xref: /openbmc/qemu/target/i386/hvf/x86hvf.c (revision 5ade579b)
1 /*
2  * Copyright (c) 2003-2008 Fabrice Bellard
3  * Copyright (C) 2016 Veertu Inc,
4  * Copyright (C) 2017 Google Inc,
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 
22 #include "qemu-common.h"
23 #include "x86hvf.h"
24 #include "vmx.h"
25 #include "vmcs.h"
26 #include "cpu.h"
27 #include "x86_descr.h"
28 #include "x86_decode.h"
29 
30 #include "hw/i386/apic_internal.h"
31 
32 #include <Hypervisor/hv.h>
33 #include <Hypervisor/hv_vmx.h>
34 
35 #include "hvf-cpus.h"
36 
37 void hvf_set_segment(struct CPUState *cpu, struct vmx_segment *vmx_seg,
38                      SegmentCache *qseg, bool is_tr)
39 {
40     vmx_seg->sel = qseg->selector;
41     vmx_seg->base = qseg->base;
42     vmx_seg->limit = qseg->limit;
43 
44     if (!qseg->selector && !x86_is_real(cpu) && !is_tr) {
45         /* the TR register is usable after processor reset despite
46          * having a null selector */
47         vmx_seg->ar = 1 << 16;
48         return;
49     }
50     vmx_seg->ar = (qseg->flags >> DESC_TYPE_SHIFT) & 0xf;
51     vmx_seg->ar |= ((qseg->flags >> DESC_G_SHIFT) & 1) << 15;
52     vmx_seg->ar |= ((qseg->flags >> DESC_B_SHIFT) & 1) << 14;
53     vmx_seg->ar |= ((qseg->flags >> DESC_L_SHIFT) & 1) << 13;
54     vmx_seg->ar |= ((qseg->flags >> DESC_AVL_SHIFT) & 1) << 12;
55     vmx_seg->ar |= ((qseg->flags >> DESC_P_SHIFT) & 1) << 7;
56     vmx_seg->ar |= ((qseg->flags >> DESC_DPL_SHIFT) & 3) << 5;
57     vmx_seg->ar |= ((qseg->flags >> DESC_S_SHIFT) & 1) << 4;
58 }
59 
60 void hvf_get_segment(SegmentCache *qseg, struct vmx_segment *vmx_seg)
61 {
62     qseg->limit = vmx_seg->limit;
63     qseg->base = vmx_seg->base;
64     qseg->selector = vmx_seg->sel;
65     qseg->flags = ((vmx_seg->ar & 0xf) << DESC_TYPE_SHIFT) |
66                   (((vmx_seg->ar >> 4) & 1) << DESC_S_SHIFT) |
67                   (((vmx_seg->ar >> 5) & 3) << DESC_DPL_SHIFT) |
68                   (((vmx_seg->ar >> 7) & 1) << DESC_P_SHIFT) |
69                   (((vmx_seg->ar >> 12) & 1) << DESC_AVL_SHIFT) |
70                   (((vmx_seg->ar >> 13) & 1) << DESC_L_SHIFT) |
71                   (((vmx_seg->ar >> 14) & 1) << DESC_B_SHIFT) |
72                   (((vmx_seg->ar >> 15) & 1) << DESC_G_SHIFT);
73 }
74 
75 void hvf_put_xsave(CPUState *cpu_state)
76 {
77 
78     struct X86XSaveArea *xsave;
79 
80     xsave = X86_CPU(cpu_state)->env.xsave_buf;
81 
82     x86_cpu_xsave_all_areas(X86_CPU(cpu_state), xsave);
83 
84     if (hv_vcpu_write_fpstate(cpu_state->hvf_fd, (void*)xsave, 4096)) {
85         abort();
86     }
87 }
88 
89 void hvf_put_segments(CPUState *cpu_state)
90 {
91     CPUX86State *env = &X86_CPU(cpu_state)->env;
92     struct vmx_segment seg;
93 
94     wvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_LIMIT, env->idt.limit);
95     wvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_BASE, env->idt.base);
96 
97     wvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_LIMIT, env->gdt.limit);
98     wvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_BASE, env->gdt.base);
99 
100     /* wvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR2, env->cr[2]); */
101     wvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR3, env->cr[3]);
102     vmx_update_tpr(cpu_state);
103     wvmcs(cpu_state->hvf_fd, VMCS_GUEST_IA32_EFER, env->efer);
104 
105     macvm_set_cr4(cpu_state->hvf_fd, env->cr[4]);
106     macvm_set_cr0(cpu_state->hvf_fd, env->cr[0]);
107 
108     hvf_set_segment(cpu_state, &seg, &env->segs[R_CS], false);
109     vmx_write_segment_descriptor(cpu_state, &seg, R_CS);
110 
