1 /* 2 * Copyright (C) 2016 Veertu Inc, 3 * Copyright (C) 2017 Google Inc, 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU Lesser General Public 7 * License as published by the Free Software Foundation; either 8 * version 2 of the License, or (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 13 * Lesser General Public License for more details. 14 * 15 * You should have received a copy of the GNU Lesser General Public 16 * License along with this program; if not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 ///////////////////////////////////////////////////////////////////////// 20 // 21 // Copyright (C) 2001-2012 The Bochs Project 22 // 23 // This library is free software; you can redistribute it and/or 24 // modify it under the terms of the GNU Lesser General Public 25 // License as published by the Free Software Foundation; either 26 // version 2 of the License, or (at your option) any later version. 27 // 28 // This library is distributed in the hope that it will be useful, 29 // but WITHOUT ANY WARRANTY; without even the implied warranty of 30 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 31 // Lesser General Public License for more details. 32 // 33 // You should have received a copy of the GNU Lesser General Public 34 // License along with this library; if not, write to the Free Software 35 // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA 36 ///////////////////////////////////////////////////////////////////////// 37 38 #include "qemu/osdep.h" 39 #include "panic.h" 40 #include "qemu-common.h" 41 #include "x86_decode.h" 42 #include "x86.h" 43 #include "x86_emu.h" 44 #include "x86_mmu.h" 45 #include "x86_flags.h" 46 #include "vmcs.h" 47 #include "vmx.h" 48 49 void hvf_handle_io(struct CPUState *cpu, uint16_t port, void *data, 50 int direction, int size, uint32_t count); 51 52 #define EXEC_2OP_FLAGS_CMD(env, decode, cmd, FLAGS_FUNC, save_res) \ 53 { \ 54 fetch_operands(env, decode, 2, true, true, false); \ 55 switch (decode->operand_size) { \ 56 case 1: \ 57 { \ 58 uint8_t v1 = (uint8_t)decode->op[0].val; \ 59 uint8_t v2 = (uint8_t)decode->op[1].val; \ 60 uint8_t diff = v1 cmd v2; \ 61 if (save_res) { \ 62 write_val_ext(env, decode->op[0].ptr, diff, 1); \ 63 } \ 64 FLAGS_FUNC##8(env, v1, v2, diff); \ 65 break; \ 66 } \ 67 case 2: \ 68 { \ 69 uint16_t v1 = (uint16_t)decode->op[0].val; \ 70 uint16_t v2 = (uint16_t)decode->op[1].val; \ 71 uint16_t diff = v1 cmd v2; \ 72 if (save_res) { \ 73 write_val_ext(env, decode->op[0].ptr, diff, 2); \ 74 } \ 75 FLAGS_FUNC##16(env, v1, v2, diff); \ 76 break; \ 77 } \ 78 case 4: \ 79 { \ 80 uint32_t v1 = (uint32_t)decode->op[0].val; \ 81 uint32_t v2 = (uint32_t)decode->op[1].val; \ 82 uint32_t diff = v1 cmd v2; \ 83 if (save_res) { \ 84 write_val_ext(env, decode->op[0].ptr, diff, 4); \ 85 } \ 86 FLAGS_FUNC##32(env, v1, v2, diff); \ 87 break; \ 88 } \ 89 default: \ 90 VM_PANIC("bad size\n"); \ 91 } \ 92 } \ 93 94 target_ulong read_reg(CPUX86State *env, int reg, int size) 95 { 96 switch (size) { 97 case 1: 98 return env->hvf_emul->regs[reg].lx; 99 case 2: 100 return env->hvf_emul->regs[reg].rx; 101 case 4: 102 return env->hvf_emul->regs[reg].erx; 103 case 8: 104 return env->hvf_emul->regs[reg].rrx; 105 default: 106 abort(); 107 } 108 return 0; 109 } 110 111 void write_reg(CPUX86State *env, int reg, target_ulong val, int size) 112 { 113 switch (size) { 114 case 1: 115 env->hvf_emul->regs[reg].lx = val; 116 break; 117 case 2: 118 env->hvf_emul->regs[reg].rx = val; 119 break; 120 case 4: 121 env->hvf_emul->regs[reg].rrx = (uint32_t)val; 122 break; 123 case 8: 124 env->hvf_emul->regs[reg].rrx = val; 125 break; 126 default: 127 abort(); 128 } 129 } 130 131 target_ulong read_val_from_reg(target_ulong reg_ptr, int size) 132 { 133 target_ulong val; 134 135 switch (size) { 136 case 1: 137 val = *(uint8_t *)reg_ptr; 138 break; 139 case 2: 140 val = *(uint16_t *)reg_ptr; 141 break; 142 case 4: 143 val = *(uint32_t *)reg_ptr; 144 break; 145 case 8: 146 val = *(uint64_t *)reg_ptr; 147 break; 148 default: 149 abort(); 150 } 151 return val; 152 } 153 154 void write_val_to_reg(target_ulong reg_ptr, target_ulong val, int size) 155 { 156 switch (size) { 157 case 1: 158 *(uint8_t *)reg_ptr = val; 159 break; 160 case 2: 161 *(uint16_t *)reg_ptr = val; 162 break; 163 case 4: 164 *(uint64_t *)reg_ptr = (uint32_t)val; 165 break; 166 case 8: 167 *(uint64_t *)reg_ptr = val; 168 break; 169 default: 170 abort(); 171 } 172 } 173 174 static bool is_host_reg(struct CPUX86State *env, target_ulong ptr) 175 { 176 return (ptr - (target_ulong)&env->hvf_emul->regs[0]) < sizeof(env->hvf_emul->regs); 177 } 178 179 void write_val_ext(struct CPUX86State *env, target_ulong ptr, target_ulong val, int size) 180 { 181 if (is_host_reg(env, ptr)) { 182 write_val_to_reg(ptr, val, size); 183 return; 184 } 185 vmx_write_mem(env_cpu(env), ptr, &val, size); 186 } 187 188 uint8_t *read_mmio(struct CPUX86State *env, target_ulong ptr, int bytes) 189 { 190 vmx_read_mem(env_cpu(env), env->hvf_emul->mmio_buf, ptr, bytes); 191 return env->hvf_emul->mmio_buf; 192 } 193 194 195 target_ulong read_val_ext(struct CPUX86State *env, target_ulong ptr, int size) 196 { 197 target_ulong val; 198 uint8_t *mmio_ptr; 199 200 if (is_host_reg(env, ptr)) { 201 return read_val_from_reg(ptr, size); 202 } 203 204 mmio_ptr = read_mmio(env, ptr, size); 205 switch (size) { 206 case 1: 207 val = *(uint8_t *)mmio_ptr; 208 break; 209 case 2: 210 val = *(uint16_t *)mmio_ptr; 211 break; 212 case 4: 213 val = *(uint32_t *)mmio_ptr; 214 break; 215 case 8: 216 val = *(uint64_t *)mmio_ptr; 217 break; 218 default: 219 VM_PANIC("bad size\n"); 220 break; 221 } 222 return val; 223 } 224 225 static void fetch_operands(struct CPUX86State *env, struct x86_decode *decode, 226 int n, bool val_op0, bool val_op1, bool val_op2) 227 { 228 int i; 229 bool calc_val[3] = {val_op0, val_op1, val_op2}; 230 231 for (i = 0; i < n; i++) { 232 switch (decode->op[i].type) { 233 case X86_VAR_IMMEDIATE: 234 break; 235 case X86_VAR_REG: 236 VM_PANIC_ON(!decode->op[i].ptr); 237 if (calc_val[i]) { 238 decode->op[i].val = read_val_from_reg(decode->op[i].ptr, 239 decode->operand_size); 240 } 241 break; 242 case X86_VAR_RM: 243 calc_modrm_operand(env, decode, &decode->op[i]); 244 if (calc_val[i]) { 245 decode->op[i].val = read_val_ext(env, decode->op[i].ptr, 246 decode->operand_size); 247 } 248 break; 249 case X86_VAR_OFFSET: 250 decode->op[i].ptr = decode_linear_addr(env, decode, 251 decode->op[i].ptr, 252 R_DS); 253 if (calc_val[i]) { 254 decode->op[i].val = read_val_ext(env, decode->op[i].ptr, 255 decode->operand_size); 256 } 257 break; 258 default: 259 break; 260 } 261 } 262 } 263 264 static void exec_mov(struct CPUX86State *env, struct x86_decode *decode) 265 { 266 fetch_operands(env, decode, 2, false, true, false); 267 write_val_ext(env, decode->op[0].ptr, decode->op[1].val, 268 decode->operand_size); 269 270 RIP(env) += decode->len; 271 } 272 273 static void exec_add(struct CPUX86State *env, struct x86_decode *decode) 274 { 275 EXEC_2OP_FLAGS_CMD(env, decode, +, SET_FLAGS_OSZAPC_ADD, true); 