1 /* 2 * QEMU KVM support 3 * 4 * Copyright (C) 2006-2008 Qumranet Technologies 5 * Copyright IBM, Corp. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or later. 11 * See the COPYING file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qapi/qapi-events-run-state.h" 17 #include "qapi/error.h" 18 #include "qapi/visitor.h" 19 #include <math.h> 20 #include <sys/ioctl.h> 21 #include <sys/utsname.h> 22 #include <sys/syscall.h> 23 #include <sys/resource.h> 24 #include <sys/time.h> 25 26 #include <linux/kvm.h> 27 #include <linux/kvm_para.h> 28 #include "standard-headers/asm-x86/kvm_para.h" 29 #include "hw/xen/interface/arch-x86/cpuid.h" 30 31 #include "cpu.h" 32 #include "host-cpu.h" 33 #include "vmsr_energy.h" 34 #include "sysemu/sysemu.h" 35 #include "sysemu/hw_accel.h" 36 #include "sysemu/kvm_int.h" 37 #include "sysemu/runstate.h" 38 #include "kvm_i386.h" 39 #include "../confidential-guest.h" 40 #include "sev.h" 41 #include "xen-emu.h" 42 #include "hyperv.h" 43 #include "hyperv-proto.h" 44 45 #include "gdbstub/enums.h" 46 #include "qemu/host-utils.h" 47 #include "qemu/main-loop.h" 48 #include "qemu/ratelimit.h" 49 #include "qemu/config-file.h" 50 #include "qemu/error-report.h" 51 #include "qemu/memalign.h" 52 #include "hw/i386/x86.h" 53 #include "hw/i386/kvm/xen_evtchn.h" 54 #include "hw/i386/pc.h" 55 #include "hw/i386/apic.h" 56 #include "hw/i386/apic_internal.h" 57 #include "hw/i386/apic-msidef.h" 58 #include "hw/i386/intel_iommu.h" 59 #include "hw/i386/topology.h" 60 #include "hw/i386/x86-iommu.h" 61 #include "hw/i386/e820_memory_layout.h" 62 63 #include "hw/xen/xen.h" 64 65 #include "hw/pci/pci.h" 66 #include "hw/pci/msi.h" 67 #include "hw/pci/msix.h" 68 #include "migration/blocker.h" 69 #include "exec/memattrs.h" 70 #include "trace.h" 71 72 #include CONFIG_DEVICES 73 74 //#define DEBUG_KVM 75 76 #ifdef DEBUG_KVM 77 #define DPRINTF(fmt, ...) \ 78 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 79 #else 80 #define DPRINTF(fmt, ...) \ 81 do { } while (0) 82 #endif 83 84 /* 85 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. 86 * In order to use vm86 mode, an EPT identity map and a TSS are needed. 87 * Since these must be part of guest physical memory, we need to allocate 88 * them, both by setting their start addresses in the kernel and by 89 * creating a corresponding e820 entry. We need 4 pages before the BIOS, 90 * so this value allows up to 16M BIOSes. 91 */ 92 #define KVM_IDENTITY_BASE 0xfeffc000 93 94 /* From arch/x86/kvm/lapic.h */ 95 #define KVM_APIC_BUS_CYCLE_NS 1 96 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS) 97 98 #define MSR_KVM_WALL_CLOCK 0x11 99 #define MSR_KVM_SYSTEM_TIME 0x12 100 101 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus 102 * 255 kvm_msr_entry structs */ 103 #define MSR_BUF_SIZE 4096 104 105 typedef bool QEMURDMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t *val); 106 typedef bool QEMUWRMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t val); 107 typedef struct { 108 uint32_t msr; 109 QEMURDMSRHandler *rdmsr; 110 QEMUWRMSRHandler *wrmsr; 111 } KVMMSRHandlers; 112 113 static void kvm_init_msrs(X86CPU *cpu); 114 static bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr, 115 QEMUWRMSRHandler *wrmsr); 116 117 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 118 KVM_CAP_INFO(SET_TSS_ADDR), 119 KVM_CAP_INFO(EXT_CPUID), 120 KVM_CAP_INFO(MP_STATE), 121 KVM_CAP_INFO(SIGNAL_MSI), 122 KVM_CAP_INFO(IRQ_ROUTING), 123 KVM_CAP_INFO(DEBUGREGS), 124 KVM_CAP_INFO(XSAVE), 125 KVM_CAP_INFO(VCPU_EVENTS), 126 KVM_CAP_INFO(X86_ROBUST_SINGLESTEP), 127 KVM_CAP_INFO(MCE), 128 KVM_CAP_INFO(ADJUST_CLOCK), 129 KVM_CAP_INFO(SET_IDENTITY_MAP_ADDR), 130 KVM_CAP_LAST_INFO 131 }; 132 133 static bool has_msr_star; 134 static bool has_msr_hsave_pa; 135 static bool has_msr_tsc_aux; 136 static bool has_msr_tsc_adjust; 137 static bool has_msr_tsc_deadline; 138 static bool has_msr_feature_control; 139 static bool has_msr_misc_enable; 140 static bool has_msr_smbase; 141 static bool has_msr_bndcfgs; 142 static int lm_capable_kernel; 143 static bool has_msr_hv_hypercall; 144 static bool has_msr_hv_crash; 145 static bool has_msr_hv_reset; 146 static bool has_msr_hv_vpindex; 147 static bool hv_vpindex_settable; 148 static bool has_msr_hv_runtime; 149 static bool has_msr_hv_synic; 150 static bool has_msr_hv_stimer; 151 static bool has_msr_hv_frequencies; 152 static bool has_msr_hv_reenlightenment; 153 static bool has_msr_hv_syndbg_options; 154 static bool has_msr_xss; 155 static bool has_msr_umwait; 156 static bool has_msr_spec_ctrl; 157 static bool has_tsc_scale_msr; 158 static bool has_msr_tsx_ctrl; 159 static bool has_msr_virt_ssbd; 160 static bool has_msr_smi_count; 161 static bool has_msr_arch_capabs; 162 static bool has_msr_core_capabs; 163 static bool has_msr_vmx_vmfunc; 164 static bool has_msr_ucode_rev; 165 static bool has_msr_vmx_procbased_ctls2; 166 static bool has_msr_perf_capabs; 167 static bool has_msr_pkrs; 168 static bool has_msr_hwcr; 169 170 static uint32_t has_architectural_pmu_version; 171 static uint32_t num_architectural_pmu_gp_counters; 172 static uint32_t num_architectural_pmu_fixed_counters; 173 174 static int has_xsave2; 175 static int has_xcrs; 176 static int has_sregs2; 177 static int has_exception_payload; 178 static int has_triple_fault_event; 179 180 static bool has_msr_mcg_ext_ctl; 181 182 static struct kvm_cpuid2 *cpuid_cache; 183 static struct kvm_cpuid2 *hv_cpuid_cache; 184 static struct kvm_msr_list *kvm_feature_msrs; 185 186 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES]; 187 188 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */ 189 static RateLimit bus_lock_ratelimit_ctrl; 190 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value); 191 192 static const char *vm_type_name[] = { 193 [KVM_X86_DEFAULT_VM] = "default", 194 [KVM_X86_SEV_VM] = "SEV", 195 [KVM_X86_SEV_ES_VM] = "SEV-ES", 196 [KVM_X86_SNP_VM] = "SEV-SNP", 197 }; 198 199 bool kvm_is_vm_type_supported(int type) 200 { 201 uint32_t machine_types; 202 203 /* 204 * old KVM doesn't support KVM_CAP_VM_TYPES but KVM_X86_DEFAULT_VM 205 * is always supported 206 */ 207 if (type == KVM_X86_DEFAULT_VM) { 208 return true; 209 } 210 211 machine_types = kvm_check_extension(KVM_STATE(current_machine->accelerator), 212 KVM_CAP_VM_TYPES); 213 return !!(machine_types & BIT(type)); 214 } 215 216 int kvm_get_vm_type(MachineState *ms) 217 { 218 int kvm_type = KVM_X86_DEFAULT_VM; 219 220 if (ms->cgs) { 221 if (!object_dynamic_cast(OBJECT(ms->cgs), TYPE_X86_CONFIDENTIAL_GUEST)) { 222 error_report("configuration type %s not supported for x86 guests", 223 object_get_typename(OBJECT(ms->cgs))); 224 exit(1); 225 } 226 kvm_type = x86_confidential_guest_kvm_type( 227 X86_CONFIDENTIAL_GUEST(ms->cgs)); 228 } 229 230 if (!kvm_is_vm_type_supported(kvm_type)) { 231 error_report("vm-type %s not supported by KVM", vm_type_name[kvm_type]); 232 exit(1); 233 } 234 235 return kvm_type; 236 } 237 238 bool kvm_enable_hypercall(uint64_t enable_mask) 239 { 240 KVMState *s = KVM_STATE(current_accel()); 241 242 return !kvm_vm_enable_cap(s, KVM_CAP_EXIT_HYPERCALL, 0, enable_mask); 243 } 244 245 bool kvm_has_smm(void) 246 { 247 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM); 248 } 249 250 bool kvm_has_adjust_clock_stable(void) 251 { 252 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); 253 254 return (ret & KVM_CLOCK_TSC_STABLE); 255 } 256 257 bool kvm_has_exception_payload(void) 258 { 259 return has_exception_payload; 260 } 261 262 static bool kvm_x2apic_api_set_flags(uint64_t flags) 263 { 264 KVMState *s = KVM_STATE(current_accel()); 265 266 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); 267 } 268 269 #define MEMORIZE(fn, _result) \ 270 ({ \ 271 static bool _memorized; \ 272 \ 273 if (_memorized) { \ 274 return _result; \ 275 } \ 276 _memorized = true; \ 277 _result = fn; \ 278 }) 279 280 static bool has_x2apic_api; 281 282 bool kvm_has_x2apic_api(void) 283 { 284 return has_x2apic_api; 285 } 286 287 bool kvm_enable_x2apic(void) 288 { 289 return MEMORIZE( 290 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | 291 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), 292 has_x2apic_api); 293 } 294 295 bool kvm_hv_vpindex_settable(void) 296 { 297 return hv_vpindex_settable; 298 } 299 300 static int kvm_get_tsc(CPUState *cs) 301 { 302 X86CPU *cpu = X86_CPU(cs); 303 CPUX86State *env = &cpu->env; 304 uint64_t value; 305 int ret; 306 307 if (env->tsc_valid) { 308 return 0; 309 } 310 311 env->tsc_valid = !runstate_is_running(); 312 313 ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value); 314 if (ret < 0) { 315 return ret; 316 } 317 318 env->tsc = value; 319 return 0; 320 } 321 322 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) 323 { 324 kvm_get_tsc(cpu); 325 } 326 327 void kvm_synchronize_all_tsc(void) 328 { 329 CPUState *cpu; 330 331 if (kvm_enabled()) { 332 CPU_FOREACH(cpu) { 333 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); 334 } 335 } 336 } 337 338 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) 339 { 340 struct kvm_cpuid2 *cpuid; 341 int r, size; 342 343 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 344 cpuid = g_malloc0(size); 345 cpuid->nent = max; 346 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); 347 if (r == 0 && cpuid->nent >= max) { 348 r = -E2BIG; 349 } 350 if (r < 0) { 351 if (r == -E2BIG) { 352 g_free(cpuid); 353 return NULL; 354 } else { 355 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", 356 strerror(-r)); 357 exit(1); 358 } 359 } 360 return cpuid; 361 } 362 363 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough 364 * for all entries. 365 */ 366 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) 367 { 368 struct kvm_cpuid2 *cpuid; 369 int max = 1; 370 371 if (cpuid_cache != NULL) { 372 return cpuid_cache; 373 } 374 while ((cpuid = try_get_cpuid(s, max)) == NULL) { 375 max *= 2; 376 } 377 cpuid_cache = cpuid; 378 return cpuid; 379 } 380 381 static bool host_tsx_broken(void) 382 { 383 int family, model, stepping;\ 384 char vendor[CPUID_VENDOR_SZ + 1]; 385 386 host_cpu_vendor_fms(vendor, &family, &model, &stepping); 387 388 /* Check if we are running on a Haswell host known to have broken TSX */ 389 return !strcmp(vendor, CPUID_VENDOR_INTEL) && 390 (family == 6) && 391 ((model == 63 && stepping < 4) || 392 model == 60 || model == 69 || model == 70); 393 } 394 395 /* Returns the value for a specific register on the cpuid entry 396 */ 397 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) 398 { 399 uint32_t ret = 0; 400 switch (reg) { 401 case R_EAX: 402 ret = entry->eax; 403 break; 404 case R_EBX: 405 ret = entry->ebx; 406 break; 407 case R_ECX: 408 ret = entry->ecx; 409 break; 410 case R_EDX: 411 ret = entry->edx; 412 break; 413 } 414 return ret; 415 } 416 417 /* Find matching entry for function/index on kvm_cpuid2 struct 418 */ 419 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, 420 uint32_t function, 421 uint32_t index) 422 { 423 int i; 424 for (i = 0; i < cpuid->nent; ++i) { 425 if (cpuid->entries[i].function == function && 426 cpuid->entries[i].index == index) { 427 return &cpuid->entries[i]; 428 } 429 } 430 /* not found: */ 431 return NULL; 432 } 433 434 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, 435 uint32_t index, int reg) 436 { 437 struct kvm_cpuid2 *cpuid; 438 uint32_t ret = 0; 439 uint32_t cpuid_1_edx, unused; 440 uint64_t bitmask; 441 442 cpuid = get_supported_cpuid(s); 443 444 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); 445 if (entry) { 446 ret = cpuid_entry_get_reg(entry, reg); 447 } 448 449 /* Fixups for the data returned by KVM, below */ 450 451 if (function == 1 && reg == R_EDX) { 452 /* KVM before 2.6.30 misreports the following features */ 453 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; 454 /* KVM never reports CPUID_HT but QEMU can support when vcpus > 1 */ 455 ret |= CPUID_HT; 456 } else if (function == 1 && reg == R_ECX) { 457 /* We can set the hypervisor flag, even if KVM does not return it on 458 * GET_SUPPORTED_CPUID 459 */ 460 ret |= CPUID_EXT_HYPERVISOR; 461 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it 462 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, 463 * and the irqchip is in the kernel. 464 */ 465 if (kvm_irqchip_in_kernel() && 466 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { 467 ret |= CPUID_EXT_TSC_DEADLINE_TIMER; 468 } 469 470 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled 471 * without the in-kernel irqchip 472 */ 473 if (!kvm_irqchip_in_kernel()) { 474 ret &= ~CPUID_EXT_X2APIC; 475 } 476 477 if (enable_cpu_pm) { 478 int disable_exits = kvm_check_extension(s, 479 KVM_CAP_X86_DISABLE_EXITS); 480 481 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) { 482 ret |= CPUID_EXT_MONITOR; 483 } 484 } 485 } else if (function == 6 && reg == R_EAX) { 486 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ 487 } else if (function == 7 && index == 0 && reg == R_EBX) { 488 /* Not new instructions, just an optimization. */ 489 uint32_t ebx; 490 host_cpuid(7, 0, &unused, &ebx, &unused, &unused); 491 ret |= ebx & CPUID_7_0_EBX_ERMS; 492 493 if (host_tsx_broken()) { 494 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); 495 } 496 } else if (function == 7 && index == 0 && reg == R_EDX) { 497 /* Not new instructions, just an optimization. */ 498 uint32_t edx; 499 host_cpuid(7, 0, &unused, &unused, &unused, &edx); 500 ret |= edx & CPUID_7_0_EDX_FSRM; 501 502 /* 503 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts. 504 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is 505 * returned by KVM_GET_MSR_INDEX_LIST. 506 */ 507 if (!has_msr_arch_capabs) { 508 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES; 509 } 510 } else if (function == 7 && index == 1 && reg == R_EAX) { 511 /* Not new instructions, just an optimization. */ 512 uint32_t eax; 513 host_cpuid(7, 1, &eax, &unused, &unused, &unused); 514 ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC); 515 } else if (function == 7 && index == 2 && reg == R_EDX) { 516 uint32_t edx; 517 host_cpuid(7, 2, &unused, &unused, &unused, &edx); 518 ret |= edx & CPUID_7_2_EDX_MCDT_NO; 519 } else if (function == 0xd && index == 0 && 520 (reg == R_EAX || reg == R_EDX)) { 521 /* 522 * The value returned by KVM_GET_SUPPORTED_CPUID does not include 523 * features that still have to be enabled with the arch_prctl 524 * system call. QEMU needs the full value, which is retrieved 525 * with KVM_GET_DEVICE_ATTR. 526 */ 527 struct kvm_device_attr attr = { 528 .group = 0, 529 .attr = KVM_X86_XCOMP_GUEST_SUPP, 530 .addr = (unsigned long) &bitmask 531 }; 532 533 bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES); 534 if (!sys_attr) { 535 return ret; 536 } 537 538 int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr); 539 if (rc < 0) { 540 if (rc != -ENXIO) { 541 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) " 542 "error: %d", rc); 543 } 544 return ret; 545 } 546 ret = (reg == R_EAX) ? bitmask : bitmask >> 32; 547 } else if (function == 0x80000001 && reg == R_ECX) { 548 /* 549 * It's safe to enable TOPOEXT even if it's not returned by 550 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows 551 * us to keep CPU models including TOPOEXT runnable on older kernels. 552 */ 553 ret |= CPUID_EXT3_TOPOEXT; 554 } else if (function == 0x80000001 && reg == R_EDX) { 555 /* On Intel, kvm returns cpuid according to the Intel spec, 556 * so add missing bits according to the AMD spec: 557 */ 558 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); 559 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; 560 } else if (function == 0x80000007 && reg == R_EBX) { 561 ret |= CPUID_8000_0007_EBX_OVERFLOW_RECOV | CPUID_8000_0007_EBX_SUCCOR; 562 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { 563 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't 564 * be enabled without the in-kernel irqchip 565 */ 566 if (!kvm_irqchip_in_kernel()) { 567 ret &= ~(1U << KVM_FEATURE_PV_UNHALT); 568 } 569 if (kvm_irqchip_is_split()) { 570 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID; 571 } 572 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) { 573 ret |= 1U << KVM_HINTS_REALTIME; 574 } 575 576 if (current_machine->cgs) { 577 ret = x86_confidential_guest_mask_cpuid_features( 578 X86_CONFIDENTIAL_GUEST(current_machine->cgs), 579 function, index, reg, ret); 580 } 581 return ret; 582 } 583 584 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index) 585 { 586 struct { 587 struct kvm_msrs info; 588 struct kvm_msr_entry entries[1]; 589 } msr_data = {}; 590 uint64_t value; 591 uint32_t ret, can_be_one, must_be_one; 592 593 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */ 594 return 0; 595 } 596 597 /* Check if requested MSR is supported feature MSR */ 598 int i; 599 for (i = 0; i < kvm_feature_msrs->nmsrs; i++) 600 if (kvm_feature_msrs->indices[i] == index) { 601 break; 602 } 603 if (i == kvm_feature_msrs->nmsrs) { 604 return 0; /* if the feature MSR is not supported, simply return 0 */ 605 } 606 607 msr_data.info.nmsrs = 1; 608 msr_data.entries[0].index = index; 609 610 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data); 611 if (ret != 1) { 612 error_report("KVM get MSR (index=0x%x) feature failed, %s", 613 index, strerror(-ret)); 614 exit(1); 615 } 616 617 value = msr_data.entries[0].data; 618 switch (index) { 619 case MSR_IA32_VMX_PROCBASED_CTLS2: 620 if (!has_msr_vmx_procbased_ctls2) { 621 /* KVM forgot to add these bits for some time, do this ourselves. */ 622 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) & 623 CPUID_XSAVE_XSAVES) { 624 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32; 625 } 626 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) & 627 CPUID_EXT_RDRAND) { 628 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32; 629 } 630 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 631 CPUID_7_0_EBX_INVPCID) { 632 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32; 633 } 634 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 635 CPUID_7_0_EBX_RDSEED) { 636 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32; 637 } 638 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) & 639 CPUID_EXT2_RDTSCP) { 640 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32; 641 } 642 } 643 /* fall through */ 644 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 645 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 646 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 647 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 648 /* 649 * Return true for bits that can be one, but do not have to be one. 650 * The SDM tells us which bits could have a "must be one" setting, 651 * so we can do the opposite transformation in make_vmx_msr_value. 652 */ 653 must_be_one = (uint32_t)value; 654 can_be_one = (uint32_t)(value >> 32); 655 return can_be_one & ~must_be_one; 656 657 default: 658 return value; 659 } 660 } 661 662 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, 663 int *max_banks) 664 { 665 *max_banks = kvm_check_extension(s, KVM_CAP_MCE); 666 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); 667 } 668 669 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) 670 { 671 CPUState *cs = CPU(cpu); 672 CPUX86State *env = &cpu->env; 673 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_EN | MCI_STATUS_MISCV | 674 MCI_STATUS_ADDRV; 675 uint64_t mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV; 676 int flags = 0; 677 678 if (!IS_AMD_CPU(env)) { 679 status |= MCI_STATUS_S | MCI_STATUS_UC; 680 if (code == BUS_MCEERR_AR) { 681 status |= MCI_STATUS_AR | 0x134; 682 mcg_status |= MCG_STATUS_EIPV; 683 } else { 684 status |= 0xc0; 685 } 686 } else { 687 if (code == BUS_MCEERR_AR) { 688 status |= MCI_STATUS_UC | MCI_STATUS_POISON; 689 mcg_status |= MCG_STATUS_EIPV; 690 } else { 691 /* Setting the POISON bit for deferred errors indicates to the 692 * guest kernel that the address provided by the MCE is valid 693 * and usable which will ensure that the guest kernel will send 694 * a SIGBUS_AO signal to the guest process. This allows for 695 * more desirable behavior in the case that the guest process 696 * with poisoned memory has set the MCE_KILL_EARLY prctl flag 697 * which indicates that the process would prefer to handle or 698 * shutdown due to the poisoned memory condition before the 699 * memory has been accessed. 700 * 701 * While the POISON bit would not be set in a deferred error 702 * sent from hardware, the bit is not meaningful for deferred 703 * errors and can be reused in this scenario. 704 */ 705 status |= MCI_STATUS_DEFERRED | MCI_STATUS_POISON; 706 } 707 } 708 709 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; 710 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the 711 * guest kernel back into env->mcg_ext_ctl. 712 */ 713 cpu_synchronize_state(cs); 714 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { 715 mcg_status |= MCG_STATUS_LMCE; 716 flags = 0; 717 } 718 719 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, 720 (MCM_ADDR_PHYS << 6) | 0xc, flags); 721 } 722 723 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar) 724 { 725 MemoryFailureFlags mff = {.action_required = ar, .recursive = false}; 726 727 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action, 728 &mff); 729 } 730 731 static void hardware_memory_error(void *host_addr) 732 { 733 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true); 734 error_report("QEMU got Hardware memory error at addr %p", host_addr); 735 exit(1); 736 } 737 738 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) 739 { 740 X86CPU *cpu = X86_CPU(c); 741 CPUX86State *env = &cpu->env; 742 ram_addr_t ram_addr; 743 hwaddr paddr; 744 745 /* If we get an action required MCE, it has been injected by KVM 746 * while the VM was running. An action optional MCE instead should 747 * be coming from the main thread, which qemu_init_sigbus identifies 748 * as the "early kill" thread. 749 */ 750 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); 751 752 if ((env->mcg_cap & MCG_SER_P) && addr) { 753 ram_addr = qemu_ram_addr_from_host(addr); 754 if (ram_addr != RAM_ADDR_INVALID && 755 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { 756 kvm_hwpoison_page_add(ram_addr); 757 kvm_mce_inject(cpu, paddr, code); 758 759 /* 760 * Use different logging severity based on error type. 761 * If there is additional MCE reporting on the hypervisor, QEMU VA 762 * could be another source to identify the PA and MCE details. 763 */ 764 if (code == BUS_MCEERR_AR) { 765 error_report("Guest MCE Memory Error at QEMU addr %p and " 766 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 767 addr, paddr, "BUS_MCEERR_AR"); 768 } else { 769 warn_report("Guest MCE Memory Error at QEMU addr %p and " 770 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 771 addr, paddr, "BUS_MCEERR_AO"); 772 } 773 774 return; 775 } 776 777 if (code == BUS_MCEERR_AO) { 778 warn_report("Hardware memory error at addr %p of type %s " 779 "for memory used by QEMU itself instead of guest system!", 780 addr, "BUS_MCEERR_AO"); 781 } 782 } 783 784 if (code == BUS_MCEERR_AR) { 785 hardware_memory_error(addr); 786 } 787 788 /* Hope we are lucky for AO MCE, just notify a event */ 789 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false); 790 } 791 792 static void kvm_queue_exception(CPUX86State *env, 793 int32_t exception_nr, 794 uint8_t exception_has_payload, 795 uint64_t exception_payload) 796 { 797 assert(env->exception_nr == -1); 798 assert(!env->exception_pending); 799 assert(!env->exception_injected); 800 assert(!env->exception_has_payload); 801 802 env->exception_nr = exception_nr; 803 804 if (has_exception_payload) { 805 env->exception_pending = 1; 806 807 env->exception_has_payload = exception_has_payload; 808 env->exception_payload = exception_payload; 809 } else { 810 env->exception_injected = 1; 811 812 if (exception_nr == EXCP01_DB) { 813 assert(exception_has_payload); 814 env->dr[6] = exception_payload; 815 } else if (exception_nr == EXCP0E_PAGE) { 816 assert(exception_has_payload); 817 env->cr[2] = exception_payload; 818 } else { 819 assert(!exception_has_payload); 820 } 821 } 822 } 823 824 static void cpu_update_state(void *opaque, bool running, RunState state) 825 { 826 CPUX86State *env = opaque; 827 828 if (running) { 829 env->tsc_valid = false; 830 } 831 } 832 833 unsigned long kvm_arch_vcpu_id(CPUState *cs) 834 { 835 X86CPU *cpu = X86_CPU(cs); 836 return cpu->apic_id; 837 } 838 839 #ifndef KVM_CPUID_SIGNATURE_NEXT 840 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 841 #endif 842 843 static bool hyperv_enabled(X86CPU *cpu) 844 { 845 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 && 846 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) || 847 cpu->hyperv_features || cpu->hyperv_passthrough); 848 } 849 850 /* 851 * Check whether target_freq is within conservative 852 * ntp correctable bounds (250ppm) of freq 853 */ 854 static inline bool freq_within_bounds(int freq, int target_freq) 855 { 856 int max_freq = freq + (freq * 250 / 1000000); 857 int min_freq = freq - (freq * 250 / 1000000); 858 859 if (target_freq >= min_freq && target_freq <= max_freq) { 860 return true; 861 } 862 863 return false; 864 } 865 866 static int kvm_arch_set_tsc_khz(CPUState *cs) 867 { 868 X86CPU *cpu = X86_CPU(cs); 869 CPUX86State *env = &cpu->env; 870 int r, cur_freq; 871 bool set_ioctl = false; 872 873 if (!env->tsc_khz) { 874 return 0; 875 } 876 877 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 878 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP; 879 880 /* 881 * If TSC scaling is supported, attempt to set TSC frequency. 