xref: /openbmc/qemu/target/i386/kvm/kvm.c (revision 0f910b87)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright (C) 2006-2008 Qumranet Technologies
5  * Copyright IBM, Corp. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include "qapi/visitor.h"
19 #include <sys/ioctl.h>
20 #include <sys/utsname.h>
21 #include <sys/syscall.h>
22 
23 #include <linux/kvm.h>
24 #include "standard-headers/asm-x86/kvm_para.h"
25 #include "hw/xen/interface/arch-x86/cpuid.h"
26 
27 #include "cpu.h"
28 #include "host-cpu.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/hw_accel.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "kvm_i386.h"
34 #include "../confidential-guest.h"
35 #include "sev.h"
36 #include "xen-emu.h"
37 #include "hyperv.h"
38 #include "hyperv-proto.h"
39 
40 #include "exec/gdbstub.h"
41 #include "qemu/host-utils.h"
42 #include "qemu/main-loop.h"
43 #include "qemu/ratelimit.h"
44 #include "qemu/config-file.h"
45 #include "qemu/error-report.h"
46 #include "qemu/memalign.h"
47 #include "hw/i386/x86.h"
48 #include "hw/i386/kvm/xen_evtchn.h"
49 #include "hw/i386/pc.h"
50 #include "hw/i386/apic.h"
51 #include "hw/i386/apic_internal.h"
52 #include "hw/i386/apic-msidef.h"
53 #include "hw/i386/intel_iommu.h"
54 #include "hw/i386/topology.h"
55 #include "hw/i386/x86-iommu.h"
56 #include "hw/i386/e820_memory_layout.h"
57 
58 #include "hw/xen/xen.h"
59 
60 #include "hw/pci/pci.h"
61 #include "hw/pci/msi.h"
62 #include "hw/pci/msix.h"
63 #include "migration/blocker.h"
64 #include "exec/memattrs.h"
65 #include "trace.h"
66 
67 #include CONFIG_DEVICES
68 
69 //#define DEBUG_KVM
70 
71 #ifdef DEBUG_KVM
72 #define DPRINTF(fmt, ...) \
73     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
74 #else
75 #define DPRINTF(fmt, ...) \
76     do { } while (0)
77 #endif
78 
79 /* From arch/x86/kvm/lapic.h */
80 #define KVM_APIC_BUS_CYCLE_NS       1
81 #define KVM_APIC_BUS_FREQUENCY      (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
82 
83 #define MSR_KVM_WALL_CLOCK  0x11
84 #define MSR_KVM_SYSTEM_TIME 0x12
85 
86 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
87  * 255 kvm_msr_entry structs */
88 #define MSR_BUF_SIZE 4096
89 
90 static void kvm_init_msrs(X86CPU *cpu);
91 
92 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
93     KVM_CAP_INFO(SET_TSS_ADDR),
94     KVM_CAP_INFO(EXT_CPUID),
95     KVM_CAP_INFO(MP_STATE),
96     KVM_CAP_INFO(SIGNAL_MSI),
97     KVM_CAP_INFO(IRQ_ROUTING),
98     KVM_CAP_INFO(DEBUGREGS),
99     KVM_CAP_INFO(XSAVE),
100     KVM_CAP_INFO(VCPU_EVENTS),
101     KVM_CAP_INFO(X86_ROBUST_SINGLESTEP),
102     KVM_CAP_INFO(MCE),
103     KVM_CAP_INFO(ADJUST_CLOCK),
104     KVM_CAP_INFO(SET_IDENTITY_MAP_ADDR),
105     KVM_CAP_LAST_INFO
106 };
107 
108 static bool has_msr_star;
109 static bool has_msr_hsave_pa;
110 static bool has_msr_tsc_aux;
111 static bool has_msr_tsc_adjust;
112 static bool has_msr_tsc_deadline;
113 static bool has_msr_feature_control;
114 static bool has_msr_misc_enable;
115 static bool has_msr_smbase;
116 static bool has_msr_bndcfgs;
117 static int lm_capable_kernel;
118 static bool has_msr_hv_hypercall;
119 static bool has_msr_hv_crash;
120 static bool has_msr_hv_reset;
121 static bool has_msr_hv_vpindex;
122 static bool hv_vpindex_settable;
123 static bool has_msr_hv_runtime;
124 static bool has_msr_hv_synic;
125 static bool has_msr_hv_stimer;
126 static bool has_msr_hv_frequencies;
127 static bool has_msr_hv_reenlightenment;
128 static bool has_msr_hv_syndbg_options;
129 static bool has_msr_xss;
130 static bool has_msr_umwait;
131 static bool has_msr_spec_ctrl;
132 static bool has_tsc_scale_msr;
133 static bool has_msr_tsx_ctrl;
134 static bool has_msr_virt_ssbd;
135 static bool has_msr_smi_count;
136 static bool has_msr_arch_capabs;
137 static bool has_msr_core_capabs;
138 static bool has_msr_vmx_vmfunc;
139 static bool has_msr_ucode_rev;
140 static bool has_msr_vmx_procbased_ctls2;
141 static bool has_msr_perf_capabs;
142 static bool has_msr_pkrs;
143 
144 static uint32_t has_architectural_pmu_version;
145 static uint32_t num_architectural_pmu_gp_counters;
146 static uint32_t num_architectural_pmu_fixed_counters;
147 
148 static int has_xsave2;
149 static int has_xcrs;
150 static int has_sregs2;
151 static int has_exception_payload;
152 static int has_triple_fault_event;
153 
154 static bool has_msr_mcg_ext_ctl;
155 
156 static struct kvm_cpuid2 *cpuid_cache;
157 static struct kvm_cpuid2 *hv_cpuid_cache;
158 static struct kvm_msr_list *kvm_feature_msrs;
159 
160 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES];
161 
162 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
163 static RateLimit bus_lock_ratelimit_ctrl;
164 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value);
165 
166 static const char *vm_type_name[] = {
167     [KVM_X86_DEFAULT_VM] = "default",
168     [KVM_X86_SEV_VM] = "SEV",
169     [KVM_X86_SEV_ES_VM] = "SEV-ES",
170 };
171 
172 bool kvm_is_vm_type_supported(int type)
173 {
174     uint32_t machine_types;
175 
176     /*
177      * old KVM doesn't support KVM_CAP_VM_TYPES but KVM_X86_DEFAULT_VM
178      * is always supported
179      */
180     if (type == KVM_X86_DEFAULT_VM) {
181         return true;
182     }
183 
184     machine_types = kvm_check_extension(KVM_STATE(current_machine->accelerator),
185                                         KVM_CAP_VM_TYPES);
186     return !!(machine_types & BIT(type));
187 }
188 
189 int kvm_get_vm_type(MachineState *ms)
190 {
191     int kvm_type = KVM_X86_DEFAULT_VM;
192 
193     if (ms->cgs) {
194         if (!object_dynamic_cast(OBJECT(ms->cgs), TYPE_X86_CONFIDENTIAL_GUEST)) {
195             error_report("configuration type %s not supported for x86 guests",
196                          object_get_typename(OBJECT(ms->cgs)));
197             exit(1);
198         }
199         kvm_type = x86_confidential_guest_kvm_type(
200             X86_CONFIDENTIAL_GUEST(ms->cgs));
201     }
202 
203     if (!kvm_is_vm_type_supported(kvm_type)) {
204         error_report("vm-type %s not supported by KVM", vm_type_name[kvm_type]);
205         exit(1);
206     }
207 
208     return kvm_type;
209 }
210 
211 bool kvm_has_smm(void)
212 {
213     return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
214 }
215 
216 bool kvm_has_adjust_clock_stable(void)
217 {
218     int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
219 
220     return (ret & KVM_CLOCK_TSC_STABLE);
221 }
222 
223 bool kvm_has_exception_payload(void)
224 {
225     return has_exception_payload;
226 }
227 
228 static bool kvm_x2apic_api_set_flags(uint64_t flags)
229 {
230     KVMState *s = KVM_STATE(current_accel());
231 
232     return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
233 }
234 
235 #define MEMORIZE(fn, _result) \
236     ({ \
237         static bool _memorized; \
238         \
239         if (_memorized) { \
240             return _result; \
241         } \
242         _memorized = true; \
243         _result = fn; \
244     })
245 
246 static bool has_x2apic_api;
247 
248 bool kvm_has_x2apic_api(void)
249 {
250     return has_x2apic_api;
251 }
252 
253 bool kvm_enable_x2apic(void)
254 {
255     return MEMORIZE(
256              kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
257                                       KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
258              has_x2apic_api);
259 }
260 
261 bool kvm_hv_vpindex_settable(void)
262 {
263     return hv_vpindex_settable;
264 }
265 
266 static int kvm_get_tsc(CPUState *cs)
267 {
268     X86CPU *cpu = X86_CPU(cs);
269     CPUX86State *env = &cpu->env;
270     uint64_t value;
271     int ret;
272 
273     if (env->tsc_valid) {
274         return 0;
275     }
276 
277     env->tsc_valid = !runstate_is_running();
278 
279     ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value);
280     if (ret < 0) {
281         return ret;
282     }
283 
284     env->tsc = value;
285     return 0;
286 }
287 
288 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
289 {
290     kvm_get_tsc(cpu);
291 }
292 
293 void kvm_synchronize_all_tsc(void)
294 {
295     CPUState *cpu;
296 
297     if (kvm_enabled()) {
298         CPU_FOREACH(cpu) {
299             run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
300         }
301     }
302 }
303 
304 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
305 {
306     struct kvm_cpuid2 *cpuid;
307     int r, size;
308 
309     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
310     cpuid = g_malloc0(size);
311     cpuid->nent = max;
312     r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
313     if (r == 0 && cpuid->nent >= max) {
314         r = -E2BIG;
315     }
316     if (r < 0) {
317         if (r == -E2BIG) {
318             g_free(cpuid);
319             return NULL;
320         } else {
321             fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
322                     strerror(-r));
323             exit(1);
324         }
325     }
326     return cpuid;
327 }
328 
329 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
330  * for all entries.
331  */
332 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
333 {
334     struct kvm_cpuid2 *cpuid;
335     int max = 1;
336 
337     if (cpuid_cache != NULL) {
338         return cpuid_cache;
339     }
340     while ((cpuid = try_get_cpuid(s, max)) == NULL) {
341         max *= 2;
342     }
343     cpuid_cache = cpuid;
344     return cpuid;
345 }
346 
347 static bool host_tsx_broken(void)
348 {
349     int family, model, stepping;\
350     char vendor[CPUID_VENDOR_SZ + 1];
351 
352     host_cpu_vendor_fms(vendor, &family, &model, &stepping);
353 
354     /* Check if we are running on a Haswell host known to have broken TSX */
355     return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
356            (family == 6) &&
357            ((model == 63 && stepping < 4) ||
358             model == 60 || model == 69 || model == 70);
359 }
360 
361 /* Returns the value for a specific register on the cpuid entry
362  */
363 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
364 {
365     uint32_t ret = 0;
366     switch (reg) {
367     case R_EAX:
368         ret = entry->eax;
369         break;
370     case R_EBX:
371         ret = entry->ebx;
372         break;
373     case R_ECX:
374         ret = entry->ecx;
375         break;
376     case R_EDX:
377         ret = entry->edx;
378         break;
379     }
380     return ret;
381 }
382 
383 /* Find matching entry for function/index on kvm_cpuid2 struct
384  */
385 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
386                                                  uint32_t function,
387                                                  uint32_t index)
388 {
389     int i;
390     for (i = 0; i < cpuid->nent; ++i) {
391         if (cpuid->entries[i].function == function &&
392             cpuid->entries[i].index == index) {
393             return &cpuid->entries[i];
394         }
395     }
396     /* not found: */
397     return NULL;
398 }
399 
400 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
401                                       uint32_t index, int reg)
402 {
403     struct kvm_cpuid2 *cpuid;
404     uint32_t ret = 0;
405     uint32_t cpuid_1_edx, unused;
406     uint64_t bitmask;
407 
408     cpuid = get_supported_cpuid(s);
409 
410     struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
411     if (entry) {
412         ret = cpuid_entry_get_reg(entry, reg);
413     }
414 
415     /* Fixups for the data returned by KVM, below */
416 
417     if (function == 1 && reg == R_EDX) {
418         /* KVM before 2.6.30 misreports the following features */
419         ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
420         /* KVM never reports CPUID_HT but QEMU can support when vcpus > 1 */
421         ret |= CPUID_HT;
422     } else if (function == 1 && reg == R_ECX) {
423         /* We can set the hypervisor flag, even if KVM does not return it on
424          * GET_SUPPORTED_CPUID
425          */
426         ret |= CPUID_EXT_HYPERVISOR;
427         /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
428          * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
429          * and the irqchip is in the kernel.
430          */
431         if (kvm_irqchip_in_kernel() &&
432                 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
433             ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
434         }
435 
436         /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
437          * without the in-kernel irqchip
438          */
439         if (!kvm_irqchip_in_kernel()) {
440             ret &= ~CPUID_EXT_X2APIC;
441         }
442 
443         if (enable_cpu_pm) {
444             int disable_exits = kvm_check_extension(s,
445                                                     KVM_CAP_X86_DISABLE_EXITS);
446 
447             if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
448                 ret |= CPUID_EXT_MONITOR;
449             }
450         }
451     } else if (function == 6 && reg == R_EAX) {
452         ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
453     } else if (function == 7 && index == 0 && reg == R_EBX) {
454         /* Not new instructions, just an optimization.  */
455         uint32_t ebx;
456         host_cpuid(7, 0, &unused, &ebx, &unused, &unused);
457         ret |= ebx & CPUID_7_0_EBX_ERMS;
458 
459         if (host_tsx_broken()) {
460             ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
461         }
462     } else if (function == 7 && index == 0 && reg == R_EDX) {
463         /* Not new instructions, just an optimization.  */
464         uint32_t edx;
465         host_cpuid(7, 0, &unused, &unused, &unused, &edx);
466         ret |= edx & CPUID_7_0_EDX_FSRM;
467 
468         /*
469          * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
470          * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
471          * returned by KVM_GET_MSR_INDEX_LIST.
472          */
473         if (!has_msr_arch_capabs) {
474             ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
475         }
476     } else if (function == 7 && index == 1 && reg == R_EAX) {
477         /* Not new instructions, just an optimization.  */
478         uint32_t eax;
479         host_cpuid(7, 1, &eax, &unused, &unused, &unused);
480         ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC);
481     } else if (function == 7 && index == 2 && reg == R_EDX) {
482         uint32_t edx;
483         host_cpuid(7, 2, &unused, &unused, &unused, &edx);
484         ret |= edx & CPUID_7_2_EDX_MCDT_NO;
485     } else if (function == 0xd && index == 0 &&
486                (reg == R_EAX || reg == R_EDX)) {
487         /*
488          * The value returned by KVM_GET_SUPPORTED_CPUID does not include
489          * features that still have to be enabled with the arch_prctl
490          * system call.  QEMU needs the full value, which is retrieved
491          * with KVM_GET_DEVICE_ATTR.
492          */
493         struct kvm_device_attr attr = {
494             .group = 0,
495             .attr = KVM_X86_XCOMP_GUEST_SUPP,
496             .addr = (unsigned long) &bitmask
497         };
498 
499         bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
500         if (!sys_attr) {
501             return ret;
502         }
503 
504         int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
505         if (rc < 0) {
506             if (rc != -ENXIO) {
507                 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
508                             "error: %d", rc);
509             }
510             return ret;
511         }
512         ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
513     } else if (function == 0x80000001 && reg == R_ECX) {
514         /*
515          * It's safe to enable TOPOEXT even if it's not returned by
516          * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
517          * us to keep CPU models including TOPOEXT runnable on older kernels.
518          */
519         ret |= CPUID_EXT3_TOPOEXT;
520     } else if (function == 0x80000001 && reg == R_EDX) {
521         /* On Intel, kvm returns cpuid according to the Intel spec,
522          * so add missing bits according to the AMD spec:
523          */
524         cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
525         ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
526     } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
527         /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
528          * be enabled without the in-kernel irqchip
529          */
530         if (!kvm_irqchip_in_kernel()) {
531             ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
532         }
533         if (kvm_irqchip_is_split()) {
534             ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
535         }
536     } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
537         ret |= 1U << KVM_HINTS_REALTIME;
538     }
539 
540     return ret;
541 }
542 
543 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
544 {
545     struct {
546         struct kvm_msrs info;
547         struct kvm_msr_entry entries[1];
548     } msr_data = {};
549     uint64_t value;
550     uint32_t ret, can_be_one, must_be_one;
551 
552     if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
553         return 0;
554     }
555 
556     /* Check if requested MSR is supported feature MSR */
557     int i;
558     for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
559         if (kvm_feature_msrs->indices[i] == index) {
560             break;
561         }
562     if (i == kvm_feature_msrs->nmsrs) {
563         return 0; /* if the feature MSR is not supported, simply return 0 */
564     }
565 
566     msr_data.info.nmsrs = 1;
567     msr_data.entries[0].index = index;
568 
569     ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
570     if (ret != 1) {
571         error_report("KVM get MSR (index=0x%x) feature failed, %s",
572             index, strerror(-ret));
573         exit(1);
574     }
575 
576     value = msr_data.entries[0].data;
577     switch (index) {
578     case MSR_IA32_VMX_PROCBASED_CTLS2:
579         if (!has_msr_vmx_procbased_ctls2) {
580             /* KVM forgot to add these bits for some time, do this ourselves. */
581             if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
582                 CPUID_XSAVE_XSAVES) {
583                 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
584             }
585             if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
586                 CPUID_EXT_RDRAND) {
587                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
588             }
589             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
590                 CPUID_7_0_EBX_INVPCID) {
591                 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
592             }
593             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
594                 CPUID_7_0_EBX_RDSEED) {
595                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
596             }
597             if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
598                 CPUID_EXT2_RDTSCP) {
599                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
600             }
601         }
602         /* fall through */
603     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
604     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
605     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
606     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
607         /*
608          * Return true for bits that can be one, but do not have to be one.
609          * The SDM tells us which bits could have a "must be one" setting,
610          * so we can do the opposite transformation in make_vmx_msr_value.
611          */
612         must_be_one = (uint32_t)value;
613         can_be_one = (uint32_t)(value >> 32);
614         return can_be_one & ~must_be_one;
615 
616     default:
617         return value;
618     }
619 }
620 
621 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
622                                      int *max_banks)
623 {
624     *max_banks = kvm_check_extension(s, KVM_CAP_MCE);
625     return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
626 }
627 
628 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
629 {
630     CPUState *cs = CPU(cpu);
631     CPUX86State *env = &cpu->env;
632     uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
633                       MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
634     uint64_t mcg_status = MCG_STATUS_MCIP;
635     int flags = 0;
636 
637     if (code == BUS_MCEERR_AR) {
638         status |= MCI_STATUS_AR | 0x134;
639         mcg_status |= MCG_STATUS_RIPV | MCG_STATUS_EIPV;
640     } else {
641         status |= 0xc0;
642         mcg_status |= MCG_STATUS_RIPV;
643     }
644 
645     flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
646     /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
647      * guest kernel back into env->mcg_ext_ctl.
648      */
649     cpu_synchronize_state(cs);
650     if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
651         mcg_status |= MCG_STATUS_LMCE;
652         flags = 0;
653     }
654 
655     cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
656                        (MCM_ADDR_PHYS << 6) | 0xc, flags);
657 }
658 
659 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
660 {
661     MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
662 
663     qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
664                                    &mff);
665 }
666 
667 static void hardware_memory_error(void *host_addr)
668 {
669     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
670     error_report("QEMU got Hardware memory error at addr %p", host_addr);
671     exit(1);
672 }
673 
674 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
675 {
676     X86CPU *cpu = X86_CPU(c);
677     CPUX86State *env = &cpu->env;
678     ram_addr_t ram_addr;
679     hwaddr paddr;
680 
681     /* If we get an action required MCE, it has been injected by KVM
682      * while the VM was running.  An action optional MCE instead should
683      * be coming from the main thread, which qemu_init_sigbus identifies
684      * as the "early kill" thread.
685      */
686     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
687 
688     if ((env->mcg_cap & MCG_SER_P) && addr) {
689         ram_addr = qemu_ram_addr_from_host(addr);
690         if (ram_addr != RAM_ADDR_INVALID &&
691             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
692             kvm_hwpoison_page_add(ram_addr);
693             kvm_mce_inject(cpu, paddr, code);
694 
695             /*
696              * Use different logging severity based on error type.
697              * If there is additional MCE reporting on the hypervisor, QEMU VA
698              * could be another source to identify the PA and MCE details.
