5489 5490 /* Force the VCPU out of its inner loop to process any INIT requests 5491 * or (for userspace APIC, but it is cheap to combine the checks here) 5492 * pending TPR access reports. 5493 */ 5494 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { 5495 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && 5496 !(env->hflags & HF_SMM_MASK)) { 5497 cpu->exit_request = 1; 5498 } 5499 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { 5500 cpu->exit_request = 1; 5501 } 5502 } 5503 5504 if (!kvm_pic_in_kernel()) { 5505 /* Try to inject an interrupt if the guest can accept it */ 5506 if (run->ready_for_interrupt_injection && 5507 (cpu->interrupt_request & CPU_INTERRUPT_HARD) && 5508 (env->eflags & IF_MASK)) { 5509 int irq; 5510 5511 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; 5512 irq = cpu_get_pic_interrupt(env); 5513 if (irq >= 0) { 5514 struct kvm_interrupt intr; 5515 5516 intr.irq = irq; 5517 DPRINTF("injected interrupt %d\n", irq); 5518 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); 5519 if (ret < 0) { 5520 fprintf(stderr, 5521 "KVM: injection failed, interrupt lost (%s)\n", 5522 strerror(-ret)); 5523 } 5524 } 5525 } 5526 5527 /* If we have an interrupt but the guest is not ready to receive an 5528 * interrupt, request an interrupt window exit. This will 5529 * cause a return to userspace as soon as the guest is ready to 5530 * receive interrupts. */ 5531 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { 5532 run->request_interrupt_window = 1; 5533 } else { 5534 run->request_interrupt_window = 0; 5535 } 5536 5537 DPRINTF("setting tpr\n"); 5538 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); 5539 5540 bql_unlock(); 5541 } 5542 } 5543 5544 static void kvm_rate_limit_on_bus_lock(void) 5545 { 5546 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1); 5547 5548 if (delay_ns) { 5549 g_usleep(delay_ns / SCALE_US); 5550 } 5551 } 5552 5553 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) 5554 { 5555 X86CPU *x86_cpu = X86_CPU(cpu); 5556 CPUX86State *env = &x86_cpu->env; 5557 5558 if (run->flags & KVM_RUN_X86_SMM) { 5559 env->hflags |= HF_SMM_MASK; 5560 } else { 5561 env->hflags &= ~HF_SMM_MASK; 5562 } 5563 if (run->if_flag) { 5564 env->eflags |= IF_MASK; 5565 } else { 5566 env->eflags &= ~IF_MASK; 5567 } 5568 if (run->flags & KVM_RUN_X86_BUS_LOCK) { 5569 kvm_rate_limit_on_bus_lock(); 5570 } 5571 5572 #ifdef CONFIG_XEN_EMU 5573 /* 5574 * If the callback is asserted as a GSI (or PCI INTx) then check if 5575 * vcpu_info->evtchn_upcall_pending has been cleared, and deassert 5576 * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC 5577 * EOI and only resample then, exactly how the VFIO eventfd pairs 5578 * are designed to work for level triggered interrupts. 5579 */ 5580 if (x86_cpu->env.xen_callback_asserted) { 5581 kvm_xen_maybe_deassert_callback(cpu); 5582 } 5583 #endif 5584 5585 /* We need to protect the apic state against concurrent accesses from 5586 * different threads in case the userspace irqchip is used. */ 5587 if (!kvm_irqchip_in_kernel()) { 5588 bql_lock(); 5589 } 5590 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); 5591 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); 5592 if (!kvm_irqchip_in_kernel()) { 5593 bql_unlock(); 5594 } 5595 return cpu_get_mem_attrs(env); 5596 } 5597 5598 int kvm_arch_process_async_events(CPUState *cs) 5599 { 5600 X86CPU *cpu = X86_CPU(cs); 5601 CPUX86State *env = &cpu->env; 5602 5603 if (cs->interrupt_request & CPU_INTERRUPT_MCE) { 5604 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ 5605 assert(env->mcg_cap); 5606 5607 cs->interrupt_request &= ~CPU_INTERRUPT_MCE; 5608 5609 kvm_cpu_synchronize_state(cs); 5610 5611 if (env->exception_nr == EXCP08_DBLE) { 5612 /* this means triple fault */ 5613 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 5614 cs->exit_request = 1; 5615 return 0; 5616 } 5617 kvm_queue_exception(env, EXCP12_MCHK, 0, 0); 5618 env->has_error_code = 0; 5619 5620 cs->halted = 0; 5621 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { 5622 env->mp_state = KVM_MP_STATE_RUNNABLE; 5623 } 5624 } 5625 5626 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && 5627 !