882 */ 883 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) { 884 set_ioctl = true; 885 } 886 887 /* 888 * If desired TSC frequency is within bounds of NTP correction, 889 * attempt to set TSC frequency. 890 */ 891 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) { 892 set_ioctl = true; 893 } 894 895 r = set_ioctl ? 896 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : 897 -ENOTSUP; 898 899 if (r < 0) { 900 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current 901 * TSC frequency doesn't match the one we want. 902 */ 903 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 904 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 905 -ENOTSUP; 906 if (cur_freq <= 0 || cur_freq != env->tsc_khz) { 907 warn_report("TSC frequency mismatch between " 908 "VM (%" PRId64 " kHz) and host (%d kHz), " 909 "and TSC scaling unavailable", 910 env->tsc_khz, cur_freq); 911 return r; 912 } 913 } 914 915 return 0; 916 } 917 918 static bool tsc_is_stable_and_known(CPUX86State *env) 919 { 920 if (!env->tsc_khz) { 921 return false; 922 } 923 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) 924 || env->user_tsc_khz; 925 } 926 927 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1) 928 929 static struct { 930 const char *desc; 931 struct { 932 uint32_t func; 933 int reg; 934 uint32_t bits; 935 } flags[2]; 936 uint64_t dependencies; 937 bool skip_passthrough; 938 } kvm_hyperv_properties[] = { 939 [HYPERV_FEAT_RELAXED] = { 940 .desc = "relaxed timing (hv-relaxed)", 941 .flags = { 942 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 943 .bits = HV_RELAXED_TIMING_RECOMMENDED} 944 } 945 }, 946 [HYPERV_FEAT_VAPIC] = { 947 .desc = "virtual APIC (hv-vapic)", 948 .flags = { 949 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 950 .bits = HV_APIC_ACCESS_AVAILABLE} 951 } 952 }, 953 [HYPERV_FEAT_TIME] = { 954 .desc = "clocksources (hv-time)", 955 .flags = { 956 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 957 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE} 958 } 959 }, 960 [HYPERV_FEAT_CRASH] = { 961 .desc = "crash MSRs (hv-crash)", 962 .flags = { 963 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 964 .bits = HV_GUEST_CRASH_MSR_AVAILABLE} 965 } 966 }, 967 [HYPERV_FEAT_RESET] = { 968 .desc = "reset MSR (hv-reset)", 969 .flags = { 970 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 971 .bits = HV_RESET_AVAILABLE} 972 } 973 }, 974 [HYPERV_FEAT_VPINDEX] = { 975 .desc = "VP_INDEX MSR (hv-vpindex)", 976 .flags = { 977 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 978 .bits = HV_VP_INDEX_AVAILABLE} 979 } 980 }, 981 [HYPERV_FEAT_RUNTIME] = { 982 .desc = "VP_RUNTIME MSR (hv-runtime)", 983 .flags = { 984 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 985 .bits = HV_VP_RUNTIME_AVAILABLE} 986 } 987 }, 988 [HYPERV_FEAT_SYNIC] = { 989 .desc = "synthetic interrupt controller (hv-synic)", 990 .flags = { 991 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 992 .bits = HV_SYNIC_AVAILABLE} 993 } 994 }, 995 [HYPERV_FEAT_STIMER] = { 996 .desc = "synthetic timers (hv-stimer)", 997 .flags = { 998 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 999 .bits = HV_SYNTIMERS_AVAILABLE} 1000 }, 1001 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME) 1002 }, 1003 [HYPERV_FEAT_FREQUENCIES] = { 1004 .desc = "frequency MSRs (hv-frequencies)", 1005 .flags = { 1006 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 1007 .bits = HV_ACCESS_FREQUENCY_MSRS}, 1008 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1009 .bits = HV_FREQUENCY_MSRS_AVAILABLE} 1010 } 1011 }, 1012 [HYPERV_FEAT_REENLIGHTENMENT] = { 1013 .desc = "reenlightenment MSRs (hv-reenlightenment)", 1014 .flags = { 1015 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 1016 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL} 1017 } 1018 }, 1019 [HYPERV_FEAT_TLBFLUSH] = { 1020 .desc = "paravirtualized TLB flush (hv-tlbflush)", 1021 .flags = { 1022 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1023 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED | 1024 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 1025 }, 1026 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 1027 }, 1028 [HYPERV_FEAT_EVMCS] = { 1029 .desc = "enlightened VMCS (hv-evmcs)", 1030 .flags = { 1031 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1032 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED} 1033 }, 1034 .dependencies = BIT(HYPERV_FEAT_VAPIC) 1035 }, 1036 [HYPERV_FEAT_IPI] = { 1037 .desc = "paravirtualized IPI (hv-ipi)", 1038 .flags = { 1039 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1040 .bits = HV_CLUSTER_IPI_RECOMMENDED | 1041 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 1042 }, 1043 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 1044 }, 1045 [HYPERV_FEAT_STIMER_DIRECT] = { 1046 .desc = "direct mode synthetic timers (hv-stimer-direct)", 1047 .flags = { 1048 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1049 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE} 1050 }, 1051 .dependencies = BIT(HYPERV_FEAT_STIMER) 1052 }, 1053 [HYPERV_FEAT_AVIC] = { 1054 .desc = "AVIC/APICv support (hv-avic/hv-apicv)", 1055 .flags = { 1056 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1057 .bits = HV_DEPRECATING_AEOI_RECOMMENDED} 1058 } 1059 }, 1060 [HYPERV_FEAT_SYNDBG] = { 1061 .desc = "Enable synthetic kernel debugger channel (hv-syndbg)", 1062 .flags = { 1063 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1064 .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE} 1065 }, 1066 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED), 1067 .skip_passthrough = true, 1068 }, 1069 [HYPERV_FEAT_MSR_BITMAP] = { 1070 .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)", 1071 .flags = { 1072 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX, 1073 .bits = HV_NESTED_MSR_BITMAP} 1074 } 1075 }, 1076 [HYPERV_FEAT_XMM_INPUT] = { 1077 .desc = "XMM fast hypercall input (hv-xmm-input)", 1078 .flags = { 1079 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1080 .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE} 1081 } 1082 }, 1083 [HYPERV_FEAT_TLBFLUSH_EXT] = { 1084 .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)", 1085 .flags = { 1086 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1087 .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE} 1088 }, 1089 .dependencies = BIT(HYPERV_FEAT_TLBFLUSH) 1090 }, 1091 [HYPERV_FEAT_TLBFLUSH_DIRECT] = { 1092 .desc = "direct TLB flush (hv-tlbflush-direct)", 1093 .flags = { 1094 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX, 1095 .bits = HV_NESTED_DIRECT_FLUSH} 1096 }, 1097 .dependencies = BIT(HYPERV_FEAT_VAPIC) 1098 }, 1099 }; 1100 1101 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max, 1102 bool do_sys_ioctl) 1103 { 1104 struct kvm_cpuid2 *cpuid; 1105 int r, size; 1106 1107 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 1108 cpuid = g_malloc0(size); 1109 cpuid->nent = max; 1110 1111 if (do_sys_ioctl) { 1112 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1113 } else { 1114 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1115 } 1116 if (r == 0 && cpuid->nent >= max) { 1117 r = -E2BIG; 1118 } 1119 if (r < 0) { 1120 if (r == -E2BIG) { 1121 g_free(cpuid); 1122 return NULL; 1123 } else { 1124 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n", 1125 strerror(-r)); 1126 exit(1); 1127 } 1128 } 1129 return cpuid; 1130 } 1131 1132 /* 1133 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough 1134 * for all entries. 1135 */ 1136 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs) 1137 { 1138 struct kvm_cpuid2 *cpuid; 1139 /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */ 1140 int max = 11; 1141 int i; 1142 bool do_sys_ioctl; 1143 1144 do_sys_ioctl = 1145 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0; 1146 1147 /* 1148 * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is 1149 * unsupported, kvm_hyperv_expand_features() checks for that. 1150 */ 1151 assert(do_sys_ioctl || cs->kvm_state); 1152 1153 /* 1154 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with 1155 * -E2BIG, however, it doesn't report back the right size. Keep increasing 1156 * it and re-trying until we succeed. 1157 */ 1158 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) { 1159 max++; 1160 } 1161 1162 /* 1163 * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before 1164 * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the 1165 * information early, just check for the capability and set the bit 1166 * manually. 1167 */ 1168 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state, 1169 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1170 for (i = 0; i < cpuid->nent; i++) { 1171 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) { 1172 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1173 } 1174 } 1175 } 1176 1177 return cpuid; 1178 } 1179 1180 /* 1181 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature 1182 * leaves from KVM_CAP_HYPERV* and present MSRs data. 1183 */ 1184 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs) 1185 { 1186 X86CPU *cpu = X86_CPU(cs); 1187 struct kvm_cpuid2 *cpuid; 1188 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm; 1189 1190 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */ 1191 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries)); 1192 cpuid->nent = 2; 1193 1194 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */ 1195 entry_feat = &cpuid->entries[0]; 1196 entry_feat->function = HV_CPUID_FEATURES; 1197 1198 entry_recomm = &cpuid->entries[1]; 1199 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO; 1200 entry_recomm->ebx = cpu->hyperv_spinlock_attempts; 1201 1202 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) { 1203 entry_feat->eax |= HV_HYPERCALL_AVAILABLE; 1204 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE; 1205 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1206 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED; 1207 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED; 1208 } 1209 1210 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { 1211 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE; 1212 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE; 1213 } 1214 1215 if (has_msr_hv_frequencies) { 1216 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS; 1217 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE; 1218 } 1219 1220 if (has_msr_hv_crash) { 1221 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE; 1222 } 1223 1224 if (has_msr_hv_reenlightenment) { 1225 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL; 1226 } 1227 1228 if (has_msr_hv_reset) { 1229 entry_feat->eax |= HV_RESET_AVAILABLE; 1230 } 1231 1232 if (has_msr_hv_vpindex) { 1233 entry_feat->eax |= HV_VP_INDEX_AVAILABLE; 1234 } 1235 1236 if (has_msr_hv_runtime) { 1237 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE; 1238 } 1239 1240 if (has_msr_hv_synic) { 1241 unsigned int cap = cpu->hyperv_synic_kvm_only ? 1242 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1243 1244 if (kvm_check_extension(cs->kvm_state, cap) > 0) { 1245 entry_feat->eax |= HV_SYNIC_AVAILABLE; 1246 } 1247 } 1248 1249 if (has_msr_hv_stimer) { 1250 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE; 1251 } 1252 1253 if (has_msr_hv_syndbg_options) { 1254 entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE; 1255 entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE; 1256 entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED; 1257 } 1258 1259 if (kvm_check_extension(cs->kvm_state, 1260 KVM_CAP_HYPERV_TLBFLUSH) > 0) { 1261 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED; 1262 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1263 } 1264 1265 if (kvm_check_extension(cs->kvm_state, 1266 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1267 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1268 } 1269 1270 if (kvm_check_extension(cs->kvm_state, 1271 KVM_CAP_HYPERV_SEND_IPI) > 0) { 1272 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED; 1273 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1274 } 1275 1276 return cpuid; 1277 } 1278 1279 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg) 1280 { 1281 struct kvm_cpuid_entry2 *entry; 1282 struct kvm_cpuid2 *cpuid; 1283 1284 if (hv_cpuid_cache) { 1285 cpuid = hv_cpuid_cache; 1286 } else { 1287 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) { 1288 cpuid = get_supported_hv_cpuid(cs); 1289 } else { 1290 /* 1291 * 'cs->kvm_state' may be NULL when Hyper-V features are expanded 1292 * before KVM context is created but this is only done when 1293 * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies 1294 * KVM_CAP_HYPERV_CPUID. 1295 */ 1296 assert(cs->kvm_state); 1297 1298 cpuid = get_supported_hv_cpuid_legacy(cs); 1299 } 1300 hv_cpuid_cache = cpuid; 1301 } 1302 1303 if (!cpuid) { 1304 return 0; 1305 } 1306 1307 entry = cpuid_find_entry(cpuid, func, 0); 1308 if (!entry) { 1309 return 0; 1310 } 1311 1312 return cpuid_entry_get_reg(entry, reg); 1313 } 1314 1315 static bool hyperv_feature_supported(CPUState *cs, int feature) 1316 { 1317 uint32_t func, bits; 1318 int i, reg; 1319 1320 /* 1321 * kvm_hyperv_properties needs to define at least one CPUID flag which 1322 * must be used to detect the feature, it's hard to say whether it is 1323 * supported or not otherwise. 1324 */ 1325 assert(kvm_hyperv_properties[feature].flags[0].func); 1326 1327 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) { 1328 1329 func = kvm_hyperv_properties[feature].flags[i].func; 1330 reg = kvm_hyperv_properties[feature].flags[i].reg; 1331 bits = kvm_hyperv_properties[feature].flags[i].bits; 1332 1333 if (!func) { 1334 continue; 1335 } 1336 1337 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) { 1338 return false; 1339 } 1340 } 1341 1342 return true; 1343 } 1344 1345 /* Checks that all feature dependencies are enabled */ 1346 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp) 1347 { 1348 uint64_t deps; 1349 int dep_feat; 1350 1351 deps = kvm_hyperv_properties[feature].dependencies; 1352 while (deps) { 1353 dep_feat = ctz64(deps); 1354 if (!(hyperv_feat_enabled(cpu, dep_feat))) { 1355 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1356 kvm_hyperv_properties[feature].desc, 1357 kvm_hyperv_properties[dep_feat].desc); 1358 return false; 1359 } 1360 deps &= ~(1ull << dep_feat); 1361 } 1362 1363 return true; 1364 } 1365 1366 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg) 1367 { 1368 X86CPU *cpu = X86_CPU(cs); 1369 uint32_t r = 0; 1370 int i, j; 1371 1372 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) { 1373 if (!hyperv_feat_enabled(cpu, i)) { 1374 continue; 1375 } 1376 1377 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) { 1378 if (kvm_hyperv_properties[i].flags[j].func != func) { 1379 continue; 1380 } 1381 if (kvm_hyperv_properties[i].flags[j].reg != reg) { 1382 continue; 1383 } 1384 1385 r |= kvm_hyperv_properties[i].flags[j].bits; 1386 } 1387 } 1388 1389 /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */ 1390 if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) { 1391 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1392 r |= DEFAULT_EVMCS_VERSION; 1393 } 1394 } 1395 1396 return r; 1397 } 1398 1399 /* 1400 * Expand Hyper-V CPU features. In partucular, check that all the requested 1401 * features are supported by the host and the sanity of the configuration 1402 * (that all the required dependencies are included). Also, this takes care 1403 * of 'hv_passthrough' mode and fills the environment with all supported 1404 * Hyper-V features. 1405 */ 1406 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp) 1407 { 1408 CPUState *cs = CPU(cpu); 1409 Error *local_err = NULL; 1410 int feat; 1411 1412 if (!hyperv_enabled(cpu)) 1413 return true; 1414 1415 /* 1416 * When kvm_hyperv_expand_features is called at CPU feature expansion 1417 * time per-CPU kvm_state is not available yet so we can only proceed 1418 * when KVM_CAP_SYS_HYPERV_CPUID is supported. 1419 */ 1420 if (!cs->kvm_state && 1421 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID)) 1422 return true; 1423 1424 if (cpu->hyperv_passthrough) { 1425 cpu->hyperv_vendor_id[0] = 1426 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX); 1427 cpu->hyperv_vendor_id[1] = 1428 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX); 1429 cpu->hyperv_vendor_id[2] = 1430 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX); 1431 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor, 1432 sizeof(cpu->hyperv_vendor_id) + 1); 1433 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id, 1434 sizeof(cpu->hyperv_vendor_id)); 1435 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0; 1436 1437 cpu->hyperv_interface_id[0] = 1438 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX); 1439 cpu->hyperv_interface_id[1] = 1440 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX); 1441 cpu->hyperv_interface_id[2] = 1442 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX); 1443 cpu->hyperv_interface_id[3] = 1444 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX); 1445 1446 cpu->hyperv_ver_id_build = 1447 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX); 1448 cpu->hyperv_ver_id_major = 1449 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16; 1450 cpu->hyperv_ver_id_minor = 1451 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff; 1452 cpu->hyperv_ver_id_sp = 1453 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX); 1454 cpu->hyperv_ver_id_sb = 1455 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24; 1456 cpu->hyperv_ver_id_sn = 1457 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff; 1458 1459 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, 1460 R_EAX); 1461 cpu->hyperv_limits[0] = 1462 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX); 1463 cpu->hyperv_limits[1] = 1464 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX); 1465 cpu->hyperv_limits[2] = 1466 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX); 1467 1468 cpu->hyperv_spinlock_attempts = 1469 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX); 1470 1471 /* 1472 * Mark feature as enabled in 'cpu->hyperv_features' as 1473 * hv_build_cpuid_leaf() uses this info to build guest CPUIDs. 1474 */ 1475 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1476 if (hyperv_feature_supported(cs, feat) && 1477 !kvm_hyperv_properties[feat].skip_passthrough) { 1478 cpu->hyperv_features |= BIT(feat); 1479 } 1480 } 1481 } else { 1482 /* Check features availability and dependencies */ 1483 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1484 /* If the feature was not requested skip it. */ 1485 if (!hyperv_feat_enabled(cpu, feat)) { 1486 continue; 1487 } 1488 1489 /* Check if the feature is supported by KVM */ 1490 if (!hyperv_feature_supported(cs, feat)) { 1491 error_setg(errp, "Hyper-V %s is not supported by kernel", 1492 kvm_hyperv_properties[feat].desc); 1493 return false; 1494 } 1495 1496 /* Check dependencies */ 1497 if (!hv_feature_check_deps(cpu, feat, &local_err)) { 1498 error_propagate(errp, local_err); 1499 return false; 1500 } 1501 } 1502 } 1503 1504 /* Additional dependencies not covered by kvm_hyperv_properties[] */ 1505 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1506 !cpu->hyperv_synic_kvm_only && 1507 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) { 1508 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1509 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc, 1510 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc); 1511 return false; 1512 } 1513 1514 return true; 1515 } 1516 1517 /* 1518 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent. 1519 */ 1520 static int hyperv_fill_cpuids(CPUState *cs, 1521 struct kvm_cpuid_entry2 *cpuid_ent) 1522 { 1523 X86CPU *cpu = X86_CPU(cs); 1524 struct kvm_cpuid_entry2 *c; 1525 uint32_t signature[3]; 1526 uint32_t cpuid_i = 0, max_cpuid_leaf = 0; 1527 uint32_t nested_eax = 1528 hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX); 1529 1530 max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES : 1531 HV_CPUID_IMPLEMENT_LIMITS; 1532 1533 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) { 1534 max_cpuid_leaf = 1535 MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES); 1536 } 1537 1538 c = &cpuid_ent[cpuid_i++]; 1539 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS; 1540 c->eax = max_cpuid_leaf; 1541 c->ebx = cpu->hyperv_vendor_id[0]; 1542 c->ecx = cpu->hyperv_vendor_id[1]; 1543 c->edx = cpu->hyperv_vendor_id[2]; 1544 1545 c = &cpuid_ent[cpuid_i++]; 1546 c->function = HV_CPUID_INTERFACE; 1547 c->eax = cpu->hyperv_interface_id[0]; 1548 c->ebx = cpu->hyperv_interface_id[1]; 1549 c->ecx = cpu->hyperv_interface_id[2]; 1550 c->edx = cpu->hyperv_interface_id[3]; 1551 1552 c = &cpuid_ent[cpuid_i++]; 1553 c->function = HV_CPUID_VERSION; 1554 c->eax = cpu->hyperv_ver_id_build; 1555 c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 | 1556 cpu->hyperv_ver_id_minor; 1557 c->ecx = cpu->hyperv_ver_id_sp; 1558 c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 | 1559 (cpu->hyperv_ver_id_sn & 0xffffff); 1560 1561 c = &cpuid_ent[cpuid_i++]; 1562 c->function = HV_CPUID_FEATURES; 1563 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX); 1564 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX); 1565 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX); 1566 1567 /* Unconditionally required with any Hyper-V enlightenment */ 1568 c->eax |= HV_HYPERCALL_AVAILABLE; 1569 1570 /* SynIC and Vmbus devices require messages/signals hypercalls */ 1571 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1572 !cpu->hyperv_synic_kvm_only) { 1573 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS; 1574 } 1575 1576 1577 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */ 1578 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1579 1580 c = &cpuid_ent[cpuid_i++]; 1581 c->function = HV_CPUID_ENLIGHTMENT_INFO; 1582 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX); 1583 c->ebx = cpu->hyperv_spinlock_attempts; 1584 1585 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) && 1586 !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) { 1587 c->eax |= HV_APIC_ACCESS_RECOMMENDED; 1588 } 1589 1590 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) { 1591 c->eax |= HV_NO_NONARCH_CORESHARING; 1592 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) { 1593 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) & 1594 HV_NO_NONARCH_CORESHARING; 1595 } 1596 1597 c = &cpuid_ent[cpuid_i++]; 1598 c->function = HV_CPUID_IMPLEMENT_LIMITS; 1599 c->eax = cpu->hv_max_vps; 1600 c->ebx = cpu->hyperv_limits[0]; 1601 c->ecx = cpu->hyperv_limits[1]; 1602 c->edx = cpu->hyperv_limits[2]; 1603 1604 if (nested_eax) { 1605 uint32_t function; 1606 1607 /* Create zeroed 0x40000006..0x40000009 leaves */ 1608 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1; 1609 function < HV_CPUID_NESTED_FEATURES; function++) { 1610 c = &cpuid_ent[cpuid_i++]; 1611 c->function = function; 1612 } 1613 1614 c = &cpuid_ent[cpuid_i++]; 1615 c->function = HV_CPUID_NESTED_FEATURES; 1616 c->eax = nested_eax; 1617 } 1618 1619 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) { 1620 c = &cpuid_ent[cpuid_i++]; 1621 c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS; 1622 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ? 