111     hvf_set_segment(cpu_state, &seg, &env->segs[R_DS], false);
112     vmx_write_segment_descriptor(cpu_state, &seg, R_DS);
113 
114     hvf_set_segment(cpu_state, &seg, &env->segs[R_ES], false);
115     vmx_write_segment_descriptor(cpu_state, &seg, R_ES);
116 
117     hvf_set_segment(cpu_state, &seg, &env->segs[R_SS], false);
118     vmx_write_segment_descriptor(cpu_state, &seg, R_SS);
119 
120     hvf_set_segment(cpu_state, &seg, &env->segs[R_FS], false);
121     vmx_write_segment_descriptor(cpu_state, &seg, R_FS);
122 
123     hvf_set_segment(cpu_state, &seg, &env->segs[R_GS], false);
124     vmx_write_segment_descriptor(cpu_state, &seg, R_GS);
125 
126     hvf_set_segment(cpu_state, &seg, &env->tr, true);
127     vmx_write_segment_descriptor(cpu_state, &seg, R_TR);
128 
129     hvf_set_segment(cpu_state, &seg, &env->ldt, false);
130     vmx_write_segment_descriptor(cpu_state, &seg, R_LDTR);
131 
132     hv_vcpu_flush(cpu_state->hvf_fd);
133 }
134 
135 void hvf_put_msrs(CPUState *cpu_state)
136 {
137     CPUX86State *env = &X86_CPU(cpu_state)->env;
138 
139     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_CS,
140                       env->sysenter_cs);
141     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_ESP,
142                       env->sysenter_esp);
143     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_EIP,
144                       env->sysenter_eip);
145 
146     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_STAR, env->star);
147 
148 #ifdef TARGET_X86_64
149     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_CSTAR, env->cstar);
150     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_KERNELGSBASE, env->kernelgsbase);
151     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_FMASK, env->fmask);
152     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_LSTAR, env->lstar);
153 #endif
154 
155     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_GSBASE, env->segs[R_GS].base);
156     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_FSBASE, env->segs[R_FS].base);
157 }
158 
159 
160 void hvf_get_xsave(CPUState *cpu_state)
161 {
162     struct X86XSaveArea *xsave;
163 
164     xsave = X86_CPU(cpu_state)->env.xsave_buf;
165 
166     if (hv_vcpu_read_fpstate(cpu_state->hvf_fd, (void*)xsave, 4096)) {
167         abort();
168     }
169 
170     x86_cpu_xrstor_all_areas(X86_CPU(cpu_state), xsave);
171 }
172 
173 void hvf_get_segments(CPUState *cpu_state)
174 {
175     CPUX86State *env = &X86_CPU(cpu_state)->env;
176 
177     struct vmx_segment seg;
178 
179     env->interrupt_injected = -1;
180 
181     vmx_read_segment_descriptor(cpu_state, &seg, R_CS);
182     hvf_get_segment(&env->segs[R_CS], &seg);
183 
184     vmx_read_segment_descriptor(cpu_state, &seg, R_DS);
185     hvf_get_segment(&env->segs[R_DS], &seg);
186 
187     vmx_read_segment_descriptor(cpu_state, &seg, R_ES);
188     hvf_get_segment(&env->segs[R_ES], &seg);
189 
190     vmx_read_segment_descriptor(cpu_state, &seg, R_FS);
191     hvf_get_segment(&env->segs[R_FS], &seg);
192 
193     vmx_read_segment_descriptor(cpu_state, &seg, R_GS);
194     hvf_get_segment(&env->segs[R_GS], &seg);
195 
196     vmx_read_segment_descriptor(cpu_state, &seg, R_SS);
197     hvf_get_segment(&env->segs[R_SS], &seg);
198 
199     vmx_read_segment_descriptor(cpu_state, &seg, R_TR);
200     hvf_get_segment(&env->tr, &seg);
201 
202     vmx_read_segment_descriptor(cpu_state, &seg, R_LDTR);
203     hvf_get_segment(&env->ldt, &seg);
204 
205     env->idt.limit = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_LIMIT);
206     env->idt.base = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_BASE);
