1 /* 2 * QEMU KVM support 3 * 4 * Copyright (C) 2006-2008 Qumranet Technologies 5 * Copyright IBM, Corp. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or later. 11 * See the COPYING file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qapi/qapi-events-run-state.h" 17 #include "qapi/error.h" 18 #include "qapi/visitor.h" 19 #include <sys/ioctl.h> 20 #include <sys/utsname.h> 21 #include <sys/syscall.h> 22 23 #include <linux/kvm.h> 24 #include "standard-headers/asm-x86/kvm_para.h" 25 #include "hw/xen/interface/arch-x86/cpuid.h" 26 27 #include "cpu.h" 28 #include "host-cpu.h" 29 #include "sysemu/sysemu.h" 30 #include "sysemu/hw_accel.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "kvm_i386.h" 34 #include "sev.h" 35 #include "xen-emu.h" 36 #include "hyperv.h" 37 #include "hyperv-proto.h" 38 39 #include "exec/gdbstub.h" 40 #include "qemu/host-utils.h" 41 #include "qemu/main-loop.h" 42 #include "qemu/ratelimit.h" 43 #include "qemu/config-file.h" 44 #include "qemu/error-report.h" 45 #include "qemu/memalign.h" 46 #include "hw/i386/x86.h" 47 #include "hw/i386/kvm/xen_evtchn.h" 48 #include "hw/i386/pc.h" 49 #include "hw/i386/apic.h" 50 #include "hw/i386/apic_internal.h" 51 #include "hw/i386/apic-msidef.h" 52 #include "hw/i386/intel_iommu.h" 53 #include "hw/i386/x86-iommu.h" 54 #include "hw/i386/e820_memory_layout.h" 55 56 #include "hw/xen/xen.h" 57 58 #include "hw/pci/pci.h" 59 #include "hw/pci/msi.h" 60 #include "hw/pci/msix.h" 61 #include "migration/blocker.h" 62 #include "exec/memattrs.h" 63 #include "trace.h" 64 65 #include CONFIG_DEVICES 66 67 //#define DEBUG_KVM 68 69 #ifdef DEBUG_KVM 70 #define DPRINTF(fmt, ...) \ 71 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 72 #else 73 #define DPRINTF(fmt, ...) \ 74 do { } while (0) 75 #endif 76 77 /* From arch/x86/kvm/lapic.h */ 78 #define KVM_APIC_BUS_CYCLE_NS 1 79 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS) 80 81 #define MSR_KVM_WALL_CLOCK 0x11 82 #define MSR_KVM_SYSTEM_TIME 0x12 83 84 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus 85 * 255 kvm_msr_entry structs */ 86 #define MSR_BUF_SIZE 4096 87 88 static void kvm_init_msrs(X86CPU *cpu); 89 90 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 91 KVM_CAP_INFO(SET_TSS_ADDR), 92 KVM_CAP_INFO(EXT_CPUID), 93 KVM_CAP_INFO(MP_STATE), 94 KVM_CAP_LAST_INFO 95 }; 96 97 static bool has_msr_star; 98 static bool has_msr_hsave_pa; 99 static bool has_msr_tsc_aux; 100 static bool has_msr_tsc_adjust; 101 static bool has_msr_tsc_deadline; 102 static bool has_msr_feature_control; 103 static bool has_msr_misc_enable; 104 static bool has_msr_smbase; 105 static bool has_msr_bndcfgs; 106 static int lm_capable_kernel; 107 static bool has_msr_hv_hypercall; 108 static bool has_msr_hv_crash; 109 static bool has_msr_hv_reset; 110 static bool has_msr_hv_vpindex; 111 static bool hv_vpindex_settable; 112 static bool has_msr_hv_runtime; 113 static bool has_msr_hv_synic; 114 static bool has_msr_hv_stimer; 115 static bool has_msr_hv_frequencies; 116 static bool has_msr_hv_reenlightenment; 117 static bool has_msr_hv_syndbg_options; 118 static bool has_msr_xss; 119 static bool has_msr_umwait; 120 static bool has_msr_spec_ctrl; 121 static bool has_tsc_scale_msr; 122 static bool has_msr_tsx_ctrl; 123 static bool has_msr_virt_ssbd; 124 static bool has_msr_smi_count; 125 static bool has_msr_arch_capabs; 126 static bool has_msr_core_capabs; 127 static bool has_msr_vmx_vmfunc; 128 static bool has_msr_ucode_rev; 129 static bool has_msr_vmx_procbased_ctls2; 130 static bool has_msr_perf_capabs; 131 static bool has_msr_pkrs; 132 133 static uint32_t has_architectural_pmu_version; 134 static uint32_t num_architectural_pmu_gp_counters; 135 static uint32_t num_architectural_pmu_fixed_counters; 136 137 static int has_xsave; 138 static int has_xsave2; 139 static int has_xcrs; 140 static int has_pit_state2; 141 static int has_sregs2; 142 static int has_exception_payload; 143 static int has_triple_fault_event; 144 145 static bool has_msr_mcg_ext_ctl; 146 147 static struct kvm_cpuid2 *cpuid_cache; 148 static struct kvm_cpuid2 *hv_cpuid_cache; 149 static struct kvm_msr_list *kvm_feature_msrs; 150 151 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES]; 152 153 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */ 154 static RateLimit bus_lock_ratelimit_ctrl; 155 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value); 156 157 bool kvm_has_pit_state2(void) 158 { 159 return !!has_pit_state2; 160 } 161 162 bool kvm_has_smm(void) 163 { 164 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM); 165 } 166 167 bool kvm_has_adjust_clock_stable(void) 168 { 169 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); 170 171 return (ret & KVM_CLOCK_TSC_STABLE); 172 } 173 174 bool kvm_has_adjust_clock(void) 175 { 176 return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); 177 } 178 179 bool kvm_has_exception_payload(void) 180 { 181 return has_exception_payload; 182 } 183 184 static bool kvm_x2apic_api_set_flags(uint64_t flags) 185 { 186 KVMState *s = KVM_STATE(current_accel()); 187 188 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); 189 } 190 191 #define MEMORIZE(fn, _result) \ 192 ({ \ 193 static bool _memorized; \ 194 \ 195 if (_memorized) { \ 196 return _result; \ 197 } \ 198 _memorized = true; \ 199 _result = fn; \ 200 }) 201 202 static bool has_x2apic_api; 203 204 bool kvm_has_x2apic_api(void) 205 { 206 return has_x2apic_api; 207 } 208 209 bool kvm_enable_x2apic(void) 210 { 211 return MEMORIZE( 212 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | 213 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), 214 has_x2apic_api); 215 } 216 217 bool kvm_hv_vpindex_settable(void) 218 { 219 return hv_vpindex_settable; 220 } 221 222 static int kvm_get_tsc(CPUState *cs) 223 { 224 X86CPU *cpu = X86_CPU(cs); 225 CPUX86State *env = &cpu->env; 226 uint64_t value; 227 int ret; 228 229 if (env->tsc_valid) { 230 return 0; 231 } 232 233 env->tsc_valid = !runstate_is_running(); 234 235 ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value); 236 if (ret < 0) { 237 return ret; 238 } 239 240 env->tsc = value; 241 return 0; 242 } 243 244 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) 245 { 246 kvm_get_tsc(cpu); 247 } 248 249 void kvm_synchronize_all_tsc(void) 250 { 251 CPUState *cpu; 252 253 if (kvm_enabled()) { 254 CPU_FOREACH(cpu) { 255 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); 256 } 257 } 258 } 259 260 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) 261 { 262 struct kvm_cpuid2 *cpuid; 263 int r, size; 264 265 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 266 cpuid = g_malloc0(size); 267 cpuid->nent = max; 268 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); 269 if (r == 0 && cpuid->nent >= max) { 270 r = -E2BIG; 271 } 272 if (r < 0) { 273 if (r == -E2BIG) { 274 g_free(cpuid); 275 return NULL; 276 } else { 277 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", 278 strerror(-r)); 279 exit(1); 280 } 281 } 282 return cpuid; 283 } 284 285 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough 286 * for all entries. 287 */ 288 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) 289 { 290 struct kvm_cpuid2 *cpuid; 291 int max = 1; 292 293 if (cpuid_cache != NULL) { 294 return cpuid_cache; 295 } 296 while ((cpuid = try_get_cpuid(s, max)) == NULL) { 297 max *= 2; 298 } 299 cpuid_cache = cpuid; 300 return cpuid; 301 } 302 303 static bool host_tsx_broken(void) 304 { 305 int family, model, stepping;\ 306 char vendor[CPUID_VENDOR_SZ + 1]; 307 308 host_cpu_vendor_fms(vendor, &family, &model, &stepping); 309 310 /* Check if we are running on a Haswell host known to have broken TSX */ 311 return !strcmp(vendor, CPUID_VENDOR_INTEL) && 312 (family == 6) && 313 ((model == 63 && stepping < 4) || 314 model == 60 || model == 69 || model == 70); 315 } 316 317 /* Returns the value for a specific register on the cpuid entry 318 */ 319 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) 320 { 321 uint32_t ret = 0; 322 switch (reg) { 323 case R_EAX: 324 ret = entry->eax; 325 break; 326 case R_EBX: 327 ret = entry->ebx; 328 break; 329 case R_ECX: 330 ret = entry->ecx; 331 break; 332 case R_EDX: 333 ret = entry->edx; 334 break; 335 } 336 return ret; 337 } 338 339 /* Find matching entry for function/index on kvm_cpuid2 struct 340 */ 341 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, 342 uint32_t function, 343 uint32_t index) 344 { 345 int i; 346 for (i = 0; i < cpuid->nent; ++i) { 347 if (cpuid->entries[i].function == function && 348 cpuid->entries[i].index == index) { 349 return &cpuid->entries[i]; 350 } 351 } 352 /* not found: */ 353 return NULL; 354 } 355 356 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, 357 uint32_t index, int reg) 358 { 359 struct kvm_cpuid2 *cpuid; 360 uint32_t ret = 0; 361 uint32_t cpuid_1_edx, unused; 362 uint64_t bitmask; 363 364 cpuid = get_supported_cpuid(s); 365 366 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); 367 if (entry) { 368 ret = cpuid_entry_get_reg(entry, reg); 369 } 370 371 /* Fixups for the data returned by KVM, below */ 372 373 if (function == 1 && reg == R_EDX) { 374 /* KVM before 2.6.30 misreports the following features */ 375 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; 376 /* KVM never reports CPUID_HT but QEMU can support when vcpus > 1 */ 377 ret |= CPUID_HT; 378 } else if (function == 1 && reg == R_ECX) { 379 /* We can set the hypervisor flag, even if KVM does not return it on 380 * GET_SUPPORTED_CPUID 381 */ 382 ret |= CPUID_EXT_HYPERVISOR; 383 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it 384 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, 385 * and the irqchip is in the kernel. 386 */ 387 if (kvm_irqchip_in_kernel() && 388 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { 389 ret |= CPUID_EXT_TSC_DEADLINE_TIMER; 390 } 391 392 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled 393 * without the in-kernel irqchip 394 */ 395 if (!kvm_irqchip_in_kernel()) { 396 ret &= ~CPUID_EXT_X2APIC; 397 } 398 399 if (enable_cpu_pm) { 400 int disable_exits = kvm_check_extension(s, 401 KVM_CAP_X86_DISABLE_EXITS); 402 403 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) { 404 ret |= CPUID_EXT_MONITOR; 405 } 406 } 407 } else if (function == 6 && reg == R_EAX) { 408 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ 409 } else if (function == 7 && index == 0 && reg == R_EBX) { 410 /* Not new instructions, just an optimization. */ 411 uint32_t ebx; 412 host_cpuid(7, 0, &unused, &ebx, &unused, &unused); 413 ret |= ebx & CPUID_7_0_EBX_ERMS; 414 415 if (host_tsx_broken()) { 416 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); 417 } 418 } else if (function == 7 && index == 0 && reg == R_EDX) { 419 /* Not new instructions, just an optimization. */ 420 uint32_t edx; 421 host_cpuid(7, 0, &unused, &unused, &unused, &edx); 422 ret |= edx & CPUID_7_0_EDX_FSRM; 423 424 /* 425 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts. 426 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is 427 * returned by KVM_GET_MSR_INDEX_LIST. 428 */ 429 if (!has_msr_arch_capabs) { 430 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES; 431 } 432 } else if (function == 7 && index == 1 && reg == R_EAX) { 433 /* Not new instructions, just an optimization. */ 434 uint32_t eax; 435 host_cpuid(7, 1, &eax, &unused, &unused, &unused); 436 ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC); 437 } else if (function == 7 && index == 2 && reg == R_EDX) { 438 uint32_t edx; 439 host_cpuid(7, 2, &unused, &unused, &unused, &edx); 440 ret |= edx & CPUID_7_2_EDX_MCDT_NO; 441 } else if (function == 0xd && index == 0 && 442 (reg == R_EAX || reg == R_EDX)) { 443 /* 444 * The value returned by KVM_GET_SUPPORTED_CPUID does not include 445 * features that still have to be enabled with the arch_prctl 446 * system call. QEMU needs the full value, which is retrieved 447 * with KVM_GET_DEVICE_ATTR. 448 */ 449 struct kvm_device_attr attr = { 450 .group = 0, 451 .attr = KVM_X86_XCOMP_GUEST_SUPP, 452 .addr = (unsigned long) &bitmask 453 }; 454 455 bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES); 456 if (!sys_attr) { 457 return ret; 458 } 459 460 int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr); 461 if (rc < 0) { 462 if (rc != -ENXIO) { 463 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) " 464 "error: %d", rc); 465 } 466 return ret; 467 } 468 ret = (reg == R_EAX) ? bitmask : bitmask >> 32; 469 } else if (function == 0x80000001 && reg == R_ECX) { 470 /* 471 * It's safe to enable TOPOEXT even if it's not returned by 472 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows 473 * us to keep CPU models including TOPOEXT runnable on older kernels. 474 */ 475 ret |= CPUID_EXT3_TOPOEXT; 476 } else if (function == 0x80000001 && reg == R_EDX) { 477 /* On Intel, kvm returns cpuid according to the Intel spec, 478 * so add missing bits according to the AMD spec: 479 */ 480 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); 481 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; 482 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { 483 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't 484 * be enabled without the in-kernel irqchip 485 */ 486 if (!kvm_irqchip_in_kernel()) { 487 ret &= ~(1U << KVM_FEATURE_PV_UNHALT); 488 } 489 if (kvm_irqchip_is_split()) { 490 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID; 491 } 492 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) { 493 ret |= 1U << KVM_HINTS_REALTIME; 494 } 495 496 return ret; 497 } 498 499 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index) 500 { 501 struct { 502 struct kvm_msrs info; 503 struct kvm_msr_entry entries[1]; 504 } msr_data = {}; 505 uint64_t value; 506 uint32_t ret, can_be_one, must_be_one; 507 508 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */ 509 return 0; 510 } 511 512 /* Check if requested MSR is supported feature MSR */ 513 int i; 514 for (i = 0; i < kvm_feature_msrs->nmsrs; i++) 515 if (kvm_feature_msrs->indices[i] == index) { 516 break; 517 } 518 if (i == kvm_feature_msrs->nmsrs) { 519 return 0; /* if the feature MSR is not supported, simply return 0 */ 520 } 521 522 msr_data.info.nmsrs = 1; 523 msr_data.entries[0].index = index; 524 525 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data); 526 if (ret != 1) { 527 error_report("KVM get MSR (index=0x%x) feature failed, %s", 528 index, strerror(-ret)); 529 exit(1); 530 } 531 532 value = msr_data.entries[0].data; 533 switch (index) { 534 case MSR_IA32_VMX_PROCBASED_CTLS2: 535 if (!has_msr_vmx_procbased_ctls2) { 536 /* KVM forgot to add these bits for some time, do this ourselves. */ 537 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) & 538 CPUID_XSAVE_XSAVES) { 539 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32; 540 } 541 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) & 542 CPUID_EXT_RDRAND) { 543 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32; 544 } 545 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 546 CPUID_7_0_EBX_INVPCID) { 547 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32; 548 } 549 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 550 CPUID_7_0_EBX_RDSEED) { 551 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32; 552 } 553 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) & 554 CPUID_EXT2_RDTSCP) { 555 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32; 556 } 557 } 558 /* fall through */ 559 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 560 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 561 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 562 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 563 /* 564 * Return true for bits that can be one, but do not have to be one. 565 * The SDM tells us which bits could have a "must be one" setting, 566 * so we can do the opposite transformation in make_vmx_msr_value. 567 */ 568 must_be_one = (uint32_t)value; 569 can_be_one = (uint32_t)(value >> 32); 570 return can_be_one & ~must_be_one; 571 572 default: 573 return value; 574 } 575 } 576 577 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, 578 int *max_banks) 579 { 580 int r; 581 582 r = kvm_check_extension(s, KVM_CAP_MCE); 583 if (r > 0) { 584 *max_banks = r; 585 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); 586 } 587 return -ENOSYS; 588 } 589 590 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) 591 { 592 CPUState *cs = CPU(cpu); 593 CPUX86State *env = &cpu->env; 594 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | 595 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; 596 uint64_t mcg_status = MCG_STATUS_MCIP; 597 int flags = 0; 598 599 if (code == BUS_MCEERR_AR) { 600 status |= MCI_STATUS_AR | 0x134; 601 mcg_status |= MCG_STATUS_RIPV | MCG_STATUS_EIPV; 602 } else { 603 status |= 0xc0; 604 mcg_status |= MCG_STATUS_RIPV; 605 } 606 607 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; 608 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the 609 * guest kernel back into env->mcg_ext_ctl. 610 */ 611 cpu_synchronize_state(cs); 612 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { 613 mcg_status |= MCG_STATUS_LMCE; 614 flags = 0; 615 } 616 617 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, 618 (MCM_ADDR_PHYS << 6) | 0xc, flags); 619 } 620 621 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar) 622 { 623 MemoryFailureFlags mff = {.action_required = ar, .recursive = false}; 624 625 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action, 626 &mff); 627 } 628 629 static void hardware_memory_error(void *host_addr) 630 { 631 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true); 632 error_report("QEMU got Hardware memory error at addr %p", host_addr); 633 exit(1); 634 } 635 636 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) 637 { 638 X86CPU *cpu = X86_CPU(c); 639 CPUX86State *env = &cpu->env; 640 ram_addr_t ram_addr; 641 hwaddr paddr; 642 643 /* If we get an action required MCE, it has been injected by KVM 644 * while the VM was running. An action optional MCE instead should 645 * be coming from the main thread, which qemu_init_sigbus identifies 646 * as the "early kill" thread. 647 */ 648 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); 649 650 if ((env->mcg_cap & MCG_SER_P) && addr) { 651 ram_addr = qemu_ram_addr_from_host(addr); 652 if (ram_addr != RAM_ADDR_INVALID && 653 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { 654 kvm_hwpoison_page_add(ram_addr); 655 kvm_mce_inject(cpu, paddr, code); 656 657 /* 658 * Use different logging severity based on error type. 659 * If there is additional MCE reporting on the hypervisor, QEMU VA 660 * could be another source to identify the PA and MCE details. 661 */ 662 if (code == BUS_MCEERR_AR) { 663 error_report("Guest MCE Memory Error at QEMU addr %p and " 664 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 665 addr, paddr, "BUS_MCEERR_AR"); 666 } else { 667 warn_report("Guest MCE Memory Error at QEMU addr %p and " 668 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 669 addr, paddr, "BUS_MCEERR_AO"); 670 } 671 672 return; 673 } 674 675 if (code == BUS_MCEERR_AO) { 676 warn_report("Hardware memory error at addr %p of type %s " 677 "for memory used by QEMU itself instead of guest system!", 678 addr, "BUS_MCEERR_AO"); 679 } 680 } 681 682 if (code == BUS_MCEERR_AR) { 683 hardware_memory_error(addr); 684 } 685 686 /* Hope we are lucky for AO MCE, just notify a event */ 687 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false); 688 } 689 690 static void kvm_reset_exception(CPUX86State *env) 691 { 692 env->exception_nr = -1; 693 env->exception_pending = 0; 694 env->exception_injected = 0; 695 env->exception_has_payload = false; 696 env->exception_payload = 0; 697 } 698 699 static void kvm_queue_exception(CPUX86State *env, 700 int32_t exception_nr, 701 uint8_t exception_has_payload, 702 uint64_t exception_payload) 703 { 704 assert(env->exception_nr == -1); 705 assert(!env->exception_pending); 706 assert(!env->exception_injected); 707 assert(!env->exception_has_payload); 708 709 env->exception_nr = exception_nr; 710 711 if (has_exception_payload) { 712 env->exception_pending = 1; 713 714 env->exception_has_payload = exception_has_payload; 715 env->exception_payload = exception_payload; 716 } else { 717 env->exception_injected = 1; 718 719 if (exception_nr == EXCP01_DB) { 720 assert(exception_has_payload); 721 env->dr[6] = exception_payload; 722 } else if (exception_nr == EXCP0E_PAGE) { 723 assert(exception_has_payload); 724 env->cr[2] = exception_payload; 725 } else { 726 assert(!exception_has_payload); 727 } 728 } 729 } 730 731 static int kvm_inject_mce_oldstyle(X86CPU *cpu) 732 { 733 CPUX86State *env = &cpu->env; 734 735 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) { 736 unsigned int bank, bank_num = env->mcg_cap & 0xff; 737 struct kvm_x86_mce mce; 738 739 kvm_reset_exception(env); 740 741 /* 742 * There must be at least one bank in use if an MCE is pending. 743 * Find it and use its values for the event injection. 744 */ 745 for (bank = 0; bank < bank_num; bank++) { 746 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { 747 break; 748 } 749 } 750 assert(bank < bank_num); 751 752 mce.bank = bank; 753 mce.status = env->mce_banks[bank * 4 + 1]; 754 mce.mcg_status = env->mcg_status; 755 mce.addr = env->mce_banks[bank * 4 + 2]; 756 mce.misc = env->mce_banks[bank * 4 + 3]; 757 758 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); 759 } 760 return 0; 761 } 762 763 static void cpu_update_state(void *opaque, bool running, RunState state) 764 { 765 CPUX86State *env = opaque; 766 767 if (running) { 768 env->tsc_valid = false; 769 } 770 } 771 772 unsigned long kvm_arch_vcpu_id(CPUState *cs) 773 { 774 X86CPU *cpu = X86_CPU(cs); 775 return cpu->apic_id; 776 } 777 778 #ifndef KVM_CPUID_SIGNATURE_NEXT 779 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 780 #endif 781 782 static bool hyperv_enabled(X86CPU *cpu) 783 { 784 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 && 785 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) || 786 cpu->hyperv_features || cpu->hyperv_passthrough); 787 } 788 789 /* 790 * Check whether target_freq is within conservative 791 * ntp correctable bounds (250ppm) of freq 792 */ 793 static inline bool freq_within_bounds(int freq, int target_freq) 794 { 795 int max_freq = freq + (freq * 250 / 1000000); 796 int min_freq = freq - (freq * 250 / 1000000); 797 798 if (target_freq >= min_freq && target_freq <= max_freq) { 799 return true; 800 } 801 802 return false; 803 } 804 805 static int kvm_arch_set_tsc_khz(CPUState *cs) 806 { 807 X86CPU *cpu = X86_CPU(cs); 808 CPUX86State *env = &cpu->env; 809 int r, cur_freq; 810 bool set_ioctl = false; 811 812 if (!env->tsc_khz) { 813 return 0; 814 } 815 816 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 817 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP; 818 819 /* 820 * If TSC scaling is supported, attempt to set TSC frequency. 