1 /* 2 * Copyright (c) 2003-2008 Fabrice Bellard 3 * Copyright (C) 2016 Veertu Inc, 4 * Copyright (C) 2017 Google Inc, 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 22 #include "qemu-common.h" 23 #include "x86hvf.h" 24 #include "vmx.h" 25 #include "vmcs.h" 26 #include "cpu.h" 27 #include "x86_descr.h" 28 #include "x86_decode.h" 29 30 #include "hw/i386/apic_internal.h" 31 32 #include <Hypervisor/hv.h> 33 #include <Hypervisor/hv_vmx.h> 34 35 #include "hvf-cpus.h" 36 37 void hvf_set_segment(struct CPUState *cpu, struct vmx_segment *vmx_seg, 38 SegmentCache *qseg, bool is_tr) 39 { 40 vmx_seg->sel = qseg->selector; 41 vmx_seg->base = qseg->base; 42 vmx_seg->limit = qseg->limit; 43 44 if (!qseg->selector && !x86_is_real(cpu) && !is_tr) { 45 /* the TR register is usable after processor reset despite 46 * having a null selector */ 47 vmx_seg->ar = 1 << 16; 48 return; 49 } 50 vmx_seg->ar = (qseg->flags >> DESC_TYPE_SHIFT) & 0xf; 51 vmx_seg->ar |= ((qseg->flags >> DESC_G_SHIFT) & 1) << 15; 52 vmx_seg->ar |= ((qseg->flags >> DESC_B_SHIFT) & 1) << 14; 53 vmx_seg->ar |= ((qseg->flags >> DESC_L_SHIFT) & 1) << 13; 54 vmx_seg->ar |= ((qseg->flags >> DESC_AVL_SHIFT) & 1) << 12; 55 vmx_seg->ar |= ((qseg->flags >> DESC_P_SHIFT) & 1) << 7; 56 vmx_seg->ar |= ((qseg->flags >> DESC_DPL_SHIFT) & 3) << 5; 57 vmx_seg->ar |= ((qseg->flags >> DESC_S_SHIFT) & 1) << 4; 58 } 59 60 void hvf_get_segment(SegmentCache *qseg, struct vmx_segment *vmx_seg) 61 { 62 qseg->limit = vmx_seg->limit; 63 qseg->base = vmx_seg->base; 64 qseg->selector = vmx_seg->sel; 65 qseg->flags = ((vmx_seg->ar & 0xf) << DESC_TYPE_SHIFT) | 66 (((vmx_seg->ar >> 4) & 1) << DESC_S_SHIFT) | 67 (((vmx_seg->ar >> 5) & 3) << DESC_DPL_SHIFT) | 68 (((vmx_seg->ar >> 7) & 1) << DESC_P_SHIFT) | 69 (((vmx_seg->ar >> 12) & 1) << DESC_AVL_SHIFT) | 70 (((vmx_seg->ar >> 13) & 1) << DESC_L_SHIFT) | 71 (((vmx_seg->ar >> 14) & 1) << DESC_B_SHIFT) | 72 (((vmx_seg->ar >> 15) & 1) << DESC_G_SHIFT); 73 } 74 75 void hvf_put_xsave(CPUState *cpu_state) 76 { 77 78 struct X86XSaveArea *xsave; 79 80 xsave = X86_CPU(cpu_state)->env.xsave_buf; 81 82 x86_cpu_xsave_all_areas(X86_CPU(cpu_state), xsave); 83 84 if (hv_vcpu_write_fpstate(cpu_state->hvf_fd, (void*)xsave, 4096)) { 85 abort(); 86 } 87 } 88 89 void hvf_put_segments(CPUState *cpu_state) 90 { 91 CPUX86State *env = &X86_CPU(cpu_state)->env; 92 struct vmx_segment seg; 93 94 wvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_LIMIT, env->idt.limit); 95 wvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_BASE, env->idt.base); 96 97 wvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_LIMIT, env->gdt.limit); 98 wvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_BASE, env->gdt.base); 99 100 /* wvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR2, env->cr[2]); */ 101 wvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR3, env->cr[3]); 102 vmx_update_tpr(cpu_state); 103 wvmcs(cpu_state->hvf_fd, VMCS_GUEST_IA32_EFER, env->efer); 104 105 macvm_set_cr4(cpu_state->hvf_fd, env->cr[4]); 106 macvm_set_cr0(cpu_state->hvf_fd, env->cr[0]); 107 108 hvf_set_segment(cpu_state, &seg, &env->segs[R_CS], false); 109 vmx_write_segment_descriptor(cpu_state, &seg, R_CS); 110 111 hvf_set_segment(cpu_state, &seg, &env->segs[R_DS], false); 