1 /* 2 * QEMU KVM support 3 * 4 * Copyright (C) 2006-2008 Qumranet Technologies 5 * Copyright IBM, Corp. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or later. 11 * See the COPYING file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qapi/qapi-events-run-state.h" 17 #include "qapi/error.h" 18 #include "qapi/visitor.h" 19 #include <math.h> 20 #include <sys/ioctl.h> 21 #include <sys/utsname.h> 22 #include <sys/syscall.h> 23 #include <sys/resource.h> 24 #include <sys/time.h> 25 26 #include <linux/kvm.h> 27 #include <linux/kvm_para.h> 28 #include "standard-headers/asm-x86/kvm_para.h" 29 #include "hw/xen/interface/arch-x86/cpuid.h" 30 31 #include "cpu.h" 32 #include "host-cpu.h" 33 #include "vmsr_energy.h" 34 #include "system/system.h" 35 #include "system/hw_accel.h" 36 #include "system/kvm_int.h" 37 #include "system/runstate.h" 38 #include "kvm_i386.h" 39 #include "../confidential-guest.h" 40 #include "sev.h" 41 #include "tdx.h" 42 #include "xen-emu.h" 43 #include "hyperv.h" 44 #include "hyperv-proto.h" 45 46 #include "gdbstub/enums.h" 47 #include "qemu/host-utils.h" 48 #include "qemu/main-loop.h" 49 #include "qemu/ratelimit.h" 50 #include "qemu/config-file.h" 51 #include "qemu/error-report.h" 52 #include "qemu/memalign.h" 53 #include "hw/i386/x86.h" 54 #include "hw/i386/kvm/xen_evtchn.h" 55 #include "hw/i386/pc.h" 56 #include "hw/i386/apic.h" 57 #include "hw/i386/apic_internal.h" 58 #include "hw/i386/apic-msidef.h" 59 #include "hw/i386/intel_iommu.h" 60 #include "hw/i386/topology.h" 61 #include "hw/i386/x86-iommu.h" 62 #include "hw/i386/e820_memory_layout.h" 63 64 #include "hw/xen/xen.h" 65 66 #include "hw/pci/pci.h" 67 #include "hw/pci/msi.h" 68 #include "hw/pci/msix.h" 69 #include "migration/blocker.h" 70 #include "exec/memattrs.h" 71 #include "exec/target_page.h" 72 #include "trace.h" 73 74 #include CONFIG_DEVICES 75 76 //#define DEBUG_KVM 77 78 #ifdef DEBUG_KVM 79 #define DPRINTF(fmt, ...) \ 80 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 81 #else 82 #define DPRINTF(fmt, ...) \ 83 do { } while (0) 84 #endif 85 86 /* 87 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. 88 * In order to use vm86 mode, an EPT identity map and a TSS are needed. 89 * Since these must be part of guest physical memory, we need to allocate 90 * them, both by setting their start addresses in the kernel and by 91 * creating a corresponding e820 entry. We need 4 pages before the BIOS, 92 * so this value allows up to 16M BIOSes. 93 */ 94 #define KVM_IDENTITY_BASE 0xfeffc000 95 96 /* From arch/x86/kvm/lapic.h */ 97 #define KVM_APIC_BUS_CYCLE_NS 1 98 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS) 99 100 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus 101 * 255 kvm_msr_entry structs */ 102 #define MSR_BUF_SIZE 4096 103 104 typedef bool QEMURDMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t *val); 105 typedef bool QEMUWRMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t val); 106 typedef struct { 107 uint32_t msr; 108 QEMURDMSRHandler *rdmsr; 109 QEMUWRMSRHandler *wrmsr; 110 } KVMMSRHandlers; 111 112 static void kvm_init_msrs(X86CPU *cpu); 113 static int kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr, 114 QEMUWRMSRHandler *wrmsr); 115 116 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 117 KVM_CAP_INFO(SET_TSS_ADDR), 118 KVM_CAP_INFO(EXT_CPUID), 119 KVM_CAP_INFO(MP_STATE), 120 KVM_CAP_INFO(SIGNAL_MSI), 121 KVM_CAP_INFO(IRQ_ROUTING), 122 KVM_CAP_INFO(DEBUGREGS), 123 KVM_CAP_INFO(XSAVE), 124 KVM_CAP_INFO(VCPU_EVENTS), 125 KVM_CAP_INFO(X86_ROBUST_SINGLESTEP), 126 KVM_CAP_INFO(MCE), 127 KVM_CAP_INFO(ADJUST_CLOCK), 128 KVM_CAP_INFO(SET_IDENTITY_MAP_ADDR), 129 KVM_CAP_LAST_INFO 130 }; 131 132 static bool has_msr_star; 133 static bool has_msr_hsave_pa; 134 static bool has_msr_tsc_aux; 135 static bool has_msr_tsc_adjust; 136 static bool has_msr_tsc_deadline; 137 static bool has_msr_feature_control; 138 static bool has_msr_misc_enable; 139 static bool has_msr_smbase; 140 static bool has_msr_bndcfgs; 141 static int lm_capable_kernel; 142 static bool has_msr_hv_hypercall; 143 static bool has_msr_hv_crash; 144 static bool has_msr_hv_reset; 145 static bool has_msr_hv_vpindex; 146 static bool hv_vpindex_settable; 147 static bool has_msr_hv_runtime; 148 static bool has_msr_hv_synic; 149 static bool has_msr_hv_stimer; 150 static bool has_msr_hv_frequencies; 151 static bool has_msr_hv_reenlightenment; 152 static bool has_msr_hv_syndbg_options; 153 static bool has_msr_xss; 154 static bool has_msr_umwait; 155 static bool has_msr_spec_ctrl; 156 static bool has_tsc_scale_msr; 157 static bool has_msr_tsx_ctrl; 158 static bool has_msr_virt_ssbd; 159 static bool has_msr_smi_count; 160 static bool has_msr_arch_capabs; 161 static bool has_msr_core_capabs; 162 static bool has_msr_vmx_vmfunc; 163 static bool has_msr_ucode_rev; 164 static bool has_msr_vmx_procbased_ctls2; 165 static bool has_msr_perf_capabs; 166 static bool has_msr_pkrs; 167 static bool has_msr_hwcr; 168 169 static uint32_t has_architectural_pmu_version; 170 static uint32_t num_architectural_pmu_gp_counters; 171 static uint32_t num_architectural_pmu_fixed_counters; 172 173 static int has_xsave2; 174 static int has_xcrs; 175 static int has_sregs2; 176 static int has_exception_payload; 177 static int has_triple_fault_event; 178 179 static bool has_msr_mcg_ext_ctl; 180 181 static struct kvm_cpuid2 *cpuid_cache; 182 static struct kvm_cpuid2 *hv_cpuid_cache; 183 static struct kvm_msr_list *kvm_feature_msrs; 184 185 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES]; 186 187 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */ 188 static RateLimit bus_lock_ratelimit_ctrl; 189 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value); 190 191 static const char *vm_type_name[] = { 192 [KVM_X86_DEFAULT_VM] = "default", 193 [KVM_X86_SEV_VM] = "SEV", 194 [KVM_X86_SEV_ES_VM] = "SEV-ES", 195 [KVM_X86_SNP_VM] = "SEV-SNP", 196 [KVM_X86_TDX_VM] = "TDX", 197 }; 198 199 bool kvm_is_vm_type_supported(int type) 200 { 201 uint32_t machine_types; 202 203 /* 204 * old KVM doesn't support KVM_CAP_VM_TYPES but KVM_X86_DEFAULT_VM 205 * is always supported 206 */ 207 if (type == KVM_X86_DEFAULT_VM) { 208 return true; 209 } 210 211 machine_types = kvm_check_extension(KVM_STATE(current_machine->accelerator), 212 KVM_CAP_VM_TYPES); 213 return !!(machine_types & BIT(type)); 214 } 215 216 int kvm_get_vm_type(MachineState *ms) 217 { 218 int kvm_type = KVM_X86_DEFAULT_VM; 219 220 if (ms->cgs) { 221 if (!object_dynamic_cast(OBJECT(ms->cgs), TYPE_X86_CONFIDENTIAL_GUEST)) { 222 error_report("configuration type %s not supported for x86 guests", 223 object_get_typename(OBJECT(ms->cgs))); 224 exit(1); 225 } 226 kvm_type = x86_confidential_guest_kvm_type( 227 X86_CONFIDENTIAL_GUEST(ms->cgs)); 228 } 229 230 if (!kvm_is_vm_type_supported(kvm_type)) { 231 error_report("vm-type %s not supported by KVM", vm_type_name[kvm_type]); 232 exit(1); 233 } 234 235 return kvm_type; 236 } 237 238 bool kvm_enable_hypercall(uint64_t enable_mask) 239 { 240 KVMState *s = KVM_STATE(current_accel()); 241 242 return !kvm_vm_enable_cap(s, KVM_CAP_EXIT_HYPERCALL, 0, enable_mask); 243 } 244 245 bool kvm_has_smm(void) 246 { 247 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM); 248 } 249 250 bool kvm_has_adjust_clock_stable(void) 251 { 252 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); 253 254 return (ret & KVM_CLOCK_TSC_STABLE); 255 } 256 257 bool kvm_has_exception_payload(void) 258 { 259 return has_exception_payload; 260 } 261 262 static bool kvm_x2apic_api_set_flags(uint64_t flags) 263 { 264 KVMState *s = KVM_STATE(current_accel()); 265 266 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); 267 } 268 269 #define MEMORIZE(fn, _result) \ 270 ({ \ 271 static bool _memorized; \ 272 \ 273 if (_memorized) { \ 274 return _result; \ 275 } \ 276 _memorized = true; \ 277 _result = fn; \ 278 }) 279 280 static bool has_x2apic_api; 281 282 bool kvm_has_x2apic_api(void) 283 { 284 return has_x2apic_api; 285 } 286 287 bool kvm_enable_x2apic(void) 288 { 289 return MEMORIZE( 290 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | 291 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), 292 has_x2apic_api); 293 } 294 295 bool kvm_hv_vpindex_settable(void) 296 { 297 return hv_vpindex_settable; 298 } 299 300 static int kvm_get_tsc(CPUState *cs) 301 { 302 X86CPU *cpu = X86_CPU(cs); 303 CPUX86State *env = &cpu->env; 304 uint64_t value; 305 int ret; 306 307 if (env->tsc_valid) { 308 return 0; 309 } 310 311 env->tsc_valid = !runstate_is_running(); 312 313 ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value); 314 if (ret < 0) { 315 return ret; 316 } 317 318 env->tsc = value; 319 return 0; 320 } 321 322 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) 323 { 324 kvm_get_tsc(cpu); 325 } 326 327 void kvm_synchronize_all_tsc(void) 328 { 329 CPUState *cpu; 330 331 if (kvm_enabled() && !is_tdx_vm()) { 332 CPU_FOREACH(cpu) { 333 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); 334 } 335 } 336 } 337 338 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) 339 { 340 struct kvm_cpuid2 *cpuid; 341 int r, size; 342 343 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 344 cpuid = g_malloc0(size); 345 cpuid->nent = max; 346 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); 347 if (r == 0 && cpuid->nent >= max) { 348 r = -E2BIG; 349 } 350 if (r < 0) { 351 if (r == -E2BIG) { 352 g_free(cpuid); 353 return NULL; 354 } else { 355 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", 356 strerror(-r)); 357 exit(1); 358 } 359 } 360 return cpuid; 361 } 362 363 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough 364 * for all entries. 365 */ 366 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) 367 { 368 struct kvm_cpuid2 *cpuid; 369 int max = 1; 370 371 if (cpuid_cache != NULL) { 372 return cpuid_cache; 373 } 374 while ((cpuid = try_get_cpuid(s, max)) == NULL) { 375 max *= 2; 376 } 377 cpuid_cache = cpuid; 378 return cpuid; 379 } 380 381 static bool host_tsx_broken(void) 382 { 383 int family, model, stepping;\ 384 char vendor[CPUID_VENDOR_SZ + 1]; 385 386 host_cpu_vendor_fms(vendor, &family, &model, &stepping); 387 388 /* Check if we are running on a Haswell host known to have broken TSX */ 389 return !strcmp(vendor, CPUID_VENDOR_INTEL) && 390 (family == 6) && 391 ((model == 63 && stepping < 4) || 392 model == 60 || model == 69 || model == 70); 393 } 394 395 /* Returns the value for a specific register on the cpuid entry 396 */ 397 uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) 398 { 399 uint32_t ret = 0; 400 switch (reg) { 401 case R_EAX: 402 ret = entry->eax; 403 break; 404 case R_EBX: 405 ret = entry->ebx; 406 break; 407 case R_ECX: 408 ret = entry->ecx; 409 break; 410 case R_EDX: 411 ret = entry->edx; 412 break; 413 } 414 return ret; 415 } 416 417 /* Find matching entry for function/index on kvm_cpuid2 struct 418 */ 419 struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, 420 uint32_t function, 421 uint32_t index) 422 { 423 int i; 424 for (i = 0; i < cpuid->nent; ++i) { 425 if (cpuid->entries[i].function == function && 426 cpuid->entries[i].index == index) { 427 return &cpuid->entries[i]; 428 } 429 } 430 /* not found: */ 431 return NULL; 432 } 433 434 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, 435 uint32_t index, int reg) 436 { 437 struct kvm_cpuid2 *cpuid; 438 uint32_t ret = 0; 439 uint32_t cpuid_1_edx, unused; 440 uint64_t bitmask; 441 442 cpuid = get_supported_cpuid(s); 443 444 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); 445 if (entry) { 446 ret = cpuid_entry_get_reg(entry, reg); 447 } 448 449 /* Fixups for the data returned by KVM, below */ 450 451 if (function == 1 && reg == R_EDX) { 452 /* KVM before 2.6.30 misreports the following features */ 453 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; 454 /* KVM never reports CPUID_HT but QEMU can support when vcpus > 1 */ 455 ret |= CPUID_HT; 456 } else if (function == 1 && reg == R_ECX) { 457 /* We can set the hypervisor flag, even if KVM does not return it on 458 * GET_SUPPORTED_CPUID 459 */ 460 ret |= CPUID_EXT_HYPERVISOR; 461 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it 462 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, 463 * and the irqchip is in the kernel. 464 */ 465 if (kvm_irqchip_in_kernel() && 466 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { 467 ret |= CPUID_EXT_TSC_DEADLINE_TIMER; 468 } 469 470 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled 471 * without the in-kernel irqchip 472 */ 473 if (!kvm_irqchip_in_kernel()) { 474 ret &= ~CPUID_EXT_X2APIC; 475 } 476 477 if (enable_cpu_pm) { 478 int disable_exits = kvm_check_extension(s, 479 KVM_CAP_X86_DISABLE_EXITS); 480 481 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) { 482 ret |= CPUID_EXT_MONITOR; 483 } 484 } 485 } else if (function == 6 && reg == R_EAX) { 486 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ 487 } else if (function == 7 && index == 0 && reg == R_EBX) { 488 /* Not new instructions, just an optimization. */ 489 uint32_t ebx; 490 host_cpuid(7, 0, &unused, &ebx, &unused, &unused); 491 ret |= ebx & CPUID_7_0_EBX_ERMS; 492 493 if (host_tsx_broken()) { 494 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); 495 } 496 } else if (function == 7 && index == 0 && reg == R_EDX) { 497 /* Not new instructions, just an optimization. */ 498 uint32_t edx; 499 host_cpuid(7, 0, &unused, &unused, &unused, &edx); 500 ret |= edx & CPUID_7_0_EDX_FSRM; 501 502 /* 503 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts. 504 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is 505 * returned by KVM_GET_MSR_INDEX_LIST. 506 * 507 * But also, because Windows does not like ARCH_CAPABILITIES on AMD 508 * mcahines at all, do not show the fake ARCH_CAPABILITIES MSR that 509 * KVM sets up. 510 */ 511 if (!has_msr_arch_capabs || !(edx & CPUID_7_0_EDX_ARCH_CAPABILITIES)) { 512 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES; 513 } 514 } else if (function == 7 && index == 1 && reg == R_EAX) { 515 /* Not new instructions, just an optimization. */ 516 uint32_t eax; 517 host_cpuid(7, 1, &eax, &unused, &unused, &unused); 518 ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC); 519 } else if (function == 7 && index == 2 && reg == R_EDX) { 520 uint32_t edx; 521 host_cpuid(7, 2, &unused, &unused, &unused, &edx); 522 ret |= edx & CPUID_7_2_EDX_MCDT_NO; 523 } else if (function == 0xd && index == 0 && 524 (reg == R_EAX || reg == R_EDX)) { 525 /* 526 * The value returned by KVM_GET_SUPPORTED_CPUID does not include 527 * features that still have to be enabled with the arch_prctl 528 * system call. QEMU needs the full value, which is retrieved 529 * with KVM_GET_DEVICE_ATTR. 530 */ 531 struct kvm_device_attr attr = { 532 .group = 0, 533 .attr = KVM_X86_XCOMP_GUEST_SUPP, 534 .addr = (unsigned long) &bitmask 535 }; 536 537 bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES); 538 if (!sys_attr) { 539 return ret; 540 } 541 542 int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr); 543 if (rc < 0) { 544 if (rc != -ENXIO) { 545 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) " 546 "error: %d", rc); 547 } 548 return ret; 549 } 550 ret = (reg == R_EAX) ? bitmask : bitmask >> 32; 551 } else if (function == 0x80000001 && reg == R_ECX) { 552 /* 553 * It's safe to enable TOPOEXT even if it's not returned by 554 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows 555 * us to keep CPU models including TOPOEXT runnable on older kernels. 556 */ 557 ret |= CPUID_EXT3_TOPOEXT; 558 } else if (function == 0x80000001 && reg == R_EDX) { 559 /* On Intel, kvm returns cpuid according to the Intel spec, 560 * so add missing bits according to the AMD spec: 561 */ 562 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); 563 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; 564 } else if (function == 0x80000007 && reg == R_EBX) { 565 ret |= CPUID_8000_0007_EBX_OVERFLOW_RECOV | CPUID_8000_0007_EBX_SUCCOR; 566 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { 567 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't 568 * be enabled without the in-kernel irqchip 569 */ 570 if (!kvm_irqchip_in_kernel()) { 571 ret &= ~CPUID_KVM_PV_UNHALT; 572 } 573 if (kvm_irqchip_is_split()) { 574 ret |= CPUID_KVM_MSI_EXT_DEST_ID; 575 } 576 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) { 577 ret |= CPUID_KVM_HINTS_REALTIME; 578 } 579 580 if (current_machine->cgs) { 581 ret = x86_confidential_guest_adjust_cpuid_features( 582 X86_CONFIDENTIAL_GUEST(current_machine->cgs), 583 function, index, reg, ret); 584 } 585 return ret; 586 } 587 588 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index) 589 { 590 struct { 591 struct kvm_msrs info; 592 struct kvm_msr_entry entries[1]; 593 } msr_data = {}; 594 uint64_t value; 595 uint32_t ret, can_be_one, must_be_one; 596 597 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */ 598 return 0; 599 } 600 601 /* Check if requested MSR is supported feature MSR */ 602 int i; 603 for (i = 0; i < kvm_feature_msrs->nmsrs; i++) 604 if (kvm_feature_msrs->indices[i] == index) { 605 break; 606 } 607 if (i == kvm_feature_msrs->nmsrs) { 608 return 0; /* if the feature MSR is not supported, simply return 0 */ 609 } 610 611 msr_data.info.nmsrs = 1; 612 msr_data.entries[0].index = index; 613 614 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data); 615 if (ret != 1) { 616 error_report("KVM get MSR (index=0x%x) feature failed, %s", 617 index, strerror(-ret)); 618 exit(1); 619 } 620 621 value = msr_data.entries[0].data; 622 switch (index) { 623 case MSR_IA32_VMX_PROCBASED_CTLS2: 624 if (!has_msr_vmx_procbased_ctls2) { 625 /* KVM forgot to add these bits for some time, do this ourselves. */ 626 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) & 627 CPUID_XSAVE_XSAVES) { 628 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32; 629 } 630 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) & 631 CPUID_EXT_RDRAND) { 632 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32; 633 } 634 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 635 CPUID_7_0_EBX_INVPCID) { 636 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32; 637 } 638 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 639 CPUID_7_0_EBX_RDSEED) { 640 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32; 641 } 642 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) & 643 CPUID_EXT2_RDTSCP) { 644 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32; 645 } 646 } 647 /* fall through */ 648 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 649 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 650 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 651 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 652 /* 653 * Return true for bits that can be one, but do not have to be one. 654 * The SDM tells us which bits could have a "must be one" setting, 655 * so we can do the opposite transformation in make_vmx_msr_value. 656 */ 657 must_be_one = (uint32_t)value; 658 can_be_one = (uint32_t)(value >> 32); 659 return can_be_one & ~must_be_one; 660 661 default: 662 return value; 663 } 664 } 665 666 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, 667 int *max_banks) 668 { 669 *max_banks = kvm_check_extension(s, KVM_CAP_MCE); 670 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); 671 } 672 673 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) 674 { 675 CPUState *cs = CPU(cpu); 676 CPUX86State *env = &cpu->env; 677 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_EN | MCI_STATUS_MISCV | 678 MCI_STATUS_ADDRV; 679 uint64_t mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV; 680 int flags = 0; 681 682 if (!IS_AMD_CPU(env)) { 683 status |= MCI_STATUS_S | MCI_STATUS_UC; 684 if (code == BUS_MCEERR_AR) { 685 status |= MCI_STATUS_AR | 0x134; 686 mcg_status |= MCG_STATUS_EIPV; 687 } else { 688 status |= 0xc0; 689 } 690 } else { 691 if (code == BUS_MCEERR_AR) { 692 status |= MCI_STATUS_UC | MCI_STATUS_POISON; 693 mcg_status |= MCG_STATUS_EIPV; 694 } else { 695 /* Setting the POISON bit for deferred errors indicates to the 696 * guest kernel that the address provided by the MCE is valid 697 * and usable which will ensure that the guest kernel will send 698 * a SIGBUS_AO signal to the guest process. This allows for 699 * more desirable behavior in the case that the guest process 700 * with poisoned memory has set the MCE_KILL_EARLY prctl flag 701 * which indicates that the process would prefer to handle or 702 * shutdown due to the poisoned memory condition before the 703 * memory has been accessed. 704 * 705 * While the POISON bit would not be set in a deferred error 706 * sent from hardware, the bit is not meaningful for deferred 707 * errors and can be reused in this scenario. 708 */ 709 status |= MCI_STATUS_DEFERRED | MCI_STATUS_POISON; 710 } 711 } 712 713 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; 714 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the 715 * guest kernel back into env->mcg_ext_ctl. 716 */ 717 cpu_synchronize_state(cs); 718 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { 719 mcg_status |= MCG_STATUS_LMCE; 720 flags = 0; 721 } 722 723 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, 724 (MCM_ADDR_PHYS << 6) | 0xc, flags); 725 } 726 727 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar) 728 { 729 MemoryFailureFlags mff = {.action_required = ar, .recursive = false}; 730 731 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action, 732 &mff); 733 } 734 735 static void hardware_memory_error(void *host_addr) 736 { 737 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true); 738 error_report("QEMU got Hardware memory error at addr %p", host_addr); 739 exit(1); 740 } 741 742 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) 743 { 744 X86CPU *cpu = X86_CPU(c); 745 CPUX86State *env = &cpu->env; 746 ram_addr_t ram_addr; 747 hwaddr paddr; 748 749 /* If we get an action required MCE, it has been injected by KVM 750 * while the VM was running. An action optional MCE instead should 751 * be coming from the main thread, which qemu_init_sigbus identifies 752 * as the "early kill" thread. 753 */ 754 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); 755 756 if ((env->mcg_cap & MCG_SER_P) && addr) { 757 ram_addr = qemu_ram_addr_from_host(addr); 758 if (ram_addr != RAM_ADDR_INVALID && 759 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { 760 kvm_hwpoison_page_add(ram_addr); 761 kvm_mce_inject(cpu, paddr, code); 762 763 /* 764 * Use different logging severity based on error type. 765 * If there is additional MCE reporting on the hypervisor, QEMU VA 766 * could be another source to identify the PA and MCE details. 767 */ 768 if (code == BUS_MCEERR_AR) { 769 error_report("Guest MCE Memory Error at QEMU addr %p and " 770 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 771 addr, paddr, "BUS_MCEERR_AR"); 772 } else { 773 warn_report("Guest MCE Memory Error at QEMU addr %p and " 774 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 775 addr, paddr, "BUS_MCEERR_AO"); 776 } 777 778 return; 779 } 780 781 if (code == BUS_MCEERR_AO) { 782 warn_report("Hardware memory error at addr %p of type %s " 783 "for memory used by QEMU itself instead of guest system!", 784 addr, "BUS_MCEERR_AO"); 785 } 786 } 787 788 if (code == BUS_MCEERR_AR) { 789 hardware_memory_error(addr); 790 } 791 792 /* Hope we are lucky for AO MCE, just notify a event */ 793 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false); 794 } 795 796 static void kvm_queue_exception(CPUX86State *env, 797 int32_t exception_nr, 798 uint8_t exception_has_payload, 799 uint64_t exception_payload) 800 { 801 assert(env->exception_nr == -1); 802 assert(!env->exception_pending); 803 assert(!env->exception_injected); 804 assert(!env->exception_has_payload); 805 806 env->exception_nr = exception_nr; 807 808 if (has_exception_payload) { 809 env->exception_pending = 1; 810 811 env->exception_has_payload = exception_has_payload; 812 env->exception_payload = exception_payload; 813 } else { 814 env->exception_injected = 1; 815 816 if (exception_nr == EXCP01_DB) { 817 assert(exception_has_payload); 818 env->dr[6] = exception_payload; 819 } else if (exception_nr == EXCP0E_PAGE) { 820 assert(exception_has_payload); 821 env->cr[2] = exception_payload; 822 } else { 823 assert(!exception_has_payload); 824 } 825 } 826 } 827 828 static void cpu_update_state(void *opaque, bool running, RunState state) 829 { 830 CPUX86State *env = opaque; 831 832 if (running) { 833 env->tsc_valid = false; 834 } 835 } 836 837 unsigned long kvm_arch_vcpu_id(CPUState *cs) 838 { 839 X86CPU *cpu = X86_CPU(cs); 840 return cpu->apic_id; 841 } 842 843 #ifndef KVM_CPUID_SIGNATURE_NEXT 844 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 845 #endif 846 847 static bool hyperv_enabled(X86CPU *cpu) 848 { 849 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 && 850 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) || 851 cpu->hyperv_features || cpu->hyperv_passthrough); 852 } 853 854 /* 855 * Check whether target_freq is within conservative 856 * ntp correctable bounds (250ppm) of freq 857 */ 858 static inline bool freq_within_bounds(int freq, int target_freq) 859 { 860 int max_freq = freq + (freq * 250 / 1000000); 861 int min_freq = freq - (freq * 250 / 1000000); 862 863 if (target_freq >= min_freq && target_freq <= max_freq) { 864 return true; 865 } 866 867 return false; 868 } 869 870 static int kvm_arch_set_tsc_khz(CPUState *cs) 871 { 872 X86CPU *cpu = X86_CPU(cs); 873 CPUX86State *env = &cpu->env; 874 int r, cur_freq; 875 bool set_ioctl = false; 876 877 /* 878 * TSC of TD vcpu is immutable, it cannot be set/changed via vcpu scope 879 * VM_SET_TSC_KHZ, but only be initialized via VM scope VM_SET_TSC_KHZ 880 * before ioctl KVM_TDX_INIT_VM in tdx_pre_create_vcpu() 881 */ 882 if (is_tdx_vm()) { 883 return 0; 884 } 885 886 if (!env->tsc_khz) { 887 return 0; 888 } 889 890 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 891 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP; 892 893 /* 894 * If TSC scaling is supported, attempt to set TSC frequency. 