821 */ 822 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) { 823 set_ioctl = true; 824 } 825 826 /* 827 * If desired TSC frequency is within bounds of NTP correction, 828 * attempt to set TSC frequency. 829 */ 830 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) { 831 set_ioctl = true; 832 } 833 834 r = set_ioctl ? 835 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : 836 -ENOTSUP; 837 838 if (r < 0) { 839 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current 840 * TSC frequency doesn't match the one we want. 841 */ 842 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 843 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 844 -ENOTSUP; 845 if (cur_freq <= 0 || cur_freq != env->tsc_khz) { 846 warn_report("TSC frequency mismatch between " 847 "VM (%" PRId64 " kHz) and host (%d kHz), " 848 "and TSC scaling unavailable", 849 env->tsc_khz, cur_freq); 850 return r; 851 } 852 } 853 854 return 0; 855 } 856 857 static bool tsc_is_stable_and_known(CPUX86State *env) 858 { 859 if (!env->tsc_khz) { 860 return false; 861 } 862 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) 863 || env->user_tsc_khz; 864 } 865 866 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1) 867 868 static struct { 869 const char *desc; 870 struct { 871 uint32_t func; 872 int reg; 873 uint32_t bits; 874 } flags[2]; 875 uint64_t dependencies; 876 } kvm_hyperv_properties[] = { 877 [HYPERV_FEAT_RELAXED] = { 878 .desc = "relaxed timing (hv-relaxed)", 879 .flags = { 880 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 881 .bits = HV_RELAXED_TIMING_RECOMMENDED} 882 } 883 }, 884 [HYPERV_FEAT_VAPIC] = { 885 .desc = "virtual APIC (hv-vapic)", 886 .flags = { 887 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 888 .bits = HV_APIC_ACCESS_AVAILABLE} 889 } 890 }, 891 [HYPERV_FEAT_TIME] = { 892 .desc = "clocksources (hv-time)", 893 .flags = { 894 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 895 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE} 896 } 897 }, 898 [HYPERV_FEAT_CRASH] = { 899 .desc = "crash MSRs (hv-crash)", 900 .flags = { 901 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 902 .bits = HV_GUEST_CRASH_MSR_AVAILABLE} 903 } 904 }, 905 [HYPERV_FEAT_RESET] = { 906 .desc = "reset MSR (hv-reset)", 907 .flags = { 908 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 909 .bits = HV_RESET_AVAILABLE} 910 } 911 }, 912 [HYPERV_FEAT_VPINDEX] = { 913 .desc = "VP_INDEX MSR (hv-vpindex)", 914 .flags = { 915 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 916 .bits = HV_VP_INDEX_AVAILABLE} 917 } 918 }, 919 [HYPERV_FEAT_RUNTIME] = { 920 .desc = "VP_RUNTIME MSR (hv-runtime)", 921 .flags = { 922 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 923 .bits = HV_VP_RUNTIME_AVAILABLE} 924 } 925 }, 926 [HYPERV_FEAT_SYNIC] = { 927 .desc = "synthetic interrupt controller (hv-synic)", 928 .flags = { 929 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 930 .bits = HV_SYNIC_AVAILABLE} 931 } 932 }, 933 [HYPERV_FEAT_STIMER] = { 934 .desc = "synthetic timers (hv-stimer)", 935 .flags = { 936 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 937 .bits = HV_SYNTIMERS_AVAILABLE} 938 }, 939 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME) 940 }, 941 [HYPERV_FEAT_FREQUENCIES] = { 942 .desc = "frequency MSRs (hv-frequencies)", 943 .flags = { 944 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 945 .bits = HV_ACCESS_FREQUENCY_MSRS}, 946 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 947 .bits = HV_FREQUENCY_MSRS_AVAILABLE} 948 } 949 }, 950 [HYPERV_FEAT_REENLIGHTENMENT] = { 951 .desc = "reenlightenment MSRs (hv-reenlightenment)", 952 .flags = { 953 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 954 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL} 955 } 956 }, 957 [HYPERV_FEAT_TLBFLUSH] = { 958 .desc = "paravirtualized TLB flush (hv-tlbflush)", 959 .flags = { 960 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 961 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED | 962 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 963 }, 964 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 965 }, 966 [HYPERV_FEAT_EVMCS] = { 967 .desc = "enlightened VMCS (hv-evmcs)", 968 .flags = { 969 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 970 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED} 971 }, 972 .dependencies = BIT(HYPERV_FEAT_VAPIC) 973 }, 974 [HYPERV_FEAT_IPI] = { 975 .desc = "paravirtualized IPI (hv-ipi)", 976 .flags = { 977 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 978 .bits = HV_CLUSTER_IPI_RECOMMENDED | 979 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 980 }, 981 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 982 }, 983 [HYPERV_FEAT_STIMER_DIRECT] = { 984 .desc = "direct mode synthetic timers (hv-stimer-direct)", 985 .flags = { 986 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 987 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE} 988 }, 989 .dependencies = BIT(HYPERV_FEAT_STIMER) 990 }, 991 [HYPERV_FEAT_AVIC] = { 992 .desc = "AVIC/APICv support (hv-avic/hv-apicv)", 993 .flags = { 994 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 995 .bits = HV_DEPRECATING_AEOI_RECOMMENDED} 996 } 997 }, 998 #ifdef CONFIG_SYNDBG 999 [HYPERV_FEAT_SYNDBG] = { 1000 .desc = "Enable synthetic kernel debugger channel (hv-syndbg)", 1001 .flags = { 1002 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1003 .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE} 1004 }, 1005 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED) 1006 }, 1007 #endif 1008 [HYPERV_FEAT_MSR_BITMAP] = { 1009 .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)", 1010 .flags = { 1011 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX, 1012 .bits = HV_NESTED_MSR_BITMAP} 1013 } 1014 }, 1015 [HYPERV_FEAT_XMM_INPUT] = { 1016 .desc = "XMM fast hypercall input (hv-xmm-input)", 1017 .flags = { 1018 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1019 .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE} 1020 } 1021 }, 1022 [HYPERV_FEAT_TLBFLUSH_EXT] = { 1023 .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)", 1024 .flags = { 1025 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1026 .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE} 1027 }, 1028 .dependencies = BIT(HYPERV_FEAT_TLBFLUSH) 1029 }, 1030 [HYPERV_FEAT_TLBFLUSH_DIRECT] = { 1031 .desc = "direct TLB flush (hv-tlbflush-direct)", 1032 .flags = { 1033 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX, 1034 .bits = HV_NESTED_DIRECT_FLUSH} 1035 }, 1036 .dependencies = BIT(HYPERV_FEAT_VAPIC) 1037 }, 1038 }; 1039 1040 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max, 1041 bool do_sys_ioctl) 1042 { 1043 struct kvm_cpuid2 *cpuid; 1044 int r, size; 1045 1046 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 1047 cpuid = g_malloc0(size); 1048 cpuid->nent = max; 1049 1050 if (do_sys_ioctl) { 1051 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1052 } else { 1053 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1054 } 1055 if (r == 0 && cpuid->nent >= max) { 1056 r = -E2BIG; 1057 } 1058 if (r < 0) { 1059 if (r == -E2BIG) { 1060 g_free(cpuid); 1061 return NULL; 1062 } else { 1063 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n", 1064 strerror(-r)); 1065 exit(1); 1066 } 1067 } 1068 return cpuid; 1069 } 1070 1071 /* 1072 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough 1073 * for all entries. 1074 */ 1075 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs) 1076 { 1077 struct kvm_cpuid2 *cpuid; 1078 /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */ 1079 int max = 11; 1080 int i; 1081 bool do_sys_ioctl; 1082 1083 do_sys_ioctl = 1084 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0; 1085 1086 /* 1087 * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is 1088 * unsupported, kvm_hyperv_expand_features() checks for that. 1089 */ 1090 assert(do_sys_ioctl || cs->kvm_state); 1091 1092 /* 1093 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with 1094 * -E2BIG, however, it doesn't report back the right size. Keep increasing 1095 * it and re-trying until we succeed. 1096 */ 1097 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) { 1098 max++; 1099 } 1100 1101 /* 1102 * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before 1103 * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the 1104 * information early, just check for the capability and set the bit 1105 * manually. 1106 */ 1107 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state, 1108 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1109 for (i = 0; i < cpuid->nent; i++) { 1110 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) { 1111 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1112 } 1113 } 1114 } 1115 1116 return cpuid; 1117 } 1118 1119 /* 1120 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature 1121 * leaves from KVM_CAP_HYPERV* and present MSRs data. 1122 */ 1123 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs) 1124 { 1125 X86CPU *cpu = X86_CPU(cs); 1126 struct kvm_cpuid2 *cpuid; 1127 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm; 1128 1129 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */ 1130 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries)); 1131 cpuid->nent = 2; 1132 1133 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */ 1134 entry_feat = &cpuid->entries[0]; 1135 entry_feat->function = HV_CPUID_FEATURES; 1136 1137 entry_recomm = &cpuid->entries[1]; 1138 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO; 1139 entry_recomm->ebx = cpu->hyperv_spinlock_attempts; 1140 1141 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) { 1142 entry_feat->eax |= HV_HYPERCALL_AVAILABLE; 1143 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE; 1144 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1145 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED; 1146 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED; 1147 } 1148 1149 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { 1150 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE; 1151 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE; 1152 } 1153 1154 if (has_msr_hv_frequencies) { 1155 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS; 1156 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE; 1157 } 1158 1159 if (has_msr_hv_crash) { 1160 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE; 1161 } 1162 1163 if (has_msr_hv_reenlightenment) { 1164 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL; 1165 } 1166 1167 if (has_msr_hv_reset) { 1168 entry_feat->eax |= HV_RESET_AVAILABLE; 1169 } 1170 1171 if (has_msr_hv_vpindex) { 1172 entry_feat->eax |= HV_VP_INDEX_AVAILABLE; 1173 } 1174 1175 if (has_msr_hv_runtime) { 1176 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE; 1177 } 1178 1179 if (has_msr_hv_synic) { 1180 unsigned int cap = cpu->hyperv_synic_kvm_only ? 1181 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1182 1183 if (kvm_check_extension(cs->kvm_state, cap) > 0) { 1184 entry_feat->eax |= HV_SYNIC_AVAILABLE; 1185 } 1186 } 1187 1188 if (has_msr_hv_stimer) { 1189 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE; 1190 } 1191 1192 if (has_msr_hv_syndbg_options) { 1193 entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE; 1194 entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE; 1195 entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED; 1196 } 1197 1198 if (kvm_check_extension(cs->kvm_state, 1199 KVM_CAP_HYPERV_TLBFLUSH) > 0) { 1200 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED; 1201 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1202 } 1203 1204 if (kvm_check_extension(cs->kvm_state, 1205 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1206 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1207 } 1208 1209 if (kvm_check_extension(cs->kvm_state, 1210 KVM_CAP_HYPERV_SEND_IPI) > 0) { 1211 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED; 1212 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1213 } 1214 1215 return cpuid; 1216 } 1217 1218 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg) 1219 { 1220 struct kvm_cpuid_entry2 *entry; 1221 struct kvm_cpuid2 *cpuid; 1222 1223 if (hv_cpuid_cache) { 1224 cpuid = hv_cpuid_cache; 1225 } else { 1226 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) { 1227 cpuid = get_supported_hv_cpuid(cs); 1228 } else { 1229 /* 1230 * 'cs->kvm_state' may be NULL when Hyper-V features are expanded 1231 * before KVM context is created but this is only done when 1232 * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies 1233 * KVM_CAP_HYPERV_CPUID. 1234 */ 1235 assert(cs->kvm_state); 1236 1237 cpuid = get_supported_hv_cpuid_legacy(cs); 1238 } 1239 hv_cpuid_cache = cpuid; 1240 } 1241 1242 if (!cpuid) { 1243 return 0; 1244 } 1245 1246 entry = cpuid_find_entry(cpuid, func, 0); 1247 if (!entry) { 1248 return 0; 1249 } 1250 1251 return cpuid_entry_get_reg(entry, reg); 1252 } 1253 1254 static bool hyperv_feature_supported(CPUState *cs, int feature) 1255 { 1256 uint32_t func, bits; 1257 int i, reg; 1258 1259 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) { 1260 1261 func = kvm_hyperv_properties[feature].flags[i].func; 1262 reg = kvm_hyperv_properties[feature].flags[i].reg; 1263 bits = kvm_hyperv_properties[feature].flags[i].bits; 1264 1265 if (!func) { 1266 continue; 1267 } 1268 1269 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) { 1270 return false; 1271 } 1272 } 1273 1274 return true; 1275 } 1276 1277 /* Checks that all feature dependencies are enabled */ 1278 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp) 1279 { 1280 uint64_t deps; 1281 int dep_feat; 1282 1283 deps = kvm_hyperv_properties[feature].dependencies; 1284 while (deps) { 1285 dep_feat = ctz64(deps); 1286 if (!(hyperv_feat_enabled(cpu, dep_feat))) { 1287 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1288 kvm_hyperv_properties[feature].desc, 1289 kvm_hyperv_properties[dep_feat].desc); 1290 return false; 1291 } 1292 deps &= ~(1ull << dep_feat); 1293 } 1294 1295 return true; 1296 } 1297 1298 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg) 1299 { 1300 X86CPU *cpu = X86_CPU(cs); 1301 uint32_t r = 0; 1302 int i, j; 1303 1304 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) { 1305 if (!hyperv_feat_enabled(cpu, i)) { 1306 continue; 1307 } 1308 1309 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) { 1310 if (kvm_hyperv_properties[i].flags[j].func != func) { 1311 continue; 1312 } 1313 if (kvm_hyperv_properties[i].flags[j].reg != reg) { 1314 continue; 1315 } 1316 1317 r |= kvm_hyperv_properties[i].flags[j].bits; 1318 } 1319 } 1320 1321 /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */ 1322 if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) { 1323 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1324 r |= DEFAULT_EVMCS_VERSION; 1325 } 1326 } 1327 1328 return r; 1329 } 1330 1331 /* 1332 * Expand Hyper-V CPU features. In partucular, check that all the requested 1333 * features are supported by the host and the sanity of the configuration 1334 * (that all the required dependencies are included). Also, this takes care 1335 * of 'hv_passthrough' mode and fills the environment with all supported 1336 * Hyper-V features. 1337 */ 1338 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp) 1339 { 1340 CPUState *cs = CPU(cpu); 1341 Error *local_err = NULL; 1342 int feat; 1343 1344 if (!hyperv_enabled(cpu)) 1345 return true; 1346 1347 /* 1348 * When kvm_hyperv_expand_features is called at CPU feature expansion 1349 * time per-CPU kvm_state is not available yet so we can only proceed 1350 * when KVM_CAP_SYS_HYPERV_CPUID is supported. 1351 */ 1352 if (!cs->kvm_state && 1353 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID)) 1354 return true; 1355 1356 if (cpu->hyperv_passthrough) { 1357 cpu->hyperv_vendor_id[0] = 1358 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX); 1359 cpu->hyperv_vendor_id[1] = 1360 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX); 1361 cpu->hyperv_vendor_id[2] = 1362 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX); 1363 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor, 1364 sizeof(cpu->hyperv_vendor_id) + 1); 1365 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id, 1366 sizeof(cpu->hyperv_vendor_id)); 1367 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0; 1368 1369 cpu->hyperv_interface_id[0] = 1370 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX); 1371 cpu->hyperv_interface_id[1] = 1372 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX); 1373 cpu->hyperv_interface_id[2] = 1374 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX); 1375 cpu->hyperv_interface_id[3] = 1376 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX); 1377 1378 cpu->hyperv_ver_id_build = 1379 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX); 1380 cpu->hyperv_ver_id_major = 1381 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16; 1382 cpu->hyperv_ver_id_minor = 1383 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff; 1384 cpu->hyperv_ver_id_sp = 1385 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX); 1386 cpu->hyperv_ver_id_sb = 1387 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24; 1388 cpu->hyperv_ver_id_sn = 1389 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff; 1390 1391 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, 1392 R_EAX); 1393 cpu->hyperv_limits[0] = 1394 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX); 1395 cpu->hyperv_limits[1] = 1396 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX); 1397 cpu->hyperv_limits[2] = 1398 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX); 1399 1400 cpu->hyperv_spinlock_attempts = 1401 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX); 1402 1403 /* 1404 * Mark feature as enabled in 'cpu->hyperv_features' as 1405 * hv_build_cpuid_leaf() uses this info to build guest CPUIDs. 1406 */ 1407 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1408 if (hyperv_feature_supported(cs, feat)) { 1409 cpu->hyperv_features |= BIT(feat); 1410 } 1411 } 1412 } else { 1413 /* Check features availability and dependencies */ 1414 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1415 /* If the feature was not requested skip it. */ 1416 if (!hyperv_feat_enabled(cpu, feat)) { 1417 continue; 1418 } 1419 1420 /* Check if the feature is supported by KVM */ 1421 if (!hyperv_feature_supported(cs, feat)) { 1422 error_setg(errp, "Hyper-V %s is not supported by kernel", 1423 kvm_hyperv_properties[feat].desc); 1424 return false; 1425 } 1426 1427 /* Check dependencies */ 1428 if (!hv_feature_check_deps(cpu, feat, &local_err)) { 1429 error_propagate(errp, local_err); 1430 return false; 1431 } 1432 } 1433 } 1434 1435 /* Additional dependencies not covered by kvm_hyperv_properties[] */ 1436 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1437 !cpu->hyperv_synic_kvm_only && 1438 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) { 1439 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1440 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc, 1441 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc); 1442 return false; 1443 } 1444 1445 return true; 1446 } 1447 1448 /* 1449 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent. 1450 */ 1451 static int hyperv_fill_cpuids(CPUState *cs, 1452 struct kvm_cpuid_entry2 *cpuid_ent) 1453 { 1454 X86CPU *cpu = X86_CPU(cs); 1455 struct kvm_cpuid_entry2 *c; 1456 uint32_t signature[3]; 1457 uint32_t cpuid_i = 0, max_cpuid_leaf = 0; 1458 uint32_t nested_eax = 1459 hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX); 1460 1461 max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES : 1462 HV_CPUID_IMPLEMENT_LIMITS; 1463 1464 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) { 1465 max_cpuid_leaf = 1466 MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES); 1467 } 1468 1469 c = &cpuid_ent[cpuid_i++]; 1470 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS; 1471 c->eax = max_cpuid_leaf; 1472 c->ebx = cpu->hyperv_vendor_id[0]; 1473 c->ecx = cpu->hyperv_vendor_id[1]; 1474 c->edx = cpu->hyperv_vendor_id[2]; 1475 1476 c = &cpuid_ent[cpuid_i++]; 1477 c->function = HV_CPUID_INTERFACE; 1478 c->eax = cpu->hyperv_interface_id[0]; 1479 c->ebx = cpu->hyperv_interface_id[1]; 1480 c->ecx = cpu->hyperv_interface_id[2]; 1481 c->edx = cpu->hyperv_interface_id[3]; 1482 1483 c = &cpuid_ent[cpuid_i++]; 1484 c->function = HV_CPUID_VERSION; 1485 c->eax = cpu->hyperv_ver_id_build; 1486 c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 | 1487 cpu->hyperv_ver_id_minor; 1488 c->ecx = cpu->hyperv_ver_id_sp; 1489 c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 | 1490 (cpu->hyperv_ver_id_sn & 0xffffff); 1491 1492 c = &cpuid_ent[cpuid_i++]; 1493 c->function = HV_CPUID_FEATURES; 1494 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX); 1495 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX); 1496 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX); 1497 1498 /* Unconditionally required with any Hyper-V enlightenment */ 1499 c->eax |= HV_HYPERCALL_AVAILABLE; 1500 1501 /* SynIC and Vmbus devices require messages/signals hypercalls */ 1502 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1503 !cpu->hyperv_synic_kvm_only) { 1504 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS; 1505 } 1506 1507 1508 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */ 1509 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1510 1511 c = &cpuid_ent[cpuid_i++]; 1512 c->function = HV_CPUID_ENLIGHTMENT_INFO; 1513 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX); 1514 c->ebx = cpu->hyperv_spinlock_attempts; 1515 1516 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) && 1517 !