276 RIP(env) += decode->len; 277 } 278 279 static void exec_or(struct CPUX86State *env, struct x86_decode *decode) 280 { 281 EXEC_2OP_FLAGS_CMD(env, decode, |, SET_FLAGS_OSZAPC_LOGIC, true); 282 RIP(env) += decode->len; 283 } 284 285 static void exec_adc(struct CPUX86State *env, struct x86_decode *decode) 286 { 287 EXEC_2OP_FLAGS_CMD(env, decode, +get_CF(env)+, SET_FLAGS_OSZAPC_ADD, true); 288 RIP(env) += decode->len; 289 } 290 291 static void exec_sbb(struct CPUX86State *env, struct x86_decode *decode) 292 { 293 EXEC_2OP_FLAGS_CMD(env, decode, -get_CF(env)-, SET_FLAGS_OSZAPC_SUB, true); 294 RIP(env) += decode->len; 295 } 296 297 static void exec_and(struct CPUX86State *env, struct x86_decode *decode) 298 { 299 EXEC_2OP_FLAGS_CMD(env, decode, &, SET_FLAGS_OSZAPC_LOGIC, true); 300 RIP(env) += decode->len; 301 } 302 303 static void exec_sub(struct CPUX86State *env, struct x86_decode *decode) 304 { 305 EXEC_2OP_FLAGS_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, true); 306 RIP(env) += decode->len; 307 } 308 309 static void exec_xor(struct CPUX86State *env, struct x86_decode *decode) 310 { 311 EXEC_2OP_FLAGS_CMD(env, decode, ^, SET_FLAGS_OSZAPC_LOGIC, true); 312 RIP(env) += decode->len; 313 } 314 315 static void exec_neg(struct CPUX86State *env, struct x86_decode *decode) 316 { 317 /*EXEC_2OP_FLAGS_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false);*/ 318 int32_t val; 319 fetch_operands(env, decode, 2, true, true, false); 320 321 val = 0 - sign(decode->op[1].val, decode->operand_size); 322 write_val_ext(env, decode->op[1].ptr, val, decode->operand_size); 323 324 if (4 == decode->operand_size) { 325 SET_FLAGS_OSZAPC_SUB32(env, 0, 0 - val, val); 326 } else if (2 == decode->operand_size) { 327 SET_FLAGS_OSZAPC_SUB16(env, 0, 0 - val, val); 328 } else if (1 == decode->operand_size) { 329 SET_FLAGS_OSZAPC_SUB8(env, 0, 0 - val, val); 330 } else { 331 VM_PANIC("bad op size\n"); 332 } 333 334 /*lflags_to_rflags(env);*/ 335 RIP(env) += decode->len; 336 } 337 338 static void exec_cmp(struct CPUX86State *env, struct x86_decode *decode) 339 { 340 EXEC_2OP_FLAGS_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false); 341 RIP(env) += decode->len; 342 } 343 344 static void exec_inc(struct CPUX86State *env, struct x86_decode *decode) 345 { 346 decode->op[1].type = X86_VAR_IMMEDIATE; 347 decode->op[1].val = 0; 348 349 EXEC_2OP_FLAGS_CMD(env, decode, +1+, SET_FLAGS_OSZAP_ADD, true); 350 351 RIP(env) += decode->len; 352 } 353 354 static void exec_dec(struct CPUX86State *env, struct x86_decode *decode) 355 { 356 decode->op[1].type = X86_VAR_IMMEDIATE; 357 decode->op[1].val = 0; 358 359 EXEC_2OP_FLAGS_CMD(env, decode, -1-, SET_FLAGS_OSZAP_SUB, true); 360 RIP(env) += decode->len; 361 } 362 363 static void exec_tst(struct CPUX86State *env, struct x86_decode *decode) 364 { 365 EXEC_2OP_FLAGS_CMD(env, decode, &, SET_FLAGS_OSZAPC_LOGIC, false); 366 RIP(env) += decode->len; 367 } 368 369 static void exec_not(struct CPUX86State *env, struct x86_decode *decode) 370 { 371 fetch_operands(env, decode, 1, true, false, false); 372 373 write_val_ext(env, decode->op[0].ptr, ~decode->op[0].val, 374 decode->operand_size); 375 RIP(env) += decode->len; 376 } 377 378 void exec_movzx(struct CPUX86State *env, struct x86_decode *decode) 379 { 380 int src_op_size; 381 int op_size = decode->operand_size; 382 383 fetch_operands(env, decode, 1, false, false, false); 384 385 if (0xb6 == decode->opcode[1]) { 386 src_op_size = 1; 387 } else { 388 src_op_size = 2; 389 } 390 decode->operand_size = src_op_size; 