895 */ 896 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) { 897 set_ioctl = true; 898 } 899 900 /* 901 * If desired TSC frequency is within bounds of NTP correction, 902 * attempt to set TSC frequency. 903 */ 904 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) { 905 set_ioctl = true; 906 } 907 908 r = set_ioctl ? 909 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : 910 -ENOTSUP; 911 912 if (r < 0) { 913 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current 914 * TSC frequency doesn't match the one we want. 915 */ 916 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 917 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 918 -ENOTSUP; 919 if (cur_freq <= 0 || cur_freq != env->tsc_khz) { 920 warn_report("TSC frequency mismatch between " 921 "VM (%" PRId64 " kHz) and host (%d kHz), " 922 "and TSC scaling unavailable", 923 env->tsc_khz, cur_freq); 924 return r; 925 } 926 } 927 928 return 0; 929 } 930 931 static bool tsc_is_stable_and_known(CPUX86State *env) 932 { 933 if (!env->tsc_khz) { 934 return false; 935 } 936 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) 937 || env->user_tsc_khz; 938 } 939 940 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1) 941 942 static struct { 943 const char *desc; 944 struct { 945 uint32_t func; 946 int reg; 947 uint32_t bits; 948 } flags[2]; 949 uint64_t dependencies; 950 bool skip_passthrough; 951 } kvm_hyperv_properties[] = { 952 [HYPERV_FEAT_RELAXED] = { 953 .desc = "relaxed timing (hv-relaxed)", 954 .flags = { 955 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 956 .bits = HV_RELAXED_TIMING_RECOMMENDED} 957 } 958 }, 959 [HYPERV_FEAT_VAPIC] = { 960 .desc = "virtual APIC (hv-vapic)", 961 .flags = { 962 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 963 .bits = HV_APIC_ACCESS_AVAILABLE} 964 } 965 }, 966 [HYPERV_FEAT_TIME] = { 967 .desc = "clocksources (hv-time)", 968 .flags = { 969 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 970 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE} 971 } 972 }, 973 [HYPERV_FEAT_CRASH] = { 974 .desc = "crash MSRs (hv-crash)", 975 .flags = { 976 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 977 .bits = HV_GUEST_CRASH_MSR_AVAILABLE} 978 } 979 }, 980 [HYPERV_FEAT_RESET] = { 981 .desc = "reset MSR (hv-reset)", 982 .flags = { 983 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 984 .bits = HV_RESET_AVAILABLE} 985 } 986 }, 987 [HYPERV_FEAT_VPINDEX] = { 988 .desc = "VP_INDEX MSR (hv-vpindex)", 989 .flags = { 990 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 991 .bits = HV_VP_INDEX_AVAILABLE} 992 } 993 }, 994 [HYPERV_FEAT_RUNTIME] = { 995 .desc = "VP_RUNTIME MSR (hv-runtime)", 996 .flags = { 997 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 998 .bits = HV_VP_RUNTIME_AVAILABLE} 999 } 1000 }, 1001 [HYPERV_FEAT_SYNIC] = { 1002 .desc = "synthetic interrupt controller (hv-synic)", 1003 .flags = { 1004 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 1005 .bits = HV_SYNIC_AVAILABLE} 1006 } 1007 }, 1008 [HYPERV_FEAT_STIMER] = { 1009 .desc = "synthetic timers (hv-stimer)", 1010 .flags = { 1011 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 1012 .bits = HV_SYNTIMERS_AVAILABLE} 1013 }, 1014 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME) 1015 }, 1016 [HYPERV_FEAT_FREQUENCIES] = { 1017 .desc = "frequency MSRs (hv-frequencies)", 1018 .flags = { 1019 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 1020 .bits = HV_ACCESS_FREQUENCY_MSRS}, 1021 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1022 .bits = HV_FREQUENCY_MSRS_AVAILABLE} 1023 } 1024 }, 1025 [HYPERV_FEAT_REENLIGHTENMENT] = { 1026 .desc = "reenlightenment MSRs (hv-reenlightenment)", 1027 .flags = { 1028 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 1029 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL} 1030 } 1031 }, 1032 [HYPERV_FEAT_TLBFLUSH] = { 1033 .desc = "paravirtualized TLB flush (hv-tlbflush)", 1034 .flags = { 1035 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1036 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED | 1037 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 1038 }, 1039 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 1040 }, 1041 [HYPERV_FEAT_EVMCS] = { 1042 .desc = "enlightened VMCS (hv-evmcs)", 1043 .flags = { 1044 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1045 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED} 1046 }, 1047 .dependencies = BIT(HYPERV_FEAT_VAPIC) 1048 }, 1049 [HYPERV_FEAT_IPI] = { 1050 .desc = "paravirtualized IPI (hv-ipi)", 1051 .flags = { 1052 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1053 .bits = HV_CLUSTER_IPI_RECOMMENDED | 1054 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 1055 }, 1056 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 1057 }, 1058 [HYPERV_FEAT_STIMER_DIRECT] = { 1059 .desc = "direct mode synthetic timers (hv-stimer-direct)", 1060 .flags = { 1061 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1062 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE} 1063 }, 1064 .dependencies = BIT(HYPERV_FEAT_STIMER) 1065 }, 1066 [HYPERV_FEAT_AVIC] = { 1067 .desc = "AVIC/APICv support (hv-avic/hv-apicv)", 1068 .flags = { 1069 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1070 .bits = HV_DEPRECATING_AEOI_RECOMMENDED} 1071 } 1072 }, 1073 [HYPERV_FEAT_SYNDBG] = { 1074 .desc = "Enable synthetic kernel debugger channel (hv-syndbg)", 1075 .flags = { 1076 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1077 .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE} 1078 }, 1079 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED), 1080 .skip_passthrough = true, 1081 }, 1082 [HYPERV_FEAT_MSR_BITMAP] = { 1083 .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)", 1084 .flags = { 1085 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX, 1086 .bits = HV_NESTED_MSR_BITMAP} 1087 } 1088 }, 1089 [HYPERV_FEAT_XMM_INPUT] = { 1090 .desc = "XMM fast hypercall input (hv-xmm-input)", 1091 .flags = { 1092 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1093 .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE} 1094 } 1095 }, 1096 [HYPERV_FEAT_TLBFLUSH_EXT] = { 1097 .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)", 1098 .flags = { 1099 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1100 .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE} 1101 }, 1102 .dependencies = BIT(HYPERV_FEAT_TLBFLUSH) 1103 }, 1104 [HYPERV_FEAT_TLBFLUSH_DIRECT] = { 1105 .desc = "direct TLB flush (hv-tlbflush-direct)", 1106 .flags = { 1107 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX, 1108 .bits = HV_NESTED_DIRECT_FLUSH} 1109 }, 1110 .dependencies = BIT(HYPERV_FEAT_VAPIC) 1111 }, 1112 }; 1113 1114 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max, 1115 bool do_sys_ioctl) 1116 { 1117 struct kvm_cpuid2 *cpuid; 1118 int r, size; 1119 1120 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 1121 cpuid = g_malloc0(size); 1122 cpuid->nent = max; 1123 1124 if (do_sys_ioctl) { 1125 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1126 } else { 1127 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1128 } 1129 if (r == 0 && cpuid->nent >= max) { 1130 r = -E2BIG; 1131 } 1132 if (r < 0) { 1133 if (r == -E2BIG) { 1134 g_free(cpuid); 1135 return NULL; 1136 } else { 1137 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n", 1138 strerror(-r)); 1139 exit(1); 1140 } 1141 } 1142 return cpuid; 1143 } 1144 1145 /* 1146 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough 1147 * for all entries. 1148 */ 1149 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs) 1150 { 1151 struct kvm_cpuid2 *cpuid; 1152 /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */ 1153 int max = 11; 1154 int i; 1155 bool do_sys_ioctl; 1156 1157 do_sys_ioctl = 1158 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0; 1159 1160 /* 1161 * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is 1162 * unsupported, kvm_hyperv_expand_features() checks for that. 1163 */ 1164 assert(do_sys_ioctl || cs->kvm_state); 1165 1166 /* 1167 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with 1168 * -E2BIG, however, it doesn't report back the right size. Keep increasing 1169 * it and re-trying until we succeed. 1170 */ 1171 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) { 1172 max++; 1173 } 1174 1175 /* 1176 * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before 1177 * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the 1178 * information early, just check for the capability and set the bit 1179 * manually. 1180 */ 1181 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state, 1182 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1183 for (i = 0; i < cpuid->nent; i++) { 1184 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) { 1185 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1186 } 1187 } 1188 } 1189 1190 return cpuid; 1191 } 1192 1193 /* 1194 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature 1195 * leaves from KVM_CAP_HYPERV* and present MSRs data. 1196 */ 1197 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs) 1198 { 1199 X86CPU *cpu = X86_CPU(cs); 1200 struct kvm_cpuid2 *cpuid; 1201 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm; 1202 1203 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */ 1204 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries)); 1205 cpuid->nent = 2; 1206 1207 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */ 1208 entry_feat = &cpuid->entries[0]; 1209 entry_feat->function = HV_CPUID_FEATURES; 1210 1211 entry_recomm = &cpuid->entries[1]; 1212 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO; 1213 entry_recomm->ebx = cpu->hyperv_spinlock_attempts; 1214 1215 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) { 1216 entry_feat->eax |= HV_HYPERCALL_AVAILABLE; 1217 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE; 1218 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1219 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED; 1220 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED; 1221 } 1222 1223 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { 1224 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE; 1225 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE; 1226 } 1227 1228 if (has_msr_hv_frequencies) { 1229 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS; 1230 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE; 1231 } 1232 1233 if (has_msr_hv_crash) { 1234 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE; 1235 } 1236 1237 if (has_msr_hv_reenlightenment) { 1238 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL; 1239 } 1240 1241 if (has_msr_hv_reset) { 1242 entry_feat->eax |= HV_RESET_AVAILABLE; 1243 } 1244 1245 if (has_msr_hv_vpindex) { 1246 entry_feat->eax |= HV_VP_INDEX_AVAILABLE; 1247 } 1248 1249 if (has_msr_hv_runtime) { 1250 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE; 1251 } 1252 1253 if (has_msr_hv_synic) { 1254 unsigned int cap = cpu->hyperv_synic_kvm_only ? 1255 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1256 1257 if (kvm_check_extension(cs->kvm_state, cap) > 0) { 1258 entry_feat->eax |= HV_SYNIC_AVAILABLE; 1259 } 1260 } 1261 1262 if (has_msr_hv_stimer) { 1263 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE; 1264 } 1265 1266 if (has_msr_hv_syndbg_options) { 1267 entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE; 1268 entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE; 1269 entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED; 1270 } 1271 1272 if (kvm_check_extension(cs->kvm_state, 1273 KVM_CAP_HYPERV_TLBFLUSH) > 0) { 1274 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED; 1275 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1276 } 1277 1278 if (kvm_check_extension(cs->kvm_state, 1279 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1280 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1281 } 1282 1283 if (kvm_check_extension(cs->kvm_state, 1284 KVM_CAP_HYPERV_SEND_IPI) > 0) { 1285 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED; 1286 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1287 } 1288 1289 return cpuid; 1290 } 1291 1292 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg) 1293 { 1294 struct kvm_cpuid_entry2 *entry; 1295 struct kvm_cpuid2 *cpuid; 1296 1297 if (hv_cpuid_cache) { 1298 cpuid = hv_cpuid_cache; 1299 } else { 1300 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) { 1301 cpuid = get_supported_hv_cpuid(cs); 1302 } else { 1303 /* 1304 * 'cs->kvm_state' may be NULL when Hyper-V features are expanded 1305 * before KVM context is created but this is only done when 1306 * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies 1307 * KVM_CAP_HYPERV_CPUID. 1308 */ 1309 assert(cs->kvm_state); 1310 1311 cpuid = get_supported_hv_cpuid_legacy(cs); 1312 } 1313 hv_cpuid_cache = cpuid; 1314 } 1315 1316 if (!cpuid) { 1317 return 0; 1318 } 1319 1320 entry = cpuid_find_entry(cpuid, func, 0); 1321 if (!entry) { 1322 return 0; 1323 } 1324 1325 return cpuid_entry_get_reg(entry, reg); 1326 } 1327 1328 static bool hyperv_feature_supported(CPUState *cs, int feature) 1329 { 1330 uint32_t func, bits; 1331 int i, reg; 1332 1333 /* 1334 * kvm_hyperv_properties needs to define at least one CPUID flag which 1335 * must be used to detect the feature, it's hard to say whether it is 1336 * supported or not otherwise. 1337 */ 1338 assert(kvm_hyperv_properties[feature].flags[0].func); 1339 1340 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) { 1341 1342 func = kvm_hyperv_properties[feature].flags[i].func; 1343 reg = kvm_hyperv_properties[feature].flags[i].reg; 1344 bits = kvm_hyperv_properties[feature].flags[i].bits; 1345 1346 if (!func) { 1347 continue; 1348 } 1349 1350 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) { 1351 return false; 1352 } 1353 } 1354 1355 return true; 1356 } 1357 1358 /* Checks that all feature dependencies are enabled */ 1359 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp) 1360 { 1361 uint64_t deps; 1362 int dep_feat; 1363 1364 deps = kvm_hyperv_properties[feature].dependencies; 1365 while (deps) { 1366 dep_feat = ctz64(deps); 1367 if (!(hyperv_feat_enabled(cpu, dep_feat))) { 1368 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1369 kvm_hyperv_properties[feature].desc, 1370 kvm_hyperv_properties[dep_feat].desc); 1371 return false; 1372 } 1373 deps &= ~(1ull << dep_feat); 1374 } 1375 1376 return true; 1377 } 1378 1379 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg) 1380 { 1381 X86CPU *cpu = X86_CPU(cs); 1382 uint32_t r = 0; 1383 int i, j; 1384 1385 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) { 1386 if (!hyperv_feat_enabled(cpu, i)) { 1387 continue; 1388 } 1389 1390 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) { 1391 if (kvm_hyperv_properties[i].flags[j].func != func) { 1392 continue; 1393 } 1394 if (kvm_hyperv_properties[i].flags[j].reg != reg) { 1395 continue; 1396 } 1397 1398 r |= kvm_hyperv_properties[i].flags[j].bits; 1399 } 1400 } 1401 1402 /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */ 1403 if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) { 1404 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1405 r |= DEFAULT_EVMCS_VERSION; 1406 } 1407 } 1408 1409 return r; 1410 } 1411 1412 /* 1413 * Expand Hyper-V CPU features. In partucular, check that all the requested 1414 * features are supported by the host and the sanity of the configuration 1415 * (that all the required dependencies are included). Also, this takes care 1416 * of 'hv_passthrough' mode and fills the environment with all supported 1417 * Hyper-V features. 1418 */ 1419 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp) 1420 { 1421 CPUState *cs = CPU(cpu); 1422 Error *local_err = NULL; 1423 int feat; 1424 1425 if (!hyperv_enabled(cpu)) 1426 return true; 1427 1428 /* 1429 * When kvm_hyperv_expand_features is called at CPU feature expansion 1430 * time per-CPU kvm_state is not available yet so we can only proceed 1431 * when KVM_CAP_SYS_HYPERV_CPUID is supported. 1432 */ 1433 if (!cs->kvm_state && 1434 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID)) 1435 return true; 1436 1437 if (cpu->hyperv_passthrough) { 1438 cpu->hyperv_vendor_id[0] = 1439 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX); 1440 cpu->hyperv_vendor_id[1] = 1441 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX); 1442 cpu->hyperv_vendor_id[2] = 1443 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX); 1444 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor, 1445 sizeof(cpu->hyperv_vendor_id) + 1); 1446 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id, 1447 sizeof(cpu->hyperv_vendor_id)); 1448 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0; 1449 1450 cpu->hyperv_interface_id[0] = 1451 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX); 1452 cpu->hyperv_interface_id[1] = 1453 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX); 1454 cpu->hyperv_interface_id[2] = 1455 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX); 1456 cpu->hyperv_interface_id[3] = 1457 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX); 1458 1459 cpu->hyperv_ver_id_build = 1460 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX); 1461 cpu->hyperv_ver_id_major = 1462 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16; 1463 cpu->hyperv_ver_id_minor = 1464 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff; 1465 cpu->hyperv_ver_id_sp = 1466 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX); 1467 cpu->hyperv_ver_id_sb = 1468 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24; 1469 cpu->hyperv_ver_id_sn = 1470 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff; 1471 1472 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, 1473 R_EAX); 1474 cpu->hyperv_limits[0] = 1475 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX); 1476 cpu->hyperv_limits[1] = 1477 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX); 1478 cpu->hyperv_limits[2] = 1479 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX); 1480 1481 cpu->hyperv_spinlock_attempts = 1482 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX); 1483 1484 /* 1485 * Mark feature as enabled in 'cpu->hyperv_features' as 1486 * hv_build_cpuid_leaf() uses this info to build guest CPUIDs. 1487 */ 1488 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1489 if (hyperv_feature_supported(cs, feat) && 1490 !kvm_hyperv_properties[feat].skip_passthrough) { 1491 cpu->hyperv_features |= BIT(feat); 1492 } 1493 } 1494 } else { 1495 /* Check features availability and dependencies */ 1496 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1497 /* If the feature was not requested skip it. */ 1498 if (!hyperv_feat_enabled(cpu, feat)) { 1499 continue; 1500 } 1501 1502 /* Check if the feature is supported by KVM */ 1503 if (!hyperv_feature_supported(cs, feat)) { 1504 error_setg(errp, "Hyper-V %s is not supported by kernel", 1505 kvm_hyperv_properties[feat].desc); 1506 return false; 1507 } 1508 1509 /* Check dependencies */ 1510 if (!hv_feature_check_deps(cpu, feat, &local_err)) { 1511 error_propagate(errp, local_err); 1512 return false; 1513 } 1514 } 1515 } 1516 1517 /* Additional dependencies not covered by kvm_hyperv_properties[] */ 1518 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1519 !cpu->hyperv_synic_kvm_only && 1520 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) { 1521 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1522 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc, 1523 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc); 1524 return false; 1525 } 1526 1527 return true; 1528 } 1529 1530 /* 1531 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent. 1532 */ 1533 static int hyperv_fill_cpuids(CPUState *cs, 1534 struct kvm_cpuid_entry2 *cpuid_ent) 1535 { 1536 X86CPU *cpu = X86_CPU(cs); 1537 struct kvm_cpuid_entry2 *c; 1538 uint32_t signature[3]; 1539 uint32_t cpuid_i = 0, max_cpuid_leaf = 0; 1540 uint32_t nested_eax = 1541 hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX); 1542 1543 max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES : 1544 HV_CPUID_IMPLEMENT_LIMITS; 1545 1546 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) { 1547 max_cpuid_leaf = 1548 MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES); 1549 } 1550 1551 c = &cpuid_ent[cpuid_i++]; 1552 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS; 1553 c->eax = max_cpuid_leaf; 1554 c->ebx = cpu->hyperv_vendor_id[0]; 1555 c->ecx = cpu->hyperv_vendor_id[1]; 1556 c->edx = cpu->hyperv_vendor_id[2]; 1557 1558 c = &cpuid_ent[cpuid_i++]; 1559 c->function = HV_CPUID_INTERFACE; 1560 c->eax = cpu->hyperv_interface_id[0]; 1561 c->ebx = cpu->hyperv_interface_id[1]; 1562 c->ecx = cpu->hyperv_interface_id[2]; 1563 c->edx = cpu->hyperv_interface_id[3]; 1564 1565 c = &cpuid_ent[cpuid_i++]; 1566 c->function = HV_CPUID_VERSION; 1567 c->eax = cpu->hyperv_ver_id_build; 1568 c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 | 1569 cpu->hyperv_ver_id_minor; 1570 c->ecx = cpu->hyperv_ver_id_sp; 1571 c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 | 1572 (cpu->hyperv_ver_id_sn & 0xffffff); 1573 1574 c = &cpuid_ent[cpuid_i++]; 1575 c->function = HV_CPUID_FEATURES; 1576 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX); 1577 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX); 1578 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX); 1579 1580 /* Unconditionally required with any Hyper-V enlightenment */ 1581 c->eax |= HV_HYPERCALL_AVAILABLE; 1582 1583 /* SynIC and Vmbus devices require messages/signals hypercalls */ 1584 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1585 !cpu->hyperv_synic_kvm_only) { 1586 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS; 1587 } 1588 1589 1590 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */ 1591 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1592 1593 c = &cpuid_ent[cpuid_i++]; 1594 c->function = HV_CPUID_ENLIGHTMENT_INFO; 1595 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX); 1596 c->ebx = cpu->hyperv_spinlock_attempts; 1597 1598 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) && 1599 !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) { 1600 c->eax |= HV_APIC_ACCESS_RECOMMENDED; 1601 } 1602 1603 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) { 1604 c->eax |= HV_NO_NONARCH_CORESHARING; 1605 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) { 1606 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) & 1607 HV_NO_NONARCH_CORESHARING; 1608 } 1609 1610 c = &cpuid_ent[cpuid_i++]; 1611 c->function = HV_CPUID_IMPLEMENT_LIMITS; 1612 c->eax = cpu->hv_max_vps; 1613 c->ebx = cpu->hyperv_limits[0]; 1614 c->ecx = cpu->hyperv_limits[1]; 1615 c->edx = cpu->hyperv_limits[2]; 1616 1617 if (nested_eax) { 1618 uint32_t function; 1619 1620 /* Create zeroed 0x40000006..0x40000009 leaves */ 1621 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1; 1622 function < HV_CPUID_NESTED_FEATURES; function++) { 1623 c = &cpuid_ent[cpuid_i++]; 1624 c->function = function; 1625 } 1626 1627 c = &cpuid_ent[cpuid_i++]; 1628 c->function = HV_CPUID_NESTED_FEATURES; 1629 c->eax = nested_eax; 1630 } 1631 1632 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) { 1633 c = &cpuid_ent[cpuid_i++]; 1634 c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS; 1635 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ? 