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) { 1518 c->eax |= HV_APIC_ACCESS_RECOMMENDED; 1519 } 1520 1521 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) { 1522 c->eax |= HV_NO_NONARCH_CORESHARING; 1523 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) { 1524 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) & 1525 HV_NO_NONARCH_CORESHARING; 1526 } 1527 1528 c = &cpuid_ent[cpuid_i++]; 1529 c->function = HV_CPUID_IMPLEMENT_LIMITS; 1530 c->eax = cpu->hv_max_vps; 1531 c->ebx = cpu->hyperv_limits[0]; 1532 c->ecx = cpu->hyperv_limits[1]; 1533 c->edx = cpu->hyperv_limits[2]; 1534 1535 if (nested_eax) { 1536 uint32_t function; 1537 1538 /* Create zeroed 0x40000006..0x40000009 leaves */ 1539 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1; 1540 function < HV_CPUID_NESTED_FEATURES; function++) { 1541 c = &cpuid_ent[cpuid_i++]; 1542 c->function = function; 1543 } 1544 1545 c = &cpuid_ent[cpuid_i++]; 1546 c->function = HV_CPUID_NESTED_FEATURES; 1547 c->eax = nested_eax; 1548 } 1549 1550 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) { 1551 c = &cpuid_ent[cpuid_i++]; 1552 c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS; 1553 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ? 1554 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS; 1555 memcpy(signature, "Microsoft VS", 12); 1556 c->eax = 0; 1557 c->ebx = signature[0]; 1558 c->ecx = signature[1]; 1559 c->edx = signature[2]; 1560 1561 c = &cpuid_ent[cpuid_i++]; 1562 c->function = HV_CPUID_SYNDBG_INTERFACE; 1563 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12); 1564 c->eax = signature[0]; 1565 c->ebx = 0; 1566 c->ecx = 0; 1567 c->edx = 0; 1568 1569 c = &cpuid_ent[cpuid_i++]; 1570 c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES; 1571 c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING; 1572 c->ebx = 0; 1573 c->ecx = 0; 1574 c->edx = 0; 1575 } 1576 1577 return cpuid_i; 1578 } 1579 1580 static Error *hv_passthrough_mig_blocker; 1581 static Error *hv_no_nonarch_cs_mig_blocker; 1582 1583 /* Checks that the exposed eVMCS version range is supported by KVM */ 1584 static bool evmcs_version_supported(uint16_t evmcs_version, 1585 uint16_t supported_evmcs_version) 1586 { 1587 uint8_t min_version = evmcs_version & 0xff; 1588 uint8_t max_version = evmcs_version >> 8; 1589 uint8_t min_supported_version = supported_evmcs_version & 0xff; 1590 uint8_t max_supported_version = supported_evmcs_version >> 8; 1591 1592 return (min_version >= min_supported_version) && 1593 (max_version <= max_supported_version); 1594 } 1595 1596 static int hyperv_init_vcpu(X86CPU *cpu) 1597 { 1598 CPUState *cs = CPU(cpu); 1599 Error *local_err = NULL; 1600 int ret; 1601 1602 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) { 1603 error_setg(&hv_passthrough_mig_blocker, 1604 "'hv-passthrough' CPU flag prevents migration, use explicit" 1605 " set of hv-* flags instead"); 1606 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err); 1607 if (ret < 0) { 1608 error_report_err(local_err); 1609 return ret; 1610 } 1611 } 1612 1613 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO && 1614 hv_no_nonarch_cs_mig_blocker == NULL) { 1615 error_setg(&hv_no_nonarch_cs_mig_blocker, 1616 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration" 1617 " use explicit 'hv-no-nonarch-coresharing=on' instead (but" 1618 " make sure SMT is disabled and/or that vCPUs are properly" 1619 " pinned)"); 1620 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err); 1621 if (ret < 0) { 1622 error_report_err(local_err); 1623 return ret; 1624 } 1625 } 1626 1627 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) { 1628 /* 1629 * the kernel doesn't support setting vp_index; assert that its value 1630 * is in sync 1631 */ 1632 uint64_t value; 1633 1634 ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value); 1635 if (ret < 0) { 1636 return ret; 1637 } 1638 1639 if (value != hyperv_vp_index(CPU(cpu))) { 1640 error_report("kernel's vp_index != QEMU's vp_index"); 1641 return -ENXIO; 1642 } 1643 } 1644 1645 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 1646 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ? 1647 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1648 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0); 1649 if (ret < 0) { 1650 error_report("failed to turn on HyperV SynIC in KVM: %s", 1651 strerror(-ret)); 1652 return ret; 1653 } 1654 1655 if (!cpu->hyperv_synic_kvm_only) { 1656 ret = hyperv_x86_synic_add(cpu); 1657 if (ret < 0) { 1658 error_report("failed to create HyperV SynIC: %s", 1659 strerror(-ret)); 1660 return ret; 1661 } 1662 } 1663 } 1664 1665 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1666 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION; 1667 uint16_t supported_evmcs_version; 1668 1669 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0, 1670 (uintptr_t)&supported_evmcs_version); 1671 1672 /* 1673 * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs' 1674 * option sets. Note: we hardcode the maximum supported eVMCS version 1675 * to '1' as well so 'hv-evmcs' feature is migratable even when (and if) 1676 * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have 1677 * to be added. 1678 */ 1679 if (ret < 0) { 1680 error_report("Hyper-V %s is not supported by kernel", 1681 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc); 1682 return ret; 1683 } 1684 1685 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) { 1686 error_report("eVMCS version range [%d..%d] is not supported by " 1687 "kernel (supported: [%d..%d])", evmcs_version & 0xff, 1688 evmcs_version >> 8, supported_evmcs_version & 0xff, 1689 supported_evmcs_version >> 8); 1690 return -ENOTSUP; 1691 } 1692 } 1693 1694 if (cpu->hyperv_enforce_cpuid) { 1695 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1); 1696 if (ret < 0) { 1697 error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s", 1698 strerror(-ret)); 1699 return ret; 1700 } 1701 } 1702 1703 return 0; 1704 } 1705 1706 static Error *invtsc_mig_blocker; 1707 1708 #define KVM_MAX_CPUID_ENTRIES 100 1709 1710 static void kvm_init_xsave(CPUX86State *env) 1711 { 1712 if (has_xsave2) { 1713 env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096); 1714 } else if (has_xsave) { 1715 env->xsave_buf_len = sizeof(struct kvm_xsave); 1716 } else { 1717 return; 1718 } 1719 1720 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len); 1721 memset(env->xsave_buf, 0, env->xsave_buf_len); 1722 /* 1723 * The allocated storage must be large enough for all of the 1724 * possible XSAVE state components. 1725 */ 1726 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <= 1727 env->xsave_buf_len); 1728 } 1729 1730 static void kvm_init_nested_state(CPUX86State *env) 1731 { 1732 struct kvm_vmx_nested_state_hdr *vmx_hdr; 1733 uint32_t size; 1734 1735 if (!env->nested_state) { 1736 return; 1737 } 1738 1739 size = env->nested_state->size; 1740 1741 memset(env->nested_state, 0, size); 1742 env->nested_state->size = size; 1743 1744 if (cpu_has_vmx(env)) { 1745 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX; 1746 vmx_hdr = &env->nested_state->hdr.vmx; 1747 vmx_hdr->vmxon_pa = -1ull; 1748 vmx_hdr->vmcs12_pa = -1ull; 1749 } else if (cpu_has_svm(env)) { 1750 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM; 1751 } 1752 } 1753 1754 int kvm_arch_init_vcpu(CPUState *cs) 1755 { 1756 struct { 1757 struct kvm_cpuid2 cpuid; 1758 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; 1759 } cpuid_data; 1760 /* 1761 * The kernel defines these structs with padding fields so there 1762 * should be no extra padding in our cpuid_data struct. 1763 */ 1764 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) != 1765 sizeof(struct kvm_cpuid2) + 1766 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES); 1767 1768 X86CPU *cpu = X86_CPU(cs); 1769 CPUX86State *env = &cpu->env; 1770 uint32_t limit, i, j, cpuid_i; 1771 uint32_t unused; 1772 struct kvm_cpuid_entry2 *c; 1773 uint32_t signature[3]; 1774 int kvm_base = KVM_CPUID_SIGNATURE; 1775 int max_nested_state_len; 1776 int r; 1777 Error *local_err = NULL; 1778 1779 memset(&cpuid_data, 0, sizeof(cpuid_data)); 1780 1781 cpuid_i = 0; 1782 1783 has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2); 1784 1785 r = kvm_arch_set_tsc_khz(cs); 1786 if (r < 0) { 1787 return r; 1788 } 1789 1790 /* vcpu's TSC frequency is either specified by user, or following 1791 * the value used by KVM if the former is not present. In the 1792 * latter case, we query it from KVM and record in env->tsc_khz, 1793 * so that vcpu's TSC frequency can be migrated later via this field. 1794 */ 1795 if (!env->tsc_khz) { 1796 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 1797 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 1798 -ENOTSUP; 1799 if (r > 0) { 1800 env->tsc_khz = r; 1801 } 1802 } 1803 1804 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY; 1805 1806 /* 1807 * kvm_hyperv_expand_features() is called here for the second time in case 1808 * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle 1809 * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to 1810 * check which Hyper-V enlightenments are supported and which are not, we 1811 * can still proceed and check/expand Hyper-V enlightenments here so legacy 1812 * behavior is preserved. 1813 */ 1814 if (!kvm_hyperv_expand_features(cpu, &local_err)) { 1815 error_report_err(local_err); 1816 return -ENOSYS; 1817 } 1818 1819 if (hyperv_enabled(cpu)) { 1820 r = hyperv_init_vcpu(cpu); 1821 if (r) { 1822 return r; 1823 } 1824 1825 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries); 1826 kvm_base = KVM_CPUID_SIGNATURE_NEXT; 1827 has_msr_hv_hypercall = true; 1828 } 1829 1830 if (cs->kvm_state->xen_version) { 1831 #ifdef CONFIG_XEN_EMU 1832 struct kvm_cpuid_entry2 *xen_max_leaf; 1833 1834 memcpy(signature, "XenVMMXenVMM", 12); 1835 1836 xen_max_leaf = c = &cpuid_data.entries[cpuid_i++]; 1837 c->function = kvm_base + XEN_CPUID_SIGNATURE; 1838 c->eax = kvm_base + XEN_CPUID_TIME; 1839 c->ebx = signature[0]; 1840 c->ecx = signature[1]; 1841 c->edx = signature[2]; 1842 1843 c = &cpuid_data.entries[cpuid_i++]; 1844 c->function = kvm_base + XEN_CPUID_VENDOR; 1845 c->eax = cs->kvm_state->xen_version; 1846 c->ebx = 0; 1847 c->ecx = 0; 1848 c->edx = 0; 1849 1850 c = &cpuid_data.entries[cpuid_i++]; 1851 c->function = kvm_base + XEN_CPUID_HVM_MSR; 1852 /* Number of hypercall-transfer pages */ 1853 c->eax = 1; 1854 /* Hypercall MSR base address */ 1855 if (hyperv_enabled(cpu)) { 1856 c->ebx = XEN_HYPERCALL_MSR_HYPERV; 1857 kvm_xen_init(cs->kvm_state, c->ebx); 1858 } else { 1859 c->ebx = XEN_HYPERCALL_MSR; 1860 } 1861 c->ecx = 0; 1862 c->edx = 0; 1863 1864 c = &cpuid_data.entries[cpuid_i++]; 1865 c->function = kvm_base + XEN_CPUID_TIME; 1866 c->eax = ((!!tsc_is_stable_and_known(env) << 1) | 1867 (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2)); 1868 /* default=0 (emulate if necessary) */ 1869 c->ebx = 0; 1870 /* guest tsc frequency */ 1871 c->ecx = env->user_tsc_khz; 1872 /* guest tsc incarnation (migration count) */ 1873 c->edx = 0; 1874 1875 c = &cpuid_data.entries[cpuid_i++]; 1876 c->function = kvm_base + XEN_CPUID_HVM; 1877 xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM; 1878 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) { 1879 c->function = kvm_base + XEN_CPUID_HVM; 1880 1881 if (cpu->xen_vapic) { 1882 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT; 1883 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT; 1884 } 1885 1886 c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS; 1887 1888 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) { 1889 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT; 1890 c->ebx = cs->cpu_index; 1891 } 1892 } 1893 1894 r = kvm_xen_init_vcpu(cs); 1895 if (r) { 1896 return r; 1897 } 1898 1899 kvm_base += 0x100; 1900 #else /* CONFIG_XEN_EMU */ 1901 /* This should never happen as kvm_arch_init() would have died first. */ 1902 fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n"); 1903 abort(); 1904 #endif 1905 } else if (cpu->expose_kvm) { 1906 memcpy(signature, "KVMKVMKVM\0\0\0", 12); 1907 c = &cpuid_data.entries[cpuid_i++]; 1908 c->function = KVM_CPUID_SIGNATURE | kvm_base; 1909 c->eax = KVM_CPUID_FEATURES | kvm_base; 1910 c->ebx = signature[0]; 1911 c->ecx = signature[1]; 1912 c->edx = signature[2]; 1913 1914 c = &cpuid_data.entries[cpuid_i++]; 1915 c->function = KVM_CPUID_FEATURES | kvm_base; 1916 c->eax = env->features[FEAT_KVM]; 1917 c->edx = env->features[FEAT_KVM_HINTS]; 1918 } 1919 1920 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); 1921 1922 if (cpu->kvm_pv_enforce_cpuid) { 1923 r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1); 1924 if (r < 0) { 1925 fprintf(stderr, 1926 "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s", 1927 strerror(-r)); 1928 abort(); 1929 } 1930 } 1931 1932 for (i = 0; i <= limit; i++) { 1933 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1934 fprintf(stderr, "unsupported level value: 0x%x\n", limit); 1935 abort(); 1936 } 1937 c = &cpuid_data.entries[cpuid_i++]; 1938 1939 switch (i) { 1940 case 2: { 1941 /* Keep reading function 2 till all the input is received */ 1942 int times; 1943 1944 c->function = i; 1945 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | 1946 KVM_CPUID_FLAG_STATE_READ_NEXT; 1947 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1948 times = c->eax & 0xff; 1949 1950 for (j = 1; j < times; ++j) { 1951 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1952 fprintf(stderr, "cpuid_data is full, no space for " 1953 "cpuid(eax:2):eax & 0xf = 0x%x\n", times); 1954 abort(); 1955 } 1956 c = &cpuid_data.entries[cpuid_i++]; 1957 c->function = i; 1958 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; 1959 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1960 } 1961 break; 1962 } 1963 case 0x1f: 1964 if (env->nr_dies < 2) { 1965 break; 1966 } 1967 /* fallthrough */ 1968 case 4: 1969 case 0xb: 1970 case 0xd: 1971 for (j = 0; ; j++) { 1972 if (i == 0xd && j == 64) { 1973 break; 1974 } 1975 1976 if (i == 0x1f && j == 64) { 1977 break; 1978 } 1979 1980 c->function = i; 1981 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1982 c->index = j; 1983 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1984 1985 if (i == 4 && c->eax == 0) { 1986 break; 1987 } 1988 if (i == 0xb && !(c->ecx & 0xff00)) { 1989 break; 1990 } 1991 if (i == 0x1f && !(c->ecx & 0xff00)) { 1992 break; 1993 } 1994 if (i == 0xd && c->eax == 0) { 1995 continue; 1996 } 1997 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1998 fprintf(stderr, "cpuid_data is full, no space for " 1999 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 2000 abort(); 2001 } 2002 c = &cpuid_data.entries[cpuid_i++]; 2003 } 2004 break; 2005 case 0x7: 2006 case 0x12: 2007 for (j = 0; ; j++) { 2008 c->function = i; 2009 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 2010 c->index = j; 2011 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 2012 2013 if (j > 1 && (c->eax & 0xf) != 1) { 2014 break; 2015 } 2016 2017 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2018 fprintf(stderr, "cpuid_data is full, no space for " 2019 "cpuid(eax:0x12,ecx:0x%x)\n", j); 2020 abort(); 2021 } 2022 c = &cpuid_data.entries[cpuid_i++]; 2023 } 2024 break; 2025 case 0x14: 2026 case 0x1d: 2027 case 0x1e: { 2028 uint32_t times; 2029 2030 c->function = i; 2031 c->index = 0; 2032 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 2033 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 2034 times = c->eax; 2035 2036 for (j = 1; j <= times; ++j) { 2037 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2038 fprintf(stderr, "cpuid_data is full, no space for " 2039 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 2040 abort(); 2041 } 2042 c = &cpuid_data.entries[cpuid_i++]; 2043 c->function = i; 2044 c->index = j; 2045 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 2046 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 2047 } 2048 break; 2049 } 2050 default: 2051 c->function = i; 2052 c->flags = 0; 2053 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 2054 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 2055 /* 2056 * KVM already returns all zeroes if a CPUID entry is missing, 2057 * so we can omit it and avoid hitting KVM's 80-entry limit. 2058 */ 2059 cpuid_i--; 2060 } 2061 break; 2062 } 2063 } 2064 2065 if (limit >= 0x0a) { 2066 uint32_t eax, edx; 2067 2068 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx); 2069 2070 has_architectural_pmu_version = eax & 0xff; 2071 if (has_architectural_pmu_version > 0) { 2072 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8; 2073 2074 /* Shouldn't be more than 32, since that's the number of bits 2075 * available in EBX to tell us _which_ counters are available. 2076 * Play it safe. 2077 */ 2078 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) { 2079 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS; 2080 } 2081 2082 if (has_architectural_pmu_version > 1) { 2083 num_architectural_pmu_fixed_counters = edx & 0x1f; 2084 2085 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) { 2086 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS; 2087 } 2088 } 2089 } 2090 } 2091 2092 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); 2093 2094 for (i = 0x80000000; i <= limit; i++) { 2095 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2096 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); 2097 abort(); 2098 } 2099 c = &cpuid_data.entries[cpuid_i++]; 2100 2101 switch (i) { 2102 case 0x8000001d: 2103 /* Query for all AMD cache information leaves */ 2104 for (j = 0; ; j++) { 2105 c->function = i; 2106 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 2107 c->index = j; 2108 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 2109 2110 if (c->eax == 0) { 2111 break; 2112 } 2113 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2114 fprintf(stderr, "cpuid_data is full, no space for " 2115 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 2116 abort(); 2117 } 2118 c = &cpuid_data.entries[cpuid_i++]; 2119 } 2120 break; 2121 default: 2122 c->function = i; 2123 c->flags = 0; 2124 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 2125 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 2126 /* 2127 * KVM already returns all zeroes if a CPUID entry is missing, 2128 * so we can omit it and avoid hitting KVM's 80-entry limit. 2129 */ 2130 cpuid_i--; 2131 } 2132 break; 2133 } 2134 } 2135 2136 /* Call Centaur's CPUID instructions they are supported. */ 2137 if (env->cpuid_xlevel2 > 0) { 2138 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); 2139 2140 for (i = 0xC0000000; i <= limit; i++) { 2141 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2142 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); 2143 abort(); 2144 } 2145 c = &cpuid_data.entries[cpuid_i++]; 2146 2147 c->function = i; 2148 c->flags = 0; 2149 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 2150 } 2151 } 2152 2153 cpuid_data.cpuid.nent = cpuid_i; 2154 2155 if (((env->cpuid_version >> 8)&0xF) >= 6 2156 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == 2157 (CPUID_MCE | CPUID_MCA) 2158 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { 2159 uint64_t mcg_cap, unsupported_caps; 2160 int banks; 2161 int ret; 2162 2163 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); 2164 if (ret < 0) { 2165 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); 2166 return ret; 2167 } 2168 2169 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { 2170 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", 2171 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); 2172 return -ENOTSUP; 2173 } 2174 2175 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); 2176 if (unsupported_caps) { 2177 if (unsupported_caps & MCG_LMCE_P) { 2178 error_report("kvm: LMCE not supported"); 2179 return -ENOTSUP; 2180 } 2181 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64, 2182 unsupported_caps); 2183 } 2184 2185 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; 2186 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); 2187 if (ret < 0) { 2188 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); 2189 return ret; 2190 } 2191 } 2192 2193 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env); 2194 2195 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); 2196 if (c) { 2197 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || 2198 !!