1 /* 2 * QEMU KVM support 3 * 4 * Copyright (C) 2006-2008 Qumranet Technologies 5 * Copyright IBM, Corp. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or later. 11 * See the COPYING file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qapi/qapi-events-run-state.h" 17 #include "qapi/error.h" 18 #include <sys/ioctl.h> 19 #include <sys/utsname.h> 20 21 #include <linux/kvm.h> 22 #include "standard-headers/asm-x86/kvm_para.h" 23 24 #include "cpu.h" 25 #include "host-cpu.h" 26 #include "sysemu/sysemu.h" 27 #include "sysemu/hw_accel.h" 28 #include "sysemu/kvm_int.h" 29 #include "sysemu/runstate.h" 30 #include "kvm_i386.h" 31 #include "sev_i386.h" 32 #include "hyperv.h" 33 #include "hyperv-proto.h" 34 35 #include "exec/gdbstub.h" 36 #include "qemu/host-utils.h" 37 #include "qemu/main-loop.h" 38 #include "qemu/config-file.h" 39 #include "qemu/error-report.h" 40 #include "hw/i386/x86.h" 41 #include "hw/i386/apic.h" 42 #include "hw/i386/apic_internal.h" 43 #include "hw/i386/apic-msidef.h" 44 #include "hw/i386/intel_iommu.h" 45 #include "hw/i386/x86-iommu.h" 46 #include "hw/i386/e820_memory_layout.h" 47 #include "sysemu/sev.h" 48 49 #include "hw/pci/pci.h" 50 #include "hw/pci/msi.h" 51 #include "hw/pci/msix.h" 52 #include "migration/blocker.h" 53 #include "exec/memattrs.h" 54 #include "trace.h" 55 56 //#define DEBUG_KVM 57 58 #ifdef DEBUG_KVM 59 #define DPRINTF(fmt, ...) \ 60 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 61 #else 62 #define DPRINTF(fmt, ...) \ 63 do { } while (0) 64 #endif 65 66 /* From arch/x86/kvm/lapic.h */ 67 #define KVM_APIC_BUS_CYCLE_NS 1 68 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS) 69 70 #define MSR_KVM_WALL_CLOCK 0x11 71 #define MSR_KVM_SYSTEM_TIME 0x12 72 73 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus 74 * 255 kvm_msr_entry structs */ 75 #define MSR_BUF_SIZE 4096 76 77 static void kvm_init_msrs(X86CPU *cpu); 78 79 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 80 KVM_CAP_INFO(SET_TSS_ADDR), 81 KVM_CAP_INFO(EXT_CPUID), 82 KVM_CAP_INFO(MP_STATE), 83 KVM_CAP_LAST_INFO 84 }; 85 86 static bool has_msr_star; 87 static bool has_msr_hsave_pa; 88 static bool has_msr_tsc_aux; 89 static bool has_msr_tsc_adjust; 90 static bool has_msr_tsc_deadline; 91 static bool has_msr_feature_control; 92 static bool has_msr_misc_enable; 93 static bool has_msr_smbase; 94 static bool has_msr_bndcfgs; 95 static int lm_capable_kernel; 96 static bool has_msr_hv_hypercall; 97 static bool has_msr_hv_crash; 98 static bool has_msr_hv_reset; 99 static bool has_msr_hv_vpindex; 100 static bool hv_vpindex_settable; 101 static bool has_msr_hv_runtime; 102 static bool has_msr_hv_synic; 103 static bool has_msr_hv_stimer; 104 static bool has_msr_hv_frequencies; 105 static bool has_msr_hv_reenlightenment; 106 static bool has_msr_xss; 107 static bool has_msr_umwait; 108 static bool has_msr_spec_ctrl; 109 static bool has_msr_tsx_ctrl; 110 static bool has_msr_virt_ssbd; 111 static bool has_msr_smi_count; 112 static bool has_msr_arch_capabs; 113 static bool has_msr_core_capabs; 114 static bool has_msr_vmx_vmfunc; 115 static bool has_msr_ucode_rev; 116 static bool has_msr_vmx_procbased_ctls2; 117 static bool has_msr_perf_capabs; 118 static bool has_msr_pkrs; 119 120 static uint32_t has_architectural_pmu_version; 121 static uint32_t num_architectural_pmu_gp_counters; 122 static uint32_t num_architectural_pmu_fixed_counters; 123 124 static int has_xsave; 125 static int has_xcrs; 126 static int has_pit_state2; 127 static int has_exception_payload; 128 129 static bool has_msr_mcg_ext_ctl; 130 131 static struct kvm_cpuid2 *cpuid_cache; 132 static struct kvm_cpuid2 *hv_cpuid_cache; 133 static struct kvm_msr_list *kvm_feature_msrs; 134 135 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */ 136 static RateLimit bus_lock_ratelimit_ctrl; 137 138 int kvm_has_pit_state2(void) 139 { 140 return has_pit_state2; 141 } 142 143 bool kvm_has_smm(void) 144 { 145 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM); 146 } 147 148 bool kvm_has_adjust_clock_stable(void) 149 { 150 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); 151 152 return (ret == KVM_CLOCK_TSC_STABLE); 153 } 154 155 bool kvm_has_adjust_clock(void) 156 { 157 return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); 158 } 159 160 bool kvm_has_exception_payload(void) 161 { 162 return has_exception_payload; 163 } 164 165 static bool kvm_x2apic_api_set_flags(uint64_t flags) 166 { 167 KVMState *s = KVM_STATE(current_accel()); 168 169 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); 170 } 171 172 #define MEMORIZE(fn, _result) \ 173 ({ \ 174 static bool _memorized; \ 175 \ 176 if (_memorized) { \ 177 return _result; \ 178 } \ 179 _memorized = true; \ 180 _result = fn; \ 181 }) 182 183 static bool has_x2apic_api; 184 185 bool kvm_has_x2apic_api(void) 186 { 187 return has_x2apic_api; 188 } 189 190 bool kvm_enable_x2apic(void) 191 { 192 return MEMORIZE( 193 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | 194 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), 195 has_x2apic_api); 196 } 197 198 bool kvm_hv_vpindex_settable(void) 199 { 200 return hv_vpindex_settable; 201 } 202 203 static int kvm_get_tsc(CPUState *cs) 204 { 205 X86CPU *cpu = X86_CPU(cs); 206 CPUX86State *env = &cpu->env; 207 struct { 208 struct kvm_msrs info; 209 struct kvm_msr_entry entries[1]; 210 } msr_data = {}; 211 int ret; 212 213 if (env->tsc_valid) { 214 return 0; 215 } 216 217 memset(&msr_data, 0, sizeof(msr_data)); 218 msr_data.info.nmsrs = 1; 219 msr_data.entries[0].index = MSR_IA32_TSC; 220 env->tsc_valid = !runstate_is_running(); 221 222 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); 223 if (ret < 0) { 224 return ret; 225 } 226 227 assert(ret == 1); 228 env->tsc = msr_data.entries[0].data; 229 return 0; 230 } 231 232 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) 233 { 234 kvm_get_tsc(cpu); 235 } 236 237 void kvm_synchronize_all_tsc(void) 238 { 239 CPUState *cpu; 240 241 if (kvm_enabled()) { 242 CPU_FOREACH(cpu) { 243 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); 244 } 245 } 246 } 247 248 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) 249 { 250 struct kvm_cpuid2 *cpuid; 251 int r, size; 252 253 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 254 cpuid = g_malloc0(size); 255 cpuid->nent = max; 256 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); 257 if (r == 0 && cpuid->nent >= max) { 258 r = -E2BIG; 259 } 260 if (r < 0) { 261 if (r == -E2BIG) { 262 g_free(cpuid); 263 return NULL; 264 } else { 265 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", 266 strerror(-r)); 267 exit(1); 268 } 269 } 270 return cpuid; 271 } 272 273 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough 274 * for all entries. 275 */ 276 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) 277 { 278 struct kvm_cpuid2 *cpuid; 279 int max = 1; 280 281 if (cpuid_cache != NULL) { 282 return cpuid_cache; 283 } 284 while ((cpuid = try_get_cpuid(s, max)) == NULL) { 285 max *= 2; 286 } 287 cpuid_cache = cpuid; 288 return cpuid; 289 } 290 291 static bool host_tsx_broken(void) 292 { 293 int family, model, stepping;\ 294 char vendor[CPUID_VENDOR_SZ + 1]; 295 296 host_cpu_vendor_fms(vendor, &family, &model, &stepping); 297 298 /* Check if we are running on a Haswell host known to have broken TSX */ 299 return !strcmp(vendor, CPUID_VENDOR_INTEL) && 300 (family == 6) && 301 ((model == 63 && stepping < 4) || 302 model == 60 || model == 69 || model == 70); 303 } 304 305 /* Returns the value for a specific register on the cpuid entry 306 */ 307 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) 308 { 309 uint32_t ret = 0; 310 switch (reg) { 311 case R_EAX: 312 ret = entry->eax; 313 break; 314 case R_EBX: 315 ret = entry->ebx; 316 break; 317 case R_ECX: 318 ret = entry->ecx; 319 break; 320 case R_EDX: 321 ret = entry->edx; 322 break; 323 } 324 return ret; 325 } 326 327 /* Find matching entry for function/index on kvm_cpuid2 struct 328 */ 329 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, 330 uint32_t function, 331 uint32_t index) 332 { 333 int i; 334 for (i = 0; i < cpuid->nent; ++i) { 335 if (cpuid->entries[i].function == function && 336 cpuid->entries[i].index == index) { 337 return &cpuid->entries[i]; 338 } 339 } 340 /* not found: */ 341 return NULL; 342 } 343 344 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, 345 uint32_t index, int reg) 346 { 347 struct kvm_cpuid2 *cpuid; 348 uint32_t ret = 0; 349 uint32_t cpuid_1_edx; 350 351 cpuid = get_supported_cpuid(s); 352 353 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); 354 if (entry) { 355 ret = cpuid_entry_get_reg(entry, reg); 356 } 357 358 /* Fixups for the data returned by KVM, below */ 359 360 if (function == 1 && reg == R_EDX) { 361 /* KVM before 2.6.30 misreports the following features */ 362 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; 363 } else if (function == 1 && reg == R_ECX) { 364 /* We can set the hypervisor flag, even if KVM does not return it on 365 * GET_SUPPORTED_CPUID 366 */ 367 ret |= CPUID_EXT_HYPERVISOR; 368 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it 369 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, 370 * and the irqchip is in the kernel. 371 */ 372 if (kvm_irqchip_in_kernel() && 373 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { 374 ret |= CPUID_EXT_TSC_DEADLINE_TIMER; 375 } 376 377 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled 378 * without the in-kernel irqchip 379 */ 380 if (!kvm_irqchip_in_kernel()) { 381 ret &= ~CPUID_EXT_X2APIC; 382 } 383 384 if (enable_cpu_pm) { 385 int disable_exits = kvm_check_extension(s, 386 KVM_CAP_X86_DISABLE_EXITS); 387 388 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) { 389 ret |= CPUID_EXT_MONITOR; 390 } 391 } 392 } else if (function == 6 && reg == R_EAX) { 393 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ 394 } else if (function == 7 && index == 0 && reg == R_EBX) { 395 if (host_tsx_broken()) { 396 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); 397 } 398 } else if (function == 7 && index == 0 && reg == R_EDX) { 399 /* 400 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts. 401 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is 402 * returned by KVM_GET_MSR_INDEX_LIST. 403 */ 404 if (!has_msr_arch_capabs) { 405 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES; 406 } 407 } else if (function == 0x80000001 && reg == R_ECX) { 408 /* 409 * It's safe to enable TOPOEXT even if it's not returned by 410 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows 411 * us to keep CPU models including TOPOEXT runnable on older kernels. 412 */ 413 ret |= CPUID_EXT3_TOPOEXT; 414 } else if (function == 0x80000001 && reg == R_EDX) { 415 /* On Intel, kvm returns cpuid according to the Intel spec, 416 * so add missing bits according to the AMD spec: 417 */ 418 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); 419 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; 420 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { 421 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't 422 * be enabled without the in-kernel irqchip 423 */ 424 if (!kvm_irqchip_in_kernel()) { 425 ret &= ~(1U << KVM_FEATURE_PV_UNHALT); 426 } 427 if (kvm_irqchip_is_split()) { 428 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID; 429 } 430 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) { 431 ret |= 1U << KVM_HINTS_REALTIME; 432 } 433 434 return ret; 435 } 436 437 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index) 438 { 439 struct { 440 struct kvm_msrs info; 441 struct kvm_msr_entry entries[1]; 442 } msr_data = {}; 443 uint64_t value; 444 uint32_t ret, can_be_one, must_be_one; 445 446 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */ 447 return 0; 448 } 449 450 /* Check if requested MSR is supported feature MSR */ 451 int i; 452 for (i = 0; i < kvm_feature_msrs->nmsrs; i++) 453 if (kvm_feature_msrs->indices[i] == index) { 454 break; 455 } 456 if (i == kvm_feature_msrs->nmsrs) { 457 return 0; /* if the feature MSR is not supported, simply return 0 */ 458 } 459 460 msr_data.info.nmsrs = 1; 461 msr_data.entries[0].index = index; 462 463 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data); 464 if (ret != 1) { 465 error_report("KVM get MSR (index=0x%x) feature failed, %s", 466 index, strerror(-ret)); 467 exit(1); 468 } 469 470 value = msr_data.entries[0].data; 471 switch (index) { 472 case MSR_IA32_VMX_PROCBASED_CTLS2: 473 if (!has_msr_vmx_procbased_ctls2) { 474 /* KVM forgot to add these bits for some time, do this ourselves. */ 475 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) & 476 CPUID_XSAVE_XSAVES) { 477 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32; 478 } 479 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) & 480 CPUID_EXT_RDRAND) { 481 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32; 482 } 483 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 484 CPUID_7_0_EBX_INVPCID) { 485 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32; 486 } 487 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 488 CPUID_7_0_EBX_RDSEED) { 489 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32; 490 } 491 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) & 492 CPUID_EXT2_RDTSCP) { 493 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32; 494 } 495 } 496 /* fall through */ 497 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 498 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 499 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 500 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 501 /* 502 * Return true for bits that can be one, but do not have to be one. 503 * The SDM tells us which bits could have a "must be one" setting, 504 * so we can do the opposite transformation in make_vmx_msr_value. 505 */ 506 must_be_one = (uint32_t)value; 507 can_be_one = (uint32_t)(value >> 32); 508 return can_be_one & ~must_be_one; 509 510 default: 511 return value; 512 } 513 } 514 515 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, 516 int *max_banks) 517 { 518 int r; 519 520 r = kvm_check_extension(s, KVM_CAP_MCE); 521 if (r > 0) { 522 *max_banks = r; 523 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); 524 } 525 return -ENOSYS; 526 } 527 528 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) 529 { 530 CPUState *cs = CPU(cpu); 531 CPUX86State *env = &cpu->env; 532 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | 533 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; 534 uint64_t mcg_status = MCG_STATUS_MCIP; 535 int flags = 0; 536 537 if (code == BUS_MCEERR_AR) { 538 status |= MCI_STATUS_AR | 0x134; 539 mcg_status |= MCG_STATUS_EIPV; 540 } else { 541 status |= 0xc0; 542 mcg_status |= MCG_STATUS_RIPV; 543 } 544 545 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; 546 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the 547 * guest kernel back into env->mcg_ext_ctl. 548 */ 549 cpu_synchronize_state(cs); 550 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { 551 mcg_status |= MCG_STATUS_LMCE; 552 flags = 0; 553 } 554 555 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, 556 (MCM_ADDR_PHYS << 6) | 0xc, flags); 557 } 558 559 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar) 560 { 561 MemoryFailureFlags mff = {.action_required = ar, .recursive = false}; 562 563 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action, 564 &mff); 565 } 566 567 static void hardware_memory_error(void *host_addr) 568 { 569 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true); 570 error_report("QEMU got Hardware memory error at addr %p", host_addr); 571 exit(1); 572 } 573 574 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) 575 { 576 X86CPU *cpu = X86_CPU(c); 577 CPUX86State *env = &cpu->env; 578 ram_addr_t ram_addr; 579 hwaddr paddr; 580 581 /* If we get an action required MCE, it has been injected by KVM 582 * while the VM was running. An action optional MCE instead should 583 * be coming from the main thread, which qemu_init_sigbus identifies 584 * as the "early kill" thread. 585 */ 586 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); 587 588 if ((env->mcg_cap & MCG_SER_P) && addr) { 589 ram_addr = qemu_ram_addr_from_host(addr); 590 if (ram_addr != RAM_ADDR_INVALID && 591 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { 592 kvm_hwpoison_page_add(ram_addr); 593 kvm_mce_inject(cpu, paddr, code); 594 595 /* 596 * Use different logging severity based on error type. 597 * If there is additional MCE reporting on the hypervisor, QEMU VA 598 * could be another source to identify the PA and MCE details. 599 */ 600 if (code == BUS_MCEERR_AR) { 601 error_report("Guest MCE Memory Error at QEMU addr %p and " 602 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 603 addr, paddr, "BUS_MCEERR_AR"); 604 } else { 605 warn_report("Guest MCE Memory Error at QEMU addr %p and " 606 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 607 addr, paddr, "BUS_MCEERR_AO"); 608 } 609 610 return; 611 } 612 613 if (code == BUS_MCEERR_AO) { 614 warn_report("Hardware memory error at addr %p of type %s " 615 "for memory used by QEMU itself instead of guest system!", 616 addr, "BUS_MCEERR_AO"); 617 } 618 } 619 620 if (code == BUS_MCEERR_AR) { 621 hardware_memory_error(addr); 622 } 623 624 /* Hope we are lucky for AO MCE, just notify a event */ 625 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false); 626 } 627 628 static void kvm_reset_exception(CPUX86State *env) 629 { 630 env->exception_nr = -1; 631 env->exception_pending = 0; 632 env->exception_injected = 0; 633 env->exception_has_payload = false; 634 env->exception_payload = 0; 635 } 636 637 static void kvm_queue_exception(CPUX86State *env, 638 int32_t exception_nr, 639 uint8_t exception_has_payload, 640 uint64_t exception_payload) 641 { 642 assert(env->exception_nr == -1); 643 assert(!env->exception_pending); 644 assert(!env->exception_injected); 645 assert(!env->exception_has_payload); 646 647 env->exception_nr = exception_nr; 648 649 if (has_exception_payload) { 650 env->exception_pending = 1; 651 652 env->exception_has_payload = exception_has_payload; 653 env->exception_payload = exception_payload; 654 } else { 655 env->exception_injected = 1; 656 657 if (exception_nr == EXCP01_DB) { 658 assert(exception_has_payload); 659 env->dr[6] = exception_payload; 660 } else if (exception_nr == EXCP0E_PAGE) { 661 assert(exception_has_payload); 662 env->cr[2] = exception_payload; 663 } else { 664 assert(!exception_has_payload); 665 } 666 } 667 } 668 669 static int kvm_inject_mce_oldstyle(X86CPU *cpu) 670 { 671 CPUX86State *env = &cpu->env; 672 673 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) { 674 unsigned int bank, bank_num = env->mcg_cap & 0xff; 675 struct kvm_x86_mce mce; 676 677 kvm_reset_exception(env); 678 679 /* 680 * There must be at least one bank in use if an MCE is pending. 