1636 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS; 1637 memcpy(signature, "Microsoft VS", 12); 1638 c->eax = 0; 1639 c->ebx = signature[0]; 1640 c->ecx = signature[1]; 1641 c->edx = signature[2]; 1642 1643 c = &cpuid_ent[cpuid_i++]; 1644 c->function = HV_CPUID_SYNDBG_INTERFACE; 1645 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12); 1646 c->eax = signature[0]; 1647 c->ebx = 0; 1648 c->ecx = 0; 1649 c->edx = 0; 1650 1651 c = &cpuid_ent[cpuid_i++]; 1652 c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES; 1653 c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING; 1654 c->ebx = 0; 1655 c->ecx = 0; 1656 c->edx = 0; 1657 } 1658 1659 return cpuid_i; 1660 } 1661 1662 static Error *hv_passthrough_mig_blocker; 1663 static Error *hv_no_nonarch_cs_mig_blocker; 1664 1665 /* Checks that the exposed eVMCS version range is supported by KVM */ 1666 static bool evmcs_version_supported(uint16_t evmcs_version, 1667 uint16_t supported_evmcs_version) 1668 { 1669 uint8_t min_version = evmcs_version & 0xff; 1670 uint8_t max_version = evmcs_version >> 8; 1671 uint8_t min_supported_version = supported_evmcs_version & 0xff; 1672 uint8_t max_supported_version = supported_evmcs_version >> 8; 1673 1674 return (min_version >= min_supported_version) && 1675 (max_version <= max_supported_version); 1676 } 1677 1678 static int hyperv_init_vcpu(X86CPU *cpu) 1679 { 1680 CPUState *cs = CPU(cpu); 1681 Error *local_err = NULL; 1682 int ret; 1683 1684 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) { 1685 error_setg(&hv_passthrough_mig_blocker, 1686 "'hv-passthrough' CPU flag prevents migration, use explicit" 1687 " set of hv-* flags instead"); 1688 ret = migrate_add_blocker(&hv_passthrough_mig_blocker, &local_err); 1689 if (ret < 0) { 1690 error_report_err(local_err); 1691 return ret; 1692 } 1693 } 1694 1695 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO && 1696 hv_no_nonarch_cs_mig_blocker == NULL) { 1697 error_setg(&hv_no_nonarch_cs_mig_blocker, 1698 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration" 1699 " use explicit 'hv-no-nonarch-coresharing=on' instead (but" 1700 " make sure SMT is disabled and/or that vCPUs are properly" 1701 " pinned)"); 1702 ret = migrate_add_blocker(&hv_no_nonarch_cs_mig_blocker, &local_err); 1703 if (ret < 0) { 1704 error_report_err(local_err); 1705 return ret; 1706 } 1707 } 1708 1709 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) { 1710 /* 1711 * the kernel doesn't support setting vp_index; assert that its value 1712 * is in sync 1713 */ 1714 uint64_t value; 1715 1716 ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value); 1717 if (ret < 0) { 1718 return ret; 1719 } 1720 1721 if (value != hyperv_vp_index(CPU(cpu))) { 1722 error_report("kernel's vp_index != QEMU's vp_index"); 1723 return -ENXIO; 1724 } 1725 } 1726 1727 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 1728 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ? 1729 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1730 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0); 1731 if (ret < 0) { 1732 error_report("failed to turn on HyperV SynIC in KVM: %s", 1733 strerror(-ret)); 1734 return ret; 1735 } 1736 1737 if (!cpu->hyperv_synic_kvm_only) { 1738 ret = hyperv_x86_synic_add(cpu); 1739 if (ret < 0) { 1740 error_report("failed to create HyperV SynIC: %s", 1741 strerror(-ret)); 1742 return ret; 1743 } 1744 } 1745 } 1746 1747 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1748 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION; 1749 uint16_t supported_evmcs_version; 1750 1751 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0, 1752 (uintptr_t)&supported_evmcs_version); 1753 1754 /* 1755 * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs' 1756 * option sets. Note: we hardcode the maximum supported eVMCS version 1757 * to '1' as well so 'hv-evmcs' feature is migratable even when (and if) 1758 * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have 1759 * to be added. 1760 */ 1761 if (ret < 0) { 1762 error_report("Hyper-V %s is not supported by kernel", 1763 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc); 1764 return ret; 1765 } 1766 1767 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) { 1768 error_report("eVMCS version range [%d..%d] is not supported by " 1769 "kernel (supported: [%d..%d])", evmcs_version & 0xff, 1770 evmcs_version >> 8, supported_evmcs_version & 0xff, 1771 supported_evmcs_version >> 8); 1772 return -ENOTSUP; 1773 } 1774 } 1775 1776 if (cpu->hyperv_enforce_cpuid) { 1777 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1); 1778 if (ret < 0) { 1779 error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s", 1780 strerror(-ret)); 1781 return ret; 1782 } 1783 } 1784 1785 /* Skip SynIC and VP_INDEX since they are hard deps already */ 1786 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_STIMER) && 1787 hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) && 1788 hyperv_feat_enabled(cpu, HYPERV_FEAT_RUNTIME)) { 1789 hyperv_x86_set_vmbus_recommended_features_enabled(); 1790 } 1791 1792 return 0; 1793 } 1794 1795 static Error *invtsc_mig_blocker; 1796 1797 static void kvm_init_xsave(CPUX86State *env) 1798 { 1799 if (has_xsave2) { 1800 env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096); 1801 } else { 1802 env->xsave_buf_len = sizeof(struct kvm_xsave); 1803 } 1804 1805 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len); 1806 memset(env->xsave_buf, 0, env->xsave_buf_len); 1807 /* 1808 * The allocated storage must be large enough for all of the 1809 * possible XSAVE state components. 1810 */ 1811 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <= 1812 env->xsave_buf_len); 1813 } 1814 1815 static void kvm_init_nested_state(CPUX86State *env) 1816 { 1817 struct kvm_vmx_nested_state_hdr *vmx_hdr; 1818 uint32_t size; 1819 1820 if (!env->nested_state) { 1821 return; 1822 } 1823 1824 size = env->nested_state->size; 1825 1826 memset(env->nested_state, 0, size); 1827 env->nested_state->size = size; 1828 1829 if (cpu_has_vmx(env)) { 1830 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX; 1831 vmx_hdr = &env->nested_state->hdr.vmx; 1832 vmx_hdr->vmxon_pa = -1ull; 1833 vmx_hdr->vmcs12_pa = -1ull; 1834 } else if (cpu_has_svm(env)) { 1835 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM; 1836 } 1837 } 1838 1839 uint32_t kvm_x86_build_cpuid(CPUX86State *env, struct kvm_cpuid_entry2 *entries, 1840 uint32_t cpuid_i) 1841 { 1842 uint32_t limit, i, j; 1843 uint32_t unused; 1844 struct kvm_cpuid_entry2 *c; 1845 1846 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); 1847 1848 for (i = 0; i <= limit; i++) { 1849 j = 0; 1850 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1851 goto full; 1852 } 1853 c = &entries[cpuid_i++]; 1854 switch (i) { 1855 case 2: { 1856 /* Keep reading function 2 till all the input is received */ 1857 int times; 1858 1859 c->function = i; 1860 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1861 times = c->eax & 0xff; 1862 if (times > 1) { 1863 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | 1864 KVM_CPUID_FLAG_STATE_READ_NEXT; 1865 } 1866 1867 for (j = 1; j < times; ++j) { 1868 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1869 goto full; 1870 } 1871 c = &entries[cpuid_i++]; 1872 c->function = i; 1873 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; 1874 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1875 } 1876 break; 1877 } 1878 case 0x1f: 1879 if (!x86_has_cpuid_0x1f(env_archcpu(env))) { 1880 cpuid_i--; 1881 break; 1882 } 1883 /* fallthrough */ 1884 case 4: 1885 case 0xb: 1886 case 0xd: 1887 for (j = 0; ; j++) { 1888 c->function = i; 1889 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1890 c->index = j; 1891 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1892 1893 if (i == 4 && c->eax == 0) { 1894 break; 1895 } 1896 if (i == 0xb && !(c->ecx & 0xff00)) { 1897 break; 1898 } 1899 if (i == 0x1f && !(c->ecx & 0xff00)) { 1900 break; 1901 } 1902 if (i == 0xd && c->eax == 0) { 1903 if (j < 63) { 1904 continue; 1905 } else { 1906 cpuid_i--; 1907 break; 1908 } 1909 } 1910 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1911 goto full; 1912 } 1913 c = &entries[cpuid_i++]; 1914 } 1915 break; 1916 case 0x12: 1917 for (j = 0; ; j++) { 1918 c->function = i; 1919 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1920 c->index = j; 1921 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1922 1923 if (j > 1 && (c->eax & 0xf) != 1) { 1924 break; 1925 } 1926 1927 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1928 goto full; 1929 } 1930 c = &entries[cpuid_i++]; 1931 } 1932 break; 1933 case 0x7: 1934 case 0x14: 1935 case 0x1d: 1936 case 0x1e: 1937 case 0x24: { 1938 uint32_t times; 1939 1940 c->function = i; 1941 c->index = 0; 1942 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1943 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1944 times = c->eax; 1945 1946 for (j = 1; j <= times; ++j) { 1947 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1948 goto full; 1949 } 1950 c = &entries[cpuid_i++]; 1951 c->function = i; 1952 c->index = j; 1953 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1954 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1955 } 1956 break; 1957 } 1958 default: 1959 c->function = i; 1960 c->flags = 0; 1961 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1962 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 1963 /* 1964 * KVM already returns all zeroes if a CPUID entry is missing, 1965 * so we can omit it and avoid hitting KVM's 80-entry limit. 1966 */ 1967 cpuid_i--; 1968 } 1969 break; 1970 } 1971 } 1972 1973 if (limit >= 0x0a) { 1974 uint32_t eax, edx; 1975 1976 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx); 1977 1978 has_architectural_pmu_version = eax & 0xff; 1979 if (has_architectural_pmu_version > 0) { 1980 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8; 1981 1982 /* Shouldn't be more than 32, since that's the number of bits 1983 * available in EBX to tell us _which_ counters are available. 1984 * Play it safe. 1985 */ 1986 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) { 1987 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS; 1988 } 1989 1990 if (has_architectural_pmu_version > 1) { 1991 num_architectural_pmu_fixed_counters = edx & 0x1f; 1992 1993 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) { 1994 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS; 1995 } 1996 } 1997 } 1998 } 1999 2000 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); 2001 2002 for (i = 0x80000000; i <= limit; i++) { 2003 j = 0; 2004 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2005 goto full; 2006 } 2007 c = &entries[cpuid_i++]; 2008 2009 switch (i) { 2010 case 0x8000001d: 2011 /* Query for all AMD cache information leaves */ 2012 for (j = 0; ; j++) { 2013 c->function = i; 2014 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 2015 c->index = j; 2016 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 2017 2018 if (c->eax == 0) { 2019 break; 2020 } 2021 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2022 goto full; 2023 } 2024 c = &entries[cpuid_i++]; 2025 } 2026 break; 2027 default: 2028 c->function = i; 2029 c->flags = 0; 2030 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 2031 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 2032 /* 2033 * KVM already returns all zeroes if a CPUID entry is missing, 2034 * so we can omit it and avoid hitting KVM's 80-entry limit. 2035 */ 2036 cpuid_i--; 2037 } 2038 break; 2039 } 2040 } 2041 2042 /* Call Centaur's CPUID instructions they are supported. */ 2043 if (env->cpuid_xlevel2 > 0) { 2044 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); 2045 2046 for (i = 0xC0000000; i <= limit; i++) { 2047 j = 0; 2048 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2049 goto full; 2050 } 2051 c = &entries[cpuid_i++]; 2052 2053 c->function = i; 2054 c->flags = 0; 2055 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 2056 } 2057 } 2058 2059 return cpuid_i; 2060 2061 full: 2062 fprintf(stderr, "cpuid_data is full, no space for " 2063 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 2064 abort(); 2065 } 2066 2067 int kvm_arch_pre_create_vcpu(CPUState *cpu, Error **errp) 2068 { 2069 if (is_tdx_vm()) { 2070 return tdx_pre_create_vcpu(cpu, errp); 2071 } 2072 2073 return 0; 2074 } 2075 2076 int kvm_arch_init_vcpu(CPUState *cs) 2077 { 2078 struct { 2079 struct kvm_cpuid2 cpuid; 2080 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; 2081 } cpuid_data; 2082 /* 2083 * The kernel defines these structs with padding fields so there 2084 * should be no extra padding in our cpuid_data struct. 2085 */ 2086 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) != 2087 sizeof(struct kvm_cpuid2) + 2088 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES); 2089 2090 X86CPU *cpu = X86_CPU(cs); 2091 CPUX86State *env = &cpu->env; 2092 uint32_t cpuid_i; 2093 struct kvm_cpuid_entry2 *c; 2094 uint32_t signature[3]; 2095 int kvm_base = KVM_CPUID_SIGNATURE; 2096 int max_nested_state_len; 2097 int r; 2098 Error *local_err = NULL; 2099 2100 if (current_machine->cgs) { 2101 r = x86_confidential_guest_check_features( 2102 X86_CONFIDENTIAL_GUEST(current_machine->cgs), cs); 2103 if (r < 0) { 2104 return r; 2105 } 2106 } 2107 2108 memset(&cpuid_data, 0, sizeof(cpuid_data)); 2109 2110 cpuid_i = 0; 2111 2112 has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2); 2113 2114 r = kvm_arch_set_tsc_khz(cs); 2115 if (r < 0) { 2116 return r; 2117 } 2118 2119 /* vcpu's TSC frequency is either specified by user, or following 2120 * the value used by KVM if the former is not present. In the 2121 * latter case, we query it from KVM and record in env->tsc_khz, 2122 * so that vcpu's TSC frequency can be migrated later via this field. 2123 */ 2124 if (!env->tsc_khz) { 2125 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 2126 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 2127 -ENOTSUP; 2128 if (r > 0) { 2129 env->tsc_khz = r; 2130 } 2131 } 2132 2133 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY; 2134 2135 /* 2136 * kvm_hyperv_expand_features() is called here for the second time in case 2137 * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle 2138 * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to 2139 * check which Hyper-V enlightenments are supported and which are not, we 2140 * can still proceed and check/expand Hyper-V enlightenments here so legacy 2141 * behavior is preserved. 2142 */ 2143 if (!kvm_hyperv_expand_features(cpu, &local_err)) { 2144 error_report_err(local_err); 2145 return -ENOSYS; 2146 } 2147 2148 if (hyperv_enabled(cpu)) { 2149 r = hyperv_init_vcpu(cpu); 2150 if (r) { 2151 return r; 2152 } 2153 2154 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries); 2155 kvm_base = KVM_CPUID_SIGNATURE_NEXT; 2156 has_msr_hv_hypercall = true; 2157 } 2158 2159 if (cs->kvm_state->xen_version) { 2160 #ifdef CONFIG_XEN_EMU 2161 struct kvm_cpuid_entry2 *xen_max_leaf; 2162 2163 memcpy(signature, "XenVMMXenVMM", 12); 2164 2165 xen_max_leaf = c = &cpuid_data.entries[cpuid_i++]; 2166 c->function = kvm_base + XEN_CPUID_SIGNATURE; 2167 c->eax = kvm_base + XEN_CPUID_TIME; 2168 c->ebx = signature[0]; 2169 c->ecx = signature[1]; 2170 c->edx = signature[2]; 2171 2172 c = &cpuid_data.entries[cpuid_i++]; 2173 c->function = kvm_base + XEN_CPUID_VENDOR; 2174 c->eax = cs->kvm_state->xen_version; 2175 c->ebx = 0; 2176 c->ecx = 0; 2177 c->edx = 0; 2178 2179 c = &cpuid_data.entries[cpuid_i++]; 2180 c->function = kvm_base + XEN_CPUID_HVM_MSR; 2181 /* Number of hypercall-transfer pages */ 2182 c->eax = 1; 2183 /* Hypercall MSR base address */ 2184 if (hyperv_enabled(cpu)) { 2185 c->ebx = XEN_HYPERCALL_MSR_HYPERV; 2186 kvm_xen_init(cs->kvm_state, c->ebx); 2187 } else { 2188 c->ebx = XEN_HYPERCALL_MSR; 2189 } 2190 c->ecx = 0; 2191 c->edx = 0; 2192 2193 c = &cpuid_data.entries[cpuid_i++]; 2194 c->function = kvm_base + XEN_CPUID_TIME; 2195 c->eax = ((!!tsc_is_stable_and_known(env) << 1) | 2196 (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2)); 2197 /* default=0 (emulate if necessary) */ 2198 c->ebx = 0; 2199 /* guest tsc frequency */ 2200 c->ecx = env->user_tsc_khz; 2201 /* guest tsc incarnation (migration count) */ 2202 c->edx = 0; 2203 2204 c = &cpuid_data.entries[cpuid_i++]; 2205 c->function = kvm_base + XEN_CPUID_HVM; 2206 xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM; 2207 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) { 2208 c->function = kvm_base + XEN_CPUID_HVM; 2209 2210 if (cpu->xen_vapic) { 2211 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT; 2212 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT; 2213 } 2214 2215 c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS; 2216 2217 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) { 2218 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT; 2219 c->ebx = cs->cpu_index; 2220 } 2221 2222 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 17)) { 2223 c->eax |= XEN_HVM_CPUID_UPCALL_VECTOR; 2224 } 2225 } 2226 2227 r = kvm_xen_init_vcpu(cs); 2228 if (r) { 2229 return r; 2230 } 2231 2232 kvm_base += 0x100; 2233 #else /* CONFIG_XEN_EMU */ 2234 /* This should never happen as kvm_arch_init() would have died first. */ 2235 fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n"); 2236 abort(); 2237 #endif 2238 } else if (cpu->expose_kvm) { 2239 memcpy(signature, "KVMKVMKVM\0\0\0", 12); 2240 c = &cpuid_data.entries[cpuid_i++]; 2241 c->function = KVM_CPUID_SIGNATURE | kvm_base; 2242 c->eax = KVM_CPUID_FEATURES | kvm_base; 2243 c->ebx = signature[0]; 2244 c->ecx = signature[1]; 2245 c->edx = signature[2]; 2246 2247 c = &cpuid_data.entries[cpuid_i++]; 2248 c->function = KVM_CPUID_FEATURES | kvm_base; 2249 c->eax = env->features[FEAT_KVM]; 2250 c->edx = env->features[FEAT_KVM_HINTS]; 2251 } 2252 2253 if (cpu->kvm_pv_enforce_cpuid) { 2254 r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1); 2255 if (r < 0) { 2256 fprintf(stderr, 2257 "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s", 2258 strerror(-r)); 2259 abort(); 2260 } 2261 } 2262 2263 cpuid_i = kvm_x86_build_cpuid(env, cpuid_data.entries, cpuid_i); 2264 cpuid_data.cpuid.nent = cpuid_i; 2265 2266 if (x86_cpu_family(env->cpuid_version) >= 6 2267 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == 2268 (CPUID_MCE | CPUID_MCA)) { 2269 uint64_t mcg_cap, unsupported_caps; 2270 int banks; 2271 int ret; 2272 2273 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); 2274 if (ret < 0) { 2275 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); 2276 return ret; 2277 } 2278 2279 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { 2280 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", 2281 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); 2282 return -ENOTSUP; 2283 } 2284 2285 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); 2286 if (unsupported_caps) { 2287 if (unsupported_caps & MCG_LMCE_P) { 2288 error_report("kvm: LMCE not supported"); 2289 return -ENOTSUP; 2290 } 2291 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64, 2292 unsupported_caps); 2293 } 2294 2295 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; 2296 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); 2297 if (ret < 0) { 2298 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); 2299 return ret; 2300 } 2301 } 2302 2303 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env); 2304 2305 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); 2306 if (c) { 2307 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || 2308 !!(c->ecx & CPUID_EXT_SMX); 2309 } 2310 2311 c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0); 2312 if (c && (c->ebx & CPUID_7_0_EBX_SGX)) { 2313 has_msr_feature_control = true; 2314 } 2315 2316 if (env->mcg_cap & MCG_LMCE_P) { 2317 has_msr_mcg_ext_ctl = has_msr_feature_control = true; 2318 } 2319 2320 if (!env->user_tsc_khz) { 2321 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && 2322 invtsc_mig_blocker == NULL) { 2323 error_setg(&invtsc_mig_blocker, 2324 "State blocked by non-migratable CPU device" 2325 " (invtsc flag)"); 2326 r = migrate_add_blocker(&invtsc_mig_blocker, &local_err); 2327 if (r < 0) { 2328 error_report_err(local_err); 2329 return r; 2330 } 2331 } 2332 } 2333 2334 if (cpu->vmware_cpuid_freq 2335 /* Guests depend on 0x40000000 to detect this feature, so only expose 2336 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ 2337 && cpu->expose_kvm 2338 && kvm_base == KVM_CPUID_SIGNATURE 2339 /* TSC clock must be stable and known for this feature. */ 2340 && tsc_is_stable_and_known(env)) { 2341 2342 c = &cpuid_data.entries[cpuid_i++]; 2343 c->function = KVM_CPUID_SIGNATURE | 0x10; 2344 c->eax = env->tsc_khz; 2345 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */ 2346 c->ecx = c->edx = 0; 2347 2348 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); 2349 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); 2350 } 2351 2352 cpuid_data.cpuid.nent = cpuid_i; 2353 2354 cpuid_data.cpuid.padding = 0; 2355 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); 2356 if (r) { 2357 goto fail; 2358 } 2359 kvm_init_xsave(env); 2360 2361 max_nested_state_len = kvm_max_nested_state_length(); 2362 if (max_nested_state_len > 0) { 2363 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data)); 2364 2365 if (cpu_has_vmx(env) || cpu_has_svm(env)) { 2366 env->nested_state = g_malloc0(max_nested_state_len); 2367 env->nested_state->size = max_nested_state_len; 2368 2369 kvm_init_nested_state(env); 2370 } 2371 } 2372 2373 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); 2374 2375 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { 2376 has_msr_tsc_aux = false; 2377 } 2378 2379 kvm_init_msrs(cpu); 2380 2381 return 0; 2382 2383 fail: 2384 migrate_del_blocker(&invtsc_mig_blocker); 2385 2386 return r; 2387 } 2388 2389 int kvm_arch_destroy_vcpu(CPUState *cs) 2390 { 2391 X86CPU *cpu = X86_CPU(cs); 2392 CPUX86State *env = &cpu->env; 2393 2394 g_free(env->xsave_buf); 2395 2396 g_free(cpu->kvm_msr_buf); 2397 cpu->kvm_msr_buf = NULL; 2398 2399 g_free(env->nested_state); 2400 env->nested_state = NULL; 2401 2402 qemu_del_vm_change_state_handler(cpu->vmsentry); 2403 2404 return 0; 2405 } 2406 2407 void kvm_arch_reset_vcpu(X86CPU *cpu) 2408 { 2409 CPUX86State *env = &cpu->env; 2410 2411 env->xcr0 = 1; 2412 if (kvm_irqchip_in_kernel()) { 2413 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : 2414 KVM_MP_STATE_UNINITIALIZED; 2415 } else { 2416 env->mp_state = KVM_MP_STATE_RUNNABLE; 2417 } 2418 2419 /* enabled by default */ 2420 env->poll_control_msr = 1; 2421 2422 kvm_init_nested_state(env); 2423 2424 sev_es_set_reset_vector(CPU(cpu)); 2425 } 2426 2427 void kvm_arch_after_reset_vcpu(X86CPU *cpu) 2428 { 2429 CPUX86State *env = &cpu->env; 2430 int i; 2431 2432 /* 2433 * Reset SynIC after all other devices have been reset to let them remove 2434 * their SINT routes first. 2435 */ 2436 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 2437 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { 2438 env->msr_hv_synic_sint[i] = HV_SINT_MASKED; 2439 } 2440 2441 hyperv_x86_synic_reset(cpu); 2442 } 2443 } 2444 2445 void kvm_arch_reset_parked_vcpu(unsigned long vcpu_id, int kvm_fd) 2446 { 2447 g_autofree struct kvm_msrs *msrs = NULL; 2448 2449 msrs = g_malloc0(sizeof(*msrs) + sizeof(msrs->entries[0])); 2450 msrs->entries[0].index = MSR_IA32_TSC; 2451 msrs->entries[0].data = 1; /* match the value in x86_cpu_reset() */ 2452 msrs->nmsrs++; 2453 2454 if (ioctl(kvm_fd, KVM_SET_MSRS, msrs) != 1) { 2455 warn_report("parked vCPU %lu TSC reset failed: %d", 2456 vcpu_id, errno); 2457 } 2458 } 2459 2460 void kvm_arch_do_init_vcpu(X86CPU *cpu) 2461 { 2462 CPUX86State *env = &cpu->env; 2463 2464 /* APs get directly into wait-for-SIPI state. */ 2465 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { 2466 env->mp_state = KVM_MP_STATE_INIT_RECEIVED; 2467 } 2468 } 2469 2470 static int kvm_get_supported_feature_msrs(KVMState *s) 2471 { 2472 int ret = 0; 2473 2474 if (kvm_feature_msrs != NULL) { 2475 return 0; 2476 } 2477 2478 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) { 2479 return 0; 2480 } 2481 2482 struct kvm_msr_list msr_list; 2483 2484 msr_list.nmsrs = 0; 2485 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list); 2486 if (ret < 0 && ret != -E2BIG) { 2487 error_report("Fetch KVM feature MSR list failed: %s", 2488 strerror(-ret)); 2489 return ret; 2490 } 2491 2492 assert(msr_list.nmsrs > 0); 2493 kvm_feature_msrs = g_malloc0(sizeof(msr_list) + 2494 msr_list.nmsrs * sizeof(msr_list.indices[0])); 2495 2496 kvm_feature_msrs->nmsrs = msr_list.nmsrs; 2497 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs); 2498 2499 if (ret < 0) { 2500 error_report("Fetch KVM feature MSR list failed: %s", 2501 strerror(-ret)); 2502 g_free(kvm_feature_msrs); 2503 kvm_feature_msrs = NULL; 2504 return ret; 2505 } 2506 2507 return 0; 2508 } 2509 2510 static int kvm_get_supported_msrs(KVMState *s) 2511 { 2512 int ret = 0; 2513 struct kvm_msr_list msr_list, *kvm_msr_list; 2514 2515 /* 2516 * Obtain MSR list from KVM. These are the MSRs that we must 2517 * save/restore. 