xref: /openbmc/qemu/target/i386/hvf/x86_emu.c (revision e50a24ea)
1 /*
2  * Copyright (C) 2016 Veertu Inc,
3  * Copyright (C) 2017 Google Inc,
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU Lesser General Public
7  * License as published by the Free Software Foundation; either
8  * version 2.1 of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public
16  * License along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 /////////////////////////////////////////////////////////////////////////
20 //
21 //  Copyright (C) 2001-2012  The Bochs Project
22 //
23 //  This library is free software; you can redistribute it and/or
24 //  modify it under the terms of the GNU Lesser General Public
25 //  License as published by the Free Software Foundation; either
26 //  version 2.1 of the License, or (at your option) any later version.
27 //
28 //  This library is distributed in the hope that it will be useful,
29 //  but WITHOUT ANY WARRANTY; without even the implied warranty of
30 //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
31 //  Lesser General Public License for more details.
32 //
33 //  You should have received a copy of the GNU Lesser General Public
34 //  License along with this library; if not, write to the Free Software
35 //  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
36 /////////////////////////////////////////////////////////////////////////
37 
38 #include "qemu/osdep.h"
39 #include "panic.h"
40 #include "x86_decode.h"
41 #include "x86.h"
42 #include "x86_emu.h"
43 #include "x86_mmu.h"
44 #include "x86_flags.h"
45 #include "vmcs.h"
46 #include "vmx.h"
47 
48 void hvf_handle_io(CPUState *cs, uint16_t port, void *data,
49                    int direction, int size, uint32_t count);
50 
51 #define EXEC_2OP_FLAGS_CMD(env, decode, cmd, FLAGS_FUNC, save_res) \
52 {                                                       \
53     fetch_operands(env, decode, 2, true, true, false);  \
54     switch (decode->operand_size) {                     \
55     case 1:                                         \
56     {                                               \
57         uint8_t v1 = (uint8_t)decode->op[0].val;    \
58         uint8_t v2 = (uint8_t)decode->op[1].val;    \
59         uint8_t diff = v1 cmd v2;                   \
60         if (save_res) {                              \
61             write_val_ext(env, decode->op[0].ptr, diff, 1);  \
62         } \
63         FLAGS_FUNC##8(env, v1, v2, diff);           \
64         break;                                      \
65     }                                               \
66     case 2:                                        \
67     {                                               \
68         uint16_t v1 = (uint16_t)decode->op[0].val;  \
69         uint16_t v2 = (uint16_t)decode->op[1].val;  \
70         uint16_t diff = v1 cmd v2;                  \
71         if (save_res) {                              \
72             write_val_ext(env, decode->op[0].ptr, diff, 2); \
73         } \
74         FLAGS_FUNC##16(env, v1, v2, diff);          \
75         break;                                      \
76     }                                               \
77     case 4:                                        \
78     {                                               \
79         uint32_t v1 = (uint32_t)decode->op[0].val;  \
80         uint32_t v2 = (uint32_t)decode->op[1].val;  \
81         uint32_t diff = v1 cmd v2;                  \
82         if (save_res) {                              \
83             write_val_ext(env, decode->op[0].ptr, diff, 4); \
84         } \
85         FLAGS_FUNC##32(env, v1, v2, diff);          \
86         break;                                      \
87     }                                               \
88     default:                                        \
89         VM_PANIC("bad size\n");                    \
90     }                                                   \
91 }                                                       \
92 
93 target_ulong read_reg(CPUX86State *env, int reg, int size)
94 {
95     switch (size) {
96     case 1:
97         return x86_reg(env, reg)->lx;
98     case 2:
99         return x86_reg(env, reg)->rx;
100     case 4:
101         return x86_reg(env, reg)->erx;
102     case 8:
103         return x86_reg(env, reg)->rrx;
104     default:
105         abort();
106     }
107     return 0;
108 }
109 
110 void write_reg(CPUX86State *env, int reg, target_ulong val, int size)
111 {
112     switch (size) {
113     case 1:
114         x86_reg(env, reg)->lx = val;
115         break;
116     case 2:
117         x86_reg(env, reg)->rx = val;
118         break;
119     case 4:
120         x86_reg(env, reg)->rrx = (uint32_t)val;
121         break;
122     case 8:
123         x86_reg(env, reg)->rrx = val;
124         break;
125     default:
126         abort();
127     }
128 }
129 
130 target_ulong read_val_from_reg(target_ulong reg_ptr, int size)
131 {
132     target_ulong val;
133 
134     switch (size) {
135     case 1:
136         val = *(uint8_t *)reg_ptr;
137         break;
138     case 2:
139         val = *(uint16_t *)reg_ptr;
140         break;
141     case 4:
142         val = *(uint32_t *)reg_ptr;
143         break;
144     case 8:
145         val = *(uint64_t *)reg_ptr;
146         break;
147     default:
148         abort();
149     }
150     return val;
151 }
152 
153 void write_val_to_reg(target_ulong reg_ptr, target_ulong val, int size)
154 {
155     switch (size) {
156     case 1:
157         *(uint8_t *)reg_ptr = val;
158         break;
159     case 2:
160         *(uint16_t *)reg_ptr = val;
161         break;
162     case 4:
163         *(uint64_t *)reg_ptr = (uint32_t)val;
164         break;
165     case 8:
166         *(uint64_t *)reg_ptr = val;
167         break;
168     default:
169         abort();
170     }
171 }
172 
173 static bool is_host_reg(CPUX86State *env, target_ulong ptr)
174 {
175     return (ptr - (target_ulong)&env->regs[0]) < sizeof(env->regs);
176 }
177 
178 void write_val_ext(CPUX86State *env, target_ulong ptr, target_ulong val, int size)
179 {
180     if (is_host_reg(env, ptr)) {
181         write_val_to_reg(ptr, val, size);
182         return;
183     }