681 * Find it and use its values for the event injection. 682 */ 683 for (bank = 0; bank < bank_num; bank++) { 684 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { 685 break; 686 } 687 } 688 assert(bank < bank_num); 689 690 mce.bank = bank; 691 mce.status = env->mce_banks[bank * 4 + 1]; 692 mce.mcg_status = env->mcg_status; 693 mce.addr = env->mce_banks[bank * 4 + 2]; 694 mce.misc = env->mce_banks[bank * 4 + 3]; 695 696 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); 697 } 698 return 0; 699 } 700 701 static void cpu_update_state(void *opaque, bool running, RunState state) 702 { 703 CPUX86State *env = opaque; 704 705 if (running) { 706 env->tsc_valid = false; 707 } 708 } 709 710 unsigned long kvm_arch_vcpu_id(CPUState *cs) 711 { 712 X86CPU *cpu = X86_CPU(cs); 713 return cpu->apic_id; 714 } 715 716 #ifndef KVM_CPUID_SIGNATURE_NEXT 717 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 718 #endif 719 720 static bool hyperv_enabled(X86CPU *cpu) 721 { 722 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 && 723 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) || 724 cpu->hyperv_features || cpu->hyperv_passthrough); 725 } 726 727 /* 728 * Check whether target_freq is within conservative 729 * ntp correctable bounds (250ppm) of freq 730 */ 731 static inline bool freq_within_bounds(int freq, int target_freq) 732 { 733 int max_freq = freq + (freq * 250 / 1000000); 734 int min_freq = freq - (freq * 250 / 1000000); 735 736 if (target_freq >= min_freq && target_freq <= max_freq) { 737 return true; 738 } 739 740 return false; 741 } 742 743 static int kvm_arch_set_tsc_khz(CPUState *cs) 744 { 745 X86CPU *cpu = X86_CPU(cs); 746 CPUX86State *env = &cpu->env; 747 int r, cur_freq; 748 bool set_ioctl = false; 749 750 if (!env->tsc_khz) { 751 return 0; 752 } 753 754 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 755 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP; 756 757 /* 758 * If TSC scaling is supported, attempt to set TSC frequency. 759 */ 760 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) { 761 set_ioctl = true; 762 } 763 764 /* 765 * If desired TSC frequency is within bounds of NTP correction, 766 * attempt to set TSC frequency. 767 */ 768 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) { 769 set_ioctl = true; 770 } 771 772 r = set_ioctl ? 773 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : 774 -ENOTSUP; 775 776 if (r < 0) { 777 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current 778 * TSC frequency doesn't match the one we want. 779 */ 780 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 781 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 782 -ENOTSUP; 783 if (cur_freq <= 0 || cur_freq != env->tsc_khz) { 784 warn_report("TSC frequency mismatch between " 785 "VM (%" PRId64 " kHz) and host (%d kHz), " 786 "and TSC scaling unavailable", 787 env->tsc_khz, cur_freq); 788 return r; 789 } 790 } 791 792 return 0; 793 } 794 795 static bool tsc_is_stable_and_known(CPUX86State *env) 796 { 797 if (!env->tsc_khz) { 798 return false; 799 } 800 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) 801 || env->user_tsc_khz; 802 } 803 804 static struct { 805 const char *desc; 806 struct { 807 uint32_t func; 808 int reg; 809 uint32_t bits; 810 } flags[2]; 811 uint64_t dependencies; 812 } kvm_hyperv_properties[] = { 813 [HYPERV_FEAT_RELAXED] = { 814 .desc = "relaxed timing (hv-relaxed)", 815 .flags = { 816 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 817 .bits = HV_RELAXED_TIMING_RECOMMENDED} 818 } 819 }, 820 [HYPERV_FEAT_VAPIC] = { 821 .desc = "virtual APIC (hv-vapic)", 822 .flags = { 823 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 824 .bits = HV_APIC_ACCESS_AVAILABLE}, 825 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 826 .bits = HV_APIC_ACCESS_RECOMMENDED} 827 } 828 }, 829 [HYPERV_FEAT_TIME] = { 830 .desc = "clocksources (hv-time)", 831 .flags = { 832 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 833 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE} 834 } 835 }, 836 [HYPERV_FEAT_CRASH] = { 837 .desc = "crash MSRs (hv-crash)", 838 .flags = { 839 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 840 .bits = HV_GUEST_CRASH_MSR_AVAILABLE} 841 } 842 }, 843 [HYPERV_FEAT_RESET] = { 844 .desc = "reset MSR (hv-reset)", 845 .flags = { 846 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 847 .bits = HV_RESET_AVAILABLE} 848 } 849 }, 850 [HYPERV_FEAT_VPINDEX] = { 851 .desc = "VP_INDEX MSR (hv-vpindex)", 852 .flags = { 853 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 854 .bits = HV_VP_INDEX_AVAILABLE} 855 } 856 }, 857 [HYPERV_FEAT_RUNTIME] = { 858 .desc = "VP_RUNTIME MSR (hv-runtime)", 859 .flags = { 860 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 861 .bits = HV_VP_RUNTIME_AVAILABLE} 862 } 863 }, 864 [HYPERV_FEAT_SYNIC] = { 865 .desc = "synthetic interrupt controller (hv-synic)", 866 .flags = { 867 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 868 .bits = HV_SYNIC_AVAILABLE} 869 } 870 }, 871 [HYPERV_FEAT_STIMER] = { 872 .desc = "synthetic timers (hv-stimer)", 873 .flags = { 874 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 875 .bits = HV_SYNTIMERS_AVAILABLE} 876 }, 877 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME) 878 }, 879 [HYPERV_FEAT_FREQUENCIES] = { 880 .desc = "frequency MSRs (hv-frequencies)", 881 .flags = { 882 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 883 .bits = HV_ACCESS_FREQUENCY_MSRS}, 884 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 885 .bits = HV_FREQUENCY_MSRS_AVAILABLE} 886 } 887 }, 888 [HYPERV_FEAT_REENLIGHTENMENT] = { 889 .desc = "reenlightenment MSRs (hv-reenlightenment)", 890 .flags = { 891 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 892 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL} 893 } 894 }, 895 [HYPERV_FEAT_TLBFLUSH] = { 896 .desc = "paravirtualized TLB flush (hv-tlbflush)", 897 .flags = { 898 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 899 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED | 900 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 901 }, 902 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 903 }, 904 [HYPERV_FEAT_EVMCS] = { 905 .desc = "enlightened VMCS (hv-evmcs)", 906 .flags = { 907 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 908 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED} 909 }, 910 .dependencies = BIT(HYPERV_FEAT_VAPIC) 911 }, 912 [HYPERV_FEAT_IPI] = { 913 .desc = "paravirtualized IPI (hv-ipi)", 914 .flags = { 915 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 916 .bits = HV_CLUSTER_IPI_RECOMMENDED | 917 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 918 }, 919 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 920 }, 921 [HYPERV_FEAT_STIMER_DIRECT] = { 922 .desc = "direct mode synthetic timers (hv-stimer-direct)", 923 .flags = { 924 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 925 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE} 926 }, 927 .dependencies = BIT(HYPERV_FEAT_STIMER) 928 }, 929 }; 930 931 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max, 932 bool do_sys_ioctl) 933 { 934 struct kvm_cpuid2 *cpuid; 935 int r, size; 936 937 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 938 cpuid = g_malloc0(size); 939 cpuid->nent = max; 940 941 if (do_sys_ioctl) { 942 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 943 } else { 944 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 945 } 946 if (r == 0 && cpuid->nent >= max) { 947 r = -E2BIG; 948 } 949 if (r < 0) { 950 if (r == -E2BIG) { 951 g_free(cpuid); 952 return NULL; 953 } else { 954 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n", 955 strerror(-r)); 956 exit(1); 957 } 958 } 959 return cpuid; 960 } 961 962 /* 963 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough 964 * for all entries. 965 */ 966 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs) 967 { 968 struct kvm_cpuid2 *cpuid; 969 /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000080 leaves */ 970 int max = 10; 971 int i; 972 bool do_sys_ioctl; 973 974 do_sys_ioctl = 975 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0; 976 977 /* 978 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with 979 * -E2BIG, however, it doesn't report back the right size. Keep increasing 980 * it and re-trying until we succeed. 981 */ 982 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) { 983 max++; 984 } 985 986 /* 987 * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before 988 * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the 989 * information early, just check for the capability and set the bit 990 * manually. 991 */ 992 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state, 993 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 994 for (i = 0; i < cpuid->nent; i++) { 995 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) { 996 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 997 } 998 } 999 } 1000 1001 return cpuid; 1002 } 1003 1004 /* 1005 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature 1006 * leaves from KVM_CAP_HYPERV* and present MSRs data. 1007 */ 1008 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs) 1009 { 1010 X86CPU *cpu = X86_CPU(cs); 1011 struct kvm_cpuid2 *cpuid; 1012 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm; 1013 1014 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */ 1015 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries)); 1016 cpuid->nent = 2; 1017 1018 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */ 1019 entry_feat = &cpuid->entries[0]; 1020 entry_feat->function = HV_CPUID_FEATURES; 1021 1022 entry_recomm = &cpuid->entries[1]; 1023 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO; 1024 entry_recomm->ebx = cpu->hyperv_spinlock_attempts; 1025 1026 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) { 1027 entry_feat->eax |= HV_HYPERCALL_AVAILABLE; 1028 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE; 1029 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1030 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED; 1031 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED; 1032 } 1033 1034 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { 1035 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE; 1036 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE; 1037 } 1038 1039 if (has_msr_hv_frequencies) { 1040 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS; 1041 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE; 1042 } 1043 1044 if (has_msr_hv_crash) { 1045 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE; 1046 } 1047 1048 if (has_msr_hv_reenlightenment) { 1049 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL; 1050 } 1051 1052 if (has_msr_hv_reset) { 1053 entry_feat->eax |= HV_RESET_AVAILABLE; 1054 } 1055 1056 if (has_msr_hv_vpindex) { 1057 entry_feat->eax |= HV_VP_INDEX_AVAILABLE; 1058 } 1059 1060 if (has_msr_hv_runtime) { 1061 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE; 1062 } 1063 1064 if (has_msr_hv_synic) { 1065 unsigned int cap = cpu->hyperv_synic_kvm_only ? 1066 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1067 1068 if (kvm_check_extension(cs->kvm_state, cap) > 0) { 1069 entry_feat->eax |= HV_SYNIC_AVAILABLE; 1070 } 1071 } 1072 1073 if (has_msr_hv_stimer) { 1074 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE; 1075 } 1076 1077 if (kvm_check_extension(cs->kvm_state, 1078 KVM_CAP_HYPERV_TLBFLUSH) > 0) { 1079 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED; 1080 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1081 } 1082 1083 if (kvm_check_extension(cs->kvm_state, 1084 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1085 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1086 } 1087 1088 if (kvm_check_extension(cs->kvm_state, 1089 KVM_CAP_HYPERV_SEND_IPI) > 0) { 1090 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED; 1091 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1092 } 1093 1094 return cpuid; 1095 } 1096 1097 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg) 1098 { 1099 struct kvm_cpuid_entry2 *entry; 1100 struct kvm_cpuid2 *cpuid; 1101 1102 if (hv_cpuid_cache) { 1103 cpuid = hv_cpuid_cache; 1104 } else { 1105 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) { 1106 cpuid = get_supported_hv_cpuid(cs); 1107 } else { 1108 cpuid = get_supported_hv_cpuid_legacy(cs); 1109 } 1110 hv_cpuid_cache = cpuid; 1111 } 1112 1113 if (!cpuid) { 1114 return 0; 1115 } 1116 1117 entry = cpuid_find_entry(cpuid, func, 0); 1118 if (!entry) { 1119 return 0; 1120 } 1121 1122 return cpuid_entry_get_reg(entry, reg); 1123 } 1124 1125 static bool hyperv_feature_supported(CPUState *cs, int feature) 1126 { 1127 uint32_t func, bits; 1128 int i, reg; 1129 1130 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) { 1131 1132 func = kvm_hyperv_properties[feature].flags[i].func; 1133 reg = kvm_hyperv_properties[feature].flags[i].reg; 1134 bits = kvm_hyperv_properties[feature].flags[i].bits; 1135 1136 if (!func) { 1137 continue; 1138 } 1139 1140 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) { 1141 return false; 1142 } 1143 } 1144 1145 return true; 1146 } 1147 1148 /* Checks that all feature dependencies are enabled */ 1149 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp) 1150 { 1151 uint64_t deps; 1152 int dep_feat; 1153 1154 deps = kvm_hyperv_properties[feature].dependencies; 1155 while (deps) { 1156 dep_feat = ctz64(deps); 1157 if (!(hyperv_feat_enabled(cpu, dep_feat))) { 1158 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1159 kvm_hyperv_properties[feature].desc, 1160 kvm_hyperv_properties[dep_feat].desc); 1161 return false; 1162 } 1163 deps &= ~(1ull << dep_feat); 1164 } 1165 1166 return true; 1167 } 1168 1169 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg) 1170 { 1171 X86CPU *cpu = X86_CPU(cs); 1172 uint32_t r = 0; 1173 int i, j; 1174 1175 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) { 1176 if (!hyperv_feat_enabled(cpu, i)) { 1177 continue; 1178 } 1179 1180 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) { 1181 if (kvm_hyperv_properties[i].flags[j].func != func) { 1182 continue; 1183 } 1184 if (kvm_hyperv_properties[i].flags[j].reg != reg) { 1185 continue; 1186 } 1187 1188 r |= kvm_hyperv_properties[i].flags[j].bits; 1189 } 1190 } 1191 1192 return r; 1193 } 1194 1195 /* 1196 * Expand Hyper-V CPU features. In partucular, check that all the requested 1197 * features are supported by the host and the sanity of the configuration 1198 * (that all the required dependencies are included). Also, this takes care 1199 * of 'hv_passthrough' mode and fills the environment with all supported 1200 * Hyper-V features. 1201 */ 1202 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp) 1203 { 1204 CPUState *cs = CPU(cpu); 1205 Error *local_err = NULL; 1206 int feat; 1207 1208 if (!hyperv_enabled(cpu)) 1209 return true; 1210 1211 /* 1212 * When kvm_hyperv_expand_features is called at CPU feature expansion 1213 * time per-CPU kvm_state is not available yet so we can only proceed 1214 * when KVM_CAP_SYS_HYPERV_CPUID is supported. 1215 */ 1216 if (!cs->kvm_state && 1217 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID)) 1218 return true; 1219 1220 if (cpu->hyperv_passthrough) { 1221 cpu->hyperv_vendor_id[0] = 1222 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX); 1223 cpu->hyperv_vendor_id[1] = 1224 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX); 1225 cpu->hyperv_vendor_id[2] = 1226 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX); 1227 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor, 1228 sizeof(cpu->hyperv_vendor_id) + 1); 1229 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id, 1230 sizeof(cpu->hyperv_vendor_id)); 1231 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0; 1232 1233 cpu->hyperv_interface_id[0] = 1234 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX); 1235 cpu->hyperv_interface_id[1] = 1236 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX); 1237 cpu->hyperv_interface_id[2] = 1238 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX); 1239 cpu->hyperv_interface_id[3] = 1240 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX); 1241 1242 cpu->hyperv_version_id[0] = 1243 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX); 1244 cpu->hyperv_version_id[1] = 1245 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX); 1246 cpu->hyperv_version_id[2] = 1247 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX); 1248 cpu->hyperv_version_id[3] = 1249 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX); 1250 1251 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, 1252 R_EAX); 1253 cpu->hyperv_limits[0] = 1254 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX); 1255 cpu->hyperv_limits[1] = 1256 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX); 1257 cpu->hyperv_limits[2] = 1258 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX); 1259 1260 cpu->hyperv_spinlock_attempts = 1261 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX); 1262 1263 /* 1264 * Mark feature as enabled in 'cpu->hyperv_features' as 1265 * hv_build_cpuid_leaf() uses this info to build guest CPUIDs. 