699              */
700             if (code == BUS_MCEERR_AR) {
701                 error_report("Guest MCE Memory Error at QEMU addr %p and "
702                     "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
703                     addr, paddr, "BUS_MCEERR_AR");
704             } else {
705                  warn_report("Guest MCE Memory Error at QEMU addr %p and "
706                      "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
707                      addr, paddr, "BUS_MCEERR_AO");
708             }
709 
710             return;
711         }
712 
713         if (code == BUS_MCEERR_AO) {
714             warn_report("Hardware memory error at addr %p of type %s "
715                 "for memory used by QEMU itself instead of guest system!",
716                  addr, "BUS_MCEERR_AO");
717         }
718     }
719 
720     if (code == BUS_MCEERR_AR) {
721         hardware_memory_error(addr);
722     }
723 
724     /* Hope we are lucky for AO MCE, just notify a event */
725     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
726 }
727 
728 static void kvm_queue_exception(CPUX86State *env,
729                                 int32_t exception_nr,
730                                 uint8_t exception_has_payload,
731                                 uint64_t exception_payload)
732 {
733     assert(env->exception_nr == -1);
734     assert(!env->exception_pending);
735     assert(!env->exception_injected);
736     assert(!env->exception_has_payload);
737 
738     env->exception_nr = exception_nr;
739 
740     if (has_exception_payload) {
741         env->exception_pending = 1;
742 
743         env->exception_has_payload = exception_has_payload;
744         env->exception_payload = exception_payload;
745     } else {
746         env->exception_injected = 1;
747 
748         if (exception_nr == EXCP01_DB) {
749             assert(exception_has_payload);
750             env->dr[6] = exception_payload;
751         } else if (exception_nr == EXCP0E_PAGE) {
752             assert(exception_has_payload);
753             env->cr[2] = exception_payload;
754         } else {
755             assert(!exception_has_payload);
756         }
757     }
758 }
759 
760 static void cpu_update_state(void *opaque, bool running, RunState state)
761 {
762     CPUX86State *env = opaque;
763 
764     if (running) {
765         env->tsc_valid = false;
766     }
767 }
768 
769 unsigned long kvm_arch_vcpu_id(CPUState *cs)
770 {
771     X86CPU *cpu = X86_CPU(cs);
772     return cpu->apic_id;
773 }
774 
775 #ifndef KVM_CPUID_SIGNATURE_NEXT
776 #define KVM_CPUID_SIGNATURE_NEXT                0x40000100
777 #endif
778 
779 static bool hyperv_enabled(X86CPU *cpu)
780 {
781     return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
782         ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
783          cpu->hyperv_features || cpu->hyperv_passthrough);
784 }
785 
786 /*
787  * Check whether target_freq is within conservative
788  * ntp correctable bounds (250ppm) of freq
789  */
790 static inline bool freq_within_bounds(int freq, int target_freq)
791 {
792         int max_freq = freq + (freq * 250 / 1000000);
793         int min_freq = freq - (freq * 250 / 1000000);
794 
795         if (target_freq >= min_freq && target_freq <= max_freq) {
796                 return true;
797         }
798 
799         return false;
800 }
801 
802 static int kvm_arch_set_tsc_khz(CPUState *cs)
803 {
804     X86CPU *cpu = X86_CPU(cs);
805     CPUX86State *env = &cpu->env;
806     int r, cur_freq;
807     bool set_ioctl = false;
808 
809     if (!env->tsc_khz) {
810         return 0;
811     }
812 
813     cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
814                kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
815 
816     /*
817      * If TSC scaling is supported, attempt to set TSC frequency.
818      */
819     if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
820         set_ioctl = true;
821     }
822 
823     /*
824      * If desired TSC frequency is within bounds of NTP correction,
825      * attempt to set TSC frequency.
826      */
827     if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
828         set_ioctl = true;
829     }
830 
831     r = set_ioctl ?
832         kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
833         -ENOTSUP;
834 
835     if (r < 0) {
836         /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
837          * TSC frequency doesn't match the one we want.
838          */
839         cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
840                    kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
841                    -ENOTSUP;
842         if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
843             warn_report("TSC frequency mismatch between "
844                         "VM (%" PRId64 " kHz) and host (%d kHz), "
845                         "and TSC scaling unavailable",
846                         env->tsc_khz, cur_freq);
847             return r;
848         }
849     }
850 
851     return 0;
852 }
853 
854 static bool tsc_is_stable_and_known(CPUX86State *env)
855 {
856     if (!env->tsc_khz) {
857         return false;
858     }
859     return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
860         || env->user_tsc_khz;
861 }
862 
863 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
864 
865 static struct {
866     const char *desc;
867     struct {
868         uint32_t func;
869         int reg;
870         uint32_t bits;
871     } flags[2];
872     uint64_t dependencies;
873 } kvm_hyperv_properties[] = {
874     [HYPERV_FEAT_RELAXED] = {
875         .desc = "relaxed timing (hv-relaxed)",
876         .flags = {
877             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
878              .bits = HV_RELAXED_TIMING_RECOMMENDED}
879         }
880     },
881     [HYPERV_FEAT_VAPIC] = {
882         .desc = "virtual APIC (hv-vapic)",
883         .flags = {
884             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
885              .bits = HV_APIC_ACCESS_AVAILABLE}
886         }
887     },
888     [HYPERV_FEAT_TIME] = {
889         .desc = "clocksources (hv-time)",
890         .flags = {
891             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
892              .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
893         }
894     },
895     [HYPERV_FEAT_CRASH] = {
896         .desc = "crash MSRs (hv-crash)",
897         .flags = {
898             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
899              .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
900         }
901     },
902     [HYPERV_FEAT_RESET] = {
903         .desc = "reset MSR (hv-reset)",
904         .flags = {
905             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
906              .bits = HV_RESET_AVAILABLE}
907         }
908     },
909     [HYPERV_FEAT_VPINDEX] = {
910         .desc = "VP_INDEX MSR (hv-vpindex)",
911         .flags = {
912             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
913              .bits = HV_VP_INDEX_AVAILABLE}
914         }
915     },
916     [HYPERV_FEAT_RUNTIME] = {
917         .desc = "VP_RUNTIME MSR (hv-runtime)",
918         .flags = {
919             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
920              .bits = HV_VP_RUNTIME_AVAILABLE}
921         }
922     },
923     [HYPERV_FEAT_SYNIC] = {
924         .desc = "synthetic interrupt controller (hv-synic)",
925         .flags = {
926             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
927              .bits = HV_SYNIC_AVAILABLE}
928         }
929     },
930     [HYPERV_FEAT_STIMER] = {
931         .desc = "synthetic timers (hv-stimer)",
932         .flags = {
933             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
934              .bits = HV_SYNTIMERS_AVAILABLE}
935         },
936         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
937     },
938     [HYPERV_FEAT_FREQUENCIES] = {
939         .desc = "frequency MSRs (hv-frequencies)",
940         .flags = {
941             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
942              .bits = HV_ACCESS_FREQUENCY_MSRS},
943             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
944              .bits = HV_FREQUENCY_MSRS_AVAILABLE}
945         }
946     },
947     [HYPERV_FEAT_REENLIGHTENMENT] = {
948         .desc = "reenlightenment MSRs (hv-reenlightenment)",
949         .flags = {
950             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
951              .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
952         }
953     },
954     [HYPERV_FEAT_TLBFLUSH] = {
955         .desc = "paravirtualized TLB flush (hv-tlbflush)",
956         .flags = {
957             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
958              .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
959              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
960         },
961         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
962     },
963     [HYPERV_FEAT_EVMCS] = {
964         .desc = "enlightened VMCS (hv-evmcs)",
965         .flags = {
966             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
967              .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
968         },
969         .dependencies = BIT(HYPERV_FEAT_VAPIC)
970     },
971     [HYPERV_FEAT_IPI] = {
972         .desc = "paravirtualized IPI (hv-ipi)",
973         .flags = {
974             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
975              .bits = HV_CLUSTER_IPI_RECOMMENDED |
976              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
977         },
978         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
979     },
980     [HYPERV_FEAT_STIMER_DIRECT] = {
981         .desc = "direct mode synthetic timers (hv-stimer-direct)",
982         .flags = {
983             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
984              .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
985         },
986         .dependencies = BIT(HYPERV_FEAT_STIMER)
987     },
988     [HYPERV_FEAT_AVIC] = {
989         .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
990         .flags = {
991             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
992              .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
993         }
994     },
995 #ifdef CONFIG_SYNDBG
996     [HYPERV_FEAT_SYNDBG] = {
997         .desc = "Enable synthetic kernel debugger channel (hv-syndbg)",
998         .flags = {
999             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1000              .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE}
1001         },
1002         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED)
1003     },
1004 #endif
1005     [HYPERV_FEAT_MSR_BITMAP] = {
1006         .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)",
1007         .flags = {
1008             {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1009              .bits = HV_NESTED_MSR_BITMAP}
1010         }
1011     },
1012     [HYPERV_FEAT_XMM_INPUT] = {
1013         .desc = "XMM fast hypercall input (hv-xmm-input)",
1014         .flags = {
1015             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1016              .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE}
1017         }
1018     },
1019     [HYPERV_FEAT_TLBFLUSH_EXT] = {
1020         .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)",
1021         .flags = {
1022             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1023              .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE}
1024         },
1025         .dependencies = BIT(HYPERV_FEAT_TLBFLUSH)
1026     },
1027     [HYPERV_FEAT_TLBFLUSH_DIRECT] = {
1028         .desc = "direct TLB flush (hv-tlbflush-direct)",
1029         .flags = {
1030             {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1031              .bits = HV_NESTED_DIRECT_FLUSH}
1032         },
1033         .dependencies = BIT(HYPERV_FEAT_VAPIC)
1034     },
1035 };
1036 
1037 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
1038                                            bool do_sys_ioctl)
1039 {
1040     struct kvm_cpuid2 *cpuid;
1041     int r, size;
1042 
1043     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
1044     cpuid = g_malloc0(size);
1045     cpuid->nent = max;
1046 
1047     if (do_sys_ioctl) {
1048         r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1049     } else {
1050         r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1051     }
1052     if (r == 0 && cpuid->nent >= max) {
1053         r = -E2BIG;
1054     }
1055     if (r < 0) {
1056         if (r == -E2BIG) {
1057             g_free(cpuid);
1058             return NULL;
1059         } else {
1060             fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
1061                     strerror(-r));
1062             exit(1);
1063         }
1064     }
1065     return cpuid;
1066 }
1067 
1068 /*
1069  * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1070  * for all entries.
1071  */
1072 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1073 {
1074     struct kvm_cpuid2 *cpuid;
1075     /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */
1076     int max = 11;
1077     int i;
1078     bool do_sys_ioctl;
1079 
1080     do_sys_ioctl =
1081         kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1082 
1083     /*
1084      * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1085      * unsupported, kvm_hyperv_expand_features() checks for that.
1086      */
1087     assert(do_sys_ioctl || cs->kvm_state);
1088 
1089     /*
1090      * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1091      * -E2BIG, however, it doesn't report back the right size. Keep increasing
1092      * it and re-trying until we succeed.
1093      */
1094     while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1095         max++;
1096     }
1097 
1098     /*
1099      * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1100      * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1101      * information early, just check for the capability and set the bit
1102      * manually.
1103      */
1104     if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1105                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1106         for (i = 0; i < cpuid->nent; i++) {
1107             if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1108                 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1109             }
1110         }
1111     }
1112 
1113     return cpuid;
1114 }
1115 
1116 /*
1117  * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1118  * leaves from KVM_CAP_HYPERV* and present MSRs data.
1119  */
1120 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1121 {
1122     X86CPU *cpu = X86_CPU(cs);
1123     struct kvm_cpuid2 *cpuid;
1124     struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1125 
1126     /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1127     cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1128     cpuid->nent = 2;
1129 
1130     /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1131     entry_feat = &cpuid->entries[0];
1132     entry_feat->function = HV_CPUID_FEATURES;
1133 
1134     entry_recomm = &cpuid->entries[1];
1135     entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1136     entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1137 
1138     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1139         entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1140         entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1141         entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1142         entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1143         entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1144     }
1145 
1146     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1147         entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1148         entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1149     }
1150 
1151     if (has_msr_hv_frequencies) {
1152         entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1153         entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1154     }
1155 
1156     if (has_msr_hv_crash) {
1157         entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1158     }
1159 
1160     if (has_msr_hv_reenlightenment) {
1161         entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1162     }
1163 
1164     if (has_msr_hv_reset) {
1165         entry_feat->eax |= HV_RESET_AVAILABLE;
1166     }
1167 
1168     if (has_msr_hv_vpindex) {
1169         entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1170     }
1171 
1172     if (has_msr_hv_runtime) {
1173         entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1174     }
1175 
1176     if (has_msr_hv_synic) {
1177         unsigned int cap = cpu->hyperv_synic_kvm_only ?
1178             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1179 
1180         if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1181             entry_feat->eax |= HV_SYNIC_AVAILABLE;
1182         }
1183     }
1184 
1185     if (has_msr_hv_stimer) {
1186         entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1187     }
1188 
1189     if (has_msr_hv_syndbg_options) {
1190         entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE;
1191         entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1192         entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED;
1193     }
1194 
1195     if (kvm_check_extension(cs->kvm_state,
1196                             KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1197         entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1198         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1199     }
1200 
1201     if (kvm_check_extension(cs->kvm_state,
1202                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1203         entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1204     }
1205 
1206     if (kvm_check_extension(cs->kvm_state,
1207                             KVM_CAP_HYPERV_SEND_IPI) > 0) {
1208         entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1209         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1210     }
1211 
1212     return cpuid;
1213 }
1214 
1215 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1216 {
1217     struct kvm_cpuid_entry2 *entry;
1218     struct kvm_cpuid2 *cpuid;
1219 
1220     if (hv_cpuid_cache) {
1221         cpuid = hv_cpuid_cache;
1222     } else {
1223         if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1224             cpuid = get_supported_hv_cpuid(cs);
1225         } else {
1226             /*
1227              * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1228              * before KVM context is created but this is only done when
1229              * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1230              * KVM_CAP_HYPERV_CPUID.
1231              */
1232             assert(cs->kvm_state);
1233 
1234             cpuid = get_supported_hv_cpuid_legacy(cs);
1235         }
1236         hv_cpuid_cache = cpuid;
1237     }
1238 
1239     if (!cpuid) {
1240         return 0;
1241     }
1242 
1243     entry = cpuid_find_entry(cpuid, func, 0);
1244     if (!entry) {
1245         return 0;
1246     }
1247 
1248     return cpuid_entry_get_reg(entry, reg);
1249 }
1250 
1251 static bool hyperv_feature_supported(CPUState *cs, int feature)
1252 {
1253     uint32_t func, bits;
1254     int i, reg;
1255 
1256     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1257 
1258         func = kvm_hyperv_properties[feature].flags[i].func;
1259         reg = kvm_hyperv_properties[feature].flags[i].reg;
1260         bits = kvm_hyperv_properties[feature].flags[i].bits;
1261 
1262         if (!func) {
1263             continue;
1264         }
1265 
1266         if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1267             return false;
1268         }
1269     }
1270 
1271     return true;
1272 }
1273 
1274 /* Checks that all feature dependencies are enabled */
1275 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1276 {
1277     uint64_t deps;
1278     int dep_feat;
1279 
1280     deps = kvm_hyperv_properties[feature].dependencies;
1281     while (deps) {
1282         dep_feat = ctz64(deps);
1283         if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1284             error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1285                        kvm_hyperv_properties[feature].desc,
1286                        kvm_hyperv_properties[dep_feat].desc);
1287             return false;
1288         }
1289         deps &= ~(1ull << dep_feat);
1290     }
1291 
1292     return true;
1293 }
1294 
1295 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1296 {
1297     X86CPU *cpu = X86_CPU(cs);
1298     uint32_t r = 0;
1299     int i, j;
1300 
1301     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1302         if (!hyperv_feat_enabled(cpu, i)) {
1303             continue;
1304         }
1305 
1306         for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1307             if (kvm_hyperv_properties[i].flags[j].func != func) {
1308                 continue;
1309             }
1310             if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1311                 continue;
1312             }
1313 
1314             r |= kvm_hyperv_properties[i].flags[j].bits;
1315         }
1316     }
1317 
1318     /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */
1319     if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) {
1320         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1321             r |= DEFAULT_EVMCS_VERSION;
1322         }
1323     }
1324 
1325     return r;
1326 }
1327 
1328 /*
1329  * Expand Hyper-V CPU features. In partucular, check that all the requested
1330  * features are supported by the host and the sanity of the configuration
1331  * (that all the required dependencies are included). Also, this takes care
1332  * of 'hv_passthrough' mode and fills the environment with all supported
1333  * Hyper-V features.
1334  */
1335 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1336 {
1337     CPUState *cs = CPU(cpu);
1338     Error *local_err = NULL;
1339     int feat;
1340 
1341     if (!hyperv_enabled(cpu))
1342         return true;
1343 
1344     /*
1345      * When kvm_hyperv_expand_features is called at CPU feature expansion
1346      * time per-CPU kvm_state is not available yet so we can only proceed
1347      * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1348      */
1349     if (!cs->kvm_state &&
1350         !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1351         return true;
1352 
1353     if (cpu->hyperv_passthrough) {
1354         cpu->hyperv_vendor_id[0] =
1355             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1356         cpu->hyperv_vendor_id[1] =
1357             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1358         cpu->hyperv_vendor_id[2] =
1359             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1360         cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1361                                        sizeof(cpu->hyperv_vendor_id) + 1);
1362         memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1363                sizeof(cpu->hyperv_vendor_id));
1364         cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1365 
1366         cpu->hyperv_interface_id[0] =
1367             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1368         cpu->hyperv_interface_id[1] =
1369             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1370         cpu->hyperv_interface_id[2] =
1371             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1372         cpu->hyperv_interface_id[3] =
1373             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1374 
1375         cpu->hyperv_ver_id_build =
1376             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1377         cpu->hyperv_ver_id_major =
1378             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1379         cpu->hyperv_ver_id_minor =
1380             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1381         cpu->hyperv_ver_id_sp =
1382             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1383         cpu->hyperv_ver_id_sb =
1384             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1385         cpu->hyperv_ver_id_sn =
1386             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1387 
1388         cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1389                                             R_EAX);
1390         cpu->hyperv_limits[0] =
1391             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1392         cpu->hyperv_limits[1] =
1393             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1394         cpu->hyperv_limits[2] =
1395             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1396 
1397         cpu->hyperv_spinlock_attempts =
1398             hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1399 
1400         /*
1401          * Mark feature as enabled in 'cpu->hyperv_features' as
1402          * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1403          */
1404         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1405             if (hyperv_feature_supported(cs, feat)) {
1406                 cpu->hyperv_features |= BIT(feat);
1407             }
1408         }
1409     } else {
1410         /* Check features availability and dependencies */
1411         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1412             /* If the feature was not requested skip it. */
1413             if (!hyperv_feat_enabled(cpu, feat)) {
1414                 continue;
1415             }
1416 
1417             /* Check if the feature is supported by KVM */
1418             if (!hyperv_feature_supported(cs, feat)) {
1419                 error_setg(errp, "Hyper-V %s is not supported by kernel",
1420                            kvm_hyperv_properties[feat].desc);
1421                 return false;
1422             }
1423 
1424             /* Check dependencies */
1425             if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1426                 error_propagate(errp, local_err);
1427                 return false;
1428             }
1429         }
1430     }
1431 
1432     /* Additional dependencies not covered by kvm_hyperv_properties[] */
1433     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1434         !cpu->hyperv_synic_kvm_only &&
1435         !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1436         error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1437                    kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1438                    kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1439         return false;
1440     }
1441 
1442     return true;
1443 }
1444 
1445 /*
1446  * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1447  */
1448 static int hyperv_fill_cpuids(CPUState *cs,
1449                               struct kvm_cpuid_entry2 *cpuid_ent)
1450 {
1451     X86CPU *cpu = X86_CPU(cs);
1452     struct kvm_cpuid_entry2 *c;
1453     uint32_t signature[3];
1454     uint32_t cpuid_i = 0, max_cpuid_leaf = 0;
1455     uint32_t nested_eax =
1456         hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX);
1457 
1458     max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES :
1459         HV_CPUID_IMPLEMENT_LIMITS;
1460 
1461     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1462         max_cpuid_leaf =
1463             MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
1464     }
1465 
1466     c = &cpuid_ent[cpuid_i++];
1467     c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1468     c->eax = max_cpuid_leaf;
1469     c->ebx = cpu->hyperv_vendor_id[0];
1470     c->ecx = cpu->hyperv_vendor_id[1];
1471     c->edx = cpu->hyperv_vendor_id[2];
1472 
1473     c = &cpuid_ent[cpuid_i++];
1474     c->function = HV_CPUID_INTERFACE;
1475     c->eax = cpu->hyperv_interface_id[0];
1476     c->ebx = cpu->hyperv_interface_id[1];
1477     c->ecx = cpu->hyperv_interface_id[2];
1478     c->edx = cpu->hyperv_interface_id[3];
1479 
1480     c = &cpuid_ent[cpuid_i++];
1481     c->function = HV_CPUID_VERSION;
1482     c->eax = cpu->hyperv_ver_id_build;
1483     c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1484         cpu->hyperv_ver_id_minor;
1485     c->ecx = cpu->hyperv_ver_id_sp;
1486     c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1487         (cpu->hyperv_ver_id_sn & 0xffffff);
1488 
1489     c = &cpuid_ent[cpuid_i++];
1490     c->function = HV_CPUID_FEATURES;
1491     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1492     c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1493     c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1494 
1495     /* Unconditionally required with any Hyper-V enlightenment */
1496     c->eax |= HV_HYPERCALL_AVAILABLE;
1497 
1498     /* SynIC and Vmbus devices require messages/signals hypercalls */
1499     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1500         !cpu->hyperv_synic_kvm_only) {
1501         c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1502     }
1503 
1504 
1505     /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1506     c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1507 
1508     c = &cpuid_ent[cpuid_i++];
1509     c->function = HV_CPUID_ENLIGHTMENT_INFO;
1510     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1511     c->ebx = cpu->hyperv_spinlock_attempts;
1512 
1513     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1514         !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1515         c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1516     }
1517 
1518     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1519         c->eax |= HV_NO_NONARCH_CORESHARING;
1520     } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1521         c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1522             HV_NO_NONARCH_CORESHARING;
1523     }
1524 
1525     c = &cpuid_ent[cpuid_i++];
1526     c->function = HV_CPUID_IMPLEMENT_LIMITS;
1527     c->eax = cpu->hv_max_vps;
1528     c->ebx = cpu->hyperv_limits[0];
1529     c->ecx = cpu->hyperv_limits[1];
1530     c->edx = cpu->hyperv_limits[2];
1531 
1532     if (nested_eax) {
1533         uint32_t function;
1534 
1535         /* Create zeroed 0x40000006..0x40000009 leaves */
1536         for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1537              function < HV_CPUID_NESTED_FEATURES; function++) {
1538             c = &cpuid_ent[cpuid_i++];
1539             c->function = function;
1540         }
1541 
1542         c = &cpuid_ent[cpuid_i++];
1543         c->function = HV_CPUID_NESTED_FEATURES;
1544         c->eax = nested_eax;
1545     }
1546 
1547     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1548         c = &cpuid_ent[cpuid_i++];
1549         c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS;
1550         c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1551             HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1552         memcpy(signature, "Microsoft VS", 12);
1553         c->eax = 0;
1554         c->ebx = signature[0];
1555         c->ecx = signature[1];
1556         c->edx = signature[2];
1557 
1558         c = &cpuid_ent[cpuid_i++];
1559         c->function = HV_CPUID_SYNDBG_INTERFACE;
1560         memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
1561         c->eax = signature[0];
1562         c->ebx = 0;
1563         c->ecx = 0;
1564         c->edx = 0;
1565 
1566         c = &cpuid_ent[cpuid_i++];
1567         c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1568         c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
1569         c->ebx = 0;
1570         c->ecx = 0;
1571         c->edx = 0;
1572     }
1573 
1574     return cpuid_i;
1575 }
1576 
1577 static Error *hv_passthrough_mig_blocker;
1578 static Error *hv_no_nonarch_cs_mig_blocker;
1579 
1580 /* Checks that the exposed eVMCS version range is supported by KVM */
1581 static bool evmcs_version_supported(uint16_t evmcs_version,
1582                                     uint16_t supported_evmcs_version)
1583 {
1584     uint8_t min_version = evmcs_version & 0xff;
1585     uint8_t max_version = evmcs_version >> 8;
1586     uint8_t min_supported_version = supported_evmcs_version & 0xff;
1587     uint8_t max_supported_version = supported_evmcs_version >> 8;
1588 
1589     return (min_version >= min_supported_version) &&
1590         (max_version <= max_supported_version);
1591 }
1592 
1593 static int hyperv_init_vcpu(X86CPU *cpu)
1594 {
1595     CPUState *cs = CPU(cpu);
1596     Error *local_err = NULL;
1597     int ret;
1598 
1599     if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1600         error_setg(&hv_passthrough_mig_blocker,
1601                    "'hv-passthrough' CPU flag prevents migration, use explicit"
1602                    " set of hv-* flags instead");
1603         ret = migrate_add_blocker(&hv_passthrough_mig_blocker, &local_err);
1604         if (ret < 0) {
1605             error_report_err(local_err);
1606             return ret;
1607         }
1608     }
1609 
1610     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1611         hv_no_nonarch_cs_mig_blocker == NULL) {
1612         error_setg(&hv_no_nonarch_cs_mig_blocker,
1613                    "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1614                    " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1615                    " make sure SMT is disabled and/or that vCPUs are properly"
1616                    " pinned)");
1617         ret = migrate_add_blocker(&hv_no_nonarch_cs_mig_blocker, &local_err);
1618         if (ret < 0) {
1619             error_report_err(local_err);
1620             return ret;
1621         }
1622     }
1623 
1624     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1625         /*
1626          * the kernel doesn't support setting vp_index; assert that its value
1627          * is in sync
1628          */
1629         uint64_t value;
1630 
1631         ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value);
1632         if (ret < 0) {
1633             return ret;
1634         }
1635 
1636         if (value != hyperv_vp_index(CPU(cpu))) {
1637             error_report("kernel's vp_index != QEMU's vp_index");
1638             return -ENXIO;
1639         }
1640     }
1641 
1642     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1643         uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1644             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1645         ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1646         if (ret < 0) {
1647             error_report("failed to turn on HyperV SynIC in KVM: %s",
1648                          strerror(-ret));
1649             return ret;
1650         }
1651 
1652         if (!cpu->hyperv_synic_kvm_only) {
1653             ret = hyperv_x86_synic_add(cpu);
1654             if (ret < 0) {
1655                 error_report("failed to create HyperV SynIC: %s",
1656                              strerror(-ret));
1657                 return ret;
1658             }
1659         }
1660     }
1661 
1662     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1663         uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1664         uint16_t supported_evmcs_version;
1665 
1666         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1667                                   (uintptr_t)&supported_evmcs_version);
1668 
1669         /*
1670          * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1671          * option sets. Note: we hardcode the maximum supported eVMCS version
1672          * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1673          * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1674          * to be added.