391 calc_modrm_operand(env, decode, &decode->op[1]); 392 decode->op[1].val = read_val_ext(env, decode->op[1].ptr, src_op_size); 393 write_val_ext(env, decode->op[0].ptr, decode->op[1].val, op_size); 394 395 RIP(env) += decode->len; 396 } 397 398 static void exec_out(struct CPUX86State *env, struct x86_decode *decode) 399 { 400 switch (decode->opcode[0]) { 401 case 0xe6: 402 hvf_handle_io(env_cpu(env), decode->op[0].val, &AL(env), 1, 1, 1); 403 break; 404 case 0xe7: 405 hvf_handle_io(env_cpu(env), decode->op[0].val, &RAX(env), 1, 406 decode->operand_size, 1); 407 break; 408 case 0xee: 409 hvf_handle_io(env_cpu(env), DX(env), &AL(env), 1, 1, 1); 410 break; 411 case 0xef: 412 hvf_handle_io(env_cpu(env), DX(env), &RAX(env), 1, 413 decode->operand_size, 1); 414 break; 415 default: 416 VM_PANIC("Bad out opcode\n"); 417 break; 418 } 419 RIP(env) += decode->len; 420 } 421 422 static void exec_in(struct CPUX86State *env, struct x86_decode *decode) 423 { 424 target_ulong val = 0; 425 switch (decode->opcode[0]) { 426 case 0xe4: 427 hvf_handle_io(env_cpu(env), decode->op[0].val, &AL(env), 0, 1, 1); 428 break; 429 case 0xe5: 430 hvf_handle_io(env_cpu(env), decode->op[0].val, &val, 0, 431 decode->operand_size, 1); 432 if (decode->operand_size == 2) { 433 AX(env) = val; 434 } else { 435 RAX(env) = (uint32_t)val; 436 } 437 break; 438 case 0xec: 439 hvf_handle_io(env_cpu(env), DX(env), &AL(env), 0, 1, 1); 440 break; 441 case 0xed: 442 hvf_handle_io(env_cpu(env), DX(env), &val, 0, decode->operand_size, 1); 443 if (decode->operand_size == 2) { 444 AX(env) = val; 445 } else { 446 RAX(env) = (uint32_t)val; 447 } 448 449 break; 450 default: 451 VM_PANIC("Bad in opcode\n"); 452 break; 453 } 454 455 RIP(env) += decode->len; 456 } 457 458 static inline void string_increment_reg(struct CPUX86State *env, int reg, 459 struct x86_decode *decode) 460 { 461 target_ulong val = read_reg(env, reg, decode->addressing_size); 462 if (env->hvf_emul->rflags.df) { 463 val -= decode->operand_size; 464 } else { 465 val += decode->operand_size; 466 } 467 write_reg(env, reg, val, decode->addressing_size); 468 } 469 470 static inline void string_rep(struct CPUX86State *env, struct x86_decode *decode, 471 void (*func)(struct CPUX86State *env, 472 struct x86_decode *ins), int rep) 473 { 474 target_ulong rcx = read_reg(env, R_ECX, decode->addressing_size); 475 while (rcx--) { 476 func(env, decode); 477 write_reg(env, R_ECX, rcx, decode->addressing_size); 478 if ((PREFIX_REP == rep) && !get_ZF(env)) { 479 break; 480 } 481 if ((PREFIX_REPN == rep) && get_ZF(env)) { 482 break; 483 } 484 } 485 } 486 487 static void exec_ins_single(struct CPUX86State *env, struct x86_decode *decode) 488 { 489 target_ulong addr = linear_addr_size(env_cpu(env), RDI(env), 490 decode->addressing_size, R_ES); 491 492 hvf_handle_io(env_cpu(env), DX(env), env->hvf_emul->mmio_buf, 0, 493 decode->operand_size, 1); 494 vmx_write_mem(env_cpu(env), addr, env->hvf_emul->mmio_buf, 495 decode->operand_size); 496 497 string_increment_reg(env, R_EDI, decode); 498 } 499 500 static void exec_ins(struct CPUX86State *env, struct x86_decode *decode) 501 { 502 if (decode->rep) { 503 string_rep(env, decode, exec_ins_single, 0); 504 } else { 505 exec_ins_single(env, decode); 506 } 507 508 RIP(env) += decode->len; 509 } 510 511 static void exec_outs_single(struct CPUX86State *env, struct x86_decode *decode) 512 { 513 target_ulong addr = decode_linear_addr(env, decode, RSI(env), R_DS); 514 515 vmx_read_mem(env_cpu(env), env->hvf_emul->mmio_buf, addr, 516 