207     env->gdt.limit = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_LIMIT);
208     env->gdt.base = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_BASE);
209 
210     env->cr[0] = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR0);
211     env->cr[2] = 0;
212     env->cr[3] = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR3);
213     env->cr[4] = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR4);
214 
215     env->efer = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_IA32_EFER);
216 }
217 
218 void hvf_get_msrs(CPUState *cpu_state)
219 {
220     CPUX86State *env = &X86_CPU(cpu_state)->env;
221     uint64_t tmp;
222 
223     hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_CS, &tmp);
224     env->sysenter_cs = tmp;
225 
226     hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_ESP, &tmp);
227     env->sysenter_esp = tmp;
228 
229     hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_EIP, &tmp);
230     env->sysenter_eip = tmp;
231 
232     hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_STAR, &env->star);
233 
234 #ifdef TARGET_X86_64
235     hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_CSTAR, &env->cstar);
236     hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_KERNELGSBASE, &env->kernelgsbase);
237     hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_FMASK, &env->fmask);
238     hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_LSTAR, &env->lstar);
239 #endif
240 
241     hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_APICBASE, &tmp);
242 
243     env->tsc = rdtscp() + rvmcs(cpu_state->hvf_fd, VMCS_TSC_OFFSET);
244 }
245 
246 int hvf_put_registers(CPUState *cpu_state)
247 {
248     X86CPU *x86cpu = X86_CPU(cpu_state);
249     CPUX86State *env = &x86cpu->env;
250 
251     wreg(cpu_state->hvf_fd, HV_X86_RAX, env->regs[R_EAX]);
252     wreg(cpu_state->hvf_fd, HV_X86_RBX, env->regs[R_EBX]);
253     wreg(cpu_state->hvf_fd, HV_X86_RCX, env->regs[R_ECX]);
254     wreg(cpu_state->hvf_fd, HV_X86_RDX, env->regs[R_EDX]);
255     wreg(cpu_state->hvf_fd, HV_X86_RBP, env->regs[R_EBP]);
256     wreg(cpu_state->hvf_fd, HV_X86_RSP, env->regs[R_ESP]);
257     wreg(cpu_state->hvf_fd, HV_X86_RSI, env->regs[R_ESI]);
258     wreg(cpu_state->hvf_fd, HV_X86_RDI, env->regs[R_EDI]);
259     wreg(cpu_state->hvf_fd, HV_X86_R8, env->regs[8]);
260     wreg(cpu_state->hvf_fd, HV_X86_R9, env->regs[9]);
261     wreg(cpu_state->hvf_fd, HV_X86_R10, env->regs[10]);
262     wreg(cpu_state->hvf_fd, HV_X86_R11, env->regs[11]);
263     wreg(cpu_state->hvf_fd, HV_X86_R12, env->regs[12]);
264     wreg(cpu_state->hvf_fd, HV_X86_R13, env->regs[13]);
265     wreg(cpu_state->hvf_fd, HV_X86_R14, env->regs[14]);
266     wreg(cpu_state->hvf_fd, HV_X86_R15, env->regs[15]);
267     wreg(cpu_state->hvf_fd, HV_X86_RFLAGS, env->eflags);
268     wreg(cpu_state->hvf_fd, HV_X86_RIP, env->eip);
269 
270     wreg(cpu_state->hvf_fd, HV_X86_XCR0, env->xcr0);
271 
272     hvf_put_xsave(cpu_state);
273 
274     hvf_put_segments(cpu_state);
275 
276     hvf_put_msrs(cpu_state);
277 
278     wreg(cpu_state->hvf_fd, HV_X86_DR0, env->dr[0]);
279     wreg(cpu_state->hvf_fd, HV_X86_DR1, env->dr[1]);
280     wreg(cpu_state->hvf_fd, HV_X86_DR2, env->dr[2]);
281     wreg(cpu_state->hvf_fd, HV_X86_DR3, env->dr[3]);
282     wreg(cpu_state->hvf_fd, HV_X86_DR4, env->dr[4]);
283     wreg(cpu_state->hvf_fd, HV_X86_DR5, env->dr[5]);
284     wreg(cpu_state->hvf_fd, HV_X86_DR6, env->dr[6]);
285     wreg(cpu_state->hvf_fd, HV_X86_DR7, env->dr[7]);
286 
287     return 0;
288 }
289 
290 int hvf_get_registers(CPUState *cpu_state)