2518 */ 2519 msr_list.nmsrs = 0; 2520 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); 2521 if (ret < 0 && ret != -E2BIG) { 2522 return ret; 2523 } 2524 /* 2525 * Old kernel modules had a bug and could write beyond the provided 2526 * memory. Allocate at least a safe amount of 1K. 2527 */ 2528 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + 2529 msr_list.nmsrs * 2530 sizeof(msr_list.indices[0]))); 2531 2532 kvm_msr_list->nmsrs = msr_list.nmsrs; 2533 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); 2534 if (ret >= 0) { 2535 int i; 2536 2537 for (i = 0; i < kvm_msr_list->nmsrs; i++) { 2538 switch (kvm_msr_list->indices[i]) { 2539 case MSR_STAR: 2540 has_msr_star = true; 2541 break; 2542 case MSR_VM_HSAVE_PA: 2543 has_msr_hsave_pa = true; 2544 break; 2545 case MSR_TSC_AUX: 2546 has_msr_tsc_aux = true; 2547 break; 2548 case MSR_TSC_ADJUST: 2549 has_msr_tsc_adjust = true; 2550 break; 2551 case MSR_IA32_TSCDEADLINE: 2552 has_msr_tsc_deadline = true; 2553 break; 2554 case MSR_IA32_SMBASE: 2555 has_msr_smbase = true; 2556 break; 2557 case MSR_SMI_COUNT: 2558 has_msr_smi_count = true; 2559 break; 2560 case MSR_IA32_MISC_ENABLE: 2561 has_msr_misc_enable = true; 2562 break; 2563 case MSR_IA32_BNDCFGS: 2564 has_msr_bndcfgs = true; 2565 break; 2566 case MSR_IA32_XSS: 2567 has_msr_xss = true; 2568 break; 2569 case MSR_IA32_UMWAIT_CONTROL: 2570 has_msr_umwait = true; 2571 break; 2572 case HV_X64_MSR_CRASH_CTL: 2573 has_msr_hv_crash = true; 2574 break; 2575 case HV_X64_MSR_RESET: 2576 has_msr_hv_reset = true; 2577 break; 2578 case HV_X64_MSR_VP_INDEX: 2579 has_msr_hv_vpindex = true; 2580 break; 2581 case HV_X64_MSR_VP_RUNTIME: 2582 has_msr_hv_runtime = true; 2583 break; 2584 case HV_X64_MSR_SCONTROL: 2585 has_msr_hv_synic = true; 2586 break; 2587 case HV_X64_MSR_STIMER0_CONFIG: 2588 has_msr_hv_stimer = true; 2589 break; 2590 case HV_X64_MSR_TSC_FREQUENCY: 2591 has_msr_hv_frequencies = true; 2592 break; 2593 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 2594 has_msr_hv_reenlightenment = true; 2595 break; 2596 case HV_X64_MSR_SYNDBG_OPTIONS: 2597 has_msr_hv_syndbg_options = true; 2598 break; 2599 case MSR_IA32_SPEC_CTRL: 2600 has_msr_spec_ctrl = true; 2601 break; 2602 case MSR_AMD64_TSC_RATIO: 2603 has_tsc_scale_msr = true; 2604 break; 2605 case MSR_IA32_TSX_CTRL: 2606 has_msr_tsx_ctrl = true; 2607 break; 2608 case MSR_VIRT_SSBD: 2609 has_msr_virt_ssbd = true; 2610 break; 2611 case MSR_IA32_ARCH_CAPABILITIES: 2612 has_msr_arch_capabs = true; 2613 break; 2614 case MSR_IA32_CORE_CAPABILITY: 2615 has_msr_core_capabs = true; 2616 break; 2617 case MSR_IA32_PERF_CAPABILITIES: 2618 has_msr_perf_capabs = true; 2619 break; 2620 case MSR_IA32_VMX_VMFUNC: 2621 has_msr_vmx_vmfunc = true; 2622 break; 2623 case MSR_IA32_UCODE_REV: 2624 has_msr_ucode_rev = true; 2625 break; 2626 case MSR_IA32_VMX_PROCBASED_CTLS2: 2627 has_msr_vmx_procbased_ctls2 = true; 2628 break; 2629 case MSR_IA32_PKRS: 2630 has_msr_pkrs = true; 2631 break; 2632 case MSR_K7_HWCR: 2633 has_msr_hwcr = true; 2634 } 2635 } 2636 } 2637 2638 g_free(kvm_msr_list); 2639 2640 return ret; 2641 } 2642 2643 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu, 2644 uint32_t msr, 2645 uint64_t *val) 2646 { 2647 *val = cpu_x86_get_msr_core_thread_count(cpu); 2648 2649 return true; 2650 } 2651 2652 static bool kvm_rdmsr_rapl_power_unit(X86CPU *cpu, 2653 uint32_t msr, 2654 uint64_t *val) 2655 { 2656 2657 CPUState *cs = CPU(cpu); 2658 2659 *val = cs->kvm_state->msr_energy.msr_unit; 2660 2661 return true; 2662 } 2663 2664 static bool kvm_rdmsr_pkg_power_limit(X86CPU *cpu, 2665 uint32_t msr, 2666 uint64_t *val) 2667 { 2668 2669 CPUState *cs = CPU(cpu); 2670 2671 *val = cs->kvm_state->msr_energy.msr_limit; 2672 2673 return true; 2674 } 2675 2676 static bool kvm_rdmsr_pkg_power_info(X86CPU *cpu, 2677 uint32_t msr, 2678 uint64_t *val) 2679 { 2680 2681 CPUState *cs = CPU(cpu); 2682 2683 *val = cs->kvm_state->msr_energy.msr_info; 2684 2685 return true; 2686 } 2687 2688 static bool kvm_rdmsr_pkg_energy_status(X86CPU *cpu, 2689 uint32_t msr, 2690 uint64_t *val) 2691 { 2692 2693 CPUState *cs = CPU(cpu); 2694 *val = cs->kvm_state->msr_energy.msr_value[cs->cpu_index]; 2695 2696 return true; 2697 } 2698 2699 static Notifier smram_machine_done; 2700 static KVMMemoryListener smram_listener; 2701 static AddressSpace smram_address_space; 2702 static MemoryRegion smram_as_root; 2703 static MemoryRegion smram_as_mem; 2704 2705 static void register_smram_listener(Notifier *n, void *unused) 2706 { 2707 MemoryRegion *smram = 2708 (MemoryRegion *) object_resolve_path("/machine/smram", NULL); 2709 2710 /* Outer container... */ 2711 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); 2712 memory_region_set_enabled(&smram_as_root, true); 2713 2714 /* ... with two regions inside: normal system memory with low 2715 * priority, and... 2716 */ 2717 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", 2718 get_system_memory(), 0, ~0ull); 2719 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); 2720 memory_region_set_enabled(&smram_as_mem, true); 2721 2722 if (smram) { 2723 /* ... SMRAM with higher priority */ 2724 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); 2725 memory_region_set_enabled(smram, true); 2726 } 2727 2728 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); 2729 kvm_memory_listener_register(kvm_state, &smram_listener, 2730 &smram_address_space, 1, "kvm-smram"); 2731 } 2732 2733 static void *kvm_msr_energy_thread(void *data) 2734 { 2735 KVMState *s = data; 2736 struct KVMMsrEnergy *vmsr = &s->msr_energy; 2737 2738 g_autofree vmsr_package_energy_stat *pkg_stat = NULL; 2739 g_autofree vmsr_thread_stat *thd_stat = NULL; 2740 g_autofree CPUState *cpu = NULL; 2741 g_autofree unsigned int *vpkgs_energy_stat = NULL; 2742 unsigned int num_threads = 0; 2743 2744 X86CPUTopoIDs topo_ids; 2745 2746 rcu_register_thread(); 2747 2748 /* Allocate memory for each package energy status */ 2749 pkg_stat = g_new0(vmsr_package_energy_stat, vmsr->host_topo.maxpkgs); 2750 2751 /* Allocate memory for thread stats */ 2752 thd_stat = g_new0(vmsr_thread_stat, 1); 2753 2754 /* Allocate memory for holding virtual package energy counter */ 2755 vpkgs_energy_stat = g_new0(unsigned int, vmsr->guest_vsockets); 2756 2757 /* Populate the max tick of each packages */ 2758 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) { 2759 /* 2760 * Max numbers of ticks per package 2761 * Time in second * Number of ticks/second * Number of cores/package 2762 * ex: 100 ticks/second/CPU, 12 CPUs per Package gives 1200 ticks max 2763 */ 2764 vmsr->host_topo.maxticks[i] = (MSR_ENERGY_THREAD_SLEEP_US / 1000000) 2765 * sysconf(_SC_CLK_TCK) 2766 * vmsr->host_topo.pkg_cpu_count[i]; 2767 } 2768 2769 while (true) { 2770 /* Get all qemu threads id */ 2771 g_autofree pid_t *thread_ids 2772 = vmsr_get_thread_ids(vmsr->pid, &num_threads); 2773 2774 if (thread_ids == NULL) { 2775 goto clean; 2776 } 2777 2778 thd_stat = g_renew(vmsr_thread_stat, thd_stat, num_threads); 2779 /* Unlike g_new0, g_renew0 function doesn't exist yet... */ 2780 memset(thd_stat, 0, num_threads * sizeof(vmsr_thread_stat)); 2781 2782 /* Populate all the thread stats */ 2783 for (int i = 0; i < num_threads; i++) { 2784 thd_stat[i].utime = g_new0(unsigned long long, 2); 2785 thd_stat[i].stime = g_new0(unsigned long long, 2); 2786 thd_stat[i].thread_id = thread_ids[i]; 2787 vmsr_read_thread_stat(vmsr->pid, 2788 thd_stat[i].thread_id, 2789 &thd_stat[i].utime[0], 2790 &thd_stat[i].stime[0], 2791 &thd_stat[i].cpu_id); 2792 thd_stat[i].pkg_id = 2793 vmsr_get_physical_package_id(thd_stat[i].cpu_id); 2794 } 2795 2796 /* Retrieve all packages power plane energy counter */ 2797 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) { 2798 for (int j = 0; j < num_threads; j++) { 2799 /* 2800 * Use the first thread we found that ran on the CPU 2801 * of the package to read the packages energy counter 2802 */ 2803 if (thd_stat[j].pkg_id == i) { 2804 pkg_stat[i].e_start = 2805 vmsr_read_msr(MSR_PKG_ENERGY_STATUS, 2806 thd_stat[j].cpu_id, 2807 thd_stat[j].thread_id, 2808 s->msr_energy.sioc); 2809 break; 2810 } 2811 } 2812 } 2813 2814 /* Sleep a short period while the other threads are working */ 2815 usleep(MSR_ENERGY_THREAD_SLEEP_US); 2816 2817 /* 2818 * Retrieve all packages power plane energy counter 2819 * Calculate the delta of all packages 2820 */ 2821 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) { 2822 for (int j = 0; j < num_threads; j++) { 2823 /* 2824 * Use the first thread we found that ran on the CPU 2825 * of the package to read the packages energy counter 2826 */ 2827 if (thd_stat[j].pkg_id == i) { 2828 pkg_stat[i].e_end = 2829 vmsr_read_msr(MSR_PKG_ENERGY_STATUS, 2830 thd_stat[j].cpu_id, 2831 thd_stat[j].thread_id, 2832 s->msr_energy.sioc); 2833 /* 2834 * Prevent the case we have migrate the VM 2835 * during the sleep period or any other cases 2836 * were energy counter might be lower after 2837 * the sleep period. 2838 */ 2839 if (pkg_stat[i].e_end > pkg_stat[i].e_start) { 2840 pkg_stat[i].e_delta = 2841 pkg_stat[i].e_end - pkg_stat[i].e_start; 2842 } else { 2843 pkg_stat[i].e_delta = 0; 2844 } 2845 break; 2846 } 2847 } 2848 } 2849 2850 /* Delta of ticks spend by each thread between the sample */ 2851 for (int i = 0; i < num_threads; i++) { 2852 vmsr_read_thread_stat(vmsr->pid, 2853 thd_stat[i].thread_id, 2854 &thd_stat[i].utime[1], 2855 &thd_stat[i].stime[1], 2856 &thd_stat[i].cpu_id); 2857 2858 if (vmsr->pid < 0) { 2859 /* 2860 * We don't count the dead thread 2861 * i.e threads that existed before the sleep 2862 * and not anymore 2863 */ 2864 thd_stat[i].delta_ticks = 0; 2865 } else { 2866 vmsr_delta_ticks(thd_stat, i); 2867 } 2868 } 2869 2870 /* 2871 * Identify the vcpu threads 2872 * Calculate the number of vcpu per package 2873 */ 2874 CPU_FOREACH(cpu) { 2875 for (int i = 0; i < num_threads; i++) { 2876 if (cpu->thread_id == thd_stat[i].thread_id) { 2877 thd_stat[i].is_vcpu = true; 2878 thd_stat[i].vcpu_id = cpu->cpu_index; 2879 pkg_stat[thd_stat[i].pkg_id].nb_vcpu++; 2880 thd_stat[i].acpi_id = kvm_arch_vcpu_id(cpu); 2881 break; 2882 } 2883 } 2884 } 2885 2886 /* Retrieve the virtual package number of each vCPU */ 2887 for (int i = 0; i < vmsr->guest_cpu_list->len; i++) { 2888 for (int j = 0; j < num_threads; j++) { 2889 if ((thd_stat[j].acpi_id == 2890 vmsr->guest_cpu_list->cpus[i].arch_id) 2891 && (thd_stat[j].is_vcpu == true)) { 2892 x86_topo_ids_from_apicid(thd_stat[j].acpi_id, 2893 &vmsr->guest_topo_info, &topo_ids); 2894 thd_stat[j].vpkg_id = topo_ids.pkg_id; 2895 } 2896 } 2897 } 2898 2899 /* Calculate the total energy of all non-vCPU thread */ 2900 for (int i = 0; i < num_threads; i++) { 2901 if ((thd_stat[i].is_vcpu != true) && 2902 (thd_stat[i].delta_ticks > 0)) { 2903 double temp; 2904 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta, 2905 thd_stat[i].delta_ticks, 2906 vmsr->host_topo.maxticks[thd_stat[i].pkg_id]); 2907 pkg_stat[thd_stat[i].pkg_id].e_ratio 2908 += (uint64_t)lround(temp); 2909 } 2910 } 2911 2912 /* Calculate the ratio per non-vCPU thread of each package */ 2913 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) { 2914 if (pkg_stat[i].nb_vcpu > 0) { 2915 pkg_stat[i].e_ratio = pkg_stat[i].e_ratio / pkg_stat[i].nb_vcpu; 2916 } 2917 } 2918 2919 /* 2920 * Calculate the energy for each Package: 2921 * Energy Package = sum of each vCPU energy that belongs to the package 2922 */ 2923 for (int i = 0; i < num_threads; i++) { 2924 if ((thd_stat[i].is_vcpu == true) && \ 2925 (thd_stat[i].delta_ticks > 0)) { 2926 double temp; 2927 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta, 2928 thd_stat[i].delta_ticks, 2929 vmsr->host_topo.maxticks[thd_stat[i].pkg_id]); 2930 vpkgs_energy_stat[thd_stat[i].vpkg_id] += 2931 (uint64_t)lround(temp); 2932 vpkgs_energy_stat[thd_stat[i].vpkg_id] += 2933 pkg_stat[thd_stat[i].pkg_id].e_ratio; 2934 } 2935 } 2936 2937 /* 2938 * Finally populate the vmsr register of each vCPU with the total 2939 * package value to emulate the real hardware where each CPU return the 2940 * value of the package it belongs. 2941 */ 2942 for (int i = 0; i < num_threads; i++) { 2943 if ((thd_stat[i].is_vcpu == true) && \ 2944 (thd_stat[i].delta_ticks > 0)) { 2945 vmsr->msr_value[thd_stat[i].vcpu_id] = \ 2946 vpkgs_energy_stat[thd_stat[i].vpkg_id]; 2947 } 2948 } 2949 2950 /* Freeing memory before zeroing the pointer */ 2951 for (int i = 0; i < num_threads; i++) { 2952 g_free(thd_stat[i].utime); 2953 g_free(thd_stat[i].stime); 2954 } 2955 } 2956 2957 clean: 2958 rcu_unregister_thread(); 2959 return NULL; 2960 } 2961 2962 static int kvm_msr_energy_thread_init(KVMState *s, MachineState *ms) 2963 { 2964 MachineClass *mc = MACHINE_GET_CLASS(ms); 2965 struct KVMMsrEnergy *r = &s->msr_energy; 2966 2967 /* 2968 * Sanity check 2969 * 1. Host cpu must be Intel cpu 2970 * 2. RAPL must be enabled on the Host 2971 */ 2972 if (!is_host_cpu_intel()) { 2973 error_report("The RAPL feature can only be enabled on hosts " 2974 "with Intel CPU models"); 2975 return -1; 2976 } 2977 2978 if (!is_rapl_enabled()) { 2979 return -1; 2980 } 2981 2982 /* Retrieve the virtual topology */ 2983 vmsr_init_topo_info(&r->guest_topo_info, ms); 2984 2985 /* Retrieve the number of vcpu */ 2986 r->guest_vcpus = ms->smp.cpus; 2987 2988 /* Retrieve the number of virtual sockets */ 2989 r->guest_vsockets = ms->smp.sockets; 2990 2991 /* Allocate register memory (MSR_PKG_STATUS) for each vcpu */ 2992 r->msr_value = g_new0(uint64_t, r->guest_vcpus); 2993 2994 /* Retrieve the CPUArchIDlist */ 2995 r->guest_cpu_list = mc->possible_cpu_arch_ids(ms); 2996 2997 /* Max number of cpus on the Host */ 2998 r->host_topo.maxcpus = vmsr_get_maxcpus(); 2999 if (r->host_topo.maxcpus == 0) { 3000 error_report("host max cpus = 0"); 3001 return -1; 3002 } 3003 3004 /* Max number of packages on the host */ 3005 r->host_topo.maxpkgs = vmsr_get_max_physical_package(r->host_topo.maxcpus); 3006 if (r->host_topo.maxpkgs == 0) { 3007 error_report("host max pkgs = 0"); 3008 return -1; 3009 } 3010 3011 /* Allocate memory for each package on the host */ 3012 r->host_topo.pkg_cpu_count = g_new0(unsigned int, r->host_topo.maxpkgs); 3013 r->host_topo.maxticks = g_new0(unsigned int, r->host_topo.maxpkgs); 3014 3015 vmsr_count_cpus_per_package(r->host_topo.pkg_cpu_count, 3016 r->host_topo.maxpkgs); 3017 for (int i = 0; i < r->host_topo.maxpkgs; i++) { 3018 if (r->host_topo.pkg_cpu_count[i] == 0) { 3019 error_report("cpu per packages = 0 on package_%d", i); 3020 return -1; 3021 } 3022 } 3023 3024 /* Get QEMU PID*/ 3025 r->pid = getpid(); 3026 3027 /* Compute the socket path if necessary */ 3028 if (s->msr_energy.socket_path == NULL) { 3029 s->msr_energy.socket_path = vmsr_compute_default_paths(); 3030 } 3031 3032 /* Open socket with vmsr helper */ 3033 s->msr_energy.sioc = vmsr_open_socket(s->msr_energy.socket_path); 3034 3035 if (s->msr_energy.sioc == NULL) { 3036 error_report("vmsr socket opening failed"); 3037 return -1; 3038 } 3039 3040 /* Those MSR values should not change */ 3041 r->msr_unit = vmsr_read_msr(MSR_RAPL_POWER_UNIT, 0, r->pid, 3042 s->msr_energy.sioc); 3043 r->msr_limit = vmsr_read_msr(MSR_PKG_POWER_LIMIT, 0, r->pid, 3044 s->msr_energy.sioc); 3045 r->msr_info = vmsr_read_msr(MSR_PKG_POWER_INFO, 0, r->pid, 3046 s->msr_energy.sioc); 3047 if (r->msr_unit == 0 || r->msr_limit == 0 || r->msr_info == 0) { 3048 error_report("can't read any virtual msr"); 3049 return -1; 3050 } 3051 3052 qemu_thread_create(&r->msr_thr, "kvm-msr", 3053 kvm_msr_energy_thread, 3054 s, QEMU_THREAD_JOINABLE); 3055 return 0; 3056 } 3057 3058 int kvm_arch_get_default_type(MachineState *ms) 3059 { 3060 return 0; 3061 } 3062 3063 static int kvm_vm_enable_exception_payload(KVMState *s) 3064 { 3065 int ret = 0; 3066 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD); 3067 if (has_exception_payload) { 3068 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true); 3069 if (ret < 0) { 3070 error_report("kvm: Failed to enable exception payload cap: %s", 3071 strerror(-ret)); 3072 } 3073 } 3074 3075 return ret; 3076 } 3077 3078 static int kvm_vm_enable_triple_fault_event(KVMState *s) 3079 { 3080 int ret = 0; 3081 has_triple_fault_event = \ 3082 kvm_check_extension(s, 3083 KVM_CAP_X86_TRIPLE_FAULT_EVENT); 3084 if (has_triple_fault_event) { 3085 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true); 3086 if (ret < 0) { 3087 error_report("kvm: Failed to enable triple fault event cap: %s", 3088 strerror(-ret)); 3089 } 3090 } 3091 return ret; 3092 } 3093 3094 static int kvm_vm_set_identity_map_addr(KVMState *s, uint64_t identity_base) 3095 { 3096 return kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); 3097 } 3098 3099 static int kvm_vm_set_nr_mmu_pages(KVMState *s) 3100 { 3101 uint64_t shadow_mem; 3102 int ret = 0; 3103 shadow_mem = object_property_get_int(OBJECT(s), 3104 "kvm-shadow-mem", 3105 &error_abort); 3106 if (shadow_mem != -1) { 3107 shadow_mem /= 4096; 3108 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); 3109 } 3110 return ret; 3111 } 3112 3113 static int kvm_vm_set_tss_addr(KVMState *s, uint64_t tss_base) 3114 { 3115 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, tss_base); 3116 } 3117 3118 static int kvm_vm_enable_disable_exits(KVMState *s) 3119 { 3120 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS); 3121 3122 if (disable_exits) { 3123 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT | 3124 KVM_X86_DISABLE_EXITS_HLT | 3125 KVM_X86_DISABLE_EXITS_PAUSE | 3126 KVM_X86_DISABLE_EXITS_CSTATE); 3127 } 3128 3129 return kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0, 3130 disable_exits); 3131 } 3132 3133 static int kvm_vm_enable_bus_lock_exit(KVMState *s) 3134 { 3135 int ret = 0; 3136 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT); 3137 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) { 3138 error_report("kvm: bus lock detection unsupported"); 3139 return -ENOTSUP; 3140 } 3141 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0, 3142 KVM_BUS_LOCK_DETECTION_EXIT); 3143 if (ret < 0) { 3144 error_report("kvm: Failed to enable bus lock detection cap: %s", 3145 strerror(-ret)); 3146 } 3147 3148 return ret; 3149 } 3150 3151 static int kvm_vm_enable_notify_vmexit(KVMState *s) 3152 { 3153 int ret = 0; 3154 if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE) { 3155 uint64_t notify_window_flags = 3156 ((uint64_t)s->notify_window << 32) | 3157 KVM_X86_NOTIFY_VMEXIT_ENABLED | 3158 KVM_X86_NOTIFY_VMEXIT_USER; 3159 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0, 3160 notify_window_flags); 3161 if (ret < 0) { 3162 error_report("kvm: Failed to enable notify vmexit cap: %s", 3163 strerror(-ret)); 3164 } 3165 } 3166 return ret; 3167 } 3168 3169 static int kvm_vm_enable_userspace_msr(KVMState *s) 3170 { 3171 int ret; 3172 3173 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0, 3174 KVM_MSR_EXIT_REASON_FILTER); 3175 if (ret < 0) { 3176 error_report("Could not enable user space MSRs: %s", 3177 strerror(-ret)); 3178 exit(1); 3179 } 3180 3181 ret = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT, 3182 kvm_rdmsr_core_thread_count, NULL); 3183 if (ret < 0) { 3184 error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s", 3185 strerror(-ret)); 3186 exit(1); 3187 } 3188 3189 return 0; 3190 } 3191 3192 static int kvm_vm_enable_energy_msrs(KVMState *s) 3193 { 3194 int ret; 3195 3196 if (s->msr_energy.enable == true) { 3197 ret = kvm_filter_msr(s, MSR_RAPL_POWER_UNIT, 3198 kvm_rdmsr_rapl_power_unit, NULL); 3199 if (ret < 0) { 3200 error_report("Could not install MSR_RAPL_POWER_UNIT handler: %s", 3201 strerror(-ret)); 3202 return ret; 3203 } 3204 3205 ret = kvm_filter_msr(s, MSR_PKG_POWER_LIMIT, 3206 kvm_rdmsr_pkg_power_limit, NULL); 3207 if (ret < 0) { 3208 error_report("Could not install MSR_PKG_POWER_LIMIT handler: %s", 3209 strerror(-ret)); 3210 return ret; 3211 } 3212 3213 ret = kvm_filter_msr(s, MSR_PKG_POWER_INFO, 3214 kvm_rdmsr_pkg_power_info, NULL); 3215 if (ret < 0) { 3216 error_report("Could not install MSR_PKG_POWER_INFO handler: %s", 3217 strerror(-ret)); 3218 return ret; 3219 } 3220 ret = kvm_filter_msr(s, MSR_PKG_ENERGY_STATUS, 3221 kvm_rdmsr_pkg_energy_status, NULL); 3222 if (ret < 0) { 3223 error_report("Could not install MSR_PKG_ENERGY_STATUS handler: %s", 3224 strerror(-ret)); 3225 return ret; 3226 } 3227 } 3228 return 0; 3229 } 3230 3231 int kvm_arch_init(MachineState *ms, KVMState *s) 3232 { 3233 int ret; 3234 struct utsname utsname; 3235 Error *local_err = NULL; 3236 3237 /* 3238 * Initialize confidential guest (SEV/TDX) context, if required 3239 */ 3240 if (ms->cgs) { 3241 ret = confidential_guest_kvm_init(ms->cgs, &local_err); 3242 if (ret < 0) { 3243 error_report_err(local_err); 3244 return ret; 3245 } 3246 } 3247 3248 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); 3249 has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0; 3250 3251 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX); 3252 3253 ret = kvm_vm_enable_exception_payload(s); 3254 if (ret < 0) { 3255 return ret; 3256 } 3257 3258 ret = kvm_vm_enable_triple_fault_event(s); 3259 if (ret < 0) { 3260 return ret; 3261 } 3262 3263 if (s->xen_version) { 3264 #ifdef CONFIG_XEN_EMU 3265 if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) { 3266 error_report("kvm: Xen support only available in PC machine"); 3267 return -ENOTSUP; 3268 } 3269 /* hyperv_enabled() doesn't work yet. */ 3270 uint32_t msr = XEN_HYPERCALL_MSR; 3271 ret = kvm_xen_init(s, msr); 3272 if (ret < 0) { 3273 return ret; 3274 } 3275 #else 3276 error_report("kvm: Xen support not enabled in qemu"); 3277 return -ENOTSUP; 3278 #endif 3279 } 3280 3281 ret = kvm_get_supported_msrs(s); 3282 if (ret < 0) { 3283 return ret; 3284 } 3285 3286 ret = kvm_get_supported_feature_msrs(s); 3287 if (ret < 0) { 3288 return ret; 3289 } 3290 3291 uname(&utsname); 3292 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; 3293 3294 ret = kvm_vm_set_identity_map_addr(s, KVM_IDENTITY_BASE); 3295 if (ret < 0) { 3296 return ret; 3297 } 3298 3299 /* Set TSS base one page after EPT identity map. */ 3300 ret = kvm_vm_set_tss_addr(s, KVM_IDENTITY_BASE + 0x1000); 3301 if (ret < 0) { 3302 return ret; 3303 } 3304 3305 /* Tell fw_cfg to notify the BIOS to reserve the range. */ 3306 e820_add_entry(KVM_IDENTITY_BASE, 0x4000, E820_RESERVED); 3307 3308 ret = kvm_vm_set_nr_mmu_pages(s); 3309 if (ret < 0) { 3310 return ret; 3311 } 3312 3313 if (kvm_check_extension(s, KVM_CAP_X86_SMM) && 3314 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) && 3315 x86_machine_is_smm_enabled(X86_MACHINE(ms))) { 3316 smram_machine_done.notify = register_smram_listener; 3317 qemu_add_machine_init_done_notifier(&smram_machine_done); 3318 } 3319 3320 if (enable_cpu_pm) { 3321 ret = kvm_vm_enable_disable_exits(s); 3322 if (ret < 0) { 3323 error_report("kvm: guest stopping CPU not supported: %s", 3324 strerror(-ret)); 3325 return ret; 3326 } 3327 } 3328 3329 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) { 3330 X86MachineState *x86ms = X86_MACHINE(ms); 3331 3332 if (x86ms->bus_lock_ratelimit > 0) { 3333 ret = kvm_vm_enable_bus_lock_exit(s); 3334 if (ret < 0) { 3335 return ret; 3336 } 3337 ratelimit_init(&bus_lock_ratelimit_ctrl); 3338 ratelimit_set_speed(&bus_lock_ratelimit_ctrl, 3339 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME); 3340 } 3341 } 3342 3343 if (kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) { 3344 ret = kvm_vm_enable_notify_vmexit(s); 3345 if (ret < 0) { 3346 return ret; 3347 } 3348 } 3349 3350 if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) { 3351 ret = kvm_vm_enable_userspace_msr(s); 3352 if (ret < 0) { 3353 return ret; 3354 } 3355 3356 if (s->msr_energy.enable == true) { 3357 ret = kvm_vm_enable_energy_msrs(s); 3358 if (ret < 0) { 3359 return ret; 3360 } 3361 3362 ret = kvm_msr_energy_thread_init(s, ms); 3363 if (ret < 0) { 3364 error_report("kvm : error RAPL feature requirement not met"); 3365 return ret; 3366 } 3367 } 3368 } 3369 3370 return 0; 3371 } 3372 3373 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 3374 { 3375 lhs->selector = rhs->selector; 3376 lhs->base = rhs->base; 3377 lhs->limit = rhs->limit; 3378 lhs->type = 3; 3379 lhs->present = 1; 3380 lhs->dpl = 3; 3381 lhs->db = 0; 3382 lhs->s = 1; 3383 lhs->l = 0; 3384 lhs->g = 0; 3385 lhs->avl = 0; 3386 lhs->unusable = 0; 3387 } 3388 3389 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 3390 { 3391 unsigned flags = rhs->flags; 3392 lhs->selector = rhs->selector; 3393 lhs->base = rhs->base; 3394 lhs->limit = rhs->limit; 3395 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; 3396 lhs->present = (flags & DESC_P_MASK) != 0; 3397 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; 3398 lhs->db = (flags >> DESC_B_SHIFT) & 1; 3399 lhs->s = (flags & DESC_S_MASK) != 0; 3400 lhs->l = (flags >> DESC_L_SHIFT) & 1; 3401 lhs->g = (flags & DESC_G_MASK) != 0; 3402 lhs->avl = (flags & DESC_AVL_MASK) != 0; 3403 lhs->unusable = !lhs->present; 3404 lhs->padding = 0; 3405 } 3406 3407 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) 3408 { 3409 lhs->selector = rhs->selector; 3410 lhs->base = rhs->base; 3411 lhs->limit = rhs->limit; 3412 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | 3413 ((rhs->present && !rhs->unusable) * DESC_P_MASK) | 3414 (rhs->dpl << DESC_DPL_SHIFT) | 3415 (rhs->db << DESC_B_SHIFT) | 3416 (rhs->s * DESC_S_MASK) | 3417 (rhs->l << DESC_L_SHIFT) | 3418 (rhs->g * DESC_G_MASK) | 3419 (rhs->avl * DESC_AVL_MASK); 3420 } 3421 3422 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) 3423 { 3424 if (set) { 3425 *kvm_reg = *qemu_reg; 3426 } else { 3427 *qemu_reg = *kvm_reg; 3428 } 3429 } 3430 3431 static int kvm_getput_regs(X86CPU *cpu, int set) 3432 { 3433 CPUX86State *env = &cpu->env; 3434 struct kvm_regs regs; 3435 int ret = 0; 3436 3437 if (!set) { 3438 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); 3439 if (ret < 0) { 3440 return ret; 3441 } 3442 } 3443 3444 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); 3445 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); 3446 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); 3447 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); 3448 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); 3449 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); 3450 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); 3451 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); 3452 #ifdef TARGET_X86_64 3453 kvm_getput_reg(®s.r8, &env->regs[8], set); 3454 kvm_getput_reg(®s.r9, &env->regs[9], set); 3455 kvm_getput_reg(®s.r10, &env->regs[10], set); 3456 kvm_getput_reg(®s.r11, &env->regs[11], set); 3457 kvm_getput_reg(®s.r12, &env->regs[12], set); 3458 kvm_getput_reg(®s.r13, &env->regs[13], set); 3459 kvm_getput_reg(®s.r14, &env->regs[14], set); 3460 kvm_getput_reg(®s.r15, &env->regs[15], set); 3461 #endif 3462 3463 kvm_getput_reg(®s.rflags, &env->eflags, set); 3464 kvm_getput_reg(®s.rip, &env->eip, set); 3465 3466 if (set) { 3467 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); 3468 } 3469 3470 return ret; 3471 } 3472 3473 static int kvm_put_xsave(X86CPU *cpu) 3474 { 3475 CPUX86State *env = &cpu->env; 3476 void *xsave = env->xsave_buf; 3477 3478 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len); 3479 3480 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); 3481 } 3482 3483 static int kvm_put_xcrs(X86CPU *cpu) 3484 { 3485 CPUX86State *env = &cpu->env; 3486 struct kvm_xcrs xcrs = {}; 3487 3488 if (!has_xcrs) { 3489 return 0; 3490 } 3491 3492 xcrs.nr_xcrs = 1; 3493 xcrs.flags = 0; 3494 xcrs.xcrs[0].xcr = 0; 3495 xcrs.xcrs[0].value = env->xcr0; 3496 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); 3497 } 3498 3499 static int kvm_put_sregs(X86CPU *cpu) 3500 { 3501 CPUX86State *env = &cpu->env; 3502 struct kvm_sregs sregs; 3503 3504 /* 3505 * The interrupt_bitmap is ignored because KVM_SET_SREGS is 3506 * always followed by KVM_SET_VCPU_EVENTS. 