(c->ecx & CPUID_EXT_SMX); 2199 } 2200 2201 c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0); 2202 if (c && (c->ebx & CPUID_7_0_EBX_SGX)) { 2203 has_msr_feature_control = true; 2204 } 2205 2206 if (env->mcg_cap & MCG_LMCE_P) { 2207 has_msr_mcg_ext_ctl = has_msr_feature_control = true; 2208 } 2209 2210 if (!env->user_tsc_khz) { 2211 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && 2212 invtsc_mig_blocker == NULL) { 2213 error_setg(&invtsc_mig_blocker, 2214 "State blocked by non-migratable CPU device" 2215 " (invtsc flag)"); 2216 r = migrate_add_blocker(invtsc_mig_blocker, &local_err); 2217 if (r < 0) { 2218 error_report_err(local_err); 2219 return r; 2220 } 2221 } 2222 } 2223 2224 if (cpu->vmware_cpuid_freq 2225 /* Guests depend on 0x40000000 to detect this feature, so only expose 2226 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ 2227 && cpu->expose_kvm 2228 && kvm_base == KVM_CPUID_SIGNATURE 2229 /* TSC clock must be stable and known for this feature. */ 2230 && tsc_is_stable_and_known(env)) { 2231 2232 c = &cpuid_data.entries[cpuid_i++]; 2233 c->function = KVM_CPUID_SIGNATURE | 0x10; 2234 c->eax = env->tsc_khz; 2235 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */ 2236 c->ecx = c->edx = 0; 2237 2238 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); 2239 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); 2240 } 2241 2242 cpuid_data.cpuid.nent = cpuid_i; 2243 2244 cpuid_data.cpuid.padding = 0; 2245 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); 2246 if (r) { 2247 goto fail; 2248 } 2249 kvm_init_xsave(env); 2250 2251 max_nested_state_len = kvm_max_nested_state_length(); 2252 if (max_nested_state_len > 0) { 2253 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data)); 2254 2255 if (cpu_has_vmx(env) || cpu_has_svm(env)) { 2256 env->nested_state = g_malloc0(max_nested_state_len); 2257 env->nested_state->size = max_nested_state_len; 2258 2259 kvm_init_nested_state(env); 2260 } 2261 } 2262 2263 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); 2264 2265 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { 2266 has_msr_tsc_aux = false; 2267 } 2268 2269 kvm_init_msrs(cpu); 2270 2271 return 0; 2272 2273 fail: 2274 migrate_del_blocker(invtsc_mig_blocker); 2275 2276 return r; 2277 } 2278 2279 int kvm_arch_destroy_vcpu(CPUState *cs) 2280 { 2281 X86CPU *cpu = X86_CPU(cs); 2282 CPUX86State *env = &cpu->env; 2283 2284 g_free(env->xsave_buf); 2285 2286 g_free(cpu->kvm_msr_buf); 2287 cpu->kvm_msr_buf = NULL; 2288 2289 g_free(env->nested_state); 2290 env->nested_state = NULL; 2291 2292 qemu_del_vm_change_state_handler(cpu->vmsentry); 2293 2294 return 0; 2295 } 2296 2297 void kvm_arch_reset_vcpu(X86CPU *cpu) 2298 { 2299 CPUX86State *env = &cpu->env; 2300 2301 env->xcr0 = 1; 2302 if (kvm_irqchip_in_kernel()) { 2303 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : 2304 KVM_MP_STATE_UNINITIALIZED; 2305 } else { 2306 env->mp_state = KVM_MP_STATE_RUNNABLE; 2307 } 2308 2309 /* enabled by default */ 2310 env->poll_control_msr = 1; 2311 2312 kvm_init_nested_state(env); 2313 2314 sev_es_set_reset_vector(CPU(cpu)); 2315 } 2316 2317 void kvm_arch_after_reset_vcpu(X86CPU *cpu) 2318 { 2319 CPUX86State *env = &cpu->env; 2320 int i; 2321 2322 /* 2323 * Reset SynIC after all other devices have been reset to let them remove 2324 * their SINT routes first. 2325 */ 2326 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 2327 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { 2328 env->msr_hv_synic_sint[i] = HV_SINT_MASKED; 2329 } 2330 2331 hyperv_x86_synic_reset(cpu); 2332 } 2333 } 2334 2335 void kvm_arch_do_init_vcpu(X86CPU *cpu) 2336 { 2337 CPUX86State *env = &cpu->env; 2338 2339 /* APs get directly into wait-for-SIPI state. */ 2340 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { 2341 env->mp_state = KVM_MP_STATE_INIT_RECEIVED; 2342 } 2343 } 2344 2345 static int kvm_get_supported_feature_msrs(KVMState *s) 2346 { 2347 int ret = 0; 2348 2349 if (kvm_feature_msrs != NULL) { 2350 return 0; 2351 } 2352 2353 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) { 2354 return 0; 2355 } 2356 2357 struct kvm_msr_list msr_list; 2358 2359 msr_list.nmsrs = 0; 2360 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list); 2361 if (ret < 0 && ret != -E2BIG) { 2362 error_report("Fetch KVM feature MSR list failed: %s", 2363 strerror(-ret)); 2364 return ret; 2365 } 2366 2367 assert(msr_list.nmsrs > 0); 2368 kvm_feature_msrs = g_malloc0(sizeof(msr_list) + 2369 msr_list.nmsrs * sizeof(msr_list.indices[0])); 2370 2371 kvm_feature_msrs->nmsrs = msr_list.nmsrs; 2372 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs); 2373 2374 if (ret < 0) { 2375 error_report("Fetch KVM feature MSR list failed: %s", 2376 strerror(-ret)); 2377 g_free(kvm_feature_msrs); 2378 kvm_feature_msrs = NULL; 2379 return ret; 2380 } 2381 2382 return 0; 2383 } 2384 2385 static int kvm_get_supported_msrs(KVMState *s) 2386 { 2387 int ret = 0; 2388 struct kvm_msr_list msr_list, *kvm_msr_list; 2389 2390 /* 2391 * Obtain MSR list from KVM. These are the MSRs that we must 2392 * save/restore. 2393 */ 2394 msr_list.nmsrs = 0; 2395 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); 2396 if (ret < 0 && ret != -E2BIG) { 2397 return ret; 2398 } 2399 /* 2400 * Old kernel modules had a bug and could write beyond the provided 2401 * memory. Allocate at least a safe amount of 1K. 2402 */ 2403 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + 2404 msr_list.nmsrs * 2405 sizeof(msr_list.indices[0]))); 2406 2407 kvm_msr_list->nmsrs = msr_list.nmsrs; 2408 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); 2409 if (ret >= 0) { 2410 int i; 2411 2412 for (i = 0; i < kvm_msr_list->nmsrs; i++) { 2413 switch (kvm_msr_list->indices[i]) { 2414 case MSR_STAR: 2415 has_msr_star = true; 2416 break; 2417 case MSR_VM_HSAVE_PA: 2418 has_msr_hsave_pa = true; 2419 break; 2420 case MSR_TSC_AUX: 2421 has_msr_tsc_aux = true; 2422 break; 2423 case MSR_TSC_ADJUST: 2424 has_msr_tsc_adjust = true; 2425 break; 2426 case MSR_IA32_TSCDEADLINE: 2427 has_msr_tsc_deadline = true; 2428 break; 2429 case MSR_IA32_SMBASE: 2430 has_msr_smbase = true; 2431 break; 2432 case MSR_SMI_COUNT: 2433 has_msr_smi_count = true; 2434 break; 2435 case MSR_IA32_MISC_ENABLE: 2436 has_msr_misc_enable = true; 2437 break; 2438 case MSR_IA32_BNDCFGS: 2439 has_msr_bndcfgs = true; 2440 break; 2441 case MSR_IA32_XSS: 2442 has_msr_xss = true; 2443 break; 2444 case MSR_IA32_UMWAIT_CONTROL: 2445 has_msr_umwait = true; 2446 break; 2447 case HV_X64_MSR_CRASH_CTL: 2448 has_msr_hv_crash = true; 2449 break; 2450 case HV_X64_MSR_RESET: 2451 has_msr_hv_reset = true; 2452 break; 2453 case HV_X64_MSR_VP_INDEX: 2454 has_msr_hv_vpindex = true; 2455 break; 2456 case HV_X64_MSR_VP_RUNTIME: 2457 has_msr_hv_runtime = true; 2458 break; 2459 case HV_X64_MSR_SCONTROL: 2460 has_msr_hv_synic = true; 2461 break; 2462 case HV_X64_MSR_STIMER0_CONFIG: 2463 has_msr_hv_stimer = true; 2464 break; 2465 case HV_X64_MSR_TSC_FREQUENCY: 2466 has_msr_hv_frequencies = true; 2467 break; 2468 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 2469 has_msr_hv_reenlightenment = true; 2470 break; 2471 case HV_X64_MSR_SYNDBG_OPTIONS: 2472 has_msr_hv_syndbg_options = true; 2473 break; 2474 case MSR_IA32_SPEC_CTRL: 2475 has_msr_spec_ctrl = true; 2476 break; 2477 case MSR_AMD64_TSC_RATIO: 2478 has_tsc_scale_msr = true; 2479 break; 2480 case MSR_IA32_TSX_CTRL: 2481 has_msr_tsx_ctrl = true; 2482 break; 2483 case MSR_VIRT_SSBD: 2484 has_msr_virt_ssbd = true; 2485 break; 2486 case MSR_IA32_ARCH_CAPABILITIES: 2487 has_msr_arch_capabs = true; 2488 break; 2489 case MSR_IA32_CORE_CAPABILITY: 2490 has_msr_core_capabs = true; 2491 break; 2492 case MSR_IA32_PERF_CAPABILITIES: 2493 has_msr_perf_capabs = true; 2494 break; 2495 case MSR_IA32_VMX_VMFUNC: 2496 has_msr_vmx_vmfunc = true; 2497 break; 2498 case MSR_IA32_UCODE_REV: 2499 has_msr_ucode_rev = true; 2500 break; 2501 case MSR_IA32_VMX_PROCBASED_CTLS2: 2502 has_msr_vmx_procbased_ctls2 = true; 2503 break; 2504 case MSR_IA32_PKRS: 2505 has_msr_pkrs = true; 2506 break; 2507 } 2508 } 2509 } 2510 2511 g_free(kvm_msr_list); 2512 2513 return ret; 2514 } 2515 2516 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu, uint32_t msr, 2517 uint64_t *val) 2518 { 2519 CPUState *cs = CPU(cpu); 2520 2521 *val = cs->nr_threads * cs->nr_cores; /* thread count, bits 15..0 */ 2522 *val |= ((uint32_t)cs->nr_cores << 16); /* core count, bits 31..16 */ 2523 2524 return true; 2525 } 2526 2527 static Notifier smram_machine_done; 2528 static KVMMemoryListener smram_listener; 2529 static AddressSpace smram_address_space; 2530 static MemoryRegion smram_as_root; 2531 static MemoryRegion smram_as_mem; 2532 2533 static void register_smram_listener(Notifier *n, void *unused) 2534 { 2535 MemoryRegion *smram = 2536 (MemoryRegion *) object_resolve_path("/machine/smram", NULL); 2537 2538 /* Outer container... */ 2539 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); 2540 memory_region_set_enabled(&smram_as_root, true); 2541 2542 /* ... with two regions inside: normal system memory with low 2543 * priority, and... 2544 */ 2545 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", 2546 get_system_memory(), 0, ~0ull); 2547 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); 2548 memory_region_set_enabled(&smram_as_mem, true); 2549 2550 if (smram) { 2551 /* ... SMRAM with higher priority */ 2552 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); 2553 memory_region_set_enabled(smram, true); 2554 } 2555 2556 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); 2557 kvm_memory_listener_register(kvm_state, &smram_listener, 2558 &smram_address_space, 1, "kvm-smram"); 2559 } 2560 2561 int kvm_arch_get_default_type(MachineState *ms) 2562 { 2563 return 0; 2564 } 2565 2566 int kvm_arch_init(MachineState *ms, KVMState *s) 2567 { 2568 uint64_t identity_base = 0xfffbc000; 2569 uint64_t shadow_mem; 2570 int ret; 2571 struct utsname utsname; 2572 Error *local_err = NULL; 2573 2574 /* 2575 * Initialize SEV context, if required 2576 * 2577 * If no memory encryption is requested (ms->cgs == NULL) this is 2578 * a no-op. 2579 * 2580 * It's also a no-op if a non-SEV confidential guest support 2581 * mechanism is selected. SEV is the only mechanism available to 2582 * select on x86 at present, so this doesn't arise, but if new 2583 * mechanisms are supported in future (e.g. TDX), they'll need 2584 * their own initialization either here or elsewhere. 2585 */ 2586 ret = sev_kvm_init(ms->cgs, &local_err); 2587 if (ret < 0) { 2588 error_report_err(local_err); 2589 return ret; 2590 } 2591 2592 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { 2593 error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM"); 2594 return -ENOTSUP; 2595 } 2596 2597 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE); 2598 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); 2599 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); 2600 has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0; 2601 2602 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX); 2603 2604 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD); 2605 if (has_exception_payload) { 2606 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true); 2607 if (ret < 0) { 2608 error_report("kvm: Failed to enable exception payload cap: %s", 2609 strerror(-ret)); 2610 return ret; 2611 } 2612 } 2613 2614 has_triple_fault_event = kvm_check_extension(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT); 2615 if (has_triple_fault_event) { 2616 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true); 2617 if (ret < 0) { 2618 error_report("kvm: Failed to enable triple fault event cap: %s", 2619 strerror(-ret)); 2620 return ret; 2621 } 2622 } 2623 2624 if (s->xen_version) { 2625 #ifdef CONFIG_XEN_EMU 2626 if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) { 2627 error_report("kvm: Xen support only available in PC machine"); 2628 return -ENOTSUP; 2629 } 2630 /* hyperv_enabled() doesn't work yet. */ 2631 uint32_t msr = XEN_HYPERCALL_MSR; 2632 ret = kvm_xen_init(s, msr); 2633 if (ret < 0) { 2634 return ret; 2635 } 2636 #else 2637 error_report("kvm: Xen support not enabled in qemu"); 2638 return -ENOTSUP; 2639 #endif 2640 } 2641 2642 ret = kvm_get_supported_msrs(s); 2643 if (ret < 0) { 2644 return ret; 2645 } 2646 2647 kvm_get_supported_feature_msrs(s); 2648 2649 uname(&utsname); 2650 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; 2651 2652 /* 2653 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. 2654 * In order to use vm86 mode, an EPT identity map and a TSS are needed. 2655 * Since these must be part of guest physical memory, we need to allocate 2656 * them, both by setting their start addresses in the kernel and by 2657 * creating a corresponding e820 entry. We need 4 pages before the BIOS. 2658 * 2659 * Older KVM versions may not support setting the identity map base. In 2660 * that case we need to stick with the default, i.e. a 256K maximum BIOS 2661 * size. 2662 */ 2663 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { 2664 /* Allows up to 16M BIOSes. */ 2665 identity_base = 0xfeffc000; 2666 2667 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); 2668 if (ret < 0) { 2669 return ret; 2670 } 2671 } 2672 2673 /* Set TSS base one page after EPT identity map. */ 2674 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); 2675 if (ret < 0) { 2676 return ret; 2677 } 2678 2679 /* Tell fw_cfg to notify the BIOS to reserve the range. */ 2680 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); 2681 if (ret < 0) { 2682 fprintf(stderr, "e820_add_entry() table is full\n"); 2683 return ret; 2684 } 2685 2686 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort); 2687 if (shadow_mem != -1) { 2688 shadow_mem /= 4096; 2689 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); 2690 if (ret < 0) { 2691 return ret; 2692 } 2693 } 2694 2695 if (kvm_check_extension(s, KVM_CAP_X86_SMM) && 2696 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) && 2697 x86_machine_is_smm_enabled(X86_MACHINE(ms))) { 2698 smram_machine_done.notify = register_smram_listener; 2699 qemu_add_machine_init_done_notifier(&smram_machine_done); 2700 } 2701 2702 if (enable_cpu_pm) { 2703 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS); 2704 /* Work around for kernel header with a typo. TODO: fix header and drop. */ 2705 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT) 2706 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL 2707 #endif 2708 if (disable_exits) { 2709 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT | 2710 KVM_X86_DISABLE_EXITS_HLT | 2711 KVM_X86_DISABLE_EXITS_PAUSE | 2712 KVM_X86_DISABLE_EXITS_CSTATE); 2713 } 2714 2715 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0, 2716 disable_exits); 2717 if (ret < 0) { 2718 error_report("kvm: guest stopping CPU not supported: %s", 2719 strerror(-ret)); 2720 } 2721 } 2722 2723 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) { 2724 X86MachineState *x86ms = X86_MACHINE(ms); 2725 2726 if (x86ms->bus_lock_ratelimit > 0) { 2727 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT); 2728 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) { 2729 error_report("kvm: bus lock detection unsupported"); 2730 return -ENOTSUP; 2731 } 2732 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0, 2733 KVM_BUS_LOCK_DETECTION_EXIT); 2734 if (ret < 0) { 2735 error_report("kvm: Failed to enable bus lock detection cap: %s", 2736 strerror(-ret)); 2737 return ret; 2738 } 2739 ratelimit_init(&bus_lock_ratelimit_ctrl); 2740 ratelimit_set_speed(&bus_lock_ratelimit_ctrl, 2741 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME); 2742 } 2743 } 2744 2745 if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE && 2746 kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) { 2747 uint64_t notify_window_flags = 2748 ((uint64_t)s->notify_window << 32) | 2749 KVM_X86_NOTIFY_VMEXIT_ENABLED | 2750 KVM_X86_NOTIFY_VMEXIT_USER; 2751 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0, 2752 notify_window_flags); 2753 if (ret < 0) { 2754 error_report("kvm: Failed to enable notify vmexit cap: %s", 2755 strerror(-ret)); 2756 return ret; 2757 } 2758 } 2759 if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) { 2760 bool r; 2761 2762 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0, 2763 KVM_MSR_EXIT_REASON_FILTER); 2764 if (ret) { 2765 error_report("Could not enable user space MSRs: %s", 2766 strerror(-ret)); 2767 exit(1); 2768 } 2769 2770 r = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT, 2771 kvm_rdmsr_core_thread_count, NULL); 2772 if (!r) { 2773 error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s", 2774 strerror(-ret)); 2775 exit(1); 2776 } 2777 } 2778 2779 return 0; 2780 } 2781 2782 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 2783 { 2784 lhs->selector = rhs->selector; 2785 lhs->base = rhs->base; 2786 lhs->limit = rhs->limit; 2787 lhs->type = 3; 2788 lhs->present = 1; 2789 lhs->dpl = 3; 2790 lhs->db = 0; 2791 lhs->s = 1; 2792 lhs->l = 0; 2793 lhs->g = 0; 2794 lhs->avl = 0; 2795 lhs->unusable = 0; 2796 } 2797 2798 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 2799 { 2800 unsigned flags = rhs->flags; 2801 lhs->selector = rhs->selector; 2802 lhs->base = rhs->base; 2803 lhs->limit = rhs->limit; 2804 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; 2805 lhs->present = (flags & DESC_P_MASK) != 0; 2806 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; 2807 lhs->db = (flags >> DESC_B_SHIFT) & 1; 2808 lhs->s = (flags & DESC_S_MASK) != 0; 2809 lhs->l = (flags >> DESC_L_SHIFT) & 1; 2810 lhs->g = (flags & DESC_G_MASK) != 0; 2811 lhs->avl = (flags & DESC_AVL_MASK) != 0; 2812 lhs->unusable = !lhs->present; 2813 lhs->padding = 0; 2814 } 2815 2816 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) 2817 { 2818 lhs->selector = rhs->selector; 2819 lhs->base = rhs->base; 2820 lhs->limit = rhs->limit; 2821 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | 2822 ((rhs->present && !rhs->unusable) * DESC_P_MASK) | 2823 (rhs->dpl << DESC_DPL_SHIFT) | 2824 (rhs->db << DESC_B_SHIFT) | 2825 (rhs->s * DESC_S_MASK) | 2826 (rhs->l << DESC_L_SHIFT) | 2827 (rhs->g * DESC_G_MASK) | 2828 (rhs->avl * DESC_AVL_MASK); 2829 } 2830 2831 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) 2832 { 2833 if (set) { 2834 *kvm_reg = *qemu_reg; 2835 } else { 2836 *qemu_reg = *kvm_reg; 2837 } 2838 } 2839 2840 static int kvm_getput_regs(X86CPU *cpu, int set) 2841 { 2842 CPUX86State *env = &cpu->env; 2843 struct kvm_regs regs; 2844 int ret = 0; 2845 2846 if (!set) { 2847 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); 2848 if (ret < 0) { 2849 return ret; 2850 } 2851 } 2852 2853 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); 2854 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); 2855 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); 2856 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); 2857 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); 2858 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); 2859 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); 2860 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); 2861 #ifdef TARGET_X86_64 2862 kvm_getput_reg(®s.r8, &env->regs[8], set); 2863 kvm_getput_reg(®s.r9, &env->regs[9], set); 2864 kvm_getput_reg(®s.r10, &env->regs[10], set); 2865 kvm_getput_reg(®s.r11, &env->regs[11], set); 2866 kvm_getput_reg(®s.r12, &env->regs[12], set); 2867 kvm_getput_reg(®s.r13, &env->regs[13], set); 2868 kvm_getput_reg(®s.r14, &env->regs[14], set); 2869 kvm_getput_reg(®s.r15, &env->regs[15], set); 2870 #endif 2871 2872 kvm_getput_reg(®s.rflags, &env->eflags, set); 2873 kvm_getput_reg(®s.rip, &env->eip, set); 2874 2875 if (set) { 2876 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); 2877 } 2878 2879 return ret; 2880 } 2881 2882 static int kvm_put_fpu(X86CPU *cpu) 2883 { 2884 CPUX86State *env = &cpu->env; 2885 struct kvm_fpu fpu; 2886 int i; 2887 2888 memset(&fpu, 0, sizeof fpu); 2889 fpu.fsw = env->fpus & ~(7 << 11); 2890 fpu.fsw |= (env->fpstt & 7) << 11; 2891 fpu.fcw = env->fpuc; 2892 fpu.last_opcode = env->fpop; 2893 fpu.last_ip = env->fpip; 2894 fpu.last_dp = env->fpdp; 2895 for (i = 0; i < 8; ++i) { 2896 fpu.ftwx |= (!env->fptags[i]) << i; 2897 } 2898 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); 2899 for (i = 0; i < CPU_NB_REGS; i++) { 2900 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0)); 2901 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1)); 2902 } 2903 fpu.mxcsr = env->mxcsr; 2904 2905 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); 2906 } 2907 2908 static int kvm_put_xsave(X86CPU *cpu) 2909 { 2910 CPUX86State *env = &cpu->env; 2911 void *xsave = env->xsave_buf; 2912 2913 if (!has_xsave) { 2914 return kvm_put_fpu(cpu); 2915 } 2916 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len); 2917 2918 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); 2919 } 2920 2921 static int kvm_put_xcrs(X86CPU *cpu) 2922 { 2923 CPUX86State *env = &cpu->env; 2924 struct kvm_xcrs xcrs = {}; 2925 2926 if (!has_xcrs) { 2927 return 0; 2928 } 2929 2930 xcrs.nr_xcrs = 1; 2931 xcrs.flags = 0; 2932 xcrs.xcrs[0].xcr = 0; 2933 xcrs.xcrs[0].value = env->xcr0; 2934 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); 2935 } 2936 2937 static int kvm_put_sregs(X86CPU *cpu) 2938 { 2939 CPUX86State *env = &cpu->env; 2940 struct kvm_sregs sregs; 2941 2942 /* 2943 * The interrupt_bitmap is ignored because KVM_SET_SREGS is 2944 * always followed by KVM_SET_VCPU_EVENTS. 