1266 */ 1267 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1268 if (hyperv_feature_supported(cs, feat)) { 1269 cpu->hyperv_features |= BIT(feat); 1270 } 1271 } 1272 } else { 1273 /* Check features availability and dependencies */ 1274 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1275 /* If the feature was not requested skip it. */ 1276 if (!hyperv_feat_enabled(cpu, feat)) { 1277 continue; 1278 } 1279 1280 /* Check if the feature is supported by KVM */ 1281 if (!hyperv_feature_supported(cs, feat)) { 1282 error_setg(errp, "Hyper-V %s is not supported by kernel", 1283 kvm_hyperv_properties[feat].desc); 1284 return false; 1285 } 1286 1287 /* Check dependencies */ 1288 if (!hv_feature_check_deps(cpu, feat, &local_err)) { 1289 error_propagate(errp, local_err); 1290 return false; 1291 } 1292 } 1293 } 1294 1295 /* Additional dependencies not covered by kvm_hyperv_properties[] */ 1296 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1297 !cpu->hyperv_synic_kvm_only && 1298 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) { 1299 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1300 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc, 1301 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc); 1302 return false; 1303 } 1304 1305 return true; 1306 } 1307 1308 /* 1309 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent. 1310 */ 1311 static int hyperv_fill_cpuids(CPUState *cs, 1312 struct kvm_cpuid_entry2 *cpuid_ent) 1313 { 1314 X86CPU *cpu = X86_CPU(cs); 1315 struct kvm_cpuid_entry2 *c; 1316 uint32_t cpuid_i = 0; 1317 1318 c = &cpuid_ent[cpuid_i++]; 1319 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS; 1320 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ? 1321 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS; 1322 c->ebx = cpu->hyperv_vendor_id[0]; 1323 c->ecx = cpu->hyperv_vendor_id[1]; 1324 c->edx = cpu->hyperv_vendor_id[2]; 1325 1326 c = &cpuid_ent[cpuid_i++]; 1327 c->function = HV_CPUID_INTERFACE; 1328 c->eax = cpu->hyperv_interface_id[0]; 1329 c->ebx = cpu->hyperv_interface_id[1]; 1330 c->ecx = cpu->hyperv_interface_id[2]; 1331 c->edx = cpu->hyperv_interface_id[3]; 1332 1333 c = &cpuid_ent[cpuid_i++]; 1334 c->function = HV_CPUID_VERSION; 1335 c->eax = cpu->hyperv_version_id[0]; 1336 c->ebx = cpu->hyperv_version_id[1]; 1337 c->ecx = cpu->hyperv_version_id[2]; 1338 c->edx = cpu->hyperv_version_id[3]; 1339 1340 c = &cpuid_ent[cpuid_i++]; 1341 c->function = HV_CPUID_FEATURES; 1342 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX); 1343 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX); 1344 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX); 1345 1346 /* Unconditionally required with any Hyper-V enlightenment */ 1347 c->eax |= HV_HYPERCALL_AVAILABLE; 1348 1349 /* SynIC and Vmbus devices require messages/signals hypercalls */ 1350 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1351 !cpu->hyperv_synic_kvm_only) { 1352 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS; 1353 } 1354 1355 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */ 1356 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1357 1358 c = &cpuid_ent[cpuid_i++]; 1359 c->function = HV_CPUID_ENLIGHTMENT_INFO; 1360 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX); 1361 c->ebx = cpu->hyperv_spinlock_attempts; 1362 1363 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) { 1364 c->eax |= HV_NO_NONARCH_CORESHARING; 1365 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) { 1366 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) & 1367 HV_NO_NONARCH_CORESHARING; 1368 } 1369 1370 c = &cpuid_ent[cpuid_i++]; 1371 c->function = HV_CPUID_IMPLEMENT_LIMITS; 1372 c->eax = cpu->hv_max_vps; 1373 c->ebx = cpu->hyperv_limits[0]; 1374 c->ecx = cpu->hyperv_limits[1]; 1375 c->edx = cpu->hyperv_limits[2]; 1376 1377 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1378 __u32 function; 1379 1380 /* Create zeroed 0x40000006..0x40000009 leaves */ 1381 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1; 1382 function < HV_CPUID_NESTED_FEATURES; function++) { 1383 c = &cpuid_ent[cpuid_i++]; 1384 c->function = function; 1385 } 1386 1387 c = &cpuid_ent[cpuid_i++]; 1388 c->function = HV_CPUID_NESTED_FEATURES; 1389 c->eax = cpu->hyperv_nested[0]; 1390 } 1391 1392 return cpuid_i; 1393 } 1394 1395 static Error *hv_passthrough_mig_blocker; 1396 static Error *hv_no_nonarch_cs_mig_blocker; 1397 1398 /* Checks that the exposed eVMCS version range is supported by KVM */ 1399 static bool evmcs_version_supported(uint16_t evmcs_version, 1400 uint16_t supported_evmcs_version) 1401 { 1402 uint8_t min_version = evmcs_version & 0xff; 1403 uint8_t max_version = evmcs_version >> 8; 1404 uint8_t min_supported_version = supported_evmcs_version & 0xff; 1405 uint8_t max_supported_version = supported_evmcs_version >> 8; 1406 1407 return (min_version >= min_supported_version) && 1408 (max_version <= max_supported_version); 1409 } 1410 1411 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1) 1412 1413 static int hyperv_init_vcpu(X86CPU *cpu) 1414 { 1415 CPUState *cs = CPU(cpu); 1416 Error *local_err = NULL; 1417 int ret; 1418 1419 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) { 1420 error_setg(&hv_passthrough_mig_blocker, 1421 "'hv-passthrough' CPU flag prevents migration, use explicit" 1422 " set of hv-* flags instead"); 1423 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err); 1424 if (local_err) { 1425 error_report_err(local_err); 1426 error_free(hv_passthrough_mig_blocker); 1427 return ret; 1428 } 1429 } 1430 1431 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO && 1432 hv_no_nonarch_cs_mig_blocker == NULL) { 1433 error_setg(&hv_no_nonarch_cs_mig_blocker, 1434 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration" 1435 " use explicit 'hv-no-nonarch-coresharing=on' instead (but" 1436 " make sure SMT is disabled and/or that vCPUs are properly" 1437 " pinned)"); 1438 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err); 1439 if (local_err) { 1440 error_report_err(local_err); 1441 error_free(hv_no_nonarch_cs_mig_blocker); 1442 return ret; 1443 } 1444 } 1445 1446 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) { 1447 /* 1448 * the kernel doesn't support setting vp_index; assert that its value 1449 * is in sync 1450 */ 1451 struct { 1452 struct kvm_msrs info; 1453 struct kvm_msr_entry entries[1]; 1454 } msr_data = { 1455 .info.nmsrs = 1, 1456 .entries[0].index = HV_X64_MSR_VP_INDEX, 1457 }; 1458 1459 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data); 1460 if (ret < 0) { 1461 return ret; 1462 } 1463 assert(ret == 1); 1464 1465 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) { 1466 error_report("kernel's vp_index != QEMU's vp_index"); 1467 return -ENXIO; 1468 } 1469 } 1470 1471 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 1472 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ? 1473 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1474 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0); 1475 if (ret < 0) { 1476 error_report("failed to turn on HyperV SynIC in KVM: %s", 1477 strerror(-ret)); 1478 return ret; 1479 } 1480 1481 if (!cpu->hyperv_synic_kvm_only) { 1482 ret = hyperv_x86_synic_add(cpu); 1483 if (ret < 0) { 1484 error_report("failed to create HyperV SynIC: %s", 1485 strerror(-ret)); 1486 return ret; 1487 } 1488 } 1489 } 1490 1491 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1492 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION; 1493 uint16_t supported_evmcs_version; 1494 1495 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0, 1496 (uintptr_t)&supported_evmcs_version); 1497 1498 /* 1499 * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs' 1500 * option sets. Note: we hardcode the maximum supported eVMCS version 1501 * to '1' as well so 'hv-evmcs' feature is migratable even when (and if) 1502 * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have 1503 * to be added. 1504 */ 1505 if (ret < 0) { 1506 error_report("Hyper-V %s is not supported by kernel", 1507 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc); 1508 return ret; 1509 } 1510 1511 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) { 1512 error_report("eVMCS version range [%d..%d] is not supported by " 1513 "kernel (supported: [%d..%d])", evmcs_version & 0xff, 1514 evmcs_version >> 8, supported_evmcs_version & 0xff, 1515 supported_evmcs_version >> 8); 1516 return -ENOTSUP; 1517 } 1518 1519 cpu->hyperv_nested[0] = evmcs_version; 1520 } 1521 1522 return 0; 1523 } 1524 1525 static Error *invtsc_mig_blocker; 1526 1527 #define KVM_MAX_CPUID_ENTRIES 100 1528 1529 int kvm_arch_init_vcpu(CPUState *cs) 1530 { 1531 struct { 1532 struct kvm_cpuid2 cpuid; 1533 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; 1534 } cpuid_data; 1535 /* 1536 * The kernel defines these structs with padding fields so there 1537 * should be no extra padding in our cpuid_data struct. 1538 */ 1539 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) != 1540 sizeof(struct kvm_cpuid2) + 1541 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES); 1542 1543 X86CPU *cpu = X86_CPU(cs); 1544 CPUX86State *env = &cpu->env; 1545 uint32_t limit, i, j, cpuid_i; 1546 uint32_t unused; 1547 struct kvm_cpuid_entry2 *c; 1548 uint32_t signature[3]; 1549 int kvm_base = KVM_CPUID_SIGNATURE; 1550 int max_nested_state_len; 1551 int r; 1552 Error *local_err = NULL; 1553 1554 memset(&cpuid_data, 0, sizeof(cpuid_data)); 1555 1556 cpuid_i = 0; 1557 1558 r = kvm_arch_set_tsc_khz(cs); 1559 if (r < 0) { 1560 return r; 1561 } 1562 1563 /* vcpu's TSC frequency is either specified by user, or following 1564 * the value used by KVM if the former is not present. In the 1565 * latter case, we query it from KVM and record in env->tsc_khz, 1566 * so that vcpu's TSC frequency can be migrated later via this field. 1567 */ 1568 if (!env->tsc_khz) { 1569 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 1570 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 1571 -ENOTSUP; 1572 if (r > 0) { 1573 env->tsc_khz = r; 1574 } 1575 } 1576 1577 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY; 1578 1579 /* 1580 * kvm_hyperv_expand_features() is called here for the second time in case 1581 * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle 1582 * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to 1583 * check which Hyper-V enlightenments are supported and which are not, we 1584 * can still proceed and check/expand Hyper-V enlightenments here so legacy 1585 * behavior is preserved. 1586 */ 1587 if (!kvm_hyperv_expand_features(cpu, &local_err)) { 1588 error_report_err(local_err); 1589 return -ENOSYS; 1590 } 1591 1592 if (hyperv_enabled(cpu)) { 1593 r = hyperv_init_vcpu(cpu); 1594 if (r) { 1595 return r; 1596 } 1597 1598 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries); 1599 kvm_base = KVM_CPUID_SIGNATURE_NEXT; 1600 has_msr_hv_hypercall = true; 1601 } 1602 1603 if (cpu->expose_kvm) { 1604 memcpy(signature, "KVMKVMKVM\0\0\0", 12); 1605 c = &cpuid_data.entries[cpuid_i++]; 1606 c->function = KVM_CPUID_SIGNATURE | kvm_base; 1607 c->eax = KVM_CPUID_FEATURES | kvm_base; 1608 c->ebx = signature[0]; 1609 c->ecx = signature[1]; 1610 c->edx = signature[2]; 1611 1612 c = &cpuid_data.entries[cpuid_i++]; 1613 c->function = KVM_CPUID_FEATURES | kvm_base; 1614 c->eax = env->features[FEAT_KVM]; 1615 c->edx = env->features[FEAT_KVM_HINTS]; 1616 } 1617 1618 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); 1619 1620 for (i = 0; i <= limit; i++) { 1621 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1622 fprintf(stderr, "unsupported level value: 0x%x\n", limit); 1623 abort(); 1624 } 1625 c = &cpuid_data.entries[cpuid_i++]; 1626 1627 switch (i) { 1628 case 2: { 1629 /* Keep reading function 2 till all the input is received */ 1630 int times; 1631 1632 c->function = i; 1633 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | 1634 KVM_CPUID_FLAG_STATE_READ_NEXT; 1635 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1636 times = c->eax & 0xff; 1637 1638 for (j = 1; j < times; ++j) { 1639 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1640 fprintf(stderr, "cpuid_data is full, no space for " 1641 "cpuid(eax:2):eax & 0xf = 0x%x\n", times); 1642 abort(); 1643 } 1644 c = &cpuid_data.entries[cpuid_i++]; 1645 c->function = i; 1646 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; 1647 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1648 } 1649 break; 1650 } 1651 case 0x1f: 1652 if (env->nr_dies < 2) { 1653 break; 1654 } 1655 /* fallthrough */ 1656 case 4: 1657 case 0xb: 1658 case 0xd: 1659 for (j = 0; ; j++) { 1660 if (i == 0xd && j == 64) { 1661 break; 1662 } 1663 1664 if (i == 0x1f && j == 64) { 1665 break; 1666 } 1667 1668 c->function = i; 1669 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1670 c->index = j; 1671 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1672 1673 if (i == 4 && c->eax == 0) { 1674 break; 1675 } 1676 if (i == 0xb && !(c->ecx & 0xff00)) { 1677 break; 1678 } 1679 if (i == 0x1f && !(c->ecx & 0xff00)) { 1680 break; 1681 } 1682 if (i == 0xd && c->eax == 0) { 1683 continue; 1684 } 1685 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1686 fprintf(stderr, "cpuid_data is full, no space for " 1687 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 1688 abort(); 1689 } 1690 c = &cpuid_data.entries[cpuid_i++]; 1691 } 1692 break; 1693 case 0x7: 1694 case 0x14: { 1695 uint32_t times; 1696 1697 c->function = i; 1698 c->index = 0; 1699 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1700 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1701 times = c->eax; 1702 1703 for (j = 1; j <= times; ++j) { 1704 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1705 fprintf(stderr, "cpuid_data is full, no space for " 1706 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 1707 abort(); 1708 } 1709 c = &cpuid_data.entries[cpuid_i++]; 1710 c->function = i; 1711 c->index = j; 1712 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1713 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1714 } 1715 break; 1716 } 1717 default: 1718 c->function = i; 1719 c->flags = 0; 1720 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1721 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 1722 /* 1723 * KVM already returns all zeroes if a CPUID entry is missing, 1724 * so we can omit it and avoid hitting KVM's 80-entry limit. 1725 */ 1726 cpuid_i--; 1727 } 1728 break; 1729 } 1730 } 1731 1732 if (limit >= 0x0a) { 1733 uint32_t eax, edx; 1734 1735 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx); 1736 1737 has_architectural_pmu_version = eax & 0xff; 1738 if (has_architectural_pmu_version > 0) { 1739 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8; 1740 1741 /* Shouldn't be more than 32, since that's the number of bits 1742 * available in EBX to tell us _which_ counters are available. 1743 * Play it safe. 1744 */ 1745 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) { 1746 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS; 1747 } 1748 1749 if (has_architectural_pmu_version > 1) { 1750 num_architectural_pmu_fixed_counters = edx & 0x1f; 1751 1752 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) { 1753 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS; 1754 } 1755 } 1756 } 1757 } 1758 1759 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); 1760 1761 for (i = 0x80000000; i <= limit; i++) { 1762 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1763 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); 1764 abort(); 1765 } 1766 c = &cpuid_data.entries[cpuid_i++]; 1767 1768 switch (i) { 1769 case 0x8000001d: 1770 /* Query for all AMD cache information leaves */ 1771 for (j = 0; ; j++) { 1772 c->function = i; 1773 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1774 c->index = j; 1775 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1776 1777 if (c->eax == 0) { 1778 break; 1779 } 1780 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1781 fprintf(stderr, "cpuid_data is full, no space for " 1782 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 1783 abort(); 1784 } 1785 c = &cpuid_data.entries[cpuid_i++]; 1786 } 1787 break; 1788 default: 1789 c->function = i; 1790 c->flags = 0; 1791 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1792 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 1793 /* 1794 * KVM already returns all zeroes if a CPUID entry is missing, 1795 * so we can omit it and avoid hitting KVM's 80-entry limit. 1796 */ 1797 cpuid_i--; 1798 } 1799 break; 1800 } 1801 } 1802 1803 /* Call Centaur's CPUID instructions they are supported. */ 1804 if (env->cpuid_xlevel2 > 0) { 1805 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); 1806 1807 for (i = 0xC0000000; i <= limit; i++) { 1808 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1809 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); 1810 abort(); 1811 } 1812 c = &cpuid_data.entries[cpuid_i++]; 1813 1814 c->function = i; 1815 c->flags = 0; 1816 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1817 } 1818 } 1819 1820 cpuid_data.cpuid.nent = cpuid_i; 1821 1822 if (((env->cpuid_version >> 8)&0xF) >= 6 1823 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == 1824 (CPUID_MCE | CPUID_MCA) 1825 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { 1826 uint64_t mcg_cap, unsupported_caps; 1827 int banks; 1828 int ret; 1829 1830 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); 1831 if (ret < 0) { 1832 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); 1833 return ret; 1834 } 1835 1836 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { 1837 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", 1838 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); 1839 return -ENOTSUP; 1840 } 1841 1842 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); 1843 if (unsupported_caps) { 1844 if (unsupported_caps & MCG_LMCE_P) { 1845 error_report("kvm: LMCE not supported"); 1846 return -ENOTSUP; 1847 } 1848 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64, 1849 unsupported_caps); 1850 } 1851 1852 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; 1853 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); 1854 if (ret < 0) { 1855 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); 1856 return ret; 1857 } 1858 } 1859 1860 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env); 1861 1862 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); 1863 if (c) { 1864 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || 1865 !!