xref: /openbmc/qemu/target/i386/hvf/x86hvf.c (revision 4fe6d78b)
1 /*
2  * Copyright (c) 2003-2008 Fabrice Bellard
3  * Copyright (C) 2016 Veertu Inc,
4  * Copyright (C) 2017 Google Inc,
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 
22 #include "qemu-common.h"
23 #include "x86hvf.h"
24 #include "vmx.h"
25 #include "vmcs.h"
26 #include "cpu.h"
27 #include "x86_descr.h"
28 #include "x86_decode.h"
29 
30 #include "hw/i386/apic_internal.h"
31 
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <Hypervisor/hv.h>
35 #include <Hypervisor/hv_vmx.h>
36 #include <stdint.h>
37 
38 void hvf_set_segment(struct CPUState *cpu, struct vmx_segment *vmx_seg,
39                      SegmentCache *qseg, bool is_tr)
40 {
41     vmx_seg->sel = qseg->selector;
42     vmx_seg->base = qseg->base;
43     vmx_seg->limit = qseg->limit;
44 
45     if (!qseg->selector && !x86_is_real(cpu) && !is_tr) {
46         /* the TR register is usable after processor reset despite
47          * having a null selector */
48         vmx_seg->ar = 1 << 16;
49         return;
50     }
51     vmx_seg->ar = (qseg->flags >> DESC_TYPE_SHIFT) & 0xf;
52     vmx_seg->ar |= ((qseg->flags >> DESC_G_SHIFT) & 1) << 15;
53     vmx_seg->ar |= ((qseg->flags >> DESC_B_SHIFT) & 1) << 14;
54     vmx_seg->ar |= ((qseg->flags >> DESC_L_SHIFT) & 1) << 13;
55     vmx_seg->ar |= ((qseg->flags >> DESC_AVL_SHIFT) & 1) << 12;
56     vmx_seg->ar |= ((qseg->flags >> DESC_P_SHIFT) & 1) << 7;
57     vmx_seg->ar |= ((qseg->flags >> DESC_DPL_SHIFT) & 3) << 5;
58     vmx_seg->ar |= ((qseg->flags >> DESC_S_SHIFT) & 1) << 4;
59 }
60 
61 void hvf_get_segment(SegmentCache *qseg, struct vmx_segment *vmx_seg)
62 {
63     qseg->limit = vmx_seg->limit;
64     qseg->base = vmx_seg->base;
65     qseg->selector = vmx_seg->sel;
66     qseg->flags = ((vmx_seg->ar & 0xf) << DESC_TYPE_SHIFT) |
67                   (((vmx_seg->ar >> 4) & 1) << DESC_S_SHIFT) |
68                   (((vmx_seg->ar >> 5) & 3) << DESC_DPL_SHIFT) |
69                   (((vmx_seg->ar >> 7) & 1) << DESC_P_SHIFT) |
70                   (((vmx_seg->ar >> 12) & 1) << DESC_AVL_SHIFT) |
71                   (((vmx_seg->ar >> 13) & 1) << DESC_L_SHIFT) |
72                   (((vmx_seg->ar >> 14) & 1) << DESC_B_SHIFT) |
73                   (((vmx_seg->ar >> 15) & 1) << DESC_G_SHIFT);
74 }
75 
76 void hvf_put_xsave(CPUState *cpu_state)
77 {
78 
79     struct X86XSaveArea *xsave;
80 
81     xsave = X86_CPU(cpu_state)->env.kvm_xsave_buf;
82 
83     x86_cpu_xsave_all_areas(X86_CPU(cpu_state), xsave);
84 
85     if (hv_vcpu_write_fpstate(cpu_state->hvf_fd, (void*)xsave, 4096)) {
86         abort();
87     }
88 }
89 
90 void hvf_put_segments(CPUState *cpu_state)
91 {
92     CPUX86State *env = &X86_CPU(cpu_state)->env;
93     struct vmx_segment seg;
94 
95     wvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_LIMIT, env->idt.limit);
96     wvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_BASE, env->idt.base);
97 
98     wvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_LIMIT, env->gdt.limit);
99     wvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_BASE, env->gdt.base);
100 
101     /* wvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR2, env->cr[2]); */
102     wvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR3, env->cr[3]);
103     vmx_update_tpr(cpu_state);
104     wvmcs(cpu_state->hvf_fd, VMCS_GUEST_IA32_EFER, env->efer);
105 
106     macvm_set_cr4(cpu_state->hvf_fd, env->cr[4]);
107     macvm_set_cr0(cpu_state->hvf_fd, env->cr[0]);
108 
109     hvf_set_segment(cpu_state, &seg, &env->segs[R_CS], false);
110     vmx_write_segment_descriptor(cpu_state, &seg, R_CS);