112 vmx_write_segment_descriptor(cpu_state, &seg, R_DS); 113 114 hvf_set_segment(cpu_state, &seg, &env->segs[R_ES], false); 115 vmx_write_segment_descriptor(cpu_state, &seg, R_ES); 116 117 hvf_set_segment(cpu_state, &seg, &env->segs[R_SS], false); 118 vmx_write_segment_descriptor(cpu_state, &seg, R_SS); 119 120 hvf_set_segment(cpu_state, &seg, &env->segs[R_FS], false); 121 vmx_write_segment_descriptor(cpu_state, &seg, R_FS); 122 123 hvf_set_segment(cpu_state, &seg, &env->segs[R_GS], false); 124 vmx_write_segment_descriptor(cpu_state, &seg, R_GS); 125 126 hvf_set_segment(cpu_state, &seg, &env->tr, true); 127 vmx_write_segment_descriptor(cpu_state, &seg, R_TR); 128 129 hvf_set_segment(cpu_state, &seg, &env->ldt, false); 130 vmx_write_segment_descriptor(cpu_state, &seg, R_LDTR); 131 132 hv_vcpu_flush(cpu_state->hvf_fd); 133 } 134 135 void hvf_put_msrs(CPUState *cpu_state) 136 { 137 CPUX86State *env = &X86_CPU(cpu_state)->env; 138 139 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_CS, 140 env->sysenter_cs); 141 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_ESP, 142 env->sysenter_esp); 143 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_EIP, 144 env->sysenter_eip); 145 146 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_STAR, env->star); 147 148 #ifdef TARGET_X86_64 149 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_CSTAR, env->cstar); 150 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_KERNELGSBASE, env->kernelgsbase); 151 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_FMASK, env->fmask); 152 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_LSTAR, env->lstar); 153 #endif 154 155 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_GSBASE, env->segs[R_GS].base); 156 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_FSBASE, env->segs[R_FS].base); 157 } 158 159 160 void hvf_get_xsave(CPUState *cpu_state) 161 { 162 struct X86XSaveArea *xsave; 163 164 xsave = X86_CPU(cpu_state)->env.xsave_buf; 165 166 if (hv_vcpu_read_fpstate(cpu_state->hvf_fd, (void*)xsave, 4096)) { 167 abort(); 168 } 169 170 x86_cpu_xrstor_all_areas(X86_CPU(cpu_state), xsave); 171 } 172 173 void hvf_get_segments(CPUState *cpu_state) 174 { 175 CPUX86State *env = &X86_CPU(cpu_state)->env; 176 177 struct vmx_segment seg; 178 179 env->interrupt_injected = -1; 180 181 vmx_read_segment_descriptor(cpu_state, &seg, R_CS); 182 hvf_get_segment(&env->segs[R_CS], &seg); 183 184 vmx_read_segment_descriptor(cpu_state, &seg, R_DS); 185 hvf_get_segment(&env->segs[R_DS], &seg); 186 187 vmx_read_segment_descriptor(cpu_state, &seg, R_ES); 188 hvf_get_segment(&env->segs[R_ES], &seg); 189 190 vmx_read_segment_descriptor(cpu_state, &seg, R_FS); 191 hvf_get_segment(&env->segs[R_FS], &seg); 192 193 vmx_read_segment_descriptor(cpu_state, &seg, R_GS); 194 hvf_get_segment(&env->segs[R_GS], &seg); 195 196 vmx_read_segment_descriptor(cpu_state, &seg, R_SS); 197 hvf_get_segment(&env->segs[R_SS], &seg); 198 199 vmx_read_segment_descriptor(cpu_state, &seg, R_TR); 200 hvf_get_segment(&env->tr, &seg); 201 202 vmx_read_segment_descriptor(cpu_state, &seg, R_LDTR); 203 hvf_get_segment(&env->ldt, &seg); 204 205 env->idt.limit = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_LIMIT); 