(c->ecx & CPUID_EXT_SMX); 1866 } 1867 1868 if (env->mcg_cap & MCG_LMCE_P) { 1869 has_msr_mcg_ext_ctl = has_msr_feature_control = true; 1870 } 1871 1872 if (!env->user_tsc_khz) { 1873 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && 1874 invtsc_mig_blocker == NULL) { 1875 error_setg(&invtsc_mig_blocker, 1876 "State blocked by non-migratable CPU device" 1877 " (invtsc flag)"); 1878 r = migrate_add_blocker(invtsc_mig_blocker, &local_err); 1879 if (local_err) { 1880 error_report_err(local_err); 1881 error_free(invtsc_mig_blocker); 1882 return r; 1883 } 1884 } 1885 } 1886 1887 if (cpu->vmware_cpuid_freq 1888 /* Guests depend on 0x40000000 to detect this feature, so only expose 1889 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ 1890 && cpu->expose_kvm 1891 && kvm_base == KVM_CPUID_SIGNATURE 1892 /* TSC clock must be stable and known for this feature. */ 1893 && tsc_is_stable_and_known(env)) { 1894 1895 c = &cpuid_data.entries[cpuid_i++]; 1896 c->function = KVM_CPUID_SIGNATURE | 0x10; 1897 c->eax = env->tsc_khz; 1898 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */ 1899 c->ecx = c->edx = 0; 1900 1901 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); 1902 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); 1903 } 1904 1905 cpuid_data.cpuid.nent = cpuid_i; 1906 1907 cpuid_data.cpuid.padding = 0; 1908 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); 1909 if (r) { 1910 goto fail; 1911 } 1912 1913 if (has_xsave) { 1914 env->xsave_buf_len = sizeof(struct kvm_xsave); 1915 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len); 1916 memset(env->xsave_buf, 0, env->xsave_buf_len); 1917 1918 /* 1919 * The allocated storage must be large enough for all of the 1920 * possible XSAVE state components. 1921 */ 1922 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) 1923 <= env->xsave_buf_len); 1924 } 1925 1926 max_nested_state_len = kvm_max_nested_state_length(); 1927 if (max_nested_state_len > 0) { 1928 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data)); 1929 1930 if (cpu_has_vmx(env) || cpu_has_svm(env)) { 1931 struct kvm_vmx_nested_state_hdr *vmx_hdr; 1932 1933 env->nested_state = g_malloc0(max_nested_state_len); 1934 env->nested_state->size = max_nested_state_len; 1935 1936 if (cpu_has_vmx(env)) { 1937 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX; 1938 vmx_hdr = &env->nested_state->hdr.vmx; 1939 vmx_hdr->vmxon_pa = -1ull; 1940 vmx_hdr->vmcs12_pa = -1ull; 1941 } else { 1942 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM; 1943 } 1944 } 1945 } 1946 1947 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); 1948 1949 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { 1950 has_msr_tsc_aux = false; 1951 } 1952 1953 kvm_init_msrs(cpu); 1954 1955 return 0; 1956 1957 fail: 1958 migrate_del_blocker(invtsc_mig_blocker); 1959 1960 return r; 1961 } 1962 1963 int kvm_arch_destroy_vcpu(CPUState *cs) 1964 { 1965 X86CPU *cpu = X86_CPU(cs); 1966 CPUX86State *env = &cpu->env; 1967 1968 if (cpu->kvm_msr_buf) { 1969 g_free(cpu->kvm_msr_buf); 1970 cpu->kvm_msr_buf = NULL; 1971 } 1972 1973 if (env->nested_state) { 1974 g_free(env->nested_state); 1975 env->nested_state = NULL; 1976 } 1977 1978 qemu_del_vm_change_state_handler(cpu->vmsentry); 1979 1980 return 0; 1981 } 1982 1983 void kvm_arch_reset_vcpu(X86CPU *cpu) 1984 { 1985 CPUX86State *env = &cpu->env; 1986 1987 env->xcr0 = 1; 1988 if (kvm_irqchip_in_kernel()) { 1989 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : 1990 KVM_MP_STATE_UNINITIALIZED; 1991 } else { 1992 env->mp_state = KVM_MP_STATE_RUNNABLE; 1993 } 1994 1995 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 1996 int i; 1997 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { 1998 env->msr_hv_synic_sint[i] = HV_SINT_MASKED; 1999 } 2000 2001 hyperv_x86_synic_reset(cpu); 2002 } 2003 /* enabled by default */ 2004 env->poll_control_msr = 1; 2005 2006 sev_es_set_reset_vector(CPU(cpu)); 2007 } 2008 2009 void kvm_arch_do_init_vcpu(X86CPU *cpu) 2010 { 2011 CPUX86State *env = &cpu->env; 2012 2013 /* APs get directly into wait-for-SIPI state. */ 2014 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { 2015 env->mp_state = KVM_MP_STATE_INIT_RECEIVED; 2016 } 2017 } 2018 2019 static int kvm_get_supported_feature_msrs(KVMState *s) 2020 { 2021 int ret = 0; 2022 2023 if (kvm_feature_msrs != NULL) { 2024 return 0; 2025 } 2026 2027 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) { 2028 return 0; 2029 } 2030 2031 struct kvm_msr_list msr_list; 2032 2033 msr_list.nmsrs = 0; 2034 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list); 2035 if (ret < 0 && ret != -E2BIG) { 2036 error_report("Fetch KVM feature MSR list failed: %s", 2037 strerror(-ret)); 2038 return ret; 2039 } 2040 2041 assert(msr_list.nmsrs > 0); 2042 kvm_feature_msrs = (struct kvm_msr_list *) \ 2043 g_malloc0(sizeof(msr_list) + 2044 msr_list.nmsrs * sizeof(msr_list.indices[0])); 2045 2046 kvm_feature_msrs->nmsrs = msr_list.nmsrs; 2047 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs); 2048 2049 if (ret < 0) { 2050 error_report("Fetch KVM feature MSR list failed: %s", 2051 strerror(-ret)); 2052 g_free(kvm_feature_msrs); 2053 kvm_feature_msrs = NULL; 2054 return ret; 2055 } 2056 2057 return 0; 2058 } 2059 2060 static int kvm_get_supported_msrs(KVMState *s) 2061 { 2062 int ret = 0; 2063 struct kvm_msr_list msr_list, *kvm_msr_list; 2064 2065 /* 2066 * Obtain MSR list from KVM. These are the MSRs that we must 2067 * save/restore. 2068 */ 2069 msr_list.nmsrs = 0; 2070 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); 2071 if (ret < 0 && ret != -E2BIG) { 2072 return ret; 2073 } 2074 /* 2075 * Old kernel modules had a bug and could write beyond the provided 2076 * memory. Allocate at least a safe amount of 1K. 2077 */ 2078 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + 2079 msr_list.nmsrs * 2080 sizeof(msr_list.indices[0]))); 2081 2082 kvm_msr_list->nmsrs = msr_list.nmsrs; 2083 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); 2084 if (ret >= 0) { 2085 int i; 2086 2087 for (i = 0; i < kvm_msr_list->nmsrs; i++) { 2088 switch (kvm_msr_list->indices[i]) { 2089 case MSR_STAR: 2090 has_msr_star = true; 2091 break; 2092 case MSR_VM_HSAVE_PA: 2093 has_msr_hsave_pa = true; 2094 break; 2095 case MSR_TSC_AUX: 2096 has_msr_tsc_aux = true; 2097 break; 2098 case MSR_TSC_ADJUST: 2099 has_msr_tsc_adjust = true; 2100 break; 2101 case MSR_IA32_TSCDEADLINE: 2102 has_msr_tsc_deadline = true; 2103 break; 2104 case MSR_IA32_SMBASE: 2105 has_msr_smbase = true; 2106 break; 2107 case MSR_SMI_COUNT: 2108 has_msr_smi_count = true; 2109 break; 2110 case MSR_IA32_MISC_ENABLE: 2111 has_msr_misc_enable = true; 2112 break; 2113 case MSR_IA32_BNDCFGS: 2114 has_msr_bndcfgs = true; 2115 break; 2116 case MSR_IA32_XSS: 2117 has_msr_xss = true; 2118 break; 2119 case MSR_IA32_UMWAIT_CONTROL: 2120 has_msr_umwait = true; 2121 break; 2122 case HV_X64_MSR_CRASH_CTL: 2123 has_msr_hv_crash = true; 2124 break; 2125 case HV_X64_MSR_RESET: 2126 has_msr_hv_reset = true; 2127 break; 2128 case HV_X64_MSR_VP_INDEX: 2129 has_msr_hv_vpindex = true; 2130 break; 2131 case HV_X64_MSR_VP_RUNTIME: 2132 has_msr_hv_runtime = true; 2133 break; 2134 case HV_X64_MSR_SCONTROL: 2135 has_msr_hv_synic = true; 2136 break; 2137 case HV_X64_MSR_STIMER0_CONFIG: 2138 has_msr_hv_stimer = true; 2139 break; 2140 case HV_X64_MSR_TSC_FREQUENCY: 2141 has_msr_hv_frequencies = true; 2142 break; 2143 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 2144 has_msr_hv_reenlightenment = true; 2145 break; 2146 case MSR_IA32_SPEC_CTRL: 2147 has_msr_spec_ctrl = true; 2148 break; 2149 case MSR_IA32_TSX_CTRL: 2150 has_msr_tsx_ctrl = true; 2151 break; 2152 case MSR_VIRT_SSBD: 2153 has_msr_virt_ssbd = true; 2154 break; 2155 case MSR_IA32_ARCH_CAPABILITIES: 2156 has_msr_arch_capabs = true; 2157 break; 2158 case MSR_IA32_CORE_CAPABILITY: 2159 has_msr_core_capabs = true; 2160 break; 2161 case MSR_IA32_PERF_CAPABILITIES: 2162 has_msr_perf_capabs = true; 2163 break; 2164 case MSR_IA32_VMX_VMFUNC: 2165 has_msr_vmx_vmfunc = true; 2166 break; 2167 case MSR_IA32_UCODE_REV: 2168 has_msr_ucode_rev = true; 2169 break; 2170 case MSR_IA32_VMX_PROCBASED_CTLS2: 2171 has_msr_vmx_procbased_ctls2 = true; 2172 break; 2173 case MSR_IA32_PKRS: 2174 has_msr_pkrs = true; 2175 break; 2176 } 2177 } 2178 } 2179 2180 g_free(kvm_msr_list); 2181 2182 return ret; 2183 } 2184 2185 static Notifier smram_machine_done; 2186 static KVMMemoryListener smram_listener; 2187 static AddressSpace smram_address_space; 2188 static MemoryRegion smram_as_root; 2189 static MemoryRegion smram_as_mem; 2190 2191 static void register_smram_listener(Notifier *n, void *unused) 2192 { 2193 MemoryRegion *smram = 2194 (MemoryRegion *) object_resolve_path("/machine/smram", NULL); 2195 2196 /* Outer container... */ 2197 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); 2198 memory_region_set_enabled(&smram_as_root, true); 2199 2200 /* ... with two regions inside: normal system memory with low 2201 * priority, and... 2202 */ 2203 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", 2204 get_system_memory(), 0, ~0ull); 2205 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); 2206 memory_region_set_enabled(&smram_as_mem, true); 2207 2208 if (smram) { 2209 /* ... SMRAM with higher priority */ 2210 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); 2211 memory_region_set_enabled(smram, true); 2212 } 2213 2214 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); 2215 kvm_memory_listener_register(kvm_state, &smram_listener, 2216 &smram_address_space, 1); 2217 } 2218 2219 int kvm_arch_init(MachineState *ms, KVMState *s) 2220 { 2221 uint64_t identity_base = 0xfffbc000; 2222 uint64_t shadow_mem; 2223 int ret; 2224 struct utsname utsname; 2225 Error *local_err = NULL; 2226 2227 /* 2228 * Initialize SEV context, if required 2229 * 2230 * If no memory encryption is requested (ms->cgs == NULL) this is 2231 * a no-op. 2232 * 2233 * It's also a no-op if a non-SEV confidential guest support 2234 * mechanism is selected. SEV is the only mechanism available to 2235 * select on x86 at present, so this doesn't arise, but if new 2236 * mechanisms are supported in future (e.g. TDX), they'll need 2237 * their own initialization either here or elsewhere. 2238 */ 2239 ret = sev_kvm_init(ms->cgs, &local_err); 2240 if (ret < 0) { 2241 error_report_err(local_err); 2242 return ret; 2243 } 2244 2245 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { 2246 error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM"); 2247 return -ENOTSUP; 2248 } 2249 2250 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE); 2251 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); 2252 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); 2253 2254 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX); 2255 2256 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD); 2257 if (has_exception_payload) { 2258 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true); 2259 if (ret < 0) { 2260 error_report("kvm: Failed to enable exception payload cap: %s", 2261 strerror(-ret)); 2262 return ret; 2263 } 2264 } 2265 2266 ret = kvm_get_supported_msrs(s); 2267 if (ret < 0) { 2268 return ret; 2269 } 2270 2271 kvm_get_supported_feature_msrs(s); 2272 2273 uname(&utsname); 2274 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; 2275 2276 /* 2277 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. 2278 * In order to use vm86 mode, an EPT identity map and a TSS are needed. 2279 * Since these must be part of guest physical memory, we need to allocate 2280 * them, both by setting their start addresses in the kernel and by 2281 * creating a corresponding e820 entry. We need 4 pages before the BIOS. 2282 * 2283 * Older KVM versions may not support setting the identity map base. In 2284 * that case we need to stick with the default, i.e. a 256K maximum BIOS 2285 * size. 2286 */ 2287 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { 2288 /* Allows up to 16M BIOSes. */ 2289 identity_base = 0xfeffc000; 2290 2291 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); 2292 if (ret < 0) { 2293 return ret; 2294 } 2295 } 2296 2297 /* Set TSS base one page after EPT identity map. */ 2298 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); 2299 if (ret < 0) { 2300 return ret; 2301 } 2302 2303 /* Tell fw_cfg to notify the BIOS to reserve the range. */ 2304 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); 2305 if (ret < 0) { 2306 fprintf(stderr, "e820_add_entry() table is full\n"); 2307 return ret; 2308 } 2309 2310 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort); 2311 if (shadow_mem != -1) { 2312 shadow_mem /= 4096; 2313 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); 2314 if (ret < 0) { 2315 return ret; 2316 } 2317 } 2318 2319 if (kvm_check_extension(s, KVM_CAP_X86_SMM) && 2320 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) && 2321 x86_machine_is_smm_enabled(X86_MACHINE(ms))) { 2322 smram_machine_done.notify = register_smram_listener; 2323 qemu_add_machine_init_done_notifier(&smram_machine_done); 2324 } 2325 2326 if (enable_cpu_pm) { 2327 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS); 2328 int ret; 2329 2330 /* Work around for kernel header with a typo. TODO: fix header and drop. */ 2331 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT) 2332 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL 2333 #endif 2334 if (disable_exits) { 2335 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT | 2336 KVM_X86_DISABLE_EXITS_HLT | 2337 KVM_X86_DISABLE_EXITS_PAUSE | 2338 KVM_X86_DISABLE_EXITS_CSTATE); 2339 } 2340 2341 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0, 2342 disable_exits); 2343 if (ret < 0) { 2344 error_report("kvm: guest stopping CPU not supported: %s", 2345 strerror(-ret)); 2346 } 2347 } 2348 2349 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) { 2350 X86MachineState *x86ms = X86_MACHINE(ms); 2351 2352 if (x86ms->bus_lock_ratelimit > 0) { 2353 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT); 2354 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) { 2355 error_report("kvm: bus lock detection unsupported"); 2356 return -ENOTSUP; 2357 } 2358 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0, 2359 KVM_BUS_LOCK_DETECTION_EXIT); 2360 if (ret < 0) { 2361 error_report("kvm: Failed to enable bus lock detection cap: %s", 2362 strerror(-ret)); 2363 return ret; 2364 } 2365 ratelimit_init(&bus_lock_ratelimit_ctrl); 2366 ratelimit_set_speed(&bus_lock_ratelimit_ctrl, 2367 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME); 2368 } 2369 } 2370 2371 return 0; 2372 } 2373 2374 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 2375 { 2376 lhs->selector = rhs->selector; 2377 lhs->base = rhs->base; 2378 lhs->limit = rhs->limit; 2379 lhs->type = 3; 2380 lhs->present = 1; 2381 lhs->dpl = 3; 2382 lhs->db = 0; 2383 lhs->s = 1; 2384 lhs->l = 0; 2385 lhs->g = 0; 2386 lhs->avl = 0; 2387 lhs->unusable = 0; 2388 } 2389 2390 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 2391 { 2392 unsigned flags = rhs->flags; 2393 lhs->selector = rhs->selector; 2394 lhs->base = rhs->base; 2395 lhs->limit = rhs->limit; 2396 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; 2397 lhs->present = (flags & DESC_P_MASK) != 0; 2398 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; 2399 lhs->db = (flags >> DESC_B_SHIFT) & 1; 2400 lhs->s = (flags & DESC_S_MASK) != 0; 2401 lhs->l = (flags >> DESC_L_SHIFT) & 1; 2402 lhs->g = (flags & DESC_G_MASK) != 0; 2403 lhs->avl = (flags & DESC_AVL_MASK) != 0; 2404 lhs->unusable = !lhs->present; 2405 lhs->padding = 0; 2406 } 2407 2408 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) 2409 { 2410 lhs->selector = rhs->selector; 2411 lhs->base = rhs->base; 2412 lhs->limit = rhs->limit; 2413 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | 2414 ((rhs->present && !rhs->unusable) * DESC_P_MASK) | 2415 (rhs->dpl << DESC_DPL_SHIFT) | 2416 (rhs->db << DESC_B_SHIFT) | 2417 (rhs->s * DESC_S_MASK) | 2418 (rhs->l << DESC_L_SHIFT) | 2419 (rhs->g * DESC_G_MASK) | 2420 (rhs->avl * DESC_AVL_MASK); 2421 } 2422 2423 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) 2424 { 2425 if (set) { 2426 *kvm_reg = *qemu_reg; 2427 } else { 2428 *qemu_reg = *kvm_reg; 2429 } 2430 } 2431 2432 static int kvm_getput_regs(X86CPU *cpu, int set) 2433 { 2434 CPUX86State *env = &cpu->env; 2435 struct kvm_regs regs; 2436 int ret = 0; 2437 2438 if (!set) { 2439 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); 2440 if (ret < 0) { 2441 return ret; 2442 } 2443 } 2444 2445 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); 2446 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); 2447 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); 2448 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); 2449 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); 2450 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); 2451 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); 2452 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); 2453 #ifdef TARGET_X86_64 2454 kvm_getput_reg(®s.r8, &env->regs[8], set); 2455 kvm_getput_reg(®s.r9, &env->regs[9], set); 2456 kvm_getput_reg(®s.r10, &env->regs[10], set); 2457 kvm_getput_reg(®s.r11, &env->regs[11], set); 2458 kvm_getput_reg(®s.r12, &env->regs[12], set); 2459 kvm_getput_reg(®s.r13, &env->regs[13], set); 2460 kvm_getput_reg(®s.r14, &env->regs[14], set); 2461 kvm_getput_reg(®s.r15, &env->regs[15], set); 2462 #endif 2463 2464 kvm_getput_reg(®s.rflags, &env->eflags, set); 2465 kvm_getput_reg(®s.rip, &env->eip, set); 2466 2467 if (set) { 2468 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); 2469 } 2470 2471 return ret; 2472 } 2473 2474 static int kvm_put_fpu(X86CPU *cpu) 2475 { 2476 CPUX86State *env = &cpu->env; 2477 struct kvm_fpu fpu; 2478 int i; 2479 2480 memset(&fpu, 0, sizeof fpu); 2481 fpu.fsw = env->fpus & ~(7 << 11); 2482 fpu.fsw |= (env->fpstt & 7) << 11; 2483 fpu.fcw = env->fpuc; 2484 fpu.last_opcode = env->fpop; 2485 fpu.last_ip = env->fpip; 2486 fpu.last_dp = env->fpdp; 2487 for (i = 0; i < 8; ++i) { 2488 fpu.ftwx |= (!env->fptags[i]) << i; 2489 } 2490 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); 2491 for (i = 0; i < CPU_NB_REGS; i++) { 2492 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0)); 2493 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1)); 2494 } 2495 fpu.mxcsr = env->mxcsr; 2496 2497 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); 2498 } 2499 2500 static int kvm_put_xsave(X86CPU *cpu) 2501 { 2502 CPUX86State *env = &cpu->env; 2503 void *xsave = env->xsave_buf; 2504 2505 if (!has_xsave) { 2506 return kvm_put_fpu(cpu); 2507 } 2508 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len); 2509 2510 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); 2511 } 2512 2513 static int kvm_put_xcrs(X86CPU *cpu) 2514 { 2515 CPUX86State *env = &cpu->env; 2516 struct kvm_xcrs xcrs = {}; 2517 2518 if (!has_xcrs) { 2519 return 0; 2520 } 2521 2522 xcrs.nr_xcrs = 1; 2523 xcrs.flags = 0; 2524 xcrs.xcrs[0].xcr = 0; 2525 xcrs.xcrs[0].value = env->xcr0; 2526 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); 2527 } 2528 2529 static int kvm_put_sregs(X86CPU *cpu) 2530 { 2531 CPUX86State *env = &cpu->env; 2532 struct kvm_sregs sregs; 2533 2534 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); 2535 if (env->interrupt_injected >= 0) { 2536 sregs.interrupt_bitmap[env->interrupt_injected / 64] |= 2537 (uint64_t)1 << (env->interrupt_injected % 64); 2538 } 2539 2540 if ((env->eflags & VM_MASK)) { 2541 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 2542 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 2543 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 2544 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 2545 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 2546 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 2547 } else { 2548 set_seg(&sregs.cs, &env->segs[R_CS]); 2549 set_seg(&sregs.ds, &env->segs[R_DS]); 2550 set_seg(&sregs.es, &env->segs[R_ES]); 2551 set_seg(&sregs.fs, &env->segs[R_FS]); 2552 set_seg(&sregs.gs, &env->segs[R_GS]); 2553 set_seg(&sregs.ss, &env->segs[R_SS]); 2554 } 2555 2556 set_seg(&sregs.tr, &env->tr); 2557 set_seg(&sregs.ldt, &env->ldt); 2558 2559 sregs.idt.limit = env->idt.limit; 2560 sregs.idt.base = env->idt.base; 2561 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 2562 sregs.gdt.limit = env->gdt.limit; 2563 sregs.gdt.base = env->gdt.base; 2564 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 2565 2566 sregs.cr0 = env->cr[0]; 2567 sregs.cr2 = env->cr[2]; 2568 sregs.cr3 = env->cr[3]; 2569 sregs.cr4 = env->cr[4]; 2570 2571 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 2572 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 2573 2574 sregs.efer = env->efer; 2575 2576 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); 2577 } 2578 2579 static void kvm_msr_buf_reset(X86CPU *cpu) 2580 { 2581 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); 2582 } 2583 2584 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) 2585 { 2586 struct kvm_msrs *msrs = cpu->kvm_msr_buf; 2587 void *limit = ((void *)msrs) + MSR_BUF_SIZE; 2588 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; 2589 2590 assert((void *)(entry + 1) <= limit); 2591 2592 entry->index = index; 2593 entry->reserved = 0; 2594 entry->data = value; 2595 msrs->nmsrs++; 2596 } 2597 2598 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) 2599 { 2600 kvm_msr_buf_reset(cpu); 2601 kvm_msr_entry_add(cpu, index, value); 2602 2603 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 2604 } 2605 2606 void kvm_put_apicbase(X86CPU *cpu, uint64_t value) 2607 { 2608 int ret; 2609 2610 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); 2611 assert(ret == 1); 2612 } 2613 2614 static int kvm_put_tscdeadline_msr(X86CPU *cpu) 2615 { 2616 CPUX86State *env = &cpu->env; 2617 int ret; 2618 2619 if (!has_msr_tsc_deadline) { 2620 return 0; 2621 } 2622 2623 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); 2624 if (ret < 0) { 2625 return ret; 2626 } 2627 2628 assert(ret == 1); 2629 return 0; 2630 } 2631 2632 /* 2633 * Provide a separate write service for the feature control MSR in order to 2634 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done 2635 * before writing any other state because forcibly leaving nested mode 2636 * invalidates the VCPU state. 2637 */ 2638 static int kvm_put_msr_feature_control(X86CPU *cpu) 2639 { 2640 int ret; 2641 2642 if (!has_msr_feature_control) { 2643 return 0; 2644 } 2645 2646 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, 2647 cpu->env.msr_ia32_feature_control); 2648 if (ret < 0) { 2649 return ret; 2650 } 2651 2652 assert(ret == 1); 2653 return 0; 2654 } 2655 2656 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features) 2657 { 2658 uint32_t default1, can_be_one, can_be_zero; 2659 uint32_t must_be_one; 2660 2661 switch (index) { 2662 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 2663 default1 = 0x00000016; 2664 break; 2665 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 2666 default1 = 0x0401e172; 2667 break; 2668 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 2669 default1 = 0x000011ff; 2670 break; 2671 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 2672 default1 = 0x00036dff; 2673 break; 2674 case MSR_IA32_VMX_PROCBASED_CTLS2: 2675 default1 = 0; 2676 break; 2677 default: 2678 abort(); 2679 } 2680 2681 /* If a feature bit is set, the control can be either set or clear. 2682 * Otherwise the value is limited to either 0 or 1 by default1. 2683 */ 2684 can_be_one = features | default1; 2685 can_be_zero = features | ~default1; 2686 must_be_one = ~can_be_zero; 2687 2688 /* 2689 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one). 2690 * Bit 32:63 -> 1 if the control bit can be one. 2691 */ 2692 return must_be_one | (((uint64_t)can_be_one) << 32); 2693 } 2694 2695 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f) 2696 { 2697 uint64_t kvm_vmx_basic = 2698 kvm_arch_get_supported_msr_feature(kvm_state, 2699 MSR_IA32_VMX_BASIC); 2700 2701 if (!kvm_vmx_basic) { 2702 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0), 2703 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail. 2704 */ 2705 return; 2706 } 2707 2708 uint64_t kvm_vmx_misc = 2709 kvm_arch_get_supported_msr_feature(kvm_state, 2710 MSR_IA32_VMX_MISC); 2711 uint64_t kvm_vmx_ept_vpid = 2712 kvm_arch_get_supported_msr_feature(kvm_state, 2713 MSR_IA32_VMX_EPT_VPID_CAP); 2714 2715 /* 2716 * If the guest is 64-bit, a value of 1 is allowed for the host address 2717 * space size vmexit control. 2718 */ 2719 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM 2720 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0; 2721 2722 /* 2723 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should 2724 * not change them for backwards compatibility. 2725 */ 2726 uint64_t fixed_vmx_basic = kvm_vmx_basic & 2727 (MSR_VMX_BASIC_VMCS_REVISION_MASK | 2728 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK | 2729 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK); 2730 2731 /* 2732 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can 2733 * change in the future but are always zero for now, clear them to be 2734 * future proof. Bits 32-63 in theory could change, though KVM does 2735 * not support dual-monitor treatment and probably never will; mask 2736 * them out as well. 2737 */ 2738 uint64_t fixed_vmx_misc = kvm_vmx_misc & 2739 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK | 2740 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK); 2741 2742 /* 2743 * EPT memory types should not change either, so we do not bother 2744 * adding features for them. 2745 */ 2746 uint64_t fixed_vmx_ept_mask = 2747 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ? 2748 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0); 2749 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask; 2750 2751 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 2752 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 2753 f[FEAT_VMX_PROCBASED_CTLS])); 2754 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS, 2755 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS, 2756 f[FEAT_VMX_PINBASED_CTLS])); 2757 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS, 2758 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS, 2759 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit); 2760 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS, 2761 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS, 2762 f[FEAT_VMX_ENTRY_CTLS])); 2763 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2, 2764 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2, 2765 f[FEAT_VMX_SECONDARY_CTLS])); 2766 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP, 2767 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid); 2768 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC, 2769 f[FEAT_VMX_BASIC] | fixed_vmx_basic); 2770 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC, 2771 f[FEAT_VMX_MISC] | fixed_vmx_misc); 2772 if (has_msr_vmx_vmfunc) { 2773 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]); 2774 } 2775 2776 /* 2777 * Just to be safe, write these with constant values. The CRn_FIXED1 2778 * MSRs are generated by KVM based on the vCPU's CPUID. 2779 */ 2780 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0, 2781 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK); 2782 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0, 2783 CR4_VMXE_MASK); 2784 2785 if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) { 2786 /* TSC multiplier (0x2032). */ 2787 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32); 2788 } else { 2789 /* Preemption timer (0x482E). */ 2790 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E); 2791 } 2792 } 2793 2794 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f) 2795 { 2796 uint64_t kvm_perf_cap = 2797 kvm_arch_get_supported_msr_feature(kvm_state, 2798 MSR_IA32_PERF_CAPABILITIES); 2799 2800 if (kvm_perf_cap) { 2801 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES, 2802 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]); 2803 } 2804 } 2805 2806 static int kvm_buf_set_msrs(X86CPU *cpu) 2807 { 2808 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 2809 if (ret < 0) { 2810 return ret; 2811 } 2812 2813 if (ret < cpu->kvm_msr_buf->nmsrs) { 2814 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 2815 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, 2816 (uint32_t)e->index, (uint64_t)e->data); 2817 } 2818 2819 assert(ret == cpu->kvm_msr_buf->nmsrs); 2820 return 0; 2821 } 2822 2823 static void kvm_init_msrs(X86CPU *cpu) 2824 { 2825 CPUX86State *env = &cpu->env; 2826 2827 kvm_msr_buf_reset(cpu); 2828 if (has_msr_arch_capabs) { 2829 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES, 2830 env->features[FEAT_ARCH_CAPABILITIES]); 2831 } 2832 2833 if (has_msr_core_capabs) { 2834 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY, 2835 env->features[FEAT_CORE_CAPABILITY]); 2836 } 2837 2838 if (has_msr_perf_capabs && cpu->enable_pmu) { 2839 kvm_msr_entry_add_perf(cpu, env->features); 2840 } 2841 2842 if (has_msr_ucode_rev) { 2843 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev); 2844 } 2845 2846 /* 2847 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but 2848 * all kernels with MSR features should have them. 2849 */ 2850 if (kvm_feature_msrs && cpu_has_vmx(env)) { 2851 kvm_msr_entry_add_vmx(cpu, env->features); 2852 } 2853 2854 assert(kvm_buf_set_msrs(cpu) == 0); 2855 } 2856 2857 static int kvm_put_msrs(X86CPU *cpu, int level) 2858 { 2859 CPUX86State *env = &cpu->env; 2860 int i; 2861 2862 kvm_msr_buf_reset(cpu); 2863 2864 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); 2865 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); 2866 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); 2867 kvm_msr_entry_add(cpu, MSR_PAT, env->pat); 2868 if (has_msr_star) { 2869 kvm_msr_entry_add(cpu, MSR_STAR, env->star); 2870 } 2871 if (has_msr_hsave_pa) { 2872 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); 2873 } 2874 if (has_msr_tsc_aux) { 2875 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); 2876 } 2877 if (has_msr_tsc_adjust) { 2878 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); 2879 } 2880 if (has_msr_misc_enable) { 2881 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 2882 env->msr_ia32_misc_enable); 2883 } 2884 if (has_msr_smbase) { 2885 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); 2886 } 2887 if (has_msr_smi_count) { 2888 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count); 2889 } 2890 if (has_msr_pkrs) { 2891 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs); 2892 } 2893 if (has_msr_bndcfgs) { 2894 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); 2895 } 2896 if (has_msr_xss) { 2897 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); 2898 } 2899 if (has_msr_umwait) { 2900 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait); 2901 } 2902 if (has_msr_spec_ctrl) { 2903 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl); 2904 } 2905 if (has_msr_tsx_ctrl) { 2906 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl); 2907 } 2908 if (has_msr_virt_ssbd) { 2909 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd); 2910 } 2911 2912 #ifdef TARGET_X86_64 2913 if (lm_capable_kernel) { 2914 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); 2915 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); 2916 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); 2917 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); 2918 } 2919 #endif 2920 2921 /* 2922 * The following MSRs have side effects on the guest or are too heavy 2923 * for normal writeback. Limit them to reset or full state updates. 2924 */ 2925 if (level >= KVM_PUT_RESET_STATE) { 2926 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); 2927 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); 2928 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); 2929 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { 2930 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr); 2931 } 2932 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { 2933 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); 2934 } 2935 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { 2936 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); 2937 } 2938 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { 2939 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); 2940 } 2941 2942 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { 2943 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr); 2944 } 2945 2946 if (has_architectural_pmu_version > 0) { 2947 if (has_architectural_pmu_version > 1) { 2948 /* Stop the counter. */ 2949 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 2950 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 2951 } 2952 2953 /* Set the counter values. */ 2954 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 2955 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 2956 env->msr_fixed_counters[i]); 2957 } 2958 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 2959 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 2960 env->msr_gp_counters[i]); 2961 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 2962 env->msr_gp_evtsel[i]); 2963 } 2964 if (has_architectural_pmu_version > 1) { 2965 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 2966 env->msr_global_status); 2967 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 2968 env->msr_global_ovf_ctrl); 2969 2970 /* Now start the PMU. */ 2971 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 2972 env->msr_fixed_ctr_ctrl); 2973 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 2974 env->msr_global_ctrl); 2975 } 2976 } 2977 /* 2978 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add, 2979 * only sync them to KVM on the first cpu 2980 */ 2981 if (current_cpu == first_cpu) { 2982 if (has_msr_hv_hypercall) { 2983 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 2984 env->msr_hv_guest_os_id); 2985 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 2986 env->msr_hv_hypercall); 2987 } 2988 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 2989 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 2990 env->msr_hv_tsc); 2991 } 2992 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 2993 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 2994 env->msr_hv_reenlightenment_control); 2995 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 2996 env->msr_hv_tsc_emulation_control); 2997 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 2998 env->msr_hv_tsc_emulation_status); 2999 } 3000 } 3001 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 3002 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 3003 env->msr_hv_vapic); 3004 } 3005 if (has_msr_hv_crash) { 3006 int j; 3007 3008 for (j = 0; j < HV_CRASH_PARAMS; j++) 3009 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 3010 env->msr_hv_crash_params[j]); 3011 3012 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY); 3013 } 3014 if (has_msr_hv_runtime) { 3015 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); 3016 } 3017 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) 3018 && hv_vpindex_settable) { 3019 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX, 3020 hyperv_vp_index(CPU(cpu))); 3021 } 3022 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 3023 int j; 3024 3025 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION); 3026 3027 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 3028 env->msr_hv_synic_control); 3029 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 3030 env->msr_hv_synic_evt_page); 3031 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 3032 env->msr_hv_synic_msg_page); 3033 3034 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { 3035 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, 