184     vmx_write_mem(env_cpu(env), ptr, &val, size);
185 }
186 
187 uint8_t *read_mmio(CPUX86State *env, target_ulong ptr, int bytes)
188 {
189     vmx_read_mem(env_cpu(env), env->hvf_mmio_buf, ptr, bytes);
190     return env->hvf_mmio_buf;
191 }
192 
193 
194 target_ulong read_val_ext(CPUX86State *env, target_ulong ptr, int size)
195 {
196     target_ulong val;
197     uint8_t *mmio_ptr;
198 
199     if (is_host_reg(env, ptr)) {
200         return read_val_from_reg(ptr, size);
201     }
202 
203     mmio_ptr = read_mmio(env, ptr, size);
204     switch (size) {
205     case 1:
206         val = *(uint8_t *)mmio_ptr;
207         break;
208     case 2:
209         val = *(uint16_t *)mmio_ptr;
210         break;
211     case 4:
212         val = *(uint32_t *)mmio_ptr;
213         break;
214     case 8:
215         val = *(uint64_t *)mmio_ptr;
216         break;
217     default:
218         VM_PANIC("bad size\n");
219         break;
220     }
221     return val;
222 }
223 
224 static void fetch_operands(CPUX86State *env, struct x86_decode *decode,
225                            int n, bool val_op0, bool val_op1, bool val_op2)
226 {
227     int i;
228     bool calc_val[3] = {val_op0, val_op1, val_op2};
229 
230     for (i = 0; i < n; i++) {
231         switch (decode->op[i].type) {
232         case X86_VAR_IMMEDIATE:
233             break;
234         case X86_VAR_REG:
235             VM_PANIC_ON(!decode->op[i].ptr);
236             if (calc_val[i]) {
237                 decode->op[i].val = read_val_from_reg(decode->op[i].ptr,
238                                                       decode->operand_size);
239             }
240             break;
241         case X86_VAR_RM:
242             calc_modrm_operand(env, decode, &decode->op[i]);
243             if (calc_val[i]) {
244                 decode->op[i].val = read_val_ext(env, decode->op[i].ptr,
245                                                  decode->operand_size);
246             }
247             break;
248         case X86_VAR_OFFSET:
249             decode->op[i].ptr = decode_linear_addr(env, decode,
250                                                    decode->op[i].ptr,
251                                                    R_DS);
252             if (calc_val[i]) {
253                 decode->op[i].val = read_val_ext(env, decode->op[i].ptr,
254                                                  decode->operand_size);
255             }
256             break;
257         default:
258             break;
259         }
260     }
261 }
262 
263 static void exec_mov(CPUX86State *env, struct x86_decode *decode)
264 {
265     fetch_operands(env, decode, 2, false, true, false);
266     write_val_ext(env, decode->op[0].ptr, decode->op[1].val,
267                   decode->operand_size);
268 
269     env->eip += decode->len;
270 }
271 
272 static void exec_add(CPUX86State *env, struct x86_decode *decode)
273 {
274     EXEC_2OP_FLAGS_CMD(env, decode, +, SET_FLAGS_OSZAPC_ADD, true);
275     env->eip += decode->len;
276 }
277 
278 static void exec_or(CPUX86State *env, struct x86_decode *decode)
279 {
280     EXEC_2OP_FLAGS_CMD(env, decode, |, SET_FLAGS_OSZAPC_LOGIC, true);
281     env->eip += decode->len;
282 }
283 
284 static void exec_adc(CPUX86State *env, struct x86_decode *decode)
285 {
286     EXEC_2OP_FLAGS_CMD(env, decode, +get_CF(env)+, SET_FLAGS_OSZAPC_ADD, true);
287     env->eip += decode->len;
288 }
289 
290 static void exec_sbb(CPUX86State *env, struct x86_decode *decode)
291 {
292     EXEC_2OP_FLAGS_CMD(env, decode, -get_CF(env)-, SET_FLAGS_OSZAPC_SUB, true);
293     env->eip += decode->len;
294 }
295 
296 static void exec_and(CPUX86State *env, struct x86_decode *decode)
297 {
298     EXEC_2OP_FLAGS_CMD(env, decode, &, SET_FLAGS_OSZAPC_LOGIC, true);
299     env->eip += decode->len;
300 }
301 
302 static void exec_sub(CPUX86State *env, struct x86_decode *decode)
303 {
304     EXEC_2OP_FLAGS_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, true);
305     env->eip += decode->len;
306 }
307 
308 static void exec_xor(CPUX86State *env, struct x86_decode *decode)
309 {
310     EXEC_2OP_FLAGS_CMD(env, decode, ^, SET_FLAGS_OSZAPC_LOGIC, true);
311     env->eip += decode->len;
312 }
313 
314 static void exec_neg(CPUX86State *env, struct x86_decode *decode)
315 {
316     /*EXEC_2OP_FLAGS_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false);*/
317     int32_t val;
318     fetch_operands(env, decode, 2, true, true, false);
319 
320     val = 0 - sign(decode->op[1].val, decode->operand_size);
321     write_val_ext(env, decode->op[1].ptr, val, decode->operand_size);
322 
323     if (4 == decode->operand_size) {
324         SET_FLAGS_OSZAPC_SUB32(env, 0, 0 - val, val);
325     } else if (2 == decode->operand_size) {
326         SET_FLAGS_OSZAPC_SUB16(env, 0, 0 - val, val);
327     } else if (1 == decode->operand_size) {
328         SET_FLAGS_OSZAPC_SUB8(env, 0, 0 - val, val);
329     } else {
330         VM_PANIC("bad op size\n");
331     }
332 
333     /*lflags_to_rflags(env);*/
334     env->eip += decode->len;
335 }
336 
337 static void exec_cmp(CPUX86State *env, struct x86_decode *decode)
338 {
339     EXEC_2OP_FLAGS_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false);
340     env->eip += decode->len;
341 }
342 
343 static void exec_inc(CPUX86State *env, struct x86_decode *decode)
344 {
345     decode->op[1].type = X86_VAR_IMMEDIATE;
346     decode->op[1].val = 0;
347 
348     EXEC_2OP_FLAGS_CMD(env, decode, +1+, SET_FLAGS_OSZAP_ADD, true);
349 
350     env->eip += decode->len;
351 }
352 
353 static void exec_dec(CPUX86State *env, struct x86_decode *decode)
354 {
355     decode->op[1].type = X86_VAR_IMMEDIATE;
356     decode->op[1].val = 0;
357 
358     EXEC_2OP_FLAGS_CMD(env, decode, -1-, SET_FLAGS_OSZAP_SUB, true);
359     env->eip += decode->len;
360 }
361 
362 static void exec_tst(CPUX86State *env, struct x86_decode *decode)
363 {
364     EXEC_2OP_FLAGS_CMD(env, decode, &, SET_FLAGS_OSZAPC_LOGIC, false);
365     env->eip += decode->len;
366 }
367 
368 static void exec_not(CPUX86State *env, struct x86_decode *decode)
369 {
370     fetch_operands(env, decode, 1, true, false, false);
371 
372     write_val_ext(env, decode->op[0].ptr, ~decode->op[0].val,