111 
112     hvf_set_segment(cpu_state, &seg, &env->segs[R_DS], false);
113     vmx_write_segment_descriptor(cpu_state, &seg, R_DS);
114 
115     hvf_set_segment(cpu_state, &seg, &env->segs[R_ES], false);
116     vmx_write_segment_descriptor(cpu_state, &seg, R_ES);
117 
118     hvf_set_segment(cpu_state, &seg, &env->segs[R_SS], false);
119     vmx_write_segment_descriptor(cpu_state, &seg, R_SS);
120 
121     hvf_set_segment(cpu_state, &seg, &env->segs[R_FS], false);
122     vmx_write_segment_descriptor(cpu_state, &seg, R_FS);
123 
124     hvf_set_segment(cpu_state, &seg, &env->segs[R_GS], false);
125     vmx_write_segment_descriptor(cpu_state, &seg, R_GS);
126 
127     hvf_set_segment(cpu_state, &seg, &env->tr, true);
128     vmx_write_segment_descriptor(cpu_state, &seg, R_TR);
129 
130     hvf_set_segment(cpu_state, &seg, &env->ldt, false);
131     vmx_write_segment_descriptor(cpu_state, &seg, R_LDTR);
132 
133     hv_vcpu_flush(cpu_state->hvf_fd);
134 }
135 
136 void hvf_put_msrs(CPUState *cpu_state)
137 {
138     CPUX86State *env = &X86_CPU(cpu_state)->env;
139 
140     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_CS,
141                       env->sysenter_cs);
142     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_ESP,
143                       env->sysenter_esp);
144     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_EIP,
145                       env->sysenter_eip);
146 
147     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_STAR, env->star);
148 
149 #ifdef TARGET_X86_64
150     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_CSTAR, env->cstar);
151     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_KERNELGSBASE, env->kernelgsbase);
152     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_FMASK, env->fmask);
153     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_LSTAR, env->lstar);
154 #endif
155 
156     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_GSBASE, env->segs[R_GS].base);
157     hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_FSBASE, env->segs[R_FS].base);
158 
159     /* if (!osx_is_sierra())
160          wvmcs(cpu_state->hvf_fd, VMCS_TSC_OFFSET, env->tsc - rdtscp());*/
161     hv_vm_sync_tsc(env->tsc);
162 }
163 
164 
165 void hvf_get_xsave(CPUState *cpu_state)
166 {
167     struct X86XSaveArea *xsave;
168 
169     xsave = X86_CPU(cpu_state)->env.kvm_xsave_buf;
170 
171     if (hv_vcpu_read_fpstate(cpu_state->hvf_fd, (void*)xsave, 4096)) {
172         abort();
173     }
174 
175     x86_cpu_xrstor_all_areas(X86_CPU(cpu_state), xsave);
176 }
177 
178 void hvf_get_segments(CPUState *cpu_state)
179 {
180     CPUX86State *env = &X86_CPU(cpu_state)->env;
181 
182     struct vmx_segment seg;
183 
184     env->interrupt_injected = -1;
185 
186     vmx_read_segment_descriptor(cpu_state, &seg, R_CS);
187     hvf_get_segment(&env->segs[R_CS], &seg);
188 
189     vmx_read_segment_descriptor(cpu_state, &seg, R_DS);
190     hvf_get_segment(&env->segs[R_DS], &seg);
191 
192     vmx_read_segment_descriptor(cpu_state, &seg, R_ES);
193     hvf_get_segment(&env->segs[R_ES], &seg);
194 
195     vmx_read_segment_descriptor(cpu_state, &seg, R_FS);
196     hvf_get_segment(&env->segs[R_FS], &seg);
197 
198     vmx_read_segment_descriptor(cpu_state, &seg, R_GS);
199     hvf_get_segment(&env->segs[R_GS], &seg);
200 
201     vmx_read_segment_descriptor(cpu_state, &seg, R_SS);
202     hvf_get_segment(&env->segs[R_SS], &seg);
203 
204     vmx_read_segment_descriptor(cpu_state, &seg, R_TR);
205     hvf_get_segment(&env->tr, &seg);
206 
207     vmx_read_segment_descriptor(cpu_state, &seg, R_LDTR);