206 env->idt.base = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_BASE); 207 env->gdt.limit = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_LIMIT); 208 env->gdt.base = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_BASE); 209 210 env->cr[0] = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR0); 211 env->cr[2] = 0; 212 env->cr[3] = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR3); 213 env->cr[4] = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR4); 214 215 env->efer = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_IA32_EFER); 216 } 217 218 void hvf_get_msrs(CPUState *cpu_state) 219 { 220 CPUX86State *env = &X86_CPU(cpu_state)->env; 221 uint64_t tmp; 222 223 hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_CS, &tmp); 224 env->sysenter_cs = tmp; 225 226 hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_ESP, &tmp); 227 env->sysenter_esp = tmp; 228 229 hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_EIP, &tmp); 230 env->sysenter_eip = tmp; 231 232 hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_STAR, &env->star); 233 234 #ifdef TARGET_X86_64 235 hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_CSTAR, &env->cstar); 236 hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_KERNELGSBASE, &env->kernelgsbase); 237 hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_FMASK, &env->fmask); 238 hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_LSTAR, &env->lstar); 239 #endif 240 241 hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_APICBASE, &tmp); 242 243 env->tsc = rdtscp() + rvmcs(cpu_state->hvf_fd, VMCS_TSC_OFFSET); 244 } 245 246 int hvf_put_registers(CPUState *cpu_state) 247 { 248 X86CPU *x86cpu = X86_CPU(cpu_state); 249 CPUX86State *env = &x86cpu->env; 250 251 wreg(cpu_state->hvf_fd, HV_X86_RAX, env->regs[R_EAX]); 252 wreg(cpu_state->hvf_fd, HV_X86_RBX, env->regs[R_EBX]); 253 wreg(cpu_state->hvf_fd, HV_X86_RCX, env->regs[R_ECX]); 254 wreg(cpu_state->hvf_fd, HV_X86_RDX, env->regs[R_EDX]); 255 wreg(cpu_state->hvf_fd, HV_X86_RBP, env->regs[R_EBP]); 256 wreg(cpu_state->hvf_fd, HV_X86_RSP, env->regs[R_ESP]); 257 wreg(cpu_state->hvf_fd, HV_X86_RSI, env->regs[R_ESI]); 258 wreg(cpu_state->hvf_fd, HV_X86_RDI, env->regs[R_EDI]); 259 wreg(cpu_state->hvf_fd, HV_X86_R8, env->regs[8]); 260 wreg(cpu_state->hvf_fd, HV_X86_R9, env->regs[9]); 261 wreg(cpu_state->hvf_fd, HV_X86_R10, env->regs[10]); 262 wreg(cpu_state->hvf_fd, HV_X86_R11, env->regs[11]); 263 wreg(cpu_state->hvf_fd, HV_X86_R12, env->regs[12]); 264 wreg(cpu_state->hvf_fd, HV_X86_R13, env->regs[13]); 265 wreg(cpu_state->hvf_fd, HV_X86_R14, env->regs[14]); 266 wreg(cpu_state->hvf_fd, HV_X86_R15, env->regs[15]); 267 wreg(cpu_state->hvf_fd, HV_X86_RFLAGS, env->eflags); 268 wreg(cpu_state->hvf_fd, HV_X86_RIP, env->eip); 269 270 wreg(cpu_state->hvf_fd, HV_X86_XCR0, env->xcr0); 271 272 hvf_put_xsave(cpu_state); 273 274 hvf_put_segments(cpu_state); 275 276 hvf_put_msrs(cpu_state); 277 278 wreg(cpu_state->hvf_fd, HV_X86_DR0, env->dr[0]); 279 wreg(cpu_state->hvf_fd, HV_X86_DR1, env->dr[1]); 280 wreg(cpu_state->hvf_fd, HV_X86_DR2, env->dr[2]); 281 wreg(cpu_state->hvf_fd, HV_X86_DR3, env->dr[3]); 282 wreg(cpu_state->hvf_fd, HV_X86_DR4, env->dr[4]); 