291 {
292     X86CPU *x86cpu = X86_CPU(cpu_state);
293     CPUX86State *env = &x86cpu->env;
294 
295     env->regs[R_EAX] = rreg(cpu_state->hvf_fd, HV_X86_RAX);
296     env->regs[R_EBX] = rreg(cpu_state->hvf_fd, HV_X86_RBX);
297     env->regs[R_ECX] = rreg(cpu_state->hvf_fd, HV_X86_RCX);
298     env->regs[R_EDX] = rreg(cpu_state->hvf_fd, HV_X86_RDX);
299     env->regs[R_EBP] = rreg(cpu_state->hvf_fd, HV_X86_RBP);
300     env->regs[R_ESP] = rreg(cpu_state->hvf_fd, HV_X86_RSP);
301     env->regs[R_ESI] = rreg(cpu_state->hvf_fd, HV_X86_RSI);
302     env->regs[R_EDI] = rreg(cpu_state->hvf_fd, HV_X86_RDI);
303     env->regs[8] = rreg(cpu_state->hvf_fd, HV_X86_R8);
304     env->regs[9] = rreg(cpu_state->hvf_fd, HV_X86_R9);
305     env->regs[10] = rreg(cpu_state->hvf_fd, HV_X86_R10);
306     env->regs[11] = rreg(cpu_state->hvf_fd, HV_X86_R11);
307     env->regs[12] = rreg(cpu_state->hvf_fd, HV_X86_R12);
308     env->regs[13] = rreg(cpu_state->hvf_fd, HV_X86_R13);
309     env->regs[14] = rreg(cpu_state->hvf_fd, HV_X86_R14);
310     env->regs[15] = rreg(cpu_state->hvf_fd, HV_X86_R15);
311 
312     env->eflags = rreg(cpu_state->hvf_fd, HV_X86_RFLAGS);
313     env->eip = rreg(cpu_state->hvf_fd, HV_X86_RIP);
314 
315     hvf_get_xsave(cpu_state);
316     env->xcr0 = rreg(cpu_state->hvf_fd, HV_X86_XCR0);
317 
318     hvf_get_segments(cpu_state);
319     hvf_get_msrs(cpu_state);
320 
321     env->dr[0] = rreg(cpu_state->hvf_fd, HV_X86_DR0);
322     env->dr[1] = rreg(cpu_state->hvf_fd, HV_X86_DR1);
323     env->dr[2] = rreg(cpu_state->hvf_fd, HV_X86_DR2);
324     env->dr[3] = rreg(cpu_state->hvf_fd, HV_X86_DR3);
325     env->dr[4] = rreg(cpu_state->hvf_fd, HV_X86_DR4);
326     env->dr[5] = rreg(cpu_state->hvf_fd, HV_X86_DR5);
327     env->dr[6] = rreg(cpu_state->hvf_fd, HV_X86_DR6);
328     env->dr[7] = rreg(cpu_state->hvf_fd, HV_X86_DR7);
329 
330     x86_update_hflags(env);
331     return 0;
332 }
333 
334 static void vmx_set_int_window_exiting(CPUState *cpu)
335 {
336      uint64_t val;
337      val = rvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS);
338      wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS, val |
339              VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING);
340 }
341 
342 void vmx_clear_int_window_exiting(CPUState *cpu)
343 {
344      uint64_t val;
345      val = rvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS);
346      wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS, val &
347              ~VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING);
348 }
349 
350 bool hvf_inject_interrupts(CPUState *cpu_state)
351 {
352     X86CPU *x86cpu = X86_CPU(cpu_state);
353     CPUX86State *env = &x86cpu->env;
354 
355     uint8_t vector;
356     uint64_t intr_type;
357     bool have_event = true;
358     if (env->interrupt_injected != -1) {
359         vector = env->interrupt_injected;
360         if (env->ins_len) {
361             intr_type = VMCS_INTR_T_SWINTR;
362         } else {
363             intr_type = VMCS_INTR_T_HWINTR;
364         }
365     } else if (env->exception_nr != -1) {
366         vector = env->exception_nr;
367         if (vector == EXCP03_INT3 || vector == EXCP04_INTO) {
368             intr_type = VMCS_INTR_T_SWEXCEPTION;
369         } else {
370             intr_type = VMCS_INTR_T_HWEXCEPTION;
371         }
372     } else if (env->nmi_injected) {
373         vector = EXCP02_NMI;
374         intr_type = VMCS_INTR_T_NMI;
375     } else {
376         have_event = false;
377     }
378 
379     uint64_t info = 0;
380     if (have_event) {
381         info = vector | intr_type | VMCS_INTR_VALID;