3036 env->msr_hv_synic_sint[j]); 3037 } 3038 } 3039 if (has_msr_hv_stimer) { 3040 int j; 3041 3042 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { 3043 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, 3044 env->msr_hv_stimer_config[j]); 3045 } 3046 3047 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { 3048 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, 3049 env->msr_hv_stimer_count[j]); 3050 } 3051 } 3052 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 3053 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); 3054 3055 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); 3056 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); 3057 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); 3058 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); 3059 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); 3060 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); 3061 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); 3062 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); 3063 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); 3064 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); 3065 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); 3066 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); 3067 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 3068 /* The CPU GPs if we write to a bit above the physical limit of 3069 * the host CPU (and KVM emulates that) 3070 */ 3071 uint64_t mask = env->mtrr_var[i].mask; 3072 mask &= phys_mask; 3073 3074 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 3075 env->mtrr_var[i].base); 3076 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); 3077 } 3078 } 3079 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 3080 int addr_num = kvm_arch_get_supported_cpuid(kvm_state, 3081 0x14, 1, R_EAX) & 0x7; 3082 3083 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 3084 env->msr_rtit_ctrl); 3085 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 3086 env->msr_rtit_status); 3087 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 3088 env->msr_rtit_output_base); 3089 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 3090 env->msr_rtit_output_mask); 3091 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 3092 env->msr_rtit_cr3_match); 3093 for (i = 0; i < addr_num; i++) { 3094 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 3095 env->msr_rtit_addrs[i]); 3096 } 3097 } 3098 3099 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see 3100 * kvm_put_msr_feature_control. */ 3101 } 3102 3103 if (env->mcg_cap) { 3104 int i; 3105 3106 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); 3107 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); 3108 if (has_msr_mcg_ext_ctl) { 3109 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); 3110 } 3111 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 3112 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); 3113 } 3114 } 3115 3116 return kvm_buf_set_msrs(cpu); 3117 } 3118 3119 3120 static int kvm_get_fpu(X86CPU *cpu) 3121 { 3122 CPUX86State *env = &cpu->env; 3123 struct kvm_fpu fpu; 3124 int i, ret; 3125 3126 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); 3127 if (ret < 0) { 3128 return ret; 3129 } 3130 3131 env->fpstt = (fpu.fsw >> 11) & 7; 3132 env->fpus = fpu.fsw; 3133 env->fpuc = fpu.fcw; 3134 env->fpop = fpu.last_opcode; 3135 env->fpip = fpu.last_ip; 3136 env->fpdp = fpu.last_dp; 3137 for (i = 0; i < 8; ++i) { 3138 env->fptags[i] = !((fpu.ftwx >> i) & 1); 3139 } 3140 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); 3141 for (i = 0; i < CPU_NB_REGS; i++) { 3142 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]); 3143 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]); 3144 } 3145 env->mxcsr = fpu.mxcsr; 3146 3147 return 0; 3148 } 3149 3150 static int kvm_get_xsave(X86CPU *cpu) 3151 { 3152 CPUX86State *env = &cpu->env; 3153 void *xsave = env->xsave_buf; 3154 int ret; 3155 3156 if (!has_xsave) { 3157 return kvm_get_fpu(cpu); 3158 } 3159 3160 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave); 3161 if (ret < 0) { 3162 return ret; 3163 } 3164 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len); 3165 3166 return 0; 3167 } 3168 3169 static int kvm_get_xcrs(X86CPU *cpu) 3170 { 3171 CPUX86State *env = &cpu->env; 3172 int i, ret; 3173 struct kvm_xcrs xcrs; 3174 3175 if (!has_xcrs) { 3176 return 0; 3177 } 3178 3179 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); 3180 if (ret < 0) { 3181 return ret; 3182 } 3183 3184 for (i = 0; i < xcrs.nr_xcrs; i++) { 3185 /* Only support xcr0 now */ 3186 if (xcrs.xcrs[i].xcr == 0) { 3187 env->xcr0 = xcrs.xcrs[i].value; 3188 break; 3189 } 3190 } 3191 return 0; 3192 } 3193 3194 static int kvm_get_sregs(X86CPU *cpu) 3195 { 3196 CPUX86State *env = &cpu->env; 3197 struct kvm_sregs sregs; 3198 int bit, i, ret; 3199 3200 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); 3201 if (ret < 0) { 3202 return ret; 3203 } 3204 3205 /* There can only be one pending IRQ set in the bitmap at a time, so try 3206 to find it and save its number instead (-1 for none). */ 3207 env->interrupt_injected = -1; 3208 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { 3209 if (sregs.interrupt_bitmap[i]) { 3210 bit = ctz64(sregs.interrupt_bitmap[i]); 3211 env->interrupt_injected = i * 64 + bit; 3212 break; 3213 } 3214 } 3215 3216 get_seg(&env->segs[R_CS], &sregs.cs); 3217 get_seg(&env->segs[R_DS], &sregs.ds); 3218 get_seg(&env->segs[R_ES], &sregs.es); 3219 get_seg(&env->segs[R_FS], &sregs.fs); 3220 get_seg(&env->segs[R_GS], &sregs.gs); 3221 get_seg(&env->segs[R_SS], &sregs.ss); 3222 3223 get_seg(&env->tr, &sregs.tr); 3224 get_seg(&env->ldt, &sregs.ldt); 3225 3226 env->idt.limit = sregs.idt.limit; 3227 env->idt.base = sregs.idt.base; 3228 env->gdt.limit = sregs.gdt.limit; 3229 env->gdt.base = sregs.gdt.base; 3230 3231 env->cr[0] = sregs.cr0; 3232 env->cr[2] = sregs.cr2; 3233 env->cr[3] = sregs.cr3; 3234 env->cr[4] = sregs.cr4; 3235 3236 env->efer = sregs.efer; 3237 3238 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 3239 x86_update_hflags(env); 3240 3241 return 0; 3242 } 3243 3244 static int kvm_get_msrs(X86CPU *cpu) 3245 { 3246 CPUX86State *env = &cpu->env; 3247 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; 3248 int ret, i; 3249 uint64_t mtrr_top_bits; 3250 3251 kvm_msr_buf_reset(cpu); 3252 3253 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); 3254 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); 3255 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); 3256 kvm_msr_entry_add(cpu, MSR_PAT, 0); 3257 if (has_msr_star) { 3258 kvm_msr_entry_add(cpu, MSR_STAR, 0); 3259 } 3260 if (has_msr_hsave_pa) { 3261 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); 3262 } 3263 if (has_msr_tsc_aux) { 3264 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); 3265 } 3266 if (has_msr_tsc_adjust) { 3267 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); 3268 } 3269 if (has_msr_tsc_deadline) { 3270 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); 3271 } 3272 if (has_msr_misc_enable) { 3273 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); 3274 } 3275 if (has_msr_smbase) { 3276 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); 3277 } 3278 if (has_msr_smi_count) { 3279 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0); 3280 } 3281 if (has_msr_feature_control) { 3282 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); 3283 } 3284 if (has_msr_pkrs) { 3285 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0); 3286 } 3287 if (has_msr_bndcfgs) { 3288 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); 3289 } 3290 if (has_msr_xss) { 3291 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); 3292 } 3293 if (has_msr_umwait) { 3294 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0); 3295 } 3296 if (has_msr_spec_ctrl) { 3297 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0); 3298 } 3299 if (has_msr_tsx_ctrl) { 3300 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0); 3301 } 3302 if (has_msr_virt_ssbd) { 3303 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0); 3304 } 3305 if (!env->tsc_valid) { 3306 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); 3307 env->tsc_valid = !runstate_is_running(); 3308 } 3309 3310 #ifdef TARGET_X86_64 3311 if (lm_capable_kernel) { 3312 kvm_msr_entry_add(cpu, MSR_CSTAR, 0); 3313 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); 3314 kvm_msr_entry_add(cpu, MSR_FMASK, 0); 3315 kvm_msr_entry_add(cpu, MSR_LSTAR, 0); 3316 } 3317 #endif 3318 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); 3319 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); 3320 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { 3321 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0); 3322 } 3323 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { 3324 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); 3325 } 3326 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { 3327 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); 3328 } 3329 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { 3330 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); 3331 } 3332 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { 3333 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1); 3334 } 3335 if (has_architectural_pmu_version > 0) { 3336 if (has_architectural_pmu_version > 1) { 3337 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 3338 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 3339 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); 3340 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); 3341 } 3342 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 3343 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); 3344 } 3345 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 3346 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); 3347 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); 3348 } 3349 } 3350 3351 if (env->mcg_cap) { 3352 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); 3353 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); 3354 if (has_msr_mcg_ext_ctl) { 3355 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); 3356 } 3357 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 3358 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); 3359 } 3360 } 3361 3362 if (has_msr_hv_hypercall) { 3363 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); 3364 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); 3365 } 3366 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 3367 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); 3368 } 3369 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 3370 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); 3371 } 3372 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 3373 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0); 3374 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0); 3375 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0); 3376 } 3377 if (has_msr_hv_crash) { 3378 int j; 3379 3380 for (j = 0; j < HV_CRASH_PARAMS; j++) { 3381 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); 3382 } 3383 } 3384 if (has_msr_hv_runtime) { 3385 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); 3386 } 3387 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 3388 uint32_t msr; 3389 3390 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); 3391 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); 3392 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); 3393 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { 3394 kvm_msr_entry_add(cpu, msr, 0); 3395 } 3396 } 3397 if (has_msr_hv_stimer) { 3398 uint32_t msr; 3399 3400 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; 3401 msr++) { 3402 kvm_msr_entry_add(cpu, msr, 0); 3403 } 3404 } 3405 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 3406 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); 3407 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); 3408 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); 3409 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); 3410 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); 3411 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); 3412 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); 3413 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); 3414 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); 3415 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); 3416 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); 3417 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); 3418 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 3419 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); 3420 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); 3421 } 3422 } 3423 3424 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 3425 int addr_num = 3426 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7; 3427 3428 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0); 3429 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0); 3430 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0); 3431 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0); 3432 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0); 3433 for (i = 0; i < addr_num; i++) { 3434 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0); 3435 } 3436 } 3437 3438 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); 3439 if (ret < 0) { 3440 return ret; 3441 } 3442 3443 if (ret < cpu->kvm_msr_buf->nmsrs) { 3444 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 3445 error_report("error: failed to get MSR 0x%" PRIx32, 3446 (uint32_t)e->index); 3447 } 3448 3449 assert(ret == cpu->kvm_msr_buf->nmsrs); 3450 /* 3451 * MTRR masks: Each mask consists of 5 parts 3452 * a 10..0: must be zero 3453 * b 11 : valid bit 3454 * c n-1.12: actual mask bits 3455 * d 51..n: reserved must be zero 3456 * e 63.52: reserved must be zero 3457 * 3458 * 'n' is the number of physical bits supported by the CPU and is 3459 * apparently always <= 52. We know our 'n' but don't know what 3460 * the destinations 'n' is; it might be smaller, in which case 3461 * it masks (c) on loading. It might be larger, in which case 3462 * we fill 'd' so that d..c is consistent irrespetive of the 'n' 3463 * we're migrating to. 3464 */ 3465 3466 if (cpu->fill_mtrr_mask) { 3467 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); 3468 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); 3469 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); 3470 } else { 3471 mtrr_top_bits = 0; 3472 } 3473 3474 for (i = 0; i < ret; i++) { 3475 uint32_t index = msrs[i].index; 3476 switch (index) { 3477 case MSR_IA32_SYSENTER_CS: 3478 env->sysenter_cs = msrs[i].data; 3479 break; 3480 case MSR_IA32_SYSENTER_ESP: 3481 env->sysenter_esp = msrs[i].data; 3482 break; 3483 case MSR_IA32_SYSENTER_EIP: 3484 env->sysenter_eip = msrs[i].data; 3485 break; 3486 case MSR_PAT: 3487 env->pat = msrs[i].data; 3488 break; 3489 case MSR_STAR: 3490 env->star = msrs[i].data; 3491 break; 3492 #ifdef TARGET_X86_64 3493 case MSR_CSTAR: 3494 env->cstar = msrs[i].data; 3495 break; 3496 case MSR_KERNELGSBASE: 3497 env->kernelgsbase = msrs[i].data; 3498 break; 3499 case MSR_FMASK: 3500 env->fmask = msrs[i].data; 3501 break; 3502 case MSR_LSTAR: 3503 env->lstar = msrs[i].data; 3504 break; 3505 #endif 3506 case MSR_IA32_TSC: 3507 env->tsc = msrs[i].data; 3508 break; 3509 case MSR_TSC_AUX: 3510 env->tsc_aux = msrs[i].data; 3511 break; 3512 case MSR_TSC_ADJUST: 3513 env->tsc_adjust = msrs[i].data; 3514 break; 3515 case MSR_IA32_TSCDEADLINE: 3516 env->tsc_deadline = msrs[i].data; 3517 break; 3518 case MSR_VM_HSAVE_PA: 3519 env->vm_hsave = msrs[i].data; 3520 break; 3521 case MSR_KVM_SYSTEM_TIME: 3522 env->system_time_msr = msrs[i].data; 3523 break; 3524 case MSR_KVM_WALL_CLOCK: 3525 env->wall_clock_msr = msrs[i].data; 3526 break; 3527 case MSR_MCG_STATUS: 3528 env->mcg_status = msrs[i].data; 3529 break; 3530 case MSR_MCG_CTL: 3531 env->mcg_ctl = msrs[i].data; 3532 break; 3533 case MSR_MCG_EXT_CTL: 3534 env->mcg_ext_ctl = msrs[i].data; 3535 break; 3536 case MSR_IA32_MISC_ENABLE: 3537 env->msr_ia32_misc_enable = msrs[i].data; 3538 break; 3539 case MSR_IA32_SMBASE: 3540 env->smbase = msrs[i].data; 3541 break; 3542 case MSR_SMI_COUNT: 3543 env->msr_smi_count = msrs[i].data; 3544 break; 3545 case MSR_IA32_FEATURE_CONTROL: 3546 env->msr_ia32_feature_control = msrs[i].data; 3547 break; 3548 case MSR_IA32_BNDCFGS: 3549 env->msr_bndcfgs = msrs[i].data; 3550 break; 3551 case MSR_IA32_XSS: 3552 env->xss = msrs[i].data; 3553 break; 3554 case MSR_IA32_UMWAIT_CONTROL: 3555 env->umwait = msrs[i].data; 3556 break; 3557 case MSR_IA32_PKRS: 3558 env->pkrs = msrs[i].data; 3559 break; 3560 default: 3561 if (msrs[i].index >= MSR_MC0_CTL && 3562 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { 3563 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; 3564 } 3565 break; 3566 case MSR_KVM_ASYNC_PF_EN: 3567 env->async_pf_en_msr = msrs[i].data; 3568 break; 3569 case MSR_KVM_ASYNC_PF_INT: 3570 env->async_pf_int_msr = msrs[i].data; 3571 break; 3572 case MSR_KVM_PV_EOI_EN: 3573 env->pv_eoi_en_msr = msrs[i].data; 3574 break; 3575 case MSR_KVM_STEAL_TIME: 3576 env->steal_time_msr = msrs[i].data; 3577 break; 3578 case MSR_KVM_POLL_CONTROL: { 3579 env->poll_control_msr = msrs[i].data; 3580 break; 3581 } 3582 case MSR_CORE_PERF_FIXED_CTR_CTRL: 3583 env->msr_fixed_ctr_ctrl = msrs[i].data; 3584 break; 3585 case MSR_CORE_PERF_GLOBAL_CTRL: 3586 env->msr_global_ctrl = msrs[i].data; 3587 break; 3588 case MSR_CORE_PERF_GLOBAL_STATUS: 3589 env->msr_global_status = msrs[i].data; 3590 break; 3591 case MSR_CORE_PERF_GLOBAL_OVF_CTRL: 3592 env->msr_global_ovf_ctrl = msrs[i].data; 3593 break; 3594 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: 3595 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; 3596 break; 3597 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: 3598 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; 3599 break; 3600 