373                   decode->operand_size);
374     env->eip += decode->len;
375 }
376 
377 void exec_movzx(CPUX86State *env, struct x86_decode *decode)
378 {
379     int src_op_size;
380     int op_size = decode->operand_size;
381 
382     fetch_operands(env, decode, 1, false, false, false);
383 
384     if (0xb6 == decode->opcode[1]) {
385         src_op_size = 1;
386     } else {
387         src_op_size = 2;
388     }
389     decode->operand_size = src_op_size;
390     calc_modrm_operand(env, decode, &decode->op[1]);
391     decode->op[1].val = read_val_ext(env, decode->op[1].ptr, src_op_size);
392     write_val_ext(env, decode->op[0].ptr, decode->op[1].val, op_size);
393 
394     env->eip += decode->len;
395 }
396 
397 static void exec_out(CPUX86State *env, struct x86_decode *decode)
398 {
399     switch (decode->opcode[0]) {
400     case 0xe6:
401         hvf_handle_io(env_cpu(env), decode->op[0].val, &AL(env), 1, 1, 1);
402         break;
403     case 0xe7:
404         hvf_handle_io(env_cpu(env), decode->op[0].val, &RAX(env), 1,
405                       decode->operand_size, 1);
406         break;
407     case 0xee:
408         hvf_handle_io(env_cpu(env), DX(env), &AL(env), 1, 1, 1);
409         break;
410     case 0xef:
411         hvf_handle_io(env_cpu(env), DX(env), &RAX(env), 1,
412                       decode->operand_size, 1);
413         break;
414     default:
415         VM_PANIC("Bad out opcode\n");
416         break;
417     }
418     env->eip += decode->len;
419 }
420 
421 static void exec_in(CPUX86State *env, struct x86_decode *decode)
422 {
423     target_ulong val = 0;
424     switch (decode->opcode[0]) {
425     case 0xe4:
426         hvf_handle_io(env_cpu(env), decode->op[0].val, &AL(env), 0, 1, 1);
427         break;
428     case 0xe5:
429         hvf_handle_io(env_cpu(env), decode->op[0].val, &val, 0,
430                       decode->operand_size, 1);
431         if (decode->operand_size == 2) {
432             AX(env) = val;
433         } else {
434             RAX(env) = (uint32_t)val;
435         }
436         break;
437     case 0xec:
438         hvf_handle_io(env_cpu(env), DX(env), &AL(env), 0, 1, 1);
439         break;
440     case 0xed:
441         hvf_handle_io(env_cpu(env), DX(env), &val, 0, decode->operand_size, 1);
442         if (decode->operand_size == 2) {
443             AX(env) = val;
444         } else {
445             RAX(env) = (uint32_t)val;
446         }
447 
448         break;
449     default:
450         VM_PANIC("Bad in opcode\n");
451         break;
452     }
453 
454     env->eip += decode->len;
455 }
456 
457 static inline void string_increment_reg(CPUX86State *env, int reg,
458                                         struct x86_decode *decode)
459 {
460     target_ulong val = read_reg(env, reg, decode->addressing_size);
461     if (env->eflags & DF_MASK) {
462         val -= decode->operand_size;
463     } else {
464         val += decode->operand_size;
465     }
466     write_reg(env, reg, val, decode->addressing_size);
467 }
468 
469 static inline void string_rep(CPUX86State *env, struct x86_decode *decode,
470                               void (*func)(CPUX86State *env,
471                                            struct x86_decode *ins), int rep)
472 {
473     target_ulong rcx = read_reg(env, R_ECX, decode->addressing_size);
474     while (rcx--) {
475         func(env, decode);
476         write_reg(env, R_ECX, rcx, decode->addressing_size);
477         if ((PREFIX_REP == rep) && !get_ZF(env)) {
478             break;
479         }
480         if ((PREFIX_REPN == rep) && get_ZF(env)) {
481             break;
482         }
483     }
484 }
485 
486 static void exec_ins_single(CPUX86State *env, struct x86_decode *decode)
487 {
488     target_ulong addr = linear_addr_size(env_cpu(env), RDI(env),
489                                          decode->addressing_size, R_ES);
490 
491     hvf_handle_io(env_cpu(env), DX(env), env->hvf_mmio_buf, 0,
492                   decode->operand_size, 1);
493     vmx_write_mem(env_cpu(env), addr, env->hvf_mmio_buf,
494                   decode->operand_size);
495 
496     string_increment_reg(env, R_EDI, decode);
497 }
498 
499 static void exec_ins(CPUX86State *env, struct x86_decode *decode)
500 {
501     if (decode->rep) {
502         string_rep(env, decode, exec_ins_single, 0);
503     } else {
504         exec_ins_single(env, decode);
505     }
506 
507     env->eip += decode->len;
508 }
509 
510 static void exec_outs_single(CPUX86State *env, struct x86_decode *decode)
511 {
512     target_ulong addr = decode_linear_addr(env, decode, RSI(env), R_DS);
513 
514     vmx_read_mem(env_cpu(env), env->hvf_mmio_buf, addr,
515                  decode->operand_size);
516     hvf_handle_io(env_cpu(env), DX(env), env->hvf_mmio_buf, 1,
517                   decode->operand_size, 1);
518 
519     string_increment_reg(env, R_ESI, decode);
520 }
521 
522 static void exec_outs(CPUX86State *env, struct x86_decode *decode)
523 {
524     if (decode->rep) {
525         string_rep(env, decode, exec_outs_single, 0);
526     } else {
527         exec_outs_single(env, decode);
528     }
529 
530     env->eip += decode->len;
531 }
532 
533 static void exec_movs_single(CPUX86State *env, struct x86_decode *decode)
534 {
535     target_ulong src_addr;
536     target_ulong dst_addr;
537     target_ulong val;
538 
539     src_addr = decode_linear_addr(env, decode, RSI(env), R_DS);
540     dst_addr = linear_addr_size(env_cpu(env), RDI(env),
541                                 decode->addressing_size, R_ES);
542 
543     val = read_val_ext(env, src_addr, decode->operand_size);
544     write_val_ext(env, dst_addr, val, decode->operand_size);
545 
546     string_increment_reg(env, R_ESI, decode);
547     string_increment_reg(env, R_EDI, decode);
548 }
549 
550 static void exec_movs(CPUX86State *env, struct x86_decode *decode)
551 {
552     if (decode->rep) {
553         string_rep(env, decode, exec_movs_single, 0);
554     } else {
555         exec_movs_single(env, decode);
556     }
557 
558     env->eip += decode->len;
559 }
560 
561 static void exec_cmps_single(CPUX86State *env, struct x86_decode *decode)
562 {
563     target_ulong src_addr;
564     target_ulong dst_addr;
565 