208     hvf_get_segment(&env->ldt, &seg);
209 
210     env->idt.limit = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_LIMIT);
211     env->idt.base = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_BASE);
212     env->gdt.limit = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_LIMIT);
213     env->gdt.base = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_BASE);
214 
215     env->cr[0] = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR0);
216     env->cr[2] = 0;
217     env->cr[3] = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR3);
218     env->cr[4] = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR4);
219 
220     env->efer = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_IA32_EFER);
221 }
222 
223 void hvf_get_msrs(CPUState *cpu_state)
224 {
225     CPUX86State *env = &X86_CPU(cpu_state)->env;
226     uint64_t tmp;
227 
228     hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_CS, &tmp);
229     env->sysenter_cs = tmp;
230 
231     hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_ESP, &tmp);
232     env->sysenter_esp = tmp;
233 
234     hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_EIP, &tmp);
235     env->sysenter_eip = tmp;
236 
237     hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_STAR, &env->star);
238 
239 #ifdef TARGET_X86_64
240     hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_CSTAR, &env->cstar);
241     hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_KERNELGSBASE, &env->kernelgsbase);
242     hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_FMASK, &env->fmask);
243     hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_LSTAR, &env->lstar);
244 #endif
245 
246     hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_APICBASE, &tmp);
247 
248     env->tsc = rdtscp() + rvmcs(cpu_state->hvf_fd, VMCS_TSC_OFFSET);
249 }
250 
251 int hvf_put_registers(CPUState *cpu_state)
252 {
253     X86CPU *x86cpu = X86_CPU(cpu_state);
254     CPUX86State *env = &x86cpu->env;
255 
256     wreg(cpu_state->hvf_fd, HV_X86_RAX, env->regs[R_EAX]);
257     wreg(cpu_state->hvf_fd, HV_X86_RBX, env->regs[R_EBX]);
258     wreg(cpu_state->hvf_fd, HV_X86_RCX, env->regs[R_ECX]);
259     wreg(cpu_state->hvf_fd, HV_X86_RDX, env->regs[R_EDX]);
260     wreg(cpu_state->hvf_fd, HV_X86_RBP, env->regs[R_EBP]);
261     wreg(cpu_state->hvf_fd, HV_X86_RSP, env->regs[R_ESP]);
262     wreg(cpu_state->hvf_fd, HV_X86_RSI, env->regs[R_ESI]);
263     wreg(cpu_state->hvf_fd, HV_X86_RDI, env->regs[R_EDI]);
264     wreg(cpu_state->hvf_fd, HV_X86_R8, env->regs[8]);
265     wreg(cpu_state->hvf_fd, HV_X86_R9, env->regs[9]);
266     wreg(cpu_state->hvf_fd, HV_X86_R10, env->regs[10]);
267     wreg(cpu_state->hvf_fd, HV_X86_R11, env->regs[11]);
268     wreg(cpu_state->hvf_fd, HV_X86_R12, env->regs[12]);
269     wreg(cpu_state->hvf_fd, HV_X86_R13, env->regs[13]);
270     wreg(cpu_state->hvf_fd, HV_X86_R14, env->regs[14]);
271     wreg(cpu_state->hvf_fd, HV_X86_R15, env->regs[15]);
272     wreg(cpu_state->hvf_fd, HV_X86_RFLAGS, env->eflags);
273     wreg(cpu_state->hvf_fd, HV_X86_RIP, env->eip);
274 
275     wreg(cpu_state->hvf_fd, HV_X86_XCR0, env->xcr0);
276 
277     hvf_put_xsave(cpu_state);
278 
279     hvf_put_segments(cpu_state);
280 
281     hvf_put_msrs(cpu_state);
282 
283     wreg(cpu_state->hvf_fd, HV_X86_DR0, env->dr[0]);
284     wreg(cpu_state->hvf_fd, HV_X86_DR1, env->dr[1]);
285     wreg(cpu_state->hvf_fd, HV_X86_DR2, env->dr[2]);
286     wreg(cpu_state->hvf_fd, HV_X86_DR3, env->dr[3]);
287     wreg(cpu_state->hvf_fd, HV_X86_DR4, env->dr[4]);
288     wreg(cpu_state->hvf_fd, HV_X86_DR5, env->dr[5]);