2945 */ 2946 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); 2947 2948 if ((env->eflags & VM_MASK)) { 2949 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 2950 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 2951 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 2952 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 2953 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 2954 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 2955 } else { 2956 set_seg(&sregs.cs, &env->segs[R_CS]); 2957 set_seg(&sregs.ds, &env->segs[R_DS]); 2958 set_seg(&sregs.es, &env->segs[R_ES]); 2959 set_seg(&sregs.fs, &env->segs[R_FS]); 2960 set_seg(&sregs.gs, &env->segs[R_GS]); 2961 set_seg(&sregs.ss, &env->segs[R_SS]); 2962 } 2963 2964 set_seg(&sregs.tr, &env->tr); 2965 set_seg(&sregs.ldt, &env->ldt); 2966 2967 sregs.idt.limit = env->idt.limit; 2968 sregs.idt.base = env->idt.base; 2969 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 2970 sregs.gdt.limit = env->gdt.limit; 2971 sregs.gdt.base = env->gdt.base; 2972 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 2973 2974 sregs.cr0 = env->cr[0]; 2975 sregs.cr2 = env->cr[2]; 2976 sregs.cr3 = env->cr[3]; 2977 sregs.cr4 = env->cr[4]; 2978 2979 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 2980 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 2981 2982 sregs.efer = env->efer; 2983 2984 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); 2985 } 2986 2987 static int kvm_put_sregs2(X86CPU *cpu) 2988 { 2989 CPUX86State *env = &cpu->env; 2990 struct kvm_sregs2 sregs; 2991 int i; 2992 2993 sregs.flags = 0; 2994 2995 if ((env->eflags & VM_MASK)) { 2996 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 2997 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 2998 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 2999 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 3000 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 3001 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 3002 } else { 3003 set_seg(&sregs.cs, &env->segs[R_CS]); 3004 set_seg(&sregs.ds, &env->segs[R_DS]); 3005 set_seg(&sregs.es, &env->segs[R_ES]); 3006 set_seg(&sregs.fs, &env->segs[R_FS]); 3007 set_seg(&sregs.gs, &env->segs[R_GS]); 3008 set_seg(&sregs.ss, &env->segs[R_SS]); 3009 } 3010 3011 set_seg(&sregs.tr, &env->tr); 3012 set_seg(&sregs.ldt, &env->ldt); 3013 3014 sregs.idt.limit = env->idt.limit; 3015 sregs.idt.base = env->idt.base; 3016 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 3017 sregs.gdt.limit = env->gdt.limit; 3018 sregs.gdt.base = env->gdt.base; 3019 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 3020 3021 sregs.cr0 = env->cr[0]; 3022 sregs.cr2 = env->cr[2]; 3023 sregs.cr3 = env->cr[3]; 3024 sregs.cr4 = env->cr[4]; 3025 3026 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 3027 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 3028 3029 sregs.efer = env->efer; 3030 3031 if (env->pdptrs_valid) { 3032 for (i = 0; i < 4; i++) { 3033 sregs.pdptrs[i] = env->pdptrs[i]; 3034 } 3035 sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 3036 } 3037 3038 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs); 3039 } 3040 3041 3042 static void kvm_msr_buf_reset(X86CPU *cpu) 3043 { 3044 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); 3045 } 3046 3047 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) 3048 { 3049 struct kvm_msrs *msrs = cpu->kvm_msr_buf; 3050 void *limit = ((void *)msrs) + MSR_BUF_SIZE; 3051 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; 3052 3053 assert((void *)(entry + 1) <= limit); 3054 3055 entry->index = index; 3056 entry->reserved = 0; 3057 entry->data = value; 3058 msrs->nmsrs++; 3059 } 3060 3061 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) 3062 { 3063 kvm_msr_buf_reset(cpu); 3064 kvm_msr_entry_add(cpu, index, value); 3065 3066 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 3067 } 3068 3069 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value) 3070 { 3071 int ret; 3072 struct { 3073 struct kvm_msrs info; 3074 struct kvm_msr_entry entries[1]; 3075 } msr_data = { 3076 .info.nmsrs = 1, 3077 .entries[0].index = index, 3078 }; 3079 3080 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); 3081 if (ret < 0) { 3082 return ret; 3083 } 3084 assert(ret == 1); 3085 *value = msr_data.entries[0].data; 3086 return ret; 3087 } 3088 void kvm_put_apicbase(X86CPU *cpu, uint64_t value) 3089 { 3090 int ret; 3091 3092 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); 3093 assert(ret == 1); 3094 } 3095 3096 static int kvm_put_tscdeadline_msr(X86CPU *cpu) 3097 { 3098 CPUX86State *env = &cpu->env; 3099 int ret; 3100 3101 if (!has_msr_tsc_deadline) { 3102 return 0; 3103 } 3104 3105 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); 3106 if (ret < 0) { 3107 return ret; 3108 } 3109 3110 assert(ret == 1); 3111 return 0; 3112 } 3113 3114 /* 3115 * Provide a separate write service for the feature control MSR in order to 3116 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done 3117 * before writing any other state because forcibly leaving nested mode 3118 * invalidates the VCPU state. 3119 */ 3120 static int kvm_put_msr_feature_control(X86CPU *cpu) 3121 { 3122 int ret; 3123 3124 if (!has_msr_feature_control) { 3125 return 0; 3126 } 3127 3128 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, 3129 cpu->env.msr_ia32_feature_control); 3130 if (ret < 0) { 3131 return ret; 3132 } 3133 3134 assert(ret == 1); 3135 return 0; 3136 } 3137 3138 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features) 3139 { 3140 uint32_t default1, can_be_one, can_be_zero; 3141 uint32_t must_be_one; 3142 3143 switch (index) { 3144 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 3145 default1 = 0x00000016; 3146 break; 3147 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 3148 default1 = 0x0401e172; 3149 break; 3150 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 3151 default1 = 0x000011ff; 3152 break; 3153 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 3154 default1 = 0x00036dff; 3155 break; 3156 case MSR_IA32_VMX_PROCBASED_CTLS2: 3157 default1 = 0; 3158 break; 3159 default: 3160 abort(); 3161 } 3162 3163 /* If a feature bit is set, the control can be either set or clear. 3164 * Otherwise the value is limited to either 0 or 1 by default1. 3165 */ 3166 can_be_one = features | default1; 3167 can_be_zero = features | ~default1; 3168 must_be_one = ~can_be_zero; 3169 3170 /* 3171 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one). 3172 * Bit 32:63 -> 1 if the control bit can be one. 3173 */ 3174 return must_be_one | (((uint64_t)can_be_one) << 32); 3175 } 3176 3177 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f) 3178 { 3179 uint64_t kvm_vmx_basic = 3180 kvm_arch_get_supported_msr_feature(kvm_state, 3181 MSR_IA32_VMX_BASIC); 3182 3183 if (!kvm_vmx_basic) { 3184 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0), 3185 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail. 3186 */ 3187 return; 3188 } 3189 3190 uint64_t kvm_vmx_misc = 3191 kvm_arch_get_supported_msr_feature(kvm_state, 3192 MSR_IA32_VMX_MISC); 3193 uint64_t kvm_vmx_ept_vpid = 3194 kvm_arch_get_supported_msr_feature(kvm_state, 3195 MSR_IA32_VMX_EPT_VPID_CAP); 3196 3197 /* 3198 * If the guest is 64-bit, a value of 1 is allowed for the host address 3199 * space size vmexit control. 3200 */ 3201 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM 3202 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0; 3203 3204 /* 3205 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should 3206 * not change them for backwards compatibility. 3207 */ 3208 uint64_t fixed_vmx_basic = kvm_vmx_basic & 3209 (MSR_VMX_BASIC_VMCS_REVISION_MASK | 3210 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK | 3211 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK); 3212 3213 /* 3214 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can 3215 * change in the future but are always zero for now, clear them to be 3216 * future proof. Bits 32-63 in theory could change, though KVM does 3217 * not support dual-monitor treatment and probably never will; mask 3218 * them out as well. 3219 */ 3220 uint64_t fixed_vmx_misc = kvm_vmx_misc & 3221 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK | 3222 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK); 3223 3224 /* 3225 * EPT memory types should not change either, so we do not bother 3226 * adding features for them. 3227 */ 3228 uint64_t fixed_vmx_ept_mask = 3229 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ? 3230 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0); 3231 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask; 3232 3233 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 3234 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 3235 f[FEAT_VMX_PROCBASED_CTLS])); 3236 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS, 3237 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS, 3238 f[FEAT_VMX_PINBASED_CTLS])); 3239 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS, 3240 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS, 3241 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit); 3242 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS, 3243 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS, 3244 f[FEAT_VMX_ENTRY_CTLS])); 3245 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2, 3246 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2, 3247 f[FEAT_VMX_SECONDARY_CTLS])); 3248 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP, 3249 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid); 3250 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC, 3251 f[FEAT_VMX_BASIC] | fixed_vmx_basic); 3252 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC, 3253 f[FEAT_VMX_MISC] | fixed_vmx_misc); 3254 if (has_msr_vmx_vmfunc) { 3255 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]); 3256 } 3257 3258 /* 3259 * Just to be safe, write these with constant values. The CRn_FIXED1 3260 * MSRs are generated by KVM based on the vCPU's CPUID. 3261 */ 3262 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0, 3263 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK); 3264 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0, 3265 CR4_VMXE_MASK); 3266 3267 if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) { 3268 /* TSC multiplier (0x2032). */ 3269 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32); 3270 } else { 3271 /* Preemption timer (0x482E). */ 3272 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E); 3273 } 3274 } 3275 3276 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f) 3277 { 3278 uint64_t kvm_perf_cap = 3279 kvm_arch_get_supported_msr_feature(kvm_state, 3280 MSR_IA32_PERF_CAPABILITIES); 3281 3282 if (kvm_perf_cap) { 3283 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES, 3284 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]); 3285 } 3286 } 3287 3288 static int kvm_buf_set_msrs(X86CPU *cpu) 3289 { 3290 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 3291 if (ret < 0) { 3292 return ret; 3293 } 3294 3295 if (ret < cpu->kvm_msr_buf->nmsrs) { 3296 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 3297 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, 3298 (uint32_t)e->index, (uint64_t)e->data); 3299 } 3300 3301 assert(ret == cpu->kvm_msr_buf->nmsrs); 3302 return 0; 3303 } 3304 3305 static void kvm_init_msrs(X86CPU *cpu) 3306 { 3307 CPUX86State *env = &cpu->env; 3308 3309 kvm_msr_buf_reset(cpu); 3310 if (has_msr_arch_capabs) { 3311 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES, 3312 env->features[FEAT_ARCH_CAPABILITIES]); 3313 } 3314 3315 if (has_msr_core_capabs) { 3316 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY, 3317 env->features[FEAT_CORE_CAPABILITY]); 3318 } 3319 3320 if (has_msr_perf_capabs && cpu->enable_pmu) { 3321 kvm_msr_entry_add_perf(cpu, env->features); 3322 } 3323 3324 if (has_msr_ucode_rev) { 3325 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev); 3326 } 3327 3328 /* 3329 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but 3330 * all kernels with MSR features should have them. 3331 */ 3332 if (kvm_feature_msrs && cpu_has_vmx(env)) { 3333 kvm_msr_entry_add_vmx(cpu, env->features); 3334 } 3335 3336 assert(kvm_buf_set_msrs(cpu) == 0); 3337 } 3338 3339 static int kvm_put_msrs(X86CPU *cpu, int level) 3340 { 3341 CPUX86State *env = &cpu->env; 3342 int i; 3343 3344 kvm_msr_buf_reset(cpu); 3345 3346 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); 3347 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); 3348 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); 3349 kvm_msr_entry_add(cpu, MSR_PAT, env->pat); 3350 if (has_msr_star) { 3351 kvm_msr_entry_add(cpu, MSR_STAR, env->star); 3352 } 3353 if (has_msr_hsave_pa) { 3354 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); 3355 } 3356 if (has_msr_tsc_aux) { 3357 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); 3358 } 3359 if (has_msr_tsc_adjust) { 3360 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); 3361 } 3362 if (has_msr_misc_enable) { 3363 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 3364 env->msr_ia32_misc_enable); 3365 } 3366 if (has_msr_smbase) { 3367 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); 3368 } 3369 if (has_msr_smi_count) { 3370 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count); 3371 } 3372 if (has_msr_pkrs) { 3373 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs); 3374 } 3375 if (has_msr_bndcfgs) { 3376 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); 3377 } 3378 if (has_msr_xss) { 3379 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); 3380 } 3381 if (has_msr_umwait) { 3382 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait); 3383 } 3384 if (has_msr_spec_ctrl) { 3385 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl); 3386 } 3387 if (has_tsc_scale_msr) { 3388 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr); 3389 } 3390 3391 if (has_msr_tsx_ctrl) { 3392 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl); 3393 } 3394 if (has_msr_virt_ssbd) { 3395 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd); 3396 } 3397 3398 #ifdef TARGET_X86_64 3399 if (lm_capable_kernel) { 3400 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); 3401 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); 3402 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); 3403 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); 3404 } 3405 #endif 3406 3407 /* 3408 * The following MSRs have side effects on the guest or are too heavy 3409 * for normal writeback. Limit them to reset or full state updates. 3410 */ 3411 if (level >= KVM_PUT_RESET_STATE) { 3412 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); 3413 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); 3414 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); 3415 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { 3416 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr); 3417 } 3418 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { 3419 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); 3420 } 3421 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { 3422 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); 3423 } 3424 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { 3425 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); 3426 } 3427 3428 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { 3429 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr); 3430 } 3431 3432 if (has_architectural_pmu_version > 0) { 3433 if (has_architectural_pmu_version > 1) { 3434 /* Stop the counter. */ 3435 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 3436 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 3437 } 3438 3439 /* Set the counter values. */ 3440 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 3441 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 3442 env->msr_fixed_counters[i]); 3443 } 3444 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 3445 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 3446 env->msr_gp_counters[i]); 3447 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 3448 env->msr_gp_evtsel[i]); 3449 } 3450 if (has_architectural_pmu_version > 1) { 3451 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 3452 env->msr_global_status); 3453 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 3454 env->msr_global_ovf_ctrl); 3455 3456 /* Now start the PMU. */ 3457 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 3458 env->msr_fixed_ctr_ctrl); 3459 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 3460 env->msr_global_ctrl); 3461 } 3462 } 3463 /* 3464 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add, 3465 * only sync them to KVM on the first cpu 3466 */ 3467 if (current_cpu == first_cpu) { 3468 if (has_msr_hv_hypercall) { 3469 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 3470 env->msr_hv_guest_os_id); 3471 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 3472 env->msr_hv_hypercall); 3473 } 3474 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 3475 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 3476 env->msr_hv_tsc); 3477 } 3478 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 3479 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 3480 env->msr_hv_reenlightenment_control); 3481 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 3482 env->msr_hv_tsc_emulation_control); 3483 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 3484 env->msr_hv_tsc_emulation_status); 3485 } 3486 #ifdef CONFIG_SYNDBG 3487 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) && 3488 has_msr_hv_syndbg_options) { 3489 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 3490 hyperv_syndbg_query_options()); 3491 } 3492 #endif 3493 } 3494 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 3495 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 3496 env->msr_hv_vapic); 3497 } 3498 if (has_msr_hv_crash) { 3499 int j; 3500 3501 for (j = 0; j < HV_CRASH_PARAMS; j++) 3502 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 3503 env->msr_hv_crash_params[j]); 3504 3505 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY); 3506 } 3507 if (has_msr_hv_runtime) { 3508 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); 3509 } 3510 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) 3511 && hv_vpindex_settable) { 3512 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX, 3513 hyperv_vp_index(CPU(cpu))); 3514 } 3515 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 3516 int j; 3517 3518 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION); 3519 3520 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 3521 env->msr_hv_synic_control); 3522 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 3523 env->msr_hv_synic_evt_page); 3524 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 3525 env->msr_hv_synic_msg_page); 3526 3527 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { 3528 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, 3529 env->msr_hv_synic_sint[j]); 3530 } 3531 } 3532 if (has_msr_hv_stimer) { 3533 int j; 3534 3535 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { 3536 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, 3537 env->msr_hv_stimer_config[j]); 3538 } 3539 3540 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { 3541 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, 3542 env->msr_hv_stimer_count[j]); 3543 } 3544 } 3545 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 3546 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); 3547 3548 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); 3549 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); 3550 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); 3551 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); 3552 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); 3553 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); 3554 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); 3555 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); 3556 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); 3557 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); 3558 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); 3559 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); 3560 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 3561 /* The CPU GPs if we write to a bit above the physical limit of 3562 * the host CPU (and KVM emulates that) 3563 */ 3564 uint64_t mask = env->mtrr_var[i].mask; 3565 mask &= phys_mask; 3566 3567 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 3568 env->mtrr_var[i].base); 3569 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); 3570 } 3571 } 3572 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 3573 int addr_num = kvm_arch_get_supported_cpuid(kvm_state, 3574 0x14, 1, R_EAX) & 0x7; 3575 3576 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 3577 env->msr_rtit_ctrl); 3578 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 3579 env->msr_rtit_status); 3580 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 3581 env->msr_rtit_output_base); 3582 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 3583 env->msr_rtit_output_mask); 3584 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 3585 env->msr_rtit_cr3_match); 3586 for (i = 0; i < addr_num; i++) { 3587 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 3588 env->msr_rtit_addrs[i]); 3589 } 3590 } 3591 3592 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 3593 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 3594 env->msr_ia32_sgxlepubkeyhash[0]); 3595 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 3596 env->msr_ia32_sgxlepubkeyhash[1]); 3597 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 3598 env->msr_ia32_sgxlepubkeyhash[2]); 3599 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 3600 env->msr_ia32_sgxlepubkeyhash[3]); 3601 } 3602 3603 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) { 3604 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 3605 env->msr_xfd); 3606 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 3607 env->msr_xfd_err); 3608 } 3609 3610 if (kvm_enabled() && cpu->enable_pmu && 3611 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) { 3612 uint64_t depth; 3613 int ret; 3614 3615 /* 3616 * Only migrate Arch LBR states when the host Arch LBR depth 3617 * equals that of source guest's, this is to avoid mismatch 3618 * of guest/host config for the msr hence avoid unexpected 3619 * misbehavior. 3620 */ 3621 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth); 3622 3623 if (ret == 1 && !!depth && depth == env->msr_lbr_depth) { 3624 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl); 3625 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth); 3626 3627 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) { 3628 if (!env->lbr_records[i].from) { 3629 continue; 3630 } 3631 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 3632 env->lbr_records[i].from); 3633 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 3634 env->lbr_records[i].to); 3635 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 3636 env->lbr_records[i].info); 3637 } 3638 } 3639 } 3640 3641 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see 3642 * kvm_put_msr_feature_control. */ 3643 } 3644 3645 if (env->mcg_cap) { 3646 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); 3647 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); 3648 if (has_msr_mcg_ext_ctl) { 3649 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); 3650 } 3651 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 3652 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); 3653 } 3654 } 3655 3656 return kvm_buf_set_msrs(cpu); 3657 } 3658 3659 3660 static int kvm_get_fpu(X86CPU *cpu) 3661 { 3662 CPUX86State *env = &cpu->env; 3663 struct kvm_fpu fpu; 3664 int i, ret; 3665 3666 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); 3667 if (ret < 0) { 3668 return ret; 3669 } 3670 3671 env->fpstt = (fpu.fsw >> 11) & 7; 3672 env->fpus = fpu.fsw; 3673 env->fpuc = fpu.fcw; 3674 env->fpop = fpu.last_opcode; 3675 env->fpip = fpu.last_ip; 3676 env->fpdp = fpu.last_dp; 3677 for (i = 0; i < 8; ++i) { 3678 env->fptags[i] = !