566     src_addr = decode_linear_addr(env, decode, RSI(env), R_DS);
567     dst_addr = linear_addr_size(env_cpu(env), RDI(env),
568                                 decode->addressing_size, R_ES);
569 
570     decode->op[0].type = X86_VAR_IMMEDIATE;
571     decode->op[0].val = read_val_ext(env, src_addr, decode->operand_size);
572     decode->op[1].type = X86_VAR_IMMEDIATE;
573     decode->op[1].val = read_val_ext(env, dst_addr, decode->operand_size);
574 
575     EXEC_2OP_FLAGS_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false);
576 
577     string_increment_reg(env, R_ESI, decode);
578     string_increment_reg(env, R_EDI, decode);
579 }
580 
581 static void exec_cmps(CPUX86State *env, struct x86_decode *decode)
582 {
583     if (decode->rep) {
584         string_rep(env, decode, exec_cmps_single, decode->rep);
585     } else {
586         exec_cmps_single(env, decode);
587     }
588     env->eip += decode->len;
589 }
590 
591 
592 static void exec_stos_single(CPUX86State *env, struct x86_decode *decode)
593 {
594     target_ulong addr;
595     target_ulong val;
596 
597     addr = linear_addr_size(env_cpu(env), RDI(env),
598                             decode->addressing_size, R_ES);
599     val = read_reg(env, R_EAX, decode->operand_size);
600     vmx_write_mem(env_cpu(env), addr, &val, decode->operand_size);
601 
602     string_increment_reg(env, R_EDI, decode);
603 }
604 
605 
606 static void exec_stos(CPUX86State *env, struct x86_decode *decode)
607 {
608     if (decode->rep) {
609         string_rep(env, decode, exec_stos_single, 0);
610     } else {
611         exec_stos_single(env, decode);
612     }
613 
614     env->eip += decode->len;
615 }
616 
617 static void exec_scas_single(CPUX86State *env, struct x86_decode *decode)
618 {
619     target_ulong addr;
620 
621     addr = linear_addr_size(env_cpu(env), RDI(env),
622                             decode->addressing_size, R_ES);
623     decode->op[1].type = X86_VAR_IMMEDIATE;
624     vmx_read_mem(env_cpu(env), &decode->op[1].val, addr, decode->operand_size);
625 
626     EXEC_2OP_FLAGS_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false);
627     string_increment_reg(env, R_EDI, decode);
628 }
629 
630 static void exec_scas(CPUX86State *env, struct x86_decode *decode)
631 {
632     decode->op[0].type = X86_VAR_REG;
633     decode->op[0].reg = R_EAX;
634     if (decode->rep) {
635         string_rep(env, decode, exec_scas_single, decode->rep);
636     } else {
637         exec_scas_single(env, decode);
638     }
639 
640     env->eip += decode->len;
641 }
642 
643 static void exec_lods_single(CPUX86State *env, struct x86_decode *decode)
644 {
645     target_ulong addr;
646     target_ulong val = 0;
647 
648     addr = decode_linear_addr(env, decode, RSI(env), R_DS);
649     vmx_read_mem(env_cpu(env), &val, addr,  decode->operand_size);
650     write_reg(env, R_EAX, val, decode->operand_size);
651 
652     string_increment_reg(env, R_ESI, decode);
653 }
654 
655 static void exec_lods(CPUX86State *env, struct x86_decode *decode)
656 {
657     if (decode->rep) {
658         string_rep(env, decode, exec_lods_single, 0);
659     } else {
660         exec_lods_single(env, decode);
661     }
662 
663     env->eip += decode->len;
664 }
665 
666 static void raise_exception(CPUX86State *env, int exception_index,
667                             int error_code)
668 {
669     env->exception_nr = exception_index;
670     env->error_code = error_code;
671     env->has_error_code = true;
672     env->exception_injected = 1;
673 }
674 
675 void simulate_rdmsr(CPUX86State *env)
676 {
677     X86CPU *cpu = env_archcpu(env);
678     CPUState *cs = env_cpu(env);
679     uint32_t msr = ECX(env);
680     uint64_t val = 0;
681 
682     switch (msr) {
683     case MSR_IA32_TSC:
684         val = rdtscp() + rvmcs(cs->accel->fd, VMCS_TSC_OFFSET);
685         break;
686     case MSR_IA32_APICBASE:
687         val = cpu_get_apic_base(cpu->apic_state);
688         break;
689     case MSR_APIC_START ... MSR_APIC_END: {
690         int ret;
691         int index = (uint32_t)env->regs[R_ECX] - MSR_APIC_START;
692 
693         ret = apic_msr_read(index, &val);
694         if (ret < 0) {
695             raise_exception(env, EXCP0D_GPF, 0);
696         }
697 
698         break;
699     }
700     case MSR_IA32_UCODE_REV:
701         val = cpu->ucode_rev;
702         break;
703     case MSR_EFER:
704         val = rvmcs(cs->accel->fd, VMCS_GUEST_IA32_EFER);
705         break;
706     case MSR_FSBASE:
707         val = rvmcs(cs->accel->fd, VMCS_GUEST_FS_BASE);
708         break;
709     case MSR_GSBASE:
710         val = rvmcs(cs->accel->fd, VMCS_GUEST_GS_BASE);
711         break;
712     case MSR_KERNELGSBASE:
713         val = rvmcs(cs->accel->fd, VMCS_HOST_FS_BASE);
714         break;
715     case MSR_STAR:
716         abort();
717         break;
718     case MSR_LSTAR:
719         abort();
720         break;
721     case MSR_CSTAR:
722         abort();
723         break;
724     case MSR_IA32_MISC_ENABLE:
725         val = env->msr_ia32_misc_enable;
726         break;
727     case MSR_MTRRphysBase(0):
728     case MSR_MTRRphysBase(1):
729     case MSR_MTRRphysBase(2):
730     case MSR_MTRRphysBase(3):
731     case MSR_MTRRphysBase(4):
732     case MSR_MTRRphysBase(5):
733     case MSR_MTRRphysBase(6):
734     case MSR_MTRRphysBase(7):
735         val = env->mtrr_var[(ECX(env) - MSR_MTRRphysBase(0)) / 2].base;
736         break;
737     case MSR_MTRRphysMask(0):
738     case MSR_MTRRphysMask(1):
739     case MSR_MTRRphysMask(2):
740     case MSR_MTRRphysMask(3):
741     case MSR_MTRRphysMask(4):
742     case MSR_MTRRphysMask(5):
743     case MSR_MTRRphysMask(6):
744     case MSR_MTRRphysMask(7):
745         val = env->mtrr_var[(ECX(env) - MSR_MTRRphysMask(0)) / 2].mask;
746         break;
747     case MSR_MTRRfix64K_00000:
748         val = env->mtrr_fixed[0];
749         break;
750     case MSR_MTRRfix16K_80000:
751     case MSR_MTRRfix16K_A0000:
752         val = env->mtrr_fixed[ECX(env) - MSR_MTRRfix16K_80000 + 1];
753         break;
754     case MSR_MTRRfix4K_C0000:
755     case MSR_MTRRfix4K_C8000:
756     case MSR_MTRRfix4K_D0000:
757     case MSR_MTRRfix4K_D8000:
758     case MSR_MTRRfix4K_E0000:
759     case MSR_MTRRfix4K_E8000:
760     case MSR_MTRRfix4K_F0000:
761     case MSR_MTRRfix4K_F8000:
762         val = env->mtrr_fixed[ECX(env) - MSR_MTRRfix4K_C0000 + 3];
763         break;
764     case MSR_MTRRdefType:
765         val = env->mtrr_deftype;
766         break;
767     case MSR_CORE_THREAD_COUNT:
768         val = cs->nr_threads * cs->nr_cores;  /* thread count, bits 15..0 */
769         val |= ((uint32_t)cs->nr_cores << 16); /* core count, bits 31..16 */
770         break;
771     default:
772         /* fprintf(stderr, "%s: unknown msr 0x%x\n", __func__, msr); */
773         val = 0;
774         break;
775     }
776 
777     RAX(env) = (uint32_t)val;
778     RDX(env) = (uint32_t)(val >> 32);
779 }
780 
781 static void exec_rdmsr(CPUX86State *env, struct x86_decode *decode)
782 {
783     simulate_rdmsr(env);
784     env->eip += decode->len;
785 }
786 
787 void simulate_wrmsr(CPUX86State *env)
788 {
789     X86CPU *cpu = env_archcpu(env);
790     CPUState *cs = env_cpu(env);
791     uint32_t msr = ECX(env);
792     uint64_t data = ((uint64_t)EDX(env) << 32) | EAX(env);
793 
794     switch (msr) {
795     case MSR_IA32_TSC:
796         break;
797     case MSR_IA32_APICBASE: {
798         int r;
799 
800         r = cpu_set_apic_base(cpu->apic_state, data);
801         if (r < 0) {
802             raise_exception(env, EXCP0D_GPF, 0);
803         }
804 
805         break;
806     }
807     case MSR_APIC_START ... MSR_APIC_END: {
808         int ret;
809         int index = (uint32_t)env->regs[R_ECX] - MSR_APIC_START;
810 
811         ret = apic_msr_write(index, data);
812         if (ret < 0) {
813             raise_exception(env, EXCP0D_GPF, 0);
814         }
815 
816         break;
817     }
818     case MSR_FSBASE:
819         wvmcs(cs->accel->fd, VMCS_GUEST_FS_BASE, data);
820         break;
821     case MSR_GSBASE:
822         wvmcs(cs->accel->fd, VMCS_GUEST_GS_BASE, data);
823         break;
824     case MSR_KERNELGSBASE:
825         wvmcs(cs->accel->fd, VMCS_HOST_FS_BASE, data);
826         break;
827     case MSR_STAR:
828         abort();
829         break;
830     case MSR_LSTAR:
831         abort();
832         break;
833     case MSR_CSTAR:
834         abort();
835         break;
836     case MSR_EFER:
837         /*printf("new efer %llx\n", EFER(cs));*/
838         wvmcs(cs->accel->fd, VMCS_GUEST_IA32_EFER, data);
839         if (data & MSR_EFER_NXE) {
840             hv_vcpu_invalidate_tlb(cs->accel->fd);
841         }
842         break;
843     case MSR_MTRRphysBase(0):
844     case MSR_MTRRphysBase(1):
845     case MSR_MTRRphysBase(2):
846     case MSR_MTRRphysBase(3):
847     case MSR_MTRRphysBase(4):
848     case MSR_MTRRphysBase(5):
849     case MSR_MTRRphysBase(6):
850     case MSR_MTRRphysBase(7):
851         env->mtrr_var[(ECX(env) - MSR_MTRRphysBase(0)) / 2].base = data;
852         break;
853     case MSR_MTRRphysMask(0):
854     case MSR_MTRRphysMask(1):
855     case MSR_MTRRphysMask(2):
856     case MSR_MTRRphysMask(3):
857     case MSR_MTRRphysMask(4):
858     case MSR_MTRRphysMask(5):
859     case MSR_MTRRphysMask(6):
860     case MSR_MTRRphysMask(7):
861         env->mtrr_var[(ECX(env) - MSR_MTRRphysMask(0)) / 2].mask = data;
862         break;
863     case MSR_MTRRfix64K_00000:
864         env->mtrr_fixed[ECX(env) - MSR_MTRRfix64K_00000] = data;
865         break;
866     case MSR_MTRRfix16K_80000:
867     case MSR_MTRRfix16K_A0000:
868         env->mtrr_fixed[ECX(env) - MSR_MTRRfix16K_80000 + 1] = data;
869         break;
870     case MSR_MTRRfix4K_C0000:
871     case MSR_MTRRfix4K_C8000:
872     case MSR_MTRRfix4K_D0000:
873     case MSR_MTRRfix4K_D8000:
874     case MSR_MTRRfix4K_E0000:
875     case MSR_MTRRfix4K_E8000:
876     case MSR_MTRRfix4K_F0000:
877     case MSR_MTRRfix4K_F8000:
878         env->mtrr_fixed[ECX(env) - MSR_MTRRfix4K_C0000 + 3] = data;
879         break;
880     case MSR_MTRRdefType:
881         env->mtrr_deftype = data;
882         break;
883     default:
884         break;
885     }
886 
887     /* Related to support known hypervisor interface */
888     /* if (g_hypervisor_iface)
889          g_hypervisor_iface->wrmsr_handler(cs, msr, data);
890 
891     printf("write msr %llx\n", RCX(cs));*/
892 }
893 
894 static void exec_wrmsr(CPUX86State *env, struct x86_decode *decode)
895 {
896     simulate_wrmsr(env);
897     env->eip += decode->len;
898 }
899 
900 /*
901  * flag:
902  * 0 - bt, 1 - btc, 2 - bts, 3 - btr
903  */
904 static void do_bt(CPUX86State *env, struct x86_decode *decode, int flag)
905 {
906     int32_t displacement;
907     uint8_t index;
908     bool cf;
909     int mask = (4 == decode->operand_size) ? 0x1f : 0xf;
910 
911     VM_PANIC_ON(decode->rex.rex);
912 
913     fetch_operands(env, decode, 2, false, true, false);
914     index = decode->op[1].val & mask;
915 
916     if (decode->op[0].type != X86_VAR_REG) {
917         if (4 == decode->operand_size) {
918             displacement = ((int32_t) (decode->op[1].val & 0xffffffe0)) / 32;
919             decode->op[0].ptr += 4 * displacement;
920         } else if (2 == decode->operand_size) {
921             displacement = ((int16_t) (decode->op[1].val & 0xfff0)) / 16;
922             decode->op[0].ptr += 2 * displacement;
923         } else {
924             VM_PANIC("bt 64bit\n");
925         }
926     }
927     decode->op[0].val = read_val_ext(env, decode->op[0].ptr,
928                                      decode->operand_size);
929     cf = (decode->op[0].val >> index) & 0x01;
930 
931     switch (flag) {
932     case 0:
933         set_CF(env, cf);
934         return;
935     case 1:
936         decode->op[0].val ^= (1u << index);
937         break;
938     case 2:
939         decode->op[0].val |= (1u << index);
940         break;
941     case 3:
942         decode->op[0].val &= ~(1u << index);
943         break;
944     }
945     write_val_ext(env, decode->op[0].ptr, decode->op[0].val,
946                   decode->operand_size);
947     set_CF(env, cf);
948 }
949 
950 static void exec_bt(CPUX86State *env, struct x86_decode *decode)
951 {
952     do_bt(env, decode, 0);
953     env->eip += decode->len;
954 }
955 
956 static void exec_btc(CPUX86State *env, struct x86_decode *decode)