289     wreg(cpu_state->hvf_fd, HV_X86_DR6, env->dr[6]);
290     wreg(cpu_state->hvf_fd, HV_X86_DR7, env->dr[7]);
291 
292     return 0;
293 }
294 
295 int hvf_get_registers(CPUState *cpu_state)
296 {
297     X86CPU *x86cpu = X86_CPU(cpu_state);
298     CPUX86State *env = &x86cpu->env;
299 
300     env->regs[R_EAX] = rreg(cpu_state->hvf_fd, HV_X86_RAX);
301     env->regs[R_EBX] = rreg(cpu_state->hvf_fd, HV_X86_RBX);
302     env->regs[R_ECX] = rreg(cpu_state->hvf_fd, HV_X86_RCX);
303     env->regs[R_EDX] = rreg(cpu_state->hvf_fd, HV_X86_RDX);
304     env->regs[R_EBP] = rreg(cpu_state->hvf_fd, HV_X86_RBP);
305     env->regs[R_ESP] = rreg(cpu_state->hvf_fd, HV_X86_RSP);
306     env->regs[R_ESI] = rreg(cpu_state->hvf_fd, HV_X86_RSI);
307     env->regs[R_EDI] = rreg(cpu_state->hvf_fd, HV_X86_RDI);
308     env->regs[8] = rreg(cpu_state->hvf_fd, HV_X86_R8);
309     env->regs[9] = rreg(cpu_state->hvf_fd, HV_X86_R9);
310     env->regs[10] = rreg(cpu_state->hvf_fd, HV_X86_R10);
311     env->regs[11] = rreg(cpu_state->hvf_fd, HV_X86_R11);
312     env->regs[12] = rreg(cpu_state->hvf_fd, HV_X86_R12);
313     env->regs[13] = rreg(cpu_state->hvf_fd, HV_X86_R13);
314     env->regs[14] = rreg(cpu_state->hvf_fd, HV_X86_R14);
315     env->regs[15] = rreg(cpu_state->hvf_fd, HV_X86_R15);
316 
317     env->eflags = rreg(cpu_state->hvf_fd, HV_X86_RFLAGS);
318     env->eip = rreg(cpu_state->hvf_fd, HV_X86_RIP);
319 
320     hvf_get_xsave(cpu_state);
321     env->xcr0 = rreg(cpu_state->hvf_fd, HV_X86_XCR0);
322 
323     hvf_get_segments(cpu_state);
324     hvf_get_msrs(cpu_state);
325 
326     env->dr[0] = rreg(cpu_state->hvf_fd, HV_X86_DR0);
327     env->dr[1] = rreg(cpu_state->hvf_fd, HV_X86_DR1);
328     env->dr[2] = rreg(cpu_state->hvf_fd, HV_X86_DR2);
329     env->dr[3] = rreg(cpu_state->hvf_fd, HV_X86_DR3);
330     env->dr[4] = rreg(cpu_state->hvf_fd, HV_X86_DR4);
331     env->dr[5] = rreg(cpu_state->hvf_fd, HV_X86_DR5);
332     env->dr[6] = rreg(cpu_state->hvf_fd, HV_X86_DR6);
333     env->dr[7] = rreg(cpu_state->hvf_fd, HV_X86_DR7);
334 
335     x86_update_hflags(env);
336     return 0;
337 }
338 
339 static void vmx_set_int_window_exiting(CPUState *cpu)
340 {
341      uint64_t val;
342      val = rvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS);
343      wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS, val |
344              VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING);
345 }
346 
347 void vmx_clear_int_window_exiting(CPUState *cpu)
348 {
349      uint64_t val;
350      val = rvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS);
351      wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS, val &
352              ~VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING);
353 }
354 
355 #define NMI_VEC 2
356 
357 bool hvf_inject_interrupts(CPUState *cpu_state)
358 {
359     X86CPU *x86cpu = X86_CPU(cpu_state);
360     CPUX86State *env = &x86cpu->env;
361 
362     uint8_t vector;
363     uint64_t intr_type;
364     bool have_event = true;
365     if (env->interrupt_injected != -1) {
366         vector = env->interrupt_injected;
367         intr_type = VMCS_INTR_T_SWINTR;
368     } else if (env->exception_injected != -1) {
369         vector = env->exception_injected;
370         if (vector == EXCP03_INT3 || vector == EXCP04_INTO) {
371             intr_type = VMCS_INTR_T_SWEXCEPTION;
372         } else {
373             intr_type = VMCS_INTR_T_HWEXCEPTION;
374         }
375     } else if (env->nmi_injected) {
376         vector = NMI_VEC;
377         intr_type = VMCS_INTR_T_NMI;
378     } else {
379         have_event = false;
380     }