382         uint64_t reason = rvmcs(cpu_state->hvf_fd, VMCS_EXIT_REASON);
383         if (env->nmi_injected && reason != EXIT_REASON_TASK_SWITCH) {
384             vmx_clear_nmi_blocking(cpu_state);
385         }
386 
387         if (!(env->hflags2 & HF2_NMI_MASK) || intr_type != VMCS_INTR_T_NMI) {
388             info &= ~(1 << 12); /* clear undefined bit */
389             if (intr_type == VMCS_INTR_T_SWINTR ||
390                 intr_type == VMCS_INTR_T_SWEXCEPTION) {
391                 wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INST_LENGTH, env->ins_len);
392             }
393 
394             if (env->has_error_code) {
395                 wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_EXCEPTION_ERROR,
396                       env->error_code);
397                 /* Indicate that VMCS_ENTRY_EXCEPTION_ERROR is valid */
398                 info |= VMCS_INTR_DEL_ERRCODE;
399             }
400             /*printf("reinject  %lx err %d\n", info, err);*/
401             wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INTR_INFO, info);
402         };
403     }
404 
405     if (cpu_state->interrupt_request & CPU_INTERRUPT_NMI) {
406         if (!(env->hflags2 & HF2_NMI_MASK) && !(info & VMCS_INTR_VALID)) {
407             cpu_state->interrupt_request &= ~CPU_INTERRUPT_NMI;
408             info = VMCS_INTR_VALID | VMCS_INTR_T_NMI | EXCP02_NMI;
409             wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INTR_INFO, info);
410         } else {
411             vmx_set_nmi_window_exiting(cpu_state);
412         }
413     }
414 
415     if (!(env->hflags & HF_INHIBIT_IRQ_MASK) &&
416         (cpu_state->interrupt_request & CPU_INTERRUPT_HARD) &&
417         (env->eflags & IF_MASK) && !(info & VMCS_INTR_VALID)) {
418         int line = cpu_get_pic_interrupt(&x86cpu->env);
419         cpu_state->interrupt_request &= ~CPU_INTERRUPT_HARD;
420         if (line >= 0) {
421             wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INTR_INFO, line |
422                   VMCS_INTR_VALID | VMCS_INTR_T_HWINTR);
423         }
424     }
425     if (cpu_state->interrupt_request & CPU_INTERRUPT_HARD) {
426         vmx_set_int_window_exiting(cpu_state);
427     }
428     return (cpu_state->interrupt_request
429             & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR));
430 }
431 
432 int hvf_process_events(CPUState *cpu_state)
433 {
434     X86CPU *cpu = X86_CPU(cpu_state);
435     CPUX86State *env = &cpu->env;
436 
437     env->eflags = rreg(cpu_state->hvf_fd, HV_X86_RFLAGS);
438 
439     if (cpu_state->interrupt_request & CPU_INTERRUPT_INIT) {
440         hvf_cpu_synchronize_state(cpu_state);
441         do_cpu_init(cpu);
442     }
443 
444     if (cpu_state->interrupt_request & CPU_INTERRUPT_POLL) {
445         cpu_state->interrupt_request &= ~CPU_INTERRUPT_POLL;
446         apic_poll_irq(cpu->apic_state);
447     }
448     if (((cpu_state->interrupt_request & CPU_INTERRUPT_HARD) &&
449         (env->eflags & IF_MASK)) ||
450         (cpu_state->interrupt_request & CPU_INTERRUPT_NMI)) {
451         cpu_state->halted = 0;
452     }
453     if (cpu_state->interrupt_request & CPU_INTERRUPT_SIPI) {
454         hvf_cpu_synchronize_state(cpu_state);
455         do_cpu_sipi(cpu);
456     }
457     if (cpu_state->interrupt_request & CPU_INTERRUPT_TPR) {
458         cpu_state->interrupt_request &= ~CPU_INTERRUPT_TPR;
459         hvf_cpu_synchronize_state(cpu_state);
460         apic_handle_tpr_access_report(cpu->apic_state, env->eip,
461                                       env->tpr_access_type);
462     }
463     return cpu_state->halted;
464 }
465