3507 */ 3508 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); 3509 3510 if ((env->eflags & VM_MASK)) { 3511 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 3512 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 3513 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 3514 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 3515 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 3516 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 3517 } else { 3518 set_seg(&sregs.cs, &env->segs[R_CS]); 3519 set_seg(&sregs.ds, &env->segs[R_DS]); 3520 set_seg(&sregs.es, &env->segs[R_ES]); 3521 set_seg(&sregs.fs, &env->segs[R_FS]); 3522 set_seg(&sregs.gs, &env->segs[R_GS]); 3523 set_seg(&sregs.ss, &env->segs[R_SS]); 3524 } 3525 3526 set_seg(&sregs.tr, &env->tr); 3527 set_seg(&sregs.ldt, &env->ldt); 3528 3529 sregs.idt.limit = env->idt.limit; 3530 sregs.idt.base = env->idt.base; 3531 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 3532 sregs.gdt.limit = env->gdt.limit; 3533 sregs.gdt.base = env->gdt.base; 3534 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 3535 3536 sregs.cr0 = env->cr[0]; 3537 sregs.cr2 = env->cr[2]; 3538 sregs.cr3 = env->cr[3]; 3539 sregs.cr4 = env->cr[4]; 3540 3541 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 3542 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 3543 3544 sregs.efer = env->efer; 3545 3546 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); 3547 } 3548 3549 static int kvm_put_sregs2(X86CPU *cpu) 3550 { 3551 CPUX86State *env = &cpu->env; 3552 struct kvm_sregs2 sregs; 3553 int i; 3554 3555 sregs.flags = 0; 3556 3557 if ((env->eflags & VM_MASK)) { 3558 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 3559 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 3560 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 3561 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 3562 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 3563 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 3564 } else { 3565 set_seg(&sregs.cs, &env->segs[R_CS]); 3566 set_seg(&sregs.ds, &env->segs[R_DS]); 3567 set_seg(&sregs.es, &env->segs[R_ES]); 3568 set_seg(&sregs.fs, &env->segs[R_FS]); 3569 set_seg(&sregs.gs, &env->segs[R_GS]); 3570 set_seg(&sregs.ss, &env->segs[R_SS]); 3571 } 3572 3573 set_seg(&sregs.tr, &env->tr); 3574 set_seg(&sregs.ldt, &env->ldt); 3575 3576 sregs.idt.limit = env->idt.limit; 3577 sregs.idt.base = env->idt.base; 3578 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 3579 sregs.gdt.limit = env->gdt.limit; 3580 sregs.gdt.base = env->gdt.base; 3581 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 3582 3583 sregs.cr0 = env->cr[0]; 3584 sregs.cr2 = env->cr[2]; 3585 sregs.cr3 = env->cr[3]; 3586 sregs.cr4 = env->cr[4]; 3587 3588 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 3589 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 3590 3591 sregs.efer = env->efer; 3592 3593 if (env->pdptrs_valid) { 3594 for (i = 0; i < 4; i++) { 3595 sregs.pdptrs[i] = env->pdptrs[i]; 3596 } 3597 sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 3598 } 3599 3600 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs); 3601 } 3602 3603 3604 static void kvm_msr_buf_reset(X86CPU *cpu) 3605 { 3606 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); 3607 } 3608 3609 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) 3610 { 3611 struct kvm_msrs *msrs = cpu->kvm_msr_buf; 3612 void *limit = ((void *)msrs) + MSR_BUF_SIZE; 3613 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; 3614 3615 assert((void *)(entry + 1) <= limit); 3616 3617 entry->index = index; 3618 entry->reserved = 0; 3619 entry->data = value; 3620 msrs->nmsrs++; 3621 } 3622 3623 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) 3624 { 3625 kvm_msr_buf_reset(cpu); 3626 kvm_msr_entry_add(cpu, index, value); 3627 3628 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 3629 } 3630 3631 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value) 3632 { 3633 int ret; 3634 struct { 3635 struct kvm_msrs info; 3636 struct kvm_msr_entry entries[1]; 3637 } msr_data = { 3638 .info.nmsrs = 1, 3639 .entries[0].index = index, 3640 }; 3641 3642 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); 3643 if (ret < 0) { 3644 return ret; 3645 } 3646 assert(ret == 1); 3647 *value = msr_data.entries[0].data; 3648 return ret; 3649 } 3650 void kvm_put_apicbase(X86CPU *cpu, uint64_t value) 3651 { 3652 int ret; 3653 3654 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); 3655 assert(ret == 1); 3656 } 3657 3658 static int kvm_put_tscdeadline_msr(X86CPU *cpu) 3659 { 3660 CPUX86State *env = &cpu->env; 3661 int ret; 3662 3663 if (!has_msr_tsc_deadline) { 3664 return 0; 3665 } 3666 3667 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); 3668 if (ret < 0) { 3669 return ret; 3670 } 3671 3672 assert(ret == 1); 3673 return 0; 3674 } 3675 3676 /* 3677 * Provide a separate write service for the feature control MSR in order to 3678 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done 3679 * before writing any other state because forcibly leaving nested mode 3680 * invalidates the VCPU state. 3681 */ 3682 static int kvm_put_msr_feature_control(X86CPU *cpu) 3683 { 3684 int ret; 3685 3686 if (!has_msr_feature_control) { 3687 return 0; 3688 } 3689 3690 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, 3691 cpu->env.msr_ia32_feature_control); 3692 if (ret < 0) { 3693 return ret; 3694 } 3695 3696 assert(ret == 1); 3697 return 0; 3698 } 3699 3700 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features) 3701 { 3702 uint32_t default1, can_be_one, can_be_zero; 3703 uint32_t must_be_one; 3704 3705 switch (index) { 3706 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 3707 default1 = 0x00000016; 3708 break; 3709 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 3710 default1 = 0x0401e172; 3711 break; 3712 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 3713 default1 = 0x000011ff; 3714 break; 3715 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 3716 default1 = 0x00036dff; 3717 break; 3718 case MSR_IA32_VMX_PROCBASED_CTLS2: 3719 default1 = 0; 3720 break; 3721 default: 3722 abort(); 3723 } 3724 3725 /* If a feature bit is set, the control can be either set or clear. 3726 * Otherwise the value is limited to either 0 or 1 by default1. 3727 */ 3728 can_be_one = features | default1; 3729 can_be_zero = features | ~default1; 3730 must_be_one = ~can_be_zero; 3731 3732 /* 3733 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one). 3734 * Bit 32:63 -> 1 if the control bit can be one. 3735 */ 3736 return must_be_one | (((uint64_t)can_be_one) << 32); 3737 } 3738 3739 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f) 3740 { 3741 uint64_t kvm_vmx_basic = 3742 kvm_arch_get_supported_msr_feature(kvm_state, 3743 MSR_IA32_VMX_BASIC); 3744 3745 if (!kvm_vmx_basic) { 3746 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0), 3747 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail. 3748 */ 3749 return; 3750 } 3751 3752 uint64_t kvm_vmx_misc = 3753 kvm_arch_get_supported_msr_feature(kvm_state, 3754 MSR_IA32_VMX_MISC); 3755 uint64_t kvm_vmx_ept_vpid = 3756 kvm_arch_get_supported_msr_feature(kvm_state, 3757 MSR_IA32_VMX_EPT_VPID_CAP); 3758 3759 /* 3760 * If the guest is 64-bit, a value of 1 is allowed for the host address 3761 * space size vmexit control. 3762 */ 3763 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM 3764 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0; 3765 3766 /* 3767 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should 3768 * not change them for backwards compatibility. 3769 */ 3770 uint64_t fixed_vmx_basic = kvm_vmx_basic & 3771 (MSR_VMX_BASIC_VMCS_REVISION_MASK | 3772 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK | 3773 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK); 3774 3775 /* 3776 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can 3777 * change in the future but are always zero for now, clear them to be 3778 * future proof. Bits 32-63 in theory could change, though KVM does 3779 * not support dual-monitor treatment and probably never will; mask 3780 * them out as well. 3781 */ 3782 uint64_t fixed_vmx_misc = kvm_vmx_misc & 3783 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK | 3784 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK); 3785 3786 /* 3787 * EPT memory types should not change either, so we do not bother 3788 * adding features for them. 3789 */ 3790 uint64_t fixed_vmx_ept_mask = 3791 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ? 3792 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0); 3793 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask; 3794 3795 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 3796 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 3797 f[FEAT_VMX_PROCBASED_CTLS])); 3798 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS, 3799 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS, 3800 f[FEAT_VMX_PINBASED_CTLS])); 3801 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS, 3802 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS, 3803 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit); 3804 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS, 3805 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS, 3806 f[FEAT_VMX_ENTRY_CTLS])); 3807 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2, 3808 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2, 3809 f[FEAT_VMX_SECONDARY_CTLS])); 3810 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP, 3811 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid); 3812 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC, 3813 f[FEAT_VMX_BASIC] | fixed_vmx_basic); 3814 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC, 3815 f[FEAT_VMX_MISC] | fixed_vmx_misc); 3816 if (has_msr_vmx_vmfunc) { 3817 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]); 3818 } 3819 3820 /* 3821 * Just to be safe, write these with constant values. The CRn_FIXED1 3822 * MSRs are generated by KVM based on the vCPU's CPUID. 3823 */ 3824 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0, 3825 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK); 3826 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0, 3827 CR4_VMXE_MASK); 3828 3829 if (f[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) { 3830 /* FRED injected-event data (0x2052). */ 3831 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x52); 3832 } else if (f[FEAT_VMX_EXIT_CTLS] & 3833 VMX_VM_EXIT_ACTIVATE_SECONDARY_CONTROLS) { 3834 /* Secondary VM-exit controls (0x2044). */ 3835 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x44); 3836 } else if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) { 3837 /* TSC multiplier (0x2032). */ 3838 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32); 3839 } else { 3840 /* Preemption timer (0x482E). */ 3841 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E); 3842 } 3843 } 3844 3845 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f) 3846 { 3847 uint64_t kvm_perf_cap = 3848 kvm_arch_get_supported_msr_feature(kvm_state, 3849 MSR_IA32_PERF_CAPABILITIES); 3850 3851 if (kvm_perf_cap) { 3852 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES, 3853 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]); 3854 } 3855 } 3856 3857 static int kvm_buf_set_msrs(X86CPU *cpu) 3858 { 3859 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 3860 if (ret < 0) { 3861 return ret; 3862 } 3863 3864 if (ret < cpu->kvm_msr_buf->nmsrs) { 3865 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 3866 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, 3867 (uint32_t)e->index, (uint64_t)e->data); 3868 } 3869 3870 assert(ret == cpu->kvm_msr_buf->nmsrs); 3871 return 0; 3872 } 3873 3874 static void kvm_init_msrs(X86CPU *cpu) 3875 { 3876 CPUX86State *env = &cpu->env; 3877 3878 kvm_msr_buf_reset(cpu); 3879 3880 if (!is_tdx_vm()) { 3881 if (has_msr_arch_capabs) { 3882 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES, 3883 env->features[FEAT_ARCH_CAPABILITIES]); 3884 } 3885 3886 if (has_msr_core_capabs) { 3887 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY, 3888 env->features[FEAT_CORE_CAPABILITY]); 3889 } 3890 3891 if (has_msr_perf_capabs && cpu->enable_pmu) { 3892 kvm_msr_entry_add_perf(cpu, env->features); 3893 } 3894 3895 /* 3896 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but 3897 * all kernels with MSR features should have them. 3898 */ 3899 if (kvm_feature_msrs && cpu_has_vmx(env)) { 3900 kvm_msr_entry_add_vmx(cpu, env->features); 3901 } 3902 } 3903 3904 if (has_msr_ucode_rev) { 3905 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev); 3906 } 3907 assert(kvm_buf_set_msrs(cpu) == 0); 3908 } 3909 3910 static int kvm_put_msrs(X86CPU *cpu, int level) 3911 { 3912 CPUX86State *env = &cpu->env; 3913 int i; 3914 3915 kvm_msr_buf_reset(cpu); 3916 3917 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); 3918 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); 3919 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); 3920 kvm_msr_entry_add(cpu, MSR_PAT, env->pat); 3921 if (has_msr_star) { 3922 kvm_msr_entry_add(cpu, MSR_STAR, env->star); 3923 } 3924 if (has_msr_hsave_pa) { 3925 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); 3926 } 3927 if (has_msr_tsc_aux) { 3928 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); 3929 } 3930 if (has_msr_tsc_adjust) { 3931 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); 3932 } 3933 if (has_msr_misc_enable) { 3934 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 3935 env->msr_ia32_misc_enable); 3936 } 3937 if (has_msr_smbase) { 3938 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); 3939 } 3940 if (has_msr_smi_count) { 3941 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count); 3942 } 3943 if (has_msr_pkrs) { 3944 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs); 3945 } 3946 if (has_msr_bndcfgs) { 3947 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); 3948 } 3949 if (has_msr_xss) { 3950 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); 3951 } 3952 if (has_msr_umwait) { 3953 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait); 3954 } 3955 if (has_msr_spec_ctrl) { 3956 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl); 3957 } 3958 if (has_tsc_scale_msr) { 3959 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr); 3960 } 3961 3962 if (has_msr_tsx_ctrl) { 3963 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl); 3964 } 3965 if (has_msr_virt_ssbd) { 3966 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd); 3967 } 3968 if (has_msr_hwcr) { 3969 kvm_msr_entry_add(cpu, MSR_K7_HWCR, env->msr_hwcr); 3970 } 3971 3972 #ifdef TARGET_X86_64 3973 if (lm_capable_kernel) { 3974 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); 3975 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); 3976 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); 3977 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); 3978 if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) { 3979 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, env->fred_rsp0); 3980 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, env->fred_rsp1); 3981 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, env->fred_rsp2); 3982 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, env->fred_rsp3); 3983 kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, env->fred_stklvls); 3984 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, env->fred_ssp1); 3985 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, env->fred_ssp2); 3986 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, env->fred_ssp3); 3987 kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, env->fred_config); 3988 } 3989 } 3990 #endif 3991 3992 /* 3993 * The following MSRs have side effects on the guest or are too heavy 3994 * for normal writeback. Limit them to reset or full state updates. 3995 */ 3996 if (level >= KVM_PUT_RESET_STATE) { 3997 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); 3998 if (env->features[FEAT_KVM] & (CPUID_KVM_CLOCK | CPUID_KVM_CLOCK2)) { 3999 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); 4000 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); 4001 } 4002 if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF_INT) { 4003 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr); 4004 } 4005 if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF) { 4006 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); 4007 } 4008 if (env->features[FEAT_KVM] & CPUID_KVM_PV_EOI) { 4009 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); 4010 } 4011 if (env->features[FEAT_KVM] & CPUID_KVM_STEAL_TIME) { 4012 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); 4013 } 4014 4015 if (env->features[FEAT_KVM] & CPUID_KVM_POLL_CONTROL) { 4016 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr); 4017 } 4018 4019 if (has_architectural_pmu_version > 0) { 4020 if (has_architectural_pmu_version > 1) { 4021 /* Stop the counter. */ 4022 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 4023 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 4024 } 4025 4026 /* Set the counter values. */ 4027 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 4028 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 4029 env->msr_fixed_counters[i]); 4030 } 4031 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 4032 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 4033 env->msr_gp_counters[i]); 4034 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 4035 env->msr_gp_evtsel[i]); 4036 } 4037 if (has_architectural_pmu_version > 1) { 4038 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 4039 env->msr_global_status); 4040 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 4041 env->msr_global_ovf_ctrl); 4042 4043 /* Now start the PMU. */ 4044 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 4045 env->msr_fixed_ctr_ctrl); 4046 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 4047 env->msr_global_ctrl); 4048 } 4049 } 4050 /* 4051 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add, 4052 * only sync them to KVM on the first cpu 4053 */ 4054 if (current_cpu == first_cpu) { 4055 if (has_msr_hv_hypercall) { 4056 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 4057 env->msr_hv_guest_os_id); 4058 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 4059 env->msr_hv_hypercall); 4060 } 4061 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 4062 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 4063 env->msr_hv_tsc); 4064 } 4065 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 4066 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 4067 env->msr_hv_reenlightenment_control); 4068 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 4069 env->msr_hv_tsc_emulation_control); 4070 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 4071 env->msr_hv_tsc_emulation_status); 4072 } 4073 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) && 4074 has_msr_hv_syndbg_options) { 4075 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 4076 hyperv_syndbg_query_options()); 4077 } 4078 } 4079 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 4080 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 4081 env->msr_hv_vapic); 4082 } 4083 if (has_msr_hv_crash) { 4084 int j; 4085 4086 for (j = 0; j < HV_CRASH_PARAMS; j++) 4087 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 4088 env->msr_hv_crash_params[j]); 4089 4090 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY); 4091 } 4092 if (has_msr_hv_runtime) { 4093 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); 4094 } 4095 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) 4096 && hv_vpindex_settable) { 4097 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX, 4098 hyperv_vp_index(CPU(cpu))); 4099 } 4100 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 4101 int j; 4102 4103 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION); 4104 4105 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 4106 env->msr_hv_synic_control); 4107 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 4108 env->msr_hv_synic_evt_page); 4109 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 4110 env->msr_hv_synic_msg_page); 4111 4112 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { 4113 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, 4114 env->msr_hv_synic_sint[j]); 4115 } 4116 } 4117 if (has_msr_hv_stimer) { 4118 int j; 4119 4120 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { 4121 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, 4122 env->msr_hv_stimer_config[j]); 4123 } 4124 4125 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { 4126 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, 4127 env->msr_hv_stimer_count[j]); 4128 } 4129 } 4130 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 4131 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); 4132 4133 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); 4134 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); 4135 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); 4136 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); 4137 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); 4138 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); 4139 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); 4140 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); 4141 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); 4142 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); 4143 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); 4144 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); 4145 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 4146 /* The CPU GPs if we write to a bit above the physical limit of 4147 * the host CPU (and KVM emulates that) 4148 */ 4149 uint64_t mask = env->mtrr_var[i].mask; 4150 mask &= phys_mask; 4151 4152 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 4153 env->mtrr_var[i].base); 4154 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); 4155 } 4156 } 4157 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 4158 int addr_num = kvm_arch_get_supported_cpuid(kvm_state, 4159 0x14, 1, R_EAX) & 0x7; 4160 4161 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 4162 env->msr_rtit_ctrl); 4163 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 4164 env->msr_rtit_status); 4165 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 4166 env->msr_rtit_output_base); 4167 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 4168 env->msr_rtit_output_mask); 4169 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 4170 env->msr_rtit_cr3_match); 4171 for (i = 0; i < addr_num; i++) { 4172 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 4173 env->msr_rtit_addrs[i]); 4174 } 4175 } 4176 4177 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 4178 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 4179 env->msr_ia32_sgxlepubkeyhash[0]); 4180 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 4181 env->msr_ia32_sgxlepubkeyhash[1]); 4182 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 4183 env->msr_ia32_sgxlepubkeyhash[2]); 4184 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 4185 env->msr_ia32_sgxlepubkeyhash[3]); 4186 } 4187 4188 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) { 4189 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 4190 env->msr_xfd); 4191 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 4192 env->msr_xfd_err); 4193 } 4194 4195 if (kvm_enabled() && cpu->enable_pmu && 4196 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) { 4197 uint64_t depth; 4198 int ret; 4199 4200 /* 4201 * Only migrate Arch LBR states when the host Arch LBR depth 4202 * equals that of source guest's, this is to avoid mismatch 4203 * of guest/host config for the msr hence avoid unexpected 4204 * misbehavior. 