(env->hflags & HF_SMM_MASK)) { 5628 kvm_cpu_synchronize_state(cs); 5629 do_cpu_init(cpu); 5630 } 5631 5632 if (kvm_irqchip_in_kernel()) { 5633 return 0; 5634 } 5635 5636 if (cs->interrupt_request & CPU_INTERRUPT_POLL) { 5637 cs->interrupt_request &= ~CPU_INTERRUPT_POLL; 5638 apic_poll_irq(cpu->apic_state); 5639 } 5640 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && 5641 (env->eflags & IF_MASK)) || 5642 (cs->interrupt_request & CPU_INTERRUPT_NMI)) { 5643 cs->halted = 0; 5644 } 5645 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { 5646 kvm_cpu_synchronize_state(cs); 5647 do_cpu_sipi(cpu); 5648 } 5649 if (cs->interrupt_request & CPU_INTERRUPT_TPR) { 5650 cs->interrupt_request &= ~CPU_INTERRUPT_TPR; 5651 kvm_cpu_synchronize_state(cs); 5652 apic_handle_tpr_access_report(cpu->apic_state, env->eip, 5653 env->tpr_access_type); 5654 } 5655 5656 return cs->halted; 5657 } 5658 5659 static int kvm_handle_halt(X86CPU *cpu) 5660 { 5661 CPUState *cs = CPU(cpu); 5662 CPUX86State *env = &cpu->env; 5663 5664 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && 5665 (env->eflags & IF_MASK)) && 5666 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { 5667 cs->halted = 1; 5668 return EXCP_HLT; 5669 } 5670 5671 return 0; 5672 } 5673 5674 static int kvm_handle_tpr_access(X86CPU *cpu) 5675 { 5676 CPUState *cs = CPU(cpu); 5677 struct kvm_run *run = cs->kvm_run; 5678 5679 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, 5680 run->tpr_access.is_write ? TPR_ACCESS_WRITE 5681 : TPR_ACCESS_READ); 5682 return 1; 5683 } 5684 5685 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 5686 { 5687 static const uint8_t int3 = 0xcc; 5688 5689 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || 5690 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { 5691 return -EINVAL; 5692 } 5693 return 0; 5694 } 5695 5696 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 5697 { 5698 uint8_t int3; 5699 5700 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) { 5701 return -EINVAL; 5702 } 5703 if (int3 != 0xcc) { 5704 return 0; 5705 } 5706 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { 5707 return -EINVAL; 5708 } 5709 return 0; 5710 } 5711 5712 static struct { 5713 target_ulong addr; 5714 int len; 5715 int type; 5716 } hw_breakpoint[4]; 5717 5718 static int nb_hw_breakpoint; 5719 5720 static int find_hw_breakpoint(target_ulong addr, int len, int type) 5721 { 5722 int n; 5723 5724 for (n = 0; n < nb_hw_breakpoint; n++) { 5725 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && 5726 (hw_breakpoint[n].len == len || len == -1)) { 5727 return n; 5728 } 5729 } 5730 return -1; 5731 } 5732 5733 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type) 5734 { 5735 switch (type) { 5736 case GDB_BREAKPOINT_HW: 5737 len = 1; 5738 break; 5739 case GDB_WATCHPOINT_WRITE: 5740 case GDB_WATCHPOINT_ACCESS: 5741 switch (len) { 5742 case 1: 5743 break; 5744 case 2: 5745 case 4: 5746 case 8: 5747 if (addr & (len - 1)) { 5748 return -EINVAL; 5749 } 5750 break; 5751 default: 5752 return -EINVAL; 5753 } 5754 break; 5755 default: 5756 return -ENOSYS; 5757 } 5758 5759 if (nb_hw_breakpoint == 4) { 5760 return -ENOBUFS; 5761 } 5762 if (find_hw_breakpoint(addr, len, type) >= 0) { 5763 return -EEXIST; 5764 } 5765 hw_breakpoint[nb_hw_breakpoint].addr = addr; 5766 hw_breakpoint[nb_hw_breakpoint].len = len; 5767 hw_breakpoint[nb_hw_breakpoint].type = type; 5768 nb_hw_breakpoint++; 5769 5770 return 0; 5771 } 5772 5773 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type) 5774 { 5775 int n; 5776 5777 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); 5778 if (n < 0) { 5779 return -ENOENT; 5780 } 5781 nb_hw_breakpoint--; 5782 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; 5783 5784 return 0; 5785 } 5786 5787 void kvm_arch_remove_all_hw_breakpoints(void) 5788 { 5789 nb_hw_breakpoint = 0; 5790 } 5791 5792 static CPUWatchpoint hw_watchpoint; 5793 5794 static int kvm_handle_debug(X86CPU *cpu, 5795 struct kvm_debug_exit_arch *arch_info) 5796 { 5797 CPUState *cs = CPU(cpu); 5798 CPUX86State *env = &cpu->env; 5799 int ret = 0; 5800 int n; 5801 5802 if (arch_info->exception == EXCP01_DB) { 5803 if (arch_info->dr6 & DR6_BS) { 5804 if (cs->singlestep_enabled) { 5805 ret = EXCP_DEBUG; 5806 } 5807 } else { 5808 for (n = 0; n < 4; n++) { 5809 if (arch_info->dr6 & (1 << n)) { 5810 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { 5811 case 0x0: 5812 ret = EXCP_DEBUG; 5813 break; 5814 case 0x1: 5815 ret = EXCP_DEBUG; 5816 cs->watchpoint_hit = &hw_watchpoint; 5817 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 5818 hw_watchpoint.flags = BP_MEM_WRITE; 5819 break; 5820 case 0x3: 5821 ret = EXCP_DEBUG; 5822 cs->watchpoint_hit = &hw_watchpoint; 5823 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 5824 hw_watchpoint.flags = BP_MEM_ACCESS; 5825 break; 5826 } 5827 } 5828 } 5829 } 5830 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { 5831 ret = EXCP_DEBUG; 5832 } 5833 if (ret == 0) { 5834 cpu_synchronize_state(cs); 5835 assert(env->exception_nr == -1); 5836 5837 /* pass to guest */ 5838 kvm_queue_exception(env, arch_info->exception, 5839 arch_info->exception == EXCP01_DB, 5840 arch_info->dr6); 5841 env->has_error_code = 0; 5842 } 5843 5844 return ret; 5845 } 5846 5847 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 5848 { 5849 const uint8_t type_code[] = { 5850 [GDB_BREAKPOINT_HW] = 0x0, 5851 [GDB_WATCHPOINT_WRITE] = 0x1, 5852 [GDB_WATCHPOINT_ACCESS] = 0x3 5853 }; 5854 const uint8_t len_code[] = { 5855 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 5856 }; 5857 int n; 5858 5859 if (kvm_sw_breakpoints_active(cpu)) { 5860 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 5861 } 5862 if (nb_hw_breakpoint > 0) { 5863 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 5864 dbg->arch.debugreg[7] = 0x0600; 5865 for (n = 0; n < nb_hw_breakpoint; n++) { 5866 dbg->arch.debugreg[n] = hw_breakpoint[n].addr; 5867 dbg->arch.debugreg[7] |= (2 << (n * 2)) | 5868 (type_code[hw_breakpoint[n].type] << (16 + n*4)) | 5869 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); 5870 } 5871 } 5872 } 5873 5874 static int kvm_install_msr_filters(KVMState *s) 5875 { 5876 uint64_t zero = 0; 5877 struct kvm_msr_filter filter = { 5878 .flags = KVM_MSR_FILTER_DEFAULT_ALLOW, 5879 }; 5880 int i, j = 0; 5881 5882 QEMU_BUILD_BUG_ON(ARRAY_SIZE(msr_handlers) != ARRAY_SIZE(filter.ranges)); 5883 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5884 KVMMSRHandlers *handler = &msr_handlers[i]; 5885 if (handler->msr) { 5886 struct kvm_msr_filter_range *range = &filter.ranges[j++]; 5887 5888 *range = (struct kvm_msr_filter_range) { 5889 .flags = 0, 5890 .nmsrs = 1, 5891 .base = handler->msr, 5892 .bitmap = (__u8 *)&zero, 5893 }; 5894 5895 if (handler->rdmsr) { 5896 range->flags |= KVM_MSR_FILTER_READ; 5897 } 5898 5899 if (handler->wrmsr) { 5900 range->flags |= KVM_MSR_FILTER_WRITE; 5901 } 5902 } 5903 } 5904 5905 return kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter); 5906 } 5907 5908 static int kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr, 5909 QEMUWRMSRHandler *wrmsr) 5910 { 5911 int i, ret; 5912 5913 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5914 if (!msr_handlers[i].msr) { 5915 msr_handlers[i] = (KVMMSRHandlers) { 5916 .msr = msr, 5917 .rdmsr = rdmsr, 5918 .wrmsr = wrmsr, 5919 }; 5920 5921 ret = kvm_install_msr_filters(s); 5922 if (ret) { 5923 msr_handlers[i] = (KVMMSRHandlers) { }; 5924 return ret; 5925 } 5926 5927 return 0; 5928 } 5929 } 5930 5931 return -EINVAL; 5932 } 5933 5934 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run) 5935 { 5936 int i; 5937 bool r; 5938 5939 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5940 KVMMSRHandlers *handler = &msr_handlers[i]; 5941 if (run->msr.index == handler->msr) { 5942 if (handler->rdmsr) { 5943 r = handler->rdmsr(cpu, handler->msr, 5944 (uint64_t *)&run->msr.data); 5945 run->msr.error = r ? 