381 
382     uint64_t info = 0;
383     if (have_event) {
384         info = vector | intr_type | VMCS_INTR_VALID;
385         uint64_t reason = rvmcs(cpu_state->hvf_fd, VMCS_EXIT_REASON);
386         if (env->nmi_injected && reason != EXIT_REASON_TASK_SWITCH) {
387             vmx_clear_nmi_blocking(cpu_state);
388         }
389 
390         if (!(env->hflags2 & HF2_NMI_MASK) || intr_type != VMCS_INTR_T_NMI) {
391             info &= ~(1 << 12); /* clear undefined bit */
392             if (intr_type == VMCS_INTR_T_SWINTR ||
393                 intr_type == VMCS_INTR_T_SWEXCEPTION) {
394                 wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INST_LENGTH, env->ins_len);
395             }
396 
397             if (env->has_error_code) {
398                 wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_EXCEPTION_ERROR,
399                       env->error_code);
400             }
401             /*printf("reinject  %lx err %d\n", info, err);*/
402             wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INTR_INFO, info);
403         };
404     }
405 
406     if (cpu_state->interrupt_request & CPU_INTERRUPT_NMI) {
407         if (!(env->hflags2 & HF2_NMI_MASK) && !(info & VMCS_INTR_VALID)) {
408             cpu_state->interrupt_request &= ~CPU_INTERRUPT_NMI;
409             info = VMCS_INTR_VALID | VMCS_INTR_T_NMI | NMI_VEC;
410             wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INTR_INFO, info);
411         } else {
412             vmx_set_nmi_window_exiting(cpu_state);
413         }
414     }
415 
416     if (!(env->hflags & HF_INHIBIT_IRQ_MASK) &&
417         (cpu_state->interrupt_request & CPU_INTERRUPT_HARD) &&
418         (EFLAGS(env) & IF_MASK) && !(info & VMCS_INTR_VALID)) {
419         int line = cpu_get_pic_interrupt(&x86cpu->env);
420         cpu_state->interrupt_request &= ~CPU_INTERRUPT_HARD;
421         if (line >= 0) {
422             wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INTR_INFO, line |
423                   VMCS_INTR_VALID | VMCS_INTR_T_HWINTR);
424         }
425     }
426     if (cpu_state->interrupt_request & CPU_INTERRUPT_HARD) {
427         vmx_set_int_window_exiting(cpu_state);
428     }
429     return (cpu_state->interrupt_request
430             & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR));
431 }
432 
433 int hvf_process_events(CPUState *cpu_state)
434 {
435     X86CPU *cpu = X86_CPU(cpu_state);
436     CPUX86State *env = &cpu->env;
437 
438     EFLAGS(env) = rreg(cpu_state->hvf_fd, HV_X86_RFLAGS);
439 
440     if (cpu_state->interrupt_request & CPU_INTERRUPT_INIT) {
441         hvf_cpu_synchronize_state(cpu_state);
442         do_cpu_init(cpu);
443     }
444 
445     if (cpu_state->interrupt_request & CPU_INTERRUPT_POLL) {
446         cpu_state->interrupt_request &= ~CPU_INTERRUPT_POLL;
447         apic_poll_irq(cpu->apic_state);
448     }
449     if (((cpu_state->interrupt_request & CPU_INTERRUPT_HARD) &&
450         (EFLAGS(env) & IF_MASK)) ||
451         (cpu_state->interrupt_request & CPU_INTERRUPT_NMI)) {
452         cpu_state->halted = 0;
453     }
454     if (cpu_state->interrupt_request & CPU_INTERRUPT_SIPI) {
455         hvf_cpu_synchronize_state(cpu_state);
456         do_cpu_sipi(cpu);
457     }
458     if (cpu_state->interrupt_request & CPU_INTERRUPT_TPR) {
459         cpu_state->interrupt_request &= ~CPU_INTERRUPT_TPR;
460         hvf_cpu_synchronize_state(cpu_state);
461         apic_handle_tpr_access_report(cpu->apic_state, env->eip,
462                                       env->tpr_access_type);
463     }
464     return cpu_state->halted;
465 }
466