957 {
958     do_bt(env, decode, 1);
959     env->eip += decode->len;
960 }
961 
962 static void exec_btr(CPUX86State *env, struct x86_decode *decode)
963 {
964     do_bt(env, decode, 3);
965     env->eip += decode->len;
966 }
967 
968 static void exec_bts(CPUX86State *env, struct x86_decode *decode)
969 {
970     do_bt(env, decode, 2);
971     env->eip += decode->len;
972 }
973 
974 void exec_shl(CPUX86State *env, struct x86_decode *decode)
975 {
976     uint8_t count;
977     int of = 0, cf = 0;
978 
979     fetch_operands(env, decode, 2, true, true, false);
980 
981     count = decode->op[1].val;
982     count &= 0x1f;      /* count is masked to 5 bits*/
983     if (!count) {
984         goto exit;
985     }
986 
987     switch (decode->operand_size) {
988     case 1:
989     {
990         uint8_t res = 0;
991         if (count <= 8) {
992             res = (decode->op[0].val << count);
993             cf = (decode->op[0].val >> (8 - count)) & 0x1;
994             of = cf ^ (res >> 7);
995         }
996 
997         write_val_ext(env, decode->op[0].ptr, res, 1);
998         SET_FLAGS_OSZAPC_LOGIC8(env, 0, 0, res);
999         SET_FLAGS_OxxxxC(env, of, cf);
1000         break;
1001     }
1002     case 2:
1003     {
1004         uint16_t res = 0;
1005 
1006         /* from bochs */
1007         if (count <= 16) {
1008             res = (decode->op[0].val << count);
1009             cf = (decode->op[0].val >> (16 - count)) & 0x1;
1010             of = cf ^ (res >> 15); /* of = cf ^ result15 */
1011         }
1012 
1013         write_val_ext(env, decode->op[0].ptr, res, 2);
1014         SET_FLAGS_OSZAPC_LOGIC16(env, 0, 0, res);
1015         SET_FLAGS_OxxxxC(env, of, cf);
1016         break;
1017     }
1018     case 4:
1019     {
1020         uint32_t res = decode->op[0].val << count;
1021 
1022         write_val_ext(env, decode->op[0].ptr, res, 4);
1023         SET_FLAGS_OSZAPC_LOGIC32(env, 0, 0, res);
1024         cf = (decode->op[0].val >> (32 - count)) & 0x1;
1025         of = cf ^ (res >> 31); /* of = cf ^ result31 */
1026         SET_FLAGS_OxxxxC(env, of, cf);
1027         break;
1028     }
1029     default:
1030         abort();
1031     }
1032 
1033 exit:
1034     /* lflags_to_rflags(env); */
1035     env->eip += decode->len;
1036 }
1037 
1038 void exec_movsx(CPUX86State *env, struct x86_decode *decode)
1039 {
1040     int src_op_size;
1041     int op_size = decode->operand_size;
1042 
1043     fetch_operands(env, decode, 2, false, false, false);
1044 
1045     if (0xbe == decode->opcode[1]) {
1046         src_op_size = 1;
1047     } else {
1048         src_op_size = 2;
1049     }
1050 
1051     decode->operand_size = src_op_size;
1052     calc_modrm_operand(env, decode, &decode->op[1]);
1053     decode->op[1].val = sign(read_val_ext(env, decode->op[1].ptr, src_op_size),
1054                              src_op_size);
1055 
1056     write_val_ext(env, decode->op[0].ptr, decode->op[1].val, op_size);
1057 
1058     env->eip += decode->len;
1059 }
1060 
1061 void exec_ror(CPUX86State *env, struct x86_decode *decode)
1062 {
1063     uint8_t count;
1064 
1065     fetch_operands(env, decode, 2, true, true, false);
1066     count = decode->op[1].val;
1067 
1068     switch (decode->operand_size) {
1069     case 1:
1070     {
1071         uint32_t bit6, bit7;
1072         uint8_t res;
1073 
1074         if ((count & 0x07) == 0) {
1075             if (count & 0x18) {
1076                 bit6 = ((uint8_t)decode->op[0].val >> 6) & 1;
1077                 bit7 = ((uint8_t)decode->op[0].val >> 7) & 1;
1078                 SET_FLAGS_OxxxxC(env, bit6 ^ bit7, bit7);
1079              }
1080         } else {
1081             count &= 0x7; /* use only bottom 3 bits */
1082             res = ((uint8_t)decode->op[0].val >> count) |
1083                    ((uint8_t)decode->op[0].val << (8 - count));
1084             write_val_ext(env, decode->op[0].ptr, res, 1);
1085             bit6 = (res >> 6) & 1;
1086             bit7 = (res >> 7) & 1;
1087             /* set eflags: ROR count affects the following flags: C, O */
1088             SET_FLAGS_OxxxxC(env, bit6 ^ bit7, bit7);
1089         }
1090         break;
1091     }
1092     case 2:
1093     {
1094         uint32_t bit14, bit15;
1095         uint16_t res;
1096 
1097         if ((count & 0x0f) == 0) {
1098             if (count & 0x10) {
1099                 bit14 = ((uint16_t)decode->op[0].val >> 14) & 1;
1100                 bit15 = ((uint16_t)decode->op[0].val >> 15) & 1;
1101                 /* of = result14 ^ result15 */
1102                 SET_FLAGS_OxxxxC(env, bit14 ^ bit15, bit15);
1103             }
1104         } else {
1105             count &= 0x0f;  /* use only 4 LSB's */
1106             res = ((uint16_t)decode->op[0].val >> count) |
1107                    ((uint16_t)decode->op[0].val << (16 - count));
1108             write_val_ext(env, decode->op[0].ptr, res, 2);
1109 
1110             bit14 = (res >> 14) & 1;
1111             bit15 = (res >> 15) & 1;
1112             /* of = result14 ^ result15 */
1113             SET_FLAGS_OxxxxC(env, bit14 ^ bit15, bit15);
1114         }
1115         break;
1116     }
1117     case 4:
1118     {
1119         uint32_t bit31, bit30;
1120         uint32_t res;
1121 
1122         count &= 0x1f;
1123         if (count) {
1124             res = ((uint32_t)decode->op[0].val >> count) |
1125                    ((uint32_t)decode->op[0].val << (32 - count));
1126             write_val_ext(env, decode->op[0].ptr, res, 4);
1127 
1128             bit31 = (res >> 31) & 1;
1129             bit30 = (res >> 30) & 1;
1130             /* of = result30 ^ result31 */
1131             SET_FLAGS_OxxxxC(env, bit30 ^ bit31, bit31);
1132         }
1133         break;
1134         }
1135     }
1136     env->eip += decode->len;
1137 }
1138 
1139 void exec_rol(CPUX86State *env, struct x86_decode *decode)
1140 {
1141     uint8_t count;
1142 
1143     fetch_operands(env, decode, 2, true, true, false);
1144     count = decode->op[1].val;
1145 
1146     switch (decode->operand_size) {
1147     case 1:
1148     {
1149         uint32_t bit0, bit7;
1150         uint8_t res;
1151 
1152         if ((count & 0x07) == 0) {
1153             if (count & 0x18) {