4205 */ 4206 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth); 4207 4208 if (ret == 1 && !!depth && depth == env->msr_lbr_depth) { 4209 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl); 4210 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth); 4211 4212 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) { 4213 if (!env->lbr_records[i].from) { 4214 continue; 4215 } 4216 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 4217 env->lbr_records[i].from); 4218 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 4219 env->lbr_records[i].to); 4220 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 4221 env->lbr_records[i].info); 4222 } 4223 } 4224 } 4225 4226 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see 4227 * kvm_put_msr_feature_control. */ 4228 } 4229 4230 if (env->mcg_cap) { 4231 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); 4232 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); 4233 if (has_msr_mcg_ext_ctl) { 4234 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); 4235 } 4236 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 4237 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); 4238 } 4239 } 4240 4241 return kvm_buf_set_msrs(cpu); 4242 } 4243 4244 4245 static int kvm_get_xsave(X86CPU *cpu) 4246 { 4247 CPUX86State *env = &cpu->env; 4248 void *xsave = env->xsave_buf; 4249 unsigned long type; 4250 int ret; 4251 4252 type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE; 4253 ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave); 4254 if (ret < 0) { 4255 return ret; 4256 } 4257 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len); 4258 4259 return 0; 4260 } 4261 4262 static int kvm_get_xcrs(X86CPU *cpu) 4263 { 4264 CPUX86State *env = &cpu->env; 4265 int i, ret; 4266 struct kvm_xcrs xcrs; 4267 4268 if (!has_xcrs) { 4269 return 0; 4270 } 4271 4272 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); 4273 if (ret < 0) { 4274 return ret; 4275 } 4276 4277 for (i = 0; i < xcrs.nr_xcrs; i++) { 4278 /* Only support xcr0 now */ 4279 if (xcrs.xcrs[i].xcr == 0) { 4280 env->xcr0 = xcrs.xcrs[i].value; 4281 break; 4282 } 4283 } 4284 return 0; 4285 } 4286 4287 static int kvm_get_sregs(X86CPU *cpu) 4288 { 4289 CPUX86State *env = &cpu->env; 4290 struct kvm_sregs sregs; 4291 int ret; 4292 4293 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); 4294 if (ret < 0) { 4295 return ret; 4296 } 4297 4298 /* 4299 * The interrupt_bitmap is ignored because KVM_GET_SREGS is 4300 * always preceded by KVM_GET_VCPU_EVENTS. 4301 */ 4302 4303 get_seg(&env->segs[R_CS], &sregs.cs); 4304 get_seg(&env->segs[R_DS], &sregs.ds); 4305 get_seg(&env->segs[R_ES], &sregs.es); 4306 get_seg(&env->segs[R_FS], &sregs.fs); 4307 get_seg(&env->segs[R_GS], &sregs.gs); 4308 get_seg(&env->segs[R_SS], &sregs.ss); 4309 4310 get_seg(&env->tr, &sregs.tr); 4311 get_seg(&env->ldt, &sregs.ldt); 4312 4313 env->idt.limit = sregs.idt.limit; 4314 env->idt.base = sregs.idt.base; 4315 env->gdt.limit = sregs.gdt.limit; 4316 env->gdt.base = sregs.gdt.base; 4317 4318 env->cr[0] = sregs.cr0; 4319 env->cr[2] = sregs.cr2; 4320 env->cr[3] = sregs.cr3; 4321 env->cr[4] = sregs.cr4; 4322 4323 env->efer = sregs.efer; 4324 if (sev_es_enabled() && env->efer & MSR_EFER_LME && 4325 env->cr[0] & CR0_PG_MASK) { 4326 env->efer |= MSR_EFER_LMA; 4327 } 4328 4329 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 4330 x86_update_hflags(env); 4331 4332 return 0; 4333 } 4334 4335 static int kvm_get_sregs2(X86CPU *cpu) 4336 { 4337 CPUX86State *env = &cpu->env; 4338 struct kvm_sregs2 sregs; 4339 int i, ret; 4340 4341 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs); 4342 if (ret < 0) { 4343 return ret; 4344 } 4345 4346 get_seg(&env->segs[R_CS], &sregs.cs); 4347 get_seg(&env->segs[R_DS], &sregs.ds); 4348 get_seg(&env->segs[R_ES], &sregs.es); 4349 get_seg(&env->segs[R_FS], &sregs.fs); 4350 get_seg(&env->segs[R_GS], &sregs.gs); 4351 get_seg(&env->segs[R_SS], &sregs.ss); 4352 4353 get_seg(&env->tr, &sregs.tr); 4354 get_seg(&env->ldt, &sregs.ldt); 4355 4356 env->idt.limit = sregs.idt.limit; 4357 env->idt.base = sregs.idt.base; 4358 env->gdt.limit = sregs.gdt.limit; 4359 env->gdt.base = sregs.gdt.base; 4360 4361 env->cr[0] = sregs.cr0; 4362 env->cr[2] = sregs.cr2; 4363 env->cr[3] = sregs.cr3; 4364 env->cr[4] = sregs.cr4; 4365 4366 env->efer = sregs.efer; 4367 if (sev_es_enabled() && env->efer & MSR_EFER_LME && 4368 env->cr[0] & CR0_PG_MASK) { 4369 env->efer |= MSR_EFER_LMA; 4370 } 4371 4372 env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 4373 4374 if (env->pdptrs_valid) { 4375 for (i = 0; i < 4; i++) { 4376 env->pdptrs[i] = sregs.pdptrs[i]; 4377 } 4378 } 4379 4380 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 4381 x86_update_hflags(env); 4382 4383 return 0; 4384 } 4385 4386 static int kvm_get_msrs(X86CPU *cpu) 4387 { 4388 CPUX86State *env = &cpu->env; 4389 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; 4390 int ret, i; 4391 uint64_t mtrr_top_bits; 4392 4393 kvm_msr_buf_reset(cpu); 4394 4395 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); 4396 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); 4397 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); 4398 kvm_msr_entry_add(cpu, MSR_PAT, 0); 4399 if (has_msr_star) { 4400 kvm_msr_entry_add(cpu, MSR_STAR, 0); 4401 } 4402 if (has_msr_hsave_pa) { 4403 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); 4404 } 4405 if (has_msr_tsc_aux) { 4406 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); 4407 } 4408 if (has_msr_tsc_adjust) { 4409 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); 4410 } 4411 if (has_msr_tsc_deadline) { 4412 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); 4413 } 4414 if (has_msr_misc_enable) { 4415 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); 4416 } 4417 if (has_msr_smbase) { 4418 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); 4419 } 4420 if (has_msr_smi_count) { 4421 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0); 4422 } 4423 if (has_msr_feature_control) { 4424 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); 4425 } 4426 if (has_msr_pkrs) { 4427 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0); 4428 } 4429 if (has_msr_bndcfgs) { 4430 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); 4431 } 4432 if (has_msr_xss) { 4433 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); 4434 } 4435 if (has_msr_umwait) { 4436 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0); 4437 } 4438 if (has_msr_spec_ctrl) { 4439 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0); 4440 } 4441 if (has_tsc_scale_msr) { 4442 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0); 4443 } 4444 4445 if (has_msr_tsx_ctrl) { 4446 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0); 4447 } 4448 if (has_msr_virt_ssbd) { 4449 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0); 4450 } 4451 if (!env->tsc_valid) { 4452 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); 4453 env->tsc_valid = !runstate_is_running(); 4454 } 4455 if (has_msr_hwcr) { 4456 kvm_msr_entry_add(cpu, MSR_K7_HWCR, 0); 4457 } 4458 4459 #ifdef TARGET_X86_64 4460 if (lm_capable_kernel) { 4461 kvm_msr_entry_add(cpu, MSR_CSTAR, 0); 4462 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); 4463 kvm_msr_entry_add(cpu, MSR_FMASK, 0); 4464 kvm_msr_entry_add(cpu, MSR_LSTAR, 0); 4465 if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) { 4466 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, 0); 4467 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, 0); 4468 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, 0); 4469 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, 0); 4470 kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, 0); 4471 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, 0); 4472 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, 0); 4473 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, 0); 4474 kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, 0); 4475 } 4476 } 4477 #endif 4478 if (env->features[FEAT_KVM] & (CPUID_KVM_CLOCK | CPUID_KVM_CLOCK2)) { 4479 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); 4480 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); 4481 } 4482 if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF_INT) { 4483 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0); 4484 } 4485 if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF) { 4486 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); 4487 } 4488 if (env->features[FEAT_KVM] & CPUID_KVM_PV_EOI) { 4489 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); 4490 } 4491 if (env->features[FEAT_KVM] & CPUID_KVM_STEAL_TIME) { 4492 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); 4493 } 4494 if (env->features[FEAT_KVM] & CPUID_KVM_POLL_CONTROL) { 4495 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1); 4496 } 4497 if (has_architectural_pmu_version > 0) { 4498 if (has_architectural_pmu_version > 1) { 4499 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 4500 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 4501 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); 4502 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); 4503 } 4504 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 4505 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); 4506 } 4507 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 4508 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); 4509 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); 4510 } 4511 } 4512 4513 if (env->mcg_cap) { 4514 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); 4515 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); 4516 if (has_msr_mcg_ext_ctl) { 4517 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); 4518 } 4519 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 4520 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); 4521 } 4522 } 4523 4524 if (has_msr_hv_hypercall) { 4525 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); 4526 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); 4527 } 4528 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 4529 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); 4530 } 4531 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 4532 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); 4533 } 4534 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 4535 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0); 4536 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0); 4537 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0); 4538 } 4539 if (has_msr_hv_syndbg_options) { 4540 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0); 4541 } 4542 if (has_msr_hv_crash) { 4543 int j; 4544 4545 for (j = 0; j < HV_CRASH_PARAMS; j++) { 4546 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); 4547 } 4548 } 4549 if (has_msr_hv_runtime) { 4550 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); 4551 } 4552 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 4553 uint32_t msr; 4554 4555 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); 4556 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); 4557 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); 4558 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { 4559 kvm_msr_entry_add(cpu, msr, 0); 4560 } 4561 } 4562 if (has_msr_hv_stimer) { 4563 uint32_t msr; 4564 4565 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; 4566 msr++) { 4567 kvm_msr_entry_add(cpu, msr, 0); 4568 } 4569 } 4570 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 4571 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); 4572 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); 4573 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); 4574 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); 4575 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); 4576 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); 4577 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); 4578 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); 4579 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); 4580 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); 4581 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); 4582 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); 4583 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 4584 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); 4585 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); 4586 } 4587 } 4588 4589 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 4590 int addr_num = 4591 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7; 4592 4593 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0); 4594 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0); 4595 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0); 4596 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0); 4597 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0); 4598 for (i = 0; i < addr_num; i++) { 4599 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0); 4600 } 4601 } 4602 4603 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 4604 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0); 4605 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0); 4606 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0); 4607 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0); 4608 } 4609 4610 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) { 4611 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0); 4612 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0); 4613 } 4614 4615 if (kvm_enabled() && cpu->enable_pmu && 4616 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) { 4617 uint64_t depth; 4618 4619 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth); 4620 if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) { 4621 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0); 4622 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0); 4623 4624 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) { 4625 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0); 4626 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0); 4627 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0); 4628 } 4629 } 4630 } 4631 4632 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); 4633 if (ret < 0) { 4634 return ret; 4635 } 4636 4637 if (ret < cpu->kvm_msr_buf->nmsrs) { 4638 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 4639 error_report("error: failed to get MSR 0x%" PRIx32, 4640 (uint32_t)e->index); 4641 } 4642 4643 assert(ret == cpu->kvm_msr_buf->nmsrs); 4644 /* 4645 * MTRR masks: Each mask consists of 5 parts 4646 * a 10..0: must be zero 4647 * b 11 : valid bit 4648 * c n-1.12: actual mask bits 4649 * d 51..n: reserved must be zero 4650 * e 63.52: reserved must be zero 4651 * 4652 * 'n' is the number of physical bits supported by the CPU and is 4653 * apparently always <= 52. We know our 'n' but don't know what 4654 * the destinations 'n' is; it might be smaller, in which case 4655 * it masks (c) on loading. It might be larger, in which case 4656 * we fill 'd' so that d..c is consistent irrespetive of the 'n' 4657 * we're migrating to. 4658 */ 4659 4660 if (cpu->fill_mtrr_mask) { 4661 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); 4662 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); 4663 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); 4664 } else { 4665 mtrr_top_bits = 0; 4666 } 4667 4668 for (i = 0; i < ret; i++) { 4669 uint32_t index = msrs[i].index; 4670 switch (index) { 4671 case MSR_IA32_SYSENTER_CS: 4672 env->sysenter_cs = msrs[i].data; 4673 break; 4674 case MSR_IA32_SYSENTER_ESP: 4675 env->sysenter_esp = msrs[i].data; 4676 break; 4677 case MSR_IA32_SYSENTER_EIP: 4678 env->sysenter_eip = msrs[i].data; 4679 break; 4680 case MSR_PAT: 4681 env->pat = msrs[i].data; 4682 break; 4683 case MSR_STAR: 4684 env->star = msrs[i].data; 4685 break; 4686 #ifdef TARGET_X86_64 4687 case MSR_CSTAR: 4688 env->cstar = msrs[i].data; 4689 break; 4690 case MSR_KERNELGSBASE: 4691 env->kernelgsbase = msrs[i].data; 4692 break; 4693 case MSR_FMASK: 4694 env->fmask = msrs[i].data; 4695 break; 4696 case MSR_LSTAR: 4697 env->lstar = msrs[i].data; 4698 break; 4699 case MSR_IA32_FRED_RSP0: 4700 env->fred_rsp0 = msrs[i].data; 4701 break; 4702 case MSR_IA32_FRED_RSP1: 4703 env->fred_rsp1 = msrs[i].data; 4704 break; 4705 case MSR_IA32_FRED_RSP2: 4706 env->fred_rsp2 = msrs[i].data; 4707 break; 4708 case MSR_IA32_FRED_RSP3: 4709 env->fred_rsp3 = msrs[i].data; 4710 break; 4711 case MSR_IA32_FRED_STKLVLS: 4712 env->fred_stklvls = msrs[i].data; 4713 break; 4714 case MSR_IA32_FRED_SSP1: 4715 env->fred_ssp1 = msrs[i].data; 4716 break; 4717 case MSR_IA32_FRED_SSP2: 4718 env->fred_ssp2 = msrs[i].data; 4719 break; 4720 case MSR_IA32_FRED_SSP3: 4721 env->fred_ssp3 = msrs[i].data; 4722 break; 4723 case MSR_IA32_FRED_CONFIG: 4724 env->fred_config = msrs[i].data; 4725 break; 4726 #endif 4727 case MSR_IA32_TSC: 4728 env->tsc = msrs[i].data; 4729 break; 4730 case MSR_TSC_AUX: 4731 env->tsc_aux = msrs[i].data; 4732 break; 4733 case MSR_TSC_ADJUST: 4734 env->tsc_adjust = msrs[i].data; 4735 break; 4736 case MSR_IA32_TSCDEADLINE: 4737 env->tsc_deadline = msrs[i].data; 4738 break; 4739 case MSR_VM_HSAVE_PA: 4740 env->vm_hsave = msrs[i].data; 4741 break; 4742 case MSR_KVM_SYSTEM_TIME: 4743 env->system_time_msr = msrs[i].data; 4744 break; 4745 case MSR_KVM_WALL_CLOCK: 4746 env->wall_clock_msr = msrs[i].data; 4747 break; 4748 case MSR_MCG_STATUS: 4749 env->mcg_status = msrs[i].data; 4750 break; 4751 case MSR_MCG_CTL: 4752 env->mcg_ctl = msrs[i].data; 4753 break; 4754 case MSR_MCG_EXT_CTL: 4755 env->mcg_ext_ctl = msrs[i].data; 4756 break; 4757 case MSR_IA32_MISC_ENABLE: 4758 env->msr_ia32_misc_enable = msrs[i].data; 4759 break; 4760 case MSR_IA32_SMBASE: 4761 env->smbase = msrs[i].data; 4762 break; 4763 case MSR_SMI_COUNT: 4764 env->msr_smi_count = msrs[i].data; 4765 break; 4766 case MSR_IA32_FEATURE_CONTROL: 4767 env->msr_ia32_feature_control = msrs[i].data; 4768 break; 4769 case MSR_IA32_BNDCFGS: 4770 env->msr_bndcfgs = msrs[i].data; 4771 break; 4772 case MSR_IA32_XSS: 4773 env->xss = msrs[i].data; 4774 break; 4775 case MSR_IA32_UMWAIT_CONTROL: 4776 env->umwait = msrs[i].data; 4777 break; 4778 case MSR_IA32_PKRS: 4779 env->pkrs = msrs[i].data; 4780 break; 4781 default: 4782 if (msrs[i].index >= MSR_MC0_CTL && 4783 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { 4784 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; 4785 } 4786 break; 4787 case MSR_KVM_ASYNC_PF_EN: 4788 env->async_pf_en_msr = msrs[i].data; 4789 break; 4790 case MSR_KVM_ASYNC_PF_INT: 4791 env->async_pf_int_msr = msrs[i].data; 4792 break; 4793 case MSR_KVM_PV_EOI_EN: 4794 env->pv_eoi_en_msr = msrs[i].data; 4795 break; 4796 case MSR_KVM_STEAL_TIME: 4797 env->steal_time_msr = msrs[i].data; 4798 break; 4799 case MSR_KVM_POLL_CONTROL: { 4800 env->poll_control_msr = msrs[i].data; 4801 break; 4802 } 4803 case MSR_CORE_PERF_FIXED_CTR_CTRL: 4804 env->msr_fixed_ctr_ctrl = msrs[i].data; 4805 break; 4806 case MSR_CORE_PERF_GLOBAL_CTRL: 4807 env->msr_global_ctrl = msrs[i].data; 4808 break; 4809 case MSR_CORE_PERF_GLOBAL_STATUS: 4810 env->msr_global_status = msrs[i].data; 4811 break; 4812 case MSR_CORE_PERF_GLOBAL_OVF_CTRL: 4813 env->msr_global_ovf_ctrl = msrs[i].data; 4814 break; 4815 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: 4816 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; 4817 break; 4818 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: 4819 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; 4820 break; 4821 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: 4822 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; 4823 break; 4824 case HV_X64_MSR_HYPERCALL: 4825 env->msr_hv_hypercall = msrs[i].data; 4826 break; 4827 case HV_X64_MSR_GUEST_OS_ID: 4828 env->msr_hv_guest_os_id = msrs[i].data; 4829 break; 4830 case HV_X64_MSR_APIC_ASSIST_PAGE: 4831 env->msr_hv_vapic = msrs[i].data; 4832 break; 4833 case HV_X64_MSR_REFERENCE_TSC: 4834 env->msr_hv_tsc = msrs[i].data; 4835 break; 4836 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4837 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; 4838 break; 4839 case HV_X64_MSR_VP_RUNTIME: 4840 env->msr_hv_runtime = msrs[i].data; 4841 break; 4842 case HV_X64_MSR_SCONTROL: 4843 env->msr_hv_synic_control = msrs[i].data; 4844 break; 4845 case HV_X64_MSR_SIEFP: 4846 env->msr_hv_synic_evt_page = msrs[i].data; 4847 break; 4848 case HV_X64_MSR_SIMP: 4849 env->msr_hv_synic_msg_page = msrs[i].data; 4850 break; 4851 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 4852 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; 4853 break; 4854 case HV_X64_MSR_STIMER0_CONFIG: 4855 case HV_X64_MSR_STIMER1_CONFIG: 4856 case HV_X64_MSR_STIMER2_CONFIG: 4857 case HV_X64_MSR_STIMER3_CONFIG: 4858 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = 4859 msrs[i].data; 4860 break; 4861 case HV_X64_MSR_STIMER0_COUNT: 4862 case HV_X64_MSR_STIMER1_COUNT: 4863 case HV_X64_MSR_STIMER2_COUNT: 4864 case HV_X64_MSR_STIMER3_COUNT: 4865 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = 4866 msrs[i].data; 4867 break; 4868 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4869 env->msr_hv_reenlightenment_control = msrs[i].data; 4870 break; 4871 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4872 env->msr_hv_tsc_emulation_control = msrs[i].data; 4873 break; 4874 case HV_X64_MSR_TSC_EMULATION_STATUS: 4875 env->msr_hv_tsc_emulation_status = msrs[i].data; 4876 break; 4877 case HV_X64_MSR_SYNDBG_OPTIONS: 4878 env->msr_hv_syndbg_options = msrs[i].data; 4879 break; 4880 case MSR_MTRRdefType: 4881 env->mtrr_deftype = msrs[i].data; 4882 break; 4883 case MSR_MTRRfix64K_00000: 4884 env->mtrr_fixed[0] = msrs[i].data; 4885 break; 4886 case MSR_MTRRfix16K_80000: 4887 env->mtrr_fixed[1] = msrs[i].data; 4888 break; 4889 case MSR_MTRRfix16K_A0000: 4890 env->mtrr_fixed[2] = msrs[i].data; 4891 break; 4892 case MSR_MTRRfix4K_C0000: 4893 env->mtrr_fixed[3] = msrs[i].data; 4894 break; 4895 case MSR_MTRRfix4K_C8000: 4896 env->mtrr_fixed[4] = msrs[i].data; 4897 break; 4898 case MSR_MTRRfix4K_D0000: 4899 env->mtrr_fixed[5] = msrs[i].data; 4900 break; 4901 case MSR_MTRRfix4K_D8000: 4902 