1623 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS; 1624 memcpy(signature, "Microsoft VS", 12); 1625 c->eax = 0; 1626 c->ebx = signature[0]; 1627 c->ecx = signature[1]; 1628 c->edx = signature[2]; 1629 1630 c = &cpuid_ent[cpuid_i++]; 1631 c->function = HV_CPUID_SYNDBG_INTERFACE; 1632 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12); 1633 c->eax = signature[0]; 1634 c->ebx = 0; 1635 c->ecx = 0; 1636 c->edx = 0; 1637 1638 c = &cpuid_ent[cpuid_i++]; 1639 c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES; 1640 c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING; 1641 c->ebx = 0; 1642 c->ecx = 0; 1643 c->edx = 0; 1644 } 1645 1646 return cpuid_i; 1647 } 1648 1649 static Error *hv_passthrough_mig_blocker; 1650 static Error *hv_no_nonarch_cs_mig_blocker; 1651 1652 /* Checks that the exposed eVMCS version range is supported by KVM */ 1653 static bool evmcs_version_supported(uint16_t evmcs_version, 1654 uint16_t supported_evmcs_version) 1655 { 1656 uint8_t min_version = evmcs_version & 0xff; 1657 uint8_t max_version = evmcs_version >> 8; 1658 uint8_t min_supported_version = supported_evmcs_version & 0xff; 1659 uint8_t max_supported_version = supported_evmcs_version >> 8; 1660 1661 return (min_version >= min_supported_version) && 1662 (max_version <= max_supported_version); 1663 } 1664 1665 static int hyperv_init_vcpu(X86CPU *cpu) 1666 { 1667 CPUState *cs = CPU(cpu); 1668 Error *local_err = NULL; 1669 int ret; 1670 1671 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) { 1672 error_setg(&hv_passthrough_mig_blocker, 1673 "'hv-passthrough' CPU flag prevents migration, use explicit" 1674 " set of hv-* flags instead"); 1675 ret = migrate_add_blocker(&hv_passthrough_mig_blocker, &local_err); 1676 if (ret < 0) { 1677 error_report_err(local_err); 1678 return ret; 1679 } 1680 } 1681 1682 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO && 1683 hv_no_nonarch_cs_mig_blocker == NULL) { 1684 error_setg(&hv_no_nonarch_cs_mig_blocker, 1685 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration" 1686 " use explicit 'hv-no-nonarch-coresharing=on' instead (but" 1687 " make sure SMT is disabled and/or that vCPUs are properly" 1688 " pinned)"); 1689 ret = migrate_add_blocker(&hv_no_nonarch_cs_mig_blocker, &local_err); 1690 if (ret < 0) { 1691 error_report_err(local_err); 1692 return ret; 1693 } 1694 } 1695 1696 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) { 1697 /* 1698 * the kernel doesn't support setting vp_index; assert that its value 1699 * is in sync 1700 */ 1701 uint64_t value; 1702 1703 ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value); 1704 if (ret < 0) { 1705 return ret; 1706 } 1707 1708 if (value != hyperv_vp_index(CPU(cpu))) { 1709 error_report("kernel's vp_index != QEMU's vp_index"); 1710 return -ENXIO; 1711 } 1712 } 1713 1714 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 1715 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ? 1716 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1717 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0); 1718 if (ret < 0) { 1719 error_report("failed to turn on HyperV SynIC in KVM: %s", 1720 strerror(-ret)); 1721 return ret; 1722 } 1723 1724 if (!cpu->hyperv_synic_kvm_only) { 1725 ret = hyperv_x86_synic_add(cpu); 1726 if (ret < 0) { 1727 error_report("failed to create HyperV SynIC: %s", 1728 strerror(-ret)); 1729 return ret; 1730 } 1731 } 1732 } 1733 1734 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1735 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION; 1736 uint16_t supported_evmcs_version; 1737 1738 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0, 1739 (uintptr_t)&supported_evmcs_version); 1740 1741 /* 1742 * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs' 1743 * option sets. Note: we hardcode the maximum supported eVMCS version 1744 * to '1' as well so 'hv-evmcs' feature is migratable even when (and if) 1745 * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have 1746 * to be added. 1747 */ 1748 if (ret < 0) { 1749 error_report("Hyper-V %s is not supported by kernel", 1750 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc); 1751 return ret; 1752 } 1753 1754 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) { 1755 error_report("eVMCS version range [%d..%d] is not supported by " 1756 "kernel (supported: [%d..%d])", evmcs_version & 0xff, 1757 evmcs_version >> 8, supported_evmcs_version & 0xff, 1758 supported_evmcs_version >> 8); 1759 return -ENOTSUP; 1760 } 1761 } 1762 1763 if (cpu->hyperv_enforce_cpuid) { 1764 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1); 1765 if (ret < 0) { 1766 error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s", 1767 strerror(-ret)); 1768 return ret; 1769 } 1770 } 1771 1772 /* Skip SynIC and VP_INDEX since they are hard deps already */ 1773 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_STIMER) && 1774 hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) && 1775 hyperv_feat_enabled(cpu, HYPERV_FEAT_RUNTIME)) { 1776 hyperv_x86_set_vmbus_recommended_features_enabled(); 1777 } 1778 1779 return 0; 1780 } 1781 1782 static Error *invtsc_mig_blocker; 1783 1784 #define KVM_MAX_CPUID_ENTRIES 100 1785 1786 static void kvm_init_xsave(CPUX86State *env) 1787 { 1788 if (has_xsave2) { 1789 env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096); 1790 } else { 1791 env->xsave_buf_len = sizeof(struct kvm_xsave); 1792 } 1793 1794 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len); 1795 memset(env->xsave_buf, 0, env->xsave_buf_len); 1796 /* 1797 * The allocated storage must be large enough for all of the 1798 * possible XSAVE state components. 1799 */ 1800 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <= 1801 env->xsave_buf_len); 1802 } 1803 1804 static void kvm_init_nested_state(CPUX86State *env) 1805 { 1806 struct kvm_vmx_nested_state_hdr *vmx_hdr; 1807 uint32_t size; 1808 1809 if (!env->nested_state) { 1810 return; 1811 } 1812 1813 size = env->nested_state->size; 1814 1815 memset(env->nested_state, 0, size); 1816 env->nested_state->size = size; 1817 1818 if (cpu_has_vmx(env)) { 1819 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX; 1820 vmx_hdr = &env->nested_state->hdr.vmx; 1821 vmx_hdr->vmxon_pa = -1ull; 1822 vmx_hdr->vmcs12_pa = -1ull; 1823 } else if (cpu_has_svm(env)) { 1824 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM; 1825 } 1826 } 1827 1828 static uint32_t kvm_x86_build_cpuid(CPUX86State *env, 1829 struct kvm_cpuid_entry2 *entries, 1830 uint32_t cpuid_i) 1831 { 1832 uint32_t limit, i, j; 1833 uint32_t unused; 1834 struct kvm_cpuid_entry2 *c; 1835 1836 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); 1837 1838 for (i = 0; i <= limit; i++) { 1839 j = 0; 1840 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1841 goto full; 1842 } 1843 c = &entries[cpuid_i++]; 1844 switch (i) { 1845 case 2: { 1846 /* Keep reading function 2 till all the input is received */ 1847 int times; 1848 1849 c->function = i; 1850 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1851 times = c->eax & 0xff; 1852 if (times > 1) { 1853 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | 1854 KVM_CPUID_FLAG_STATE_READ_NEXT; 1855 } 1856 1857 for (j = 1; j < times; ++j) { 1858 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1859 goto full; 1860 } 1861 c = &entries[cpuid_i++]; 1862 c->function = i; 1863 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; 1864 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1865 } 1866 break; 1867 } 1868 case 0x1f: 1869 if (!x86_has_extended_topo(env->avail_cpu_topo)) { 1870 cpuid_i--; 1871 break; 1872 } 1873 /* fallthrough */ 1874 case 4: 1875 case 0xb: 1876 case 0xd: 1877 for (j = 0; ; j++) { 1878 c->function = i; 1879 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1880 c->index = j; 1881 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1882 1883 if (i == 4 && c->eax == 0) { 1884 break; 1885 } 1886 if (i == 0xb && !(c->ecx & 0xff00)) { 1887 break; 1888 } 1889 if (i == 0x1f && !(c->ecx & 0xff00)) { 1890 break; 1891 } 1892 if (i == 0xd && c->eax == 0) { 1893 if (j < 63) { 1894 continue; 1895 } else { 1896 cpuid_i--; 1897 break; 1898 } 1899 } 1900 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1901 goto full; 1902 } 1903 c = &entries[cpuid_i++]; 1904 } 1905 break; 1906 case 0x12: 1907 for (j = 0; ; j++) { 1908 c->function = i; 1909 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1910 c->index = j; 1911 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1912 1913 if (j > 1 && (c->eax & 0xf) != 1) { 1914 break; 1915 } 1916 1917 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1918 goto full; 1919 } 1920 c = &entries[cpuid_i++]; 1921 } 1922 break; 1923 case 0x7: 1924 case 0x14: 1925 case 0x1d: 1926 case 0x1e: { 1927 uint32_t times; 1928 1929 c->function = i; 1930 c->index = 0; 1931 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1932 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1933 times = c->eax; 1934 1935 for (j = 1; j <= times; ++j) { 1936 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1937 goto full; 1938 } 1939 c = &entries[cpuid_i++]; 1940 c->function = i; 1941 c->index = j; 1942 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1943 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1944 } 1945 break; 1946 } 1947 default: 1948 c->function = i; 1949 c->flags = 0; 1950 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1951 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 1952 /* 1953 * KVM already returns all zeroes if a CPUID entry is missing, 1954 * so we can omit it and avoid hitting KVM's 80-entry limit. 1955 */ 1956 cpuid_i--; 1957 } 1958 break; 1959 } 1960 } 1961 1962 if (limit >= 0x0a) { 1963 uint32_t eax, edx; 1964 1965 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx); 1966 1967 has_architectural_pmu_version = eax & 0xff; 1968 if (has_architectural_pmu_version > 0) { 1969 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8; 1970 1971 /* Shouldn't be more than 32, since that's the number of bits 1972 * available in EBX to tell us _which_ counters are available. 1973 * Play it safe. 1974 */ 1975 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) { 1976 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS; 1977 } 1978 1979 if (has_architectural_pmu_version > 1) { 1980 num_architectural_pmu_fixed_counters = edx & 0x1f; 1981 1982 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) { 1983 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS; 1984 } 1985 } 1986 } 1987 } 1988 1989 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); 1990 1991 for (i = 0x80000000; i <= limit; i++) { 1992 j = 0; 1993 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1994 goto full; 1995 } 1996 c = &entries[cpuid_i++]; 1997 1998 switch (i) { 1999 case 0x8000001d: 2000 /* Query for all AMD cache information leaves */ 2001 for (j = 0; ; j++) { 2002 c->function = i; 2003 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 2004 c->index = j; 2005 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 2006 2007 if (c->eax == 0) { 2008 break; 2009 } 2010 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2011 goto full; 2012 } 2013 c = &entries[cpuid_i++]; 2014 } 2015 break; 2016 default: 2017 c->function = i; 2018 c->flags = 0; 2019 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 2020 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 2021 /* 2022 * KVM already returns all zeroes if a CPUID entry is missing, 2023 * so we can omit it and avoid hitting KVM's 80-entry limit. 2024 */ 2025 cpuid_i--; 2026 } 2027 break; 2028 } 2029 } 2030 2031 /* Call Centaur's CPUID instructions they are supported. */ 2032 if (env->cpuid_xlevel2 > 0) { 2033 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); 2034 2035 for (i = 0xC0000000; i <= limit; i++) { 2036 j = 0; 2037 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2038 goto full; 2039 } 2040 c = &entries[cpuid_i++]; 2041 2042 c->function = i; 2043 c->flags = 0; 2044 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 2045 } 2046 } 2047 2048 return cpuid_i; 2049 2050 full: 2051 fprintf(stderr, "cpuid_data is full, no space for " 2052 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 2053 abort(); 2054 } 2055 2056 int kvm_arch_init_vcpu(CPUState *cs) 2057 { 2058 struct { 2059 struct kvm_cpuid2 cpuid; 2060 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; 2061 } cpuid_data; 2062 /* 2063 * The kernel defines these structs with padding fields so there 2064 * should be no extra padding in our cpuid_data struct. 2065 */ 2066 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) != 2067 sizeof(struct kvm_cpuid2) + 2068 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES); 2069 2070 X86CPU *cpu = X86_CPU(cs); 2071 CPUX86State *env = &cpu->env; 2072 uint32_t cpuid_i; 2073 struct kvm_cpuid_entry2 *c; 2074 uint32_t signature[3]; 2075 int kvm_base = KVM_CPUID_SIGNATURE; 2076 int max_nested_state_len; 2077 int r; 2078 Error *local_err = NULL; 2079 2080 memset(&cpuid_data, 0, sizeof(cpuid_data)); 2081 2082 cpuid_i = 0; 2083 2084 has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2); 2085 2086 r = kvm_arch_set_tsc_khz(cs); 2087 if (r < 0) { 2088 return r; 2089 } 2090 2091 /* vcpu's TSC frequency is either specified by user, or following 2092 * the value used by KVM if the former is not present. In the 2093 * latter case, we query it from KVM and record in env->tsc_khz, 2094 * so that vcpu's TSC frequency can be migrated later via this field. 2095 */ 2096 if (!env->tsc_khz) { 2097 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 2098 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 2099 -ENOTSUP; 2100 if (r > 0) { 2101 env->tsc_khz = r; 2102 } 2103 } 2104 2105 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY; 2106 2107 /* 2108 * kvm_hyperv_expand_features() is called here for the second time in case 2109 * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle 2110 * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to 2111 * check which Hyper-V enlightenments are supported and which are not, we 2112 * can still proceed and check/expand Hyper-V enlightenments here so legacy 2113 * behavior is preserved. 2114 */ 2115 if (!kvm_hyperv_expand_features(cpu, &local_err)) { 2116 error_report_err(local_err); 2117 return -ENOSYS; 2118 } 2119 2120 if (hyperv_enabled(cpu)) { 2121 r = hyperv_init_vcpu(cpu); 2122 if (r) { 2123 return r; 2124 } 2125 2126 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries); 2127 kvm_base = KVM_CPUID_SIGNATURE_NEXT; 2128 has_msr_hv_hypercall = true; 2129 } 2130 2131 if (cs->kvm_state->xen_version) { 2132 #ifdef CONFIG_XEN_EMU 2133 struct kvm_cpuid_entry2 *xen_max_leaf; 2134 2135 memcpy(signature, "XenVMMXenVMM", 12); 2136 2137 xen_max_leaf = c = &cpuid_data.entries[cpuid_i++]; 2138 c->function = kvm_base + XEN_CPUID_SIGNATURE; 2139 c->eax = kvm_base + XEN_CPUID_TIME; 2140 c->ebx = signature[0]; 2141 c->ecx = signature[1]; 2142 c->edx = signature[2]; 2143 2144 c = &cpuid_data.entries[cpuid_i++]; 2145 c->function = kvm_base + XEN_CPUID_VENDOR; 2146 c->eax = cs->kvm_state->xen_version; 2147 c->ebx = 0; 2148 c->ecx = 0; 2149 c->edx = 0; 2150 2151 c = &cpuid_data.entries[cpuid_i++]; 2152 c->function = kvm_base + XEN_CPUID_HVM_MSR; 2153 /* Number of hypercall-transfer pages */ 2154 c->eax = 1; 2155 /* Hypercall MSR base address */ 2156 if (hyperv_enabled(cpu)) { 2157 c->ebx = XEN_HYPERCALL_MSR_HYPERV; 2158 kvm_xen_init(cs->kvm_state, c->ebx); 2159 } else { 2160 c->ebx = XEN_HYPERCALL_MSR; 2161 } 2162 c->ecx = 0; 2163 c->edx = 0; 2164 2165 c = &cpuid_data.entries[cpuid_i++]; 2166 c->function = kvm_base + XEN_CPUID_TIME; 2167 c->eax = ((!!tsc_is_stable_and_known(env) << 1) | 2168 (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2)); 2169 /* default=0 (emulate if necessary) */ 2170 c->ebx = 0; 2171 /* guest tsc frequency */ 2172 c->ecx = env->user_tsc_khz; 2173 /* guest tsc incarnation (migration count) */ 2174 c->edx = 0; 2175 2176 c = &cpuid_data.entries[cpuid_i++]; 2177 c->function = kvm_base + XEN_CPUID_HVM; 2178 xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM; 2179 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) { 2180 c->function = kvm_base + XEN_CPUID_HVM; 2181 2182 if (cpu->xen_vapic) { 2183 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT; 2184 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT; 2185 } 2186 2187 c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS; 2188 2189 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) { 2190 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT; 2191 c->ebx = cs->cpu_index; 2192 } 2193 2194 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 17)) { 2195 c->eax |= XEN_HVM_CPUID_UPCALL_VECTOR; 2196 } 2197 } 2198 2199 r = kvm_xen_init_vcpu(cs); 2200 if (r) { 2201 return r; 2202 } 2203 2204 kvm_base += 0x100; 2205 #else /* CONFIG_XEN_EMU */ 2206 /* This should never happen as kvm_arch_init() would have died first. */ 2207 fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n"); 2208 abort(); 2209 #endif 2210 } else if (cpu->expose_kvm) { 2211 memcpy(signature, "KVMKVMKVM\0\0\0", 12); 2212 c = &cpuid_data.entries[cpuid_i++]; 2213 c->function = KVM_CPUID_SIGNATURE | kvm_base; 2214 c->eax = KVM_CPUID_FEATURES | kvm_base; 2215 c->ebx = signature[0]; 2216 c->ecx = signature[1]; 2217 c->edx = signature[2]; 2218 2219 c = &cpuid_data.entries[cpuid_i++]; 2220 c->function = KVM_CPUID_FEATURES | kvm_base; 2221 c->eax = env->features[FEAT_KVM]; 2222 c->edx = env->features[FEAT_KVM_HINTS]; 2223 } 2224 2225 if (cpu->kvm_pv_enforce_cpuid) { 2226 r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1); 2227 if (r < 0) { 2228 fprintf(stderr, 2229 "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s", 2230 strerror(-r)); 2231 abort(); 2232 } 2233 } 2234 2235 cpuid_i = kvm_x86_build_cpuid(env, cpuid_data.entries, cpuid_i); 2236 cpuid_data.cpuid.nent = cpuid_i; 2237 2238 if (((env->cpuid_version >> 8)&0xF) >= 6 2239 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == 2240 (CPUID_MCE | CPUID_MCA)) { 2241 uint64_t mcg_cap, unsupported_caps; 2242 int banks; 2243 int ret; 2244 2245 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); 2246 if (ret < 0) { 2247 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); 2248 return ret; 2249 } 2250 2251 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { 2252 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", 2253 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); 2254 return -ENOTSUP; 2255 } 2256 2257 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); 2258 if (unsupported_caps) { 2259 if (unsupported_caps & MCG_LMCE_P) { 2260 error_report("kvm: LMCE not supported"); 2261 return -ENOTSUP; 2262 } 2263 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64, 2264 unsupported_caps); 2265 } 2266 2267 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; 2268 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); 2269 if (ret < 0) { 2270 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); 2271 return ret; 2272 } 2273 } 2274 2275 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env); 2276 2277 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); 2278 if (c) { 2279 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || 2280 !!(c->ecx & CPUID_EXT_SMX); 2281 } 2282 2283 c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0); 2284 if (c && (c->ebx & CPUID_7_0_EBX_SGX)) { 2285 has_msr_feature_control = true; 2286 } 2287 2288 if (env->mcg_cap & MCG_LMCE_P) { 2289 has_msr_mcg_ext_ctl = has_msr_feature_control = true; 2290 } 2291 2292 if (!env->user_tsc_khz) { 2293 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && 2294 invtsc_mig_blocker == NULL) { 2295 error_setg(&invtsc_mig_blocker, 2296 "State blocked by non-migratable CPU device" 2297 " (invtsc flag)"); 2298 r = migrate_add_blocker(&invtsc_mig_blocker, &local_err); 2299 if (r < 0) { 2300 error_report_err(local_err); 2301 return r; 2302 } 2303 } 2304 } 2305 2306 if (cpu->vmware_cpuid_freq 2307 /* Guests depend on 0x40000000 to detect this feature, so only expose 2308 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ 2309 && cpu->expose_kvm 2310 && kvm_base == KVM_CPUID_SIGNATURE 2311 /* TSC clock must be stable and known for this feature. */ 2312 && tsc_is_stable_and_known(env)) { 2313 2314 c = &cpuid_data.entries[cpuid_i++]; 2315 c->function = KVM_CPUID_SIGNATURE | 0x10; 2316 c->eax = env->tsc_khz; 2317 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */ 2318 c->ecx = c->edx = 0; 2319 2320 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); 2321 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); 2322 } 2323 2324 cpuid_data.cpuid.nent = cpuid_i; 2325 2326 cpuid_data.cpuid.padding = 0; 2327 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); 2328 if (r) { 2329 goto fail; 2330 } 2331 kvm_init_xsave(env); 2332 2333 max_nested_state_len = kvm_max_nested_state_length(); 2334 if (max_nested_state_len > 0) { 2335 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data)); 2336 2337 if (cpu_has_vmx(env) || cpu_has_svm(env)) { 2338 env->nested_state = g_malloc0(max_nested_state_len); 2339 env->nested_state->size = max_nested_state_len; 2340 2341 kvm_init_nested_state(env); 2342 } 2343 } 2344 2345 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); 2346 2347 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { 2348 has_msr_tsc_aux = false; 2349 } 2350 2351 kvm_init_msrs(cpu); 2352 2353 return 0; 2354 2355 fail: 2356 migrate_del_blocker(&invtsc_mig_blocker); 2357 2358 return r; 2359 } 2360 2361 int kvm_arch_destroy_vcpu(CPUState *cs) 2362 { 2363 X86CPU *cpu = X86_CPU(cs); 2364 CPUX86State *env = &cpu->env; 2365 2366 g_free(env->xsave_buf); 2367 2368 g_free(cpu->kvm_msr_buf); 2369 cpu->kvm_msr_buf = NULL; 2370 2371 g_free(env->nested_state); 2372 env->nested_state = NULL; 2373 2374 qemu_del_vm_change_state_handler(cpu->vmsentry); 2375 2376 return 0; 2377 } 2378 2379 void kvm_arch_reset_vcpu(X86CPU *cpu) 2380 { 2381 CPUX86State *env = &cpu->env; 2382 2383 env->xcr0 = 1; 2384 if (kvm_irqchip_in_kernel()) { 2385 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : 2386 KVM_MP_STATE_UNINITIALIZED; 2387 } else { 2388 env->mp_state = KVM_MP_STATE_RUNNABLE; 2389 } 2390 2391 /* enabled by default */ 2392 env->poll_control_msr = 1; 2393 2394 kvm_init_nested_state(env); 2395 2396 sev_es_set_reset_vector(CPU(cpu)); 2397 } 2398 2399 void kvm_arch_after_reset_vcpu(X86CPU *cpu) 2400 { 2401 CPUX86State *env = &cpu->env; 2402 int i; 2403 2404 /* 2405 * Reset SynIC after all other devices have been reset to let them remove 2406 * their SINT routes first. 2407 */ 2408 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 2409 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { 2410 env->msr_hv_synic_sint[i] = HV_SINT_MASKED; 2411 } 2412 2413 hyperv_x86_synic_reset(cpu); 2414 } 2415 } 2416 2417 void kvm_arch_do_init_vcpu(X86CPU *cpu) 2418 { 2419 CPUX86State *env = &cpu->env; 2420 2421 /* APs get directly into wait-for-SIPI state. */ 2422 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { 2423 env->mp_state = KVM_MP_STATE_INIT_RECEIVED; 2424 } 2425 } 2426 2427 static int kvm_get_supported_feature_msrs(KVMState *s) 2428 { 2429 int ret = 0; 2430 2431 if (kvm_feature_msrs != NULL) { 2432 return 0; 2433 } 2434 2435 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) { 2436 return 0; 2437 } 2438 2439 struct kvm_msr_list msr_list; 2440 2441 msr_list.nmsrs = 0; 2442 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list); 2443 if (ret < 0 && ret != -E2BIG) { 2444 error_report("Fetch KVM feature MSR list failed: %s", 2445 strerror(-ret)); 2446 return ret; 2447 } 2448 2449 assert(msr_list.nmsrs > 0); 2450 kvm_feature_msrs = g_malloc0(sizeof(msr_list) + 2451 msr_list.nmsrs * sizeof(msr_list.indices[0])); 2452 2453 kvm_feature_msrs->nmsrs = msr_list.nmsrs; 2454 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs); 2455 2456 if (ret < 0) { 2457 error_report("Fetch KVM feature MSR list failed: %s", 2458 strerror(-ret)); 2459 g_free(kvm_feature_msrs); 2460 kvm_feature_msrs = NULL; 2461 return ret; 2462 } 2463 2464 return 0; 2465 } 2466 2467 static int kvm_get_supported_msrs(KVMState *s) 2468 { 2469 int ret = 0; 2470 struct kvm_msr_list msr_list, *kvm_msr_list; 2471 2472 /* 2473 * Obtain MSR list from KVM. These are the MSRs that we must 2474 * save/restore. 