((fpu.ftwx >> i) & 1); 3679 } 3680 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); 3681 for (i = 0; i < CPU_NB_REGS; i++) { 3682 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]); 3683 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]); 3684 } 3685 env->mxcsr = fpu.mxcsr; 3686 3687 return 0; 3688 } 3689 3690 static int kvm_get_xsave(X86CPU *cpu) 3691 { 3692 CPUX86State *env = &cpu->env; 3693 void *xsave = env->xsave_buf; 3694 int type, ret; 3695 3696 if (!has_xsave) { 3697 return kvm_get_fpu(cpu); 3698 } 3699 3700 type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE; 3701 ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave); 3702 if (ret < 0) { 3703 return ret; 3704 } 3705 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len); 3706 3707 return 0; 3708 } 3709 3710 static int kvm_get_xcrs(X86CPU *cpu) 3711 { 3712 CPUX86State *env = &cpu->env; 3713 int i, ret; 3714 struct kvm_xcrs xcrs; 3715 3716 if (!has_xcrs) { 3717 return 0; 3718 } 3719 3720 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); 3721 if (ret < 0) { 3722 return ret; 3723 } 3724 3725 for (i = 0; i < xcrs.nr_xcrs; i++) { 3726 /* Only support xcr0 now */ 3727 if (xcrs.xcrs[i].xcr == 0) { 3728 env->xcr0 = xcrs.xcrs[i].value; 3729 break; 3730 } 3731 } 3732 return 0; 3733 } 3734 3735 static int kvm_get_sregs(X86CPU *cpu) 3736 { 3737 CPUX86State *env = &cpu->env; 3738 struct kvm_sregs sregs; 3739 int ret; 3740 3741 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); 3742 if (ret < 0) { 3743 return ret; 3744 } 3745 3746 /* 3747 * The interrupt_bitmap is ignored because KVM_GET_SREGS is 3748 * always preceded by KVM_GET_VCPU_EVENTS. 3749 */ 3750 3751 get_seg(&env->segs[R_CS], &sregs.cs); 3752 get_seg(&env->segs[R_DS], &sregs.ds); 3753 get_seg(&env->segs[R_ES], &sregs.es); 3754 get_seg(&env->segs[R_FS], &sregs.fs); 3755 get_seg(&env->segs[R_GS], &sregs.gs); 3756 get_seg(&env->segs[R_SS], &sregs.ss); 3757 3758 get_seg(&env->tr, &sregs.tr); 3759 get_seg(&env->ldt, &sregs.ldt); 3760 3761 env->idt.limit = sregs.idt.limit; 3762 env->idt.base = sregs.idt.base; 3763 env->gdt.limit = sregs.gdt.limit; 3764 env->gdt.base = sregs.gdt.base; 3765 3766 env->cr[0] = sregs.cr0; 3767 env->cr[2] = sregs.cr2; 3768 env->cr[3] = sregs.cr3; 3769 env->cr[4] = sregs.cr4; 3770 3771 env->efer = sregs.efer; 3772 3773 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 3774 x86_update_hflags(env); 3775 3776 return 0; 3777 } 3778 3779 static int kvm_get_sregs2(X86CPU *cpu) 3780 { 3781 CPUX86State *env = &cpu->env; 3782 struct kvm_sregs2 sregs; 3783 int i, ret; 3784 3785 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs); 3786 if (ret < 0) { 3787 return ret; 3788 } 3789 3790 get_seg(&env->segs[R_CS], &sregs.cs); 3791 get_seg(&env->segs[R_DS], &sregs.ds); 3792 get_seg(&env->segs[R_ES], &sregs.es); 3793 get_seg(&env->segs[R_FS], &sregs.fs); 3794 get_seg(&env->segs[R_GS], &sregs.gs); 3795 get_seg(&env->segs[R_SS], &sregs.ss); 3796 3797 get_seg(&env->tr, &sregs.tr); 3798 get_seg(&env->ldt, &sregs.ldt); 3799 3800 env->idt.limit = sregs.idt.limit; 3801 env->idt.base = sregs.idt.base; 3802 env->gdt.limit = sregs.gdt.limit; 3803 env->gdt.base = sregs.gdt.base; 3804 3805 env->cr[0] = sregs.cr0; 3806 env->cr[2] = sregs.cr2; 3807 env->cr[3] = sregs.cr3; 3808 env->cr[4] = sregs.cr4; 3809 3810 env->efer = sregs.efer; 3811 3812 env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 3813 3814 if (env->pdptrs_valid) { 3815 for (i = 0; i < 4; i++) { 3816 env->pdptrs[i] = sregs.pdptrs[i]; 3817 } 3818 } 3819 3820 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 3821 x86_update_hflags(env); 3822 3823 return 0; 3824 } 3825 3826 static int kvm_get_msrs(X86CPU *cpu) 3827 { 3828 CPUX86State *env = &cpu->env; 3829 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; 3830 int ret, i; 3831 uint64_t mtrr_top_bits; 3832 3833 kvm_msr_buf_reset(cpu); 3834 3835 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); 3836 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); 3837 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); 3838 kvm_msr_entry_add(cpu, MSR_PAT, 0); 3839 if (has_msr_star) { 3840 kvm_msr_entry_add(cpu, MSR_STAR, 0); 3841 } 3842 if (has_msr_hsave_pa) { 3843 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); 3844 } 3845 if (has_msr_tsc_aux) { 3846 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); 3847 } 3848 if (has_msr_tsc_adjust) { 3849 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); 3850 } 3851 if (has_msr_tsc_deadline) { 3852 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); 3853 } 3854 if (has_msr_misc_enable) { 3855 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); 3856 } 3857 if (has_msr_smbase) { 3858 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); 3859 } 3860 if (has_msr_smi_count) { 3861 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0); 3862 } 3863 if (has_msr_feature_control) { 3864 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); 3865 } 3866 if (has_msr_pkrs) { 3867 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0); 3868 } 3869 if (has_msr_bndcfgs) { 3870 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); 3871 } 3872 if (has_msr_xss) { 3873 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); 3874 } 3875 if (has_msr_umwait) { 3876 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0); 3877 } 3878 if (has_msr_spec_ctrl) { 3879 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0); 3880 } 3881 if (has_tsc_scale_msr) { 3882 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0); 3883 } 3884 3885 if (has_msr_tsx_ctrl) { 3886 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0); 3887 } 3888 if (has_msr_virt_ssbd) { 3889 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0); 3890 } 3891 if (!env->tsc_valid) { 3892 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); 3893 env->tsc_valid = !runstate_is_running(); 3894 } 3895 3896 #ifdef TARGET_X86_64 3897 if (lm_capable_kernel) { 3898 kvm_msr_entry_add(cpu, MSR_CSTAR, 0); 3899 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); 3900 kvm_msr_entry_add(cpu, MSR_FMASK, 0); 3901 kvm_msr_entry_add(cpu, MSR_LSTAR, 0); 3902 } 3903 #endif 3904 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); 3905 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); 3906 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { 3907 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0); 3908 } 3909 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { 3910 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); 3911 } 3912 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { 3913 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); 3914 } 3915 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { 3916 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); 3917 } 3918 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { 3919 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1); 3920 } 3921 if (has_architectural_pmu_version > 0) { 3922 if (has_architectural_pmu_version > 1) { 3923 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 3924 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 3925 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); 3926 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); 3927 } 3928 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 3929 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); 3930 } 3931 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 3932 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); 3933 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); 3934 } 3935 } 3936 3937 if (env->mcg_cap) { 3938 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); 3939 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); 3940 if (has_msr_mcg_ext_ctl) { 3941 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); 3942 } 3943 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 3944 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); 3945 } 3946 } 3947 3948 if (has_msr_hv_hypercall) { 3949 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); 3950 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); 3951 } 3952 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 3953 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); 3954 } 3955 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 3956 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); 3957 } 3958 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 3959 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0); 3960 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0); 3961 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0); 3962 } 3963 if (has_msr_hv_syndbg_options) { 3964 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0); 3965 } 3966 if (has_msr_hv_crash) { 3967 int j; 3968 3969 for (j = 0; j < HV_CRASH_PARAMS; j++) { 3970 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); 3971 } 3972 } 3973 if (has_msr_hv_runtime) { 3974 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); 3975 } 3976 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 3977 uint32_t msr; 3978 3979 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); 3980 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); 3981 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); 3982 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { 3983 kvm_msr_entry_add(cpu, msr, 0); 3984 } 3985 } 3986 if (has_msr_hv_stimer) { 3987 uint32_t msr; 3988 3989 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; 3990 msr++) { 3991 kvm_msr_entry_add(cpu, msr, 0); 3992 } 3993 } 3994 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 3995 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); 3996 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); 3997 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); 3998 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); 3999 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); 4000 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); 4001 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); 4002 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); 4003 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); 4004 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); 4005 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); 4006 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); 4007 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 4008 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); 4009 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); 4010 } 4011 } 4012 4013 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 4014 int addr_num = 4015 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7; 4016 4017 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0); 4018 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0); 4019 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0); 4020 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0); 4021 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0); 4022 for (i = 0; i < addr_num; i++) { 4023 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0); 4024 } 4025 } 4026 4027 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 4028 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0); 4029 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0); 4030 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0); 4031 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0); 4032 } 4033 4034 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) { 4035 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0); 4036 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0); 4037 } 4038 4039 if (kvm_enabled() && cpu->enable_pmu && 4040 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) { 4041 uint64_t depth; 4042 4043 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth); 4044 if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) { 4045 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0); 4046 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0); 4047 4048 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) { 4049 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0); 4050 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0); 4051 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0); 4052 } 4053 } 4054 } 4055 4056 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); 4057 if (ret < 0) { 4058 return ret; 4059 } 4060 4061 if (ret < cpu->kvm_msr_buf->nmsrs) { 4062 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 4063 error_report("error: failed to get MSR 0x%" PRIx32, 4064 (uint32_t)e->index); 4065 } 4066 4067 assert(ret == cpu->kvm_msr_buf->nmsrs); 4068 /* 4069 * MTRR masks: Each mask consists of 5 parts 4070 * a 10..0: must be zero 4071 * b 11 : valid bit 4072 * c n-1.12: actual mask bits 4073 * d 51..n: reserved must be zero 4074 * e 63.52: reserved must be zero 4075 * 4076 * 'n' is the number of physical bits supported by the CPU and is 4077 * apparently always <= 52. We know our 'n' but don't know what 4078 * the destinations 'n' is; it might be smaller, in which case 4079 * it masks (c) on loading. It might be larger, in which case 4080 * we fill 'd' so that d..c is consistent irrespetive of the 'n' 4081 * we're migrating to. 4082 */ 4083 4084 if (cpu->fill_mtrr_mask) { 4085 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); 4086 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); 4087 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); 4088 } else { 4089 mtrr_top_bits = 0; 4090 } 4091 4092 for (i = 0; i < ret; i++) { 4093 uint32_t index = msrs[i].index; 4094 switch (index) { 4095 case MSR_IA32_SYSENTER_CS: 4096 env->sysenter_cs = msrs[i].data; 4097 break; 4098 case MSR_IA32_SYSENTER_ESP: 4099 env->sysenter_esp = msrs[i].data; 4100 break; 4101 case MSR_IA32_SYSENTER_EIP: 4102 env->sysenter_eip = msrs[i].data; 4103 break; 4104 case MSR_PAT: 4105 env->pat = msrs[i].data; 4106 break; 4107 case MSR_STAR: 4108 env->star = msrs[i].data; 4109 break; 4110 #ifdef TARGET_X86_64 4111 case MSR_CSTAR: 4112 env->cstar = msrs[i].data; 4113 break; 4114 case MSR_KERNELGSBASE: 4115 env->kernelgsbase = msrs[i].data; 4116 break; 4117 case MSR_FMASK: 4118 env->fmask = msrs[i].data; 4119 break; 4120 case MSR_LSTAR: 4121 env->lstar = msrs[i].data; 4122 break; 4123 #endif 4124 case MSR_IA32_TSC: 4125 env->tsc = msrs[i].data; 4126 break; 4127 case MSR_TSC_AUX: 4128 env->tsc_aux = msrs[i].data; 4129 break; 4130 case MSR_TSC_ADJUST: 4131 env->tsc_adjust = msrs[i].data; 4132 break; 4133 case MSR_IA32_TSCDEADLINE: 4134 env->tsc_deadline = msrs[i].data; 4135 break; 4136 case MSR_VM_HSAVE_PA: 4137 env->vm_hsave = msrs[i].data; 4138 break; 4139 case MSR_KVM_SYSTEM_TIME: 4140 env->system_time_msr = msrs[i].data; 4141 break; 4142 case MSR_KVM_WALL_CLOCK: 4143 env->wall_clock_msr = msrs[i].data; 4144 break; 4145 case MSR_MCG_STATUS: 4146 env->mcg_status = msrs[i].data; 4147 break; 4148 case MSR_MCG_CTL: 4149 env->mcg_ctl = msrs[i].data; 4150 break; 4151 case MSR_MCG_EXT_CTL: 4152 env->mcg_ext_ctl = msrs[i].data; 4153 break; 4154 case MSR_IA32_MISC_ENABLE: 4155 env->msr_ia32_misc_enable = msrs[i].data; 4156 break; 4157 case MSR_IA32_SMBASE: 4158 env->smbase = msrs[i].data; 4159 break; 4160 case MSR_SMI_COUNT: 4161 env->msr_smi_count = msrs[i].data; 4162 break; 4163 case MSR_IA32_FEATURE_CONTROL: 4164 env->msr_ia32_feature_control = msrs[i].data; 4165 break; 4166 case MSR_IA32_BNDCFGS: 4167 env->msr_bndcfgs = msrs[i].data; 4168 break; 4169 case MSR_IA32_XSS: 4170 env->xss = msrs[i].data; 4171 break; 4172 case MSR_IA32_UMWAIT_CONTROL: 4173 env->umwait = msrs[i].data; 4174 break; 4175 case MSR_IA32_PKRS: 4176 env->pkrs = msrs[i].data; 4177 break; 4178 default: 4179 if (msrs[i].index >= MSR_MC0_CTL && 4180 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { 4181 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; 4182 } 4183 break; 4184 case MSR_KVM_ASYNC_PF_EN: 4185 env->async_pf_en_msr = msrs[i].data; 4186 break; 4187 case MSR_KVM_ASYNC_PF_INT: 4188 env->async_pf_int_msr = msrs[i].data; 4189 break; 4190 case MSR_KVM_PV_EOI_EN: 4191 env->pv_eoi_en_msr = msrs[i].data; 4192 break; 4193 case MSR_KVM_STEAL_TIME: 4194 env->steal_time_msr = msrs[i].data; 4195 break; 4196 case MSR_KVM_POLL_CONTROL: { 4197 env->poll_control_msr = msrs[i].data; 4198 break; 4199 } 4200 case MSR_CORE_PERF_FIXED_CTR_CTRL: 4201 env->msr_fixed_ctr_ctrl = msrs[i].data; 4202 break; 4203 case MSR_CORE_PERF_GLOBAL_CTRL: 4204 env->msr_global_ctrl = msrs[i].data; 4205 break; 4206 case MSR_CORE_PERF_GLOBAL_STATUS: 4207 env->msr_global_status = msrs[i].data; 4208 break; 4209 case MSR_CORE_PERF_GLOBAL_OVF_CTRL: 4210 env->msr_global_ovf_ctrl = msrs[i].data; 4211 break; 4212 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: 4213 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; 4214 break; 4215 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: 4216 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; 4217 break; 4218 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: 4219 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; 4220 break; 4221 case HV_X64_MSR_HYPERCALL: 4222 env->msr_hv_hypercall = msrs[i].data; 4223 break; 4224 case HV_X64_MSR_GUEST_OS_ID: 4225 env->msr_hv_guest_os_id = msrs[i].data; 4226 break; 4227 case HV_X64_MSR_APIC_ASSIST_PAGE: 4228 env->msr_hv_vapic = msrs[i].data; 4229 break; 4230 case HV_X64_MSR_REFERENCE_TSC: 4231 env->msr_hv_tsc = msrs[i].data; 4232 break; 4233 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4234 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; 4235 break; 4236 case HV_X64_MSR_VP_RUNTIME: 4237 env->msr_hv_runtime = msrs[i].data; 4238 break; 4239 case HV_X64_MSR_SCONTROL: 4240 env->msr_hv_synic_control = msrs[i].data; 4241 break; 4242 case HV_X64_MSR_SIEFP: 4243 env->msr_hv_synic_evt_page = msrs[i].data; 4244 break; 4245 case HV_X64_MSR_SIMP: 4246 env->msr_hv_synic_msg_page = msrs[i].data; 4247 break; 4248 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 4249 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; 4250 break; 4251 case HV_X64_MSR_STIMER0_CONFIG: 4252 case HV_X64_MSR_STIMER1_CONFIG: 4253 case HV_X64_MSR_STIMER2_CONFIG: 4254 case HV_X64_MSR_STIMER3_CONFIG: 4255 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = 4256 msrs[i].data; 4257 break; 4258 case HV_X64_MSR_STIMER0_COUNT: 4259 case HV_X64_MSR_STIMER1_COUNT: 4260 case HV_X64_MSR_STIMER2_COUNT: 4261 case HV_X64_MSR_STIMER3_COUNT: 4262 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = 4263 msrs[i].data; 4264 break; 4265 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4266 env->msr_hv_reenlightenment_control = msrs[i].data; 4267 break; 4268 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4269 env->msr_hv_tsc_emulation_control = msrs[i].data; 4270 break; 4271 case HV_X64_MSR_TSC_EMULATION_STATUS: 4272 env->msr_hv_tsc_emulation_status = msrs[i].data; 4273 break; 4274 case HV_X64_MSR_SYNDBG_OPTIONS: 4275 env->msr_hv_syndbg_options = msrs[i].data; 4276 break; 4277 case MSR_MTRRdefType: 4278 env->mtrr_deftype = msrs[i].data; 4279 break; 4280 case MSR_MTRRfix64K_00000: 4281 env->mtrr_fixed[0] = msrs[i].data; 4282 break; 4283 case MSR_MTRRfix16K_80000: 4284 env->mtrr_fixed[1] = msrs[i].data; 4285 break; 4286 case MSR_MTRRfix16K_A0000: 4287 env->mtrr_fixed[2] = msrs[i].data; 4288 break; 4289 case MSR_MTRRfix4K_C0000: 4290 env->mtrr_fixed[3] = msrs[i].data; 4291 break; 4292 case MSR_MTRRfix4K_C8000: 4293 env->mtrr_fixed[4] = msrs[i].data; 4294 break; 4295 case MSR_MTRRfix4K_D0000: 4296 env->mtrr_fixed[5] = msrs[i].data; 4297 break; 4298 case MSR_MTRRfix4K_D8000: 4299 env->mtrr_fixed[6] = msrs[i].data; 4300 break; 4301 case MSR_MTRRfix4K_E0000: 4302 env->mtrr_fixed[7] = msrs[i].data; 4303 break; 4304 case MSR_MTRRfix4K_E8000: 4305 env->mtrr_fixed[8] = msrs[i].data; 4306 break; 4307 case MSR_MTRRfix4K_F0000: 4308 env->mtrr_fixed[9] = msrs[i].data; 4309 break; 4310 case MSR_MTRRfix4K_F8000: 4311 env->mtrr_fixed[10] = msrs[i].data; 4312 break; 4313 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): 4314 if (index & 1) { 4315 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | 4316 mtrr_top_bits; 4317 } else { 4318 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; 4319 } 4320 break; 4321 case MSR_IA32_SPEC_CTRL: 4322 env->spec_ctrl = msrs[i].data; 4323 break; 4324 case MSR_AMD64_TSC_RATIO: 4325 env->amd_tsc_scale_msr = msrs[i].data; 4326 break; 4327 case MSR_IA32_TSX_CTRL: 4328 env->tsx_ctrl = msrs[i].data; 4329 break; 4330 case MSR_VIRT_SSBD: 4331 env->virt_ssbd = msrs[i].data; 4332 break; 4333 case MSR_IA32_RTIT_CTL: 4334 env->msr_rtit_ctrl = msrs[i].data; 4335 break; 4336 case MSR_IA32_RTIT_STATUS: 4337 env->msr_rtit_status = msrs[i].data; 4338 break; 4339 case MSR_IA32_RTIT_OUTPUT_BASE: 4340 env->msr_rtit_output_base = msrs[i].data; 4341 break; 4342 case MSR_IA32_RTIT_OUTPUT_MASK: 4343 env->msr_rtit_output_mask = msrs[i].data; 4344 break; 4345 case MSR_IA32_RTIT_CR3_MATCH: 4346 env->msr_rtit_cr3_match = msrs[i].data; 4347 break; 4348 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 4349 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data; 4350 break; 4351 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 4352 env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] = 4353 msrs[i].data; 4354 break; 4355 case MSR_IA32_XFD: 4356 env->msr_xfd = msrs[i].data; 4357 break; 4358 case MSR_IA32_XFD_ERR: 4359 env->msr_xfd_err = msrs[i].data; 4360 break; 4361 case MSR_ARCH_LBR_CTL: 4362 env->msr_lbr_ctl = msrs[i].data; 4363 break; 4364 case MSR_ARCH_LBR_DEPTH: 4365 env->msr_lbr_depth = msrs[i].data; 4366 break; 4367 case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31: 4368 env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data; 4369 break; 4370 case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31: 4371 env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data; 4372 break; 4373 case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31: 4374 env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data; 4375 break; 4376 } 4377 } 4378 4379 return 0; 4380 } 4381 4382 static int kvm_put_mp_state(X86CPU *cpu) 4383 { 4384 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; 4385 4386 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 4387 } 4388 4389 static int kvm_get_mp_state(X86CPU *cpu) 4390 { 4391 CPUState *cs = CPU(cpu); 4392 CPUX86State *env = &cpu->env; 4393 struct kvm_mp_state mp_state; 4394 int ret; 4395 4396 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); 4397 if (ret < 0) { 4398 return ret; 4399 } 4400 env->mp_state = mp_state.mp_state; 4401 if (kvm_irqchip_in_kernel()) { 4402 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); 4403 } 4404 return 0; 4405 } 4406 4407 static int kvm_get_apic(X86CPU *cpu) 4408 { 4409 DeviceState *apic = cpu->apic_state; 4410 struct kvm_lapic_state kapic; 4411 int ret; 4412 4413 if (apic && kvm_irqchip_in_kernel()) { 4414 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); 4415 if (ret < 0) { 4416 return ret; 4417 } 4418 4419 kvm_get_apic_state(apic, &kapic); 4420 } 4421 return 0; 4422 } 4423 4424 static int kvm_put_vcpu_events(X86CPU *cpu, int level) 4425 { 4426 CPUState *cs = CPU(cpu); 4427 CPUX86State *env = &cpu->env; 4428 struct kvm_vcpu_events events = {}; 4429 4430 if (!kvm_has_vcpu_events()) { 4431 return 0; 4432 } 4433 4434 events.flags = 0; 4435 4436 if (has_exception_payload) { 4437 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 4438 events.exception.pending = env->exception_pending; 4439 events.exception_has_payload = env->exception_has_payload; 4440 events.exception_payload = env->exception_payload; 4441 } 4442 events.exception.nr = env->exception_nr; 4443 events.exception.injected = env->exception_injected; 4444 events.exception.has_error_code = env->has_error_code; 4445 events.exception.error_code = env->error_code; 4446 4447 events.interrupt.injected = (env->interrupt_injected >= 0); 4448 events.interrupt.nr = env->interrupt_injected; 4449 events.interrupt.soft = env->soft_interrupt; 4450 4451 events.nmi.injected = env->nmi_injected; 4452 events.nmi.pending = env->nmi_pending; 4453 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); 4454 4455 events.sipi_vector = env->sipi_vector; 4456 4457 if (has_msr_smbase) { 4458 events.smi.smm = !!