1675          */
1676         if (ret < 0) {
1677             error_report("Hyper-V %s is not supported by kernel",
1678                          kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1679             return ret;
1680         }
1681 
1682         if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1683             error_report("eVMCS version range [%d..%d] is not supported by "
1684                          "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1685                          evmcs_version >> 8, supported_evmcs_version & 0xff,
1686                          supported_evmcs_version >> 8);
1687             return -ENOTSUP;
1688         }
1689     }
1690 
1691     if (cpu->hyperv_enforce_cpuid) {
1692         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1693         if (ret < 0) {
1694             error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1695                          strerror(-ret));
1696             return ret;
1697         }
1698     }
1699 
1700     /* Skip SynIC and VP_INDEX since they are hard deps already */
1701     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_STIMER) &&
1702         hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1703         hyperv_feat_enabled(cpu, HYPERV_FEAT_RUNTIME)) {
1704         hyperv_x86_set_vmbus_recommended_features_enabled();
1705     }
1706 
1707     return 0;
1708 }
1709 
1710 static Error *invtsc_mig_blocker;
1711 
1712 #define KVM_MAX_CPUID_ENTRIES  100
1713 
1714 static void kvm_init_xsave(CPUX86State *env)
1715 {
1716     if (has_xsave2) {
1717         env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1718     } else {
1719         env->xsave_buf_len = sizeof(struct kvm_xsave);
1720     }
1721 
1722     env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1723     memset(env->xsave_buf, 0, env->xsave_buf_len);
1724     /*
1725      * The allocated storage must be large enough for all of the
1726      * possible XSAVE state components.
1727      */
1728     assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1729            env->xsave_buf_len);
1730 }
1731 
1732 static void kvm_init_nested_state(CPUX86State *env)
1733 {
1734     struct kvm_vmx_nested_state_hdr *vmx_hdr;
1735     uint32_t size;
1736 
1737     if (!env->nested_state) {
1738         return;
1739     }
1740 
1741     size = env->nested_state->size;
1742 
1743     memset(env->nested_state, 0, size);
1744     env->nested_state->size = size;
1745 
1746     if (cpu_has_vmx(env)) {
1747         env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1748         vmx_hdr = &env->nested_state->hdr.vmx;
1749         vmx_hdr->vmxon_pa = -1ull;
1750         vmx_hdr->vmcs12_pa = -1ull;
1751     } else if (cpu_has_svm(env)) {
1752         env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1753     }
1754 }
1755 
1756 static uint32_t kvm_x86_build_cpuid(CPUX86State *env,
1757                                     struct kvm_cpuid_entry2 *entries,
1758                                     uint32_t cpuid_i)
1759 {
1760     uint32_t limit, i, j;
1761     uint32_t unused;
1762     struct kvm_cpuid_entry2 *c;
1763 
1764     cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1765 
1766     for (i = 0; i <= limit; i++) {
1767         j = 0;
1768         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1769             goto full;
1770         }
1771         c = &entries[cpuid_i++];
1772         switch (i) {
1773         case 2: {
1774             /* Keep reading function 2 till all the input is received */
1775             int times;
1776 
1777             c->function = i;
1778             c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1779                        KVM_CPUID_FLAG_STATE_READ_NEXT;
1780             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1781             times = c->eax & 0xff;
1782 
1783             for (j = 1; j < times; ++j) {
1784                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1785                     goto full;
1786                 }
1787                 c = &entries[cpuid_i++];
1788                 c->function = i;
1789                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1790                 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1791             }
1792             break;
1793         }
1794         case 0x1f:
1795             if (!x86_has_extended_topo(env->avail_cpu_topo)) {
1796                 cpuid_i--;
1797                 break;
1798             }
1799             /* fallthrough */
1800         case 4:
1801         case 0xb:
1802         case 0xd:
1803             for (j = 0; ; j++) {
1804                 if (i == 0xd && j == 64) {
1805                     break;
1806                 }
1807 
1808                 c->function = i;
1809                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1810                 c->index = j;
1811                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1812 
1813                 if (i == 4 && c->eax == 0) {
1814                     break;
1815                 }
1816                 if (i == 0xb && !(c->ecx & 0xff00)) {
1817                     break;
1818                 }
1819                 if (i == 0x1f && !(c->ecx & 0xff00)) {
1820                     break;
1821                 }
1822                 if (i == 0xd && c->eax == 0) {
1823                     continue;
1824                 }
1825                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1826                     goto full;
1827                 }
1828                 c = &entries[cpuid_i++];
1829             }
1830             break;
1831         case 0x12:
1832             for (j = 0; ; j++) {
1833                 c->function = i;
1834                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1835                 c->index = j;
1836                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1837 
1838                 if (j > 1 && (c->eax & 0xf) != 1) {
1839                     break;
1840                 }
1841 
1842                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1843                     goto full;
1844                 }
1845                 c = &entries[cpuid_i++];
1846             }
1847             break;
1848         case 0x7:
1849         case 0x14:
1850         case 0x1d:
1851         case 0x1e: {
1852             uint32_t times;
1853 
1854             c->function = i;
1855             c->index = 0;
1856             c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1857             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1858             times = c->eax;
1859 
1860             for (j = 1; j <= times; ++j) {
1861                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1862                     goto full;
1863                 }
1864                 c = &entries[cpuid_i++];
1865                 c->function = i;
1866                 c->index = j;
1867                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1868                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1869             }
1870             break;
1871         }
1872         default:
1873             c->function = i;
1874             c->flags = 0;
1875             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1876             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1877                 /*
1878                  * KVM already returns all zeroes if a CPUID entry is missing,
1879                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1880                  */
1881                 cpuid_i--;
1882             }
1883             break;
1884         }
1885     }
1886 
1887     if (limit >= 0x0a) {
1888         uint32_t eax, edx;
1889 
1890         cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1891 
1892         has_architectural_pmu_version = eax & 0xff;
1893         if (has_architectural_pmu_version > 0) {
1894             num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1895 
1896             /* Shouldn't be more than 32, since that's the number of bits
1897              * available in EBX to tell us _which_ counters are available.
1898              * Play it safe.
1899              */
1900             if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1901                 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1902             }
1903 
1904             if (has_architectural_pmu_version > 1) {
1905                 num_architectural_pmu_fixed_counters = edx & 0x1f;
1906 
1907                 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1908                     num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1909                 }
1910             }
1911         }
1912     }
1913 
1914     cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1915 
1916     for (i = 0x80000000; i <= limit; i++) {
1917         j = 0;
1918         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1919             goto full;
1920         }
1921         c = &entries[cpuid_i++];
1922 
1923         switch (i) {
1924         case 0x8000001d:
1925             /* Query for all AMD cache information leaves */
1926             for (j = 0; ; j++) {
1927                 c->function = i;
1928                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1929                 c->index = j;
1930                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1931 
1932                 if (c->eax == 0) {
1933                     break;
1934                 }
1935                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1936                     goto full;
1937                 }
1938                 c = &entries[cpuid_i++];
1939             }
1940             break;
1941         default:
1942             c->function = i;
1943             c->flags = 0;
1944             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1945             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1946                 /*
1947                  * KVM already returns all zeroes if a CPUID entry is missing,
1948                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1949                  */
1950                 cpuid_i--;
1951             }
1952             break;
1953         }
1954     }
1955 
1956     /* Call Centaur's CPUID instructions they are supported. */
1957     if (env->cpuid_xlevel2 > 0) {
1958         cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1959 
1960         for (i = 0xC0000000; i <= limit; i++) {
1961             j = 0;
1962             if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1963                 goto full;
1964             }
1965             c = &entries[cpuid_i++];
1966 
1967             c->function = i;
1968             c->flags = 0;
1969             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1970         }
1971     }
1972 
1973     return cpuid_i;
1974 
1975 full:
1976     fprintf(stderr, "cpuid_data is full, no space for "
1977             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1978     abort();
1979 }
1980 
1981 int kvm_arch_init_vcpu(CPUState *cs)
1982 {
1983     struct {
1984         struct kvm_cpuid2 cpuid;
1985         struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1986     } cpuid_data;
1987     /*
1988      * The kernel defines these structs with padding fields so there
1989      * should be no extra padding in our cpuid_data struct.
1990      */
1991     QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1992                       sizeof(struct kvm_cpuid2) +
1993                       sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1994 
1995     X86CPU *cpu = X86_CPU(cs);
1996     CPUX86State *env = &cpu->env;
1997     uint32_t cpuid_i;
1998     struct kvm_cpuid_entry2 *c;
1999     uint32_t signature[3];
2000     int kvm_base = KVM_CPUID_SIGNATURE;
2001     int max_nested_state_len;
2002     int r;
2003     Error *local_err = NULL;
2004 
2005     memset(&cpuid_data, 0, sizeof(cpuid_data));
2006 
2007     cpuid_i = 0;
2008 
2009     has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
2010 
2011     r = kvm_arch_set_tsc_khz(cs);
2012     if (r < 0) {
2013         return r;
2014     }
2015 
2016     /* vcpu's TSC frequency is either specified by user, or following
2017      * the value used by KVM if the former is not present. In the
2018      * latter case, we query it from KVM and record in env->tsc_khz,
2019      * so that vcpu's TSC frequency can be migrated later via this field.
2020      */
2021     if (!env->tsc_khz) {
2022         r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
2023             kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
2024             -ENOTSUP;
2025         if (r > 0) {
2026             env->tsc_khz = r;
2027         }
2028     }
2029 
2030     env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
2031 
2032     /*
2033      * kvm_hyperv_expand_features() is called here for the second time in case
2034      * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
2035      * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
2036      * check which Hyper-V enlightenments are supported and which are not, we
2037      * can still proceed and check/expand Hyper-V enlightenments here so legacy
2038      * behavior is preserved.
2039      */
2040     if (!kvm_hyperv_expand_features(cpu, &local_err)) {
2041         error_report_err(local_err);
2042         return -ENOSYS;
2043     }
2044 
2045     if (hyperv_enabled(cpu)) {
2046         r = hyperv_init_vcpu(cpu);
2047         if (r) {
2048             return r;
2049         }
2050 
2051         cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
2052         kvm_base = KVM_CPUID_SIGNATURE_NEXT;
2053         has_msr_hv_hypercall = true;
2054     }
2055 
2056     if (cs->kvm_state->xen_version) {
2057 #ifdef CONFIG_XEN_EMU
2058         struct kvm_cpuid_entry2 *xen_max_leaf;
2059 
2060         memcpy(signature, "XenVMMXenVMM", 12);
2061 
2062         xen_max_leaf = c = &cpuid_data.entries[cpuid_i++];
2063         c->function = kvm_base + XEN_CPUID_SIGNATURE;
2064         c->eax = kvm_base + XEN_CPUID_TIME;
2065         c->ebx = signature[0];
2066         c->ecx = signature[1];
2067         c->edx = signature[2];
2068 
2069         c = &cpuid_data.entries[cpuid_i++];
2070         c->function = kvm_base + XEN_CPUID_VENDOR;
2071         c->eax = cs->kvm_state->xen_version;
2072         c->ebx = 0;
2073         c->ecx = 0;
2074         c->edx = 0;
2075 
2076         c = &cpuid_data.entries[cpuid_i++];
2077         c->function = kvm_base + XEN_CPUID_HVM_MSR;
2078         /* Number of hypercall-transfer pages */
2079         c->eax = 1;
2080         /* Hypercall MSR base address */
2081         if (hyperv_enabled(cpu)) {
2082             c->ebx = XEN_HYPERCALL_MSR_HYPERV;
2083             kvm_xen_init(cs->kvm_state, c->ebx);
2084         } else {
2085             c->ebx = XEN_HYPERCALL_MSR;
2086         }
2087         c->ecx = 0;
2088         c->edx = 0;
2089 
2090         c = &cpuid_data.entries[cpuid_i++];
2091         c->function = kvm_base + XEN_CPUID_TIME;
2092         c->eax = ((!!tsc_is_stable_and_known(env) << 1) |
2093             (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2));
2094         /* default=0 (emulate if necessary) */
2095         c->ebx = 0;
2096         /* guest tsc frequency */
2097         c->ecx = env->user_tsc_khz;
2098         /* guest tsc incarnation (migration count) */
2099         c->edx = 0;
2100 
2101         c = &cpuid_data.entries[cpuid_i++];
2102         c->function = kvm_base + XEN_CPUID_HVM;
2103         xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM;
2104         if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) {
2105             c->function = kvm_base + XEN_CPUID_HVM;
2106 
2107             if (cpu->xen_vapic) {
2108                 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT;
2109                 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT;
2110             }
2111 
2112             c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS;
2113 
2114             if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) {
2115                 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT;
2116                 c->ebx = cs->cpu_index;
2117             }
2118 
2119             if (cs->kvm_state->xen_version >= XEN_VERSION(4, 17)) {
2120                 c->eax |= XEN_HVM_CPUID_UPCALL_VECTOR;
2121             }
2122         }
2123 
2124         r = kvm_xen_init_vcpu(cs);
2125         if (r) {
2126             return r;
2127         }
2128 
2129         kvm_base += 0x100;
2130 #else /* CONFIG_XEN_EMU */
2131         /* This should never happen as kvm_arch_init() would have died first. */
2132         fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n");
2133         abort();
2134 #endif
2135     } else if (cpu->expose_kvm) {
2136         memcpy(signature, "KVMKVMKVM\0\0\0", 12);
2137         c = &cpuid_data.entries[cpuid_i++];
2138         c->function = KVM_CPUID_SIGNATURE | kvm_base;
2139         c->eax = KVM_CPUID_FEATURES | kvm_base;
2140         c->ebx = signature[0];
2141         c->ecx = signature[1];
2142         c->edx = signature[2];
2143 
2144         c = &cpuid_data.entries[cpuid_i++];
2145         c->function = KVM_CPUID_FEATURES | kvm_base;
2146         c->eax = env->features[FEAT_KVM];
2147         c->edx = env->features[FEAT_KVM_HINTS];
2148     }
2149 
2150     if (cpu->kvm_pv_enforce_cpuid) {
2151         r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
2152         if (r < 0) {
2153             fprintf(stderr,
2154                     "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
2155                     strerror(-r));
2156             abort();
2157         }
2158     }
2159 
2160     cpuid_i = kvm_x86_build_cpuid(env, cpuid_data.entries, cpuid_i);
2161     cpuid_data.cpuid.nent = cpuid_i;
2162 
2163     if (((env->cpuid_version >> 8)&0xF) >= 6
2164         && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
2165            (CPUID_MCE | CPUID_MCA)) {
2166         uint64_t mcg_cap, unsupported_caps;
2167         int banks;
2168         int ret;
2169 
2170         ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
2171         if (ret < 0) {
2172             fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
2173             return ret;
2174         }
2175 
2176         if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
2177             error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2178                          (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
2179             return -ENOTSUP;
2180         }
2181 
2182         unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
2183         if (unsupported_caps) {
2184             if (unsupported_caps & MCG_LMCE_P) {
2185                 error_report("kvm: LMCE not supported");
2186                 return -ENOTSUP;
2187             }
2188             warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
2189                         unsupported_caps);
2190         }
2191 
2192         env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
2193         ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
2194         if (ret < 0) {
2195             fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
2196             return ret;
2197         }
2198     }
2199 
2200     cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
2201 
2202     c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
2203     if (c) {
2204         has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
2205                                   !!(c->ecx & CPUID_EXT_SMX);
2206     }
2207 
2208     c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
2209     if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
2210         has_msr_feature_control = true;
2211     }
2212 
2213     if (env->mcg_cap & MCG_LMCE_P) {
2214         has_msr_mcg_ext_ctl = has_msr_feature_control = true;
2215     }
2216 
2217     if (!env->user_tsc_khz) {
2218         if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2219             invtsc_mig_blocker == NULL) {
2220             error_setg(&invtsc_mig_blocker,
2221                        "State blocked by non-migratable CPU device"
2222                        " (invtsc flag)");
2223             r = migrate_add_blocker(&invtsc_mig_blocker, &local_err);
2224             if (r < 0) {
2225                 error_report_err(local_err);
2226                 return r;
2227             }
2228         }
2229     }
2230 
2231     if (cpu->vmware_cpuid_freq
2232         /* Guests depend on 0x40000000 to detect this feature, so only expose
2233          * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2234         && cpu->expose_kvm
2235         && kvm_base == KVM_CPUID_SIGNATURE
2236         /* TSC clock must be stable and known for this feature. */
2237         && tsc_is_stable_and_known(env)) {
2238 
2239         c = &cpuid_data.entries[cpuid_i++];
2240         c->function = KVM_CPUID_SIGNATURE | 0x10;
2241         c->eax = env->tsc_khz;
2242         c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2243         c->ecx = c->edx = 0;
2244 
2245         c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2246         c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2247     }
2248 
2249     cpuid_data.cpuid.nent = cpuid_i;
2250 
2251     cpuid_data.cpuid.padding = 0;
2252     r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2253     if (r) {
2254         goto fail;
2255     }
2256     kvm_init_xsave(env);
2257 
2258     max_nested_state_len = kvm_max_nested_state_length();
2259     if (max_nested_state_len > 0) {
2260         assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2261 
2262         if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2263             env->nested_state = g_malloc0(max_nested_state_len);
2264             env->nested_state->size = max_nested_state_len;
2265 
2266             kvm_init_nested_state(env);
2267         }
2268     }
2269 
2270     cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2271 
2272     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2273         has_msr_tsc_aux = false;
2274     }
2275 
2276     kvm_init_msrs(cpu);
2277 
2278     return 0;
2279 
2280  fail:
2281     migrate_del_blocker(&invtsc_mig_blocker);
2282 
2283     return r;
2284 }
2285 
2286 int kvm_arch_destroy_vcpu(CPUState *cs)
2287 {
2288     X86CPU *cpu = X86_CPU(cs);
2289     CPUX86State *env = &cpu->env;
2290 
2291     g_free(env->xsave_buf);
2292 
2293     g_free(cpu->kvm_msr_buf);
2294     cpu->kvm_msr_buf = NULL;
2295 
2296     g_free(env->nested_state);
2297     env->nested_state = NULL;
2298 
2299     qemu_del_vm_change_state_handler(cpu->vmsentry);
2300 
2301     return 0;
2302 }
2303 
2304 void kvm_arch_reset_vcpu(X86CPU *cpu)
2305 {
2306     CPUX86State *env = &cpu->env;
2307 
2308     env->xcr0 = 1;
2309     if (kvm_irqchip_in_kernel()) {
2310         env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2311                                           KVM_MP_STATE_UNINITIALIZED;
2312     } else {
2313         env->mp_state = KVM_MP_STATE_RUNNABLE;
2314     }
2315 
2316     /* enabled by default */
2317     env->poll_control_msr = 1;
2318 
2319     kvm_init_nested_state(env);
2320 
2321     sev_es_set_reset_vector(CPU(cpu));
2322 }
2323 
2324 void kvm_arch_after_reset_vcpu(X86CPU *cpu)
2325 {
2326     CPUX86State *env = &cpu->env;
2327     int i;
2328 
2329     /*
2330      * Reset SynIC after all other devices have been reset to let them remove
2331      * their SINT routes first.