2475 */ 2476 msr_list.nmsrs = 0; 2477 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); 2478 if (ret < 0 && ret != -E2BIG) { 2479 return ret; 2480 } 2481 /* 2482 * Old kernel modules had a bug and could write beyond the provided 2483 * memory. Allocate at least a safe amount of 1K. 2484 */ 2485 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + 2486 msr_list.nmsrs * 2487 sizeof(msr_list.indices[0]))); 2488 2489 kvm_msr_list->nmsrs = msr_list.nmsrs; 2490 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); 2491 if (ret >= 0) { 2492 int i; 2493 2494 for (i = 0; i < kvm_msr_list->nmsrs; i++) { 2495 switch (kvm_msr_list->indices[i]) { 2496 case MSR_STAR: 2497 has_msr_star = true; 2498 break; 2499 case MSR_VM_HSAVE_PA: 2500 has_msr_hsave_pa = true; 2501 break; 2502 case MSR_TSC_AUX: 2503 has_msr_tsc_aux = true; 2504 break; 2505 case MSR_TSC_ADJUST: 2506 has_msr_tsc_adjust = true; 2507 break; 2508 case MSR_IA32_TSCDEADLINE: 2509 has_msr_tsc_deadline = true; 2510 break; 2511 case MSR_IA32_SMBASE: 2512 has_msr_smbase = true; 2513 break; 2514 case MSR_SMI_COUNT: 2515 has_msr_smi_count = true; 2516 break; 2517 case MSR_IA32_MISC_ENABLE: 2518 has_msr_misc_enable = true; 2519 break; 2520 case MSR_IA32_BNDCFGS: 2521 has_msr_bndcfgs = true; 2522 break; 2523 case MSR_IA32_XSS: 2524 has_msr_xss = true; 2525 break; 2526 case MSR_IA32_UMWAIT_CONTROL: 2527 has_msr_umwait = true; 2528 break; 2529 case HV_X64_MSR_CRASH_CTL: 2530 has_msr_hv_crash = true; 2531 break; 2532 case HV_X64_MSR_RESET: 2533 has_msr_hv_reset = true; 2534 break; 2535 case HV_X64_MSR_VP_INDEX: 2536 has_msr_hv_vpindex = true; 2537 break; 2538 case HV_X64_MSR_VP_RUNTIME: 2539 has_msr_hv_runtime = true; 2540 break; 2541 case HV_X64_MSR_SCONTROL: 2542 has_msr_hv_synic = true; 2543 break; 2544 case HV_X64_MSR_STIMER0_CONFIG: 2545 has_msr_hv_stimer = true; 2546 break; 2547 case HV_X64_MSR_TSC_FREQUENCY: 2548 has_msr_hv_frequencies = true; 2549 break; 2550 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 2551 has_msr_hv_reenlightenment = true; 2552 break; 2553 case HV_X64_MSR_SYNDBG_OPTIONS: 2554 has_msr_hv_syndbg_options = true; 2555 break; 2556 case MSR_IA32_SPEC_CTRL: 2557 has_msr_spec_ctrl = true; 2558 break; 2559 case MSR_AMD64_TSC_RATIO: 2560 has_tsc_scale_msr = true; 2561 break; 2562 case MSR_IA32_TSX_CTRL: 2563 has_msr_tsx_ctrl = true; 2564 break; 2565 case MSR_VIRT_SSBD: 2566 has_msr_virt_ssbd = true; 2567 break; 2568 case MSR_IA32_ARCH_CAPABILITIES: 2569 has_msr_arch_capabs = true; 2570 break; 2571 case MSR_IA32_CORE_CAPABILITY: 2572 has_msr_core_capabs = true; 2573 break; 2574 case MSR_IA32_PERF_CAPABILITIES: 2575 has_msr_perf_capabs = true; 2576 break; 2577 case MSR_IA32_VMX_VMFUNC: 2578 has_msr_vmx_vmfunc = true; 2579 break; 2580 case MSR_IA32_UCODE_REV: 2581 has_msr_ucode_rev = true; 2582 break; 2583 case MSR_IA32_VMX_PROCBASED_CTLS2: 2584 has_msr_vmx_procbased_ctls2 = true; 2585 break; 2586 case MSR_IA32_PKRS: 2587 has_msr_pkrs = true; 2588 break; 2589 case MSR_K7_HWCR: 2590 has_msr_hwcr = true; 2591 } 2592 } 2593 } 2594 2595 g_free(kvm_msr_list); 2596 2597 return ret; 2598 } 2599 2600 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu, 2601 uint32_t msr, 2602 uint64_t *val) 2603 { 2604 CPUState *cs = CPU(cpu); 2605 2606 *val = cs->nr_threads * cs->nr_cores; /* thread count, bits 15..0 */ 2607 *val |= ((uint32_t)cs->nr_cores << 16); /* core count, bits 31..16 */ 2608 2609 return true; 2610 } 2611 2612 static bool kvm_rdmsr_rapl_power_unit(X86CPU *cpu, 2613 uint32_t msr, 2614 uint64_t *val) 2615 { 2616 2617 CPUState *cs = CPU(cpu); 2618 2619 *val = cs->kvm_state->msr_energy.msr_unit; 2620 2621 return true; 2622 } 2623 2624 static bool kvm_rdmsr_pkg_power_limit(X86CPU *cpu, 2625 uint32_t msr, 2626 uint64_t *val) 2627 { 2628 2629 CPUState *cs = CPU(cpu); 2630 2631 *val = cs->kvm_state->msr_energy.msr_limit; 2632 2633 return true; 2634 } 2635 2636 static bool kvm_rdmsr_pkg_power_info(X86CPU *cpu, 2637 uint32_t msr, 2638 uint64_t *val) 2639 { 2640 2641 CPUState *cs = CPU(cpu); 2642 2643 *val = cs->kvm_state->msr_energy.msr_info; 2644 2645 return true; 2646 } 2647 2648 static bool kvm_rdmsr_pkg_energy_status(X86CPU *cpu, 2649 uint32_t msr, 2650 uint64_t *val) 2651 { 2652 2653 CPUState *cs = CPU(cpu); 2654 *val = cs->kvm_state->msr_energy.msr_value[cs->cpu_index]; 2655 2656 return true; 2657 } 2658 2659 static Notifier smram_machine_done; 2660 static KVMMemoryListener smram_listener; 2661 static AddressSpace smram_address_space; 2662 static MemoryRegion smram_as_root; 2663 static MemoryRegion smram_as_mem; 2664 2665 static void register_smram_listener(Notifier *n, void *unused) 2666 { 2667 MemoryRegion *smram = 2668 (MemoryRegion *) object_resolve_path("/machine/smram", NULL); 2669 2670 /* Outer container... */ 2671 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); 2672 memory_region_set_enabled(&smram_as_root, true); 2673 2674 /* ... with two regions inside: normal system memory with low 2675 * priority, and... 2676 */ 2677 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", 2678 get_system_memory(), 0, ~0ull); 2679 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); 2680 memory_region_set_enabled(&smram_as_mem, true); 2681 2682 if (smram) { 2683 /* ... SMRAM with higher priority */ 2684 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); 2685 memory_region_set_enabled(smram, true); 2686 } 2687 2688 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); 2689 kvm_memory_listener_register(kvm_state, &smram_listener, 2690 &smram_address_space, 1, "kvm-smram"); 2691 } 2692 2693 static void *kvm_msr_energy_thread(void *data) 2694 { 2695 KVMState *s = data; 2696 struct KVMMsrEnergy *vmsr = &s->msr_energy; 2697 2698 g_autofree vmsr_package_energy_stat *pkg_stat = NULL; 2699 g_autofree vmsr_thread_stat *thd_stat = NULL; 2700 g_autofree CPUState *cpu = NULL; 2701 g_autofree unsigned int *vpkgs_energy_stat = NULL; 2702 unsigned int num_threads = 0; 2703 2704 X86CPUTopoIDs topo_ids; 2705 2706 rcu_register_thread(); 2707 2708 /* Allocate memory for each package energy status */ 2709 pkg_stat = g_new0(vmsr_package_energy_stat, vmsr->host_topo.maxpkgs); 2710 2711 /* Allocate memory for thread stats */ 2712 thd_stat = g_new0(vmsr_thread_stat, 1); 2713 2714 /* Allocate memory for holding virtual package energy counter */ 2715 vpkgs_energy_stat = g_new0(unsigned int, vmsr->guest_vsockets); 2716 2717 /* Populate the max tick of each packages */ 2718 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) { 2719 /* 2720 * Max numbers of ticks per package 2721 * Time in second * Number of ticks/second * Number of cores/package 2722 * ex: 100 ticks/second/CPU, 12 CPUs per Package gives 1200 ticks max 2723 */ 2724 vmsr->host_topo.maxticks[i] = (MSR_ENERGY_THREAD_SLEEP_US / 1000000) 2725 * sysconf(_SC_CLK_TCK) 2726 * vmsr->host_topo.pkg_cpu_count[i]; 2727 } 2728 2729 while (true) { 2730 /* Get all qemu threads id */ 2731 g_autofree pid_t *thread_ids 2732 = vmsr_get_thread_ids(vmsr->pid, &num_threads); 2733 2734 if (thread_ids == NULL) { 2735 goto clean; 2736 } 2737 2738 thd_stat = g_renew(vmsr_thread_stat, thd_stat, num_threads); 2739 /* Unlike g_new0, g_renew0 function doesn't exist yet... */ 2740 memset(thd_stat, 0, num_threads * sizeof(vmsr_thread_stat)); 2741 2742 /* Populate all the thread stats */ 2743 for (int i = 0; i < num_threads; i++) { 2744 thd_stat[i].utime = g_new0(unsigned long long, 2); 2745 thd_stat[i].stime = g_new0(unsigned long long, 2); 2746 thd_stat[i].thread_id = thread_ids[i]; 2747 vmsr_read_thread_stat(vmsr->pid, 2748 thd_stat[i].thread_id, 2749 &thd_stat[i].utime[0], 2750 &thd_stat[i].stime[0], 2751 &thd_stat[i].cpu_id); 2752 thd_stat[i].pkg_id = 2753 vmsr_get_physical_package_id(thd_stat[i].cpu_id); 2754 } 2755 2756 /* Retrieve all packages power plane energy counter */ 2757 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) { 2758 for (int j = 0; j < num_threads; j++) { 2759 /* 2760 * Use the first thread we found that ran on the CPU 2761 * of the package to read the packages energy counter 2762 */ 2763 if (thd_stat[j].pkg_id == i) { 2764 pkg_stat[i].e_start = 2765 vmsr_read_msr(MSR_PKG_ENERGY_STATUS, 2766 thd_stat[j].cpu_id, 2767 thd_stat[j].thread_id, 2768 s->msr_energy.sioc); 2769 break; 2770 } 2771 } 2772 } 2773 2774 /* Sleep a short period while the other threads are working */ 2775 usleep(MSR_ENERGY_THREAD_SLEEP_US); 2776 2777 /* 2778 * Retrieve all packages power plane energy counter 2779 * Calculate the delta of all packages 2780 */ 2781 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) { 2782 for (int j = 0; j < num_threads; j++) { 2783 /* 2784 * Use the first thread we found that ran on the CPU 2785 * of the package to read the packages energy counter 2786 */ 2787 if (thd_stat[j].pkg_id == i) { 2788 pkg_stat[i].e_end = 2789 vmsr_read_msr(MSR_PKG_ENERGY_STATUS, 2790 thd_stat[j].cpu_id, 2791 thd_stat[j].thread_id, 2792 s->msr_energy.sioc); 2793 /* 2794 * Prevent the case we have migrate the VM 2795 * during the sleep period or any other cases 2796 * were energy counter might be lower after 2797 * the sleep period. 2798 */ 2799 if (pkg_stat[i].e_end > pkg_stat[i].e_start) { 2800 pkg_stat[i].e_delta = 2801 pkg_stat[i].e_end - pkg_stat[i].e_start; 2802 } else { 2803 pkg_stat[i].e_delta = 0; 2804 } 2805 break; 2806 } 2807 } 2808 } 2809 2810 /* Delta of ticks spend by each thread between the sample */ 2811 for (int i = 0; i < num_threads; i++) { 2812 vmsr_read_thread_stat(vmsr->pid, 2813 thd_stat[i].thread_id, 2814 &thd_stat[i].utime[1], 2815 &thd_stat[i].stime[1], 2816 &thd_stat[i].cpu_id); 2817 2818 if (vmsr->pid < 0) { 2819 /* 2820 * We don't count the dead thread 2821 * i.e threads that existed before the sleep 2822 * and not anymore 2823 */ 2824 thd_stat[i].delta_ticks = 0; 2825 } else { 2826 vmsr_delta_ticks(thd_stat, i); 2827 } 2828 } 2829 2830 /* 2831 * Identify the vcpu threads 2832 * Calculate the number of vcpu per package 2833 */ 2834 CPU_FOREACH(cpu) { 2835 for (int i = 0; i < num_threads; i++) { 2836 if (cpu->thread_id == thd_stat[i].thread_id) { 2837 thd_stat[i].is_vcpu = true; 2838 thd_stat[i].vcpu_id = cpu->cpu_index; 2839 pkg_stat[thd_stat[i].pkg_id].nb_vcpu++; 2840 thd_stat[i].acpi_id = kvm_arch_vcpu_id(cpu); 2841 break; 2842 } 2843 } 2844 } 2845 2846 /* Retrieve the virtual package number of each vCPU */ 2847 for (int i = 0; i < vmsr->guest_cpu_list->len; i++) { 2848 for (int j = 0; j < num_threads; j++) { 2849 if ((thd_stat[j].acpi_id == 2850 vmsr->guest_cpu_list->cpus[i].arch_id) 2851 && (thd_stat[j].is_vcpu == true)) { 2852 x86_topo_ids_from_apicid(thd_stat[j].acpi_id, 2853 &vmsr->guest_topo_info, &topo_ids); 2854 thd_stat[j].vpkg_id = topo_ids.pkg_id; 2855 } 2856 } 2857 } 2858 2859 /* Calculate the total energy of all non-vCPU thread */ 2860 for (int i = 0; i < num_threads; i++) { 2861 if ((thd_stat[i].is_vcpu != true) && 2862 (thd_stat[i].delta_ticks > 0)) { 2863 double temp; 2864 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta, 2865 thd_stat[i].delta_ticks, 2866 vmsr->host_topo.maxticks[thd_stat[i].pkg_id]); 2867 pkg_stat[thd_stat[i].pkg_id].e_ratio 2868 += (uint64_t)lround(temp); 2869 } 2870 } 2871 2872 /* Calculate the ratio per non-vCPU thread of each package */ 2873 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) { 2874 if (pkg_stat[i].nb_vcpu > 0) { 2875 pkg_stat[i].e_ratio = pkg_stat[i].e_ratio / pkg_stat[i].nb_vcpu; 2876 } 2877 } 2878 2879 /* 2880 * Calculate the energy for each Package: 2881 * Energy Package = sum of each vCPU energy that belongs to the package 2882 */ 2883 for (int i = 0; i < num_threads; i++) { 2884 if ((thd_stat[i].is_vcpu == true) && \ 2885 (thd_stat[i].delta_ticks > 0)) { 2886 double temp; 2887 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta, 2888 thd_stat[i].delta_ticks, 2889 vmsr->host_topo.maxticks[thd_stat[i].pkg_id]); 2890 vpkgs_energy_stat[thd_stat[i].vpkg_id] += 2891 (uint64_t)lround(temp); 2892 vpkgs_energy_stat[thd_stat[i].vpkg_id] += 2893 pkg_stat[thd_stat[i].pkg_id].e_ratio; 2894 } 2895 } 2896 2897 /* 2898 * Finally populate the vmsr register of each vCPU with the total 2899 * package value to emulate the real hardware where each CPU return the 2900 * value of the package it belongs. 2901 */ 2902 for (int i = 0; i < num_threads; i++) { 2903 if ((thd_stat[i].is_vcpu == true) && \ 2904 (thd_stat[i].delta_ticks > 0)) { 2905 vmsr->msr_value[thd_stat[i].vcpu_id] = \ 2906 vpkgs_energy_stat[thd_stat[i].vpkg_id]; 2907 } 2908 } 2909 2910 /* Freeing memory before zeroing the pointer */ 2911 for (int i = 0; i < num_threads; i++) { 2912 g_free(thd_stat[i].utime); 2913 g_free(thd_stat[i].stime); 2914 } 2915 } 2916 2917 clean: 2918 rcu_unregister_thread(); 2919 return NULL; 2920 } 2921 2922 static int kvm_msr_energy_thread_init(KVMState *s, MachineState *ms) 2923 { 2924 MachineClass *mc = MACHINE_GET_CLASS(ms); 2925 struct KVMMsrEnergy *r = &s->msr_energy; 2926 int ret = 0; 2927 2928 /* 2929 * Sanity check 2930 * 1. Host cpu must be Intel cpu 2931 * 2. RAPL must be enabled on the Host 2932 */ 2933 if (!is_host_cpu_intel()) { 2934 error_report("The RAPL feature can only be enabled on hosts " 2935 "with Intel CPU models"); 2936 ret = 1; 2937 goto out; 2938 } 2939 2940 if (!is_rapl_enabled()) { 2941 ret = 1; 2942 goto out; 2943 } 2944 2945 /* Retrieve the virtual topology */ 2946 vmsr_init_topo_info(&r->guest_topo_info, ms); 2947 2948 /* Retrieve the number of vcpu */ 2949 r->guest_vcpus = ms->smp.cpus; 2950 2951 /* Retrieve the number of virtual sockets */ 2952 r->guest_vsockets = ms->smp.sockets; 2953 2954 /* Allocate register memory (MSR_PKG_STATUS) for each vcpu */ 2955 r->msr_value = g_new0(uint64_t, r->guest_vcpus); 2956 2957 /* Retrieve the CPUArchIDlist */ 2958 r->guest_cpu_list = mc->possible_cpu_arch_ids(ms); 2959 2960 /* Max number of cpus on the Host */ 2961 r->host_topo.maxcpus = vmsr_get_maxcpus(); 2962 if (r->host_topo.maxcpus == 0) { 2963 error_report("host max cpus = 0"); 2964 ret = 1; 2965 goto out; 2966 } 2967 2968 /* Max number of packages on the host */ 2969 r->host_topo.maxpkgs = vmsr_get_max_physical_package(r->host_topo.maxcpus); 2970 if (r->host_topo.maxpkgs == 0) { 2971 error_report("host max pkgs = 0"); 2972 ret = 1; 2973 goto out; 2974 } 2975 2976 /* Allocate memory for each package on the host */ 2977 r->host_topo.pkg_cpu_count = g_new0(unsigned int, r->host_topo.maxpkgs); 2978 r->host_topo.maxticks = g_new0(unsigned int, r->host_topo.maxpkgs); 2979 2980 vmsr_count_cpus_per_package(r->host_topo.pkg_cpu_count, 2981 r->host_topo.maxpkgs); 2982 for (int i = 0; i < r->host_topo.maxpkgs; i++) { 2983 if (r->host_topo.pkg_cpu_count[i] == 0) { 2984 error_report("cpu per packages = 0 on package_%d", i); 2985 ret = 1; 2986 goto out; 2987 } 2988 } 2989 2990 /* Get QEMU PID*/ 2991 r->pid = getpid(); 2992 2993 /* Compute the socket path if necessary */ 2994 if (s->msr_energy.socket_path == NULL) { 2995 s->msr_energy.socket_path = vmsr_compute_default_paths(); 2996 } 2997 2998 /* Open socket with vmsr helper */ 2999 s->msr_energy.sioc = vmsr_open_socket(s->msr_energy.socket_path); 3000 3001 if (s->msr_energy.sioc == NULL) { 3002 error_report("vmsr socket opening failed"); 3003 ret = 1; 3004 goto out; 3005 } 3006 3007 /* Those MSR values should not change */ 3008 r->msr_unit = vmsr_read_msr(MSR_RAPL_POWER_UNIT, 0, r->pid, 3009 s->msr_energy.sioc); 3010 r->msr_limit = vmsr_read_msr(MSR_PKG_POWER_LIMIT, 0, r->pid, 3011 s->msr_energy.sioc); 3012 r->msr_info = vmsr_read_msr(MSR_PKG_POWER_INFO, 0, r->pid, 3013 s->msr_energy.sioc); 3014 if (r->msr_unit == 0 || r->msr_limit == 0 || r->msr_info == 0) { 3015 error_report("can't read any virtual msr"); 3016 ret = 1; 3017 goto out; 3018 } 3019 3020 qemu_thread_create(&r->msr_thr, "kvm-msr", 3021 kvm_msr_energy_thread, 3022 s, QEMU_THREAD_JOINABLE); 3023 out: 3024 return ret; 3025 } 3026 3027 int kvm_arch_get_default_type(MachineState *ms) 3028 { 3029 return 0; 3030 } 3031 3032 static int kvm_vm_enable_exception_payload(KVMState *s) 3033 { 3034 int ret = 0; 3035 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD); 3036 if (has_exception_payload) { 3037 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true); 3038 if (ret < 0) { 3039 error_report("kvm: Failed to enable exception payload cap: %s", 3040 strerror(-ret)); 3041 } 3042 } 3043 3044 return ret; 3045 } 3046 3047 static int kvm_vm_enable_triple_fault_event(KVMState *s) 3048 { 3049 int ret = 0; 3050 has_triple_fault_event = \ 3051 kvm_check_extension(s, 3052 KVM_CAP_X86_TRIPLE_FAULT_EVENT); 3053 if (has_triple_fault_event) { 3054 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true); 3055 if (ret < 0) { 3056 error_report("kvm: Failed to enable triple fault event cap: %s", 3057 strerror(-ret)); 3058 } 3059 } 3060 return ret; 3061 } 3062 3063 static int kvm_vm_set_identity_map_addr(KVMState *s, uint64_t identity_base) 3064 { 3065 return kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); 3066 } 3067 3068 static int kvm_vm_set_nr_mmu_pages(KVMState *s) 3069 { 3070 uint64_t shadow_mem; 3071 int ret = 0; 3072 shadow_mem = object_property_get_int(OBJECT(s), 3073 "kvm-shadow-mem", 3074 &error_abort); 3075 if (shadow_mem != -1) { 3076 shadow_mem /= 4096; 3077 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); 3078 } 3079 return ret; 3080 } 3081 3082 static int kvm_vm_set_tss_addr(KVMState *s, uint64_t tss_base) 3083 { 3084 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, tss_base); 3085 } 3086 3087 static int kvm_vm_enable_disable_exits(KVMState *s) 3088 { 3089 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS); 3090 /* Work around for kernel header with a typo. TODO: fix header and drop. */ 3091 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT) 3092 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL 3093 #endif 3094 if (disable_exits) { 3095 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT | 3096 KVM_X86_DISABLE_EXITS_HLT | 3097 KVM_X86_DISABLE_EXITS_PAUSE | 3098 KVM_X86_DISABLE_EXITS_CSTATE); 3099 } 3100 3101 return kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0, 3102 disable_exits); 3103 } 3104 3105 static int kvm_vm_enable_bus_lock_exit(KVMState *s) 3106 { 3107 int ret = 0; 3108 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT); 3109 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) { 3110 error_report("kvm: bus lock detection unsupported"); 3111 return -ENOTSUP; 3112 } 3113 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0, 3114 KVM_BUS_LOCK_DETECTION_EXIT); 3115 if (ret < 0) { 3116 error_report("kvm: Failed to enable bus lock detection cap: %s", 3117 strerror(-ret)); 3118 } 3119 3120 return ret; 3121 } 3122 3123 static int kvm_vm_enable_notify_vmexit(KVMState *s) 3124 { 3125 int ret = 0; 3126 if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE) { 3127 uint64_t notify_window_flags = 3128 ((uint64_t)s->notify_window << 32) | 3129 KVM_X86_NOTIFY_VMEXIT_ENABLED | 3130 KVM_X86_NOTIFY_VMEXIT_USER; 3131 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0, 3132 notify_window_flags); 3133 if (ret < 0) { 3134 error_report("kvm: Failed to enable notify vmexit cap: %s", 3135 strerror(-ret)); 3136 } 3137 } 3138 return ret; 3139 } 3140 3141 static int kvm_vm_enable_userspace_msr(KVMState *s) 3142 { 3143 int ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0, 3144 KVM_MSR_EXIT_REASON_FILTER); 3145 if (ret < 0) { 3146 error_report("Could not enable user space MSRs: %s", 3147 strerror(-ret)); 3148 exit(1); 3149 } 3150 3151 if (!kvm_filter_msr(s, MSR_CORE_THREAD_COUNT, 3152 kvm_rdmsr_core_thread_count, NULL)) { 3153 error_report("Could not install MSR_CORE_THREAD_COUNT handler!"); 3154 exit(1); 3155 } 3156 3157 return 0; 3158 } 3159 3160 static void kvm_vm_enable_energy_msrs(KVMState *s) 3161 { 3162 bool r; 3163 if (s->msr_energy.enable == true) { 3164 r = kvm_filter_msr(s, MSR_RAPL_POWER_UNIT, 3165 kvm_rdmsr_rapl_power_unit, NULL); 3166 if (!r) { 3167 error_report("Could not install MSR_RAPL_POWER_UNIT \ 3168 handler"); 3169 exit(1); 3170 } 3171 3172 r = kvm_filter_msr(s, MSR_PKG_POWER_LIMIT, 3173 kvm_rdmsr_pkg_power_limit, NULL); 3174 if (!r) { 3175 error_report("Could not install MSR_PKG_POWER_LIMIT \ 3176 handler"); 3177 exit(1); 3178 } 3179 3180 r = kvm_filter_msr(s, MSR_PKG_POWER_INFO, 3181 kvm_rdmsr_pkg_power_info, NULL); 3182 if (!r) { 3183 error_report("Could not install MSR_PKG_POWER_INFO \ 3184 handler"); 3185 exit(1); 3186 } 3187 r = kvm_filter_msr(s, MSR_PKG_ENERGY_STATUS, 3188 kvm_rdmsr_pkg_energy_status, NULL); 3189 if (!r) { 3190 error_report("Could not install MSR_PKG_ENERGY_STATUS \ 3191 handler"); 3192 exit(1); 3193 } 3194 } 3195 return; 3196 } 3197 3198 int kvm_arch_init(MachineState *ms, KVMState *s) 3199 { 3200 int ret; 3201 struct utsname utsname; 3202 Error *local_err = NULL; 3203 3204 /* 3205 * Initialize SEV context, if required 3206 * 3207 * If no memory encryption is requested (ms->cgs == NULL) this is 3208 * a no-op. 3209 * 3210 * It's also a no-op if a non-SEV confidential guest support 3211 * mechanism is selected. SEV is the only mechanism available to 3212 * select on x86 at present, so this doesn't arise, but if new 3213 * mechanisms are supported in future (e.g. TDX), they'll need 3214 * their own initialization either here or elsewhere. 