(env->hflags & HF_SMM_MASK); 4459 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); 4460 if (kvm_irqchip_in_kernel()) { 4461 /* As soon as these are moved to the kernel, remove them 4462 * from cs->interrupt_request. 4463 */ 4464 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; 4465 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; 4466 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); 4467 } else { 4468 /* Keep these in cs->interrupt_request. */ 4469 events.smi.pending = 0; 4470 events.smi.latched_init = 0; 4471 } 4472 /* Stop SMI delivery on old machine types to avoid a reboot 4473 * on an inward migration of an old VM. 4474 */ 4475 if (!cpu->kvm_no_smi_migration) { 4476 events.flags |= KVM_VCPUEVENT_VALID_SMM; 4477 } 4478 } 4479 4480 if (level >= KVM_PUT_RESET_STATE) { 4481 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; 4482 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 4483 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR; 4484 } 4485 } 4486 4487 if (has_triple_fault_event) { 4488 events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 4489 events.triple_fault.pending = env->triple_fault_pending; 4490 } 4491 4492 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 4493 } 4494 4495 static int kvm_get_vcpu_events(X86CPU *cpu) 4496 { 4497 CPUX86State *env = &cpu->env; 4498 struct kvm_vcpu_events events; 4499 int ret; 4500 4501 if (!kvm_has_vcpu_events()) { 4502 return 0; 4503 } 4504 4505 memset(&events, 0, sizeof(events)); 4506 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 4507 if (ret < 0) { 4508 return ret; 4509 } 4510 4511 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 4512 env->exception_pending = events.exception.pending; 4513 env->exception_has_payload = events.exception_has_payload; 4514 env->exception_payload = events.exception_payload; 4515 } else { 4516 env->exception_pending = 0; 4517 env->exception_has_payload = false; 4518 } 4519 env->exception_injected = events.exception.injected; 4520 env->exception_nr = 4521 (env->exception_pending || env->exception_injected) ? 4522 events.exception.nr : -1; 4523 env->has_error_code = events.exception.has_error_code; 4524 env->error_code = events.exception.error_code; 4525 4526 env->interrupt_injected = 4527 events.interrupt.injected ? events.interrupt.nr : -1; 4528 env->soft_interrupt = events.interrupt.soft; 4529 4530 env->nmi_injected = events.nmi.injected; 4531 env->nmi_pending = events.nmi.pending; 4532 if (events.nmi.masked) { 4533 env->hflags2 |= HF2_NMI_MASK; 4534 } else { 4535 env->hflags2 &= ~HF2_NMI_MASK; 4536 } 4537 4538 if (events.flags & KVM_VCPUEVENT_VALID_SMM) { 4539 if (events.smi.smm) { 4540 env->hflags |= HF_SMM_MASK; 4541 } else { 4542 env->hflags &= ~HF_SMM_MASK; 4543 } 4544 if (events.smi.pending) { 4545 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 4546 } else { 4547 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 4548 } 4549 if (events.smi.smm_inside_nmi) { 4550 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; 4551 } else { 4552 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; 4553 } 4554 if (events.smi.latched_init) { 4555 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 4556 } else { 4557 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 4558 } 4559 } 4560 4561 if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 4562 env->triple_fault_pending = events.triple_fault.pending; 4563 } 4564 4565 env->sipi_vector = events.sipi_vector; 4566 4567 return 0; 4568 } 4569 4570 static int kvm_guest_debug_workarounds(X86CPU *cpu) 4571 { 4572 CPUState *cs = CPU(cpu); 4573 CPUX86State *env = &cpu->env; 4574 int ret = 0; 4575 unsigned long reinject_trap = 0; 4576 4577 if (!kvm_has_vcpu_events()) { 4578 if (env->exception_nr == EXCP01_DB) { 4579 reinject_trap = KVM_GUESTDBG_INJECT_DB; 4580 } else if (env->exception_injected == EXCP03_INT3) { 4581 reinject_trap = KVM_GUESTDBG_INJECT_BP; 4582 } 4583 kvm_reset_exception(env); 4584 } 4585 4586 /* 4587 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF 4588 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this 4589 * by updating the debug state once again if single-stepping is on. 4590 * Another reason to call kvm_update_guest_debug here is a pending debug 4591 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to 4592 * reinject them via SET_GUEST_DEBUG. 4593 */ 4594 if (reinject_trap || 4595 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { 4596 ret = kvm_update_guest_debug(cs, reinject_trap); 4597 } 4598 return ret; 4599 } 4600 4601 static int kvm_put_debugregs(X86CPU *cpu) 4602 { 4603 CPUX86State *env = &cpu->env; 4604 struct kvm_debugregs dbgregs; 4605 int i; 4606 4607 if (!kvm_has_debugregs()) { 4608 return 0; 4609 } 4610 4611 memset(&dbgregs, 0, sizeof(dbgregs)); 4612 for (i = 0; i < 4; i++) { 4613 dbgregs.db[i] = env->dr[i]; 4614 } 4615 dbgregs.dr6 = env->dr[6]; 4616 dbgregs.dr7 = env->dr[7]; 4617 dbgregs.flags = 0; 4618 4619 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); 4620 } 4621 4622 static int kvm_get_debugregs(X86CPU *cpu) 4623 { 4624 CPUX86State *env = &cpu->env; 4625 struct kvm_debugregs dbgregs; 4626 int i, ret; 4627 4628 if (!kvm_has_debugregs()) { 4629 return 0; 4630 } 4631 4632 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); 4633 if (ret < 0) { 4634 return ret; 4635 } 4636 for (i = 0; i < 4; i++) { 4637 env->dr[i] = dbgregs.db[i]; 4638 } 4639 env->dr[4] = env->dr[6] = dbgregs.dr6; 4640 env->dr[5] = env->dr[7] = dbgregs.dr7; 4641 4642 return 0; 4643 } 4644 4645 static int kvm_put_nested_state(X86CPU *cpu) 4646 { 4647 CPUX86State *env = &cpu->env; 4648 int max_nested_state_len = kvm_max_nested_state_length(); 4649 4650 if (!env->nested_state) { 4651 return 0; 4652 } 4653 4654 /* 4655 * Copy flags that are affected by reset from env->hflags and env->hflags2. 4656 */ 4657 if (env->hflags & HF_GUEST_MASK) { 4658 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE; 4659 } else { 4660 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE; 4661 } 4662 4663 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */ 4664 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) { 4665 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET; 4666 } else { 4667 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET; 4668 } 4669 4670 assert(env->nested_state->size <= max_nested_state_len); 4671 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state); 4672 } 4673 4674 static int kvm_get_nested_state(X86CPU *cpu) 4675 { 4676 CPUX86State *env = &cpu->env; 4677 int max_nested_state_len = kvm_max_nested_state_length(); 4678 int ret; 4679 4680 if (!env->nested_state) { 4681 return 0; 4682 } 4683 4684 /* 4685 * It is possible that migration restored a smaller size into 4686 * nested_state->hdr.size than what our kernel support. 4687 * We preserve migration origin nested_state->hdr.size for 4688 * call to KVM_SET_NESTED_STATE but wish that our next call 4689 * to KVM_GET_NESTED_STATE will use max size our kernel support. 4690 */ 4691 env->nested_state->size = max_nested_state_len; 4692 4693 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state); 4694 if (ret < 0) { 4695 return ret; 4696 } 4697 4698 /* 4699 * Copy flags that are affected by reset to env->hflags and env->hflags2. 4700 */ 4701 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) { 4702 env->hflags |= HF_GUEST_MASK; 4703 } else { 4704 env->hflags &= ~HF_GUEST_MASK; 4705 } 4706 4707 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */ 4708 if (cpu_has_svm(env)) { 4709 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) { 4710 env->hflags2 |= HF2_GIF_MASK; 4711 } else { 4712 env->hflags2 &= ~HF2_GIF_MASK; 4713 } 4714 } 4715 4716 return ret; 4717 } 4718 4719 int kvm_arch_put_registers(CPUState *cpu, int level) 4720 { 4721 X86CPU *x86_cpu = X86_CPU(cpu); 4722 int ret; 4723 4724 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); 4725 4726 /* 4727 * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX 4728 * root operation upon vCPU reset. kvm_put_msr_feature_control() should also 4729 * precede kvm_put_nested_state() when 'real' nested state is set. 4730 */ 4731 if (level >= KVM_PUT_RESET_STATE) { 4732 ret = kvm_put_msr_feature_control(x86_cpu); 4733 if (ret < 0) { 4734 return ret; 4735 } 4736 } 4737 4738 /* must be before kvm_put_nested_state so that EFER.SVME is set */ 4739 ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu); 4740 if (ret < 0) { 4741 return ret; 4742 } 4743 4744 if (level >= KVM_PUT_RESET_STATE) { 4745 ret = kvm_put_nested_state(x86_cpu); 4746 if (ret < 0) { 4747 return ret; 4748 } 4749 } 4750 4751 if (level == KVM_PUT_FULL_STATE) { 4752 /* We don't check for kvm_arch_set_tsc_khz() errors here, 4753 * because TSC frequency mismatch shouldn't abort migration, 4754 * unless the user explicitly asked for a more strict TSC 4755 * setting (e.g. using an explicit "tsc-freq" option). 4756 */ 4757 kvm_arch_set_tsc_khz(cpu); 4758 } 4759 4760 #ifdef CONFIG_XEN_EMU 4761 if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) { 4762 ret = kvm_put_xen_state(cpu); 4763 if (ret < 0) { 4764 return ret; 4765 } 4766 } 4767 #endif 4768 4769 ret = kvm_getput_regs(x86_cpu, 1); 4770 if (ret < 0) { 4771 return ret; 4772 } 4773 ret = kvm_put_xsave(x86_cpu); 4774 if (ret < 0) { 4775 return ret; 4776 } 4777 ret = kvm_put_xcrs(x86_cpu); 4778 if (ret < 0) { 4779 return ret; 4780 } 4781 /* must be before kvm_put_msrs */ 4782 ret = kvm_inject_mce_oldstyle(x86_cpu); 4783 if (ret < 0) { 4784 return ret; 4785 } 4786 ret = kvm_put_msrs(x86_cpu, level); 4787 if (ret < 0) { 4788 return ret; 4789 } 4790 ret = kvm_put_vcpu_events(x86_cpu, level); 4791 if (ret < 0) { 4792 return ret; 4793 } 4794 if (level >= KVM_PUT_RESET_STATE) { 4795 ret = kvm_put_mp_state(x86_cpu); 4796 if (ret < 0) { 4797 return ret; 4798 } 4799 } 4800 4801 ret = kvm_put_tscdeadline_msr(x86_cpu); 4802 if (ret < 0) { 4803 return ret; 4804 } 4805 ret = kvm_put_debugregs(x86_cpu); 4806 if (ret < 0) { 4807 return ret; 4808 } 4809 /* must be last */ 4810 ret = kvm_guest_debug_workarounds(x86_cpu); 4811 if (ret < 0) { 4812 return ret; 4813 } 4814 return 0; 4815 } 4816 4817 int kvm_arch_get_registers(CPUState *cs) 4818 { 4819 X86CPU *cpu = X86_CPU(cs); 4820 int ret; 4821 4822 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); 4823 4824 ret = kvm_get_vcpu_events(cpu); 4825 if (ret < 0) { 4826 goto out; 4827 } 4828 /* 4829 * KVM_GET_MPSTATE can modify CS and RIP, call it before 4830 * KVM_GET_REGS and KVM_GET_SREGS. 4831 */ 4832 ret = kvm_get_mp_state(cpu); 4833 if (ret < 0) { 4834 goto out; 4835 } 4836 ret = kvm_getput_regs(cpu, 0); 4837 if (ret < 0) { 4838 goto out; 4839 } 4840 ret = kvm_get_xsave(cpu); 4841 if (ret < 0) { 4842 goto out; 4843 } 4844 ret = kvm_get_xcrs(cpu); 4845 if (ret < 0) { 4846 goto out; 4847 } 4848 ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu); 4849 if (ret < 0) { 4850 goto out; 4851 } 4852 ret = kvm_get_msrs(cpu); 4853 if (ret < 0) { 4854 goto out; 4855 } 4856 ret = kvm_get_apic(cpu); 4857 if (ret < 0) { 4858 goto out; 4859 } 4860 ret = kvm_get_debugregs(cpu); 4861 if (ret < 0) { 4862 goto out; 4863 } 4864 ret = kvm_get_nested_state(cpu); 4865 if (ret < 0) { 4866 goto out; 4867 } 4868 #ifdef CONFIG_XEN_EMU 4869 if (xen_mode == XEN_EMULATE) { 4870 ret = kvm_get_xen_state(cs); 4871 if (ret < 0) { 4872 goto out; 4873 } 4874 } 4875 #endif 4876 ret = 0; 4877 out: 4878 cpu_sync_bndcs_hflags(&cpu->env); 4879 return ret; 4880 } 4881 4882 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 4883 { 4884 X86CPU *x86_cpu = X86_CPU(cpu); 4885 CPUX86State *env = &x86_cpu->env; 4886 int ret; 4887 4888 /* Inject NMI */ 4889 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { 4890 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { 4891 qemu_mutex_lock_iothread(); 4892 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; 4893 qemu_mutex_unlock_iothread(); 4894 DPRINTF("injected NMI\n"); 4895 ret = kvm_vcpu_ioctl(cpu, KVM_NMI); 4896 if (ret < 0) { 4897 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", 4898 strerror(-ret)); 4899 } 4900 } 4901 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { 4902 qemu_mutex_lock_iothread(); 4903 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; 4904 qemu_mutex_unlock_iothread(); 4905 DPRINTF("injected SMI\n"); 4906 ret = kvm_vcpu_ioctl(cpu, KVM_SMI); 4907 if (ret < 0) { 4908 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", 4909 strerror(-ret)); 4910 } 4911 } 4912 } 4913 4914 if (!kvm_pic_in_kernel()) { 4915 qemu_mutex_lock_iothread(); 4916 } 4917 4918 /* Force the VCPU out of its inner loop to process any INIT requests 4919 * or (for userspace APIC, but it is cheap to combine the checks here) 4920 * pending TPR access reports. 4921 */ 4922 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { 4923 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && 4924 !(env->hflags & HF_SMM_MASK)) { 4925 cpu->exit_request = 1; 4926 } 4927 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { 4928 cpu->exit_request = 1; 4929 } 4930 } 4931 4932 if (!kvm_pic_in_kernel()) { 4933 /* Try to inject an interrupt if the guest can accept it */ 4934 if (run->ready_for_interrupt_injection && 4935 (cpu->interrupt_request & CPU_INTERRUPT_HARD) && 4936 (env->eflags & IF_MASK)) { 4937 int irq; 4938 4939 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; 4940 irq = cpu_get_pic_interrupt(env); 4941 if (irq >= 0) { 4942 struct kvm_interrupt intr; 4943 4944 intr.irq = irq; 4945 DPRINTF("injected interrupt %d\n", irq); 4946 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); 4947 if (ret < 0) { 4948 fprintf(stderr, 4949 "KVM: injection failed, interrupt lost (%s)\n", 4950 strerror(-ret)); 4951 } 4952 } 4953 } 4954 4955 /* If we have an interrupt but the guest is not ready to receive an 4956 * interrupt, request an interrupt window exit. This will 4957 * cause a return to userspace as soon as the guest is ready to 4958 * receive interrupts. */ 4959 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { 4960 run->request_interrupt_window = 1; 4961 } else { 4962 run->request_interrupt_window = 0; 4963 } 4964 4965 DPRINTF("setting tpr\n"); 4966 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); 4967 4968 qemu_mutex_unlock_iothread(); 4969 } 4970 } 4971 4972 static void kvm_rate_limit_on_bus_lock(void) 4973 { 4974 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1); 4975 4976 if (delay_ns) { 4977 g_usleep(delay_ns / SCALE_US); 4978 } 4979 } 4980 4981 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) 4982 { 4983 X86CPU *x86_cpu = X86_CPU(cpu); 4984 CPUX86State *env = &x86_cpu->env; 4985 4986 if (run->flags & KVM_RUN_X86_SMM) { 4987 env->hflags |= HF_SMM_MASK; 4988 } else { 4989 env->hflags &= ~HF_SMM_MASK; 4990 } 4991 if (run->if_flag) { 4992 env->eflags |= IF_MASK; 4993 } else { 4994 env->eflags &= ~IF_MASK; 4995 } 4996 if (run->flags & KVM_RUN_X86_BUS_LOCK) { 4997 kvm_rate_limit_on_bus_lock(); 4998 } 4999 5000 #ifdef CONFIG_XEN_EMU 5001 /* 5002 * If the callback is asserted as a GSI (or PCI INTx) then check if 5003 * vcpu_info->evtchn_upcall_pending has been cleared, and deassert 5004 * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC 5005 * EOI and only resample then, exactly how the VFIO eventfd pairs 5006 * are designed to work for level triggered interrupts. 5007 */ 5008 if (x86_cpu->env.xen_callback_asserted) { 5009 kvm_xen_maybe_deassert_callback(cpu); 5010 } 5011 #endif 5012 5013 /* We need to protect the apic state against concurrent accesses from 5014 * different threads in case the userspace irqchip is used. */ 5015 if (!kvm_irqchip_in_kernel()) { 5016 qemu_mutex_lock_iothread(); 5017 } 5018 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); 5019 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); 5020 if (!kvm_irqchip_in_kernel()) { 5021 qemu_mutex_unlock_iothread(); 5022 } 5023 return cpu_get_mem_attrs(env); 5024 } 5025 5026 int kvm_arch_process_async_events(CPUState *cs) 5027 { 5028 X86CPU *cpu = X86_CPU(cs); 5029 CPUX86State *env = &cpu->env; 5030 5031 if (cs->interrupt_request & CPU_INTERRUPT_MCE) { 5032 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ 5033 assert(env->mcg_cap); 5034 5035 cs->interrupt_request &= ~CPU_INTERRUPT_MCE; 5036 5037 kvm_cpu_synchronize_state(cs); 5038 5039 if (env->exception_nr == EXCP08_DBLE) { 5040 /* this means triple fault */ 5041 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 5042 cs->exit_request = 1; 5043 return 0; 5044 } 5045 kvm_queue_exception(env, EXCP12_MCHK, 0, 0); 5046 env->has_error_code = 0; 5047 5048 cs->halted = 0; 5049 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { 5050 env->mp_state = KVM_MP_STATE_RUNNABLE; 5051 } 5052 } 5053 5054 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && 5055 !