0 : 1; 5946 return 0; 5947 } 5948 } 5949 } 5950 5951 g_assert_not_reached(); 5952 } 5953 5954 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run) 5955 { 5956 int i; 5957 bool r; 5958 5959 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5960 KVMMSRHandlers *handler = &msr_handlers[i]; 5961 if (run->msr.index == handler->msr) { 5962 if (handler->wrmsr) { 5963 r = handler->wrmsr(cpu, handler->msr, run->msr.data); 5964 run->msr.error = r ? 0 : 1; 5965 return 0; 5966 } 5967 } 5968 } 5969 5970 g_assert_not_reached(); 5971 } 5972 5973 static bool has_sgx_provisioning; 5974 5975 static bool __kvm_enable_sgx_provisioning(KVMState *s) 5976 { 5977 int fd, ret; 5978 5979 if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) { 5980 return false; 5981 } 5982 5983 fd = qemu_open_old("/dev/sgx_provision", O_RDONLY); 5984 if (fd < 0) { 5985 return false; 5986 } 5987 5988 ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd); 5989 if (ret) { 5990 error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret)); 5991 exit(1); 5992 } 5993 close(fd); 5994 return true; 5995 } 5996 5997 bool kvm_enable_sgx_provisioning(KVMState *s) 5998 { 5999 return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning); 6000 } 6001 6002 static bool host_supports_vmx(void) 6003 { 6004 uint32_t ecx, unused; 6005 6006 host_cpuid(1, 0, &unused, &unused, &ecx, &unused); 6007 return ecx & CPUID_EXT_VMX; 6008 } 6009 6010 /* 6011 * Currently the handling here only supports use of KVM_HC_MAP_GPA_RANGE 6012 * to service guest-initiated memory attribute update requests so that 6013 * KVM_SET_MEMORY_ATTRIBUTES can update whether or not a page should be 6014 * backed by the private memory pool provided by guest_memfd, and as such 6015 * is only applicable to guest_memfd-backed guests (e.g. SNP/TDX). 6016 * 6017 * Other other use-cases for KVM_HC_MAP_GPA_RANGE, such as for SEV live 6018 * migration, are not implemented here currently. 6019 * 6020 * For the guest_memfd use-case, these exits will generally be synthesized 6021 * by KVM based on platform-specific hypercalls, like GHCB requests in the 6022 * case of SEV-SNP, and not issued directly within the guest though the 6023 * KVM_HC_MAP_GPA_RANGE hypercall. So in this case, KVM_HC_MAP_GPA_RANGE is 6024 * not actually advertised to guests via the KVM CPUID feature bit, as 6025 * opposed to SEV live migration where it would be. Since it is unlikely the 6026 * SEV live migration use-case would be useful for guest-memfd backed guests, 6027 * because private/shared page tracking is already provided through other 6028 * means, these 2 use-cases should be treated as being mutually-exclusive. 6029 */ 6030 static int kvm_handle_hc_map_gpa_range(X86CPU *cpu, struct kvm_run *run) 6031 { 6032 struct kvm_pre_fault_memory mem; 6033 uint64_t gpa, size, attributes; 6034 int ret; 6035 6036 if (!machine_require_guest_memfd(current_machine)) 6037 return -EINVAL; 6038 6039 gpa = run->hypercall.args[0]; 6040 size = run->hypercall.args[1] * TARGET_PAGE_SIZE; 6041 attributes = run->hypercall.args[2]; 6042 6043 trace_kvm_hc_map_gpa_range(gpa, size, attributes, run->hypercall.flags); 6044 6045 ret = kvm_convert_memory(gpa, size, attributes & KVM_MAP_GPA_RANGE_ENCRYPTED); 6046 if (ret || !kvm_pre_fault_memory_supported) { 6047 return ret; 6048 } 6049 6050 /* 6051 * Opportunistically pre-fault memory in. Failures are ignored so that any 6052 * errors in faulting in the memory will get captured in KVM page fault 6053 * path when the guest first accesses the page. 6054 */ 6055 memset(&mem, 0, sizeof(mem)); 6056 mem.gpa = gpa; 6057 mem.size = size; 6058 while (mem.size) { 6059 if (kvm_vcpu_ioctl(CPU(cpu), KVM_PRE_FAULT_MEMORY, &mem)) { 6060 break; 6061 } 6062 } 6063 6064 return 0; 6065 } 6066 6067 static int kvm_handle_hypercall(X86CPU *cpu, struct kvm_run *run) 6068 { 6069 if (run->hypercall.nr == KVM_HC_MAP_GPA_RANGE) 6070 return kvm_handle_hc_map_gpa_range(cpu, run); 6071 6072 return -EINVAL; 6073 } 6074 6075 #define VMX_INVALID_GUEST_STATE 0x80000021 6076 6077 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 6078 { 6079 X86CPU *cpu = X86_CPU(cs); 6080 uint64_t code; 6081 int ret; 6082 bool ctx_invalid; 6083 KVMState *state; 6084 6085 