3215 */ 3216 if (ms->cgs) { 3217 ret = confidential_guest_kvm_init(ms->cgs, &local_err); 3218 if (ret < 0) { 3219 error_report_err(local_err); 3220 return ret; 3221 } 3222 } 3223 3224 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); 3225 has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0; 3226 3227 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX); 3228 3229 ret = kvm_vm_enable_exception_payload(s); 3230 if (ret < 0) { 3231 return ret; 3232 } 3233 3234 ret = kvm_vm_enable_triple_fault_event(s); 3235 if (ret < 0) { 3236 return ret; 3237 } 3238 3239 if (s->xen_version) { 3240 #ifdef CONFIG_XEN_EMU 3241 if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) { 3242 error_report("kvm: Xen support only available in PC machine"); 3243 return -ENOTSUP; 3244 } 3245 /* hyperv_enabled() doesn't work yet. */ 3246 uint32_t msr = XEN_HYPERCALL_MSR; 3247 ret = kvm_xen_init(s, msr); 3248 if (ret < 0) { 3249 return ret; 3250 } 3251 #else 3252 error_report("kvm: Xen support not enabled in qemu"); 3253 return -ENOTSUP; 3254 #endif 3255 } 3256 3257 ret = kvm_get_supported_msrs(s); 3258 if (ret < 0) { 3259 return ret; 3260 } 3261 3262 kvm_get_supported_feature_msrs(s); 3263 3264 uname(&utsname); 3265 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; 3266 3267 ret = kvm_vm_set_identity_map_addr(s, KVM_IDENTITY_BASE); 3268 if (ret < 0) { 3269 return ret; 3270 } 3271 3272 /* Set TSS base one page after EPT identity map. */ 3273 ret = kvm_vm_set_tss_addr(s, KVM_IDENTITY_BASE + 0x1000); 3274 if (ret < 0) { 3275 return ret; 3276 } 3277 3278 /* Tell fw_cfg to notify the BIOS to reserve the range. */ 3279 e820_add_entry(KVM_IDENTITY_BASE, 0x4000, E820_RESERVED); 3280 3281 ret = kvm_vm_set_nr_mmu_pages(s); 3282 if (ret < 0) { 3283 return ret; 3284 } 3285 3286 if (kvm_check_extension(s, KVM_CAP_X86_SMM) && 3287 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) && 3288 x86_machine_is_smm_enabled(X86_MACHINE(ms))) { 3289 smram_machine_done.notify = register_smram_listener; 3290 qemu_add_machine_init_done_notifier(&smram_machine_done); 3291 } 3292 3293 if (enable_cpu_pm) { 3294 ret = kvm_vm_enable_disable_exits(s); 3295 if (ret < 0) { 3296 error_report("kvm: guest stopping CPU not supported: %s", 3297 strerror(-ret)); 3298 } 3299 } 3300 3301 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) { 3302 X86MachineState *x86ms = X86_MACHINE(ms); 3303 3304 if (x86ms->bus_lock_ratelimit > 0) { 3305 ret = kvm_vm_enable_bus_lock_exit(s); 3306 if (ret < 0) { 3307 return ret; 3308 } 3309 ratelimit_init(&bus_lock_ratelimit_ctrl); 3310 ratelimit_set_speed(&bus_lock_ratelimit_ctrl, 3311 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME); 3312 } 3313 } 3314 3315 if (kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) { 3316 ret = kvm_vm_enable_notify_vmexit(s); 3317 if (ret < 0) { 3318 return ret; 3319 } 3320 } 3321 3322 if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) { 3323 ret = kvm_vm_enable_userspace_msr(s); 3324 if (ret < 0) { 3325 return ret; 3326 } 3327 3328 if (s->msr_energy.enable == true) { 3329 kvm_vm_enable_energy_msrs(s); 3330 if (kvm_msr_energy_thread_init(s, ms)) { 3331 error_report("kvm : error RAPL feature requirement not met"); 3332 exit(1); 3333 } 3334 } 3335 } 3336 3337 return 0; 3338 } 3339 3340 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 3341 { 3342 lhs->selector = rhs->selector; 3343 lhs->base = rhs->base; 3344 lhs->limit = rhs->limit; 3345 lhs->type = 3; 3346 lhs->present = 1; 3347 lhs->dpl = 3; 3348 lhs->db = 0; 3349 lhs->s = 1; 3350 lhs->l = 0; 3351 lhs->g = 0; 3352 lhs->avl = 0; 3353 lhs->unusable = 0; 3354 } 3355 3356 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 3357 { 3358 unsigned flags = rhs->flags; 3359 lhs->selector = rhs->selector; 3360 lhs->base = rhs->base; 3361 lhs->limit = rhs->limit; 3362 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; 3363 lhs->present = (flags & DESC_P_MASK) != 0; 3364 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; 3365 lhs->db = (flags >> DESC_B_SHIFT) & 1; 3366 lhs->s = (flags & DESC_S_MASK) != 0; 3367 lhs->l = (flags >> DESC_L_SHIFT) & 1; 3368 lhs->g = (flags & DESC_G_MASK) != 0; 3369 lhs->avl = (flags & DESC_AVL_MASK) != 0; 3370 lhs->unusable = !lhs->present; 3371 lhs->padding = 0; 3372 } 3373 3374 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) 3375 { 3376 lhs->selector = rhs->selector; 3377 lhs->base = rhs->base; 3378 lhs->limit = rhs->limit; 3379 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | 3380 ((rhs->present && !rhs->unusable) * DESC_P_MASK) | 3381 (rhs->dpl << DESC_DPL_SHIFT) | 3382 (rhs->db << DESC_B_SHIFT) | 3383 (rhs->s * DESC_S_MASK) | 3384 (rhs->l << DESC_L_SHIFT) | 3385 (rhs->g * DESC_G_MASK) | 3386 (rhs->avl * DESC_AVL_MASK); 3387 } 3388 3389 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) 3390 { 3391 if (set) { 3392 *kvm_reg = *qemu_reg; 3393 } else { 3394 *qemu_reg = *kvm_reg; 3395 } 3396 } 3397 3398 static int kvm_getput_regs(X86CPU *cpu, int set) 3399 { 3400 CPUX86State *env = &cpu->env; 3401 struct kvm_regs regs; 3402 int ret = 0; 3403 3404 if (!set) { 3405 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); 3406 if (ret < 0) { 3407 return ret; 3408 } 3409 } 3410 3411 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); 3412 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); 3413 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); 3414 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); 3415 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); 3416 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); 3417 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); 3418 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); 3419 #ifdef TARGET_X86_64 3420 kvm_getput_reg(®s.r8, &env->regs[8], set); 3421 kvm_getput_reg(®s.r9, &env->regs[9], set); 3422 kvm_getput_reg(®s.r10, &env->regs[10], set); 3423 kvm_getput_reg(®s.r11, &env->regs[11], set); 3424 kvm_getput_reg(®s.r12, &env->regs[12], set); 3425 kvm_getput_reg(®s.r13, &env->regs[13], set); 3426 kvm_getput_reg(®s.r14, &env->regs[14], set); 3427 kvm_getput_reg(®s.r15, &env->regs[15], set); 3428 #endif 3429 3430 kvm_getput_reg(®s.rflags, &env->eflags, set); 3431 kvm_getput_reg(®s.rip, &env->eip, set); 3432 3433 if (set) { 3434 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); 3435 } 3436 3437 return ret; 3438 } 3439 3440 static int kvm_put_xsave(X86CPU *cpu) 3441 { 3442 CPUX86State *env = &cpu->env; 3443 void *xsave = env->xsave_buf; 3444 3445 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len); 3446 3447 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); 3448 } 3449 3450 static int kvm_put_xcrs(X86CPU *cpu) 3451 { 3452 CPUX86State *env = &cpu->env; 3453 struct kvm_xcrs xcrs = {}; 3454 3455 if (!has_xcrs) { 3456 return 0; 3457 } 3458 3459 xcrs.nr_xcrs = 1; 3460 xcrs.flags = 0; 3461 xcrs.xcrs[0].xcr = 0; 3462 xcrs.xcrs[0].value = env->xcr0; 3463 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); 3464 } 3465 3466 static int kvm_put_sregs(X86CPU *cpu) 3467 { 3468 CPUX86State *env = &cpu->env; 3469 struct kvm_sregs sregs; 3470 3471 /* 3472 * The interrupt_bitmap is ignored because KVM_SET_SREGS is 3473 * always followed by KVM_SET_VCPU_EVENTS. 3474 */ 3475 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); 3476 3477 if ((env->eflags & VM_MASK)) { 3478 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 3479 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 3480 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 3481 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 3482 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 3483 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 3484 } else { 3485 set_seg(&sregs.cs, &env->segs[R_CS]); 3486 set_seg(&sregs.ds, &env->segs[R_DS]); 3487 set_seg(&sregs.es, &env->segs[R_ES]); 3488 set_seg(&sregs.fs, &env->segs[R_FS]); 3489 set_seg(&sregs.gs, &env->segs[R_GS]); 3490 set_seg(&sregs.ss, &env->segs[R_SS]); 3491 } 3492 3493 set_seg(&sregs.tr, &env->tr); 3494 set_seg(&sregs.ldt, &env->ldt); 3495 3496 sregs.idt.limit = env->idt.limit; 3497 sregs.idt.base = env->idt.base; 3498 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 3499 sregs.gdt.limit = env->gdt.limit; 3500 sregs.gdt.base = env->gdt.base; 3501 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 3502 3503 sregs.cr0 = env->cr[0]; 3504 sregs.cr2 = env->cr[2]; 3505 sregs.cr3 = env->cr[3]; 3506 sregs.cr4 = env->cr[4]; 3507 3508 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 3509 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 3510 3511 sregs.efer = env->efer; 3512 3513 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); 3514 } 3515 3516 static int kvm_put_sregs2(X86CPU *cpu) 3517 { 3518 CPUX86State *env = &cpu->env; 3519 struct kvm_sregs2 sregs; 3520 int i; 3521 3522 sregs.flags = 0; 3523 3524 if ((env->eflags & VM_MASK)) { 3525 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 3526 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 3527 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 3528 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 3529 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 3530 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 3531 } else { 3532 set_seg(&sregs.cs, &env->segs[R_CS]); 3533 set_seg(&sregs.ds, &env->segs[R_DS]); 3534 set_seg(&sregs.es, &env->segs[R_ES]); 3535 set_seg(&sregs.fs, &env->segs[R_FS]); 3536 set_seg(&sregs.gs, &env->segs[R_GS]); 3537 set_seg(&sregs.ss, &env->segs[R_SS]); 3538 } 3539 3540 set_seg(&sregs.tr, &env->tr); 3541 set_seg(&sregs.ldt, &env->ldt); 3542 3543 sregs.idt.limit = env->idt.limit; 3544 sregs.idt.base = env->idt.base; 3545 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 3546 sregs.gdt.limit = env->gdt.limit; 3547 sregs.gdt.base = env->gdt.base; 3548 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 3549 3550 sregs.cr0 = env->cr[0]; 3551 sregs.cr2 = env->cr[2]; 3552 sregs.cr3 = env->cr[3]; 3553 sregs.cr4 = env->cr[4]; 3554 3555 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 3556 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 3557 3558 sregs.efer = env->efer; 3559 3560 if (env->pdptrs_valid) { 3561 for (i = 0; i < 4; i++) { 3562 sregs.pdptrs[i] = env->pdptrs[i]; 3563 } 3564 sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 3565 } 3566 3567 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs); 3568 } 3569 3570 3571 static void kvm_msr_buf_reset(X86CPU *cpu) 3572 { 3573 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); 3574 } 3575 3576 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) 3577 { 3578 struct kvm_msrs *msrs = cpu->kvm_msr_buf; 3579 void *limit = ((void *)msrs) + MSR_BUF_SIZE; 3580 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; 3581 3582 assert((void *)(entry + 1) <= limit); 3583 3584 entry->index = index; 3585 entry->reserved = 0; 3586 entry->data = value; 3587 msrs->nmsrs++; 3588 } 3589 3590 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) 3591 { 3592 kvm_msr_buf_reset(cpu); 3593 kvm_msr_entry_add(cpu, index, value); 3594 3595 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 3596 } 3597 3598 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value) 3599 { 3600 int ret; 3601 struct { 3602 struct kvm_msrs info; 3603 struct kvm_msr_entry entries[1]; 3604 } msr_data = { 3605 .info.nmsrs = 1, 3606 .entries[0].index = index, 3607 }; 3608 3609 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); 3610 if (ret < 0) { 3611 return ret; 3612 } 3613 assert(ret == 1); 3614 *value = msr_data.entries[0].data; 3615 return ret; 3616 } 3617 void kvm_put_apicbase(X86CPU *cpu, uint64_t value) 3618 { 3619 int ret; 3620 3621 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); 3622 assert(ret == 1); 3623 } 3624 3625 static int kvm_put_tscdeadline_msr(X86CPU *cpu) 3626 { 3627 CPUX86State *env = &cpu->env; 3628 int ret; 3629 3630 if (!has_msr_tsc_deadline) { 3631 return 0; 3632 } 3633 3634 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); 3635 if (ret < 0) { 3636 return ret; 3637 } 3638 3639 assert(ret == 1); 3640 return 0; 3641 } 3642 3643 /* 3644 * Provide a separate write service for the feature control MSR in order to 3645 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done 3646 * before writing any other state because forcibly leaving nested mode 3647 * invalidates the VCPU state. 3648 */ 3649 static int kvm_put_msr_feature_control(X86CPU *cpu) 3650 { 3651 int ret; 3652 3653 if (!has_msr_feature_control) { 3654 return 0; 3655 } 3656 3657 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, 3658 cpu->env.msr_ia32_feature_control); 3659 if (ret < 0) { 3660 return ret; 3661 } 3662 3663 assert(ret == 1); 3664 return 0; 3665 } 3666 3667 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features) 3668 { 3669 uint32_t default1, can_be_one, can_be_zero; 3670 uint32_t must_be_one; 3671 3672 switch (index) { 3673 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 3674 default1 = 0x00000016; 3675 break; 3676 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 3677 default1 = 0x0401e172; 3678 break; 3679 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 3680 default1 = 0x000011ff; 3681 break; 3682 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 3683 default1 = 0x00036dff; 3684 break; 3685 case MSR_IA32_VMX_PROCBASED_CTLS2: 3686 default1 = 0; 3687 break; 3688 default: 3689 abort(); 3690 } 3691 3692 /* If a feature bit is set, the control can be either set or clear. 3693 * Otherwise the value is limited to either 0 or 1 by default1. 3694 */ 3695 can_be_one = features | default1; 3696 can_be_zero = features | ~default1; 3697 must_be_one = ~can_be_zero; 3698 3699 /* 3700 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one). 3701 * Bit 32:63 -> 1 if the control bit can be one. 3702 */ 3703 return must_be_one | (((uint64_t)can_be_one) << 32); 3704 } 3705 3706 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f) 3707 { 3708 uint64_t kvm_vmx_basic = 3709 kvm_arch_get_supported_msr_feature(kvm_state, 3710 MSR_IA32_VMX_BASIC); 3711 3712 if (!kvm_vmx_basic) { 3713 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0), 3714 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail. 3715 */ 3716 return; 3717 } 3718 3719 uint64_t kvm_vmx_misc = 3720 kvm_arch_get_supported_msr_feature(kvm_state, 3721 MSR_IA32_VMX_MISC); 3722 uint64_t kvm_vmx_ept_vpid = 3723 kvm_arch_get_supported_msr_feature(kvm_state, 3724 MSR_IA32_VMX_EPT_VPID_CAP); 3725 3726 /* 3727 * If the guest is 64-bit, a value of 1 is allowed for the host address 3728 * space size vmexit control. 3729 */ 3730 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM 3731 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0; 3732 3733 /* 3734 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should 3735 * not change them for backwards compatibility. 3736 */ 3737 uint64_t fixed_vmx_basic = kvm_vmx_basic & 3738 (MSR_VMX_BASIC_VMCS_REVISION_MASK | 3739 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK | 3740 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK); 3741 3742 /* 3743 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can 3744 * change in the future but are always zero for now, clear them to be 3745 * future proof. Bits 32-63 in theory could change, though KVM does 3746 * not support dual-monitor treatment and probably never will; mask 3747 * them out as well. 3748 */ 3749 uint64_t fixed_vmx_misc = kvm_vmx_misc & 3750 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK | 3751 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK); 3752 3753 /* 3754 * EPT memory types should not change either, so we do not bother 3755 * adding features for them. 3756 */ 3757 uint64_t fixed_vmx_ept_mask = 3758 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ? 3759 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0); 3760 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask; 3761 3762 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 3763 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 3764 f[FEAT_VMX_PROCBASED_CTLS])); 3765 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS, 3766 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS, 3767 f[FEAT_VMX_PINBASED_CTLS])); 3768 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS, 3769 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS, 3770 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit); 3771 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS, 3772 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS, 3773 f[FEAT_VMX_ENTRY_CTLS])); 3774 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2, 3775 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2, 3776 f[FEAT_VMX_SECONDARY_CTLS])); 3777 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP, 3778 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid); 3779 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC, 3780 f[FEAT_VMX_BASIC] | fixed_vmx_basic); 3781 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC, 3782 f[FEAT_VMX_MISC] | fixed_vmx_misc); 3783 if (has_msr_vmx_vmfunc) { 3784 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]); 3785 } 3786 3787 /* 3788 * Just to be safe, write these with constant values. The CRn_FIXED1 3789 * MSRs are generated by KVM based on the vCPU's CPUID. 3790 */ 3791 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0, 3792 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK); 3793 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0, 3794 CR4_VMXE_MASK); 3795 3796 if (f[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) { 3797 /* FRED injected-event data (0x2052). */ 3798 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x52); 3799 } else if (f[FEAT_VMX_EXIT_CTLS] & 3800 VMX_VM_EXIT_ACTIVATE_SECONDARY_CONTROLS) { 3801 /* Secondary VM-exit controls (0x2044). */ 3802 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x44); 3803 } else if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) { 3804 /* TSC multiplier (0x2032). */ 3805 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32); 3806 } else { 3807 /* Preemption timer (0x482E). */ 3808 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E); 3809 } 3810 } 3811 3812 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f) 3813 { 3814 uint64_t kvm_perf_cap = 3815 kvm_arch_get_supported_msr_feature(kvm_state, 3816 MSR_IA32_PERF_CAPABILITIES); 3817 3818 if (kvm_perf_cap) { 3819 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES, 3820 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]); 3821 } 3822 } 3823 3824 static int kvm_buf_set_msrs(X86CPU *cpu) 3825 { 3826 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 3827 if (ret < 0) { 3828 return ret; 3829 } 3830 3831 if (ret < cpu->kvm_msr_buf->nmsrs) { 3832 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 3833 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, 3834 (uint32_t)e->index, (uint64_t)e->data); 3835 } 3836 3837 assert(ret == cpu->kvm_msr_buf->nmsrs); 3838 return 0; 3839 } 3840 3841 static void kvm_init_msrs(X86CPU *cpu) 3842 { 3843 CPUX86State *env = &cpu->env; 3844 3845 kvm_msr_buf_reset(cpu); 3846 if (has_msr_arch_capabs) { 3847 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES, 3848 env->features[FEAT_ARCH_CAPABILITIES]); 3849 } 3850 3851 if (has_msr_core_capabs) { 3852 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY, 3853 env->features[FEAT_CORE_CAPABILITY]); 3854 } 3855 3856 if (has_msr_perf_capabs && cpu->enable_pmu) { 3857 kvm_msr_entry_add_perf(cpu, env->features); 3858 } 3859 3860 if (has_msr_ucode_rev) { 3861 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev); 3862 } 3863 3864 /* 3865 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but 3866 * all kernels with MSR features should have them. 3867 */ 3868 if (kvm_feature_msrs && cpu_has_vmx(env)) { 3869 kvm_msr_entry_add_vmx(cpu, env->features); 3870 } 3871 3872 assert(kvm_buf_set_msrs(cpu) == 0); 3873 } 3874 3875 static int kvm_put_msrs(X86CPU *cpu, int level) 3876 { 3877 CPUX86State *env = &cpu->env; 3878 int i; 3879 3880 kvm_msr_buf_reset(cpu); 3881 3882 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); 3883 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); 3884 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); 3885 kvm_msr_entry_add(cpu, MSR_PAT, env->pat); 3886 if (has_msr_star) { 3887 kvm_msr_entry_add(cpu, MSR_STAR, env->star); 3888 } 3889 if (has_msr_hsave_pa) { 3890 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); 3891 } 3892 if (has_msr_tsc_aux) { 3893 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); 3894 } 3895 if (has_msr_tsc_adjust) { 3896 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); 3897 } 3898 if (has_msr_misc_enable) { 3899 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 3900 env->msr_ia32_misc_enable); 3901 } 3902 if (has_msr_smbase) { 3903 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); 3904 } 3905 if (has_msr_smi_count) { 3906 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count); 3907 } 3908 if (has_msr_pkrs) { 3909 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs); 3910 } 3911 if (has_msr_bndcfgs) { 3912 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); 3913 } 3914 if (has_msr_xss) { 3915 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); 3916 } 3917 if (has_msr_umwait) { 3918 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait); 3919 } 3920 if (has_msr_spec_ctrl) { 3921 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl); 3922 } 3923 if (has_tsc_scale_msr) { 3924 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr); 3925 } 3926 3927 if (has_msr_tsx_ctrl) { 3928 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl); 3929 } 3930 if (has_msr_virt_ssbd) { 3931 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd); 3932 } 3933 if (has_msr_hwcr) { 3934 kvm_msr_entry_add(cpu, MSR_K7_HWCR, env->msr_hwcr); 3935 } 3936 3937 #ifdef TARGET_X86_64 3938 if (lm_capable_kernel) { 3939 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); 3940 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); 3941 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); 3942 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); 3943 if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) { 3944 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, env->fred_rsp0); 3945 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, env->fred_rsp1); 3946 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, env->fred_rsp2); 3947 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, env->fred_rsp3); 3948 kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, env->fred_stklvls); 3949 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, env->fred_ssp1); 3950 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, env->fred_ssp2); 3951 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, env->fred_ssp3); 3952 kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, env->fred_config); 3953 } 3954 } 3955 #endif 3956 3957 /* 3958 * The following MSRs have side effects on the guest or are too heavy 3959 * for normal writeback. Limit them to reset or full state updates. 3960 */ 3961 if (level >= KVM_PUT_RESET_STATE) { 3962 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); 3963 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); 3964 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); 3965 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { 3966 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr); 3967 } 3968 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { 3969 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); 3970 } 3971 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { 3972 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); 3973 } 3974 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { 3975 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); 3976 } 3977 3978 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { 3979 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr); 3980 } 3981 3982 if (has_architectural_pmu_version > 0) { 3983 if (has_architectural_pmu_version > 1) { 3984 /* Stop the counter. */ 3985 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 3986 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 3987 } 3988 3989 /* Set the counter values. */ 3990 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 3991 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 3992 env->msr_fixed_counters[i]); 3993 } 3994 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 3995 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 3996 env->msr_gp_counters[i]); 3997 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 3998 env->msr_gp_evtsel[i]); 3999 } 4000 if (has_architectural_pmu_version > 1) { 4001 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 4002 env->msr_global_status); 4003 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 4004 env->msr_global_ovf_ctrl); 4005 4006 /* Now start the PMU. */ 4007 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 4008 env->msr_fixed_ctr_ctrl); 4009 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 4010 env->msr_global_ctrl); 4011 } 4012 } 4013 /* 4014 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add, 4015 * only sync them to KVM on the first cpu 4016 */ 4017 if (current_cpu == first_cpu) { 4018 if (has_msr_hv_hypercall) { 4019 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 4020 env->msr_hv_guest_os_id); 4021 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 4022 env->msr_hv_hypercall); 4023 } 4024 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 4025 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 4026 env->msr_hv_tsc); 4027 } 4028 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 4029 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 4030 env->msr_hv_reenlightenment_control); 4031 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 4032 env->msr_hv_tsc_emulation_control); 4033 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 4034 env->msr_hv_tsc_emulation_status); 4035 } 4036 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) && 4037 has_msr_hv_syndbg_options) { 4038 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 4039 hyperv_syndbg_query_options()); 4040 } 4041 } 4042 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 4043 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 4044 env->msr_hv_vapic); 4045 } 4046 if (has_msr_hv_crash) { 4047 int j; 4048 4049 for (j = 0; j < HV_CRASH_PARAMS; j++) 4050 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 4051 env->msr_hv_crash_params[j]); 4052 4053 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY); 4054 } 4055 if (has_msr_hv_runtime) { 4056 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); 4057 } 4058 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) 4059 && hv_vpindex_settable) { 4060 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX, 4061 hyperv_vp_index(CPU(cpu))); 4062 } 4063 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 4064 int j; 4065 4066 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION); 4067 4068 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 4069 env->msr_hv_synic_control); 4070 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 4071 env->msr_hv_synic_evt_page); 4072 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 4073 env->msr_hv_synic_msg_page); 4074 4075 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { 4076 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, 4077 env->msr_hv_synic_sint[j]); 4078 } 4079 } 4080 if (has_msr_hv_stimer) { 4081 int j; 4082 4083 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { 4084 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, 4085 env->msr_hv_stimer_config[j]); 4086 } 4087 4088 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { 4089 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, 4090 env->msr_hv_stimer_count[j]); 4091 } 4092 } 4093 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 4094 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); 4095 4096 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); 4097 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); 4098 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); 4099 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); 4100 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); 4101 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); 4102 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); 4103 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); 4104 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); 4105 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); 4106 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); 4107 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); 4108 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 4109 /* The CPU GPs if we write to a bit above the physical limit of 4110 * the host CPU (and KVM emulates that) 4111 */ 4112 uint64_t mask = env->mtrr_var[i].mask; 4113 mask &= phys_mask; 4114 4115 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 4116 env->mtrr_var[i].base); 4117 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); 4118 } 4119 } 4120 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 4121 int addr_num = kvm_arch_get_supported_cpuid(kvm_state, 4122 0x14, 1, R_EAX) & 0x7; 4123 4124 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 4125 env->msr_rtit_ctrl); 4126 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 4127 env->msr_rtit_status); 4128 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 4129 env->msr_rtit_output_base); 4130 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 4131 env->msr_rtit_output_mask); 4132 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 4133 env->msr_rtit_cr3_match); 4134 for (i = 0; i < addr_num; i++) { 4135 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 4136 env->msr_rtit_addrs[i]); 4137 } 4138 } 4139 4140 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 4141 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 4142 env->msr_ia32_sgxlepubkeyhash[0]); 4143 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 4144 env->msr_ia32_sgxlepubkeyhash[1]); 4145 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 4146 env->msr_ia32_sgxlepubkeyhash[2]); 4147 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 4148 env->msr_ia32_sgxlepubkeyhash[3]); 4149 } 4150 4151 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) { 4152 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 4153 env->msr_xfd); 4154 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 4155 env->msr_xfd_err); 4156 } 4157 4158 if (kvm_enabled() && cpu->enable_pmu && 4159 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) { 4160 uint64_t depth; 4161 int ret; 4162 4163 /* 4164 * Only migrate Arch LBR states when the host Arch LBR depth 4165 * equals that of source guest's, this is to avoid mismatch 4166 * of guest/host config for the msr hence avoid unexpected 4167 * misbehavior. 