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: 3601 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; 3602 break; 3603 case HV_X64_MSR_HYPERCALL: 3604 env->msr_hv_hypercall = msrs[i].data; 3605 break; 3606 case HV_X64_MSR_GUEST_OS_ID: 3607 env->msr_hv_guest_os_id = msrs[i].data; 3608 break; 3609 case HV_X64_MSR_APIC_ASSIST_PAGE: 3610 env->msr_hv_vapic = msrs[i].data; 3611 break; 3612 case HV_X64_MSR_REFERENCE_TSC: 3613 env->msr_hv_tsc = msrs[i].data; 3614 break; 3615 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3616 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; 3617 break; 3618 case HV_X64_MSR_VP_RUNTIME: 3619 env->msr_hv_runtime = msrs[i].data; 3620 break; 3621 case HV_X64_MSR_SCONTROL: 3622 env->msr_hv_synic_control = msrs[i].data; 3623 break; 3624 case HV_X64_MSR_SIEFP: 3625 env->msr_hv_synic_evt_page = msrs[i].data; 3626 break; 3627 case HV_X64_MSR_SIMP: 3628 env->msr_hv_synic_msg_page = msrs[i].data; 3629 break; 3630 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 3631 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; 3632 break; 3633 case HV_X64_MSR_STIMER0_CONFIG: 3634 case HV_X64_MSR_STIMER1_CONFIG: 3635 case HV_X64_MSR_STIMER2_CONFIG: 3636 case HV_X64_MSR_STIMER3_CONFIG: 3637 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = 3638 msrs[i].data; 3639 break; 3640 case HV_X64_MSR_STIMER0_COUNT: 3641 case HV_X64_MSR_STIMER1_COUNT: 3642 case HV_X64_MSR_STIMER2_COUNT: 3643 case HV_X64_MSR_STIMER3_COUNT: 3644 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = 3645 msrs[i].data; 3646 break; 3647 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3648 env->msr_hv_reenlightenment_control = msrs[i].data; 3649 break; 3650 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3651 env->msr_hv_tsc_emulation_control = msrs[i].data; 3652 break; 3653 case HV_X64_MSR_TSC_EMULATION_STATUS: 3654 env->msr_hv_tsc_emulation_status = msrs[i].data; 3655 break; 3656 case MSR_MTRRdefType: 3657 env->mtrr_deftype = msrs[i].data; 3658 break; 3659 case MSR_MTRRfix64K_00000: 3660 env->mtrr_fixed[0] = msrs[i].data; 3661 break; 3662 case MSR_MTRRfix16K_80000: 3663 env->mtrr_fixed[1] = msrs[i].data; 3664 break; 3665 case MSR_MTRRfix16K_A0000: 3666 env->mtrr_fixed[2] = msrs[i].data; 3667 break; 3668 case MSR_MTRRfix4K_C0000: 3669 env->mtrr_fixed[3] = msrs[i].data; 3670 break; 3671 case MSR_MTRRfix4K_C8000: 3672 env->mtrr_fixed[4] = msrs[i].data; 3673 break; 3674 case MSR_MTRRfix4K_D0000: 3675 env->mtrr_fixed[5] = msrs[i].data; 3676 break; 3677 case MSR_MTRRfix4K_D8000: 3678 env->mtrr_fixed[6] = msrs[i].data; 3679 break; 3680 case MSR_MTRRfix4K_E0000: 3681 env->mtrr_fixed[7] = msrs[i].data; 3682 break; 3683 case MSR_MTRRfix4K_E8000: 3684 env->mtrr_fixed[8] = msrs[i].data; 3685 break; 3686 case MSR_MTRRfix4K_F0000: 3687 env->mtrr_fixed[9] = msrs[i].data; 3688 break; 3689 case MSR_MTRRfix4K_F8000: 3690 env->mtrr_fixed[10] = msrs[i].data; 3691 break; 3692 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): 3693 if (index & 1) { 3694 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | 3695 mtrr_top_bits; 3696 } else { 3697 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; 3698 } 3699 break; 3700 case MSR_IA32_SPEC_CTRL: 3701 env->spec_ctrl = msrs[i].data; 3702 break; 3703 case MSR_IA32_TSX_CTRL: 3704 env->tsx_ctrl = msrs[i].data; 3705 break; 3706 case MSR_VIRT_SSBD: 3707 env->virt_ssbd = msrs[i].data; 3708 break; 3709 case MSR_IA32_RTIT_CTL: 3710 env->msr_rtit_ctrl = msrs[i].data; 3711 break; 3712 case MSR_IA32_RTIT_STATUS: 3713 env->msr_rtit_status = msrs[i].data; 3714 break; 3715 case MSR_IA32_RTIT_OUTPUT_BASE: 3716 env->msr_rtit_output_base = msrs[i].data; 3717 break; 3718 case MSR_IA32_RTIT_OUTPUT_MASK: 3719 env->msr_rtit_output_mask = msrs[i].data; 3720 break; 3721 case MSR_IA32_RTIT_CR3_MATCH: 3722 env->msr_rtit_cr3_match = msrs[i].data; 3723 break; 3724 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 3725 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data; 3726 break; 3727 } 3728 } 3729 3730 return 0; 3731 } 3732 3733 static int kvm_put_mp_state(X86CPU *cpu) 3734 { 3735 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; 3736 3737 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 3738 } 3739 3740 static int kvm_get_mp_state(X86CPU *cpu) 3741 { 3742 CPUState *cs = CPU(cpu); 3743 CPUX86State *env = &cpu->env; 3744 struct kvm_mp_state mp_state; 3745 int ret; 3746 3747 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); 3748 if (ret < 0) { 3749 return ret; 3750 } 3751 env->mp_state = mp_state.mp_state; 3752 if (kvm_irqchip_in_kernel()) { 3753 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); 3754 } 3755 return 0; 3756 } 3757 3758 static int kvm_get_apic(X86CPU *cpu) 3759 { 3760 DeviceState *apic = cpu->apic_state; 3761 struct kvm_lapic_state kapic; 3762 int ret; 3763 3764 if (apic && kvm_irqchip_in_kernel()) { 3765 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); 3766 if (ret < 0) { 3767 return ret; 3768 } 3769 3770 kvm_get_apic_state(apic, &kapic); 3771 } 3772 return 0; 3773 } 3774 3775 static int kvm_put_vcpu_events(X86CPU *cpu, int level) 3776 { 3777 CPUState *cs = CPU(cpu); 3778 CPUX86State *env = &cpu->env; 3779 struct kvm_vcpu_events events = {}; 3780 3781 if (!kvm_has_vcpu_events()) { 3782 return 0; 3783 } 3784 3785 events.flags = 0; 3786 3787 if (has_exception_payload) { 3788 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 3789 events.exception.pending = env->exception_pending; 3790 events.exception_has_payload = env->exception_has_payload; 3791 events.exception_payload = env->exception_payload; 3792 } 3793 events.exception.nr = env->exception_nr; 3794 events.exception.injected = env->exception_injected; 3795 events.exception.has_error_code = env->has_error_code; 3796 events.exception.error_code = env->error_code; 3797 3798 events.interrupt.injected = (env->interrupt_injected >= 0); 3799 events.interrupt.nr = env->interrupt_injected; 3800 events.interrupt.soft = env->soft_interrupt; 3801 3802 events.nmi.injected = env->nmi_injected; 3803 events.nmi.pending = env->nmi_pending; 3804 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); 3805 3806 events.sipi_vector = env->sipi_vector; 3807 3808 if (has_msr_smbase) { 3809 events.smi.smm = !!(env->hflags & HF_SMM_MASK); 3810 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); 3811 if (kvm_irqchip_in_kernel()) { 3812 /* As soon as these are moved to the kernel, remove them 3813 * from cs->interrupt_request. 3814 */ 3815 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; 3816 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; 3817 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); 3818 } else { 3819 /* Keep these in cs->interrupt_request. */ 3820 events.smi.pending = 0; 3821 events.smi.latched_init = 0; 3822 } 3823 /* Stop SMI delivery on old machine types to avoid a reboot 3824 * on an inward migration of an old VM. 3825 */ 3826 if (!cpu->kvm_no_smi_migration) { 3827 events.flags |= KVM_VCPUEVENT_VALID_SMM; 3828 } 3829 } 3830 3831 if (level >= KVM_PUT_RESET_STATE) { 3832 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; 3833 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 3834 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR; 3835 } 3836 } 3837 3838 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 3839 } 3840 3841 static int kvm_get_vcpu_events(X86CPU *cpu) 3842 { 3843 CPUX86State *env = &cpu->env; 3844 struct kvm_vcpu_events events; 3845 int ret; 3846 3847 if (!kvm_has_vcpu_events()) { 3848 return 0; 3849 } 3850 3851 memset(&events, 0, sizeof(events)); 3852 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 3853 if (ret < 0) { 3854 return ret; 3855 } 3856 3857 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 3858 env->exception_pending = events.exception.pending; 3859 env->exception_has_payload = events.exception_has_payload; 3860 env->exception_payload = events.exception_payload; 3861 } else { 3862 env->exception_pending = 0; 3863 env->exception_has_payload = false; 3864 } 3865 env->exception_injected = events.exception.injected; 3866 env->exception_nr = 3867 (env->exception_pending || env->exception_injected) ? 3868 events.exception.nr : -1; 3869 env->has_error_code = events.exception.has_error_code; 3870 env->error_code = events.exception.error_code; 3871 3872 env->interrupt_injected = 3873 events.interrupt.injected ? events.interrupt.nr : -1; 3874 env->soft_interrupt = events.interrupt.soft; 3875 3876 env->nmi_injected = events.nmi.injected; 3877 env->nmi_pending = events.nmi.pending; 3878 if (events.nmi.masked) { 3879 env->hflags2 |= HF2_NMI_MASK; 3880 } else { 3881 env->hflags2 &= ~HF2_NMI_MASK; 3882 } 3883 3884 if (events.flags & KVM_VCPUEVENT_VALID_SMM) { 3885 if (events.smi.smm) { 3886 env->hflags |= HF_SMM_MASK; 3887 } else { 3888 env->hflags &= ~HF_SMM_MASK; 3889 } 3890 if (events.smi.pending) { 3891 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 3892 } else { 3893 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 3894 } 3895 if (events.smi.smm_inside_nmi) { 3896 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; 3897 } else { 3898 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; 3899 } 3900 if (events.smi.latched_init) { 3901 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 3902 } else { 3903 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 3904 } 3905 } 3906 3907 env->sipi_vector = events.sipi_vector; 3908 3909 return 0; 3910 } 3911 3912 static int kvm_guest_debug_workarounds(X86CPU *cpu) 3913 { 3914 CPUState *cs = CPU(cpu); 3915 CPUX86State *env = &cpu->env; 3916 int ret = 0; 3917 unsigned long reinject_trap = 0; 3918 3919 if (!kvm_has_vcpu_events()) { 3920 if (env->exception_nr == EXCP01_DB) { 3921 reinject_trap = KVM_GUESTDBG_INJECT_DB; 3922 } else if (env->exception_injected == EXCP03_INT3) { 3923 reinject_trap = KVM_GUESTDBG_INJECT_BP; 3924 } 3925 kvm_reset_exception(env); 3926 } 3927 3928 /* 3929 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF 3930 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this 3931 * by updating the debug state once again if single-stepping is on. 3932 * Another reason to call kvm_update_guest_debug here is a pending debug 3933 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to 3934 * reinject them via SET_GUEST_DEBUG. 3935 */ 3936 if (reinject_trap || 3937 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { 3938 ret = kvm_update_guest_debug(cs, reinject_trap); 3939 } 3940 return ret; 3941 } 3942 3943 static int kvm_put_debugregs(X86CPU *cpu) 3944 { 3945 CPUX86State *env = &cpu->env; 3946 struct kvm_debugregs dbgregs; 3947 int i; 3948 3949 if (!kvm_has_debugregs()) { 3950 return 0; 3951 } 3952 3953 memset(&dbgregs, 0, sizeof(dbgregs)); 3954 for (i = 0; i < 4; i++) { 3955 dbgregs.db[i] = env->dr[i]; 3956 } 3957 dbgregs.dr6 = env->dr[6]; 3958 dbgregs.dr7 = env->dr[7]; 3959 dbgregs.flags = 0; 3960 3961 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); 3962 } 3963 3964 static int kvm_get_debugregs(X86CPU *cpu) 3965 { 3966 CPUX86State *env = &cpu->env; 3967 struct kvm_debugregs dbgregs; 3968 int i, ret; 3969 3970 if (!kvm_has_debugregs()) { 3971 return 0; 3972 } 3973 3974 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); 3975 if (ret < 0) { 3976 return ret; 3977 } 3978 for (i = 0; i < 4; i++) { 3979 env->dr[i] = dbgregs.db[i]; 3980 } 3981 env->dr[4] = env->dr[6] = dbgregs.dr6; 3982 env->dr[5] = env->dr[7] = dbgregs.dr7; 3983 3984 return 0; 3985 } 3986 3987 static int kvm_put_nested_state(X86CPU *cpu) 3988 { 3989 CPUX86State *env = &cpu->env; 3990 int max_nested_state_len = kvm_max_nested_state_length(); 3991 3992 if (!env->nested_state) { 3993 return 0; 3994 } 3995 3996 /* 3997 * Copy flags that are affected by reset from env->hflags and env->hflags2. 3998 */ 3999 if (env->hflags & HF_GUEST_MASK) { 4000 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE; 4001 } else { 4002 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE; 4003 } 4004 4005 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */ 4006 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) { 4007 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET; 4008 } else { 4009 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET; 4010 } 4011 4012 assert(env->nested_state->size <= max_nested_state_len); 4013 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state); 4014 } 4015 4016 static int kvm_get_nested_state(X86CPU *cpu) 4017 { 4018 CPUX86State *env = &cpu->env; 4019 int max_nested_state_len = kvm_max_nested_state_length(); 4020 int ret; 4021 4022 if (!env->nested_state) { 4023 return 0; 4024 } 4025 4026 /* 4027 * It is possible that migration restored a smaller size into 4028 * nested_state->hdr.size than what our kernel support. 4029 * We preserve migration origin nested_state->hdr.size for 4030 * call to KVM_SET_NESTED_STATE but wish that our next call 4031 * to KVM_GET_NESTED_STATE will use max size our kernel support. 4032 */ 4033 env->nested_state->size = max_nested_state_len; 4034 4035 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state); 4036 if (ret < 0) { 4037 return ret; 4038 } 4039 4040 /* 4041 * Copy flags that are affected by reset to env->hflags and env->hflags2. 4042 */ 4043 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) { 4044 env->hflags |= HF_GUEST_MASK; 4045 } else { 4046 env->hflags &= ~HF_GUEST_MASK; 4047 } 4048 4049 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */ 4050 if (cpu_has_svm(env)) { 4051 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) { 4052 env->hflags2 |= HF2_GIF_MASK; 4053 } else { 4054 env->hflags2 &= ~HF2_GIF_MASK; 4055 } 4056 } 4057 4058 return ret; 4059 } 4060 4061 int kvm_arch_put_registers(CPUState *cpu, int level) 4062 { 4063 X86CPU *x86_cpu = X86_CPU(cpu); 4064 int ret; 4065 4066 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); 4067 4068 /* must be before kvm_put_nested_state so that EFER.SVME is set */ 4069 ret = kvm_put_sregs(x86_cpu); 4070 if (ret < 0) { 4071 return ret; 4072 } 4073 4074 if (level >= KVM_PUT_RESET_STATE) { 4075 ret = kvm_put_nested_state(x86_cpu); 4076 if (ret < 0) { 4077 return ret; 4078 } 4079 4080 ret = kvm_put_msr_feature_control(x86_cpu); 4081 if (ret < 0) { 4082 return ret; 4083 } 4084 } 4085 4086 if (level == KVM_PUT_FULL_STATE) { 4087 /* We don't check for kvm_arch_set_tsc_khz() errors here, 4088 * because TSC frequency mismatch shouldn't abort migration, 4089 * unless the user explicitly asked for a more strict TSC 4090 * setting (e.g. using an explicit "tsc-freq" option). 4091 */ 4092 kvm_arch_set_tsc_khz(cpu); 4093 } 4094 4095 ret = kvm_getput_regs(x86_cpu, 1); 4096 if (ret < 0) { 4097 return ret; 4098 } 4099 ret = kvm_put_xsave(x86_cpu); 4100 if (ret < 0) { 4101 return ret; 4102 } 4103 ret = kvm_put_xcrs(x86_cpu); 4104 if (ret < 0) { 4105 return ret; 4106 } 4107 /* must be before kvm_put_msrs */ 4108 ret = kvm_inject_mce_oldstyle(x86_cpu); 4109 if (ret < 0) { 4110 return ret; 4111 } 4112 ret = kvm_put_msrs(x86_cpu, level); 4113 if (ret < 0) { 4114 return ret; 4115 } 4116 ret = kvm_put_vcpu_events(x86_cpu, level); 4117 if (ret < 0) { 4118 return ret; 4119 } 4120 if (level >= KVM_PUT_RESET_STATE) { 4121 ret = kvm_put_mp_state(x86_cpu); 4122 if (ret < 0) { 4123 return ret; 4124 } 4125 } 4126 4127 ret = kvm_put_tscdeadline_msr(x86_cpu); 4128 if (ret < 0) { 4129 return ret; 4130 } 4131 ret = kvm_put_debugregs(x86_cpu); 4132 if (ret < 0) { 4133 return ret; 4134 } 4135 /* must be last */ 4136 ret = kvm_guest_debug_workarounds(x86_cpu); 4137 if (ret < 0) { 4138 return ret; 4139 } 4140 return 0; 4141 } 4142 4143 int kvm_arch_get_registers(CPUState *cs) 4144 { 4145 X86CPU *cpu = X86_CPU(cs); 4146 int ret; 4147 4148 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); 4149 4150 ret = kvm_get_vcpu_events(cpu); 4151 if (ret < 0) { 4152 goto out; 4153 } 4154 /* 4155 * KVM_GET_MPSTATE can modify CS and RIP, call it before 4156 * KVM_GET_REGS and KVM_GET_SREGS. 4157 */ 4158 ret = kvm_get_mp_state(cpu); 4159 if (ret < 0) { 4160 goto out; 4161 } 4162 ret = kvm_getput_regs(cpu, 0); 4163 if (ret < 0) { 4164 goto out; 4165 } 4166 ret = kvm_get_xsave(cpu); 4167 if (ret < 0) { 4168 goto out; 4169 } 4170 ret = kvm_get_xcrs(cpu); 4171 if (ret < 0) { 4172 goto out; 4173 } 4174 ret = kvm_get_sregs(cpu); 4175 if (ret < 0) { 4176 goto out; 4177 } 4178 ret = kvm_get_msrs(cpu); 4179 if (ret < 0) { 4180 goto out; 4181 } 4182 ret = kvm_get_apic(cpu); 4183 if (ret < 0) { 4184 goto out; 4185 } 4186 ret = kvm_get_debugregs(cpu); 4187 if (ret < 0) { 4188 goto out; 4189 } 4190 ret = kvm_get_nested_state(cpu); 4191 if (ret < 0) { 4192 goto out; 4193 } 4194 ret = 0; 4195 out: 4196 cpu_sync_bndcs_hflags(&cpu->env); 4197 return ret; 4198 } 4199 4200 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 4201 { 4202 X86CPU *x86_cpu = X86_CPU(cpu); 4203 CPUX86State *env = &x86_cpu->env; 4204 int ret; 4205 4206 /* Inject NMI */ 4207 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { 4208 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { 4209 qemu_mutex_lock_iothread(); 4210 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; 4211 qemu_mutex_unlock_iothread(); 4212 DPRINTF("injected NMI\n"); 4213 ret = kvm_vcpu_ioctl(cpu, KVM_NMI); 4214 if (ret < 0) { 4215 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", 4216 strerror(-ret)); 4217 } 4218 } 4219 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { 4220 qemu_mutex_lock_iothread(); 4221 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; 4222 qemu_mutex_unlock_iothread(); 4223 DPRINTF("injected SMI\n"); 4224 ret = kvm_vcpu_ioctl(cpu, KVM_SMI); 4225 if (ret < 0) { 4226 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", 4227 strerror(-ret)); 4228 } 4229 } 4230 } 4231 4232 if (!kvm_pic_in_kernel()) { 4233 qemu_mutex_lock_iothread(); 4234 } 4235 4236 /* Force the VCPU out of its inner loop to process any INIT requests 4237 * or (for userspace APIC, but it is cheap to combine the checks here) 4238 * pending TPR access reports. 4239 */ 4240 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { 4241 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && 4242 !