switch (run->exit_reason) { 6086 case KVM_EXIT_HLT: 6087 DPRINTF("handle_hlt\n"); 6088 bql_lock(); 6089 ret = kvm_handle_halt(cpu); 6090 bql_unlock(); 6091 break; 6092 case KVM_EXIT_SET_TPR: 6093 ret = 0; 6094 break; 6095 case KVM_EXIT_TPR_ACCESS: 6096 bql_lock(); 6097 ret = kvm_handle_tpr_access(cpu); 6098 bql_unlock(); 6099 break; 6100 case KVM_EXIT_FAIL_ENTRY: 6101 code = run->fail_entry.hardware_entry_failure_reason; 6102 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", 6103 code); 6104 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { 6105 fprintf(stderr, 6106 "\nIf you're running a guest on an Intel machine without " 6107 "unrestricted mode\n" 6108 "support, the failure can be most likely due to the guest " 6109 "entering an invalid\n" 6110 "state for Intel VT. For example, the guest maybe running " 6111 "in big real mode\n" 6112 "which is not supported on less recent Intel processors." 6113 "\n\n"); 6114 } 6115 ret = -1; 6116 break; 6117 case KVM_EXIT_EXCEPTION: 6118 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", 6119 run->ex.exception, run->ex.error_code); 6120 ret = -1; 6121 break; 6122 case KVM_EXIT_DEBUG: 6123 DPRINTF("kvm_exit_debug\n"); 6124 bql_lock(); 6125 ret = kvm_handle_debug(cpu, &run->debug.arch); 6126 bql_unlock(); 6127 break; 6128 case KVM_EXIT_HYPERV: 6129 ret = kvm_hv_handle_exit(cpu, &run->hyperv); 6130 break; 6131 case KVM_EXIT_IOAPIC_EOI: 6132 ioapic_eoi_broadcast(run->eoi.vector); 6133 ret = 0; 6134 break; 6135 case KVM_EXIT_X86_BUS_LOCK: 6136 /* already handled in kvm_arch_post_run */ 6137 ret = 0; 6138 break; 6139 case KVM_EXIT_NOTIFY: 6140 ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID); 6141 state = KVM_STATE(current_accel()); 6142 if (ctx_invalid || 6143 state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) { 6144 warn_report("KVM internal error: Encountered a notify exit " 6145 "with invalid context in guest."); 6146 ret = -1; 6147 } else { 6148 warn_report_once("KVM: Encountered a notify exit with valid " 6149 "context in guest. " 6150 "The guest could be misbehaving."); 6151 ret = 0; 6152 } 6153 break; 6154 case KVM_EXIT_X86_RDMSR: 6155 /* We only enable MSR filtering, any other exit is bogus */ 6156 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER); 6157 ret = kvm_handle_rdmsr(cpu, run); 6158 break; 6159 case KVM_EXIT_X86_WRMSR: 6160 /* We only enable MSR filtering, any other exit is bogus */ 6161 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER); 6162 ret = kvm_handle_wrmsr(cpu, run); 6163 break; 6164 #ifdef CONFIG_XEN_EMU 6165 case KVM_EXIT_XEN: 6166 ret = kvm_xen_handle_exit(cpu, &run->xen); 6167 break; 6168 #endif 6169 case KVM_EXIT_HYPERCALL: 6170 ret = kvm_handle_hypercall(cpu, run); 6171 break; 6172 case KVM_EXIT_SYSTEM_EVENT: 6173 switch (run->system_event.type) { 6174 case KVM_SYSTEM_EVENT_TDX_FATAL: 6175 ret = tdx_handle_report_fatal_error(cpu, run); 6176 break; 6177 default: 6178 ret = -1; 6179 break; 6180 } 6181 break; 6182 case KVM_EXIT_TDX: 6183 /* 6184 * run->tdx is already set up for the case where userspace 6185 * does not handle the TDVMCALL. 6186 */ 6187 switch (run->tdx.nr) { 6188 case TDVMCALL_GET_QUOTE: 6189 tdx_handle_get_quote(cpu, run); 6190 break; 6191 case TDVMCALL_GET_TD_VM_CALL_INFO: 6192 tdx_handle_get_tdvmcall_info(cpu, run); 6193 break; 6194 case TDVMCALL_SETUP_EVENT_NOTIFY_INTERRUPT: 6195 tdx_handle_setup_event_notify_interrupt(cpu, run); 6196 break; 6197 } 6198 ret = 0; 6199 break; 6200 default: 6201 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); 6202 ret = -1; 6203 break; 6204 } 6205 6206 return ret; 6207 } 6208 6209 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 6210 { 6211 X86CPU *cpu = X86_CPU(cs); 6212 CPUX86State *env = &cpu->env; 6213 6214 kvm_cpu_synchronize_state(cs); 6215 return !(env->cr[0] & CR0_PE_MASK) || 6216 ((env->segs[R_CS].selector & 3) != 3); 6217 } 6218 6219 void kvm_arch_init_irq_routing(KVMState *s) 6220 { 6221 /* We know at this point that we're using the in-kernel 6222 * irqchip, so we can use irqfds, and on x86 we know 6223 * we can use msi via irqfd and GSI routing. 