4168 */ 4169 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth); 4170 4171 if (ret == 1 && !!depth && depth == env->msr_lbr_depth) { 4172 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl); 4173 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth); 4174 4175 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) { 4176 if (!env->lbr_records[i].from) { 4177 continue; 4178 } 4179 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 4180 env->lbr_records[i].from); 4181 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 4182 env->lbr_records[i].to); 4183 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 4184 env->lbr_records[i].info); 4185 } 4186 } 4187 } 4188 4189 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see 4190 * kvm_put_msr_feature_control. */ 4191 } 4192 4193 if (env->mcg_cap) { 4194 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); 4195 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); 4196 if (has_msr_mcg_ext_ctl) { 4197 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); 4198 } 4199 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 4200 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); 4201 } 4202 } 4203 4204 return kvm_buf_set_msrs(cpu); 4205 } 4206 4207 4208 static int kvm_get_xsave(X86CPU *cpu) 4209 { 4210 CPUX86State *env = &cpu->env; 4211 void *xsave = env->xsave_buf; 4212 unsigned long type; 4213 int ret; 4214 4215 type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE; 4216 ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave); 4217 if (ret < 0) { 4218 return ret; 4219 } 4220 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len); 4221 4222 return 0; 4223 } 4224 4225 static int kvm_get_xcrs(X86CPU *cpu) 4226 { 4227 CPUX86State *env = &cpu->env; 4228 int i, ret; 4229 struct kvm_xcrs xcrs; 4230 4231 if (!has_xcrs) { 4232 return 0; 4233 } 4234 4235 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); 4236 if (ret < 0) { 4237 return ret; 4238 } 4239 4240 for (i = 0; i < xcrs.nr_xcrs; i++) { 4241 /* Only support xcr0 now */ 4242 if (xcrs.xcrs[i].xcr == 0) { 4243 env->xcr0 = xcrs.xcrs[i].value; 4244 break; 4245 } 4246 } 4247 return 0; 4248 } 4249 4250 static int kvm_get_sregs(X86CPU *cpu) 4251 { 4252 CPUX86State *env = &cpu->env; 4253 struct kvm_sregs sregs; 4254 int ret; 4255 4256 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); 4257 if (ret < 0) { 4258 return ret; 4259 } 4260 4261 /* 4262 * The interrupt_bitmap is ignored because KVM_GET_SREGS is 4263 * always preceded by KVM_GET_VCPU_EVENTS. 4264 */ 4265 4266 get_seg(&env->segs[R_CS], &sregs.cs); 4267 get_seg(&env->segs[R_DS], &sregs.ds); 4268 get_seg(&env->segs[R_ES], &sregs.es); 4269 get_seg(&env->segs[R_FS], &sregs.fs); 4270 get_seg(&env->segs[R_GS], &sregs.gs); 4271 get_seg(&env->segs[R_SS], &sregs.ss); 4272 4273 get_seg(&env->tr, &sregs.tr); 4274 get_seg(&env->ldt, &sregs.ldt); 4275 4276 env->idt.limit = sregs.idt.limit; 4277 env->idt.base = sregs.idt.base; 4278 env->gdt.limit = sregs.gdt.limit; 4279 env->gdt.base = sregs.gdt.base; 4280 4281 env->cr[0] = sregs.cr0; 4282 env->cr[2] = sregs.cr2; 4283 env->cr[3] = sregs.cr3; 4284 env->cr[4] = sregs.cr4; 4285 4286 env->efer = sregs.efer; 4287 if (sev_es_enabled() && env->efer & MSR_EFER_LME && 4288 env->cr[0] & CR0_PG_MASK) { 4289 env->efer |= MSR_EFER_LMA; 4290 } 4291 4292 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 4293 x86_update_hflags(env); 4294 4295 return 0; 4296 } 4297 4298 static int kvm_get_sregs2(X86CPU *cpu) 4299 { 4300 CPUX86State *env = &cpu->env; 4301 struct kvm_sregs2 sregs; 4302 int i, ret; 4303 4304 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs); 4305 if (ret < 0) { 4306 return ret; 4307 } 4308 4309 get_seg(&env->segs[R_CS], &sregs.cs); 4310 get_seg(&env->segs[R_DS], &sregs.ds); 4311 get_seg(&env->segs[R_ES], &sregs.es); 4312 get_seg(&env->segs[R_FS], &sregs.fs); 4313 get_seg(&env->segs[R_GS], &sregs.gs); 4314 get_seg(&env->segs[R_SS], &sregs.ss); 4315 4316 get_seg(&env->tr, &sregs.tr); 4317 get_seg(&env->ldt, &sregs.ldt); 4318 4319 env->idt.limit = sregs.idt.limit; 4320 env->idt.base = sregs.idt.base; 4321 env->gdt.limit = sregs.gdt.limit; 4322 env->gdt.base = sregs.gdt.base; 4323 4324 env->cr[0] = sregs.cr0; 4325 env->cr[2] = sregs.cr2; 4326 env->cr[3] = sregs.cr3; 4327 env->cr[4] = sregs.cr4; 4328 4329 env->efer = sregs.efer; 4330 if (sev_es_enabled() && env->efer & MSR_EFER_LME && 4331 env->cr[0] & CR0_PG_MASK) { 4332 env->efer |= MSR_EFER_LMA; 4333 } 4334 4335 env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 4336 4337 if (env->pdptrs_valid) { 4338 for (i = 0; i < 4; i++) { 4339 env->pdptrs[i] = sregs.pdptrs[i]; 4340 } 4341 } 4342 4343 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 4344 x86_update_hflags(env); 4345 4346 return 0; 4347 } 4348 4349 static int kvm_get_msrs(X86CPU *cpu) 4350 { 4351 CPUX86State *env = &cpu->env; 4352 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; 4353 int ret, i; 4354 uint64_t mtrr_top_bits; 4355 4356 kvm_msr_buf_reset(cpu); 4357 4358 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); 4359 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); 4360 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); 4361 kvm_msr_entry_add(cpu, MSR_PAT, 0); 4362 if (has_msr_star) { 4363 kvm_msr_entry_add(cpu, MSR_STAR, 0); 4364 } 4365 if (has_msr_hsave_pa) { 4366 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); 4367 } 4368 if (has_msr_tsc_aux) { 4369 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); 4370 } 4371 if (has_msr_tsc_adjust) { 4372 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); 4373 } 4374 if (has_msr_tsc_deadline) { 4375 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); 4376 } 4377 if (has_msr_misc_enable) { 4378 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); 4379 } 4380 if (has_msr_smbase) { 4381 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); 4382 } 4383 if (has_msr_smi_count) { 4384 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0); 4385 } 4386 if (has_msr_feature_control) { 4387 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); 4388 } 4389 if (has_msr_pkrs) { 4390 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0); 4391 } 4392 if (has_msr_bndcfgs) { 4393 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); 4394 } 4395 if (has_msr_xss) { 4396 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); 4397 } 4398 if (has_msr_umwait) { 4399 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0); 4400 } 4401 if (has_msr_spec_ctrl) { 4402 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0); 4403 } 4404 if (has_tsc_scale_msr) { 4405 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0); 4406 } 4407 4408 if (has_msr_tsx_ctrl) { 4409 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0); 4410 } 4411 if (has_msr_virt_ssbd) { 4412 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0); 4413 } 4414 if (!env->tsc_valid) { 4415 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); 4416 env->tsc_valid = !runstate_is_running(); 4417 } 4418 if (has_msr_hwcr) { 4419 kvm_msr_entry_add(cpu, MSR_K7_HWCR, 0); 4420 } 4421 4422 #ifdef TARGET_X86_64 4423 if (lm_capable_kernel) { 4424 kvm_msr_entry_add(cpu, MSR_CSTAR, 0); 4425 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); 4426 kvm_msr_entry_add(cpu, MSR_FMASK, 0); 4427 kvm_msr_entry_add(cpu, MSR_LSTAR, 0); 4428 if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) { 4429 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, 0); 4430 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, 0); 4431 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, 0); 4432 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, 0); 4433 kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, 0); 4434 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, 0); 4435 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, 0); 4436 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, 0); 4437 kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, 0); 4438 } 4439 } 4440 #endif 4441 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); 4442 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); 4443 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { 4444 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0); 4445 } 4446 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { 4447 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); 4448 } 4449 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { 4450 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); 4451 } 4452 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { 4453 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); 4454 } 4455 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { 4456 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1); 4457 } 4458 if (has_architectural_pmu_version > 0) { 4459 if (has_architectural_pmu_version > 1) { 4460 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 4461 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 4462 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); 4463 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); 4464 } 4465 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 4466 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); 4467 } 4468 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 4469 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); 4470 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); 4471 } 4472 } 4473 4474 if (env->mcg_cap) { 4475 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); 4476 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); 4477 if (has_msr_mcg_ext_ctl) { 4478 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); 4479 } 4480 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 4481 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); 4482 } 4483 } 4484 4485 if (has_msr_hv_hypercall) { 4486 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); 4487 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); 4488 } 4489 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 4490 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); 4491 } 4492 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 4493 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); 4494 } 4495 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 4496 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0); 4497 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0); 4498 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0); 4499 } 4500 if (has_msr_hv_syndbg_options) { 4501 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0); 4502 } 4503 if (has_msr_hv_crash) { 4504 int j; 4505 4506 for (j = 0; j < HV_CRASH_PARAMS; j++) { 4507 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); 4508 } 4509 } 4510 if (has_msr_hv_runtime) { 4511 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); 4512 } 4513 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 4514 uint32_t msr; 4515 4516 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); 4517 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); 4518 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); 4519 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { 4520 kvm_msr_entry_add(cpu, msr, 0); 4521 } 4522 } 4523 if (has_msr_hv_stimer) { 4524 uint32_t msr; 4525 4526 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; 4527 msr++) { 4528 kvm_msr_entry_add(cpu, msr, 0); 4529 } 4530 } 4531 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 4532 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); 4533 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); 4534 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); 4535 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); 4536 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); 4537 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); 4538 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); 4539 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); 4540 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); 4541 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); 4542 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); 4543 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); 4544 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 4545 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); 4546 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); 4547 } 4548 } 4549 4550 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 4551 int addr_num = 4552 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7; 4553 4554 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0); 4555 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0); 4556 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0); 4557 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0); 4558 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0); 4559 for (i = 0; i < addr_num; i++) { 4560 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0); 4561 } 4562 } 4563 4564 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 4565 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0); 4566 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0); 4567 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0); 4568 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0); 4569 } 4570 4571 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) { 4572 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0); 4573 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0); 4574 } 4575 4576 if (kvm_enabled() && cpu->enable_pmu && 4577 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) { 4578 uint64_t depth; 4579 4580 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth); 4581 if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) { 4582 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0); 4583 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0); 4584 4585 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) { 4586 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0); 4587 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0); 4588 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0); 4589 } 4590 } 4591 } 4592 4593 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); 4594 if (ret < 0) { 4595 return ret; 4596 } 4597 4598 if (ret < cpu->kvm_msr_buf->nmsrs) { 4599 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 4600 error_report("error: failed to get MSR 0x%" PRIx32, 4601 (uint32_t)e->index); 4602 } 4603 4604 assert(ret == cpu->kvm_msr_buf->nmsrs); 4605 /* 4606 * MTRR masks: Each mask consists of 5 parts 4607 * a 10..0: must be zero 4608 * b 11 : valid bit 4609 * c n-1.12: actual mask bits 4610 * d 51..n: reserved must be zero 4611 * e 63.52: reserved must be zero 4612 * 4613 * 'n' is the number of physical bits supported by the CPU and is 4614 * apparently always <= 52. We know our 'n' but don't know what 4615 * the destinations 'n' is; it might be smaller, in which case 4616 * it masks (c) on loading. It might be larger, in which case 4617 * we fill 'd' so that d..c is consistent irrespetive of the 'n' 4618 * we're migrating to. 4619 */ 4620 4621 if (cpu->fill_mtrr_mask) { 4622 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); 4623 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); 4624 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); 4625 } else { 4626 mtrr_top_bits = 0; 4627 } 4628 4629 for (i = 0; i < ret; i++) { 4630 uint32_t index = msrs[i].index; 4631 switch (index) { 4632 case MSR_IA32_SYSENTER_CS: 4633 env->sysenter_cs = msrs[i].data; 4634 break; 4635 case MSR_IA32_SYSENTER_ESP: 4636 env->sysenter_esp = msrs[i].data; 4637 break; 4638 case MSR_IA32_SYSENTER_EIP: 4639 env->sysenter_eip = msrs[i].data; 4640 break; 4641 case MSR_PAT: 4642 env->pat = msrs[i].data; 4643 break; 4644 case MSR_STAR: 4645 env->star = msrs[i].data; 4646 break; 4647 #ifdef TARGET_X86_64 4648 case MSR_CSTAR: 4649 env->cstar = msrs[i].data; 4650 break; 4651 case MSR_KERNELGSBASE: 4652 env->kernelgsbase = msrs[i].data; 4653 break; 4654 case MSR_FMASK: 4655 env->fmask = msrs[i].data; 4656 break; 4657 case MSR_LSTAR: 4658 env->lstar = msrs[i].data; 4659 break; 4660 case MSR_IA32_FRED_RSP0: 4661 env->fred_rsp0 = msrs[i].data; 4662 break; 4663 case MSR_IA32_FRED_RSP1: 4664 env->fred_rsp1 = msrs[i].data; 4665 break; 4666 case MSR_IA32_FRED_RSP2: 4667 env->fred_rsp2 = msrs[i].data; 4668 break; 4669 case MSR_IA32_FRED_RSP3: 4670 env->fred_rsp3 = msrs[i].data; 4671 break; 4672 case MSR_IA32_FRED_STKLVLS: 4673 env->fred_stklvls = msrs[i].data; 4674 break; 4675 case MSR_IA32_FRED_SSP1: 4676 env->fred_ssp1 = msrs[i].data; 4677 break; 4678 case MSR_IA32_FRED_SSP2: 4679 env->fred_ssp2 = msrs[i].data; 4680 break; 4681 case MSR_IA32_FRED_SSP3: 4682 env->fred_ssp3 = msrs[i].data; 4683 break; 4684 case MSR_IA32_FRED_CONFIG: 4685 env->fred_config = msrs[i].data; 4686 break; 4687 #endif 4688 case MSR_IA32_TSC: 4689 env->tsc = msrs[i].data; 4690 break; 4691 case MSR_TSC_AUX: 4692 env->tsc_aux = msrs[i].data; 4693 break; 4694 case MSR_TSC_ADJUST: 4695 env->tsc_adjust = msrs[i].data; 4696 break; 4697 case MSR_IA32_TSCDEADLINE: 4698 env->tsc_deadline = msrs[i].data; 4699 break; 4700 case MSR_VM_HSAVE_PA: 4701 env->vm_hsave = msrs[i].data; 4702 break; 4703 case MSR_KVM_SYSTEM_TIME: 4704 env->system_time_msr = msrs[i].data; 4705 break; 4706 case MSR_KVM_WALL_CLOCK: 4707 env->wall_clock_msr = msrs[i].data; 4708 break; 4709 case MSR_MCG_STATUS: 4710 env->mcg_status = msrs[i].data; 4711 break; 4712 case MSR_MCG_CTL: 4713 env->mcg_ctl = msrs[i].data; 4714 break; 4715 case MSR_MCG_EXT_CTL: 4716 env->mcg_ext_ctl = msrs[i].data; 4717 break; 4718 case MSR_IA32_MISC_ENABLE: 4719 env->msr_ia32_misc_enable = msrs[i].data; 4720 break; 4721 case MSR_IA32_SMBASE: 4722 env->smbase = msrs[i].data; 4723 break; 4724 case MSR_SMI_COUNT: 4725 env->msr_smi_count = msrs[i].data; 4726 break; 4727 case MSR_IA32_FEATURE_CONTROL: 4728 env->msr_ia32_feature_control = msrs[i].data; 4729 break; 4730 case MSR_IA32_BNDCFGS: 4731 env->msr_bndcfgs = msrs[i].data; 4732 break; 4733 case MSR_IA32_XSS: 4734 env->xss = msrs[i].data; 4735 break; 4736 case MSR_IA32_UMWAIT_CONTROL: 4737 env->umwait = msrs[i].data; 4738 break; 4739 case MSR_IA32_PKRS: 4740 env->pkrs = msrs[i].data; 4741 break; 4742 default: 4743 if (msrs[i].index >= MSR_MC0_CTL && 4744 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { 4745 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; 4746 } 4747 break; 4748 case MSR_KVM_ASYNC_PF_EN: 4749 env->async_pf_en_msr = msrs[i].data; 4750 break; 4751 case MSR_KVM_ASYNC_PF_INT: 4752 env->async_pf_int_msr = msrs[i].data; 4753 break; 4754 case MSR_KVM_PV_EOI_EN: 4755 env->pv_eoi_en_msr = msrs[i].data; 4756 break; 4757 case MSR_KVM_STEAL_TIME: 4758 env->steal_time_msr = msrs[i].data; 4759 break; 4760 case MSR_KVM_POLL_CONTROL: { 4761 env->poll_control_msr = msrs[i].data; 4762 break; 4763 } 4764 case MSR_CORE_PERF_FIXED_CTR_CTRL: 4765 env->msr_fixed_ctr_ctrl = msrs[i].data; 4766 break; 4767 case MSR_CORE_PERF_GLOBAL_CTRL: 4768 env->msr_global_ctrl = msrs[i].data; 4769 break; 4770 case MSR_CORE_PERF_GLOBAL_STATUS: 4771 env->msr_global_status = msrs[i].data; 4772 break; 4773 case MSR_CORE_PERF_GLOBAL_OVF_CTRL: 4774 env->msr_global_ovf_ctrl = msrs[i].data; 4775 break; 4776 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: 4777 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; 4778 break; 4779 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: 4780 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; 4781 break; 4782 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: 4783 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; 4784 break; 4785 case HV_X64_MSR_HYPERCALL: 4786 env->msr_hv_hypercall = msrs[i].data; 4787 break; 4788 case HV_X64_MSR_GUEST_OS_ID: 4789 env->msr_hv_guest_os_id = msrs[i].data; 4790 break; 4791 case HV_X64_MSR_APIC_ASSIST_PAGE: 4792 env->msr_hv_vapic = msrs[i].data; 4793 break; 4794 case HV_X64_MSR_REFERENCE_TSC: 4795 env->msr_hv_tsc = msrs[i].data; 4796 break; 4797 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4798 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; 4799 break; 4800 case HV_X64_MSR_VP_RUNTIME: 4801 env->msr_hv_runtime = msrs[i].data; 4802 break; 4803 case HV_X64_MSR_SCONTROL: 4804 env->msr_hv_synic_control = msrs[i].data; 4805 break; 4806 case HV_X64_MSR_SIEFP: 4807 env->msr_hv_synic_evt_page = msrs[i].data; 4808 break; 4809 case HV_X64_MSR_SIMP: 4810 env->msr_hv_synic_msg_page = msrs[i].data; 4811 break; 4812 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 4813 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; 4814 break; 4815 case HV_X64_MSR_STIMER0_CONFIG: 4816 case HV_X64_MSR_STIMER1_CONFIG: 4817 case HV_X64_MSR_STIMER2_CONFIG: 4818 case HV_X64_MSR_STIMER3_CONFIG: 4819 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = 4820 msrs[i].data; 4821 break; 4822 case HV_X64_MSR_STIMER0_COUNT: 4823 case HV_X64_MSR_STIMER1_COUNT: 4824 case HV_X64_MSR_STIMER2_COUNT: 4825 case HV_X64_MSR_STIMER3_COUNT: 4826 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = 4827 msrs[i].data; 4828 break; 4829 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4830 env->msr_hv_reenlightenment_control = msrs[i].data; 4831 break; 4832 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4833 env->msr_hv_tsc_emulation_control = msrs[i].data; 4834 break; 4835 case HV_X64_MSR_TSC_EMULATION_STATUS: 4836 