2332      */
2333     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2334         for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2335             env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2336         }
2337 
2338         hyperv_x86_synic_reset(cpu);
2339     }
2340 }
2341 
2342 void kvm_arch_do_init_vcpu(X86CPU *cpu)
2343 {
2344     CPUX86State *env = &cpu->env;
2345 
2346     /* APs get directly into wait-for-SIPI state.  */
2347     if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2348         env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2349     }
2350 }
2351 
2352 static int kvm_get_supported_feature_msrs(KVMState *s)
2353 {
2354     int ret = 0;
2355 
2356     if (kvm_feature_msrs != NULL) {
2357         return 0;
2358     }
2359 
2360     if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2361         return 0;
2362     }
2363 
2364     struct kvm_msr_list msr_list;
2365 
2366     msr_list.nmsrs = 0;
2367     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2368     if (ret < 0 && ret != -E2BIG) {
2369         error_report("Fetch KVM feature MSR list failed: %s",
2370             strerror(-ret));
2371         return ret;
2372     }
2373 
2374     assert(msr_list.nmsrs > 0);
2375     kvm_feature_msrs = g_malloc0(sizeof(msr_list) +
2376                  msr_list.nmsrs * sizeof(msr_list.indices[0]));
2377 
2378     kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2379     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2380 
2381     if (ret < 0) {
2382         error_report("Fetch KVM feature MSR list failed: %s",
2383             strerror(-ret));
2384         g_free(kvm_feature_msrs);
2385         kvm_feature_msrs = NULL;
2386         return ret;
2387     }
2388 
2389     return 0;
2390 }
2391 
2392 static int kvm_get_supported_msrs(KVMState *s)
2393 {
2394     int ret = 0;
2395     struct kvm_msr_list msr_list, *kvm_msr_list;
2396 
2397     /*
2398      *  Obtain MSR list from KVM.  These are the MSRs that we must
2399      *  save/restore.
2400      */
2401     msr_list.nmsrs = 0;
2402     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2403     if (ret < 0 && ret != -E2BIG) {
2404         return ret;
2405     }
2406     /*
2407      * Old kernel modules had a bug and could write beyond the provided
2408      * memory. Allocate at least a safe amount of 1K.
2409      */
2410     kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2411                                           msr_list.nmsrs *
2412                                           sizeof(msr_list.indices[0])));
2413 
2414     kvm_msr_list->nmsrs = msr_list.nmsrs;
2415     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2416     if (ret >= 0) {
2417         int i;
2418 
2419         for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2420             switch (kvm_msr_list->indices[i]) {
2421             case MSR_STAR:
2422                 has_msr_star = true;
2423                 break;
2424             case MSR_VM_HSAVE_PA:
2425                 has_msr_hsave_pa = true;
2426                 break;
2427             case MSR_TSC_AUX:
2428                 has_msr_tsc_aux = true;
2429                 break;
2430             case MSR_TSC_ADJUST:
2431                 has_msr_tsc_adjust = true;
2432                 break;
2433             case MSR_IA32_TSCDEADLINE:
2434                 has_msr_tsc_deadline = true;
2435                 break;
2436             case MSR_IA32_SMBASE:
2437                 has_msr_smbase = true;
2438                 break;
2439             case MSR_SMI_COUNT:
2440                 has_msr_smi_count = true;
2441                 break;
2442             case MSR_IA32_MISC_ENABLE:
2443                 has_msr_misc_enable = true;
2444                 break;
2445             case MSR_IA32_BNDCFGS:
2446                 has_msr_bndcfgs = true;
2447                 break;
2448             case MSR_IA32_XSS:
2449                 has_msr_xss = true;
2450                 break;
2451             case MSR_IA32_UMWAIT_CONTROL:
2452                 has_msr_umwait = true;
2453                 break;
2454             case HV_X64_MSR_CRASH_CTL:
2455                 has_msr_hv_crash = true;
2456                 break;
2457             case HV_X64_MSR_RESET:
2458                 has_msr_hv_reset = true;
2459                 break;
2460             case HV_X64_MSR_VP_INDEX:
2461                 has_msr_hv_vpindex = true;
2462                 break;
2463             case HV_X64_MSR_VP_RUNTIME:
2464                 has_msr_hv_runtime = true;
2465                 break;
2466             case HV_X64_MSR_SCONTROL:
2467                 has_msr_hv_synic = true;
2468                 break;
2469             case HV_X64_MSR_STIMER0_CONFIG:
2470                 has_msr_hv_stimer = true;
2471                 break;
2472             case HV_X64_MSR_TSC_FREQUENCY:
2473                 has_msr_hv_frequencies = true;
2474                 break;
2475             case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2476                 has_msr_hv_reenlightenment = true;
2477                 break;
2478             case HV_X64_MSR_SYNDBG_OPTIONS:
2479                 has_msr_hv_syndbg_options = true;
2480                 break;
2481             case MSR_IA32_SPEC_CTRL:
2482                 has_msr_spec_ctrl = true;
2483                 break;
2484             case MSR_AMD64_TSC_RATIO:
2485                 has_tsc_scale_msr = true;
2486                 break;
2487             case MSR_IA32_TSX_CTRL:
2488                 has_msr_tsx_ctrl = true;
2489                 break;
2490             case MSR_VIRT_SSBD:
2491                 has_msr_virt_ssbd = true;
2492                 break;
2493             case MSR_IA32_ARCH_CAPABILITIES:
2494                 has_msr_arch_capabs = true;
2495                 break;
2496             case MSR_IA32_CORE_CAPABILITY:
2497                 has_msr_core_capabs = true;
2498                 break;
2499             case MSR_IA32_PERF_CAPABILITIES:
2500                 has_msr_perf_capabs = true;
2501                 break;
2502             case MSR_IA32_VMX_VMFUNC:
2503                 has_msr_vmx_vmfunc = true;
2504                 break;
2505             case MSR_IA32_UCODE_REV:
2506                 has_msr_ucode_rev = true;
2507                 break;
2508             case MSR_IA32_VMX_PROCBASED_CTLS2:
2509                 has_msr_vmx_procbased_ctls2 = true;
2510                 break;
2511             case MSR_IA32_PKRS:
2512                 has_msr_pkrs = true;
2513                 break;
2514             }
2515         }
2516     }
2517 
2518     g_free(kvm_msr_list);
2519 
2520     return ret;
2521 }
2522 
2523 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu, uint32_t msr,
2524                                         uint64_t *val)
2525 {
2526     CPUState *cs = CPU(cpu);
2527 
2528     *val = cs->nr_threads * cs->nr_cores; /* thread count, bits 15..0 */
2529     *val |= ((uint32_t)cs->nr_cores << 16); /* core count, bits 31..16 */
2530 
2531     return true;
2532 }
2533 
2534 static Notifier smram_machine_done;
2535 static KVMMemoryListener smram_listener;
2536 static AddressSpace smram_address_space;
2537 static MemoryRegion smram_as_root;
2538 static MemoryRegion smram_as_mem;
2539 
2540 static void register_smram_listener(Notifier *n, void *unused)
2541 {
2542     MemoryRegion *smram =
2543         (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2544 
2545     /* Outer container... */
2546     memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2547     memory_region_set_enabled(&smram_as_root, true);
2548 
2549     /* ... with two regions inside: normal system memory with low
2550      * priority, and...
2551      */
2552     memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2553                              get_system_memory(), 0, ~0ull);
2554     memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2555     memory_region_set_enabled(&smram_as_mem, true);
2556 
2557     if (smram) {
2558         /* ... SMRAM with higher priority */
2559         memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2560         memory_region_set_enabled(smram, true);
2561     }
2562 
2563     address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2564     kvm_memory_listener_register(kvm_state, &smram_listener,
2565                                  &smram_address_space, 1, "kvm-smram");
2566 }
2567 
2568 int kvm_arch_get_default_type(MachineState *ms)
2569 {
2570     return 0;
2571 }
2572 
2573 int kvm_arch_init(MachineState *ms, KVMState *s)
2574 {
2575     uint64_t identity_base = 0xfffbc000;
2576     uint64_t shadow_mem;
2577     int ret;
2578     struct utsname utsname;
2579     Error *local_err = NULL;
2580 
2581     /*
2582      * Initialize SEV context, if required
2583      *
2584      * If no memory encryption is requested (ms->cgs == NULL) this is
2585      * a no-op.
2586      *
2587      * It's also a no-op if a non-SEV confidential guest support
2588      * mechanism is selected.  SEV is the only mechanism available to
2589      * select on x86 at present, so this doesn't arise, but if new
2590      * mechanisms are supported in future (e.g. TDX), they'll need
2591      * their own initialization either here or elsewhere.
2592      */
2593     if (ms->cgs) {
2594         ret = confidential_guest_kvm_init(ms->cgs, &local_err);
2595         if (ret < 0) {
2596             error_report_err(local_err);
2597             return ret;
2598         }
2599     }
2600 
2601     has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2602     has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
2603 
2604     hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2605 
2606     has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2607     if (has_exception_payload) {
2608         ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2609         if (ret < 0) {
2610             error_report("kvm: Failed to enable exception payload cap: %s",
2611                          strerror(-ret));
2612             return ret;
2613         }
2614     }
2615 
2616     has_triple_fault_event = kvm_check_extension(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT);
2617     if (has_triple_fault_event) {
2618         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true);
2619         if (ret < 0) {
2620             error_report("kvm: Failed to enable triple fault event cap: %s",
2621                          strerror(-ret));
2622             return ret;
2623         }
2624     }
2625 
2626     if (s->xen_version) {
2627 #ifdef CONFIG_XEN_EMU
2628         if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) {
2629             error_report("kvm: Xen support only available in PC machine");
2630             return -ENOTSUP;
2631         }
2632         /* hyperv_enabled() doesn't work yet. */
2633         uint32_t msr = XEN_HYPERCALL_MSR;
2634         ret = kvm_xen_init(s, msr);
2635         if (ret < 0) {
2636             return ret;
2637         }
2638 #else
2639         error_report("kvm: Xen support not enabled in qemu");
2640         return -ENOTSUP;
2641 #endif
2642     }
2643 
2644     ret = kvm_get_supported_msrs(s);
2645     if (ret < 0) {
2646         return ret;
2647     }
2648 
2649     kvm_get_supported_feature_msrs(s);
2650 
2651     uname(&utsname);
2652     lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2653 
2654     /*
2655      * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2656      * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
2657      * Since these must be part of guest physical memory, we need to allocate
2658      * them, both by setting their start addresses in the kernel and by
2659      * creating a corresponding e820 entry. We need 4 pages before the BIOS,
2660      * so this value allows up to 16M BIOSes.
2661      */
2662     identity_base = 0xfeffc000;
2663     ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2664     if (ret < 0) {
2665         return ret;
2666     }
2667 
2668     /* Set TSS base one page after EPT identity map. */
2669     ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2670     if (ret < 0) {
2671         return ret;
2672     }
2673 
2674     /* Tell fw_cfg to notify the BIOS to reserve the range. */
2675     ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2676     if (ret < 0) {
2677         fprintf(stderr, "e820_add_entry() table is full\n");
2678         return ret;
2679     }
2680 
2681     shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2682     if (shadow_mem != -1) {
2683         shadow_mem /= 4096;
2684         ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2685         if (ret < 0) {
2686             return ret;
2687         }
2688     }
2689 
2690     if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2691         object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2692         x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2693         smram_machine_done.notify = register_smram_listener;
2694         qemu_add_machine_init_done_notifier(&smram_machine_done);
2695     }
2696 
2697     if (enable_cpu_pm) {
2698         int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2699 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2700 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2701 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2702 #endif
2703         if (disable_exits) {
2704             disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2705                               KVM_X86_DISABLE_EXITS_HLT |
2706                               KVM_X86_DISABLE_EXITS_PAUSE |
2707                               KVM_X86_DISABLE_EXITS_CSTATE);
2708         }
2709 
2710         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2711                                 disable_exits);
2712         if (ret < 0) {
2713             error_report("kvm: guest stopping CPU not supported: %s",
2714                          strerror(-ret));
2715         }
2716     }
2717 
2718     if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
2719         X86MachineState *x86ms = X86_MACHINE(ms);
2720 
2721         if (x86ms->bus_lock_ratelimit > 0) {
2722             ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
2723             if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
2724                 error_report("kvm: bus lock detection unsupported");
2725                 return -ENOTSUP;
2726             }
2727             ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
2728                                     KVM_BUS_LOCK_DETECTION_EXIT);
2729             if (ret < 0) {
2730                 error_report("kvm: Failed to enable bus lock detection cap: %s",
2731                              strerror(-ret));
2732                 return ret;
2733             }
2734             ratelimit_init(&bus_lock_ratelimit_ctrl);
2735             ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
2736                                 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
2737         }
2738     }
2739 
2740     if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE &&
2741         kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) {
2742             uint64_t notify_window_flags =
2743                 ((uint64_t)s->notify_window << 32) |
2744                 KVM_X86_NOTIFY_VMEXIT_ENABLED |
2745                 KVM_X86_NOTIFY_VMEXIT_USER;
2746             ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0,
2747                                     notify_window_flags);
2748             if (ret < 0) {
2749                 error_report("kvm: Failed to enable notify vmexit cap: %s",
2750                              strerror(-ret));
2751                 return ret;
2752             }
2753     }
2754     if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) {
2755         bool r;
2756 
2757         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0,
2758                                 KVM_MSR_EXIT_REASON_FILTER);
2759         if (ret) {
2760             error_report("Could not enable user space MSRs: %s",
2761                          strerror(-ret));
2762             exit(1);
2763         }
2764 
2765         r = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT,
2766                            kvm_rdmsr_core_thread_count, NULL);
2767         if (!r) {
2768             error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s",
2769                          strerror(-ret));
2770             exit(1);
2771         }
2772     }
2773 
2774     return 0;
2775 }
2776 
2777 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2778 {
2779     lhs->selector = rhs->selector;
2780     lhs->base = rhs->base;
2781     lhs->limit = rhs->limit;
2782     lhs->type = 3;
2783     lhs->present = 1;
2784     lhs->dpl = 3;
2785     lhs->db = 0;
2786     lhs->s = 1;
2787     lhs->l = 0;
2788     lhs->g = 0;
2789     lhs->avl = 0;
2790     lhs->unusable = 0;
2791 }
2792 
2793 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2794 {
2795     unsigned flags = rhs->flags;
2796     lhs->selector = rhs->selector;
2797     lhs->base = rhs->base;
2798     lhs->limit = rhs->limit;
2799     lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2800     lhs->present = (flags & DESC_P_MASK) != 0;
2801     lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2802     lhs->db = (flags >> DESC_B_SHIFT) & 1;
2803     lhs->s = (flags & DESC_S_MASK) != 0;
2804     lhs->l = (flags >> DESC_L_SHIFT) & 1;
2805     lhs->g = (flags & DESC_G_MASK) != 0;
2806     lhs->avl = (flags & DESC_AVL_MASK) != 0;
2807     lhs->unusable = !lhs->present;
2808     lhs->padding = 0;
2809 }
2810 
2811 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2812 {
2813     lhs->selector = rhs->selector;
2814     lhs->base = rhs->base;
2815     lhs->limit = rhs->limit;
2816     lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2817                  ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2818                  (rhs->dpl << DESC_DPL_SHIFT) |
2819                  (rhs->db << DESC_B_SHIFT) |
2820                  (rhs->s * DESC_S_MASK) |
2821                  (rhs->l << DESC_L_SHIFT) |
2822                  (rhs->g * DESC_G_MASK) |
2823                  (rhs->avl * DESC_AVL_MASK);
2824 }
2825 
2826 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2827 {
2828     if (set) {
2829         *kvm_reg = *qemu_reg;
2830     } else {
2831         *qemu_reg = *kvm_reg;
2832     }
2833 }
2834 
2835 static int kvm_getput_regs(X86CPU *cpu, int set)
2836 {
2837     CPUX86State *env = &cpu->env;
2838     struct kvm_regs regs;
2839     int ret = 0;
2840 
2841     if (!set) {
2842         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2843         if (ret < 0) {
2844             return ret;
2845         }
2846     }
2847 
2848     kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2849     kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2850     kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2851     kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2852     kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2853     kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2854     kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2855     kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2856 #ifdef TARGET_X86_64
2857     kvm_getput_reg(&regs.r8, &env->regs[8], set);
2858     kvm_getput_reg(&regs.r9, &env->regs[9], set);
2859     kvm_getput_reg(&regs.r10, &env->regs[10], set);
2860     kvm_getput_reg(&regs.r11, &env->regs[11], set);
2861     kvm_getput_reg(&regs.r12, &env->regs[12], set);
2862     kvm_getput_reg(&regs.r13, &env->regs[13], set);
2863     kvm_getput_reg(&regs.r14, &env->regs[14], set);
2864     kvm_getput_reg(&regs.r15, &env->regs[15], set);
2865 #endif
2866 
2867     kvm_getput_reg(&regs.rflags, &env->eflags, set);
2868     kvm_getput_reg(&regs.rip, &env->eip, set);
2869 
2870     if (set) {
2871         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2872     }
2873 
2874     return ret;
2875 }
2876 
2877 static int kvm_put_xsave(X86CPU *cpu)
2878 {
2879     CPUX86State *env = &cpu->env;
2880     void *xsave = env->xsave_buf;
2881 
2882     x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
2883 
2884     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2885 }
2886 
2887 static int kvm_put_xcrs(X86CPU *cpu)
2888 {
2889     CPUX86State *env = &cpu->env;
2890     struct kvm_xcrs xcrs = {};
2891 
2892     if (!has_xcrs) {
2893         return 0;
2894     }
2895 
2896     xcrs.nr_xcrs = 1;
2897     xcrs.flags = 0;
2898     xcrs.xcrs[0].xcr = 0;
2899     xcrs.xcrs[0].value = env->xcr0;
2900     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2901 }
2902 
2903 static int kvm_put_sregs(X86CPU *cpu)
2904 {
2905     CPUX86State *env = &cpu->env;
2906     struct kvm_sregs sregs;
2907 
2908     /*
2909      * The interrupt_bitmap is ignored because KVM_SET_SREGS is
2910      * always followed by KVM_SET_VCPU_EVENTS.