env->mtrr_fixed[6] = msrs[i].data; 4903 break; 4904 case MSR_MTRRfix4K_E0000: 4905 env->mtrr_fixed[7] = msrs[i].data; 4906 break; 4907 case MSR_MTRRfix4K_E8000: 4908 env->mtrr_fixed[8] = msrs[i].data; 4909 break; 4910 case MSR_MTRRfix4K_F0000: 4911 env->mtrr_fixed[9] = msrs[i].data; 4912 break; 4913 case MSR_MTRRfix4K_F8000: 4914 env->mtrr_fixed[10] = msrs[i].data; 4915 break; 4916 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): 4917 if (index & 1) { 4918 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | 4919 mtrr_top_bits; 4920 } else { 4921 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; 4922 } 4923 break; 4924 case MSR_IA32_SPEC_CTRL: 4925 env->spec_ctrl = msrs[i].data; 4926 break; 4927 case MSR_AMD64_TSC_RATIO: 4928 env->amd_tsc_scale_msr = msrs[i].data; 4929 break; 4930 case MSR_IA32_TSX_CTRL: 4931 env->tsx_ctrl = msrs[i].data; 4932 break; 4933 case MSR_VIRT_SSBD: 4934 env->virt_ssbd = msrs[i].data; 4935 break; 4936 case MSR_IA32_RTIT_CTL: 4937 env->msr_rtit_ctrl = msrs[i].data; 4938 break; 4939 case MSR_IA32_RTIT_STATUS: 4940 env->msr_rtit_status = msrs[i].data; 4941 break; 4942 case MSR_IA32_RTIT_OUTPUT_BASE: 4943 env->msr_rtit_output_base = msrs[i].data; 4944 break; 4945 case MSR_IA32_RTIT_OUTPUT_MASK: 4946 env->msr_rtit_output_mask = msrs[i].data; 4947 break; 4948 case MSR_IA32_RTIT_CR3_MATCH: 4949 env->msr_rtit_cr3_match = msrs[i].data; 4950 break; 4951 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 4952 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data; 4953 break; 4954 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 4955 env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] = 4956 msrs[i].data; 4957 break; 4958 case MSR_IA32_XFD: 4959 env->msr_xfd = msrs[i].data; 4960 break; 4961 case MSR_IA32_XFD_ERR: 4962 env->msr_xfd_err = msrs[i].data; 4963 break; 4964 case MSR_ARCH_LBR_CTL: 4965 env->msr_lbr_ctl = msrs[i].data; 4966 break; 4967 case MSR_ARCH_LBR_DEPTH: 4968 env->msr_lbr_depth = msrs[i].data; 4969 break; 4970 case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31: 4971 env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data; 4972 break; 4973 case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31: 4974 env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data; 4975 break; 4976 case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31: 4977 env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data; 4978 break; 4979 case MSR_K7_HWCR: 4980 env->msr_hwcr = msrs[i].data; 4981 break; 4982 } 4983 } 4984 4985 return 0; 4986 } 4987 4988 static int kvm_put_mp_state(X86CPU *cpu) 4989 { 4990 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; 4991 4992 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 4993 } 4994 4995 static int kvm_get_mp_state(X86CPU *cpu) 4996 { 4997 CPUState *cs = CPU(cpu); 4998 CPUX86State *env = &cpu->env; 4999 struct kvm_mp_state mp_state; 5000 int ret; 5001 5002 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); 5003 if (ret < 0) { 5004 return ret; 5005 } 5006 env->mp_state = mp_state.mp_state; 5007 if (kvm_irqchip_in_kernel()) { 5008 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); 5009 } 5010 return 0; 5011 } 5012 5013 static int kvm_get_apic(X86CPU *cpu) 5014 { 5015 DeviceState *apic = cpu->apic_state; 5016 struct kvm_lapic_state kapic; 5017 int ret; 5018 5019 if (apic && kvm_irqchip_in_kernel()) { 5020 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); 5021 if (ret < 0) { 5022 return ret; 5023 } 5024 5025 kvm_get_apic_state(apic, &kapic); 5026 } 5027 return 0; 5028 } 5029 5030 static int kvm_put_vcpu_events(X86CPU *cpu, int level) 5031 { 5032 CPUState *cs = CPU(cpu); 5033 CPUX86State *env = &cpu->env; 5034 struct kvm_vcpu_events events = {}; 5035 5036 events.flags = 0; 5037 5038 if (has_exception_payload) { 5039 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5040 events.exception.pending = env->exception_pending; 5041 events.exception_has_payload = env->exception_has_payload; 5042 events.exception_payload = env->exception_payload; 5043 } 5044 events.exception.nr = env->exception_nr; 5045 events.exception.injected = env->exception_injected; 5046 events.exception.has_error_code = env->has_error_code; 5047 events.exception.error_code = env->error_code; 5048 5049 events.interrupt.injected = (env->interrupt_injected >= 0); 5050 events.interrupt.nr = env->interrupt_injected; 5051 events.interrupt.soft = env->soft_interrupt; 5052 5053 events.nmi.injected = env->nmi_injected; 5054 events.nmi.pending = env->nmi_pending; 5055 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); 5056 5057 events.sipi_vector = env->sipi_vector; 5058 5059 if (has_msr_smbase) { 5060 events.flags |= KVM_VCPUEVENT_VALID_SMM; 5061 events.smi.smm = !!(env->hflags & HF_SMM_MASK); 5062 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); 5063 if (kvm_irqchip_in_kernel()) { 5064 /* As soon as these are moved to the kernel, remove them 5065 * from cs->interrupt_request. 5066 */ 5067 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; 5068 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; 5069 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); 5070 } else { 5071 /* Keep these in cs->interrupt_request. */ 5072 events.smi.pending = 0; 5073 events.smi.latched_init = 0; 5074 } 5075 } 5076 5077 if (level >= KVM_PUT_RESET_STATE) { 5078 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; 5079 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 5080 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR; 5081 } 5082 } 5083 5084 if (has_triple_fault_event) { 5085 events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5086 events.triple_fault.pending = env->triple_fault_pending; 5087 } 5088 5089 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 5090 } 5091 5092 static int kvm_get_vcpu_events(X86CPU *cpu) 5093 { 5094 CPUX86State *env = &cpu->env; 5095 struct kvm_vcpu_events events; 5096 int ret; 5097 5098 memset(&events, 0, sizeof(events)); 5099 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 5100 if (ret < 0) { 5101 return ret; 5102 } 5103 5104 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5105 env->exception_pending = events.exception.pending; 5106 env->exception_has_payload = events.exception_has_payload; 5107 env->exception_payload = events.exception_payload; 5108 } else { 5109 env->exception_pending = 0; 5110 env->exception_has_payload = false; 5111 } 5112 env->exception_injected = events.exception.injected; 5113 env->exception_nr = 5114 (env->exception_pending || env->exception_injected) ? 5115 events.exception.nr : -1; 5116 env->has_error_code = events.exception.has_error_code; 5117 env->error_code = events.exception.error_code; 5118 5119 env->interrupt_injected = 5120 events.interrupt.injected ? events.interrupt.nr : -1; 5121 env->soft_interrupt = events.interrupt.soft; 5122 5123 env->nmi_injected = events.nmi.injected; 5124 env->nmi_pending = events.nmi.pending; 5125 if (events.nmi.masked) { 5126 env->hflags2 |= HF2_NMI_MASK; 5127 } else { 5128 env->hflags2 &= ~HF2_NMI_MASK; 5129 } 5130 5131 if (events.flags & KVM_VCPUEVENT_VALID_SMM) { 5132 if (events.smi.smm) { 5133 env->hflags |= HF_SMM_MASK; 5134 } else { 5135 env->hflags &= ~HF_SMM_MASK; 5136 } 5137 if (events.smi.pending) { 5138 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 5139 } else { 5140 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 5141 } 5142 if (events.smi.smm_inside_nmi) { 5143 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; 5144 } else { 5145 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; 5146 } 5147 if (events.smi.latched_init) { 5148 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 5149 } else { 5150 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 5151 } 5152 } 5153 5154 if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5155 env->triple_fault_pending = events.triple_fault.pending; 5156 } 5157 5158 env->sipi_vector = events.sipi_vector; 5159 5160 return 0; 5161 } 5162 5163 static int kvm_put_debugregs(X86CPU *cpu) 5164 { 5165 CPUX86State *env = &cpu->env; 5166 struct kvm_debugregs dbgregs; 5167 int i; 5168 5169 memset(&dbgregs, 0, sizeof(dbgregs)); 5170 for (i = 0; i < 4; i++) { 5171 dbgregs.db[i] = env->dr[i]; 5172 } 5173 dbgregs.dr6 = env->dr[6]; 5174 dbgregs.dr7 = env->dr[7]; 5175 dbgregs.flags = 0; 5176 5177 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); 5178 } 5179 5180 static int kvm_get_debugregs(X86CPU *cpu) 5181 { 5182 CPUX86State *env = &cpu->env; 5183 struct kvm_debugregs dbgregs; 5184 int i, ret; 5185 5186 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); 5187 if (ret < 0) { 5188 return ret; 5189 } 5190 for (i = 0; i < 4; i++) { 5191 env->dr[i] = dbgregs.db[i]; 5192 } 5193 env->dr[4] = env->dr[6] = dbgregs.dr6; 5194 env->dr[5] = env->dr[7] = dbgregs.dr7; 5195 5196 return 0; 5197 } 5198 5199 static int kvm_put_nested_state(X86CPU *cpu) 5200 { 5201 CPUX86State *env = &cpu->env; 5202 int max_nested_state_len = kvm_max_nested_state_length(); 5203 5204 if (!env->nested_state) { 5205 return 0; 5206 } 5207 5208 /* 5209 * Copy flags that are affected by reset from env->hflags and env->hflags2. 5210 */ 5211 if (env->hflags & HF_GUEST_MASK) { 5212 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE; 5213 } else { 5214 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE; 5215 } 5216 5217 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */ 5218 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) { 5219 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET; 5220 } else { 5221 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET; 5222 } 5223 5224 assert(env->nested_state->size <= max_nested_state_len); 5225 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state); 5226 } 5227 5228 static int kvm_get_nested_state(X86CPU *cpu) 5229 { 5230 CPUX86State *env = &cpu->env; 5231 int max_nested_state_len = kvm_max_nested_state_length(); 5232 int ret; 5233 5234 if (!env->nested_state) { 5235 return 0; 5236 } 5237 5238 /* 5239 * It is possible that migration restored a smaller size into 5240 * nested_state->hdr.size than what our kernel support. 5241 * We preserve migration origin nested_state->hdr.size for 5242 * call to KVM_SET_NESTED_STATE but wish that our next call 5243 * to KVM_GET_NESTED_STATE will use max size our kernel support. 5244 */ 5245 env->nested_state->size = max_nested_state_len; 5246 5247 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state); 5248 if (ret < 0) { 5249 return ret; 5250 } 5251 5252 /* 5253 * Copy flags that are affected by reset to env->hflags and env->hflags2. 5254 */ 5255 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) { 5256 env->hflags |= HF_GUEST_MASK; 5257 } else { 5258 env->hflags &= ~HF_GUEST_MASK; 5259 } 5260 5261 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */ 5262 if (cpu_has_svm(env)) { 5263 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) { 5264 env->hflags2 |= HF2_GIF_MASK; 5265 } else { 5266 env->hflags2 &= ~HF2_GIF_MASK; 5267 } 5268 } 5269 5270 return ret; 5271 } 5272 5273 int kvm_arch_put_registers(CPUState *cpu, int level, Error **errp) 5274 { 5275 X86CPU *x86_cpu = X86_CPU(cpu); 5276 int ret; 5277 5278 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); 5279 5280 /* 5281 * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX 5282 * root operation upon vCPU reset. kvm_put_msr_feature_control() should also 5283 * precede kvm_put_nested_state() when 'real' nested state is set. 5284 */ 5285 if (level >= KVM_PUT_RESET_STATE) { 5286 ret = kvm_put_msr_feature_control(x86_cpu); 5287 if (ret < 0) { 5288 error_setg_errno(errp, -ret, "Failed to set feature control MSR"); 5289 return ret; 5290 } 5291 } 5292 5293 /* must be before kvm_put_nested_state so that EFER.SVME is set */ 5294 ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu); 5295 if (ret < 0) { 5296 error_setg_errno(errp, -ret, "Failed to set special registers"); 5297 return ret; 5298 } 5299 5300 if (level >= KVM_PUT_RESET_STATE) { 5301 ret = kvm_put_nested_state(x86_cpu); 5302 if (ret < 0) { 5303 error_setg_errno(errp, -ret, "Failed to set nested state"); 5304 return ret; 5305 } 5306 } 5307 5308 if (level == KVM_PUT_FULL_STATE) { 5309 /* We don't check for kvm_arch_set_tsc_khz() errors here, 5310 * because TSC frequency mismatch shouldn't abort migration, 5311 * unless the user explicitly asked for a more strict TSC 5312 * setting (e.g. using an explicit "tsc-freq" option). 5313 */ 5314 kvm_arch_set_tsc_khz(cpu); 5315 } 5316 5317 #ifdef CONFIG_XEN_EMU 5318 if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) { 5319 ret = kvm_put_xen_state(cpu); 5320 if (ret < 0) { 5321 error_setg_errno(errp, -ret, "Failed to set Xen state"); 5322 return ret; 5323 } 5324 } 5325 #endif 5326 5327 ret = kvm_getput_regs(x86_cpu, 1); 5328 if (ret < 0) { 5329 error_setg_errno(errp, -ret, "Failed to set general purpose registers"); 5330 return ret; 5331 } 5332 ret = kvm_put_xsave(x86_cpu); 5333 if (ret < 0) { 5334 error_setg_errno(errp, -ret, "Failed to set XSAVE"); 5335 return ret; 5336 } 5337 ret = kvm_put_xcrs(x86_cpu); 5338 if (ret < 0) { 5339 error_setg_errno(errp, -ret, "Failed to set XCRs"); 5340 return ret; 5341 } 5342 ret = kvm_put_msrs(x86_cpu, level); 5343 if (ret < 0) { 5344 error_setg_errno(errp, -ret, "Failed to set MSRs"); 5345 return ret; 5346 } 5347 ret = kvm_put_vcpu_events(x86_cpu, level); 5348 if (ret < 0) { 5349 error_setg_errno(errp, -ret, "Failed to set vCPU events"); 5350 return ret; 5351 } 5352 if (level >= KVM_PUT_RESET_STATE) { 5353 ret = kvm_put_mp_state(x86_cpu); 5354 if (ret < 0) { 5355 error_setg_errno(errp, -ret, "Failed to set MP state"); 5356 return ret; 5357 } 5358 } 5359 5360 ret = kvm_put_tscdeadline_msr(x86_cpu); 5361 if (ret < 0) { 5362 error_setg_errno(errp, -ret, "Failed to set TSC deadline MSR"); 5363 return ret; 5364 } 5365 ret = kvm_put_debugregs(x86_cpu); 5366 if (ret < 0) { 5367 error_setg_errno(errp, -ret, "Failed to set debug registers"); 5368 return ret; 5369 } 5370 return 0; 5371 } 5372 5373 int kvm_arch_get_registers(CPUState *cs, Error **errp) 5374 { 5375 X86CPU *cpu = X86_CPU(cs); 5376 int ret; 5377 5378 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); 5379 5380 ret = kvm_get_vcpu_events(cpu); 5381 if (ret < 0) { 5382 error_setg_errno(errp, -ret, "Failed to get vCPU events"); 5383 goto out; 5384 } 5385 /* 5386 * KVM_GET_MPSTATE can modify CS and RIP, call it before 5387 * KVM_GET_REGS and KVM_GET_SREGS. 5388 */ 5389 ret = kvm_get_mp_state(cpu); 5390 if (ret < 0) { 5391 error_setg_errno(errp, -ret, "Failed to get MP state"); 5392 goto out; 5393 } 5394 ret = kvm_getput_regs(cpu, 0); 5395 if (ret < 0) { 5396 error_setg_errno(errp, -ret, "Failed to get general purpose registers"); 5397 goto out; 5398 } 5399 ret = kvm_get_xsave(cpu); 5400 if (ret < 0) { 5401 error_setg_errno(errp, -ret, "Failed to get XSAVE"); 5402 goto out; 5403 } 5404 ret = kvm_get_xcrs(cpu); 5405 if (ret < 0) { 5406 error_setg_errno(errp, -ret, "Failed to get XCRs"); 5407 goto out; 5408 } 5409 ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu); 5410 if (ret < 0) { 5411 error_setg_errno(errp, -ret, "Failed to get special registers"); 5412 goto out; 5413 } 5414 ret = kvm_get_msrs(cpu); 5415 if (ret < 0) { 5416 error_setg_errno(errp, -ret, "Failed to get MSRs"); 5417 goto out; 5418 } 5419 ret = kvm_get_apic(cpu); 5420 if (ret < 0) { 5421 error_setg_errno(errp, -ret, "Failed to get APIC"); 5422 goto out; 5423 } 5424 ret = kvm_get_debugregs(cpu); 5425 if (ret < 0) { 5426 error_setg_errno(errp, -ret, "Failed to get debug registers"); 5427 goto out; 5428 } 5429 ret = kvm_get_nested_state(cpu); 5430 if (ret < 0) { 5431 error_setg_errno(errp, -ret, "Failed to get nested state"); 5432 goto out; 5433 } 5434 #ifdef CONFIG_XEN_EMU 5435 if (xen_mode == XEN_EMULATE) { 5436 ret = kvm_get_xen_state(cs); 5437 if (ret < 0) { 5438 error_setg_errno(errp, -ret, "Failed to get Xen state"); 5439 goto out; 5440 } 5441 } 5442 #endif 5443 ret = 0; 5444 out: 5445 cpu_sync_bndcs_hflags(&cpu->env); 5446 return ret; 5447 } 5448 5449 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 5450 { 5451 X86CPU *x86_cpu = X86_CPU(cpu); 5452 CPUX86State *env = &x86_cpu->env; 5453 int ret; 5454 5455 /* Inject NMI */ 5456 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { 5457 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { 5458 bql_lock(); 5459 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; 5460 bql_unlock(); 5461 DPRINTF("injected NMI\n"); 5462 ret = kvm_vcpu_ioctl(cpu, KVM_NMI); 5463 if (ret < 0) { 5464 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", 5465 strerror(-ret)); 5466 } 5467 } 5468 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { 5469 bql_lock(); 5470 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; 5471 bql_unlock(); 5472 DPRINTF("injected SMI\n"); 5473 ret = kvm_vcpu_ioctl(cpu, KVM_SMI); 5474 if (ret < 0) { 5475 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", 5476 strerror(-ret)); 5477 } 5478 } 5479 } 5480 5481 if (!kvm_pic_in_kernel()) { 5482 bql_lock(); 5483 } 5484 5485 /* Force the VCPU out of its inner loop to process any INIT requests 5486 * or (for userspace APIC, but it is cheap to combine the checks here) 5487 * pending TPR access reports. 5488 */ 5489 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { 5490 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && 5491 !(env->hflags & HF_SMM_MASK)) { 5492 cpu->exit_request = 1; 5493 } 5494 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { 5495 cpu->exit_request = 1; 5496 } 5497 } 5498 5499 if (!kvm_pic_in_kernel()) { 5500 /* Try to inject an interrupt if the guest can accept it */ 5501 if (run->ready_for_interrupt_injection && 5502 (cpu->interrupt_request & CPU_INTERRUPT_HARD) && 5503 (env->eflags & IF_MASK)) { 5504 int irq; 5505 5506 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; 5507 irq = cpu_get_pic_interrupt(env); 5508 if (irq >= 0) { 5509 struct kvm_interrupt intr; 5510 5511 intr.irq = irq; 5512 DPRINTF("injected interrupt %d\n", irq); 5513 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); 5514 if (ret < 0) { 5515 fprintf(stderr, 5516 "KVM: injection failed, interrupt lost (%s)\n", 5517 strerror(-ret)); 5518 } 5519 } 5520 } 5521 5522 /* If we have an interrupt but the guest is not ready to receive an 5523 * interrupt, request an interrupt window exit. This will 5524 * cause a return to userspace as soon as the guest is ready to 5525 * receive interrupts. */ 5526 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { 5527 run->request_interrupt_window = 1; 5528 } else { 5529 run->request_interrupt_window = 0; 5530 } 5531 5532 DPRINTF("setting tpr\n"); 5533 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); 5534 5535 bql_unlock(); 5536 } 5537 } 5538 5539 static void kvm_rate_limit_on_bus_lock(void) 5540 { 5541 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1); 5542 5543 if (delay_ns) { 5544 g_usleep(delay_ns / SCALE_US); 5545 } 5546 } 5547 5548 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) 5549 { 5550 X86CPU *x86_cpu = X86_CPU(cpu); 5551 CPUX86State *env = &x86_cpu->env; 5552 5553 if (run->flags & KVM_RUN_X86_SMM) { 5554 env->hflags |= HF_SMM_MASK; 5555 } else { 5556 env->hflags &= ~HF_SMM_MASK; 5557 } 5558 if (run->if_flag) { 5559 env->eflags |= IF_MASK; 5560 } else { 5561 env->eflags &= ~IF_MASK; 5562 } 5563 if (run->flags & KVM_RUN_X86_BUS_LOCK) { 5564 kvm_rate_limit_on_bus_lock(); 5565 } 5566 5567 #ifdef CONFIG_XEN_EMU 5568 /* 5569 * If the callback is asserted as a GSI (or PCI INTx) then check if 5570 * vcpu_info->evtchn_upcall_pending has been cleared, and deassert 5571 * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC 5572 * EOI and only resample then, exactly how the VFIO eventfd pairs 5573 * are designed to work for level triggered interrupts. 5574 */ 5575 if (x86_cpu->env.xen_callback_asserted) { 5576 kvm_xen_maybe_deassert_callback(cpu); 5577 } 5578 #endif 5579 5580 /* We need to protect the apic state against concurrent accesses from 5581 * different threads in case the userspace irqchip is used. */ 5582 if (!kvm_irqchip_in_kernel()) { 5583 bql_lock(); 5584 } 5585 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); 5586 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); 5587 if (!kvm_irqchip_in_kernel()) { 5588 bql_unlock(); 5589 } 5590 return cpu_get_mem_attrs(env); 5591 } 5592 5593 int kvm_arch_process_async_events(CPUState *cs) 5594 { 5595 X86CPU *cpu = X86_CPU(cs); 5596 CPUX86State *env = &cpu->env; 5597 5598 if (cs->interrupt_request & CPU_INTERRUPT_MCE) { 5599 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ 5600 assert(env->mcg_cap); 5601 5602 cs->interrupt_request &= ~CPU_INTERRUPT_MCE; 5603 5604 kvm_cpu_synchronize_state(cs); 5605 5606 if (env->exception_nr == EXCP08_DBLE) { 5607 /* this means triple fault */ 5608 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 5609 cs->exit_request = 1; 5610 return 0; 5611 } 5612 kvm_queue_exception(env, EXCP12_MCHK, 0, 0); 5613 env->has_error_code = 0; 5614 5615 cs->halted = 0; 5616 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { 5617 env->mp_state = KVM_MP_STATE_RUNNABLE; 5618 } 5619 } 5620 5621 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && 5622 !