1154                 bit0 = ((uint8_t)decode->op[0].val & 1);
1155                 bit7 = ((uint8_t)decode->op[0].val >> 7);
1156                 SET_FLAGS_OxxxxC(env, bit0 ^ bit7, bit0);
1157             }
1158         }  else {
1159             count &= 0x7; /* use only lowest 3 bits */
1160             res = ((uint8_t)decode->op[0].val << count) |
1161                    ((uint8_t)decode->op[0].val >> (8 - count));
1162 
1163             write_val_ext(env, decode->op[0].ptr, res, 1);
1164             /* set eflags:
1165              * ROL count affects the following flags: C, O
1166              */
1167             bit0 = (res &  1);
1168             bit7 = (res >> 7);
1169             SET_FLAGS_OxxxxC(env, bit0 ^ bit7, bit0);
1170         }
1171         break;
1172     }
1173     case 2:
1174     {
1175         uint32_t bit0, bit15;
1176         uint16_t res;
1177 
1178         if ((count & 0x0f) == 0) {
1179             if (count & 0x10) {
1180                 bit0  = ((uint16_t)decode->op[0].val & 0x1);
1181                 bit15 = ((uint16_t)decode->op[0].val >> 15);
1182                 /* of = cf ^ result15 */
1183                 SET_FLAGS_OxxxxC(env, bit0 ^ bit15, bit0);
1184             }
1185         } else {
1186             count &= 0x0f; /* only use bottom 4 bits */
1187             res = ((uint16_t)decode->op[0].val << count) |
1188                    ((uint16_t)decode->op[0].val >> (16 - count));
1189 
1190             write_val_ext(env, decode->op[0].ptr, res, 2);
1191             bit0  = (res & 0x1);
1192             bit15 = (res >> 15);
1193             /* of = cf ^ result15 */
1194             SET_FLAGS_OxxxxC(env, bit0 ^ bit15, bit0);
1195         }
1196         break;
1197     }
1198     case 4:
1199     {
1200         uint32_t bit0, bit31;
1201         uint32_t res;
1202 
1203         count &= 0x1f;
1204         if (count) {
1205             res = ((uint32_t)decode->op[0].val << count) |
1206                    ((uint32_t)decode->op[0].val >> (32 - count));
1207 
1208             write_val_ext(env, decode->op[0].ptr, res, 4);
1209             bit0  = (res & 0x1);
1210             bit31 = (res >> 31);
1211             /* of = cf ^ result31 */
1212             SET_FLAGS_OxxxxC(env, bit0 ^ bit31, bit0);
1213         }
1214         break;
1215         }
1216     }
1217     env->eip += decode->len;
1218 }
1219 
1220 
1221 void exec_rcl(CPUX86State *env, struct x86_decode *decode)
1222 {
1223     uint8_t count;
1224     int of = 0, cf = 0;
1225 
1226     fetch_operands(env, decode, 2, true, true, false);
1227     count = decode->op[1].val & 0x1f;
1228 
1229     switch (decode->operand_size) {
1230     case 1:
1231     {
1232         uint8_t op1_8 = decode->op[0].val;
1233         uint8_t res;
1234         count %= 9;
1235         if (!count) {
1236             break;
1237         }
1238 
1239         if (1 == count) {
1240             res = (op1_8 << 1) | get_CF(env);
1241         } else {
1242             res = (op1_8 << count) | (get_CF(env) << (count - 1)) |
1243                    (op1_8 >> (9 - count));
1244         }
1245 
1246         write_val_ext(env, decode->op[0].ptr, res, 1);
1247 
1248         cf = (op1_8 >> (8 - count)) & 0x01;
1249         of = cf ^ (res >> 7); /* of = cf ^ result7 */
1250         SET_FLAGS_OxxxxC(env, of, cf);
1251         break;
1252     }
1253     case 2:
1254     {
1255         uint16_t res;
1256         uint16_t op1_16 = decode->op[0].val;
1257 
1258         count %= 17;
1259         if (!count) {
1260             break;
1261         }
1262 
1263         if (1 == count) {
1264             res = (op1_16 << 1) | get_CF(env);
1265         } else if (count == 16) {
1266             res = (get_CF(env) << 15) | (op1_16 >> 1);
1267         } else { /* 2..15 */
1268             res = (op1_16 << count) | (get_CF(env) << (count - 1)) |
1269                    (op1_16 >> (17 - count));
1270         }
1271 
1272         write_val_ext(env, decode->op[0].ptr, res, 2);
1273 
1274         cf = (op1_16 >> (16 - count)) & 0x1;
1275         of = cf ^ (res >> 15); /* of = cf ^ result15 */
1276         SET_FLAGS_OxxxxC(env, of, cf);
1277         break;
1278     }
1279     case 4:
1280     {
1281         uint32_t res;
1282         uint32_t op1_32 = decode->op[0].val;
1283 
1284         if (!count) {
1285             break;
1286         }
1287 
1288         if (1 == count) {
1289             res = (op1_32 << 1) | get_CF(env);
1290         } else {
1291             res = (op1_32 << count) | (get_CF(env) << (count - 1)) |
1292                    (op1_32 >> (33 - count));
1293         }
1294 
1295         write_val_ext(env, decode->op[0].ptr, res, 4);
1296 
1297         cf = (op1_32 >> (32 - count)) & 0x1;
1298         of = cf ^ (res >> 31); /* of = cf ^ result31 */
1299         SET_FLAGS_OxxxxC(env, of, cf);
1300         break;
1301         }
1302     }
1303     env->eip += decode->len;
1304 }
1305 
1306 void exec_rcr(CPUX86State *env, struct x86_decode *decode)
1307 {
1308     uint8_t count;
1309     int of = 0, cf = 0;
1310 
1311     fetch_operands(env, decode, 2, true, true, false);
1312     count = decode->op[1].val & 0x1f;
1313 
1314     switch (decode->operand_size) {
1315     case 1:
1316     {
1317         uint8_t op1_8 = decode->op[0].val;
1318         uint8_t res;
1319 
1320         count %= 9;
1321         if (!count) {
1322             break;
1323         }
1324         res = (op1_8 >> count) | (get_CF(env) << (8 - count)) |
1325                (op1_8 << (9 - count));
1326 
1327         write_val_ext(env, decode->op[0].ptr, res, 1);
1328 
1329         cf = (op1_8 >> (count - 1)) & 0x1;
1330         of = (((res << 1) ^ res) >> 7) & 0x1; /* of = result6 ^ result7 */
1331         SET_FLAGS_OxxxxC(env, of, cf);
1332         break;
1333     }
1334     case 2:
1335     {
1336         uint16_t op1_16 = decode->op[0].val;
1337         uint16_t res;
1338 
1339         count %= 17;
1340         if (!count) {
1341             break;
1342         }
1343         res = (op1_16 >> count) | (get_CF(env) << (16 - count)) |
1344                (op1_16 << (17 - count));
1345 
1346         write_val_ext(env, decode->op[0].ptr, res, 2);
1347 
1348         cf = (op1_16 >> (count - 1)) & 0x1;