2911      */
2912     memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2913 
2914     if ((env->eflags & VM_MASK)) {
2915         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2916         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2917         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2918         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2919         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2920         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2921     } else {
2922         set_seg(&sregs.cs, &env->segs[R_CS]);
2923         set_seg(&sregs.ds, &env->segs[R_DS]);
2924         set_seg(&sregs.es, &env->segs[R_ES]);
2925         set_seg(&sregs.fs, &env->segs[R_FS]);
2926         set_seg(&sregs.gs, &env->segs[R_GS]);
2927         set_seg(&sregs.ss, &env->segs[R_SS]);
2928     }
2929 
2930     set_seg(&sregs.tr, &env->tr);
2931     set_seg(&sregs.ldt, &env->ldt);
2932 
2933     sregs.idt.limit = env->idt.limit;
2934     sregs.idt.base = env->idt.base;
2935     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2936     sregs.gdt.limit = env->gdt.limit;
2937     sregs.gdt.base = env->gdt.base;
2938     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2939 
2940     sregs.cr0 = env->cr[0];
2941     sregs.cr2 = env->cr[2];
2942     sregs.cr3 = env->cr[3];
2943     sregs.cr4 = env->cr[4];
2944 
2945     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2946     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2947 
2948     sregs.efer = env->efer;
2949 
2950     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2951 }
2952 
2953 static int kvm_put_sregs2(X86CPU *cpu)
2954 {
2955     CPUX86State *env = &cpu->env;
2956     struct kvm_sregs2 sregs;
2957     int i;
2958 
2959     sregs.flags = 0;
2960 
2961     if ((env->eflags & VM_MASK)) {
2962         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2963         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2964         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2965         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2966         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2967         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2968     } else {
2969         set_seg(&sregs.cs, &env->segs[R_CS]);
2970         set_seg(&sregs.ds, &env->segs[R_DS]);
2971         set_seg(&sregs.es, &env->segs[R_ES]);
2972         set_seg(&sregs.fs, &env->segs[R_FS]);
2973         set_seg(&sregs.gs, &env->segs[R_GS]);
2974         set_seg(&sregs.ss, &env->segs[R_SS]);
2975     }
2976 
2977     set_seg(&sregs.tr, &env->tr);
2978     set_seg(&sregs.ldt, &env->ldt);
2979 
2980     sregs.idt.limit = env->idt.limit;
2981     sregs.idt.base = env->idt.base;
2982     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2983     sregs.gdt.limit = env->gdt.limit;
2984     sregs.gdt.base = env->gdt.base;
2985     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2986 
2987     sregs.cr0 = env->cr[0];
2988     sregs.cr2 = env->cr[2];
2989     sregs.cr3 = env->cr[3];
2990     sregs.cr4 = env->cr[4];
2991 
2992     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2993     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2994 
2995     sregs.efer = env->efer;
2996 
2997     if (env->pdptrs_valid) {
2998         for (i = 0; i < 4; i++) {
2999             sregs.pdptrs[i] = env->pdptrs[i];
3000         }
3001         sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
3002     }
3003 
3004     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
3005 }
3006 
3007 
3008 static void kvm_msr_buf_reset(X86CPU *cpu)
3009 {
3010     memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
3011 }
3012 
3013 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
3014 {
3015     struct kvm_msrs *msrs = cpu->kvm_msr_buf;
3016     void *limit = ((void *)msrs) + MSR_BUF_SIZE;
3017     struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
3018 
3019     assert((void *)(entry + 1) <= limit);
3020 
3021     entry->index = index;
3022     entry->reserved = 0;
3023     entry->data = value;
3024     msrs->nmsrs++;
3025 }
3026 
3027 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
3028 {
3029     kvm_msr_buf_reset(cpu);
3030     kvm_msr_entry_add(cpu, index, value);
3031 
3032     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3033 }
3034 
3035 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value)
3036 {
3037     int ret;
3038     struct {
3039         struct kvm_msrs info;
3040         struct kvm_msr_entry entries[1];
3041     } msr_data = {
3042         .info.nmsrs = 1,
3043         .entries[0].index = index,
3044     };
3045 
3046     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
3047     if (ret < 0) {
3048         return ret;
3049     }
3050     assert(ret == 1);
3051     *value = msr_data.entries[0].data;
3052     return ret;
3053 }
3054 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
3055 {
3056     int ret;
3057 
3058     ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
3059     assert(ret == 1);
3060 }
3061 
3062 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
3063 {
3064     CPUX86State *env = &cpu->env;
3065     int ret;
3066 
3067     if (!has_msr_tsc_deadline) {
3068         return 0;
3069     }
3070 
3071     ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
3072     if (ret < 0) {
3073         return ret;
3074     }
3075 
3076     assert(ret == 1);
3077     return 0;
3078 }
3079 
3080 /*
3081  * Provide a separate write service for the feature control MSR in order to
3082  * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
3083  * before writing any other state because forcibly leaving nested mode
3084  * invalidates the VCPU state.
3085  */
3086 static int kvm_put_msr_feature_control(X86CPU *cpu)
3087 {
3088     int ret;
3089 
3090     if (!has_msr_feature_control) {
3091         return 0;
3092     }
3093 
3094     ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
3095                           cpu->env.msr_ia32_feature_control);
3096     if (ret < 0) {
3097         return ret;
3098     }
3099 
3100     assert(ret == 1);
3101     return 0;
3102 }
3103 
3104 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
3105 {
3106     uint32_t default1, can_be_one, can_be_zero;
3107     uint32_t must_be_one;
3108 
3109     switch (index) {
3110     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3111         default1 = 0x00000016;
3112         break;
3113     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3114         default1 = 0x0401e172;
3115         break;
3116     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3117         default1 = 0x000011ff;
3118         break;
3119     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3120         default1 = 0x00036dff;
3121         break;
3122     case MSR_IA32_VMX_PROCBASED_CTLS2:
3123         default1 = 0;
3124         break;
3125     default:
3126         abort();
3127     }
3128 
3129     /* If a feature bit is set, the control can be either set or clear.
3130      * Otherwise the value is limited to either 0 or 1 by default1.
3131      */
3132     can_be_one = features | default1;
3133     can_be_zero = features | ~default1;
3134     must_be_one = ~can_be_zero;
3135 
3136     /*
3137      * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
3138      * Bit 32:63 -> 1 if the control bit can be one.
3139      */
3140     return must_be_one | (((uint64_t)can_be_one) << 32);
3141 }
3142 
3143 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
3144 {
3145     uint64_t kvm_vmx_basic =
3146         kvm_arch_get_supported_msr_feature(kvm_state,
3147                                            MSR_IA32_VMX_BASIC);
3148 
3149     if (!kvm_vmx_basic) {
3150         /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
3151          * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
3152          */
3153         return;
3154     }
3155 
3156     uint64_t kvm_vmx_misc =
3157         kvm_arch_get_supported_msr_feature(kvm_state,
3158                                            MSR_IA32_VMX_MISC);
3159     uint64_t kvm_vmx_ept_vpid =
3160         kvm_arch_get_supported_msr_feature(kvm_state,
3161                                            MSR_IA32_VMX_EPT_VPID_CAP);
3162 
3163     /*
3164      * If the guest is 64-bit, a value of 1 is allowed for the host address
3165      * space size vmexit control.
3166      */
3167     uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
3168         ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
3169 
3170     /*
3171      * Bits 0-30, 32-44 and 50-53 come from the host.  KVM should
3172      * not change them for backwards compatibility.
3173      */
3174     uint64_t fixed_vmx_basic = kvm_vmx_basic &
3175         (MSR_VMX_BASIC_VMCS_REVISION_MASK |
3176          MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
3177          MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
3178 
3179     /*
3180      * Same for bits 0-4 and 25-27.  Bits 16-24 (CR3 target count) can
3181      * change in the future but are always zero for now, clear them to be
3182      * future proof.  Bits 32-63 in theory could change, though KVM does
3183      * not support dual-monitor treatment and probably never will; mask
3184      * them out as well.
3185      */
3186     uint64_t fixed_vmx_misc = kvm_vmx_misc &
3187         (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
3188          MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
3189 
3190     /*
3191      * EPT memory types should not change either, so we do not bother
3192      * adding features for them.
3193      */
3194     uint64_t fixed_vmx_ept_mask =
3195             (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
3196              MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
3197     uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
3198 
3199     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3200                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3201                                          f[FEAT_VMX_PROCBASED_CTLS]));
3202     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3203                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3204                                          f[FEAT_VMX_PINBASED_CTLS]));
3205     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3206                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
3207                                          f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
3208     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3209                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3210                                          f[FEAT_VMX_ENTRY_CTLS]));
3211     kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
3212                       make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
3213                                          f[FEAT_VMX_SECONDARY_CTLS]));
3214     kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
3215                       f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
3216     kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
3217                       f[FEAT_VMX_BASIC] | fixed_vmx_basic);
3218     kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
3219                       f[FEAT_VMX_MISC] | fixed_vmx_misc);
3220     if (has_msr_vmx_vmfunc) {
3221         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
3222     }
3223 
3224     /*
3225      * Just to be safe, write these with constant values.  The CRn_FIXED1
3226      * MSRs are generated by KVM based on the vCPU's CPUID.
3227      */
3228     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
3229                       CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
3230     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
3231                       CR4_VMXE_MASK);
3232 
3233     if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
3234         /* TSC multiplier (0x2032).  */
3235         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
3236     } else {
3237         /* Preemption timer (0x482E).  */
3238         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
3239     }
3240 }
3241 
3242 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
3243 {
3244     uint64_t kvm_perf_cap =
3245         kvm_arch_get_supported_msr_feature(kvm_state,
3246                                            MSR_IA32_PERF_CAPABILITIES);
3247 
3248     if (kvm_perf_cap) {
3249         kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
3250                         kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
3251     }
3252 }
3253 
3254 static int kvm_buf_set_msrs(X86CPU *cpu)
3255 {
3256     int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3257     if (ret < 0) {
3258         return ret;
3259     }
3260 
3261     if (ret < cpu->kvm_msr_buf->nmsrs) {
3262         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3263         error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
3264                      (uint32_t)e->index, (uint64_t)e->data);
3265     }
3266 
3267     assert(ret == cpu->kvm_msr_buf->nmsrs);
3268     return 0;
3269 }
3270 
3271 static void kvm_init_msrs(X86CPU *cpu)
3272 {
3273     CPUX86State *env = &cpu->env;
3274 
3275     kvm_msr_buf_reset(cpu);
3276     if (has_msr_arch_capabs) {
3277         kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3278                           env->features[FEAT_ARCH_CAPABILITIES]);
3279     }
3280 
3281     if (has_msr_core_capabs) {
3282         kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3283                           env->features[FEAT_CORE_CAPABILITY]);
3284     }
3285 
3286     if (has_msr_perf_capabs && cpu->enable_pmu) {
3287         kvm_msr_entry_add_perf(cpu, env->features);
3288     }
3289 
3290     if (has_msr_ucode_rev) {
3291         kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3292     }
3293 
3294     /*
3295      * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3296      * all kernels with MSR features should have them.
3297      */
3298     if (kvm_feature_msrs && cpu_has_vmx(env)) {
3299         kvm_msr_entry_add_vmx(cpu, env->features);
3300     }
3301 
3302     assert(kvm_buf_set_msrs(cpu) == 0);
3303 }
3304 
3305 static int kvm_put_msrs(X86CPU *cpu, int level)
3306 {
3307     CPUX86State *env = &cpu->env;
3308     int i;
3309 
3310     kvm_msr_buf_reset(cpu);
3311 
3312     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3313     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3314     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3315     kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3316     if (has_msr_star) {
3317         kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3318     }
3319     if (has_msr_hsave_pa) {
3320         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3321     }
3322     if (has_msr_tsc_aux) {
3323         kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3324     }
3325     if (has_msr_tsc_adjust) {
3326         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3327     }
3328     if (has_msr_misc_enable) {
3329         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3330                           env->msr_ia32_misc_enable);
3331     }
3332     if (has_msr_smbase) {
3333         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3334     }
3335     if (has_msr_smi_count) {
3336         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3337     }
3338     if (has_msr_pkrs) {
3339         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3340     }
3341     if (has_msr_bndcfgs) {
3342         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3343     }
3344     if (has_msr_xss) {
3345         kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3346     }
3347     if (has_msr_umwait) {
3348         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3349     }
3350     if (has_msr_spec_ctrl) {
3351         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3352     }
3353     if (has_tsc_scale_msr) {
3354         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3355     }
3356 
3357     if (has_msr_tsx_ctrl) {
3358         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3359     }
3360     if (has_msr_virt_ssbd) {
3361         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3362     }
3363 
3364 #ifdef TARGET_X86_64
3365     if (lm_capable_kernel) {
3366         kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3367         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3368         kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3369         kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3370     }
3371 #endif
3372 
3373     /*
3374      * The following MSRs have side effects on the guest or are too heavy
3375      * for normal writeback. Limit them to reset or full state updates.
3376      */
3377     if (level >= KVM_PUT_RESET_STATE) {
3378         kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3379         kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3380         kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3381         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3382             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3383         }
3384         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3385             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
3386         }
3387         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3388             kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
3389         }
3390         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3391             kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
3392         }
3393 
3394         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3395             kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3396         }
3397 
3398         if (has_architectural_pmu_version > 0) {
3399             if (has_architectural_pmu_version > 1) {
3400                 /* Stop the counter.  */
3401                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3402                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3403             }
3404 
3405             /* Set the counter values.  */
3406             for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3407                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
3408                                   env->msr_fixed_counters[i]);
3409             }
3410             for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3411                 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
3412                                   env->msr_gp_counters[i]);
3413                 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
3414                                   env->msr_gp_evtsel[i]);
3415             }
3416             if (has_architectural_pmu_version > 1) {
3417                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3418                                   env->msr_global_status);
3419                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3420                                   env->msr_global_ovf_ctrl);
3421 
3422                 /* Now start the PMU.  */
3423                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3424                                   env->msr_fixed_ctr_ctrl);
3425                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3426                                   env->msr_global_ctrl);
3427             }
3428         }
3429         /*
3430          * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3431          * only sync them to KVM on the first cpu
3432          */
3433         if (current_cpu == first_cpu) {
3434             if (has_msr_hv_hypercall) {
3435                 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
3436                                   env->msr_hv_guest_os_id);
3437                 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
3438                                   env->msr_hv_hypercall);
3439             }
3440             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3441                 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
3442                                   env->msr_hv_tsc);
3443             }
3444             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3445                 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
3446                                   env->msr_hv_reenlightenment_control);
3447                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
3448                                   env->msr_hv_tsc_emulation_control);
3449                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
3450                                   env->msr_hv_tsc_emulation_status);
3451             }
3452 #ifdef CONFIG_SYNDBG
3453             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) &&
3454                 has_msr_hv_syndbg_options) {
3455                 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS,
3456                                   hyperv_syndbg_query_options());
3457             }
3458 #endif
3459         }
3460         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3461             kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
3462                               env->msr_hv_vapic);
3463         }
3464         if (has_msr_hv_crash) {
3465             int j;
3466 
3467             for (j = 0; j < HV_CRASH_PARAMS; j++)
3468                 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
3469                                   env->msr_hv_crash_params[j]);
3470 
3471             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
3472         }
3473         if (has_msr_hv_runtime) {
3474             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
3475         }
3476         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
3477             && hv_vpindex_settable) {
3478             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
3479                               hyperv_vp_index(CPU(cpu)));
3480         }
3481         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3482             int j;
3483 
3484             kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
3485 
3486             kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
3487                               env->msr_hv_synic_control);
3488             kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
3489                               env->msr_hv_synic_evt_page);
3490             kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
3491                               env->msr_hv_synic_msg_page);
3492 
3493             for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
3494                 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
3495                                   env->msr_hv_synic_sint[j]);
3496             }
3497         }
3498         if (has_msr_hv_stimer) {
3499             int j;
3500 
3501             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
3502                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
3503                                 env->msr_hv_stimer_config[j]);
3504             }
3505 
3506             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
3507                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
3508                                 env->msr_hv_stimer_count[j]);
3509             }
3510         }
3511         if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3512             uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
3513 
3514             kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
3515             kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
3516             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
3517             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
3518             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
3519             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
3520             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
3521             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
3522             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
3523             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
3524             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3525             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
3526             for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3527                 /* The CPU GPs if we write to a bit above the physical limit of
3528                  * the host CPU (and KVM emulates that)
3529                  */
3530                 uint64_t mask = env->mtrr_var[i].mask;
3531                 mask &= phys_mask;
3532 
3533                 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3534                                   env->mtrr_var[i].base);
3535                 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
3536             }
3537         }
3538         if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3539             int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3540                                                     0x14, 1, R_EAX) & 0x7;
3541 
3542             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3543                             env->msr_rtit_ctrl);
3544             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3545                             env->msr_rtit_status);
3546             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3547                             env->msr_rtit_output_base);
3548             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3549                             env->msr_rtit_output_mask);
3550             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3551                             env->msr_rtit_cr3_match);
3552             for (i = 0; i < addr_num; i++) {
3553                 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3554                             env->msr_rtit_addrs[i]);
3555             }
3556         }
3557 
3558         if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3559             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
3560                               env->msr_ia32_sgxlepubkeyhash[0]);
3561             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
3562                               env->msr_ia32_sgxlepubkeyhash[1]);
3563             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
3564                               env->msr_ia32_sgxlepubkeyhash[2]);
3565             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
3566                               env->msr_ia32_sgxlepubkeyhash[3]);
3567         }
3568 
3569         if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3570             kvm_msr_entry_add(cpu, MSR_IA32_XFD,
3571                               env->msr_xfd);
3572             kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
3573                               env->msr_xfd_err);
3574         }
3575 
3576         if (kvm_enabled() && cpu->enable_pmu &&
3577             (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3578             uint64_t depth;
3579             int ret;
3580 
3581             /*
3582              * Only migrate Arch LBR states when the host Arch LBR depth
3583              * equals that of source guest's, this is to avoid mismatch
3584              * of guest/host config for the msr hence avoid unexpected
3585              * misbehavior.
3586              */
3587             ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3588 
3589             if (ret == 1 && !!depth && depth == env->msr_lbr_depth) {
3590                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl);
3591                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth);
3592 
3593                 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3594                     if (!env->lbr_records[i].from) {
3595                         continue;
3596                     }
3597                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i,
3598                                       env->lbr_records[i].from);
3599                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i,
3600                                       env->lbr_records[i].to);
3601                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i,
3602                                       env->lbr_records[i].info);
3603                 }
3604             }
3605         }
3606 
3607         /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3608          *       kvm_put_msr_feature_control. */
3609     }
3610 
3611     if (env->mcg_cap) {
3612         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3613         kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
3614         if (has_msr_mcg_ext_ctl) {
3615             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3616         }
3617         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3618             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
3619         }
3620     }
3621 
3622     return kvm_buf_set_msrs(cpu);
3623 }
3624 
3625 
3626 static int kvm_get_xsave(X86CPU *cpu)
3627 {
3628     CPUX86State *env = &cpu->env;
3629     void *xsave = env->xsave_buf;
3630     int type, ret;
3631 
3632     type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
3633     ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
3634     if (ret < 0) {
3635         return ret;
3636     }
3637     x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
3638 
3639     return 0;
3640 }
3641 
3642 static int kvm_get_xcrs(X86CPU *cpu)
3643 {
3644     CPUX86State *env = &cpu->env;
3645     int i, ret;
3646     struct kvm_xcrs xcrs;
3647 
3648     if (!has_xcrs) {
3649         return 0;
3650     }
3651 
3652     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3653     if (ret < 0) {
3654         return ret;
3655     }
3656 
3657     for (i = 0; i < xcrs.nr_xcrs; i++) {
3658         /* Only support xcr0 now */
3659         if (xcrs.xcrs[i].xcr == 0) {
3660             env->xcr0 = xcrs.xcrs[i].value;
3661             break;
3662         }
3663     }
3664     return 0;
3665 }
3666 
3667 static int kvm_get_sregs(X86CPU *cpu)
3668 {
3669     CPUX86State *env = &cpu->env;
3670     struct kvm_sregs sregs;
3671     int ret;
3672 
3673     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3674     if (ret < 0) {
3675         return ret;
3676     }
3677 
3678     /*
3679      * The interrupt_bitmap is ignored because KVM_GET_SREGS is
3680      * always preceded by KVM_GET_VCPU_EVENTS.