(env->hflags & HF_SMM_MASK)) { 5623 kvm_cpu_synchronize_state(cs); 5624 do_cpu_init(cpu); 5625 } 5626 5627 if (kvm_irqchip_in_kernel()) { 5628 return 0; 5629 } 5630 5631 if (cs->interrupt_request & CPU_INTERRUPT_POLL) { 5632 cs->interrupt_request &= ~CPU_INTERRUPT_POLL; 5633 apic_poll_irq(cpu->apic_state); 5634 } 5635 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && 5636 (env->eflags & IF_MASK)) || 5637 (cs->interrupt_request & CPU_INTERRUPT_NMI)) { 5638 cs->halted = 0; 5639 } 5640 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { 5641 kvm_cpu_synchronize_state(cs); 5642 do_cpu_sipi(cpu); 5643 } 5644 if (cs->interrupt_request & CPU_INTERRUPT_TPR) { 5645 cs->interrupt_request &= ~CPU_INTERRUPT_TPR; 5646 kvm_cpu_synchronize_state(cs); 5647 apic_handle_tpr_access_report(cpu->apic_state, env->eip, 5648 env->tpr_access_type); 5649 } 5650 5651 return cs->halted; 5652 } 5653 5654 static int kvm_handle_halt(X86CPU *cpu) 5655 { 5656 CPUState *cs = CPU(cpu); 5657 CPUX86State *env = &cpu->env; 5658 5659 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && 5660 (env->eflags & IF_MASK)) && 5661 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { 5662 cs->halted = 1; 5663 return EXCP_HLT; 5664 } 5665 5666 return 0; 5667 } 5668 5669 static int kvm_handle_tpr_access(X86CPU *cpu) 5670 { 5671 CPUState *cs = CPU(cpu); 5672 struct kvm_run *run = cs->kvm_run; 5673 5674 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, 5675 run->tpr_access.is_write ? TPR_ACCESS_WRITE 5676 : TPR_ACCESS_READ); 5677 return 1; 5678 } 5679 5680 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 5681 { 5682 static const uint8_t int3 = 0xcc; 5683 5684 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || 5685 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { 5686 return -EINVAL; 5687 } 5688 return 0; 5689 } 5690 5691 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 5692 { 5693 uint8_t int3; 5694 5695 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) { 5696 return -EINVAL; 5697 } 5698 if (int3 != 0xcc) { 5699 return 0; 5700 } 5701 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { 5702 return -EINVAL; 5703 } 5704 return 0; 5705 } 5706 5707 static struct { 5708 target_ulong addr; 5709 int len; 5710 int type; 5711 } hw_breakpoint[4]; 5712 5713 static int nb_hw_breakpoint; 5714 5715 static int find_hw_breakpoint(target_ulong addr, int len, int type) 5716 { 5717 int n; 5718 5719 for (n = 0; n < nb_hw_breakpoint; n++) { 5720 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && 5721 (hw_breakpoint[n].len == len || len == -1)) { 5722 return n; 5723 } 5724 } 5725 return -1; 5726 } 5727 5728 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type) 5729 { 5730 switch (type) { 5731 case GDB_BREAKPOINT_HW: 5732 len = 1; 5733 break; 5734 case GDB_WATCHPOINT_WRITE: 5735 case GDB_WATCHPOINT_ACCESS: 5736 switch (len) { 5737 case 1: 5738 break; 5739 case 2: 5740 case 4: 5741 case 8: 5742 if (addr & (len - 1)) { 5743 return -EINVAL; 5744 } 5745 break; 5746 default: 5747 return -EINVAL; 5748 } 5749 break; 5750 default: 5751 return -ENOSYS; 5752 } 5753 5754 if (nb_hw_breakpoint == 4) { 5755 return -ENOBUFS; 5756 } 5757 if (find_hw_breakpoint(addr, len, type) >= 0) { 5758 return -EEXIST; 5759 } 5760 hw_breakpoint[nb_hw_breakpoint].addr = addr; 5761 hw_breakpoint[nb_hw_breakpoint].len = len; 5762 hw_breakpoint[nb_hw_breakpoint].type = type; 5763 nb_hw_breakpoint++; 5764 5765 return 0; 5766 } 5767 5768 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type) 5769 { 5770 int n; 5771 5772 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); 5773 if (n < 0) { 5774 return -ENOENT; 5775 } 5776 nb_hw_breakpoint--; 5777 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; 5778 5779 return 0; 5780 } 5781 5782 void kvm_arch_remove_all_hw_breakpoints(void) 5783 { 5784 nb_hw_breakpoint = 0; 5785 } 5786 5787 static CPUWatchpoint hw_watchpoint; 5788 5789 static int kvm_handle_debug(X86CPU *cpu, 5790 struct kvm_debug_exit_arch *arch_info) 5791 { 5792 CPUState *cs = CPU(cpu); 5793 CPUX86State *env = &cpu->env; 5794 int ret = 0; 5795 int n; 5796 5797 if (arch_info->exception == EXCP01_DB) { 5798 if (arch_info->dr6 & DR6_BS) { 5799 if (cs->singlestep_enabled) { 5800 ret = EXCP_DEBUG; 5801 } 5802 } else { 5803 for (n = 0; n < 4; n++) { 5804 if (arch_info->dr6 & (1 << n)) { 5805 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { 5806 case 0x0: 5807 ret = EXCP_DEBUG; 5808 break; 5809 case 0x1: 5810 ret = EXCP_DEBUG; 5811 cs->watchpoint_hit = &hw_watchpoint; 5812 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 5813 hw_watchpoint.flags = BP_MEM_WRITE; 5814 break; 5815 case 0x3: 5816 ret = EXCP_DEBUG; 5817 cs->watchpoint_hit = &hw_watchpoint; 5818 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 5819 hw_watchpoint.flags = BP_MEM_ACCESS; 5820 break; 5821 } 5822 } 5823 } 5824 } 5825 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { 5826 ret = EXCP_DEBUG; 5827 } 5828 if (ret == 0) { 5829 cpu_synchronize_state(cs); 5830 assert(env->exception_nr == -1); 5831 5832 /* pass to guest */ 5833 kvm_queue_exception(env, arch_info->exception, 5834 arch_info->exception == EXCP01_DB, 5835 arch_info->dr6); 5836 env->has_error_code = 0; 5837 } 5838 5839 return ret; 5840 } 5841 5842 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 5843 { 5844 const uint8_t type_code[] = { 5845 [GDB_BREAKPOINT_HW] = 0x0, 5846 [GDB_WATCHPOINT_WRITE] = 0x1, 5847 [GDB_WATCHPOINT_ACCESS] = 0x3 5848 }; 5849 const uint8_t len_code[] = { 5850 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 5851 }; 5852 int n; 5853 5854 if (kvm_sw_breakpoints_active(cpu)) { 5855 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 5856 } 5857 if (nb_hw_breakpoint > 0) { 5858 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 5859 dbg->arch.debugreg[7] = 0x0600; 5860 for (n = 0; n < nb_hw_breakpoint; n++) { 5861 dbg->arch.debugreg[n] = hw_breakpoint[n].addr; 5862 dbg->arch.debugreg[7] |= (2 << (n * 2)) | 5863 (type_code[hw_breakpoint[n].type] << (16 + n*4)) | 5864 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); 5865 } 5866 } 5867 } 5868 5869 static int kvm_install_msr_filters(KVMState *s) 5870 { 5871 uint64_t zero = 0; 5872 struct kvm_msr_filter filter = { 5873 .flags = KVM_MSR_FILTER_DEFAULT_ALLOW, 5874 }; 5875 int i, j = 0; 5876 5877 QEMU_BUILD_BUG_ON(ARRAY_SIZE(msr_handlers) != ARRAY_SIZE(filter.ranges)); 5878 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5879 KVMMSRHandlers *handler = &msr_handlers[i]; 5880 if (handler->msr) { 5881 struct kvm_msr_filter_range *range = &filter.ranges[j++]; 5882 5883 *range = (struct kvm_msr_filter_range) { 5884 .flags = 0, 5885 .nmsrs = 1, 5886 .base = handler->msr, 5887 .bitmap = (__u8 *)&zero, 5888 }; 5889 5890 if (handler->rdmsr) { 5891 range->flags |= KVM_MSR_FILTER_READ; 5892 } 5893 5894 if (handler->wrmsr) { 5895 range->flags |= KVM_MSR_FILTER_WRITE; 5896 } 5897 } 5898 } 5899 5900 return kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter); 5901 } 5902 5903 static int kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr, 5904 QEMUWRMSRHandler *wrmsr) 5905 { 5906 int i, ret; 5907 5908 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5909 if (!msr_handlers[i].msr) { 5910 msr_handlers[i] = (KVMMSRHandlers) { 5911 .msr = msr, 5912 .rdmsr = rdmsr, 5913 .wrmsr = wrmsr, 5914 }; 5915 5916 ret = kvm_install_msr_filters(s); 5917 if (ret) { 5918 msr_handlers[i] = (KVMMSRHandlers) { }; 5919 return ret; 5920 } 5921 5922 return 0; 5923 } 5924 } 5925 5926 return -EINVAL; 5927 } 5928 5929 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run) 5930 { 5931 int i; 5932 bool r; 5933 5934 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5935 KVMMSRHandlers *handler = &msr_handlers[i]; 5936 if (run->msr.index == handler->msr) { 5937 if (handler->rdmsr) { 5938 r = handler->rdmsr(cpu, handler->msr, 5939 (uint64_t *)&run->msr.data); 5940 run->msr.error = r ? 0 : 1; 5941 return 0; 5942 } 5943 } 5944 } 5945 5946 g_assert_not_reached(); 5947 } 5948 5949 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run) 5950 { 5951 int i; 5952 bool r; 5953 5954 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5955 KVMMSRHandlers *handler = &msr_handlers[i]; 5956 if (run->msr.index == handler->msr) { 5957 if (handler->wrmsr) { 5958 r = handler->wrmsr(cpu, handler->msr, run->msr.data); 5959 run->msr.error = r ? 0 : 1; 5960 return 0; 5961 } 5962 } 5963 } 5964 5965 g_assert_not_reached(); 5966 } 5967 5968 static bool has_sgx_provisioning; 5969 5970 static bool __kvm_enable_sgx_provisioning(KVMState *s) 5971 { 5972 int fd, ret; 5973 5974 if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) { 5975 return false; 5976 } 5977 5978 fd = qemu_open_old("/dev/sgx_provision", O_RDONLY); 5979 if (fd < 0) { 5980 return false; 5981 } 5982 5983 ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd); 5984 if (ret) { 5985 error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret)); 5986 exit(1); 5987 } 5988 close(fd); 5989 return true; 5990 } 5991 5992 bool kvm_enable_sgx_provisioning(KVMState *s) 5993 { 5994 return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning); 5995 } 5996 5997 static bool host_supports_vmx(void) 5998 { 5999 uint32_t ecx, unused; 6000 6001 host_cpuid(1, 0, &unused, &unused, &ecx, &unused); 6002 return ecx & CPUID_EXT_VMX; 6003 } 6004 6005 /* 6006 * Currently the handling here only supports use of KVM_HC_MAP_GPA_RANGE 6007 * to service guest-initiated memory attribute update requests so that 6008 * KVM_SET_MEMORY_ATTRIBUTES can update whether or not a page should be 6009 * backed by the private memory pool provided by guest_memfd, and as such 6010 * is only applicable to guest_memfd-backed guests (e.g. SNP/TDX). 6011 * 6012 * Other other use-cases for KVM_HC_MAP_GPA_RANGE, such as for SEV live 6013 * migration, are not implemented here currently. 6014 * 6015 * For the guest_memfd use-case, these exits will generally be synthesized 6016 * by KVM based on platform-specific hypercalls, like GHCB requests in the 6017 * case of SEV-SNP, and not issued directly within the guest though the 6018 * KVM_HC_MAP_GPA_RANGE hypercall. So in this case, KVM_HC_MAP_GPA_RANGE is 6019 * not actually advertised to guests via the KVM CPUID feature bit, as 6020 * opposed to SEV live migration where it would be. Since it is unlikely the 6021 * SEV live migration use-case would be useful for guest-memfd backed guests, 6022 * because private/shared page tracking is already provided through other 6023 * means, these 2 use-cases should be treated as being mutually-exclusive. 6024 */ 6025 static int kvm_handle_hc_map_gpa_range(X86CPU *cpu, struct kvm_run *run) 6026 { 6027 struct kvm_pre_fault_memory mem; 6028 uint64_t gpa, size, attributes; 6029 int ret; 6030 6031 if (!machine_require_guest_memfd(current_machine)) 6032 return -EINVAL; 6033 6034 gpa = run->hypercall.args[0]; 6035 size = run->hypercall.args[1] * TARGET_PAGE_SIZE; 6036 attributes = run->hypercall.args[2]; 6037 6038 trace_kvm_hc_map_gpa_range(gpa, size, attributes, run->hypercall.flags); 6039 6040 ret = kvm_convert_memory(gpa, size, attributes & KVM_MAP_GPA_RANGE_ENCRYPTED); 6041 if (ret || !kvm_pre_fault_memory_supported) { 6042 return ret; 6043 } 6044 6045 /* 6046 * Opportunistically pre-fault memory in. Failures are ignored so that any 6047 * errors in faulting in the memory will get captured in KVM page fault 6048 * path when the guest first accesses the page. 6049 */ 6050 memset(&mem, 0, sizeof(mem)); 6051 mem.gpa = gpa; 6052 mem.size = size; 6053 while (mem.size) { 6054 if (kvm_vcpu_ioctl(CPU(cpu), KVM_PRE_FAULT_MEMORY, &mem)) { 6055 break; 6056 } 6057 } 6058 6059 return 0; 6060 } 6061 6062 static int kvm_handle_hypercall(X86CPU *cpu, struct kvm_run *run) 6063 { 6064 if (run->hypercall.nr == KVM_HC_MAP_GPA_RANGE) 6065 return kvm_handle_hc_map_gpa_range(cpu, run); 6066 6067 return -EINVAL; 6068 } 6069 6070 #define VMX_INVALID_GUEST_STATE 0x80000021 6071 6072 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 6073 { 6074 X86CPU *cpu = X86_CPU(cs); 6075 uint64_t code; 6076 int ret; 6077 bool ctx_invalid; 6078 KVMState *state; 6079 6080 switch (run->exit_reason) { 6081 case KVM_EXIT_HLT: 6082 DPRINTF("handle_hlt\n"); 6083 bql_lock(); 6084 ret = kvm_handle_halt(cpu); 6085 bql_unlock(); 6086 break; 6087 case KVM_EXIT_SET_TPR: 6088 ret = 0; 6089 break; 6090 case KVM_EXIT_TPR_ACCESS: 6091 bql_lock(); 6092 ret = kvm_handle_tpr_access(cpu); 6093 bql_unlock(); 6094 break; 6095 case KVM_EXIT_FAIL_ENTRY: 6096 code = run->fail_entry.hardware_entry_failure_reason; 6097 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", 6098 code); 6099 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { 6100 fprintf(stderr, 6101 "\nIf you're running a guest on an Intel machine without " 6102 "unrestricted mode\n" 6103 "support, the failure can be most likely due to the guest " 6104 "entering an invalid\n" 6105 "state for Intel VT. For example, the guest maybe running " 6106 "in big real mode\n" 6107 "which is not supported on less recent Intel processors." 6108 "\n\n"); 6109 } 6110 ret = -1; 6111 break; 6112 case KVM_EXIT_EXCEPTION: 6113 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", 6114 run->ex.exception, run->ex.error_code); 6115 ret = -1; 6116 break; 6117 case KVM_EXIT_DEBUG: 6118 DPRINTF("kvm_exit_debug\n"); 6119 bql_lock(); 6120 ret = kvm_handle_debug(cpu, &run->debug.arch); 6121 bql_unlock(); 6122 break; 6123 case KVM_EXIT_HYPERV: 6124 ret = kvm_hv_handle_exit(cpu, &run->hyperv); 6125 break; 6126 case KVM_EXIT_IOAPIC_EOI: 6127 ioapic_eoi_broadcast(run->eoi.vector); 6128 ret = 0; 6129 break; 6130 case KVM_EXIT_X86_BUS_LOCK: 6131 /* already handled in kvm_arch_post_run */ 6132 ret = 0; 6133 break; 6134 case KVM_EXIT_NOTIFY: 6135 ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID); 6136 state = KVM_STATE(current_accel()); 6137 if (ctx_invalid || 6138 state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) { 6139 warn_report("KVM internal error: Encountered a notify exit " 6140 "with invalid context in guest."); 6141 ret = -1; 6142 } else { 6143 warn_report_once("KVM: Encountered a notify exit with valid " 6144 "context in guest. " 6145 "The guest could be misbehaving."); 6146 ret = 0; 6147 } 6148 break; 6149 case KVM_EXIT_X86_RDMSR: 6150 /* We only enable MSR filtering, any other exit is bogus */ 6151 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER); 6152 ret = kvm_handle_rdmsr(cpu, run); 6153 break; 6154 case KVM_EXIT_X86_WRMSR: 6155 /* We only enable MSR filtering, any other exit is bogus */ 6156 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER); 6157 ret = kvm_handle_wrmsr(cpu, run); 6158 break; 6159 #ifdef CONFIG_XEN_EMU 6160 case KVM_EXIT_XEN: 6161 ret = kvm_xen_handle_exit(cpu, &run->xen); 6162 break; 6163 #endif 6164 case KVM_EXIT_HYPERCALL: 6165 ret = kvm_handle_hypercall(cpu, run); 6166 break; 6167 case KVM_EXIT_SYSTEM_EVENT: 6168 switch (run->system_event.type) { 6169 case KVM_SYSTEM_EVENT_TDX_FATAL: 6170 ret = tdx_handle_report_fatal_error(cpu, run); 6171 break; 6172 default: 6173 ret = -1; 6174 break; 6175 } 6176 break; 6177 case KVM_EXIT_TDX: 6178 /* 6179 * run->tdx is already set up for the case where userspace 6180 * does not handle the TDVMCALL. 6181 */ 6182 switch (run->tdx.nr) { 6183 case TDVMCALL_GET_QUOTE: 6184 tdx_handle_get_quote(cpu, run); 6185 break; 6186 case TDVMCALL_GET_TD_VM_CALL_INFO: 6187 tdx_handle_get_tdvmcall_info(cpu, run); 6188 break; 6189 case TDVMCALL_SETUP_EVENT_NOTIFY_INTERRUPT: 6190 tdx_handle_setup_event_notify_interrupt(cpu, run); 6191 break; 6192 } 6193 ret = 0; 6194 break; 6195 default: 6196 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); 6197 ret = -1; 6198 break; 6199 } 6200 6201 return ret; 6202 } 6203 6204 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 6205 { 6206 X86CPU *cpu = X86_CPU(cs); 6207 CPUX86State *env = &cpu->env; 6208 6209 kvm_cpu_synchronize_state(cs); 6210 return !(env->cr[0] & CR0_PE_MASK) || 6211 ((env->segs[R_CS].selector & 3) != 3); 6212 } 6213 6214 void kvm_arch_init_irq_routing(KVMState *s) 6215 { 6216 /* We know at this point that we're using the in-kernel 6217 * irqchip, so we can use irqfds, and on x86 we know 6218 * we can use msi via irqfd and GSI routing. 6219 */ 6220 kvm_msi_via_irqfd_allowed = true; 6221 kvm_gsi_routing_allowed = true; 6222 6223 if (kvm_irqchip_is_split()) { 6224 KVMRouteChange c = kvm_irqchip_begin_route_changes(s); 6225 int i; 6226 6227 /* If the ioapic is in QEMU and the lapics are in KVM, reserve 6228 MSI routes for signaling interrupts to the local apics. */ 6229 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 6230 if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) { 6231 error_report("Could not enable split IRQ mode."); 6232 exit(1); 6233 } 6234 } 6235 kvm_irqchip_commit_route_changes(&c); 6236 } 6237 } 6238 6239 int kvm_arch_irqchip_create(KVMState *s) 6240 { 6241 int ret; 6242 if (kvm_kernel_irqchip_split()) { 6243 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); 6244 if (ret) { 6245 error_report("Could not enable split irqchip mode: %s", 6246 strerror(-ret)); 6247 exit(1); 6248 } else { 6249 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); 6250 kvm_split_irqchip = true; 6251 return 1; 6252 } 6253 } else { 6254 return 0; 6255 } 6256 } 6257 6258 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address) 6259 { 6260 CPUX86State *env; 6261 uint64_t ext_id; 6262 6263 if (!first_cpu) { 6264 return address; 6265 } 6266 env = &X86_CPU(first_cpu)->env; 6267 if (!(env->features[FEAT_KVM] & CPUID_KVM_MSI_EXT_DEST_ID)) { 6268 return address; 6269 } 6270 6271 /* 6272 * If the remappable format bit is set, or the upper bits are 6273 * already set in address_hi, or the low extended bits aren't 6274 * there anyway, do nothing. 6275 */ 6276 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT); 6277 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) { 6278 return address; 6279 } 6280 6281 address &= ~ext_id; 6282 address |= ext_id << 35; 6283 return address; 6284 } 6285 6286 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 6287 uint64_t address, uint32_t data, PCIDevice *dev) 6288 { 6289 X86IOMMUState *iommu = x86_iommu_get_default(); 6290 6291 if (iommu) { 6292 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu); 6293 6294 if (class->int_remap) { 6295 int ret; 6296 MSIMessage src, dst; 6297 6298 src.address = route->u.msi.address_hi; 6299 src.address <<= VTD_MSI_ADDR_HI_SHIFT; 6300 src.address |= route->u.msi.address_lo; 6301 src.data = route->u.msi.data; 6302 6303 ret = class->int_remap(iommu, &src, &dst, dev ? \ 6304 pci_requester_id(dev) : \ 6305 X86_IOMMU_SID_INVALID); 6306 if (ret) { 6307 trace_kvm_x86_fixup_msi_error(route->gsi); 6308 return 1; 6309 } 6310 6311 /* 6312 * Handled untranslated compatibility format interrupt with 6313 * extended destination ID in the low bits 11-5. */ 6314 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address); 6315 6316 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; 6317 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; 6318 route->u.msi.data = dst.data; 6319 return 0; 6320 } 6321 } 6322 6323 #ifdef CONFIG_XEN_EMU 6324 if (xen_mode == XEN_EMULATE) { 6325 int handled = xen_evtchn_translate_pirq_msi(route, address, data); 6326 6327 /* 6328 * If it was a PIRQ and successfully routed (handled == 0) or it was 6329 * an error (handled < 0), return. If it wasn't a PIRQ, keep going. 6330 */ 6331 if (handled <= 0) { 6332 return handled; 6333 } 6334 } 6335 #endif 6336 6337 address = kvm_swizzle_msi_ext_dest_id(address); 6338 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT; 6339 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK; 6340 return 0; 6341 } 6342 6343 typedef struct MSIRouteEntry MSIRouteEntry; 6344 6345 struct MSIRouteEntry { 6346 PCIDevice *dev; /* Device pointer */ 6347 int vector; /* MSI/MSIX vector index */ 6348 int virq; /* Virtual IRQ index */ 6349 QLIST_ENTRY(MSIRouteEntry) list; 6350 }; 6351 6352 /* List of used GSI routes */ 6353 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ 6354 QLIST_HEAD_INITIALIZER(msi_route_list); 6355 6356 void kvm_update_msi_routes_all(void *private, bool global, 6357 uint32_t index, uint32_t mask) 6358 { 6359 int cnt = 0, vector; 6360 MSIRouteEntry *entry; 6361 MSIMessage msg; 6362 PCIDevice *dev; 6363 6364 /* TODO: explicit route update */ 6365 QLIST_FOREACH(entry, &msi_route_list, list) { 6366 cnt++; 6367 vector = entry->vector; 6368 dev = entry->dev; 6369 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) { 6370 msg = msix_get_message(dev, vector); 6371 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) { 6372 msg = msi_get_message(dev, vector); 6373 } else { 6374 /* 6375 * Either MSI/MSIX is disabled for the device, or the 6376 * specific message was masked out. Skip this one. 6377 */ 6378 continue; 6379 } 6380 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); 6381 } 6382 kvm_irqchip_commit_routes(kvm_state); 6383 trace_kvm_x86_update_msi_routes(cnt); 6384 } 6385 6386 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 6387 int vector, PCIDevice *dev) 6388 { 6389 static bool notify_list_inited = false; 6390 MSIRouteEntry *entry; 6391 6392 if (!dev) { 6393 /* These are (possibly) IOAPIC routes only used for split 6394 * kernel irqchip mode, while what we are housekeeping are 6395 * PCI devices only. */ 6396 return 0; 6397 } 6398 6399 entry = g_new0(MSIRouteEntry, 1); 6400 entry->dev = dev; 6401 entry->vector = vector; 6402 entry->virq = route->gsi; 6403 QLIST_INSERT_HEAD(&msi_route_list, entry, list); 6404 6405 trace_kvm_x86_add_msi_route(route->gsi); 6406 6407 if (!notify_list_inited) { 6408 /* For the first time we do add route, add ourselves into 6409 * IOMMU's IEC notify list if needed. */ 6410 X86IOMMUState *iommu = x86_iommu_get_default(); 6411 if (iommu) { 6412 x86_iommu_iec_register_notifier(iommu, 6413 kvm_update_msi_routes_all, 6414 NULL); 6415 } 6416 notify_list_inited = true; 6417 } 6418 return 0; 6419 } 6420 6421 int kvm_arch_release_virq_post(int virq) 6422 { 6423 MSIRouteEntry *entry, *next; 6424 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { 6425 if (entry->virq == virq) { 6426 trace_kvm_x86_remove_msi_route(virq); 6427 QLIST_REMOVE(entry, list); 6428 g_free(entry); 6429 break; 6430 } 6431 } 6432 return 0; 6433 } 6434 6435 int kvm_arch_msi_data_to_gsi(uint32_t data) 6436 { 6437 abort(); 6438 } 6439 6440 bool kvm_has_waitpkg(void) 6441 { 6442 return has_msr_umwait; 6443 } 6444 6445 #define ARCH_REQ_XCOMP_GUEST_PERM 0x1025 6446 6447 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask) 6448 { 6449 KVMState *s = kvm_state; 6450 uint64_t supported; 6451 6452 mask &= XSTATE_DYNAMIC_MASK; 6453 if (!mask) { 6454 return; 6455 } 6456 /* 6457 * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0]. 6458 * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned 6459 * about them already because they are not supported features. 6460 */ 6461 supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX); 6462 supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32; 6463 mask &= supported; 6464 6465 while (mask) { 6466 int bit = ctz64(mask); 6467 int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit); 6468 if (rc) { 6469 /* 6470 * Older kernel version (<5.17) do not support 6471 * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return 6472 * any dynamic feature from kvm_arch_get_supported_cpuid. 6473 */ 6474 warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure " 6475 "for feature bit %d", bit); 6476 } 6477 mask &= ~BIT_ULL(bit); 6478 } 6479 } 6480 6481 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp) 6482 { 6483 KVMState *s = KVM_STATE(obj); 6484 return s->notify_vmexit; 6485 } 6486 6487 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp) 6488 { 6489 KVMState *s = KVM_STATE(obj); 6490 6491 if (s->fd != -1) { 6492 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 6493 return; 6494 } 6495 6496 s->notify_vmexit = value; 6497 } 6498 6499 static void kvm_arch_get_notify_window(Object *obj, Visitor *v, 6500 const char *name, void *opaque, 6501 Error **errp) 6502 { 6503 KVMState *s = KVM_STATE(obj); 6504 uint32_t value = s->notify_window; 6505 6506 visit_type_uint32(v, name, &value, errp); 6507 } 6508 6509 static void kvm_arch_set_notify_window(Object *obj, Visitor *v, 6510 const char *name, void *opaque, 6511 Error **errp) 6512 { 6513 KVMState *s = KVM_STATE(obj); 6514 uint32_t value; 6515 6516 if (s->fd != -1) { 6517 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 6518 return; 6519 } 6520 6521 if (!visit_type_uint32(v, name, &value, errp)) { 6522 return; 6523 } 6524 6525 s->notify_window = value; 6526 } 6527 6528 static void kvm_arch_get_xen_version(Object *obj, Visitor *v, 6529 const char *name, void *opaque, 6530 Error **errp) 6531 { 6532 KVMState *s = KVM_STATE(obj); 6533 uint32_t value = s->xen_version; 6534 6535 visit_type_uint32(v, name, &value, errp); 6536 } 6537 6538 static void kvm_arch_set_xen_version(Object *obj, Visitor *v, 6539 const char *name, void *opaque, 6540 Error **errp) 6541 { 6542 KVMState *s = KVM_STATE(obj); 6543 Error *error = NULL; 6544 uint32_t value; 6545 6546 visit_type_uint32(v, name, &value, &error); 6547 if (error) { 6548 error_propagate(errp, error); 6549 return; 6550 } 6551 6552 s->xen_version = value; 6553 if (value && xen_mode == XEN_DISABLED) { 6554 xen_mode = XEN_EMULATE; 6555 } 6556 } 6557 6558 static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v, 6559 const char *name, void *opaque, 6560 Error **errp) 6561 { 6562 KVMState *s = KVM_STATE(obj); 6563 uint16_t value = s->xen_gnttab_max_frames; 6564 6565 visit_type_uint16(v, name, &value, errp); 6566 } 6567 6568 static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v, 6569 const char *name, void *opaque, 6570 Error **errp) 6571 { 6572 KVMState *s = KVM_STATE(obj); 6573 Error *error = NULL; 6574 uint16_t value; 6575 6576 visit_type_uint16(v, name, &value, &error); 6577 if (error) { 6578 error_propagate(errp, error); 6579 return; 6580 } 6581 6582 s->xen_gnttab_max_frames = value; 6583 } 6584 6585 static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v, 6586 const char *name, void *opaque, 6587 Error **errp) 6588 { 6589 KVMState *s = KVM_STATE(obj); 6590 uint16_t value = s->xen_evtchn_max_pirq; 6591 6592 visit_type_uint16(v, name, &value, errp); 6593 } 6594 6595 static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v, 6596 const char *name, void *opaque, 6597 Error **errp) 6598 { 6599 KVMState *s = KVM_STATE(obj); 6600 Error *error = NULL; 6601 uint16_t value; 6602 6603 visit_type_uint16(v, name, &value, &error); 6604 if (error) { 6605 error_propagate(errp, error); 6606 return; 6607 } 6608 6609 s->xen_evtchn_max_pirq = value; 6610 } 6611 6612 void kvm_arch_accel_class_init(ObjectClass *oc) 6613 { 6614 object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption", 6615 &NotifyVmexitOption_lookup, 6616 kvm_arch_get_notify_vmexit, 6617 kvm_arch_set_notify_vmexit); 6618 object_class_property_set_description(oc, "notify-vmexit", 6619 "Enable notify VM exit"); 6620 6621 object_class_property_add(oc, "notify-window", "uint32", 6622 kvm_arch_get_notify_window, 6623 kvm_arch_set_notify_window, 6624 NULL, NULL); 6625 object_class_property_set_description(oc, "notify-window", 6626 "Clock cycles without an event window " 6627 "after which a notification VM exit occurs"); 6628 6629 object_class_property_add(oc, "xen-version", "uint32", 6630 kvm_arch_get_xen_version, 6631 kvm_arch_set_xen_version, 6632 NULL, NULL); 6633 object_class_property_set_description(oc, "xen-version", 6634 "Xen version to be emulated " 6635 "(in XENVER_version form " 6636 "e.g. 0x4000a for 4.10)"); 6637 6638 object_class_property_add(oc, "xen-gnttab-max-frames", "uint16", 6639 kvm_arch_get_xen_gnttab_max_frames, 6640 kvm_arch_set_xen_gnttab_max_frames, 6641 NULL, NULL); 6642 object_class_property_set_description(oc, "xen-gnttab-max-frames", 6643 "Maximum number of grant table frames"); 6644 6645 object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16", 6646 kvm_arch_get_xen_evtchn_max_pirq, 6647 kvm_arch_set_xen_evtchn_max_pirq, 6648 NULL, NULL); 6649 object_class_property_set_description(oc, "xen-evtchn-max-pirq", 6650 "Maximum number of Xen PIRQs"); 6651 } 6652 6653 void kvm_set_max_apic_id(uint32_t max_apic_id) 6654 { 6655 kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id); 6656 } 6657