(env->hflags & HF_SMM_MASK)) { 5056 kvm_cpu_synchronize_state(cs); 5057 do_cpu_init(cpu); 5058 } 5059 5060 if (kvm_irqchip_in_kernel()) { 5061 return 0; 5062 } 5063 5064 if (cs->interrupt_request & CPU_INTERRUPT_POLL) { 5065 cs->interrupt_request &= ~CPU_INTERRUPT_POLL; 5066 apic_poll_irq(cpu->apic_state); 5067 } 5068 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && 5069 (env->eflags & IF_MASK)) || 5070 (cs->interrupt_request & CPU_INTERRUPT_NMI)) { 5071 cs->halted = 0; 5072 } 5073 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { 5074 kvm_cpu_synchronize_state(cs); 5075 do_cpu_sipi(cpu); 5076 } 5077 if (cs->interrupt_request & CPU_INTERRUPT_TPR) { 5078 cs->interrupt_request &= ~CPU_INTERRUPT_TPR; 5079 kvm_cpu_synchronize_state(cs); 5080 apic_handle_tpr_access_report(cpu->apic_state, env->eip, 5081 env->tpr_access_type); 5082 } 5083 5084 return cs->halted; 5085 } 5086 5087 static int kvm_handle_halt(X86CPU *cpu) 5088 { 5089 CPUState *cs = CPU(cpu); 5090 CPUX86State *env = &cpu->env; 5091 5092 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && 5093 (env->eflags & IF_MASK)) && 5094 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { 5095 cs->halted = 1; 5096 return EXCP_HLT; 5097 } 5098 5099 return 0; 5100 } 5101 5102 static int kvm_handle_tpr_access(X86CPU *cpu) 5103 { 5104 CPUState *cs = CPU(cpu); 5105 struct kvm_run *run = cs->kvm_run; 5106 5107 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, 5108 run->tpr_access.is_write ? TPR_ACCESS_WRITE 5109 : TPR_ACCESS_READ); 5110 return 1; 5111 } 5112 5113 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 5114 { 5115 static const uint8_t int3 = 0xcc; 5116 5117 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || 5118 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { 5119 return -EINVAL; 5120 } 5121 return 0; 5122 } 5123 5124 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 5125 { 5126 uint8_t int3; 5127 5128 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) { 5129 return -EINVAL; 5130 } 5131 if (int3 != 0xcc) { 5132 return 0; 5133 } 5134 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { 5135 return -EINVAL; 5136 } 5137 return 0; 5138 } 5139 5140 static struct { 5141 target_ulong addr; 5142 int len; 5143 int type; 5144 } hw_breakpoint[4]; 5145 5146 static int nb_hw_breakpoint; 5147 5148 static int find_hw_breakpoint(target_ulong addr, int len, int type) 5149 { 5150 int n; 5151 5152 for (n = 0; n < nb_hw_breakpoint; n++) { 5153 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && 5154 (hw_breakpoint[n].len == len || len == -1)) { 5155 return n; 5156 } 5157 } 5158 return -1; 5159 } 5160 5161 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type) 5162 { 5163 switch (type) { 5164 case GDB_BREAKPOINT_HW: 5165 len = 1; 5166 break; 5167 case GDB_WATCHPOINT_WRITE: 5168 case GDB_WATCHPOINT_ACCESS: 5169 switch (len) { 5170 case 1: 5171 break; 5172 case 2: 5173 case 4: 5174 case 8: 5175 if (addr & (len - 1)) { 5176 return -EINVAL; 5177 } 5178 break; 5179 default: 5180 return -EINVAL; 5181 } 5182 break; 5183 default: 5184 return -ENOSYS; 5185 } 5186 5187 if (nb_hw_breakpoint == 4) { 5188 return -ENOBUFS; 5189 } 5190 if (find_hw_breakpoint(addr, len, type) >= 0) { 5191 return -EEXIST; 5192 } 5193 hw_breakpoint[nb_hw_breakpoint].addr = addr; 5194 hw_breakpoint[nb_hw_breakpoint].len = len; 5195 hw_breakpoint[nb_hw_breakpoint].type = type; 5196 nb_hw_breakpoint++; 5197 5198 return 0; 5199 } 5200 5201 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type) 5202 { 5203 int n; 5204 5205 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); 5206 if (n < 0) { 5207 return -ENOENT; 5208 } 5209 nb_hw_breakpoint--; 5210 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; 5211 5212 return 0; 5213 } 5214 5215 void kvm_arch_remove_all_hw_breakpoints(void) 5216 { 5217 nb_hw_breakpoint = 0; 5218 } 5219 5220 static CPUWatchpoint hw_watchpoint; 5221 5222 static int kvm_handle_debug(X86CPU *cpu, 5223 struct kvm_debug_exit_arch *arch_info) 5224 { 5225 CPUState *cs = CPU(cpu); 5226 CPUX86State *env = &cpu->env; 5227 int ret = 0; 5228 int n; 5229 5230 if (arch_info->exception == EXCP01_DB) { 5231 if (arch_info->dr6 & DR6_BS) { 5232 if (cs->singlestep_enabled) { 5233 ret = EXCP_DEBUG; 5234 } 5235 } else { 5236 for (n = 0; n < 4; n++) { 5237 if (arch_info->dr6 & (1 << n)) { 5238 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { 5239 case 0x0: 5240 ret = EXCP_DEBUG; 5241 break; 5242 case 0x1: 5243 ret = EXCP_DEBUG; 5244 cs->watchpoint_hit = &hw_watchpoint; 5245 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 5246 hw_watchpoint.flags = BP_MEM_WRITE; 5247 break; 5248 case 0x3: 5249 ret = EXCP_DEBUG; 5250 cs->watchpoint_hit = &hw_watchpoint; 5251 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 5252 hw_watchpoint.flags = BP_MEM_ACCESS; 5253 break; 5254 } 5255 } 5256 } 5257 } 5258 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { 5259 ret = EXCP_DEBUG; 5260 } 5261 if (ret == 0) { 5262 cpu_synchronize_state(cs); 5263 assert(env->exception_nr == -1); 5264 5265 /* pass to guest */ 5266 kvm_queue_exception(env, arch_info->exception, 5267 arch_info->exception == EXCP01_DB, 5268 arch_info->dr6); 5269 env->has_error_code = 0; 5270 } 5271 5272 return ret; 5273 } 5274 5275 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 5276 { 5277 const uint8_t type_code[] = { 5278 [GDB_BREAKPOINT_HW] = 0x0, 5279 [GDB_WATCHPOINT_WRITE] = 0x1, 5280 [GDB_WATCHPOINT_ACCESS] = 0x3 5281 }; 5282 const uint8_t len_code[] = { 5283 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 5284 }; 5285 int n; 5286 5287 if (kvm_sw_breakpoints_active(cpu)) { 5288 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 5289 } 5290 if (nb_hw_breakpoint > 0) { 5291 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 5292 dbg->arch.debugreg[7] = 0x0600; 5293 for (n = 0; n < nb_hw_breakpoint; n++) { 5294 dbg->arch.debugreg[n] = hw_breakpoint[n].addr; 5295 dbg->arch.debugreg[7] |= (2 << (n * 2)) | 5296 (type_code[hw_breakpoint[n].type] << (16 + n*4)) | 5297 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); 5298 } 5299 } 5300 } 5301 5302 static bool kvm_install_msr_filters(KVMState *s) 5303 { 5304 uint64_t zero = 0; 5305 struct kvm_msr_filter filter = { 5306 .flags = KVM_MSR_FILTER_DEFAULT_ALLOW, 5307 }; 5308 int r, i, j = 0; 5309 5310 for (i = 0; i < KVM_MSR_FILTER_MAX_RANGES; i++) { 5311 KVMMSRHandlers *handler = &msr_handlers[i]; 5312 if (handler->msr) { 5313 struct kvm_msr_filter_range *range = &filter.ranges[j++]; 5314 5315 *range = (struct kvm_msr_filter_range) { 5316 .flags = 0, 5317 .nmsrs = 1, 5318 .base = handler->msr, 5319 .bitmap = (__u8 *)&zero, 5320 }; 5321 5322 if (handler->rdmsr) { 5323 range->flags |= KVM_MSR_FILTER_READ; 5324 } 5325 5326 if (handler->wrmsr) { 5327 range->flags |= KVM_MSR_FILTER_WRITE; 5328 } 5329 } 5330 } 5331 5332 r = kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter); 5333 if (r) { 5334 return false; 5335 } 5336 5337 return true; 5338 } 5339 5340 bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr, 5341 QEMUWRMSRHandler *wrmsr) 5342 { 5343 int i; 5344 5345 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5346 if (!msr_handlers[i].msr) { 5347 msr_handlers[i] = (KVMMSRHandlers) { 5348 .msr = msr, 5349 .rdmsr = rdmsr, 5350 .wrmsr = wrmsr, 5351 }; 5352 5353 if (!kvm_install_msr_filters(s)) { 5354 msr_handlers[i] = (KVMMSRHandlers) { }; 5355 return false; 5356 } 5357 5358 return true; 5359 } 5360 } 5361 5362 return false; 5363 } 5364 5365 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run) 5366 { 5367 int i; 5368 bool r; 5369 5370 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5371 KVMMSRHandlers *handler = &msr_handlers[i]; 5372 if (run->msr.index == handler->msr) { 5373 if (handler->rdmsr) { 5374 r = handler->rdmsr(cpu, handler->msr, 5375 (uint64_t *)&run->msr.data); 5376 run->msr.error = r ? 0 : 1; 5377 return 0; 5378 } 5379 } 5380 } 5381 5382 assert(false); 5383 } 5384 5385 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run) 5386 { 5387 int i; 5388 bool r; 5389 5390 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5391 KVMMSRHandlers *handler = &msr_handlers[i]; 5392 if (run->msr.index == handler->msr) { 5393 if (handler->wrmsr) { 5394 r = handler->wrmsr(cpu, handler->msr, run->msr.data); 5395 run->msr.error = r ? 0 : 1; 5396 return 0; 5397 } 5398 } 5399 } 5400 5401 assert(false); 5402 } 5403 5404 static bool has_sgx_provisioning; 5405 5406 static bool __kvm_enable_sgx_provisioning(KVMState *s) 5407 { 5408 int fd, ret; 5409 5410 if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) { 5411 return false; 5412 } 5413 5414 fd = qemu_open_old("/dev/sgx_provision", O_RDONLY); 5415 if (fd < 0) { 5416 return false; 5417 } 5418 5419 ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd); 5420 if (ret) { 5421 error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret)); 5422 exit(1); 5423 } 5424 close(fd); 5425 return true; 5426 } 5427 5428 bool kvm_enable_sgx_provisioning(KVMState *s) 5429 { 5430 return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning); 5431 } 5432 5433 static bool host_supports_vmx(void) 5434 { 5435 uint32_t ecx, unused; 5436 5437 host_cpuid(1, 0, &unused, &unused, &ecx, &unused); 5438 return ecx & CPUID_EXT_VMX; 5439 } 5440 5441 #define VMX_INVALID_GUEST_STATE 0x80000021 5442 5443 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 5444 { 5445 X86CPU *cpu = X86_CPU(cs); 5446 uint64_t code; 5447 int ret; 5448 bool ctx_invalid; 5449 char str[256]; 5450 KVMState *state; 5451 5452 switch (run->exit_reason) { 5453 case KVM_EXIT_HLT: 5454 DPRINTF("handle_hlt\n"); 5455 qemu_mutex_lock_iothread(); 5456 ret = kvm_handle_halt(cpu); 5457 qemu_mutex_unlock_iothread(); 5458 break; 5459 case KVM_EXIT_SET_TPR: 5460 ret = 0; 5461 break; 5462 case KVM_EXIT_TPR_ACCESS: 5463 qemu_mutex_lock_iothread(); 5464 ret = kvm_handle_tpr_access(cpu); 5465 qemu_mutex_unlock_iothread(); 5466 break; 5467 case KVM_EXIT_FAIL_ENTRY: 5468 code = run->fail_entry.hardware_entry_failure_reason; 5469 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", 5470 code); 5471 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { 5472 fprintf(stderr, 5473 "\nIf you're running a guest on an Intel machine without " 5474 "unrestricted mode\n" 5475 "support, the failure can be most likely due to the guest " 5476 "entering an invalid\n" 5477 "state for Intel VT. For example, the guest maybe running " 5478 "in big real mode\n" 5479 "which is not supported on less recent Intel processors." 5480 "\n\n"); 5481 } 5482 ret = -1; 5483 break; 5484 case KVM_EXIT_EXCEPTION: 5485 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", 5486 run->ex.exception, run->ex.error_code); 5487 ret = -1; 5488 break; 5489 case KVM_EXIT_DEBUG: 5490 DPRINTF("kvm_exit_debug\n"); 5491 qemu_mutex_lock_iothread(); 5492 ret = kvm_handle_debug(cpu, &run->debug.arch); 5493 qemu_mutex_unlock_iothread(); 5494 break; 5495 case KVM_EXIT_HYPERV: 5496 ret = kvm_hv_handle_exit(cpu, &run->hyperv); 5497 break; 5498 case KVM_EXIT_IOAPIC_EOI: 5499 ioapic_eoi_broadcast(run->eoi.vector); 5500 ret = 0; 5501 break; 5502 case KVM_EXIT_X86_BUS_LOCK: 5503 /* already handled in kvm_arch_post_run */ 5504 ret = 0; 5505 break; 5506 case KVM_EXIT_NOTIFY: 5507 ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID); 5508 state = KVM_STATE(current_accel()); 5509 sprintf(str, "Encounter a notify exit with %svalid context in" 5510 " guest. There can be possible misbehaves in guest." 5511 " Please have a look.", ctx_invalid ? "in" : ""); 5512 if (ctx_invalid || 5513 state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) { 5514 warn_report("KVM internal error: %s", str); 5515 ret = -1; 5516 } else { 5517 warn_report_once("KVM: %s", str); 5518 ret = 0; 5519 } 5520 break; 5521 case KVM_EXIT_X86_RDMSR: 5522 /* We only enable MSR filtering, any other exit is bogus */ 5523 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER); 5524 ret = kvm_handle_rdmsr(cpu, run); 5525 break; 5526 case KVM_EXIT_X86_WRMSR: 5527 /* We only enable MSR filtering, any other exit is bogus */ 5528 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER); 5529 ret = kvm_handle_wrmsr(cpu, run); 5530 break; 5531 #ifdef CONFIG_XEN_EMU 5532 case KVM_EXIT_XEN: 5533 ret = kvm_xen_handle_exit(cpu, &run->xen); 5534 break; 5535 #endif 5536 default: 5537 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); 5538 ret = -1; 5539 break; 5540 } 5541 5542 return ret; 5543 } 5544 5545 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 5546 { 5547 X86CPU *cpu = X86_CPU(cs); 5548 CPUX86State *env = &cpu->env; 5549 5550 kvm_cpu_synchronize_state(cs); 5551 return !(env->cr[0] & CR0_PE_MASK) || 5552 ((env->segs[R_CS].selector & 3) != 3); 5553 } 5554 5555 void kvm_arch_init_irq_routing(KVMState *s) 5556 { 5557 /* We know at this point that we're using the in-kernel 5558 * irqchip, so we can use irqfds, and on x86 we know 5559 * we can use msi via irqfd and GSI routing. 5560 */ 5561 kvm_msi_via_irqfd_allowed = true; 5562 kvm_gsi_routing_allowed = true; 5563 5564 if (kvm_irqchip_is_split()) { 5565 KVMRouteChange c = kvm_irqchip_begin_route_changes(s); 5566 int i; 5567 5568 /* If the ioapic is in QEMU and the lapics are in KVM, reserve 5569 MSI routes for signaling interrupts to the local apics. */ 5570 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 5571 if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) { 5572 error_report("Could not enable split IRQ mode."); 5573 exit(1); 5574 } 5575 } 5576 kvm_irqchip_commit_route_changes(&c); 5577 } 5578 } 5579 5580 int kvm_arch_irqchip_create(KVMState *s) 5581 { 5582 int ret; 5583 if (kvm_kernel_irqchip_split()) { 5584 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); 5585 if (ret) { 5586 error_report("Could not enable split irqchip mode: %s", 5587 strerror(-ret)); 5588 exit(1); 5589 } else { 5590 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); 5591 kvm_split_irqchip = true; 5592 return 1; 5593 } 5594 } else { 5595 return 0; 5596 } 5597 } 5598 5599 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address) 5600 { 5601 CPUX86State *env; 5602 uint64_t ext_id; 5603 5604 if (!first_cpu) { 5605 return address; 5606 } 5607 env = &X86_CPU(first_cpu)->env; 5608 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) { 5609 return address; 5610 } 5611 5612 /* 5613 * If the remappable format bit is set, or the upper bits are 5614 * already set in address_hi, or the low extended bits aren't 5615 * there anyway, do nothing. 5616 */ 5617 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT); 5618 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) { 5619 return address; 5620 } 5621 5622 address &= ~ext_id; 5623 address |= ext_id << 35; 5624 return address; 5625 } 5626 5627 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 5628 uint64_t address, uint32_t data, PCIDevice *dev) 5629 { 5630 X86IOMMUState *iommu = x86_iommu_get_default(); 5631 5632 if (iommu) { 5633 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu); 5634 5635 if (class->int_remap) { 5636 int ret; 5637 MSIMessage src, dst; 5638 5639 src.address = route->u.msi.address_hi; 5640 src.address <<= VTD_MSI_ADDR_HI_SHIFT; 5641 src.address |= route->u.msi.address_lo; 5642 src.data = route->u.msi.data; 5643 5644 ret = class->int_remap(iommu, &src, &dst, dev ? \ 5645 pci_requester_id(dev) : \ 5646 X86_IOMMU_SID_INVALID); 5647 if (ret) { 5648 trace_kvm_x86_fixup_msi_error(route->gsi); 5649 return 1; 5650 } 5651 5652 /* 5653 * Handled untranslated compatibility format interrupt with 5654 * extended destination ID in the low bits 11-5. */ 5655 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address); 5656 5657 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; 5658 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; 5659 route->u.msi.data = dst.data; 5660 return 0; 5661 } 5662 } 5663 5664 #ifdef CONFIG_XEN_EMU 5665 if (xen_mode == XEN_EMULATE) { 5666 int handled = xen_evtchn_translate_pirq_msi(route, address, data); 5667 5668 /* 5669 * If it was a PIRQ and successfully routed (handled == 0) or it was 5670 * an error (handled < 0), return. If it wasn't a PIRQ, keep going. 5671 */ 5672 if (handled <= 0) { 5673 return handled; 5674 } 5675 } 5676 #endif 5677 5678 address = kvm_swizzle_msi_ext_dest_id(address); 5679 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT; 5680 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK; 5681 return 0; 5682 } 5683 5684 typedef struct MSIRouteEntry MSIRouteEntry; 5685 5686 struct MSIRouteEntry { 5687 PCIDevice *dev; /* Device pointer */ 5688 int vector; /* MSI/MSIX vector index */ 5689 int virq; /* Virtual IRQ index */ 5690 QLIST_ENTRY(MSIRouteEntry) list; 5691 }; 5692 5693 /* List of used GSI routes */ 5694 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ 5695 QLIST_HEAD_INITIALIZER(msi_route_list); 5696 5697 void kvm_update_msi_routes_all(void *private, bool global, 5698 uint32_t index, uint32_t mask) 5699 { 5700 int cnt = 0, vector; 5701 MSIRouteEntry *entry; 5702 MSIMessage msg; 5703 PCIDevice *dev; 5704 5705 /* TODO: explicit route update */ 5706 QLIST_FOREACH(entry, &msi_route_list, list) { 5707 cnt++; 5708 vector = entry->vector; 5709 dev = entry->dev; 5710 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) { 5711 msg = msix_get_message(dev, vector); 5712 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) { 5713 msg = msi_get_message(dev, vector); 5714 } else { 5715 /* 5716 * Either MSI/MSIX is disabled for the device, or the 5717 * specific message was masked out. Skip this one. 5718 */ 5719 continue; 5720 } 5721 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); 5722 } 5723 kvm_irqchip_commit_routes(kvm_state); 5724 trace_kvm_x86_update_msi_routes(cnt); 5725 } 5726 5727 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 5728 int vector, PCIDevice *dev) 5729 { 5730 static bool notify_list_inited = false; 5731 MSIRouteEntry *entry; 5732 5733 if (!dev) { 5734 /* These are (possibly) IOAPIC routes only used for split 5735 * kernel irqchip mode, while what we are housekeeping are 5736 * PCI devices only. */ 5737 return 0; 5738 } 5739 5740 entry = g_new0(MSIRouteEntry, 1); 5741 entry->dev = dev; 5742 entry->vector = vector; 5743 entry->virq = route->gsi; 5744 QLIST_INSERT_HEAD(&msi_route_list, entry, list); 5745 5746 trace_kvm_x86_add_msi_route(route->gsi); 5747 5748 if (!notify_list_inited) { 5749 /* For the first time we do add route, add ourselves into 5750 * IOMMU's IEC notify list if needed. */ 5751 X86IOMMUState *iommu = x86_iommu_get_default(); 5752 if (iommu) { 5753 x86_iommu_iec_register_notifier(iommu, 5754 kvm_update_msi_routes_all, 5755 NULL); 5756 } 5757 notify_list_inited = true; 5758 } 5759 return 0; 5760 } 5761 5762 int kvm_arch_release_virq_post(int virq) 5763 { 5764 MSIRouteEntry *entry, *next; 5765 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { 5766 if (entry->virq == virq) { 5767 trace_kvm_x86_remove_msi_route(virq); 5768 QLIST_REMOVE(entry, list); 5769 g_free(entry); 5770 break; 5771 } 5772 } 5773 return 0; 5774 } 5775 5776 int kvm_arch_msi_data_to_gsi(uint32_t data) 5777 { 5778 abort(); 5779 } 5780 5781 bool kvm_has_waitpkg(void) 5782 { 5783 return has_msr_umwait; 5784 } 5785 5786 bool kvm_arch_cpu_check_are_resettable(void) 5787 { 5788 return !sev_es_enabled(); 5789 } 5790 5791 #define ARCH_REQ_XCOMP_GUEST_PERM 0x1025 5792 5793 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask) 5794 { 5795 KVMState *s = kvm_state; 5796 uint64_t supported; 5797 5798 mask &= XSTATE_DYNAMIC_MASK; 5799 if (!mask) { 5800 return; 5801 } 5802 /* 5803 * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0]. 5804 * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned 5805 * about them already because they are not supported features. 5806 */ 5807 supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX); 5808 supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32; 5809 mask &= supported; 5810 5811 while (mask) { 5812 int bit = ctz64(mask); 5813 int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit); 5814 if (rc) { 5815 /* 5816 * Older kernel version (<5.17) do not support 5817 * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return 5818 * any dynamic feature from kvm_arch_get_supported_cpuid. 5819 */ 5820 warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure " 5821 "for feature bit %d", bit); 5822 } 5823 mask &= ~BIT_ULL(bit); 5824 } 5825 } 5826 5827 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp) 5828 { 5829 KVMState *s = KVM_STATE(obj); 5830 return s->notify_vmexit; 5831 } 5832 5833 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp) 5834 { 5835 KVMState *s = KVM_STATE(obj); 5836 5837 if (s->fd != -1) { 5838 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 5839 return; 5840 } 5841 5842 s->notify_vmexit = value; 5843 } 5844 5845 static void kvm_arch_get_notify_window(Object *obj, Visitor *v, 5846 const char *name, void *opaque, 5847 Error **errp) 5848 { 5849 KVMState *s = KVM_STATE(obj); 5850 uint32_t value = s->notify_window; 5851 5852 visit_type_uint32(v, name, &value, errp); 5853 } 5854 5855 static void kvm_arch_set_notify_window(Object *obj, Visitor *v, 5856 const char *name, void *opaque, 5857 Error **errp) 5858 { 5859 KVMState *s = KVM_STATE(obj); 5860 uint32_t value; 5861 5862 if (s->fd != -1) { 5863 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 5864 return; 5865 } 5866 5867 if (!visit_type_uint32(v, name, &value, errp)) { 5868 return; 5869 } 5870 5871 s->notify_window = value; 5872 } 5873 5874 static void kvm_arch_get_xen_version(Object *obj, Visitor *v, 5875 const char *name, void *opaque, 5876 Error **errp) 5877 { 5878 KVMState *s = KVM_STATE(obj); 5879 uint32_t value = s->xen_version; 5880 5881 visit_type_uint32(v, name, &value, errp); 5882 } 5883 5884 static void kvm_arch_set_xen_version(Object *obj, Visitor *v, 5885 const char *name, void *opaque, 5886 Error **errp) 5887 { 5888 KVMState *s = KVM_STATE(obj); 5889 Error *error = NULL; 5890 uint32_t value; 5891 5892 visit_type_uint32(v, name, &value, &error); 5893 if (error) { 5894 error_propagate(errp, error); 5895 return; 5896 } 5897 5898 s->xen_version = value; 5899 if (value && xen_mode == XEN_DISABLED) { 5900 xen_mode = XEN_EMULATE; 5901 } 5902 } 5903 5904 static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v, 5905 const char *name, void *opaque, 5906 Error **errp) 5907 { 5908 KVMState *s = KVM_STATE(obj); 5909 uint16_t value = s->xen_gnttab_max_frames; 5910 5911 visit_type_uint16(v, name, &value, errp); 5912 } 5913 5914 static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v, 5915 const char *name, void *opaque, 5916 Error **errp) 5917 { 5918 KVMState *s = KVM_STATE(obj); 5919 Error *error = NULL; 5920 uint16_t value; 5921 5922 visit_type_uint16(v, name, &value, &error); 5923 if (error) { 5924 error_propagate(errp, error); 5925 return; 5926 } 5927 5928 s->xen_gnttab_max_frames = value; 5929 } 5930 5931 static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v, 5932 const char *name, void *opaque, 5933 Error **errp) 5934 { 5935 KVMState *s = KVM_STATE(obj); 5936 uint16_t value = s->xen_evtchn_max_pirq; 5937 5938 visit_type_uint16(v, name, &value, errp); 5939 } 5940 5941 static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v, 5942 const char *name, void *opaque, 5943 Error **errp) 5944 { 5945 KVMState *s = KVM_STATE(obj); 5946 Error *error = NULL; 5947 uint16_t value; 5948 5949 visit_type_uint16(v, name, &value, &error); 5950 if (error) { 5951 error_propagate(errp, error); 5952 return; 5953 } 5954 5955 s->xen_evtchn_max_pirq = value; 5956 } 5957 5958 void kvm_arch_accel_class_init(ObjectClass *oc) 5959 { 5960 object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption", 5961 &NotifyVmexitOption_lookup, 5962 kvm_arch_get_notify_vmexit, 5963 kvm_arch_set_notify_vmexit); 5964 object_class_property_set_description(oc, "notify-vmexit", 5965 "Enable notify VM exit"); 5966 5967 object_class_property_add(oc, "notify-window", "uint32", 5968 kvm_arch_get_notify_window, 5969 kvm_arch_set_notify_window, 5970 NULL, NULL); 5971 object_class_property_set_description(oc, "notify-window", 5972 "Clock cycles without an event window " 5973 "after which a notification VM exit occurs"); 5974 5975 object_class_property_add(oc, "xen-version", "uint32", 5976 kvm_arch_get_xen_version, 5977 kvm_arch_set_xen_version, 5978 NULL, NULL); 5979 object_class_property_set_description(oc, "xen-version", 5980 "Xen version to be emulated " 5981 "(in XENVER_version form " 5982 "e.g. 0x4000a for 4.10)"); 5983 5984 object_class_property_add(oc, "xen-gnttab-max-frames", "uint16", 5985 kvm_arch_get_xen_gnttab_max_frames, 5986 kvm_arch_set_xen_gnttab_max_frames, 5987 NULL, NULL); 5988 object_class_property_set_description(oc, "xen-gnttab-max-frames", 5989 "Maximum number of grant table frames"); 5990 5991 object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16", 5992 kvm_arch_get_xen_evtchn_max_pirq, 5993 kvm_arch_set_xen_evtchn_max_pirq, 5994 NULL, NULL); 5995 object_class_property_set_description(oc, "xen-evtchn-max-pirq", 5996 "Maximum number of Xen PIRQs"); 5997 } 5998 5999 void kvm_set_max_apic_id(uint32_t max_apic_id) 6000 { 6001 kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id); 6002 } 6003