3681      */
3682 
3683     get_seg(&env->segs[R_CS], &sregs.cs);
3684     get_seg(&env->segs[R_DS], &sregs.ds);
3685     get_seg(&env->segs[R_ES], &sregs.es);
3686     get_seg(&env->segs[R_FS], &sregs.fs);
3687     get_seg(&env->segs[R_GS], &sregs.gs);
3688     get_seg(&env->segs[R_SS], &sregs.ss);
3689 
3690     get_seg(&env->tr, &sregs.tr);
3691     get_seg(&env->ldt, &sregs.ldt);
3692 
3693     env->idt.limit = sregs.idt.limit;
3694     env->idt.base = sregs.idt.base;
3695     env->gdt.limit = sregs.gdt.limit;
3696     env->gdt.base = sregs.gdt.base;
3697 
3698     env->cr[0] = sregs.cr0;
3699     env->cr[2] = sregs.cr2;
3700     env->cr[3] = sregs.cr3;
3701     env->cr[4] = sregs.cr4;
3702 
3703     env->efer = sregs.efer;
3704     if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
3705         env->cr[0] & CR0_PG_MASK) {
3706         env->efer |= MSR_EFER_LMA;
3707     }
3708 
3709     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3710     x86_update_hflags(env);
3711 
3712     return 0;
3713 }
3714 
3715 static int kvm_get_sregs2(X86CPU *cpu)
3716 {
3717     CPUX86State *env = &cpu->env;
3718     struct kvm_sregs2 sregs;
3719     int i, ret;
3720 
3721     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
3722     if (ret < 0) {
3723         return ret;
3724     }
3725 
3726     get_seg(&env->segs[R_CS], &sregs.cs);
3727     get_seg(&env->segs[R_DS], &sregs.ds);
3728     get_seg(&env->segs[R_ES], &sregs.es);
3729     get_seg(&env->segs[R_FS], &sregs.fs);
3730     get_seg(&env->segs[R_GS], &sregs.gs);
3731     get_seg(&env->segs[R_SS], &sregs.ss);
3732 
3733     get_seg(&env->tr, &sregs.tr);
3734     get_seg(&env->ldt, &sregs.ldt);
3735 
3736     env->idt.limit = sregs.idt.limit;
3737     env->idt.base = sregs.idt.base;
3738     env->gdt.limit = sregs.gdt.limit;
3739     env->gdt.base = sregs.gdt.base;
3740 
3741     env->cr[0] = sregs.cr0;
3742     env->cr[2] = sregs.cr2;
3743     env->cr[3] = sregs.cr3;
3744     env->cr[4] = sregs.cr4;
3745 
3746     env->efer = sregs.efer;
3747     if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
3748         env->cr[0] & CR0_PG_MASK) {
3749         env->efer |= MSR_EFER_LMA;
3750     }
3751 
3752     env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
3753 
3754     if (env->pdptrs_valid) {
3755         for (i = 0; i < 4; i++) {
3756             env->pdptrs[i] = sregs.pdptrs[i];
3757         }
3758     }
3759 
3760     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3761     x86_update_hflags(env);
3762 
3763     return 0;
3764 }
3765 
3766 static int kvm_get_msrs(X86CPU *cpu)
3767 {
3768     CPUX86State *env = &cpu->env;
3769     struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3770     int ret, i;
3771     uint64_t mtrr_top_bits;
3772 
3773     kvm_msr_buf_reset(cpu);
3774 
3775     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3776     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3777     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3778     kvm_msr_entry_add(cpu, MSR_PAT, 0);
3779     if (has_msr_star) {
3780         kvm_msr_entry_add(cpu, MSR_STAR, 0);
3781     }
3782     if (has_msr_hsave_pa) {
3783         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3784     }
3785     if (has_msr_tsc_aux) {
3786         kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3787     }
3788     if (has_msr_tsc_adjust) {
3789         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3790     }
3791     if (has_msr_tsc_deadline) {
3792         kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3793     }
3794     if (has_msr_misc_enable) {
3795         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3796     }
3797     if (has_msr_smbase) {
3798         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3799     }
3800     if (has_msr_smi_count) {
3801         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3802     }
3803     if (has_msr_feature_control) {
3804         kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3805     }
3806     if (has_msr_pkrs) {
3807         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3808     }
3809     if (has_msr_bndcfgs) {
3810         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3811     }
3812     if (has_msr_xss) {
3813         kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3814     }
3815     if (has_msr_umwait) {
3816         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3817     }
3818     if (has_msr_spec_ctrl) {
3819         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3820     }
3821     if (has_tsc_scale_msr) {
3822         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
3823     }
3824 
3825     if (has_msr_tsx_ctrl) {
3826         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3827     }
3828     if (has_msr_virt_ssbd) {
3829         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3830     }
3831     if (!env->tsc_valid) {
3832         kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3833         env->tsc_valid = !runstate_is_running();
3834     }
3835 
3836 #ifdef TARGET_X86_64
3837     if (lm_capable_kernel) {
3838         kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3839         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3840         kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3841         kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3842     }
3843 #endif
3844     kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3845     kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3846     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3847         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3848     }
3849     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3850         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3851     }
3852     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3853         kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3854     }
3855     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3856         kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3857     }
3858     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3859         kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3860     }
3861     if (has_architectural_pmu_version > 0) {
3862         if (has_architectural_pmu_version > 1) {
3863             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3864             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3865             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3866             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3867         }
3868         for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3869             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3870         }
3871         for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3872             kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3873             kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3874         }
3875     }
3876 
3877     if (env->mcg_cap) {
3878         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3879         kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3880         if (has_msr_mcg_ext_ctl) {
3881             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3882         }
3883         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3884             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3885         }
3886     }
3887 
3888     if (has_msr_hv_hypercall) {
3889         kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3890         kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3891     }
3892     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3893         kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3894     }
3895     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3896         kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3897     }
3898     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3899         kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3900         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3901         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3902     }
3903     if (has_msr_hv_syndbg_options) {
3904         kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0);
3905     }
3906     if (has_msr_hv_crash) {
3907         int j;
3908 
3909         for (j = 0; j < HV_CRASH_PARAMS; j++) {
3910             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3911         }
3912     }
3913     if (has_msr_hv_runtime) {
3914         kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3915     }
3916     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3917         uint32_t msr;
3918 
3919         kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3920         kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3921         kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3922         for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3923             kvm_msr_entry_add(cpu, msr, 0);
3924         }
3925     }
3926     if (has_msr_hv_stimer) {
3927         uint32_t msr;
3928 
3929         for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3930              msr++) {
3931             kvm_msr_entry_add(cpu, msr, 0);
3932         }
3933     }
3934     if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3935         kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3936         kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3937         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3938         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3939         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3940         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3941         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3942         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3943         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3944         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3945         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3946         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
3947         for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3948             kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3949             kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
3950         }
3951     }
3952 
3953     if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3954         int addr_num =
3955             kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3956 
3957         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3958         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3959         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3960         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3961         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3962         for (i = 0; i < addr_num; i++) {
3963             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3964         }
3965     }
3966 
3967     if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3968         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
3969         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
3970         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
3971         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
3972     }
3973 
3974     if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3975         kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
3976         kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
3977     }
3978 
3979     if (kvm_enabled() && cpu->enable_pmu &&
3980         (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3981         uint64_t depth;
3982 
3983         ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3984         if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) {
3985             kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0);
3986             kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0);
3987 
3988             for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3989                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0);
3990                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0);
3991                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0);
3992             }
3993         }
3994     }
3995 
3996     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
3997     if (ret < 0) {
3998         return ret;
3999     }
4000 
4001     if (ret < cpu->kvm_msr_buf->nmsrs) {
4002         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
4003         error_report("error: failed to get MSR 0x%" PRIx32,
4004                      (uint32_t)e->index);
4005     }
4006 
4007     assert(ret == cpu->kvm_msr_buf->nmsrs);
4008     /*
4009      * MTRR masks: Each mask consists of 5 parts
4010      * a  10..0: must be zero
4011      * b  11   : valid bit
4012      * c n-1.12: actual mask bits
4013      * d  51..n: reserved must be zero
4014      * e  63.52: reserved must be zero
4015      *
4016      * 'n' is the number of physical bits supported by the CPU and is
4017      * apparently always <= 52.   We know our 'n' but don't know what
4018      * the destinations 'n' is; it might be smaller, in which case
4019      * it masks (c) on loading. It might be larger, in which case
4020      * we fill 'd' so that d..c is consistent irrespetive of the 'n'
4021      * we're migrating to.
4022      */
4023 
4024     if (cpu->fill_mtrr_mask) {
4025         QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
4026         assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
4027         mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
4028     } else {
4029         mtrr_top_bits = 0;
4030     }
4031 
4032     for (i = 0; i < ret; i++) {
4033         uint32_t index = msrs[i].index;
4034         switch (index) {
4035         case MSR_IA32_SYSENTER_CS:
4036             env->sysenter_cs = msrs[i].data;
4037             break;
4038         case MSR_IA32_SYSENTER_ESP:
4039             env->sysenter_esp = msrs[i].data;
4040             break;
4041         case MSR_IA32_SYSENTER_EIP:
4042             env->sysenter_eip = msrs[i].data;
4043             break;
4044         case MSR_PAT:
4045             env->pat = msrs[i].data;
4046             break;
4047         case MSR_STAR:
4048             env->star = msrs[i].data;
4049             break;
4050 #ifdef TARGET_X86_64
4051         case MSR_CSTAR:
4052             env->cstar = msrs[i].data;
4053             break;
4054         case MSR_KERNELGSBASE:
4055             env->kernelgsbase = msrs[i].data;
4056             break;
4057         case MSR_FMASK:
4058             env->fmask = msrs[i].data;
4059             break;
4060         case MSR_LSTAR:
4061             env->lstar = msrs[i].data;
4062             break;
4063 #endif
4064         case MSR_IA32_TSC:
4065             env->tsc = msrs[i].data;
4066             break;
4067         case MSR_TSC_AUX:
4068             env->tsc_aux = msrs[i].data;
4069             break;
4070         case MSR_TSC_ADJUST:
4071             env->tsc_adjust = msrs[i].data;
4072             break;
4073         case MSR_IA32_TSCDEADLINE:
4074             env->tsc_deadline = msrs[i].data;
4075             break;
4076         case MSR_VM_HSAVE_PA:
4077             env->vm_hsave = msrs[i].data;
4078             break;
4079         case MSR_KVM_SYSTEM_TIME:
4080             env->system_time_msr = msrs[i].data;
4081             break;
4082         case MSR_KVM_WALL_CLOCK:
4083             env->wall_clock_msr = msrs[i].data;
4084             break;
4085         case MSR_MCG_STATUS:
4086             env->mcg_status = msrs[i].data;
4087             break;
4088         case MSR_MCG_CTL:
4089             env->mcg_ctl = msrs[i].data;
4090             break;
4091         case MSR_MCG_EXT_CTL:
4092             env->mcg_ext_ctl = msrs[i].data;
4093             break;
4094         case MSR_IA32_MISC_ENABLE:
4095             env->msr_ia32_misc_enable = msrs[i].data;
4096             break;
4097         case MSR_IA32_SMBASE:
4098             env->smbase = msrs[i].data;
4099             break;
4100         case MSR_SMI_COUNT:
4101             env->msr_smi_count = msrs[i].data;
4102             break;
4103         case MSR_IA32_FEATURE_CONTROL:
4104             env->msr_ia32_feature_control = msrs[i].data;
4105             break;
4106         case MSR_IA32_BNDCFGS:
4107             env->msr_bndcfgs = msrs[i].data;
4108             break;
4109         case MSR_IA32_XSS:
4110             env->xss = msrs[i].data;
4111             break;
4112         case MSR_IA32_UMWAIT_CONTROL:
4113             env->umwait = msrs[i].data;
4114             break;
4115         case MSR_IA32_PKRS:
4116             env->pkrs = msrs[i].data;
4117             break;
4118         default:
4119             if (msrs[i].index >= MSR_MC0_CTL &&
4120                 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
4121                 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
4122             }
4123             break;
4124         case MSR_KVM_ASYNC_PF_EN:
4125             env->async_pf_en_msr = msrs[i].data;
4126             break;
4127         case MSR_KVM_ASYNC_PF_INT:
4128             env->async_pf_int_msr = msrs[i].data;
4129             break;
4130         case MSR_KVM_PV_EOI_EN:
4131             env->pv_eoi_en_msr = msrs[i].data;
4132             break;
4133         case MSR_KVM_STEAL_TIME:
4134             env->steal_time_msr = msrs[i].data;
4135             break;
4136         case MSR_KVM_POLL_CONTROL: {
4137             env->poll_control_msr = msrs[i].data;
4138             break;
4139         }
4140         case MSR_CORE_PERF_FIXED_CTR_CTRL:
4141             env->msr_fixed_ctr_ctrl = msrs[i].data;
4142             break;
4143         case MSR_CORE_PERF_GLOBAL_CTRL:
4144             env->msr_global_ctrl = msrs[i].data;
4145             break;
4146         case MSR_CORE_PERF_GLOBAL_STATUS:
4147             env->msr_global_status = msrs[i].data;
4148             break;
4149         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
4150             env->msr_global_ovf_ctrl = msrs[i].data;
4151             break;
4152         case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
4153             env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
4154             break;
4155         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
4156             env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
4157             break;
4158         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
4159             env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
4160             break;
4161         case HV_X64_MSR_HYPERCALL:
4162             env->msr_hv_hypercall = msrs[i].data;
4163             break;
4164         case HV_X64_MSR_GUEST_OS_ID:
4165             env->msr_hv_guest_os_id = msrs[i].data;
4166             break;
4167         case HV_X64_MSR_APIC_ASSIST_PAGE:
4168             env->msr_hv_vapic = msrs[i].data;
4169             break;
4170         case HV_X64_MSR_REFERENCE_TSC:
4171             env->msr_hv_tsc = msrs[i].data;
4172             break;
4173         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4174             env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
4175             break;
4176         case HV_X64_MSR_VP_RUNTIME:
4177             env->msr_hv_runtime = msrs[i].data;
4178             break;
4179         case HV_X64_MSR_SCONTROL:
4180             env->msr_hv_synic_control = msrs[i].data;
4181             break;
4182         case HV_X64_MSR_SIEFP:
4183             env->msr_hv_synic_evt_page = msrs[i].data;
4184             break;
4185         case HV_X64_MSR_SIMP:
4186             env->msr_hv_synic_msg_page = msrs[i].data;
4187             break;
4188         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
4189             env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
4190             break;
4191         case HV_X64_MSR_STIMER0_CONFIG:
4192         case HV_X64_MSR_STIMER1_CONFIG:
4193         case HV_X64_MSR_STIMER2_CONFIG:
4194         case HV_X64_MSR_STIMER3_CONFIG:
4195             env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
4196                                 msrs[i].data;
4197             break;
4198         case HV_X64_MSR_STIMER0_COUNT:
4199         case HV_X64_MSR_STIMER1_COUNT:
4200         case HV_X64_MSR_STIMER2_COUNT:
4201         case HV_X64_MSR_STIMER3_COUNT:
4202             env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
4203                                 msrs[i].data;
4204             break;
4205         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4206             env->msr_hv_reenlightenment_control = msrs[i].data;
4207             break;
4208         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4209             env->msr_hv_tsc_emulation_control = msrs[i].data;
4210             break;
4211         case HV_X64_MSR_TSC_EMULATION_STATUS:
4212             env->msr_hv_tsc_emulation_status = msrs[i].data;
4213             break;
4214         case HV_X64_MSR_SYNDBG_OPTIONS:
4215             env->msr_hv_syndbg_options = msrs[i].data;
4216             break;
4217         case MSR_MTRRdefType:
4218             env->mtrr_deftype = msrs[i].data;
4219             break;
4220         case MSR_MTRRfix64K_00000:
4221             env->mtrr_fixed[0] = msrs[i].data;
4222             break;
4223         case MSR_MTRRfix16K_80000:
4224             env->mtrr_fixed[1] = msrs[i].data;
4225             break;
4226         case MSR_MTRRfix16K_A0000:
4227             env->mtrr_fixed[2] = msrs[i].data;
4228             break;
4229         case MSR_MTRRfix4K_C0000:
4230             env->mtrr_fixed[3] = msrs[i].data;
4231             break;
4232         case MSR_MTRRfix4K_C8000:
4233             env->mtrr_fixed[4] = msrs[i].data;
4234             break;
4235         case MSR_MTRRfix4K_D0000:
4236             env->mtrr_fixed[5] = msrs[i].data;
4237             break;
4238         case MSR_MTRRfix4K_D8000:
4239             env->mtrr_fixed[6] = msrs[i].data;
4240             break;
4241         case MSR_MTRRfix4K_E0000:
4242             env->mtrr_fixed[7] = msrs[i].data;
4243             break;
4244         case MSR_MTRRfix4K_E8000:
4245             env->mtrr_fixed[8] = msrs[i].data;
4246             break;
4247         case MSR_MTRRfix4K_F0000:
4248             env->mtrr_fixed[9] = msrs[i].data;
4249             break;
4250         case MSR_MTRRfix4K_F8000:
4251             env->mtrr_fixed[10] = msrs[i].data;
4252             break;
4253         case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
4254             if (index & 1) {
4255                 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
4256                                                                mtrr_top_bits;
4257             } else {
4258                 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
4259             }
4260             break;
4261         case MSR_IA32_SPEC_CTRL:
4262             env->spec_ctrl = msrs[i].data;
4263             break;
4264         case MSR_AMD64_TSC_RATIO:
4265             env->amd_tsc_scale_msr = msrs[i].data;
4266             break;
4267         case MSR_IA32_TSX_CTRL:
4268             env->tsx_ctrl = msrs[i].data;
4269             break;
4270         case MSR_VIRT_SSBD:
4271             env->virt_ssbd = msrs[i].data;
4272             break;
4273         case MSR_IA32_RTIT_CTL:
4274             env->msr_rtit_ctrl = msrs[i].data;
4275             break;
4276         case MSR_IA32_RTIT_STATUS:
4277             env->msr_rtit_status = msrs[i].data;
4278             break;
4279         case MSR_IA32_RTIT_OUTPUT_BASE:
4280             env->msr_rtit_output_base = msrs[i].data;
4281             break;
4282         case MSR_IA32_RTIT_OUTPUT_MASK:
4283             env->msr_rtit_output_mask = msrs[i].data;
4284             break;
4285         case MSR_IA32_RTIT_CR3_MATCH:
4286             env->msr_rtit_cr3_match = msrs[i].data;
4287             break;
4288         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
4289             env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
4290             break;
4291         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
4292             env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
4293                            msrs[i].data;
4294             break;
4295         case MSR_IA32_XFD:
4296             env->msr_xfd = msrs[i].data;
4297             break;
4298         case MSR_IA32_XFD_ERR:
4299             env->msr_xfd_err = msrs[i].data;
4300             break;
4301         case MSR_ARCH_LBR_CTL:
4302             env->msr_lbr_ctl = msrs[i].data;
4303             break;
4304         case MSR_ARCH_LBR_DEPTH:
4305             env->msr_lbr_depth = msrs[i].data;
4306             break;
4307         case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31:
4308             env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data;
4309             break;
4310         case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31:
4311             env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data;
4312             break;
4313         case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31:
4314             env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data;
4315             break;
4316         }
4317     }
4318 
4319     return 0;
4320 }
4321 
4322 static int kvm_put_mp_state(X86CPU *cpu)
4323 {
4324     struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4325 
4326     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4327 }
4328 
4329 static int kvm_get_mp_state(X86CPU *cpu)
4330 {
4331     CPUState *cs = CPU(cpu);
4332     CPUX86State *env = &cpu->env;
4333     struct kvm_mp_state mp_state;
4334     int ret;
4335 
4336     ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
4337     if (ret < 0) {
4338         return ret;
4339     }
4340     env->mp_state = mp_state.mp_state;
4341     if (kvm_irqchip_in_kernel()) {
4342         cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
4343     }
4344     return 0;
4345 }
4346 
4347 static int kvm_get_apic(X86CPU *cpu)
4348 {
4349     DeviceState *apic = cpu->apic_state;
4350     struct kvm_lapic_state kapic;
4351     int ret;
4352 
4353     if (apic && kvm_irqchip_in_kernel()) {
4354         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
4355         if (ret < 0) {
4356             return ret;
4357         }
4358 
4359         kvm_get_apic_state(apic, &kapic);
4360     }
4361     return 0;
4362 }
4363 
4364 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
4365 {
4366     CPUState *cs = CPU(cpu);
4367     CPUX86State *env = &cpu->env;
4368     struct kvm_vcpu_events events = {};
4369 
4370     events.flags = 0;
4371 
4372     if (has_exception_payload) {
4373         events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4374         events.exception.pending = env->exception_pending;
4375         events.exception_has_payload = env->exception_has_payload;
4376         events.exception_payload = env->exception_payload;
4377     }
4378     events.exception.nr = env->exception_nr;
4379     events.exception.injected = env->exception_injected;
4380     events.exception.has_error_code = env->has_error_code;
4381     events.exception.error_code = env->error_code;
4382 
4383     events.interrupt.injected = (env->interrupt_injected >= 0);
4384     events.interrupt.nr = env->interrupt_injected;
4385     events.interrupt.soft = env->soft_interrupt;
4386 
4387     events.nmi.injected = env->nmi_injected;
4388     events.nmi.pending = env->nmi_pending;
4389     events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
4390 
4391     events.sipi_vector = env->sipi_vector;
4392 
4393     if (has_msr_smbase) {
4394         events.smi.smm = !!(env->hflags & HF_SMM_MASK);
4395         events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
4396         if (kvm_irqchip_in_kernel()) {
4397             /* As soon as these are moved to the kernel, remove them
4398              * from cs->interrupt_request.
4399              */
4400             events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
4401             events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
4402             cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
4403         } else {
4404             /* Keep these in cs->interrupt_request.  */
4405             events.smi.pending = 0;
4406             events.smi.latched_init = 0;
4407         }
4408         /* Stop SMI delivery on old machine types to avoid a reboot
4409          * on an inward migration of an old VM.
4410          */
4411         if (!cpu->kvm_no_smi_migration) {
4412             events.flags |= KVM_VCPUEVENT_VALID_SMM;
4413         }
4414     }
4415 
4416     if (level >= KVM_PUT_RESET_STATE) {
4417         events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
4418         if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
4419             events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
4420         }
4421     }
4422 
4423     if (has_triple_fault_event) {
4424         events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
4425         events.triple_fault.pending = env->triple_fault_pending;
4426     }
4427 
4428     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
4429 }
4430 
4431 static int kvm_get_vcpu_events(X86CPU *cpu)
4432 {
4433     CPUX86State *env = &cpu->env;
4434     struct kvm_vcpu_events events;
4435     int ret;
4436 
4437     memset(&events, 0, sizeof(events));
4438     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
4439     if (ret < 0) {
4440        return ret;
4441     }
4442 
4443     if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4444         env->exception_pending = events.exception.pending;
4445         env->exception_has_payload = events.exception_has_payload;
4446         env->exception_payload = events.exception_payload;
4447     } else {
4448         env->exception_pending = 0;
4449         env->exception_has_payload = false;
4450     }
4451     env->exception_injected = events.exception.injected;
4452     env->exception_nr =
4453         (env->exception_pending || env->exception_injected) ?