env->msr_hv_tsc_emulation_status = msrs[i].data; 4837 break; 4838 case HV_X64_MSR_SYNDBG_OPTIONS: 4839 env->msr_hv_syndbg_options = msrs[i].data; 4840 break; 4841 case MSR_MTRRdefType: 4842 env->mtrr_deftype = msrs[i].data; 4843 break; 4844 case MSR_MTRRfix64K_00000: 4845 env->mtrr_fixed[0] = msrs[i].data; 4846 break; 4847 case MSR_MTRRfix16K_80000: 4848 env->mtrr_fixed[1] = msrs[i].data; 4849 break; 4850 case MSR_MTRRfix16K_A0000: 4851 env->mtrr_fixed[2] = msrs[i].data; 4852 break; 4853 case MSR_MTRRfix4K_C0000: 4854 env->mtrr_fixed[3] = msrs[i].data; 4855 break; 4856 case MSR_MTRRfix4K_C8000: 4857 env->mtrr_fixed[4] = msrs[i].data; 4858 break; 4859 case MSR_MTRRfix4K_D0000: 4860 env->mtrr_fixed[5] = msrs[i].data; 4861 break; 4862 case MSR_MTRRfix4K_D8000: 4863 env->mtrr_fixed[6] = msrs[i].data; 4864 break; 4865 case MSR_MTRRfix4K_E0000: 4866 env->mtrr_fixed[7] = msrs[i].data; 4867 break; 4868 case MSR_MTRRfix4K_E8000: 4869 env->mtrr_fixed[8] = msrs[i].data; 4870 break; 4871 case MSR_MTRRfix4K_F0000: 4872 env->mtrr_fixed[9] = msrs[i].data; 4873 break; 4874 case MSR_MTRRfix4K_F8000: 4875 env->mtrr_fixed[10] = msrs[i].data; 4876 break; 4877 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): 4878 if (index & 1) { 4879 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | 4880 mtrr_top_bits; 4881 } else { 4882 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; 4883 } 4884 break; 4885 case MSR_IA32_SPEC_CTRL: 4886 env->spec_ctrl = msrs[i].data; 4887 break; 4888 case MSR_AMD64_TSC_RATIO: 4889 env->amd_tsc_scale_msr = msrs[i].data; 4890 break; 4891 case MSR_IA32_TSX_CTRL: 4892 env->tsx_ctrl = msrs[i].data; 4893 break; 4894 case MSR_VIRT_SSBD: 4895 env->virt_ssbd = msrs[i].data; 4896 break; 4897 case MSR_IA32_RTIT_CTL: 4898 env->msr_rtit_ctrl = msrs[i].data; 4899 break; 4900 case MSR_IA32_RTIT_STATUS: 4901 env->msr_rtit_status = msrs[i].data; 4902 break; 4903 case MSR_IA32_RTIT_OUTPUT_BASE: 4904 env->msr_rtit_output_base = msrs[i].data; 4905 break; 4906 case MSR_IA32_RTIT_OUTPUT_MASK: 4907 env->msr_rtit_output_mask = msrs[i].data; 4908 break; 4909 case MSR_IA32_RTIT_CR3_MATCH: 4910 env->msr_rtit_cr3_match = msrs[i].data; 4911 break; 4912 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 4913 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data; 4914 break; 4915 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 4916 env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] = 4917 msrs[i].data; 4918 break; 4919 case MSR_IA32_XFD: 4920 env->msr_xfd = msrs[i].data; 4921 break; 4922 case MSR_IA32_XFD_ERR: 4923 env->msr_xfd_err = msrs[i].data; 4924 break; 4925 case MSR_ARCH_LBR_CTL: 4926 env->msr_lbr_ctl = msrs[i].data; 4927 break; 4928 case MSR_ARCH_LBR_DEPTH: 4929 env->msr_lbr_depth = msrs[i].data; 4930 break; 4931 case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31: 4932 env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data; 4933 break; 4934 case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31: 4935 env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data; 4936 break; 4937 case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31: 4938 env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data; 4939 break; 4940 case MSR_K7_HWCR: 4941 env->msr_hwcr = msrs[i].data; 4942 break; 4943 } 4944 } 4945 4946 return 0; 4947 } 4948 4949 static int kvm_put_mp_state(X86CPU *cpu) 4950 { 4951 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; 4952 4953 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 4954 } 4955 4956 static int kvm_get_mp_state(X86CPU *cpu) 4957 { 4958 CPUState *cs = CPU(cpu); 4959 CPUX86State *env = &cpu->env; 4960 struct kvm_mp_state mp_state; 4961 int ret; 4962 4963 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); 4964 if (ret < 0) { 4965 return ret; 4966 } 4967 env->mp_state = mp_state.mp_state; 4968 if (kvm_irqchip_in_kernel()) { 4969 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); 4970 } 4971 return 0; 4972 } 4973 4974 static int kvm_get_apic(X86CPU *cpu) 4975 { 4976 DeviceState *apic = cpu->apic_state; 4977 struct kvm_lapic_state kapic; 4978 int ret; 4979 4980 if (apic && kvm_irqchip_in_kernel()) { 4981 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); 4982 if (ret < 0) { 4983 return ret; 4984 } 4985 4986 kvm_get_apic_state(apic, &kapic); 4987 } 4988 return 0; 4989 } 4990 4991 static int kvm_put_vcpu_events(X86CPU *cpu, int level) 4992 { 4993 CPUState *cs = CPU(cpu); 4994 CPUX86State *env = &cpu->env; 4995 struct kvm_vcpu_events events = {}; 4996 4997 events.flags = 0; 4998 4999 if (has_exception_payload) { 5000 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5001 events.exception.pending = env->exception_pending; 5002 events.exception_has_payload = env->exception_has_payload; 5003 events.exception_payload = env->exception_payload; 5004 } 5005 events.exception.nr = env->exception_nr; 5006 events.exception.injected = env->exception_injected; 5007 events.exception.has_error_code = env->has_error_code; 5008 events.exception.error_code = env->error_code; 5009 5010 events.interrupt.injected = (env->interrupt_injected >= 0); 5011 events.interrupt.nr = env->interrupt_injected; 5012 events.interrupt.soft = env->soft_interrupt; 5013 5014 events.nmi.injected = env->nmi_injected; 5015 events.nmi.pending = env->nmi_pending; 5016 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); 5017 5018 events.sipi_vector = env->sipi_vector; 5019 5020 if (has_msr_smbase) { 5021 events.flags |= KVM_VCPUEVENT_VALID_SMM; 5022 events.smi.smm = !!(env->hflags & HF_SMM_MASK); 5023 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); 5024 if (kvm_irqchip_in_kernel()) { 5025 /* As soon as these are moved to the kernel, remove them 5026 * from cs->interrupt_request. 5027 */ 5028 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; 5029 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; 5030 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); 5031 } else { 5032 /* Keep these in cs->interrupt_request. */ 5033 events.smi.pending = 0; 5034 events.smi.latched_init = 0; 5035 } 5036 } 5037 5038 if (level >= KVM_PUT_RESET_STATE) { 5039 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; 5040 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 5041 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR; 5042 } 5043 } 5044 5045 if (has_triple_fault_event) { 5046 events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5047 events.triple_fault.pending = env->triple_fault_pending; 5048 } 5049 5050 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 5051 } 5052 5053 static int kvm_get_vcpu_events(X86CPU *cpu) 5054 { 5055 CPUX86State *env = &cpu->env; 5056 struct kvm_vcpu_events events; 5057 int ret; 5058 5059 memset(&events, 0, sizeof(events)); 5060 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 5061 if (ret < 0) { 5062 return ret; 5063 } 5064 5065 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5066 env->exception_pending = events.exception.pending; 5067 env->exception_has_payload = events.exception_has_payload; 5068 env->exception_payload = events.exception_payload; 5069 } else { 5070 env->exception_pending = 0; 5071 env->exception_has_payload = false; 5072 } 5073 env->exception_injected = events.exception.injected; 5074 env->exception_nr = 5075 (env->exception_pending || env->exception_injected) ? 5076 events.exception.nr : -1; 5077 env->has_error_code = events.exception.has_error_code; 5078 env->error_code = events.exception.error_code; 5079 5080 env->interrupt_injected = 5081 events.interrupt.injected ? events.interrupt.nr : -1; 5082 env->soft_interrupt = events.interrupt.soft; 5083 5084 env->nmi_injected = events.nmi.injected; 5085 env->nmi_pending = events.nmi.pending; 5086 if (events.nmi.masked) { 5087 env->hflags2 |= HF2_NMI_MASK; 5088 } else { 5089 env->hflags2 &= ~HF2_NMI_MASK; 5090 } 5091 5092 if (events.flags & KVM_VCPUEVENT_VALID_SMM) { 5093 if (events.smi.smm) { 5094 env->hflags |= HF_SMM_MASK; 5095 } else { 5096 env->hflags &= ~HF_SMM_MASK; 5097 } 5098 if (events.smi.pending) { 5099 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 5100 } else { 5101 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 5102 } 5103 if (events.smi.smm_inside_nmi) { 5104 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; 5105 } else { 5106 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; 5107 } 5108 if (events.smi.latched_init) { 5109 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 5110 } else { 5111 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 5112 } 5113 } 5114 5115 if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5116 env->triple_fault_pending = events.triple_fault.pending; 5117 } 5118 5119 env->sipi_vector = events.sipi_vector; 5120 5121 return 0; 5122 } 5123 5124 static int kvm_put_debugregs(X86CPU *cpu) 5125 { 5126 CPUX86State *env = &cpu->env; 5127 struct kvm_debugregs dbgregs; 5128 int i; 5129 5130 memset(&dbgregs, 0, sizeof(dbgregs)); 5131 for (i = 0; i < 4; i++) { 5132 dbgregs.db[i] = env->dr[i]; 5133 } 5134 dbgregs.dr6 = env->dr[6]; 5135 dbgregs.dr7 = env->dr[7]; 5136 dbgregs.flags = 0; 5137 5138 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); 5139 } 5140 5141 static int kvm_get_debugregs(X86CPU *cpu) 5142 { 5143 CPUX86State *env = &cpu->env; 5144 struct kvm_debugregs dbgregs; 5145 int i, ret; 5146 5147 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); 5148 if (ret < 0) { 5149 return ret; 5150 } 5151 for (i = 0; i < 4; i++) { 5152 env->dr[i] = dbgregs.db[i]; 5153 } 5154 env->dr[4] = env->dr[6] = dbgregs.dr6; 5155 env->dr[5] = env->dr[7] = dbgregs.dr7; 5156 5157 return 0; 5158 } 5159 5160 static int kvm_put_nested_state(X86CPU *cpu) 5161 { 5162 CPUX86State *env = &cpu->env; 5163 int max_nested_state_len = kvm_max_nested_state_length(); 5164 5165 if (!env->nested_state) { 5166 return 0; 5167 } 5168 5169 /* 5170 * Copy flags that are affected by reset from env->hflags and env->hflags2. 5171 */ 5172 if (env->hflags & HF_GUEST_MASK) { 5173 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE; 5174 } else { 5175 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE; 5176 } 5177 5178 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */ 5179 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) { 5180 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET; 5181 } else { 5182 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET; 5183 } 5184 5185 assert(env->nested_state->size <= max_nested_state_len); 5186 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state); 5187 } 5188 5189 static int kvm_get_nested_state(X86CPU *cpu) 5190 { 5191 CPUX86State *env = &cpu->env; 5192 int max_nested_state_len = kvm_max_nested_state_length(); 5193 int ret; 5194 5195 if (!env->nested_state) { 5196 return 0; 5197 } 5198 5199 /* 5200 * It is possible that migration restored a smaller size into 5201 * nested_state->hdr.size than what our kernel support. 5202 * We preserve migration origin nested_state->hdr.size for 5203 * call to KVM_SET_NESTED_STATE but wish that our next call 5204 * to KVM_GET_NESTED_STATE will use max size our kernel support. 5205 */ 5206 env->nested_state->size = max_nested_state_len; 5207 5208 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state); 5209 if (ret < 0) { 5210 return ret; 5211 } 5212 5213 /* 5214 * Copy flags that are affected by reset to env->hflags and env->hflags2. 5215 */ 5216 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) { 5217 env->hflags |= HF_GUEST_MASK; 5218 } else { 5219 env->hflags &= ~HF_GUEST_MASK; 5220 } 5221 5222 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */ 5223 if (cpu_has_svm(env)) { 5224 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) { 5225 env->hflags2 |= HF2_GIF_MASK; 5226 } else { 5227 env->hflags2 &= ~HF2_GIF_MASK; 5228 } 5229 } 5230 5231 return ret; 5232 } 5233 5234 int kvm_arch_put_registers(CPUState *cpu, int level, Error **errp) 5235 { 5236 X86CPU *x86_cpu = X86_CPU(cpu); 5237 int ret; 5238 5239 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); 5240 5241 /* 5242 * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX 5243 * root operation upon vCPU reset. kvm_put_msr_feature_control() should also 5244 * precede kvm_put_nested_state() when 'real' nested state is set. 5245 */ 5246 if (level >= KVM_PUT_RESET_STATE) { 5247 ret = kvm_put_msr_feature_control(x86_cpu); 5248 if (ret < 0) { 5249 error_setg_errno(errp, -ret, "Failed to set feature control MSR"); 5250 return ret; 5251 } 5252 } 5253 5254 /* must be before kvm_put_nested_state so that EFER.SVME is set */ 5255 ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu); 5256 if (ret < 0) { 5257 error_setg_errno(errp, -ret, "Failed to set special registers"); 5258 return ret; 5259 } 5260 5261 if (level >= KVM_PUT_RESET_STATE) { 5262 ret = kvm_put_nested_state(x86_cpu); 5263 if (ret < 0) { 5264 error_setg_errno(errp, -ret, "Failed to set nested state"); 5265 return ret; 5266 } 5267 } 5268 5269 if (level == KVM_PUT_FULL_STATE) { 5270 /* We don't check for kvm_arch_set_tsc_khz() errors here, 5271 * because TSC frequency mismatch shouldn't abort migration, 5272 * unless the user explicitly asked for a more strict TSC 5273 * setting (e.g. using an explicit "tsc-freq" option). 5274 */ 5275 kvm_arch_set_tsc_khz(cpu); 5276 } 5277 5278 #ifdef CONFIG_XEN_EMU 5279 if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) { 5280 ret = kvm_put_xen_state(cpu); 5281 if (ret < 0) { 5282 error_setg_errno(errp, -ret, "Failed to set Xen state"); 5283 return ret; 5284 } 5285 } 5286 #endif 5287 5288 ret = kvm_getput_regs(x86_cpu, 1); 5289 if (ret < 0) { 5290 error_setg_errno(errp, -ret, "Failed to set general purpose registers"); 5291 return ret; 5292 } 5293 ret = kvm_put_xsave(x86_cpu); 5294 if (ret < 0) { 5295 error_setg_errno(errp, -ret, "Failed to set XSAVE"); 5296 return ret; 5297 } 5298 ret = kvm_put_xcrs(x86_cpu); 5299 if (ret < 0) { 5300 error_setg_errno(errp, -ret, "Failed to set XCRs"); 5301 return ret; 5302 } 5303 ret = kvm_put_msrs(x86_cpu, level); 5304 if (ret < 0) { 5305 error_setg_errno(errp, -ret, "Failed to set MSRs"); 5306 return ret; 5307 } 5308 ret = kvm_put_vcpu_events(x86_cpu, level); 5309 if (ret < 0) { 5310 error_setg_errno(errp, -ret, "Failed to set vCPU events"); 5311 return ret; 5312 } 5313 if (level >= KVM_PUT_RESET_STATE) { 5314 ret = kvm_put_mp_state(x86_cpu); 5315 if (ret < 0) { 5316 error_setg_errno(errp, -ret, "Failed to set MP state"); 5317 return ret; 5318 } 5319 } 5320 5321 ret = kvm_put_tscdeadline_msr(x86_cpu); 5322 if (ret < 0) { 5323 error_setg_errno(errp, -ret, "Failed to set TSC deadline MSR"); 5324 return ret; 5325 } 5326 ret = kvm_put_debugregs(x86_cpu); 5327 if (ret < 0) { 5328 error_setg_errno(errp, -ret, "Failed to set debug registers"); 5329 return ret; 5330 } 5331 return 0; 5332 } 5333 5334 int kvm_arch_get_registers(CPUState *cs, Error **errp) 5335 { 5336 X86CPU *cpu = X86_CPU(cs); 5337 int ret; 5338 5339 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); 5340 5341 ret = kvm_get_vcpu_events(cpu); 5342 if (ret < 0) { 5343 error_setg_errno(errp, -ret, "Failed to get vCPU events"); 5344 goto out; 5345 } 5346 /* 5347 * KVM_GET_MPSTATE can modify CS and RIP, call it before 5348 * KVM_GET_REGS and KVM_GET_SREGS. 5349 */ 5350 ret = kvm_get_mp_state(cpu); 5351 if (ret < 0) { 5352 error_setg_errno(errp, -ret, "Failed to get MP state"); 5353 goto out; 5354 } 5355 ret = kvm_getput_regs(cpu, 0); 5356 if (ret < 0) { 5357 error_setg_errno(errp, -ret, "Failed to get general purpose registers"); 5358 goto out; 5359 } 5360 ret = kvm_get_xsave(cpu); 5361 if (ret < 0) { 5362 error_setg_errno(errp, -ret, "Failed to get XSAVE"); 5363 goto out; 5364 } 5365 ret = kvm_get_xcrs(cpu); 5366 if (ret < 0) { 5367 error_setg_errno(errp, -ret, "Failed to get XCRs"); 5368 goto out; 5369 } 5370 ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu); 5371 if (ret < 0) { 5372 error_setg_errno(errp, -ret, "Failed to get special registers"); 5373 goto out; 5374 } 5375 ret = kvm_get_msrs(cpu); 5376 if (ret < 0) { 5377 error_setg_errno(errp, -ret, "Failed to get MSRs"); 5378 goto out; 5379 } 5380 ret = kvm_get_apic(cpu); 5381 if (ret < 0) { 5382 error_setg_errno(errp, -ret, "Failed to get APIC"); 5383 goto out; 5384 } 5385 ret = kvm_get_debugregs(cpu); 5386 if (ret < 0) { 5387 error_setg_errno(errp, -ret, "Failed to get debug registers"); 5388 goto out; 5389 } 5390 ret = kvm_get_nested_state(cpu); 5391 if (ret < 0) { 5392 error_setg_errno(errp, -ret, "Failed to get nested state"); 5393 goto out; 5394 } 5395 #ifdef CONFIG_XEN_EMU 5396 if (xen_mode == XEN_EMULATE) { 5397 ret = kvm_get_xen_state(cs); 5398 if (ret < 0) { 5399 error_setg_errno(errp, -ret, "Failed to get Xen state"); 5400 goto out; 5401 } 5402 } 5403 #endif 5404 ret = 0; 5405 out: 5406 cpu_sync_bndcs_hflags(&cpu->env); 5407 return ret; 5408 } 5409 5410 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 5411 { 5412 X86CPU *x86_cpu = X86_CPU(cpu); 5413 CPUX86State *env = &x86_cpu->env; 5414 int ret; 5415 5416 /* Inject NMI */ 5417 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { 5418 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { 5419 bql_lock(); 5420 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; 5421 bql_unlock(); 5422 DPRINTF("injected NMI\n"); 5423 ret = kvm_vcpu_ioctl(cpu, KVM_NMI); 5424 if (ret < 0) { 5425 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", 5426 strerror(-ret)); 5427 } 5428 } 5429 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { 5430 bql_lock(); 5431 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; 5432 bql_unlock(); 5433 DPRINTF("injected SMI\n"); 5434 ret = kvm_vcpu_ioctl(cpu, KVM_SMI); 5435 if (ret < 0) { 5436 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", 5437 strerror(-ret)); 5438 } 5439 } 5440 } 5441 5442 if (!kvm_pic_in_kernel()) { 5443 bql_lock(); 5444 } 5445 5446 /* Force the VCPU out of its inner loop to process any INIT requests 5447 * or (for userspace APIC, but it is cheap to combine the checks here) 5448 * pending TPR access reports. 5449 */ 5450 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { 5451 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && 5452 !(env->hflags & HF_SMM_MASK)) { 5453 cpu->exit_request = 1; 5454 } 5455 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { 5456 cpu->exit_request = 1; 5457 } 5458 } 5459 5460 if (!kvm_pic_in_kernel()) { 5461 /* Try to inject an interrupt if the guest can accept it */ 5462 if (run->ready_for_interrupt_injection && 5463 (cpu->interrupt_request & CPU_INTERRUPT_HARD) && 5464 (env->eflags & IF_MASK)) { 5465 int irq; 5466 5467 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; 5468 irq = cpu_get_pic_interrupt(env); 5469 if (irq >= 0) { 5470 struct kvm_interrupt intr; 5471 5472 intr.irq = irq; 5473 DPRINTF("injected interrupt %d\n", irq); 5474 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); 5475 if (ret < 0) { 5476 fprintf(stderr, 5477 "KVM: injection failed, interrupt lost (%s)\n", 5478 strerror(-ret)); 5479 } 5480 } 5481 } 5482 5483 /* If we have an interrupt but the guest is not ready to receive an 5484 * interrupt, request an interrupt window exit. This will 5485 * cause a return to userspace as soon as the guest is ready to 5486 * receive interrupts. */ 5487 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { 5488 run->request_interrupt_window = 1; 5489 } else { 5490 run->request_interrupt_window = 0; 5491 } 5492 5493 DPRINTF("setting tpr\n"); 5494 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); 5495 5496 bql_unlock(); 5497 } 5498 } 5499 5500 static void kvm_rate_limit_on_bus_lock(void) 5501 { 5502 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1); 5503 5504 if (delay_ns) { 5505 g_usleep(delay_ns / SCALE_US); 5506 } 5507 } 5508 5509 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) 5510 { 5511 X86CPU *x86_cpu = X86_CPU(cpu); 5512 CPUX86State *env = &x86_cpu->env; 5513 5514 if (run->flags & KVM_RUN_X86_SMM) { 5515 env->hflags |= HF_SMM_MASK; 5516 } else { 5517 env->hflags &= ~HF_SMM_MASK; 5518 } 5519 if (run->if_flag) { 5520 env->eflags |= IF_MASK; 5521 } else { 5522 env->eflags &= ~IF_MASK; 5523 } 5524 if (run->flags & KVM_RUN_X86_BUS_LOCK) { 5525 kvm_rate_limit_on_bus_lock(); 5526 } 5527 5528 #ifdef CONFIG_XEN_EMU 5529 /* 5530 * If the callback is asserted as a GSI (or PCI INTx) then check if 5531 * vcpu_info->evtchn_upcall_pending has been cleared, and deassert 5532 * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC 5533 * EOI and only resample then, exactly how the VFIO eventfd pairs 5534 * are designed to work for level triggered interrupts. 5535 */ 5536 if (x86_cpu->env.xen_callback_asserted) { 5537 kvm_xen_maybe_deassert_callback(cpu); 5538 } 5539 #endif 5540 5541 /* We need to protect the apic state against concurrent accesses from 5542 * different threads in case the userspace irqchip is used. */ 5543 if (!kvm_irqchip_in_kernel()) { 5544 bql_lock(); 5545 } 5546 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); 5547 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); 5548 if (!kvm_irqchip_in_kernel()) { 5549 bql_unlock(); 5550 } 5551 return cpu_get_mem_attrs(env); 5552 } 5553 5554 int kvm_arch_process_async_events(CPUState *cs) 5555 { 5556 X86CPU *cpu = X86_CPU(cs); 5557 CPUX86State *env = &cpu->env; 5558 5559 if (cs->interrupt_request & CPU_INTERRUPT_MCE) { 5560 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ 5561 assert(env->mcg_cap); 5562 5563 cs->interrupt_request &= ~CPU_INTERRUPT_MCE; 5564 5565 kvm_cpu_synchronize_state(cs); 5566 5567 if (env->exception_nr == EXCP08_DBLE) { 5568 /* this means triple fault */ 5569 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 5570 cs->exit_request = 1; 5571 return 0; 5572 } 5573 kvm_queue_exception(env, EXCP12_MCHK, 0, 0); 5574 env->has_error_code = 0; 5575 5576 cs->halted = 0; 5577 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { 5578 env->mp_state = KVM_MP_STATE_RUNNABLE; 5579 } 5580 } 5581 5582 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && 5583 !