283 wreg(cpu_state->hvf_fd, HV_X86_DR5, env->dr[5]); 284 wreg(cpu_state->hvf_fd, HV_X86_DR6, env->dr[6]); 285 wreg(cpu_state->hvf_fd, HV_X86_DR7, env->dr[7]); 286 287 return 0; 288 } 289 290 int hvf_get_registers(CPUState *cpu_state) 291 { 292 X86CPU *x86cpu = X86_CPU(cpu_state); 293 CPUX86State *env = &x86cpu->env; 294 295 env->regs[R_EAX] = rreg(cpu_state->hvf_fd, HV_X86_RAX); 296 env->regs[R_EBX] = rreg(cpu_state->hvf_fd, HV_X86_RBX); 297 env->regs[R_ECX] = rreg(cpu_state->hvf_fd, HV_X86_RCX); 298 env->regs[R_EDX] = rreg(cpu_state->hvf_fd, HV_X86_RDX); 299 env->regs[R_EBP] = rreg(cpu_state->hvf_fd, HV_X86_RBP); 300 env->regs[R_ESP] = rreg(cpu_state->hvf_fd, HV_X86_RSP); 301 env->regs[R_ESI] = rreg(cpu_state->hvf_fd, HV_X86_RSI); 302 env->regs[R_EDI] = rreg(cpu_state->hvf_fd, HV_X86_RDI); 303 env->regs[8] = rreg(cpu_state->hvf_fd, HV_X86_R8); 304 env->regs[9] = rreg(cpu_state->hvf_fd, HV_X86_R9); 305 env->regs[10] = rreg(cpu_state->hvf_fd, HV_X86_R10); 306 env->regs[11] = rreg(cpu_state->hvf_fd, HV_X86_R11); 307 env->regs[12] = rreg(cpu_state->hvf_fd, HV_X86_R12); 308 env->regs[13] = rreg(cpu_state->hvf_fd, HV_X86_R13); 309 env->regs[14] = rreg(cpu_state->hvf_fd, HV_X86_R14); 310 env->regs[15] = rreg(cpu_state->hvf_fd, HV_X86_R15); 311 312 env->eflags = rreg(cpu_state->hvf_fd, HV_X86_RFLAGS); 313 env->eip = rreg(cpu_state->hvf_fd, HV_X86_RIP); 314 315 hvf_get_xsave(cpu_state); 316 env->xcr0 = rreg(cpu_state->hvf_fd, HV_X86_XCR0); 317 318 hvf_get_segments(cpu_state); 319 hvf_get_msrs(cpu_state); 320 321 env->dr[0] = rreg(cpu_state->hvf_fd, HV_X86_DR0); 322 env->dr[1] = rreg(cpu_state->hvf_fd, HV_X86_DR1); 323 env->dr[2] = rreg(cpu_state->hvf_fd, HV_X86_DR2); 324 env->dr[3] = rreg(cpu_state->hvf_fd, HV_X86_DR3); 325 env->dr[4] = rreg(cpu_state->hvf_fd, HV_X86_DR4); 326 env->dr[5] = rreg(cpu_state->hvf_fd, HV_X86_DR5); 327 env->dr[6] = rreg(cpu_state->hvf_fd, HV_X86_DR6); 328 env->dr[7] = rreg(cpu_state->hvf_fd, HV_X86_DR7); 329 330 x86_update_hflags(env); 331 return 0; 332 } 333 334 static void vmx_set_int_window_exiting(CPUState *cpu) 335 { 336 uint64_t val; 337 val = rvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS); 338 wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS, val | 339 VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING); 340 } 341 342 void vmx_clear_int_window_exiting(CPUState *cpu) 343 { 344 uint64_t val; 345 val = rvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS); 346 wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS, val & 347 ~VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING); 348 } 349 350 bool hvf_inject_interrupts(CPUState *cpu_state) 351 { 352 X86CPU *x86cpu = X86_CPU(cpu_state); 353 CPUX86State *env = &x86cpu->env; 354 355 uint8_t vector; 356 uint64_t intr_type; 357 bool have_event = true; 358 if (env->interrupt_injected != -1) { 359 vector = env->interrupt_injected; 360 if (env->ins_len) { 361 intr_type = VMCS_INTR_T_SWINTR; 362 } else { 363 intr_type = VMCS_INTR_T_HWINTR; 364 } 365 } else if (env->exception_nr != -1) { 366 vector = env->exception_nr; 367 if (vector == EXCP03_INT3 || vector == EXCP04_INTO) { 368 intr_type = VMCS_INTR_T_SWEXCEPTION; 369 } else { 370 intr_type = VMCS_INTR_T_HWEXCEPTION; 371 } 372 } else if (env->nmi_injected) { 373 vector = EXCP02_NMI; 374 intr_type = VMCS_INTR_T_NMI; 375 } else { 376 have_event = false; 377 } 378 379 uint64_t info = 0; 380 if (have_event) { 381 info = vector | intr_type | VMCS_INTR_VALID; 382 uint64_t reason = rvmcs(cpu_state->hvf_fd, VMCS_EXIT_REASON); 383 if (env->nmi_injected && reason != EXIT_REASON_TASK_SWITCH) { 384 vmx_clear_nmi_blocking(cpu_state); 385 } 386 387 if (!