4454         events.exception.nr : -1;
4455     env->has_error_code = events.exception.has_error_code;
4456     env->error_code = events.exception.error_code;
4457 
4458     env->interrupt_injected =
4459         events.interrupt.injected ? events.interrupt.nr : -1;
4460     env->soft_interrupt = events.interrupt.soft;
4461 
4462     env->nmi_injected = events.nmi.injected;
4463     env->nmi_pending = events.nmi.pending;
4464     if (events.nmi.masked) {
4465         env->hflags2 |= HF2_NMI_MASK;
4466     } else {
4467         env->hflags2 &= ~HF2_NMI_MASK;
4468     }
4469 
4470     if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
4471         if (events.smi.smm) {
4472             env->hflags |= HF_SMM_MASK;
4473         } else {
4474             env->hflags &= ~HF_SMM_MASK;
4475         }
4476         if (events.smi.pending) {
4477             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4478         } else {
4479             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4480         }
4481         if (events.smi.smm_inside_nmi) {
4482             env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
4483         } else {
4484             env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
4485         }
4486         if (events.smi.latched_init) {
4487             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4488         } else {
4489             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4490         }
4491     }
4492 
4493     if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
4494         env->triple_fault_pending = events.triple_fault.pending;
4495     }
4496 
4497     env->sipi_vector = events.sipi_vector;
4498 
4499     return 0;
4500 }
4501 
4502 static int kvm_put_debugregs(X86CPU *cpu)
4503 {
4504     CPUX86State *env = &cpu->env;
4505     struct kvm_debugregs dbgregs;
4506     int i;
4507 
4508     memset(&dbgregs, 0, sizeof(dbgregs));
4509     for (i = 0; i < 4; i++) {
4510         dbgregs.db[i] = env->dr[i];
4511     }
4512     dbgregs.dr6 = env->dr[6];
4513     dbgregs.dr7 = env->dr[7];
4514     dbgregs.flags = 0;
4515 
4516     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
4517 }
4518 
4519 static int kvm_get_debugregs(X86CPU *cpu)
4520 {
4521     CPUX86State *env = &cpu->env;
4522     struct kvm_debugregs dbgregs;
4523     int i, ret;
4524 
4525     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
4526     if (ret < 0) {
4527         return ret;
4528     }
4529     for (i = 0; i < 4; i++) {
4530         env->dr[i] = dbgregs.db[i];
4531     }
4532     env->dr[4] = env->dr[6] = dbgregs.dr6;
4533     env->dr[5] = env->dr[7] = dbgregs.dr7;
4534 
4535     return 0;
4536 }
4537 
4538 static int kvm_put_nested_state(X86CPU *cpu)
4539 {
4540     CPUX86State *env = &cpu->env;
4541     int max_nested_state_len = kvm_max_nested_state_length();
4542 
4543     if (!env->nested_state) {
4544         return 0;
4545     }
4546 
4547     /*
4548      * Copy flags that are affected by reset from env->hflags and env->hflags2.
4549      */
4550     if (env->hflags & HF_GUEST_MASK) {
4551         env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
4552     } else {
4553         env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
4554     }
4555 
4556     /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
4557     if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
4558         env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
4559     } else {
4560         env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
4561     }
4562 
4563     assert(env->nested_state->size <= max_nested_state_len);
4564     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
4565 }
4566 
4567 static int kvm_get_nested_state(X86CPU *cpu)
4568 {
4569     CPUX86State *env = &cpu->env;
4570     int max_nested_state_len = kvm_max_nested_state_length();
4571     int ret;
4572 
4573     if (!env->nested_state) {
4574         return 0;
4575     }
4576 
4577     /*
4578      * It is possible that migration restored a smaller size into
4579      * nested_state->hdr.size than what our kernel support.
4580      * We preserve migration origin nested_state->hdr.size for
4581      * call to KVM_SET_NESTED_STATE but wish that our next call
4582      * to KVM_GET_NESTED_STATE will use max size our kernel support.
4583      */
4584     env->nested_state->size = max_nested_state_len;
4585 
4586     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
4587     if (ret < 0) {
4588         return ret;
4589     }
4590 
4591     /*
4592      * Copy flags that are affected by reset to env->hflags and env->hflags2.
4593      */
4594     if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
4595         env->hflags |= HF_GUEST_MASK;
4596     } else {
4597         env->hflags &= ~HF_GUEST_MASK;
4598     }
4599 
4600     /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
4601     if (cpu_has_svm(env)) {
4602         if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
4603             env->hflags2 |= HF2_GIF_MASK;
4604         } else {
4605             env->hflags2 &= ~HF2_GIF_MASK;
4606         }
4607     }
4608 
4609     return ret;
4610 }
4611 
4612 int kvm_arch_put_registers(CPUState *cpu, int level)
4613 {
4614     X86CPU *x86_cpu = X86_CPU(cpu);
4615     int ret;
4616 
4617     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
4618 
4619     /*
4620      * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX
4621      * root operation upon vCPU reset. kvm_put_msr_feature_control() should also
4622      * precede kvm_put_nested_state() when 'real' nested state is set.
4623      */
4624     if (level >= KVM_PUT_RESET_STATE) {
4625         ret = kvm_put_msr_feature_control(x86_cpu);
4626         if (ret < 0) {
4627             return ret;
4628         }
4629     }
4630 
4631     /* must be before kvm_put_nested_state so that EFER.SVME is set */
4632     ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
4633     if (ret < 0) {
4634         return ret;
4635     }
4636 
4637     if (level >= KVM_PUT_RESET_STATE) {
4638         ret = kvm_put_nested_state(x86_cpu);
4639         if (ret < 0) {
4640             return ret;
4641         }
4642     }
4643 
4644     if (level == KVM_PUT_FULL_STATE) {
4645         /* We don't check for kvm_arch_set_tsc_khz() errors here,
4646          * because TSC frequency mismatch shouldn't abort migration,
4647          * unless the user explicitly asked for a more strict TSC
4648          * setting (e.g. using an explicit "tsc-freq" option).
4649          */
4650         kvm_arch_set_tsc_khz(cpu);
4651     }
4652 
4653 #ifdef CONFIG_XEN_EMU
4654     if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) {
4655         ret = kvm_put_xen_state(cpu);
4656         if (ret < 0) {
4657             return ret;
4658         }
4659     }
4660 #endif
4661 
4662     ret = kvm_getput_regs(x86_cpu, 1);
4663     if (ret < 0) {
4664         return ret;
4665     }
4666     ret = kvm_put_xsave(x86_cpu);
4667     if (ret < 0) {
4668         return ret;
4669     }
4670     ret = kvm_put_xcrs(x86_cpu);
4671     if (ret < 0) {
4672         return ret;
4673     }
4674     ret = kvm_put_msrs(x86_cpu, level);
4675     if (ret < 0) {
4676         return ret;
4677     }
4678     ret = kvm_put_vcpu_events(x86_cpu, level);
4679     if (ret < 0) {
4680         return ret;
4681     }
4682     if (level >= KVM_PUT_RESET_STATE) {
4683         ret = kvm_put_mp_state(x86_cpu);
4684         if (ret < 0) {
4685             return ret;
4686         }
4687     }
4688 
4689     ret = kvm_put_tscdeadline_msr(x86_cpu);
4690     if (ret < 0) {
4691         return ret;
4692     }
4693     ret = kvm_put_debugregs(x86_cpu);
4694     if (ret < 0) {
4695         return ret;
4696     }
4697     return 0;
4698 }
4699 
4700 int kvm_arch_get_registers(CPUState *cs)
4701 {
4702     X86CPU *cpu = X86_CPU(cs);
4703     int ret;
4704 
4705     assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4706 
4707     ret = kvm_get_vcpu_events(cpu);
4708     if (ret < 0) {
4709         goto out;
4710     }
4711     /*
4712      * KVM_GET_MPSTATE can modify CS and RIP, call it before
4713      * KVM_GET_REGS and KVM_GET_SREGS.
4714      */
4715     ret = kvm_get_mp_state(cpu);
4716     if (ret < 0) {
4717         goto out;
4718     }
4719     ret = kvm_getput_regs(cpu, 0);
4720     if (ret < 0) {
4721         goto out;
4722     }
4723     ret = kvm_get_xsave(cpu);
4724     if (ret < 0) {
4725         goto out;
4726     }
4727     ret = kvm_get_xcrs(cpu);
4728     if (ret < 0) {
4729         goto out;
4730     }
4731     ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
4732     if (ret < 0) {
4733         goto out;
4734     }
4735     ret = kvm_get_msrs(cpu);
4736     if (ret < 0) {
4737         goto out;
4738     }
4739     ret = kvm_get_apic(cpu);
4740     if (ret < 0) {
4741         goto out;
4742     }
4743     ret = kvm_get_debugregs(cpu);
4744     if (ret < 0) {
4745         goto out;
4746     }
4747     ret = kvm_get_nested_state(cpu);
4748     if (ret < 0) {
4749         goto out;
4750     }
4751 #ifdef CONFIG_XEN_EMU
4752     if (xen_mode == XEN_EMULATE) {
4753         ret = kvm_get_xen_state(cs);
4754         if (ret < 0) {
4755             goto out;
4756         }
4757     }
4758 #endif
4759     ret = 0;
4760  out:
4761     cpu_sync_bndcs_hflags(&cpu->env);
4762     return ret;
4763 }
4764 
4765 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4766 {
4767     X86CPU *x86_cpu = X86_CPU(cpu);
4768     CPUX86State *env = &x86_cpu->env;
4769     int ret;
4770 
4771     /* Inject NMI */
4772     if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4773         if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4774             bql_lock();
4775             cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4776             bql_unlock();
4777             DPRINTF("injected NMI\n");
4778             ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4779             if (ret < 0) {
4780                 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4781                         strerror(-ret));
4782             }
4783         }
4784         if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4785             bql_lock();
4786             cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4787             bql_unlock();
4788             DPRINTF("injected SMI\n");
4789             ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4790             if (ret < 0) {
4791                 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4792                         strerror(-ret));
4793             }
4794         }
4795     }
4796 
4797     if (!kvm_pic_in_kernel()) {
4798         bql_lock();
4799     }
4800 
4801     /* Force the VCPU out of its inner loop to process any INIT requests
4802      * or (for userspace APIC, but it is cheap to combine the checks here)
4803      * pending TPR access reports.
4804      */
4805     if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4806         if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4807             !(env->hflags & HF_SMM_MASK)) {
4808             cpu->exit_request = 1;
4809         }
4810         if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4811             cpu->exit_request = 1;
4812         }
4813     }
4814 
4815     if (!kvm_pic_in_kernel()) {
4816         /* Try to inject an interrupt if the guest can accept it */
4817         if (run->ready_for_interrupt_injection &&
4818             (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4819             (env->eflags & IF_MASK)) {
4820             int irq;
4821 
4822             cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4823             irq = cpu_get_pic_interrupt(env);
4824             if (irq >= 0) {
4825                 struct kvm_interrupt intr;
4826 
4827                 intr.irq = irq;
4828                 DPRINTF("injected interrupt %d\n", irq);
4829                 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4830                 if (ret < 0) {
4831                     fprintf(stderr,
4832                             "KVM: injection failed, interrupt lost (%s)\n",
4833                             strerror(-ret));
4834                 }
4835             }
4836         }
4837 
4838         /* If we have an interrupt but the guest is not ready to receive an
4839          * interrupt, request an interrupt window exit.  This will
4840          * cause a return to userspace as soon as the guest is ready to
4841          * receive interrupts. */
4842         if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4843             run->request_interrupt_window = 1;
4844         } else {
4845             run->request_interrupt_window = 0;
4846         }
4847 
4848         DPRINTF("setting tpr\n");
4849         run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4850 
4851         bql_unlock();
4852     }
4853 }
4854 
4855 static void kvm_rate_limit_on_bus_lock(void)
4856 {
4857     uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
4858 
4859     if (delay_ns) {
4860         g_usleep(delay_ns / SCALE_US);
4861     }
4862 }
4863 
4864 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4865 {
4866     X86CPU *x86_cpu = X86_CPU(cpu);
4867     CPUX86State *env = &x86_cpu->env;
4868 
4869     if (run->flags & KVM_RUN_X86_SMM) {
4870         env->hflags |= HF_SMM_MASK;
4871     } else {
4872         env->hflags &= ~HF_SMM_MASK;
4873     }
4874     if (run->if_flag) {
4875         env->eflags |= IF_MASK;
4876     } else {
4877         env->eflags &= ~IF_MASK;
4878     }
4879     if (run->flags & KVM_RUN_X86_BUS_LOCK) {
4880         kvm_rate_limit_on_bus_lock();
4881     }
4882 
4883 #ifdef CONFIG_XEN_EMU
4884     /*
4885      * If the callback is asserted as a GSI (or PCI INTx) then check if
4886      * vcpu_info->evtchn_upcall_pending has been cleared, and deassert
4887      * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC
4888      * EOI and only resample then, exactly how the VFIO eventfd pairs
4889      * are designed to work for level triggered interrupts.
4890      */
4891     if (x86_cpu->env.xen_callback_asserted) {
4892         kvm_xen_maybe_deassert_callback(cpu);
4893     }
4894 #endif
4895 
4896     /* We need to protect the apic state against concurrent accesses from
4897      * different threads in case the userspace irqchip is used. */
4898     if (!kvm_irqchip_in_kernel()) {
4899         bql_lock();
4900     }
4901     cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4902     cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4903     if (!kvm_irqchip_in_kernel()) {
4904         bql_unlock();
4905     }
4906     return cpu_get_mem_attrs(env);
4907 }
4908 
4909 int kvm_arch_process_async_events(CPUState *cs)
4910 {
4911     X86CPU *cpu = X86_CPU(cs);
4912     CPUX86State *env = &cpu->env;
4913 
4914     if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
4915         /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4916         assert(env->mcg_cap);
4917 
4918         cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
4919 
4920         kvm_cpu_synchronize_state(cs);
4921 
4922         if (env->exception_nr == EXCP08_DBLE) {
4923             /* this means triple fault */
4924             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
4925             cs->exit_request = 1;
4926             return 0;
4927         }
4928         kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
4929         env->has_error_code = 0;
4930 
4931         cs->halted = 0;
4932         if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4933             env->mp_state = KVM_MP_STATE_RUNNABLE;
4934         }
4935     }
4936 
4937     if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4938         !(env->hflags & HF_SMM_MASK)) {
4939         kvm_cpu_synchronize_state(cs);
4940         do_cpu_init(cpu);
4941     }
4942 
4943     if (kvm_irqchip_in_kernel()) {
4944         return 0;
4945     }
4946 
4947     if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4948         cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
4949         apic_poll_irq(cpu->apic_state);
4950     }
4951     if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4952          (env->eflags & IF_MASK)) ||
4953         (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4954         cs->halted = 0;
4955     }
4956     if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
4957         kvm_cpu_synchronize_state(cs);
4958         do_cpu_sipi(cpu);
4959     }
4960     if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4961         cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
4962         kvm_cpu_synchronize_state(cs);
4963         apic_handle_tpr_access_report(cpu->apic_state, env->eip,
4964                                       env->tpr_access_type);
4965     }
4966 
4967     return cs->halted;
4968 }
4969 
4970 static int kvm_handle_halt(X86CPU *cpu)
4971 {
4972     CPUState *cs = CPU(cpu);
4973     CPUX86State *env = &cpu->env;
4974 
4975     if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4976           (env->eflags & IF_MASK)) &&
4977         !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4978         cs->halted = 1;
4979         return EXCP_HLT;
4980     }
4981 
4982     return 0;
4983 }
4984 
4985 static int kvm_handle_tpr_access(X86CPU *cpu)
4986 {
4987     CPUState *cs = CPU(cpu);
4988     struct kvm_run *run = cs->kvm_run;
4989 
4990     apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
4991                                   run->tpr_access.is_write ? TPR_ACCESS_WRITE
4992                                                            : TPR_ACCESS_READ);
4993     return 1;
4994 }
4995 
4996 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4997 {
4998     static const uint8_t int3 = 0xcc;
4999 
5000     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
5001         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
5002         return -EINVAL;
5003     }
5004     return 0;
5005 }
5006 
5007 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5008 {
5009     uint8_t int3;
5010 
5011     if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
5012         return -EINVAL;
5013     }
5014     if (int3 != 0xcc) {
5015         return 0;
5016     }
5017     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
5018         return -EINVAL;
5019     }
5020     return 0;
5021 }
5022 
5023 static struct {
5024     target_ulong addr;
5025     int len;
5026     int type;
5027 } hw_breakpoint[4];
5028 
5029 static int nb_hw_breakpoint;
5030 
5031 static int find_hw_breakpoint(target_ulong addr, int len, int type)
5032 {
5033     int n;
5034 
5035     for (n = 0; n < nb_hw_breakpoint; n++) {
5036         if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
5037             (hw_breakpoint[n].len == len || len == -1)) {
5038             return n;
5039         }
5040     }
5041     return -1;
5042 }
5043 
5044 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
5045 {
5046     switch (type) {
5047     case GDB_BREAKPOINT_HW:
5048         len = 1;
5049         break;
5050     case GDB_WATCHPOINT_WRITE:
5051     case GDB_WATCHPOINT_ACCESS:
5052         switch (len) {
5053         case 1:
5054             break;
5055         case 2:
5056         case 4:
5057         case 8:
5058             if (addr & (len - 1)) {
5059                 return -EINVAL;
5060             }
5061             break;
5062         default:
5063             return -EINVAL;
5064         }
5065         break;
5066     default:
5067         return -ENOSYS;
5068     }
5069 
5070     if (nb_hw_breakpoint == 4) {
5071         return -ENOBUFS;
5072     }
5073     if (find_hw_breakpoint(addr, len, type) >= 0) {
5074         return -EEXIST;
5075     }
5076     hw_breakpoint[nb_hw_breakpoint].addr = addr;
5077     hw_breakpoint[nb_hw_breakpoint].len = len;
5078     hw_breakpoint[nb_hw_breakpoint].type = type;
5079     nb_hw_breakpoint++;
5080 
5081     return 0;
5082 }
5083 
5084 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
5085 {
5086     int n;
5087 
5088     n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
5089     if (n < 0) {
5090         return -ENOENT;
5091     }
5092     nb_hw_breakpoint--;
5093     hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
5094 
5095     return 0;
5096 }
5097 
5098 void kvm_arch_remove_all_hw_breakpoints(void)
5099 {
5100     nb_hw_breakpoint = 0;
5101 }
5102 
5103 static CPUWatchpoint hw_watchpoint;
5104 
5105 static int kvm_handle_debug(X86CPU *cpu,
5106                             struct kvm_debug_exit_arch *arch_info)
5107 {
5108     CPUState *cs = CPU(cpu);
5109     CPUX86State *env = &cpu->env;
5110     int ret = 0;
5111     int n;
5112 
5113     if (arch_info->exception == EXCP01_DB) {
5114         if (arch_info->dr6 & DR6_BS) {
5115             if (cs->singlestep_enabled) {
5116                 ret = EXCP_DEBUG;
5117             }
5118         } else {
5119             for (n = 0; n < 4; n++) {
5120                 if (arch_info->dr6 & (1 << n)) {
5121                     switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
5122                     case 0x0:
5123                         ret = EXCP_DEBUG;
5124                         break;
5125                     case 0x1:
5126                         ret = EXCP_DEBUG;
5127                         cs->watchpoint_hit = &hw_watchpoint;
5128                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5129                         hw_watchpoint.flags = BP_MEM_WRITE;
5130                         break;
5131                     case 0x3:
5132                         ret = EXCP_DEBUG;
5133                         cs->watchpoint_hit = &hw_watchpoint;
5134                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5135                         hw_watchpoint.flags = BP_MEM_ACCESS;
5136                         break;
5137                     }
5138                 }
5139             }
5140         }
5141     } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
5142         ret = EXCP_DEBUG;
5143     }
5144     if (ret == 0) {
5145         cpu_synchronize_state(cs);
5146         assert(env->exception_nr == -1);
5147 
5148         /* pass to guest */
5149         kvm_queue_exception(env, arch_info->exception,
5150                             arch_info->exception == EXCP01_DB,
5151                             arch_info->dr6);
5152         env->has_error_code = 0;
5153     }
5154 
5155     return ret;
5156 }
5157 
5158 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
5159 {
5160     const uint8_t type_code[] = {
5161         [GDB_BREAKPOINT_HW] = 0x0,
5162         [GDB_WATCHPOINT_WRITE] = 0x1,
5163         [GDB_WATCHPOINT_ACCESS] = 0x3
5164     };
5165     const uint8_t len_code[] = {
5166         [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
5167     };
5168     int n;
5169 
5170     if (kvm_sw_breakpoints_active(cpu)) {
5171         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
5172     }
5173     if (nb_hw_breakpoint > 0) {
5174         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
5175         dbg->arch.debugreg[7] = 0x0600;
5176         for (n = 0; n < nb_hw_breakpoint; n++) {
5177             dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
5178             dbg->arch.debugreg[7] |= (2 << (n * 2)) |
5179                 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
5180                 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
5181         }
5182     }
5183 }
5184 
5185 static bool kvm_install_msr_filters(KVMState *s)
5186 {
5187     uint64_t zero = 0;
5188     struct kvm_msr_filter filter = {
5189         .flags = KVM_MSR_FILTER_DEFAULT_ALLOW,
5190     };
5191     int r, i, j = 0;
5192 
5193     for (i = 0; i < KVM_MSR_FILTER_MAX_RANGES; i++) {
5194         KVMMSRHandlers *handler = &msr_handlers[i];
5195         if (handler->msr) {
5196             struct kvm_msr_filter_range *range = &filter.ranges[j++];
5197 
5198             *range = (struct kvm_msr_filter_range) {
5199                 .flags = 0,
5200                 .nmsrs = 1,
5201                 .base = handler->msr,
5202                 .bitmap = (__u8 *)&zero,
5203             };
5204 
5205             if (handler->rdmsr) {
5206                 range->flags |= KVM_MSR_FILTER_READ;
5207             }
5208 
5209             if (handler->wrmsr) {
5210                 range->flags |= KVM_MSR_FILTER_WRITE;
5211             }
5212         }
5213     }
5214 
5215     r = kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter);
5216     if (r) {
5217         return false;
5218     }
5219 
5220     return true;
5221 }
5222 
5223 bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
5224                     QEMUWRMSRHandler *wrmsr)
5225 {
5226     int i;
5227 
5228     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5229         if (!msr_handlers[i].msr) {
5230             msr_handlers[i] = (KVMMSRHandlers) {
5231                 .msr = msr,
5232                 .rdmsr = rdmsr,
5233                 .wrmsr = wrmsr,
5234             };
5235 
5236             if (!kvm_install_msr_filters(s)) {
5237                 msr_handlers[i] = (KVMMSRHandlers) { };
5238                 return false;
5239             }
5240 
5241             return true;
5242         }
5243     }
5244 
5245     return false;
5246 }
5247 
5248 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run)
5249 {
5250     int i;
5251     bool r;
5252 
5253     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5254         KVMMSRHandlers *handler = &msr_handlers[i];
5255         if (run->msr.index == handler->msr) {
5256             if (handler->rdmsr) {
5257                 r = handler->rdmsr(cpu, handler->msr,
5258                                    (uint64_t *)&run->msr.data);
5259                 run->msr.error = r ? 0 : 1;
5260                 return 0;
5261             }
5262         }
5263     }
5264 
5265     assert(false);
5266 }
5267 
5268 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run)
5269 {
5270     int i;
5271     bool r;
5272 
5273     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5274         KVMMSRHandlers *handler = &msr_handlers[i];
5275         if (run->msr.index == handler->msr) {
5276             if (handler->wrmsr) {
5277                 r = handler->wrmsr(cpu, handler->msr, run->msr.data);
5278                 run->msr.error = r ? 0 : 1;
5279                 return 0;
5280             }
5281         }
5282     }
5283 
5284     assert(false);
5285 }
5286 
5287 static bool has_sgx_provisioning;
5288 
5289 static bool __kvm_enable_sgx_provisioning(KVMState *s)
5290 {
5291     int fd, ret;
5292 
5293     if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
5294         return false;
5295     }
5296 
5297     fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
5298     if (fd < 0) {
5299         return false;
5300     }
5301 
5302     ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
5303     if (ret) {
5304         error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
5305         exit(1);
5306     }
5307     close(fd);
5308     return true;
5309 }
5310 
5311 bool kvm_enable_sgx_provisioning(KVMState *s)
5312 {
5313     return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
5314 }
5315 
5316 static bool host_supports_vmx(void)
5317 {
5318     uint32_t ecx, unused;
5319 
5320     host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
5321     return ecx & CPUID_EXT_VMX;
5322 }
5323 
5324 #define VMX_INVALID_GUEST_STATE 0x80000021
5325 
5326 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
5327 {
5328     X86CPU *cpu = X86_CPU(cs);
5329     uint64_t code;
5330     int ret;
5331     bool ctx_invalid;
5332     KVMState *state;
5333 
5334     switch (run->exit_reason) {
5335     case KVM_EXIT_HLT:
5336         DPRINTF("handle_hlt\n");
5337         bql_lock();
5338         ret = kvm_handle_halt(cpu);
5339         bql_unlock();
5340         break;
5341     case KVM_EXIT_SET_TPR:
5342         ret = 0;
5343         break;
5344     case KVM_EXIT_TPR_ACCESS:
5345         bql_lock();
5346         ret = kvm_handle_tpr_access(cpu);
5347         bql_unlock();
5348         break;
5349     case KVM_EXIT_FAIL_ENTRY:
5350         code = run->fail_entry.hardware_entry_failure_reason;
5351         fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
5352                 code);
5353         if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
5354             fprintf(stderr,
5355                     "\nIf you're running a guest on an Intel machine without "
5356                         "unrestricted mode\n"
5357                     "support, the failure can be most likely due to the guest "
5358                         "entering an invalid\n"
5359                     "state for Intel VT. For example, the guest maybe running "
5360                         "in big real mode\n"
5361                     "which is not supported on less recent Intel processors."