(env->hflags & HF_SMM_MASK)) { 5584 kvm_cpu_synchronize_state(cs); 5585 do_cpu_init(cpu); 5586 } 5587 5588 if (kvm_irqchip_in_kernel()) { 5589 return 0; 5590 } 5591 5592 if (cs->interrupt_request & CPU_INTERRUPT_POLL) { 5593 cs->interrupt_request &= ~CPU_INTERRUPT_POLL; 5594 apic_poll_irq(cpu->apic_state); 5595 } 5596 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && 5597 (env->eflags & IF_MASK)) || 5598 (cs->interrupt_request & CPU_INTERRUPT_NMI)) { 5599 cs->halted = 0; 5600 } 5601 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { 5602 kvm_cpu_synchronize_state(cs); 5603 do_cpu_sipi(cpu); 5604 } 5605 if (cs->interrupt_request & CPU_INTERRUPT_TPR) { 5606 cs->interrupt_request &= ~CPU_INTERRUPT_TPR; 5607 kvm_cpu_synchronize_state(cs); 5608 apic_handle_tpr_access_report(cpu->apic_state, env->eip, 5609 env->tpr_access_type); 5610 } 5611 5612 return cs->halted; 5613 } 5614 5615 static int kvm_handle_halt(X86CPU *cpu) 5616 { 5617 CPUState *cs = CPU(cpu); 5618 CPUX86State *env = &cpu->env; 5619 5620 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && 5621 (env->eflags & IF_MASK)) && 5622 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { 5623 cs->halted = 1; 5624 return EXCP_HLT; 5625 } 5626 5627 return 0; 5628 } 5629 5630 static int kvm_handle_tpr_access(X86CPU *cpu) 5631 { 5632 CPUState *cs = CPU(cpu); 5633 struct kvm_run *run = cs->kvm_run; 5634 5635 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, 5636 run->tpr_access.is_write ? TPR_ACCESS_WRITE 5637 : TPR_ACCESS_READ); 5638 return 1; 5639 } 5640 5641 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 5642 { 5643 static const uint8_t int3 = 0xcc; 5644 5645 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || 5646 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { 5647 return -EINVAL; 5648 } 5649 return 0; 5650 } 5651 5652 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 5653 { 5654 uint8_t int3; 5655 5656 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) { 5657 return -EINVAL; 5658 } 5659 if (int3 != 0xcc) { 5660 return 0; 5661 } 5662 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { 5663 return -EINVAL; 5664 } 5665 return 0; 5666 } 5667 5668 static struct { 5669 target_ulong addr; 5670 int len; 5671 int type; 5672 } hw_breakpoint[4]; 5673 5674 static int nb_hw_breakpoint; 5675 5676 static int find_hw_breakpoint(target_ulong addr, int len, int type) 5677 { 5678 int n; 5679 5680 for (n = 0; n < nb_hw_breakpoint; n++) { 5681 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && 5682 (hw_breakpoint[n].len == len || len == -1)) { 5683 return n; 5684 } 5685 } 5686 return -1; 5687 } 5688 5689 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type) 5690 { 5691 switch (type) { 5692 case GDB_BREAKPOINT_HW: 5693 len = 1; 5694 break; 5695 case GDB_WATCHPOINT_WRITE: 5696 case GDB_WATCHPOINT_ACCESS: 5697 switch (len) { 5698 case 1: 5699 break; 5700 case 2: 5701 case 4: 5702 case 8: 5703 if (addr & (len - 1)) { 5704 return -EINVAL; 5705 } 5706 break; 5707 default: 5708 return -EINVAL; 5709 } 5710 break; 5711 default: 5712 return -ENOSYS; 5713 } 5714 5715 if (nb_hw_breakpoint == 4) { 5716 return -ENOBUFS; 5717 } 5718 if (find_hw_breakpoint(addr, len, type) >= 0) { 5719 return -EEXIST; 5720 } 5721 hw_breakpoint[nb_hw_breakpoint].addr = addr; 5722 hw_breakpoint[nb_hw_breakpoint].len = len; 5723 hw_breakpoint[nb_hw_breakpoint].type = type; 5724 nb_hw_breakpoint++; 5725 5726 return 0; 5727 } 5728 5729 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type) 5730 { 5731 int n; 5732 5733 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); 5734 if (n < 0) { 5735 return -ENOENT; 5736 } 5737 nb_hw_breakpoint--; 5738 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; 5739 5740 return 0; 5741 } 5742 5743 void kvm_arch_remove_all_hw_breakpoints(void) 5744 { 5745 nb_hw_breakpoint = 0; 5746 } 5747 5748 static CPUWatchpoint hw_watchpoint; 5749 5750 static int kvm_handle_debug(X86CPU *cpu, 5751 struct kvm_debug_exit_arch *arch_info) 5752 { 5753 CPUState *cs = CPU(cpu); 5754 CPUX86State *env = &cpu->env; 5755 int ret = 0; 5756 int n; 5757 5758 if (arch_info->exception == EXCP01_DB) { 5759 if (arch_info->dr6 & DR6_BS) { 5760 if (cs->singlestep_enabled) { 5761 ret = EXCP_DEBUG; 5762 } 5763 } else { 5764 for (n = 0; n < 4; n++) { 5765 if (arch_info->dr6 & (1 << n)) { 5766 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { 5767 case 0x0: 5768 ret = EXCP_DEBUG; 5769 break; 5770 case 0x1: 5771 ret = EXCP_DEBUG; 5772 cs->watchpoint_hit = &hw_watchpoint; 5773 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 5774 hw_watchpoint.flags = BP_MEM_WRITE; 5775 break; 5776 case 0x3: 5777 ret = EXCP_DEBUG; 5778 cs->watchpoint_hit = &hw_watchpoint; 5779 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 5780 hw_watchpoint.flags = BP_MEM_ACCESS; 5781 break; 5782 } 5783 } 5784 } 5785 } 5786 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { 5787 ret = EXCP_DEBUG; 5788 } 5789 if (ret == 0) { 5790 cpu_synchronize_state(cs); 5791 assert(env->exception_nr == -1); 5792 5793 /* pass to guest */ 5794 kvm_queue_exception(env, arch_info->exception, 5795 arch_info->exception == EXCP01_DB, 5796 arch_info->dr6); 5797 env->has_error_code = 0; 5798 } 5799 5800 return ret; 5801 } 5802 5803 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 5804 { 5805 const uint8_t type_code[] = { 5806 [GDB_BREAKPOINT_HW] = 0x0, 5807 [GDB_WATCHPOINT_WRITE] = 0x1, 5808 [GDB_WATCHPOINT_ACCESS] = 0x3 5809 }; 5810 const uint8_t len_code[] = { 5811 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 5812 }; 5813 int n; 5814 5815 if (kvm_sw_breakpoints_active(cpu)) { 5816 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 5817 } 5818 if (nb_hw_breakpoint > 0) { 5819 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 5820 dbg->arch.debugreg[7] = 0x0600; 5821 for (n = 0; n < nb_hw_breakpoint; n++) { 5822 dbg->arch.debugreg[n] = hw_breakpoint[n].addr; 5823 dbg->arch.debugreg[7] |= (2 << (n * 2)) | 5824 (type_code[hw_breakpoint[n].type] << (16 + n*4)) | 5825 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); 5826 } 5827 } 5828 } 5829 5830 static bool kvm_install_msr_filters(KVMState *s) 5831 { 5832 uint64_t zero = 0; 5833 struct kvm_msr_filter filter = { 5834 .flags = KVM_MSR_FILTER_DEFAULT_ALLOW, 5835 }; 5836 int r, i, j = 0; 5837 5838 for (i = 0; i < KVM_MSR_FILTER_MAX_RANGES; i++) { 5839 KVMMSRHandlers *handler = &msr_handlers[i]; 5840 if (handler->msr) { 5841 struct kvm_msr_filter_range *range = &filter.ranges[j++]; 5842 5843 *range = (struct kvm_msr_filter_range) { 5844 .flags = 0, 5845 .nmsrs = 1, 5846 .base = handler->msr, 5847 .bitmap = (__u8 *)&zero, 5848 }; 5849 5850 if (handler->rdmsr) { 5851 range->flags |= KVM_MSR_FILTER_READ; 5852 } 5853 5854 if (handler->wrmsr) { 5855 range->flags |= KVM_MSR_FILTER_WRITE; 5856 } 5857 } 5858 } 5859 5860 r = kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter); 5861 if (r) { 5862 return false; 5863 } 5864 5865 return true; 5866 } 5867 5868 static bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr, 5869 QEMUWRMSRHandler *wrmsr) 5870 { 5871 int i; 5872 5873 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5874 if (!msr_handlers[i].msr) { 5875 msr_handlers[i] = (KVMMSRHandlers) { 5876 .msr = msr, 5877 .rdmsr = rdmsr, 5878 .wrmsr = wrmsr, 5879 }; 5880 5881 if (!kvm_install_msr_filters(s)) { 5882 msr_handlers[i] = (KVMMSRHandlers) { }; 5883 return false; 5884 } 5885 5886 return true; 5887 } 5888 } 5889 5890 return false; 5891 } 5892 5893 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run) 5894 { 5895 int i; 5896 bool r; 5897 5898 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5899 KVMMSRHandlers *handler = &msr_handlers[i]; 5900 if (run->msr.index == handler->msr) { 5901 if (handler->rdmsr) { 5902 r = handler->rdmsr(cpu, handler->msr, 5903 (uint64_t *)&run->msr.data); 5904 run->msr.error = r ? 0 : 1; 5905 return 0; 5906 } 5907 } 5908 } 5909 5910 g_assert_not_reached(); 5911 } 5912 5913 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run) 5914 { 5915 int i; 5916 bool r; 5917 5918 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5919 KVMMSRHandlers *handler = &msr_handlers[i]; 5920 if (run->msr.index == handler->msr) { 5921 if (handler->wrmsr) { 5922 r = handler->wrmsr(cpu, handler->msr, run->msr.data); 5923 run->msr.error = r ? 0 : 1; 5924 return 0; 5925 } 5926 } 5927 } 5928 5929 g_assert_not_reached(); 5930 } 5931 5932 static bool has_sgx_provisioning; 5933 5934 static bool __kvm_enable_sgx_provisioning(KVMState *s) 5935 { 5936 int fd, ret; 5937 5938 if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) { 5939 return false; 5940 } 5941 5942 fd = qemu_open_old("/dev/sgx_provision", O_RDONLY); 5943 if (fd < 0) { 5944 return false; 5945 } 5946 5947 ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd); 5948 if (ret) { 5949 error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret)); 5950 exit(1); 5951 } 5952 close(fd); 5953 return true; 5954 } 5955 5956 bool kvm_enable_sgx_provisioning(KVMState *s) 5957 { 5958 return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning); 5959 } 5960 5961 static bool host_supports_vmx(void) 5962 { 5963 uint32_t ecx, unused; 5964 5965 host_cpuid(1, 0, &unused, &unused, &ecx, &unused); 5966 return ecx & CPUID_EXT_VMX; 5967 } 5968 5969 /* 5970 * Currently the handling here only supports use of KVM_HC_MAP_GPA_RANGE 5971 * to service guest-initiated memory attribute update requests so that 5972 * KVM_SET_MEMORY_ATTRIBUTES can update whether or not a page should be 5973 * backed by the private memory pool provided by guest_memfd, and as such 5974 * is only applicable to guest_memfd-backed guests (e.g. SNP/TDX). 5975 * 5976 * Other other use-cases for KVM_HC_MAP_GPA_RANGE, such as for SEV live 5977 * migration, are not implemented here currently. 5978 * 5979 * For the guest_memfd use-case, these exits will generally be synthesized 5980 * by KVM based on platform-specific hypercalls, like GHCB requests in the 5981 * case of SEV-SNP, and not issued directly within the guest though the 5982 * KVM_HC_MAP_GPA_RANGE hypercall. So in this case, KVM_HC_MAP_GPA_RANGE is 5983 * not actually advertised to guests via the KVM CPUID feature bit, as 5984 * opposed to SEV live migration where it would be. Since it is unlikely the 5985 * SEV live migration use-case would be useful for guest-memfd backed guests, 5986 * because private/shared page tracking is already provided through other 5987 * means, these 2 use-cases should be treated as being mutually-exclusive. 5988 */ 5989 static int kvm_handle_hc_map_gpa_range(struct kvm_run *run) 5990 { 5991 uint64_t gpa, size, attributes; 5992 5993 if (!machine_require_guest_memfd(current_machine)) 5994 return -EINVAL; 5995 5996 gpa = run->hypercall.args[0]; 5997 size = run->hypercall.args[1] * TARGET_PAGE_SIZE; 5998 attributes = run->hypercall.args[2]; 5999 6000 trace_kvm_hc_map_gpa_range(gpa, size, attributes, run->hypercall.flags); 6001 6002 return kvm_convert_memory(gpa, size, attributes & KVM_MAP_GPA_RANGE_ENCRYPTED); 6003 } 6004 6005 static int kvm_handle_hypercall(struct kvm_run *run) 6006 { 6007 if (run->hypercall.nr == KVM_HC_MAP_GPA_RANGE) 6008 return kvm_handle_hc_map_gpa_range(run); 6009 6010 return -EINVAL; 6011 } 6012 6013 #define VMX_INVALID_GUEST_STATE 0x80000021 6014 6015 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 6016 { 6017 X86CPU *cpu = X86_CPU(cs); 6018 uint64_t code; 6019 int ret; 6020 bool ctx_invalid; 6021 KVMState *state; 6022 6023 switch (run->exit_reason) { 6024 case KVM_EXIT_HLT: 6025 DPRINTF("handle_hlt\n"); 6026 bql_lock(); 6027 ret = kvm_handle_halt(cpu); 6028 bql_unlock(); 6029 break; 6030 case KVM_EXIT_SET_TPR: 6031 ret = 0; 6032 break; 6033 case KVM_EXIT_TPR_ACCESS: 6034 bql_lock(); 6035 ret = kvm_handle_tpr_access(cpu); 6036 bql_unlock(); 6037 break; 6038 case KVM_EXIT_FAIL_ENTRY: 6039 code = run->fail_entry.hardware_entry_failure_reason; 6040 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", 6041 code); 6042 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { 6043 fprintf(stderr, 6044 "\nIf you're running a guest on an Intel machine without " 6045 "unrestricted mode\n" 6046 "support, the failure can be most likely due to the guest " 6047 "entering an invalid\n" 6048 "state for Intel VT. For example, the guest maybe running " 6049 "in big real mode\n" 6050 "which is not supported on less recent Intel processors." 6051 "\n\n"); 6052 } 6053 ret = -1; 6054 break; 6055 case KVM_EXIT_EXCEPTION: 6056 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", 6057 run->ex.exception, run->ex.error_code); 6058 ret = -1; 6059 break; 6060 case KVM_EXIT_DEBUG: 6061 DPRINTF("kvm_exit_debug\n"); 6062 bql_lock(); 6063 ret = kvm_handle_debug(cpu, &run->debug.arch); 6064 bql_unlock(); 6065 break; 6066 case KVM_EXIT_HYPERV: 6067 ret = kvm_hv_handle_exit(cpu, &run->hyperv); 6068 break; 6069 case KVM_EXIT_IOAPIC_EOI: 6070 ioapic_eoi_broadcast(run->eoi.vector); 6071 ret = 0; 6072 break; 6073 case KVM_EXIT_X86_BUS_LOCK: 6074 /* already handled in kvm_arch_post_run */ 6075 ret = 0; 6076 break; 6077 case KVM_EXIT_NOTIFY: 6078 ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID); 6079 state = KVM_STATE(current_accel()); 6080 if (ctx_invalid || 6081 state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) { 6082 warn_report("KVM internal error: Encountered a notify exit " 6083 "with invalid context in guest."); 6084 ret = -1; 6085 } else { 6086 warn_report_once("KVM: Encountered a notify exit with valid " 6087 "context in guest. " 6088 "The guest could be misbehaving."); 6089 ret = 0; 6090 } 6091 break; 6092 case KVM_EXIT_X86_RDMSR: 6093 /* We only enable MSR filtering, any other exit is bogus */ 6094 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER); 6095 ret = kvm_handle_rdmsr(cpu, run); 6096 break; 6097 case KVM_EXIT_X86_WRMSR: 6098 /* We only enable MSR filtering, any other exit is bogus */ 6099 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER); 6100 ret = kvm_handle_wrmsr(cpu, run); 6101 break; 6102 #ifdef CONFIG_XEN_EMU 6103 case KVM_EXIT_XEN: 6104 ret = kvm_xen_handle_exit(cpu, &run->xen); 6105 break; 6106 #endif 6107 case KVM_EXIT_HYPERCALL: 6108 ret = kvm_handle_hypercall(run); 6109 break; 6110 default: 6111 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); 6112 ret = -1; 6113 break; 6114 } 6115 6116 return ret; 6117 } 6118 6119 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 6120 { 6121 X86CPU *cpu = X86_CPU(cs); 6122 CPUX86State *env = &cpu->env; 6123 6124 kvm_cpu_synchronize_state(cs); 6125 return !(env->cr[0] & CR0_PE_MASK) || 6126 ((env->segs[R_CS].selector & 3) != 3); 6127 } 6128 6129 void kvm_arch_init_irq_routing(KVMState *s) 6130 { 6131 /* We know at this point that we're using the in-kernel 6132 * irqchip, so we can use irqfds, and on x86 we know 6133 * we can use msi via irqfd and GSI routing. 6134 */ 6135 kvm_msi_via_irqfd_allowed = true; 6136 kvm_gsi_routing_allowed = true; 6137 6138 if (kvm_irqchip_is_split()) { 6139 KVMRouteChange c = kvm_irqchip_begin_route_changes(s); 6140 int i; 6141 6142 /* If the ioapic is in QEMU and the lapics are in KVM, reserve 6143 MSI routes for signaling interrupts to the local apics. */ 6144 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 6145 if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) { 6146 error_report("Could not enable split IRQ mode."); 6147 exit(1); 6148 } 6149 } 6150 kvm_irqchip_commit_route_changes(&c); 6151 } 6152 } 6153 6154 int kvm_arch_irqchip_create(KVMState *s) 6155 { 6156 int ret; 6157 if (kvm_kernel_irqchip_split()) { 6158 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); 6159 if (ret) { 6160 error_report("Could not enable split irqchip mode: %s", 6161 strerror(-ret)); 6162 exit(1); 6163 } else { 6164 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); 6165 kvm_split_irqchip = true; 6166 return 1; 6167 } 6168 } else { 6169 return 0; 6170 } 6171 } 6172 6173 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address) 6174 { 6175 CPUX86State *env; 6176 uint64_t ext_id; 6177 6178 if (!first_cpu) { 6179 return address; 6180 } 6181 env = &X86_CPU(first_cpu)->env; 6182 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) { 6183 return address; 6184 } 6185 6186 /* 6187 * If the remappable format bit is set, or the upper bits are 6188 * already set in address_hi, or the low extended bits aren't 6189 * there anyway, do nothing. 6190 */ 6191 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT); 6192 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) { 6193 return address; 6194 } 6195 6196 address &= ~ext_id; 6197 address |= ext_id << 35; 6198 return address; 6199 } 6200 6201 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 6202 uint64_t address, uint32_t data, PCIDevice *dev) 6203 { 6204 X86IOMMUState *iommu = x86_iommu_get_default(); 6205 6206 if (iommu) { 6207 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu); 6208 6209 if (class->int_remap) { 6210 int ret; 6211 MSIMessage src, dst; 6212 6213 src.address = route->u.msi.address_hi; 6214 src.address <<= VTD_MSI_ADDR_HI_SHIFT; 6215 src.address |= route->u.msi.address_lo; 6216 src.data = route->u.msi.data; 6217 6218 ret = class->int_remap(iommu, &src, &dst, dev ? \ 6219 pci_requester_id(dev) : \ 6220 X86_IOMMU_SID_INVALID); 6221 if (ret) { 6222 trace_kvm_x86_fixup_msi_error(route->gsi); 6223 return 1; 6224 } 6225 6226 /* 6227 * Handled untranslated compatibility format interrupt with 6228 * extended destination ID in the low bits 11-5. */ 6229 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address); 6230 6231 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; 6232 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; 6233 route->u.msi.data = dst.data; 6234 return 0; 6235 } 6236 } 6237 6238 #ifdef CONFIG_XEN_EMU 6239 if (xen_mode == XEN_EMULATE) { 6240 int handled = xen_evtchn_translate_pirq_msi(route, address, data); 6241 6242 /* 6243 * If it was a PIRQ and successfully routed (handled == 0) or it was 6244 * an error (handled < 0), return. If it wasn't a PIRQ, keep going. 6245 */ 6246 if (handled <= 0) { 6247 return handled; 6248 } 6249 } 6250 #endif 6251 6252 address = kvm_swizzle_msi_ext_dest_id(address); 6253 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT; 6254 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK; 6255 return 0; 6256 } 6257 6258 typedef struct MSIRouteEntry MSIRouteEntry; 6259 6260 struct MSIRouteEntry { 6261 PCIDevice *dev; /* Device pointer */ 6262 int vector; /* MSI/MSIX vector index */ 6263 int virq; /* Virtual IRQ index */ 6264 QLIST_ENTRY(MSIRouteEntry) list; 6265 }; 6266 6267 /* List of used GSI routes */ 6268 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ 6269 QLIST_HEAD_INITIALIZER(msi_route_list); 6270 6271 void kvm_update_msi_routes_all(void *private, bool global, 6272 uint32_t index, uint32_t mask) 6273 { 6274 int cnt = 0, vector; 6275 MSIRouteEntry *entry; 6276 MSIMessage msg; 6277 PCIDevice *dev; 6278 6279 /* TODO: explicit route update */ 6280 QLIST_FOREACH(entry, &msi_route_list, list) { 6281 cnt++; 6282 vector = entry->vector; 6283 dev = entry->dev; 6284 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) { 6285 msg = msix_get_message(dev, vector); 6286 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) { 6287 msg = msi_get_message(dev, vector); 6288 } else { 6289 /* 6290 * Either MSI/MSIX is disabled for the device, or the 6291 * specific message was masked out. Skip this one. 6292 */ 6293 continue; 6294 } 6295 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); 6296 } 6297 kvm_irqchip_commit_routes(kvm_state); 6298 trace_kvm_x86_update_msi_routes(cnt); 6299 } 6300 6301 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 6302 int vector, PCIDevice *dev) 6303 { 6304 static bool notify_list_inited = false; 6305 MSIRouteEntry *entry; 6306 6307 if (!dev) { 6308 /* These are (possibly) IOAPIC routes only used for split 6309 * kernel irqchip mode, while what we are housekeeping are 6310 * PCI devices only. */ 6311 return 0; 6312 } 6313 6314 entry = g_new0(MSIRouteEntry, 1); 6315 entry->dev = dev; 6316 entry->vector = vector; 6317 entry->virq = route->gsi; 6318 QLIST_INSERT_HEAD(&msi_route_list, entry, list); 6319 6320 trace_kvm_x86_add_msi_route(route->gsi); 6321 6322 if (!notify_list_inited) { 6323 /* For the first time we do add route, add ourselves into 6324 * IOMMU's IEC notify list if needed. */ 6325 X86IOMMUState *iommu = x86_iommu_get_default(); 6326 if (iommu) { 6327 x86_iommu_iec_register_notifier(iommu, 6328 kvm_update_msi_routes_all, 6329 NULL); 6330 } 6331 notify_list_inited = true; 6332 } 6333 return 0; 6334 } 6335 6336 int kvm_arch_release_virq_post(int virq) 6337 { 6338 MSIRouteEntry *entry, *next; 6339 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { 6340 if (entry->virq == virq) { 6341 trace_kvm_x86_remove_msi_route(virq); 6342 QLIST_REMOVE(entry, list); 6343 g_free(entry); 6344 break; 6345 } 6346 } 6347 return 0; 6348 } 6349 6350 int kvm_arch_msi_data_to_gsi(uint32_t data) 6351 { 6352 abort(); 6353 } 6354 6355 bool kvm_has_waitpkg(void) 6356 { 6357 return has_msr_umwait; 6358 } 6359 6360 #define ARCH_REQ_XCOMP_GUEST_PERM 0x1025 6361 6362 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask) 6363 { 6364 KVMState *s = kvm_state; 6365 uint64_t supported; 6366 6367 mask &= XSTATE_DYNAMIC_MASK; 6368 if (!mask) { 6369 return; 6370 } 6371 /* 6372 * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0]. 6373 * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned 6374 * about them already because they are not supported features. 6375 */ 6376 supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX); 6377 supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32; 6378 mask &= supported; 6379 6380 while (mask) { 6381 int bit = ctz64(mask); 6382 int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit); 6383 if (rc) { 6384 /* 6385 * Older kernel version (<5.17) do not support 6386 * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return 6387 * any dynamic feature from kvm_arch_get_supported_cpuid. 6388 */ 6389 warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure " 6390 "for feature bit %d", bit); 6391 } 6392 mask &= ~BIT_ULL(bit); 6393 } 6394 } 6395 6396 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp) 6397 { 6398 KVMState *s = KVM_STATE(obj); 6399 return s->notify_vmexit; 6400 } 6401 6402 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp) 6403 { 6404 KVMState *s = KVM_STATE(obj); 6405 6406 if (s->fd != -1) { 6407 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 6408 return; 6409 } 6410 6411 s->notify_vmexit = value; 6412 } 6413 6414 static void kvm_arch_get_notify_window(Object *obj, Visitor *v, 6415 const char *name, void *opaque, 6416 Error **errp) 6417 { 6418 KVMState *s = KVM_STATE(obj); 6419 uint32_t value = s->notify_window; 6420 6421 visit_type_uint32(v, name, &value, errp); 6422 } 6423 6424 static void kvm_arch_set_notify_window(Object *obj, Visitor *v, 6425 const char *name, void *opaque, 6426 Error **errp) 6427 { 6428 KVMState *s = KVM_STATE(obj); 6429 uint32_t value; 6430 6431 if (s->fd != -1) { 6432 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 6433 return; 6434 } 6435 6436 if (!visit_type_uint32(v, name, &value, errp)) { 6437 return; 6438 } 6439 6440 s->notify_window = value; 6441 } 6442 6443 static void kvm_arch_get_xen_version(Object *obj, Visitor *v, 6444 const char *name, void *opaque, 6445 Error **errp) 6446 { 6447 KVMState *s = KVM_STATE(obj); 6448 uint32_t value = s->xen_version; 6449 6450 visit_type_uint32(v, name, &value, errp); 6451 } 6452 6453 static void kvm_arch_set_xen_version(Object *obj, Visitor *v, 6454 const char *name, void *opaque, 6455 Error **errp) 6456 { 6457 KVMState *s = KVM_STATE(obj); 6458 Error *error = NULL; 6459 uint32_t value; 6460 6461 visit_type_uint32(v, name, &value, &error); 6462 if (error) { 6463 error_propagate(errp, error); 6464 return; 6465 } 6466 6467 s->xen_version = value; 6468 if (value && xen_mode == XEN_DISABLED) { 6469 xen_mode = XEN_EMULATE; 6470 } 6471 } 6472 6473 static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v, 6474 const char *name, void *opaque, 6475 Error **errp) 6476 { 6477 KVMState *s = KVM_STATE(obj); 6478 uint16_t value = s->xen_gnttab_max_frames; 6479 6480 visit_type_uint16(v, name, &value, errp); 6481 } 6482 6483 static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v, 6484 const char *name, void *opaque, 6485 Error **errp) 6486 { 6487 KVMState *s = KVM_STATE(obj); 6488 Error *error = NULL; 6489 uint16_t value; 6490 6491 visit_type_uint16(v, name, &value, &error); 6492 if (error) { 6493 error_propagate(errp, error); 6494 return; 6495 } 6496 6497 s->xen_gnttab_max_frames = value; 6498 } 6499 6500 static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v, 6501 const char *name, void *opaque, 6502 Error **errp) 6503 { 6504 KVMState *s = KVM_STATE(obj); 6505 uint16_t value = s->xen_evtchn_max_pirq; 6506 6507 visit_type_uint16(v, name, &value, errp); 6508 } 6509 6510 static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v, 6511 const char *name, void *opaque, 6512 Error **errp) 6513 { 6514 KVMState *s = KVM_STATE(obj); 6515 Error *error = NULL; 6516 uint16_t value; 6517 6518 visit_type_uint16(v, name, &value, &error); 6519 if (error) { 6520 error_propagate(errp, error); 6521 return; 6522 } 6523 6524 s->xen_evtchn_max_pirq = value; 6525 } 6526 6527 void kvm_arch_accel_class_init(ObjectClass *oc) 6528 { 6529 object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption", 6530 &NotifyVmexitOption_lookup, 6531 kvm_arch_get_notify_vmexit, 6532 kvm_arch_set_notify_vmexit); 6533 object_class_property_set_description(oc, "notify-vmexit", 6534 "Enable notify VM exit"); 6535 6536 object_class_property_add(oc, "notify-window", "uint32", 6537 kvm_arch_get_notify_window, 6538 kvm_arch_set_notify_window, 6539 NULL, NULL); 6540 object_class_property_set_description(oc, "notify-window", 6541 "Clock cycles without an event window " 6542 "after which a notification VM exit occurs"); 6543 6544 object_class_property_add(oc, "xen-version", "uint32", 6545 kvm_arch_get_xen_version, 6546 kvm_arch_set_xen_version, 6547 NULL, NULL); 6548 object_class_property_set_description(oc, "xen-version", 6549 "Xen version to be emulated " 6550 "(in XENVER_version form " 6551 "e.g. 0x4000a for 4.10)"); 6552 6553 object_class_property_add(oc, "xen-gnttab-max-frames", "uint16", 6554 kvm_arch_get_xen_gnttab_max_frames, 6555 kvm_arch_set_xen_gnttab_max_frames, 6556 NULL, NULL); 6557 object_class_property_set_description(oc, "xen-gnttab-max-frames", 6558 "Maximum number of grant table frames"); 6559 6560 object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16", 6561 kvm_arch_get_xen_evtchn_max_pirq, 6562 kvm_arch_set_xen_evtchn_max_pirq, 6563 NULL, NULL); 6564 object_class_property_set_description(oc, "xen-evtchn-max-pirq", 6565 "Maximum number of Xen PIRQs"); 6566 } 6567 6568 void kvm_set_max_apic_id(uint32_t max_apic_id) 6569 { 6570 kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id); 6571 } 6572