1349         of = ((uint16_t)((res << 1) ^ res) >> 15) & 0x1; /* of = result15 ^
1350                                                             result14 */
1351         SET_FLAGS_OxxxxC(env, of, cf);
1352         break;
1353     }
1354     case 4:
1355     {
1356         uint32_t res;
1357         uint32_t op1_32 = decode->op[0].val;
1358 
1359         if (!count) {
1360             break;
1361         }
1362 
1363         if (1 == count) {
1364             res = (op1_32 >> 1) | (get_CF(env) << 31);
1365         } else {
1366             res = (op1_32 >> count) | (get_CF(env) << (32 - count)) |
1367                    (op1_32 << (33 - count));
1368         }
1369 
1370         write_val_ext(env, decode->op[0].ptr, res, 4);
1371 
1372         cf = (op1_32 >> (count - 1)) & 0x1;
1373         of = ((res << 1) ^ res) >> 31; /* of = result30 ^ result31 */
1374         SET_FLAGS_OxxxxC(env, of, cf);
1375         break;
1376         }
1377     }
1378     env->eip += decode->len;
1379 }
1380 
1381 static void exec_xchg(CPUX86State *env, struct x86_decode *decode)
1382 {
1383     fetch_operands(env, decode, 2, true, true, false);
1384 
1385     write_val_ext(env, decode->op[0].ptr, decode->op[1].val,
1386                   decode->operand_size);
1387     write_val_ext(env, decode->op[1].ptr, decode->op[0].val,
1388                   decode->operand_size);
1389 
1390     env->eip += decode->len;
1391 }
1392 
1393 static void exec_xadd(CPUX86State *env, struct x86_decode *decode)
1394 {
1395     EXEC_2OP_FLAGS_CMD(env, decode, +, SET_FLAGS_OSZAPC_ADD, true);
1396     write_val_ext(env, decode->op[1].ptr, decode->op[0].val,
1397                   decode->operand_size);
1398 
1399     env->eip += decode->len;
1400 }
1401 
1402 static struct cmd_handler {
1403     enum x86_decode_cmd cmd;
1404     void (*handler)(CPUX86State *env, struct x86_decode *ins);
1405 } handlers[] = {
1406     {X86_DECODE_CMD_INVL, NULL,},
1407     {X86_DECODE_CMD_MOV, exec_mov},
1408     {X86_DECODE_CMD_ADD, exec_add},
1409     {X86_DECODE_CMD_OR, exec_or},
1410     {X86_DECODE_CMD_ADC, exec_adc},
1411     {X86_DECODE_CMD_SBB, exec_sbb},
1412     {X86_DECODE_CMD_AND, exec_and},
1413     {X86_DECODE_CMD_SUB, exec_sub},
1414     {X86_DECODE_CMD_NEG, exec_neg},
1415     {X86_DECODE_CMD_XOR, exec_xor},
1416     {X86_DECODE_CMD_CMP, exec_cmp},
1417     {X86_DECODE_CMD_INC, exec_inc},
1418     {X86_DECODE_CMD_DEC, exec_dec},
1419     {X86_DECODE_CMD_TST, exec_tst},
1420     {X86_DECODE_CMD_NOT, exec_not},
1421     {X86_DECODE_CMD_MOVZX, exec_movzx},
1422     {X86_DECODE_CMD_OUT, exec_out},
1423     {X86_DECODE_CMD_IN, exec_in},
1424     {X86_DECODE_CMD_INS, exec_ins},
1425     {X86_DECODE_CMD_OUTS, exec_outs},
1426     {X86_DECODE_CMD_RDMSR, exec_rdmsr},
1427     {X86_DECODE_CMD_WRMSR, exec_wrmsr},
1428     {X86_DECODE_CMD_BT, exec_bt},
1429     {X86_DECODE_CMD_BTR, exec_btr},
1430     {X86_DECODE_CMD_BTC, exec_btc},
1431     {X86_DECODE_CMD_BTS, exec_bts},
1432     {X86_DECODE_CMD_SHL, exec_shl},
1433     {X86_DECODE_CMD_ROL, exec_rol},
1434     {X86_DECODE_CMD_ROR, exec_ror},
1435     {X86_DECODE_CMD_RCR, exec_rcr},
1436     {X86_DECODE_CMD_RCL, exec_rcl},
1437     /*{X86_DECODE_CMD_CPUID, exec_cpuid},*/
1438     {X86_DECODE_CMD_MOVS, exec_movs},
1439     {X86_DECODE_CMD_CMPS, exec_cmps},
1440     {X86_DECODE_CMD_STOS, exec_stos},
1441     {X86_DECODE_CMD_SCAS, exec_scas},
1442     {X86_DECODE_CMD_LODS, exec_lods},
1443     {X86_DECODE_CMD_MOVSX, exec_movsx},
1444     {X86_DECODE_CMD_XCHG, exec_xchg},
1445     {X86_DECODE_CMD_XADD, exec_xadd},
1446 };
1447 
1448 static struct cmd_handler _cmd_handler[X86_DECODE_CMD_LAST];
1449 
1450 static void init_cmd_handler(void)
1451 {
1452     int i;
1453     for (i = 0; i < ARRAY_SIZE(handlers); i++) {
1454         _cmd_handler[handlers[i].cmd] = handlers[i];
1455     }
1456 }
1457 
1458 void load_regs(CPUState *cs)
1459 {
1460     X86CPU *cpu = X86_CPU(cs);
1461     CPUX86State *env = &cpu->env;
1462 
1463     int i = 0;
1464     RRX(env, R_EAX) = rreg(cs->accel->fd, HV_X86_RAX);
1465     RRX(env, R_EBX) = rreg(cs->accel->fd, HV_X86_RBX);
1466     RRX(env, R_ECX) = rreg(cs->accel->fd, HV_X86_RCX);
1467     RRX(env, R_EDX) = rreg(cs->accel->fd, HV_X86_RDX);
1468     RRX(env, R_ESI) = rreg(cs->accel->fd, HV_X86_RSI);
1469     RRX(env, R_EDI) = rreg(cs->accel->fd, HV_X86_RDI);
1470     RRX(env, R_ESP) = rreg(cs->accel->fd, HV_X86_RSP);
1471     RRX(env, R_EBP) = rreg(cs->accel->fd, HV_X86_RBP);
1472     for (i = 8; i < 16; i++) {
1473         RRX(env, i) = rreg(cs->accel->fd, HV_X86_RAX + i);
1474     }
1475 
1476     env->eflags = rreg(cs->accel->fd, HV_X86_RFLAGS);
1477     rflags_to_lflags(env);
1478     env->eip = rreg(cs->accel->fd, HV_X86_RIP);
1479 }
1480 
1481 void store_regs(CPUState *cs)
1482 {
1483     X86CPU *cpu = X86_CPU(cs);
1484     CPUX86State *env = &cpu->env;
1485 
1486     int i = 0;
1487     wreg(cs->accel->fd, HV_X86_RAX, RAX(env));
1488     wreg(cs->accel->fd, HV_X86_RBX, RBX(env));
1489     wreg(cs->accel->fd, HV_X86_RCX, RCX(env));
1490     wreg(cs->accel->fd, HV_X86_RDX, RDX(env));
1491     wreg(cs->accel->fd, HV_X86_RSI, RSI(env));
1492     wreg(cs->accel->fd, HV_X86_RDI, RDI(env));
1493     wreg(cs->accel->fd, HV_X86_RBP, RBP(env));
1494     wreg(cs->accel->fd, HV_X86_RSP, RSP(env));
1495     for (i = 8; i < 16; i++) {
1496         wreg(cs->accel->fd, HV_X86_RAX + i, RRX(env, i));
1497     }
1498 
1499     lflags_to_rflags(env);
1500     wreg(cs->accel->fd, HV_X86_RFLAGS, env->eflags);
1501     macvm_set_rip(cs, env->eip);
1502 }
1503 
1504 bool exec_instruction(CPUX86State *env, struct x86_decode *ins)
1505 {
1506     /*if (hvf_vcpu_id(cs))
1507     printf("%d, %llx: exec_instruction %s\n", hvf_vcpu_id(cs),  env->eip,
1508           decode_cmd_to_string(ins->cmd));*/
1509 
1510     if (!_cmd_handler[ins->cmd].handler) {
1511         printf("Unimplemented handler (%llx) for %d (%x %x) \n", env->eip,
1512                 ins->cmd, ins->opcode[0],
1513                 ins->opcode_len > 1 ? ins->opcode[1] : 0);
1514         env->eip += ins->len;
1515         return true;
1516     }
1517 
1518     _cmd_handler[ins->cmd].handler(env, ins);
1519     return true;
1520 }
1521 
1522 void init_emu(void)
1523 {
1524     init_cmd_handler();
1525 }
1526