5362                         "\n\n");
5363         }
5364         ret = -1;
5365         break;
5366     case KVM_EXIT_EXCEPTION:
5367         fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
5368                 run->ex.exception, run->ex.error_code);
5369         ret = -1;
5370         break;
5371     case KVM_EXIT_DEBUG:
5372         DPRINTF("kvm_exit_debug\n");
5373         bql_lock();
5374         ret = kvm_handle_debug(cpu, &run->debug.arch);
5375         bql_unlock();
5376         break;
5377     case KVM_EXIT_HYPERV:
5378         ret = kvm_hv_handle_exit(cpu, &run->hyperv);
5379         break;
5380     case KVM_EXIT_IOAPIC_EOI:
5381         ioapic_eoi_broadcast(run->eoi.vector);
5382         ret = 0;
5383         break;
5384     case KVM_EXIT_X86_BUS_LOCK:
5385         /* already handled in kvm_arch_post_run */
5386         ret = 0;
5387         break;
5388     case KVM_EXIT_NOTIFY:
5389         ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID);
5390         state = KVM_STATE(current_accel());
5391         if (ctx_invalid ||
5392             state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) {
5393             warn_report("KVM internal error: Encountered a notify exit "
5394                         "with invalid context in guest.");
5395             ret = -1;
5396         } else {
5397             warn_report_once("KVM: Encountered a notify exit with valid "
5398                              "context in guest. "
5399                              "The guest could be misbehaving.");
5400             ret = 0;
5401         }
5402         break;
5403     case KVM_EXIT_X86_RDMSR:
5404         /* We only enable MSR filtering, any other exit is bogus */
5405         assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5406         ret = kvm_handle_rdmsr(cpu, run);
5407         break;
5408     case KVM_EXIT_X86_WRMSR:
5409         /* We only enable MSR filtering, any other exit is bogus */
5410         assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5411         ret = kvm_handle_wrmsr(cpu, run);
5412         break;
5413 #ifdef CONFIG_XEN_EMU
5414     case KVM_EXIT_XEN:
5415         ret = kvm_xen_handle_exit(cpu, &run->xen);
5416         break;
5417 #endif
5418     default:
5419         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
5420         ret = -1;
5421         break;
5422     }
5423 
5424     return ret;
5425 }
5426 
5427 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
5428 {
5429     X86CPU *cpu = X86_CPU(cs);
5430     CPUX86State *env = &cpu->env;
5431 
5432     kvm_cpu_synchronize_state(cs);
5433     return !(env->cr[0] & CR0_PE_MASK) ||
5434            ((env->segs[R_CS].selector  & 3) != 3);
5435 }
5436 
5437 void kvm_arch_init_irq_routing(KVMState *s)
5438 {
5439     /* We know at this point that we're using the in-kernel
5440      * irqchip, so we can use irqfds, and on x86 we know
5441      * we can use msi via irqfd and GSI routing.
5442      */
5443     kvm_msi_via_irqfd_allowed = true;
5444     kvm_gsi_routing_allowed = true;
5445 
5446     if (kvm_irqchip_is_split()) {
5447         KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
5448         int i;
5449 
5450         /* If the ioapic is in QEMU and the lapics are in KVM, reserve
5451            MSI routes for signaling interrupts to the local apics. */
5452         for (i = 0; i < IOAPIC_NUM_PINS; i++) {
5453             if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
5454                 error_report("Could not enable split IRQ mode.");
5455                 exit(1);
5456             }
5457         }
5458         kvm_irqchip_commit_route_changes(&c);
5459     }
5460 }
5461 
5462 int kvm_arch_irqchip_create(KVMState *s)
5463 {
5464     int ret;
5465     if (kvm_kernel_irqchip_split()) {
5466         ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
5467         if (ret) {
5468             error_report("Could not enable split irqchip mode: %s",
5469                          strerror(-ret));
5470             exit(1);
5471         } else {
5472             DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
5473             kvm_split_irqchip = true;
5474             return 1;
5475         }
5476     } else {
5477         return 0;
5478     }
5479 }
5480 
5481 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
5482 {
5483     CPUX86State *env;
5484     uint64_t ext_id;
5485 
5486     if (!first_cpu) {
5487         return address;
5488     }
5489     env = &X86_CPU(first_cpu)->env;
5490     if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
5491         return address;
5492     }
5493 
5494     /*
5495      * If the remappable format bit is set, or the upper bits are
5496      * already set in address_hi, or the low extended bits aren't
5497      * there anyway, do nothing.
5498      */
5499     ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
5500     if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
5501         return address;
5502     }
5503 
5504     address &= ~ext_id;
5505     address |= ext_id << 35;
5506     return address;
5507 }
5508 
5509 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
5510                              uint64_t address, uint32_t data, PCIDevice *dev)
5511 {
5512     X86IOMMUState *iommu = x86_iommu_get_default();
5513 
5514     if (iommu) {
5515         X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
5516 
5517         if (class->int_remap) {
5518             int ret;
5519             MSIMessage src, dst;
5520 
5521             src.address = route->u.msi.address_hi;
5522             src.address <<= VTD_MSI_ADDR_HI_SHIFT;
5523             src.address |= route->u.msi.address_lo;
5524             src.data = route->u.msi.data;
5525 
5526             ret = class->int_remap(iommu, &src, &dst, dev ?     \
5527                                    pci_requester_id(dev) :      \
5528                                    X86_IOMMU_SID_INVALID);
5529             if (ret) {
5530                 trace_kvm_x86_fixup_msi_error(route->gsi);
5531                 return 1;
5532             }
5533 
5534             /*
5535              * Handled untranslated compatibility format interrupt with
5536              * extended destination ID in the low bits 11-5. */
5537             dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
5538 
5539             route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
5540             route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
5541             route->u.msi.data = dst.data;
5542             return 0;
5543         }
5544     }
5545 
5546 #ifdef CONFIG_XEN_EMU
5547     if (xen_mode == XEN_EMULATE) {
5548         int handled = xen_evtchn_translate_pirq_msi(route, address, data);
5549 
5550         /*
5551          * If it was a PIRQ and successfully routed (handled == 0) or it was
5552          * an error (handled < 0), return. If it wasn't a PIRQ, keep going.
5553          */
5554         if (handled <= 0) {
5555             return handled;
5556         }
5557     }
5558 #endif
5559 
5560     address = kvm_swizzle_msi_ext_dest_id(address);
5561     route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
5562     route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
5563     return 0;
5564 }
5565 
5566 typedef struct MSIRouteEntry MSIRouteEntry;
5567 
5568 struct MSIRouteEntry {
5569     PCIDevice *dev;             /* Device pointer */
5570     int vector;                 /* MSI/MSIX vector index */
5571     int virq;                   /* Virtual IRQ index */
5572     QLIST_ENTRY(MSIRouteEntry) list;
5573 };
5574 
5575 /* List of used GSI routes */
5576 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
5577     QLIST_HEAD_INITIALIZER(msi_route_list);
5578 
5579 void kvm_update_msi_routes_all(void *private, bool global,
5580                                uint32_t index, uint32_t mask)
5581 {
5582     int cnt = 0, vector;
5583     MSIRouteEntry *entry;
5584     MSIMessage msg;
5585     PCIDevice *dev;
5586 
5587     /* TODO: explicit route update */
5588     QLIST_FOREACH(entry, &msi_route_list, list) {
5589         cnt++;
5590         vector = entry->vector;
5591         dev = entry->dev;
5592         if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
5593             msg = msix_get_message(dev, vector);
5594         } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
5595             msg = msi_get_message(dev, vector);
5596         } else {
5597             /*
5598              * Either MSI/MSIX is disabled for the device, or the
5599              * specific message was masked out.  Skip this one.
5600              */
5601             continue;
5602         }
5603         kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
5604     }
5605     kvm_irqchip_commit_routes(kvm_state);
5606     trace_kvm_x86_update_msi_routes(cnt);
5607 }
5608 
5609 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
5610                                 int vector, PCIDevice *dev)
5611 {
5612     static bool notify_list_inited = false;
5613     MSIRouteEntry *entry;
5614 
5615     if (!dev) {
5616         /* These are (possibly) IOAPIC routes only used for split
5617          * kernel irqchip mode, while what we are housekeeping are
5618          * PCI devices only. */
5619         return 0;
5620     }
5621 
5622     entry = g_new0(MSIRouteEntry, 1);
5623     entry->dev = dev;
5624     entry->vector = vector;
5625     entry->virq = route->gsi;
5626     QLIST_INSERT_HEAD(&msi_route_list, entry, list);
5627 
5628     trace_kvm_x86_add_msi_route(route->gsi);
5629 
5630     if (!notify_list_inited) {
5631         /* For the first time we do add route, add ourselves into
5632          * IOMMU's IEC notify list if needed. */
5633         X86IOMMUState *iommu = x86_iommu_get_default();
5634         if (iommu) {
5635             x86_iommu_iec_register_notifier(iommu,
5636                                             kvm_update_msi_routes_all,
5637                                             NULL);
5638         }
5639         notify_list_inited = true;
5640     }
5641     return 0;
5642 }
5643 
5644 int kvm_arch_release_virq_post(int virq)
5645 {
5646     MSIRouteEntry *entry, *next;
5647     QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
5648         if (entry->virq == virq) {
5649             trace_kvm_x86_remove_msi_route(virq);
5650             QLIST_REMOVE(entry, list);
5651             g_free(entry);
5652             break;
5653         }
5654     }
5655     return 0;
5656 }
5657 
5658 int kvm_arch_msi_data_to_gsi(uint32_t data)
5659 {
5660     abort();
5661 }
5662 
5663 bool kvm_has_waitpkg(void)
5664 {
5665     return has_msr_umwait;
5666 }
5667 
5668 #define ARCH_REQ_XCOMP_GUEST_PERM       0x1025
5669 
5670 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
5671 {
5672     KVMState *s = kvm_state;
5673     uint64_t supported;
5674 
5675     mask &= XSTATE_DYNAMIC_MASK;
5676     if (!mask) {
5677         return;
5678     }
5679     /*
5680      * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
5681      * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
5682      * about them already because they are not supported features.
5683      */
5684     supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
5685     supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
5686     mask &= supported;
5687 
5688     while (mask) {
5689         int bit = ctz64(mask);
5690         int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
5691         if (rc) {
5692             /*
5693              * Older kernel version (<5.17) do not support
5694              * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
5695              * any dynamic feature from kvm_arch_get_supported_cpuid.
5696              */
5697             warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
5698                         "for feature bit %d", bit);
5699         }
5700         mask &= ~BIT_ULL(bit);
5701     }
5702 }
5703 
5704 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp)
5705 {
5706     KVMState *s = KVM_STATE(obj);
5707     return s->notify_vmexit;
5708 }
5709 
5710 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp)
5711 {
5712     KVMState *s = KVM_STATE(obj);
5713 
5714     if (s->fd != -1) {
5715         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5716         return;
5717     }
5718 
5719     s->notify_vmexit = value;
5720 }
5721 
5722 static void kvm_arch_get_notify_window(Object *obj, Visitor *v,
5723                                        const char *name, void *opaque,
5724                                        Error **errp)
5725 {
5726     KVMState *s = KVM_STATE(obj);
5727     uint32_t value = s->notify_window;
5728 
5729     visit_type_uint32(v, name, &value, errp);
5730 }
5731 
5732 static void kvm_arch_set_notify_window(Object *obj, Visitor *v,
5733                                        const char *name, void *opaque,
5734                                        Error **errp)
5735 {
5736     KVMState *s = KVM_STATE(obj);
5737     uint32_t value;
5738 
5739     if (s->fd != -1) {
5740         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5741         return;
5742     }
5743 
5744     if (!visit_type_uint32(v, name, &value, errp)) {
5745         return;
5746     }
5747 
5748     s->notify_window = value;
5749 }
5750 
5751 static void kvm_arch_get_xen_version(Object *obj, Visitor *v,
5752                                      const char *name, void *opaque,
5753                                      Error **errp)
5754 {
5755     KVMState *s = KVM_STATE(obj);
5756     uint32_t value = s->xen_version;
5757 
5758     visit_type_uint32(v, name, &value, errp);
5759 }
5760 
5761 static void kvm_arch_set_xen_version(Object *obj, Visitor *v,
5762                                      const char *name, void *opaque,
5763                                      Error **errp)
5764 {
5765     KVMState *s = KVM_STATE(obj);
5766     Error *error = NULL;
5767     uint32_t value;
5768 
5769     visit_type_uint32(v, name, &value, &error);
5770     if (error) {
5771         error_propagate(errp, error);
5772         return;
5773     }
5774 
5775     s->xen_version = value;
5776     if (value && xen_mode == XEN_DISABLED) {
5777         xen_mode = XEN_EMULATE;
5778     }
5779 }
5780 
5781 static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v,
5782                                                const char *name, void *opaque,
5783                                                Error **errp)
5784 {
5785     KVMState *s = KVM_STATE(obj);
5786     uint16_t value = s->xen_gnttab_max_frames;
5787 
5788     visit_type_uint16(v, name, &value, errp);
5789 }
5790 
5791 static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v,
5792                                                const char *name, void *opaque,
5793                                                Error **errp)
5794 {
5795     KVMState *s = KVM_STATE(obj);
5796     Error *error = NULL;
5797     uint16_t value;
5798 
5799     visit_type_uint16(v, name, &value, &error);
5800     if (error) {
5801         error_propagate(errp, error);
5802         return;
5803     }
5804 
5805     s->xen_gnttab_max_frames = value;
5806 }
5807 
5808 static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v,
5809                                              const char *name, void *opaque,
5810                                              Error **errp)
5811 {
5812     KVMState *s = KVM_STATE(obj);
5813     uint16_t value = s->xen_evtchn_max_pirq;
5814 
5815     visit_type_uint16(v, name, &value, errp);
5816 }
5817 
5818 static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v,
5819                                              const char *name, void *opaque,
5820                                              Error **errp)
5821 {
5822     KVMState *s = KVM_STATE(obj);
5823     Error *error = NULL;
5824     uint16_t value;
5825 
5826     visit_type_uint16(v, name, &value, &error);
5827     if (error) {
5828         error_propagate(errp, error);
5829         return;
5830     }
5831 
5832     s->xen_evtchn_max_pirq = value;
5833 }
5834 
5835 void kvm_arch_accel_class_init(ObjectClass *oc)
5836 {
5837     object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption",
5838                                    &NotifyVmexitOption_lookup,
5839                                    kvm_arch_get_notify_vmexit,
5840                                    kvm_arch_set_notify_vmexit);
5841     object_class_property_set_description(oc, "notify-vmexit",
5842                                           "Enable notify VM exit");
5843 
5844     object_class_property_add(oc, "notify-window", "uint32",
5845                               kvm_arch_get_notify_window,
5846                               kvm_arch_set_notify_window,
5847                               NULL, NULL);
5848     object_class_property_set_description(oc, "notify-window",
5849                                           "Clock cycles without an event window "
5850                                           "after which a notification VM exit occurs");
5851 
5852     object_class_property_add(oc, "xen-version", "uint32",
5853                               kvm_arch_get_xen_version,
5854                               kvm_arch_set_xen_version,
5855                               NULL, NULL);
5856     object_class_property_set_description(oc, "xen-version",
5857                                           "Xen version to be emulated "
5858                                           "(in XENVER_version form "
5859                                           "e.g. 0x4000a for 4.10)");
5860 
5861     object_class_property_add(oc, "xen-gnttab-max-frames", "uint16",
5862                               kvm_arch_get_xen_gnttab_max_frames,
5863                               kvm_arch_set_xen_gnttab_max_frames,
5864                               NULL, NULL);
5865     object_class_property_set_description(oc, "xen-gnttab-max-frames",
5866                                           "Maximum number of grant table frames");
5867 
5868     object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16",
5869                               kvm_arch_get_xen_evtchn_max_pirq,
5870                               kvm_arch_set_xen_evtchn_max_pirq,
5871                               NULL, NULL);
5872     object_class_property_set_description(oc, "xen-evtchn-max-pirq",
5873                                           "Maximum number of Xen PIRQs");
5874 }
5875 
5876 void kvm_set_max_apic_id(uint32_t max_apic_id)
5877 {
5878     kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id);
5879 }
5880