6224 */ 6225 kvm_msi_via_irqfd_allowed = true; 6226 kvm_gsi_routing_allowed = true; 6227 6228 if (kvm_irqchip_is_split()) { 6229 KVMRouteChange c = kvm_irqchip_begin_route_changes(s); 6230 int i; 6231 6232 /* If the ioapic is in QEMU and the lapics are in KVM, reserve 6233 MSI routes for signaling interrupts to the local apics. */ 6234 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 6235 if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) { 6236 error_report("Could not enable split IRQ mode."); 6237 exit(1); 6238 } 6239 } 6240 kvm_irqchip_commit_route_changes(&c); 6241 } 6242 } 6243 6244 int kvm_arch_irqchip_create(KVMState *s) 6245 { 6246 int ret; 6247 if (kvm_kernel_irqchip_split()) { 6248 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); 6249 if (ret) { 6250 error_report("Could not enable split irqchip mode: %s", 6251 strerror(-ret)); 6252 exit(1); 6253 } else { 6254 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); 6255 kvm_split_irqchip = true; 6256 return 1; 6257 } 6258 } else { 6259 return 0; 6260 } 6261 } 6262 6263 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address) 6264 { 6265 CPUX86State *env; 6266 uint64_t ext_id; 6267 6268 if (!first_cpu) { 6269 return address; 6270 } 6271 env = &X86_CPU(first_cpu)->env; 6272 if (!(env->features[FEAT_KVM] & CPUID_KVM_MSI_EXT_DEST_ID)) { 6273 return address; 6274 } 6275 6276 /* 6277 * If the remappable format bit is set, or the upper bits are 6278 * already set in address_hi, or the low extended bits aren't 6279 * there anyway, do nothing. 6280 */ 6281 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT); 6282 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) { 6283 return address; 6284 } 6285 6286 address &= ~ext_id; 6287 address |= ext_id << 35; 6288 return address; 6289 } 6290 6291 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 6292 uint64_t address, uint32_t data, PCIDevice *dev) 6293 { 6294 X86IOMMUState *iommu = x86_iommu_get_default(); 6295 6296 if (iommu) { 6297 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu); 6298 6299 if (class->int_remap) { 6300 int ret; 6301 MSIMessage src, dst; 6302 6303 src.address = route->u.msi.address_hi; 6304 src.address <<= VTD_MSI_ADDR_HI_SHIFT; 6305 src.address |= route->u.msi.address_lo; 6306 src.data = route->u.msi.data; 6307 6308 ret = class->int_remap(iommu, &src, &dst, dev ? \ 6309 pci_requester_id(dev) : \ 6310 X86_IOMMU_SID_INVALID); 6311 if (ret) { 6312 trace_kvm_x86_fixup_msi_error(route->gsi); 6313 return 1; 6314 } 6315 6316 /* 6317 * Handled untranslated compatibility format interrupt with 6318 * extended destination ID in the low bits 11-5. */ 6319 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address); 6320 6321 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; 6322 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; 6323 route->u.msi.data = dst.data; 6324 return 0; 6325 } 6326 } 6327 6328 #ifdef CONFIG_XEN_EMU 6329 if (xen_mode == XEN_EMULATE) { 6330 int handled = xen_evtchn_translate_pirq_msi(route, address, data); 6331 6332 /* 6333 * If it was a PIRQ and successfully routed (handled == 0) or it was 6334 * an error (handled < 0), return. If it wasn't a PIRQ, keep going. 6335 */ 6336 if (handled <= 0) { 6337 return handled; 6338 } 6339 } 6340 #endif 6341 6342 address = kvm_swizzle_msi_ext_dest_id(address); 6343 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT; 6344 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK; 6345 return 0; 6346 } 6347 6348 typedef struct MSIRouteEntry MSIRouteEntry; 6349 6350 struct MSIRouteEntry { 6351 PCIDevice *dev; /* Device pointer */ 6352 int vector; /* MSI/MSIX vector index */ 6353 int virq; /* Virtual IRQ index */ 6354 QLIST_ENTRY(MSIRouteEntry) list; 6355 }; 6356 6357 /* List of used GSI routes */ 6358 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ 6359 QLIST_HEAD_INITIALIZER(msi_route_list); 6360 6361 void kvm_update_msi_routes_all(void *private, bool global, 6362 uint32_t index, uint32_t mask) 6363 { 6364 int cnt = 0, vector; 6365 MSIRouteEntry *entry; 6366 MSIMessage msg; 6367 PCIDevice *dev; 6368 6369 /* TODO: explicit route update */ 6370 QLIST_FOREACH(entry, &msi_route_list, list) { 6371 cnt++; 6372 vector = entry->vector; 6373 dev = entry->dev; 6374 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) { 6375 msg = msix_get_message(dev, vector); 6376 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) { 6377 msg = msi_get_message(dev, vector); 6378 } else { 6379 /* 6380 * Either MSI/MSIX is disabled for the device, or the 6381 * specific message was masked out. Skip this one. 6382 */ 6383 continue; 6384 } 6385 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); 6386 } 6387 kvm_irqchip_commit_routes(kvm_state); 6388 trace_kvm_x86_update_msi_routes(cnt); 6389 } 6390 6391 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 6392 int vector, PCIDevice *dev) 6393 { 6394 static bool notify_list_inited = false; 6395 MSIRouteEntry *entry; 6396 6397 if (!dev) { 6398 /* These are (possibly) IOAPIC routes only used for split 6399 * kernel irqchip mode, while what we are housekeeping are 6400 * PCI devices only. */ 6401 return 0; 6402 } 6403 6404 entry = g_new0(MSIRouteEntry, 1); 6405 entry->dev = dev; 6406 entry->vector = vector; 6407 entry->virq = route->gsi; 6408 QLIST_INSERT_HEAD(&msi_route_list, entry, list); 6409 6410 trace_kvm_x86_add_msi_route(route->gsi); 6411 6412 if (!notify_list_inited) { 6413 /* For the first time we do add route, add ourselves into 6414 * IOMMU's IEC notify list if needed. */ 6415 X86IOMMUState *iommu = x86_iommu_get_default(); 6416 if (iommu) { 6417 x86_iommu_iec_register_notifier(iommu, 6418 kvm_update_msi_routes_all, 6419 NULL); 6420 } 6421 notify_list_inited = true; 6422 } 6423 return 0; 6424 } 6425 6426 int kvm_arch_release_virq_post(int virq) 6427 { 6428 MSIRouteEntry *entry, *next; 6429 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { 6430 if (entry->virq == virq) { 6431 trace_kvm_x86_remove_msi_route(virq); 6432 QLIST_REMOVE(entry, list); 6433 g_free(entry); 6434 break; 6435 } 6436 } 6437 return 0; 6438 } 6439 6440 int kvm_arch_msi_data_to_gsi(uint32_t data) 6441 { 6442 abort(); 6443 } 6444 6445 bool kvm_has_waitpkg(void) 6446 { 6447 return has_msr_umwait; 6448 } 6449 6450 #define ARCH_REQ_XCOMP_GUEST_PERM 0x1025 6451 6452 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask) 6453 { 6454 KVMState *s = kvm_state; 6455 uint64_t supported; 6456 6457 mask &= XSTATE_DYNAMIC_MASK; 6458 if (!mask) { 6459 return; 6460 } 6461 /* 6462 * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0]. 6463 * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned 6464 * about them already because they are not supported features. 6465 */ 6466 supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX); 6467 supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32; 6468 mask &= supported; 6469 6470 while (mask) { 6471 int bit = ctz64(mask); 6472 int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit); 6473 if (rc) { 6474 /* 6475 * Older kernel version (<5.17) do not support 6476 * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return 6477 * any dynamic feature from kvm_arch_get_supported_cpuid. 6478 */ 6479 warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure " 6480 "for feature bit %d", bit); 6481 } 6482 mask &= ~BIT_ULL(bit); 6483 } 6484 } 6485 6486 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp) 6487 { 6488 KVMState *s = KVM_STATE(obj); 6489 return s->notify_vmexit; 6490 } 6491 6492 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp) 6493 { 6494 KVMState *s = KVM_STATE(obj); 6495 6496 if (s->fd != -1) { 6497 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 6498 return; 6499 } 6500 6501 s->notify_vmexit = value; 6502 } 6503 6504 static void kvm_arch_get_notify_window(Object *obj, Visitor *v, 6505 const char *name, void *opaque, 6506 Error **errp) 6507 { 6508 KVMState *s = KVM_STATE(obj); 6509 uint32_t value = s->notify_window; 6510 6511 visit_type_uint32(v, name, &value, errp); 6512 } 6513 6514 static void kvm_arch_set_notify_window(Object *obj, Visitor *v, 6515 const char *name, void *opaque, 6516 Error **errp) 6517 { 6518 KVMState *s = KVM_STATE(obj); 6519 uint32_t value; 6520 6521 if (s->fd != -1) { 6522 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 6523 return; 6524 } 6525 6526 if (!visit_type_uint32(v, name, &value, errp)) { 6527 return; 6528 } 6529 6530 s->notify_window = value; 6531 } 6532 6533 static void kvm_arch_get_xen_version(Object *obj, Visitor *v, 6534 const char *name, void *opaque, 6535 Error **errp) 6536 { 6537 KVMState *s = KVM_STATE(obj); 6538 uint32_t value = s->xen_version; 6539 6540 visit_type_uint32(v, name, &value, errp); 6541 } 6542 6543 static void kvm_arch_set_xen_version(Object *obj, Visitor *v, 6544 const char *name, void *opaque, 6545 Error **errp) 6546 { 6547 KVMState *s = KVM_STATE(obj); 6548 Error *error = NULL; 6549 uint32_t value; 6550 6551 visit_type_uint32(v, name, &value, &error); 6552 if (error) { 6553 error_propagate(errp, error); 6554 return; 6555 } 6556 6557 s->xen_version = value; 6558 if (value && xen_mode == XEN_DISABLED) { 6559 xen_mode = XEN_EMULATE; 6560 } 6561 } 6562 6563 static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v, 6564 const char *name, void *opaque, 6565 Error **errp) 6566 { 6567 KVMState *s = KVM_STATE(obj); 6568 uint16_t value = s->xen_gnttab_max_frames; 6569 6570 visit_type_uint16(v, name, &value, errp); 6571 } 6572 6573 static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v, 6574 const char *name, void *opaque, 6575 Error **errp) 6576 { 6577 KVMState *s = KVM_STATE(obj); 6578 Error *error = NULL; 6579 uint16_t value; 6580 6581 visit_type_uint16(v, name, &value, &error); 6582 if (error) { 6583 error_propagate(errp, error); 6584 return; 6585 } 6586 6587 s->xen_gnttab_max_frames = value; 6588 } 6589 6590 static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v, 6591 const char *name, void *opaque, 6592 Error **errp) 6593 { 6594 KVMState *s = KVM_STATE(obj); 6595 uint16_t value = s->xen_evtchn_max_pirq; 6596 6597 visit_type_uint16(v, name, &value, errp); 6598 } 6599 6600 static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v, 6601 const char *name, void *opaque, 6602 Error **errp) 6603 { 6604 KVMState *s = KVM_STATE(obj); 6605 Error *error = NULL; 6606 uint16_t value; 6607 6608 visit_type_uint16(v, name, &value, &error); 6609 if (error) { 6610 error_propagate(errp, error); 6611 return; 6612 } 6613 6614 s->xen_evtchn_max_pirq = value; 6615 } 6616 6617 void kvm_arch_accel_class_init(ObjectClass *oc) 6618 { 6619 object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption", 6620 &NotifyVmexitOption_lookup, 6621 kvm_arch_get_notify_vmexit, 6622 kvm_arch_set_notify_vmexit); 6623 object_class_property_set_description(oc, "notify-vmexit", 6624 "Enable notify VM exit"); 6625 6626 object_class_property_add(oc, "notify-window", "uint32", 6627 kvm_arch_get_notify_window, 6628 kvm_arch_set_notify_window, 6629 NULL, NULL); 6630 object_class_property_set_description(oc, "notify-window", 6631 "Clock cycles without an event window " 6632 "after which a notification VM exit occurs"); 6633 6634 object_class_property_add(oc, "xen-version", "uint32", 6635 kvm_arch_get_xen_version, 6636 kvm_arch_set_xen_version, 6637 NULL, NULL); 6638 object_class_property_set_description(oc, "xen-version", 6639 "Xen version to be emulated " 6640 "(in XENVER_version form " 6641 "e.g. 0x4000a for 4.10)"); 6642 6643 object_class_property_add(oc, "xen-gnttab-max-frames", "uint16", 6644 kvm_arch_get_xen_gnttab_max_frames, 6645 kvm_arch_set_xen_gnttab_max_frames, 6646 NULL, NULL); 6647 object_class_property_set_description(oc, "xen-gnttab-max-frames", 6648 "Maximum number of grant table frames"); 6649 6650 object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16", 6651 kvm_arch_get_xen_evtchn_max_pirq, 6652 kvm_arch_set_xen_evtchn_max_pirq, 6653 NULL, NULL); 6654 object_class_property_set_description(oc, "xen-evtchn-max-pirq", 6655 "Maximum number of Xen PIRQs"); 6656 } 6657 6658 void kvm_set_max_apic_id(uint32_t max_apic_id) 6659 { 6660 kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id); 6661 } 6662