(env->hflags2 & HF2_NMI_MASK) || intr_type != VMCS_INTR_T_NMI) { 388 info &= ~(1 << 12); /* clear undefined bit */ 389 if (intr_type == VMCS_INTR_T_SWINTR || 390 intr_type == VMCS_INTR_T_SWEXCEPTION) { 391 wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INST_LENGTH, env->ins_len); 392 } 393 394 if (env->has_error_code) { 395 wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_EXCEPTION_ERROR, 396 env->error_code); 397 /* Indicate that VMCS_ENTRY_EXCEPTION_ERROR is valid */ 398 info |= VMCS_INTR_DEL_ERRCODE; 399 } 400 /*printf("reinject %lx err %d\n", info, err);*/ 401 wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INTR_INFO, info); 402 }; 403 } 404 405 if (cpu_state->interrupt_request & CPU_INTERRUPT_NMI) { 406 if (!(env->hflags2 & HF2_NMI_MASK) && !(info & VMCS_INTR_VALID)) { 407 cpu_state->interrupt_request &= ~CPU_INTERRUPT_NMI; 408 info = VMCS_INTR_VALID | VMCS_INTR_T_NMI | EXCP02_NMI; 409 wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INTR_INFO, info); 410 } else { 411 vmx_set_nmi_window_exiting(cpu_state); 412 } 413 } 414 415 if (!(env->hflags & HF_INHIBIT_IRQ_MASK) && 416 (cpu_state->interrupt_request & CPU_INTERRUPT_HARD) && 417 (env->eflags & IF_MASK) && !(info & VMCS_INTR_VALID)) { 418 int line = cpu_get_pic_interrupt(&x86cpu->env); 419 cpu_state->interrupt_request &= ~CPU_INTERRUPT_HARD; 420 if (line >= 0) { 421 wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INTR_INFO, line | 422 VMCS_INTR_VALID | VMCS_INTR_T_HWINTR); 423 } 424 } 425 if (cpu_state->interrupt_request & CPU_INTERRUPT_HARD) { 426 vmx_set_int_window_exiting(cpu_state); 427 } 428 return (cpu_state->interrupt_request 429 & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)); 430 } 431 432 int hvf_process_events(CPUState *cpu_state) 433 { 434 X86CPU *cpu = X86_CPU(cpu_state); 435 CPUX86State *env = &cpu->env; 436 437 env->eflags = rreg(cpu_state->hvf_fd, HV_X86_RFLAGS); 438 439 if (cpu_state->interrupt_request & CPU_INTERRUPT_INIT) { 440 hvf_cpu_synchronize_state(cpu_state); 441 do_cpu_init(cpu); 442 } 443 444 if (cpu_state->interrupt_request & CPU_INTERRUPT_POLL) { 445 cpu_state->interrupt_request &= ~CPU_INTERRUPT_POLL; 446 apic_poll_irq(cpu->apic_state); 447 } 448 if (((cpu_state->interrupt_request & CPU_INTERRUPT_HARD) && 449 (env->eflags & IF_MASK)) || 450 (cpu_state->interrupt_request & CPU_INTERRUPT_NMI)) { 451 cpu_state->halted = 0; 452 } 453 if (cpu_state->interrupt_request & CPU_INTERRUPT_SIPI) { 454 hvf_cpu_synchronize_state(cpu_state); 455 do_cpu_sipi(cpu); 456 } 457 if (cpu_state->interrupt_request & CPU_INTERRUPT_TPR) { 458 cpu_state->interrupt_request &= ~CPU_INTERRUPT_TPR; 459 hvf_cpu_synchronize_state(cpu_state); 460 apic_handle_tpr_access_report(cpu->apic_state, env->eip, 461 env->tpr_access_type); 462 } 463 return cpu_state->halted; 464 } 465