(env->hflags & HF_SMM_MASK)) { 4243 cpu->exit_request = 1; 4244 } 4245 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { 4246 cpu->exit_request = 1; 4247 } 4248 } 4249 4250 if (!kvm_pic_in_kernel()) { 4251 /* Try to inject an interrupt if the guest can accept it */ 4252 if (run->ready_for_interrupt_injection && 4253 (cpu->interrupt_request & CPU_INTERRUPT_HARD) && 4254 (env->eflags & IF_MASK)) { 4255 int irq; 4256 4257 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; 4258 irq = cpu_get_pic_interrupt(env); 4259 if (irq >= 0) { 4260 struct kvm_interrupt intr; 4261 4262 intr.irq = irq; 4263 DPRINTF("injected interrupt %d\n", irq); 4264 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); 4265 if (ret < 0) { 4266 fprintf(stderr, 4267 "KVM: injection failed, interrupt lost (%s)\n", 4268 strerror(-ret)); 4269 } 4270 } 4271 } 4272 4273 /* If we have an interrupt but the guest is not ready to receive an 4274 * interrupt, request an interrupt window exit. This will 4275 * cause a return to userspace as soon as the guest is ready to 4276 * receive interrupts. */ 4277 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { 4278 run->request_interrupt_window = 1; 4279 } else { 4280 run->request_interrupt_window = 0; 4281 } 4282 4283 DPRINTF("setting tpr\n"); 4284 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); 4285 4286 qemu_mutex_unlock_iothread(); 4287 } 4288 } 4289 4290 static void kvm_rate_limit_on_bus_lock(void) 4291 { 4292 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1); 4293 4294 if (delay_ns) { 4295 g_usleep(delay_ns / SCALE_US); 4296 } 4297 } 4298 4299 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) 4300 { 4301 X86CPU *x86_cpu = X86_CPU(cpu); 4302 CPUX86State *env = &x86_cpu->env; 4303 4304 if (run->flags & KVM_RUN_X86_SMM) { 4305 env->hflags |= HF_SMM_MASK; 4306 } else { 4307 env->hflags &= ~HF_SMM_MASK; 4308 } 4309 if (run->if_flag) { 4310 env->eflags |= IF_MASK; 4311 } else { 4312 env->eflags &= ~IF_MASK; 4313 } 4314 if (run->flags & KVM_RUN_X86_BUS_LOCK) { 4315 kvm_rate_limit_on_bus_lock(); 4316 } 4317 4318 /* We need to protect the apic state against concurrent accesses from 4319 * different threads in case the userspace irqchip is used. */ 4320 if (!kvm_irqchip_in_kernel()) { 4321 qemu_mutex_lock_iothread(); 4322 } 4323 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); 4324 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); 4325 if (!kvm_irqchip_in_kernel()) { 4326 qemu_mutex_unlock_iothread(); 4327 } 4328 return cpu_get_mem_attrs(env); 4329 } 4330 4331 int kvm_arch_process_async_events(CPUState *cs) 4332 { 4333 X86CPU *cpu = X86_CPU(cs); 4334 CPUX86State *env = &cpu->env; 4335 4336 if (cs->interrupt_request & CPU_INTERRUPT_MCE) { 4337 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ 4338 assert(env->mcg_cap); 4339 4340 cs->interrupt_request &= ~CPU_INTERRUPT_MCE; 4341 4342 kvm_cpu_synchronize_state(cs); 4343 4344 if (env->exception_nr == EXCP08_DBLE) { 4345 /* this means triple fault */ 4346 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 4347 cs->exit_request = 1; 4348 return 0; 4349 } 4350 kvm_queue_exception(env, EXCP12_MCHK, 0, 0); 4351 env->has_error_code = 0; 4352 4353 cs->halted = 0; 4354 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { 4355 env->mp_state = KVM_MP_STATE_RUNNABLE; 4356 } 4357 } 4358 4359 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && 4360 !(env->hflags & HF_SMM_MASK)) { 4361 kvm_cpu_synchronize_state(cs); 4362 do_cpu_init(cpu); 4363 } 4364 4365 if (kvm_irqchip_in_kernel()) { 4366 return 0; 4367 } 4368 4369 if (cs->interrupt_request & CPU_INTERRUPT_POLL) { 4370 cs->interrupt_request &= ~CPU_INTERRUPT_POLL; 4371 apic_poll_irq(cpu->apic_state); 4372 } 4373 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && 4374 (env->eflags & IF_MASK)) || 4375 (cs->interrupt_request & CPU_INTERRUPT_NMI)) { 4376 cs->halted = 0; 4377 } 4378 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { 4379 kvm_cpu_synchronize_state(cs); 4380 do_cpu_sipi(cpu); 4381 } 4382 if (cs->interrupt_request & CPU_INTERRUPT_TPR) { 4383 cs->interrupt_request &= ~CPU_INTERRUPT_TPR; 4384 kvm_cpu_synchronize_state(cs); 4385 apic_handle_tpr_access_report(cpu->apic_state, env->eip, 4386 env->tpr_access_type); 4387 } 4388 4389 return cs->halted; 4390 } 4391 4392 static int kvm_handle_halt(X86CPU *cpu) 4393 { 4394 CPUState *cs = CPU(cpu); 4395 CPUX86State *env = &cpu->env; 4396 4397 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && 4398 (env->eflags & IF_MASK)) && 4399 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { 4400 cs->halted = 1; 4401 return EXCP_HLT; 4402 } 4403 4404 return 0; 4405 } 4406 4407 static int kvm_handle_tpr_access(X86CPU *cpu) 4408 { 4409 CPUState *cs = CPU(cpu); 4410 struct kvm_run *run = cs->kvm_run; 4411 4412 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, 4413 run->tpr_access.is_write ? TPR_ACCESS_WRITE 4414 : TPR_ACCESS_READ); 4415 return 1; 4416 } 4417 4418 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 4419 { 4420 static const uint8_t int3 = 0xcc; 4421 4422 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || 4423 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { 4424 return -EINVAL; 4425 } 4426 return 0; 4427 } 4428 4429 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 4430 { 4431 uint8_t int3; 4432 4433 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) { 4434 return -EINVAL; 4435 } 4436 if (int3 != 0xcc) { 4437 return 0; 4438 } 4439 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { 4440 return -EINVAL; 4441 } 4442 return 0; 4443 } 4444 4445 static struct { 4446 target_ulong addr; 4447 int len; 4448 int type; 4449 } hw_breakpoint[4]; 4450 4451 static int nb_hw_breakpoint; 4452 4453 static int find_hw_breakpoint(target_ulong addr, int len, int type) 4454 { 4455 int n; 4456 4457 for (n = 0; n < nb_hw_breakpoint; n++) { 4458 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && 4459 (hw_breakpoint[n].len == len || len == -1)) { 4460 return n; 4461 } 4462 } 4463 return -1; 4464 } 4465 4466 int kvm_arch_insert_hw_breakpoint(target_ulong addr, 4467 target_ulong len, int type) 4468 { 4469 switch (type) { 4470 case GDB_BREAKPOINT_HW: 4471 len = 1; 4472 break; 4473 case GDB_WATCHPOINT_WRITE: 4474 case GDB_WATCHPOINT_ACCESS: 4475 switch (len) { 4476 case 1: 4477 break; 4478 case 2: 4479 case 4: 4480 case 8: 4481 if (addr & (len - 1)) { 4482 return -EINVAL; 4483 } 4484 break; 4485 default: 4486 return -EINVAL; 4487 } 4488 break; 4489 default: 4490 return -ENOSYS; 4491 } 4492 4493 if (nb_hw_breakpoint == 4) { 4494 return -ENOBUFS; 4495 } 4496 if (find_hw_breakpoint(addr, len, type) >= 0) { 4497 return -EEXIST; 4498 } 4499 hw_breakpoint[nb_hw_breakpoint].addr = addr; 4500 hw_breakpoint[nb_hw_breakpoint].len = len; 4501 hw_breakpoint[nb_hw_breakpoint].type = type; 4502 nb_hw_breakpoint++; 4503 4504 return 0; 4505 } 4506 4507 int kvm_arch_remove_hw_breakpoint(target_ulong addr, 4508 target_ulong len, int type) 4509 { 4510 int n; 4511 4512 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); 4513 if (n < 0) { 4514 return -ENOENT; 4515 } 4516 nb_hw_breakpoint--; 4517 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; 4518 4519 return 0; 4520 } 4521 4522 void kvm_arch_remove_all_hw_breakpoints(void) 4523 { 4524 nb_hw_breakpoint = 0; 4525 } 4526 4527 static CPUWatchpoint hw_watchpoint; 4528 4529 static int kvm_handle_debug(X86CPU *cpu, 4530 struct kvm_debug_exit_arch *arch_info) 4531 { 4532 CPUState *cs = CPU(cpu); 4533 CPUX86State *env = &cpu->env; 4534 int ret = 0; 4535 int n; 4536 4537 if (arch_info->exception == EXCP01_DB) { 4538 if (arch_info->dr6 & DR6_BS) { 4539 if (cs->singlestep_enabled) { 4540 ret = EXCP_DEBUG; 4541 } 4542 } else { 4543 for (n = 0; n < 4; n++) { 4544 if (arch_info->dr6 & (1 << n)) { 4545 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { 4546 case 0x0: 4547 ret = EXCP_DEBUG; 4548 break; 4549 case 0x1: 4550 ret = EXCP_DEBUG; 4551 cs->watchpoint_hit = &hw_watchpoint; 4552 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 4553 hw_watchpoint.flags = BP_MEM_WRITE; 4554 break; 4555 case 0x3: 4556 ret = EXCP_DEBUG; 4557 cs->watchpoint_hit = &hw_watchpoint; 4558 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 4559 hw_watchpoint.flags = BP_MEM_ACCESS; 4560 break; 4561 } 4562 } 4563 } 4564 } 4565 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { 4566 ret = EXCP_DEBUG; 4567 } 4568 if (ret == 0) { 4569 cpu_synchronize_state(cs); 4570 assert(env->exception_nr == -1); 4571 4572 /* pass to guest */ 4573 kvm_queue_exception(env, arch_info->exception, 4574 arch_info->exception == EXCP01_DB, 4575 arch_info->dr6); 4576 env->has_error_code = 0; 4577 } 4578 4579 return ret; 4580 } 4581 4582 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 4583 { 4584 const uint8_t type_code[] = { 4585 [GDB_BREAKPOINT_HW] = 0x0, 4586 [GDB_WATCHPOINT_WRITE] = 0x1, 4587 [GDB_WATCHPOINT_ACCESS] = 0x3 4588 }; 4589 const uint8_t len_code[] = { 4590 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 4591 }; 4592 int n; 4593 4594 if (kvm_sw_breakpoints_active(cpu)) { 4595 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 4596 } 4597 if (nb_hw_breakpoint > 0) { 4598 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 4599 dbg->arch.debugreg[7] = 0x0600; 4600 for (n = 0; n < nb_hw_breakpoint; n++) { 4601 dbg->arch.debugreg[n] = hw_breakpoint[n].addr; 4602 dbg->arch.debugreg[7] |= (2 << (n * 2)) | 4603 (type_code[hw_breakpoint[n].type] << (16 + n*4)) | 4604 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); 4605 } 4606 } 4607 } 4608 4609 static bool host_supports_vmx(void) 4610 { 4611 uint32_t ecx, unused; 4612 4613 host_cpuid(1, 0, &unused, &unused, &ecx, &unused); 4614 return ecx & CPUID_EXT_VMX; 4615 } 4616 4617 #define VMX_INVALID_GUEST_STATE 0x80000021 4618 4619 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 4620 { 4621 X86CPU *cpu = X86_CPU(cs); 4622 uint64_t code; 4623 int ret; 4624 4625 switch (run->exit_reason) { 4626 case KVM_EXIT_HLT: 4627 DPRINTF("handle_hlt\n"); 4628 qemu_mutex_lock_iothread(); 4629 ret = kvm_handle_halt(cpu); 4630 qemu_mutex_unlock_iothread(); 4631 break; 4632 case KVM_EXIT_SET_TPR: 4633 ret = 0; 4634 break; 4635 case KVM_EXIT_TPR_ACCESS: 4636 qemu_mutex_lock_iothread(); 4637 ret = kvm_handle_tpr_access(cpu); 4638 qemu_mutex_unlock_iothread(); 4639 break; 4640 case KVM_EXIT_FAIL_ENTRY: 4641 code = run->fail_entry.hardware_entry_failure_reason; 4642 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", 4643 code); 4644 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { 4645 fprintf(stderr, 4646 "\nIf you're running a guest on an Intel machine without " 4647 "unrestricted mode\n" 4648 "support, the failure can be most likely due to the guest " 4649 "entering an invalid\n" 4650 "state for Intel VT. For example, the guest maybe running " 4651 "in big real mode\n" 4652 "which is not supported on less recent Intel processors." 4653 "\n\n"); 4654 } 4655 ret = -1; 4656 break; 4657 case KVM_EXIT_EXCEPTION: 4658 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", 4659 run->ex.exception, run->ex.error_code); 4660 ret = -1; 4661 break; 4662 case KVM_EXIT_DEBUG: 4663 DPRINTF("kvm_exit_debug\n"); 4664 qemu_mutex_lock_iothread(); 4665 ret = kvm_handle_debug(cpu, &run->debug.arch); 4666 qemu_mutex_unlock_iothread(); 4667 break; 4668 case KVM_EXIT_HYPERV: 4669 ret = kvm_hv_handle_exit(cpu, &run->hyperv); 4670 break; 4671 case KVM_EXIT_IOAPIC_EOI: 4672 ioapic_eoi_broadcast(run->eoi.vector); 4673 ret = 0; 4674 break; 4675 case KVM_EXIT_X86_BUS_LOCK: 4676 /* already handled in kvm_arch_post_run */ 4677 ret = 0; 4678 break; 4679 default: 4680 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); 4681 ret = -1; 4682 break; 4683 } 4684 4685 return ret; 4686 } 4687 4688 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 4689 { 4690 X86CPU *cpu = X86_CPU(cs); 4691 CPUX86State *env = &cpu->env; 4692 4693 kvm_cpu_synchronize_state(cs); 4694 return !(env->cr[0] & CR0_PE_MASK) || 4695 ((env->segs[R_CS].selector & 3) != 3); 4696 } 4697 4698 void kvm_arch_init_irq_routing(KVMState *s) 4699 { 4700 /* We know at this point that we're using the in-kernel 4701 * irqchip, so we can use irqfds, and on x86 we know 4702 * we can use msi via irqfd and GSI routing. 4703 */ 4704 kvm_msi_via_irqfd_allowed = true; 4705 kvm_gsi_routing_allowed = true; 4706 4707 if (kvm_irqchip_is_split()) { 4708 int i; 4709 4710 /* If the ioapic is in QEMU and the lapics are in KVM, reserve 4711 MSI routes for signaling interrupts to the local apics. */ 4712 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 4713 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) { 4714 error_report("Could not enable split IRQ mode."); 4715 exit(1); 4716 } 4717 } 4718 } 4719 } 4720 4721 int kvm_arch_irqchip_create(KVMState *s) 4722 { 4723 int ret; 4724 if (kvm_kernel_irqchip_split()) { 4725 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); 4726 if (ret) { 4727 error_report("Could not enable split irqchip mode: %s", 4728 strerror(-ret)); 4729 exit(1); 4730 } else { 4731 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); 4732 kvm_split_irqchip = true; 4733 return 1; 4734 } 4735 } else { 4736 return 0; 4737 } 4738 } 4739 4740 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address) 4741 { 4742 CPUX86State *env; 4743 uint64_t ext_id; 4744 4745 if (!first_cpu) { 4746 return address; 4747 } 4748 env = &X86_CPU(first_cpu)->env; 4749 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) { 4750 return address; 4751 } 4752 4753 /* 4754 * If the remappable format bit is set, or the upper bits are 4755 * already set in address_hi, or the low extended bits aren't 4756 * there anyway, do nothing. 4757 */ 4758 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT); 4759 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) { 4760 return address; 4761 } 4762 4763 address &= ~ext_id; 4764 address |= ext_id << 35; 4765 return address; 4766 } 4767 4768 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 4769 uint64_t address, uint32_t data, PCIDevice *dev) 4770 { 4771 X86IOMMUState *iommu = x86_iommu_get_default(); 4772 4773 if (iommu) { 4774 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu); 4775 4776 if (class->int_remap) { 4777 int ret; 4778 MSIMessage src, dst; 4779 4780 src.address = route->u.msi.address_hi; 4781 src.address <<= VTD_MSI_ADDR_HI_SHIFT; 4782 src.address |= route->u.msi.address_lo; 4783 src.data = route->u.msi.data; 4784 4785 ret = class->int_remap(iommu, &src, &dst, dev ? \ 4786 pci_requester_id(dev) : \ 4787 X86_IOMMU_SID_INVALID); 4788 if (ret) { 4789 trace_kvm_x86_fixup_msi_error(route->gsi); 4790 return 1; 4791 } 4792 4793 /* 4794 * Handled untranslated compatibilty format interrupt with 4795 * extended destination ID in the low bits 11-5. */ 4796 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address); 4797 4798 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; 4799 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; 4800 route->u.msi.data = dst.data; 4801 return 0; 4802 } 4803 } 4804 4805 address = kvm_swizzle_msi_ext_dest_id(address); 4806 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT; 4807 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK; 4808 return 0; 4809 } 4810 4811 typedef struct MSIRouteEntry MSIRouteEntry; 4812 4813 struct MSIRouteEntry { 4814 PCIDevice *dev; /* Device pointer */ 4815 int vector; /* MSI/MSIX vector index */ 4816 int virq; /* Virtual IRQ index */ 4817 QLIST_ENTRY(MSIRouteEntry) list; 4818 }; 4819 4820 /* List of used GSI routes */ 4821 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ 4822 QLIST_HEAD_INITIALIZER(msi_route_list); 4823 4824 static void kvm_update_msi_routes_all(void *private, bool global, 4825 uint32_t index, uint32_t mask) 4826 { 4827 int cnt = 0, vector; 4828 MSIRouteEntry *entry; 4829 MSIMessage msg; 4830 PCIDevice *dev; 4831 4832 /* TODO: explicit route update */ 4833 QLIST_FOREACH(entry, &msi_route_list, list) { 4834 cnt++; 4835 vector = entry->vector; 4836 dev = entry->dev; 4837 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) { 4838 msg = msix_get_message(dev, vector); 4839 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) { 4840 msg = msi_get_message(dev, vector); 4841 } else { 4842 /* 4843 * Either MSI/MSIX is disabled for the device, or the 4844 * specific message was masked out. Skip this one. 4845 */ 4846 continue; 4847 } 4848 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); 4849 } 4850 kvm_irqchip_commit_routes(kvm_state); 4851 trace_kvm_x86_update_msi_routes(cnt); 4852 } 4853 4854 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 4855 int vector, PCIDevice *dev) 4856 { 4857 static bool notify_list_inited = false; 4858 MSIRouteEntry *entry; 4859 4860 if (!dev) { 4861 /* These are (possibly) IOAPIC routes only used for split 4862 * kernel irqchip mode, while what we are housekeeping are 4863 * PCI devices only. */ 4864 return 0; 4865 } 4866 4867 entry = g_new0(MSIRouteEntry, 1); 4868 entry->dev = dev; 4869 entry->vector = vector; 4870 entry->virq = route->gsi; 4871 QLIST_INSERT_HEAD(&msi_route_list, entry, list); 4872 4873 trace_kvm_x86_add_msi_route(route->gsi); 4874 4875 if (!notify_list_inited) { 4876 /* For the first time we do add route, add ourselves into 4877 * IOMMU's IEC notify list if needed. */ 4878 X86IOMMUState *iommu = x86_iommu_get_default(); 4879 if (iommu) { 4880 x86_iommu_iec_register_notifier(iommu, 4881 kvm_update_msi_routes_all, 4882 NULL); 4883 } 4884 notify_list_inited = true; 4885 } 4886 return 0; 4887 } 4888 4889 int kvm_arch_release_virq_post(int virq) 4890 { 4891 MSIRouteEntry *entry, *next; 4892 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { 4893 if (entry->virq == virq) { 4894 trace_kvm_x86_remove_msi_route(virq); 4895 QLIST_REMOVE(entry, list); 4896 g_free(entry); 4897 break; 4898 } 4899 } 4900 return 0; 4901 } 4902 4903 int kvm_arch_msi_data_to_gsi(uint32_t data) 4904 { 4905 abort(); 4906 } 4907 4908 bool kvm_has_waitpkg(void) 4909 { 4910 return has_msr_umwait; 4911 } 4912 4913 bool kvm_arch_cpu_check_are_resettable(void) 4914 { 4915 return !sev_es_enabled(); 4916 } 4917