decode->operand_size); 517 hvf_handle_io(env_cpu(env), DX(env), env->hvf_emul->mmio_buf, 1, 518 decode->operand_size, 1); 519 520 string_increment_reg(env, R_ESI, decode); 521 } 522 523 static void exec_outs(struct CPUX86State *env, struct x86_decode *decode) 524 { 525 if (decode->rep) { 526 string_rep(env, decode, exec_outs_single, 0); 527 } else { 528 exec_outs_single(env, decode); 529 } 530 531 RIP(env) += decode->len; 532 } 533 534 static void exec_movs_single(struct CPUX86State *env, struct x86_decode *decode) 535 { 536 target_ulong src_addr; 537 target_ulong dst_addr; 538 target_ulong val; 539 540 src_addr = decode_linear_addr(env, decode, RSI(env), R_DS); 541 dst_addr = linear_addr_size(env_cpu(env), RDI(env), 542 decode->addressing_size, R_ES); 543 544 val = read_val_ext(env, src_addr, decode->operand_size); 545 write_val_ext(env, dst_addr, val, decode->operand_size); 546 547 string_increment_reg(env, R_ESI, decode); 548 string_increment_reg(env, R_EDI, decode); 549 } 550 551 static void exec_movs(struct CPUX86State *env, struct x86_decode *decode) 552 { 553 if (decode->rep) { 554 string_rep(env, decode, exec_movs_single, 0); 555 } else { 556 exec_movs_single(env, decode); 557 } 558 559 RIP(env) += decode->len; 560 } 561 562 static void exec_cmps_single(struct CPUX86State *env, struct x86_decode *decode) 563 { 564 target_ulong src_addr; 565 target_ulong dst_addr; 566 567 src_addr = decode_linear_addr(env, decode, RSI(env), R_DS); 568 dst_addr = linear_addr_size(env_cpu(env), RDI(env), 569 decode->addressing_size, R_ES); 570 571 decode->op[0].type = X86_VAR_IMMEDIATE; 572 decode->op[0].val = read_val_ext(env, src_addr, decode->operand_size); 573 decode->op[1].type = X86_VAR_IMMEDIATE; 574 decode->op[1].val = read_val_ext(env, dst_addr, decode->operand_size); 575 576 EXEC_2OP_FLAGS_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false); 577 578 string_increment_reg(env, R_ESI, decode); 579 string_increment_reg(env, R_EDI, decode); 580 } 581 582 static void exec_cmps(struct CPUX86State *env, struct x86_decode *decode) 583 { 584 if (decode->rep) { 585 string_rep(env, decode, exec_cmps_single, decode->rep); 586 } else { 587 exec_cmps_single(env, decode); 588 } 589 RIP(env) += decode->len; 590 } 591 592 593 static void exec_stos_single(struct CPUX86State *env, struct x86_decode *decode) 594 { 595 target_ulong addr; 596 target_ulong val; 597 598 addr = linear_addr_size(env_cpu(env), RDI(env), 599 decode->addressing_size, R_ES); 600 val = read_reg(env, R_EAX, decode->operand_size); 601 vmx_write_mem(env_cpu(env), addr, &val, decode->operand_size); 602 603 string_increment_reg(env, R_EDI, decode); 604 } 605 606 607 static void exec_stos(struct CPUX86State *env, struct x86_decode *decode) 608 { 609 if (decode->rep) { 610 string_rep(env, decode, exec_stos_single, 0); 611 } else { 612 exec_stos_single(env, decode); 613 } 614 615 RIP(env) += decode->len; 616 } 617 618 static void exec_scas_single(struct CPUX86State *env, struct x86_decode *decode) 619 { 620 target_ulong addr; 621 622 addr = linear_addr_size(env_cpu(env), RDI(env), 623 decode->addressing_size, R_ES); 624 decode->op[1].type = X86_VAR_IMMEDIATE; 625 vmx_read_mem(env_cpu(env), &decode->op[1].val, addr, decode->operand_size); 626 627 EXEC_2OP_FLAGS_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false); 628 string_increment_reg(env, R_EDI, decode); 629 } 630 631 static void exec_scas(struct CPUX86State *env, struct x86_decode *decode) 632 { 633 decode->op[0].type = X86_VAR_REG; 634 decode->op[0].reg = R_EAX; 635 if (decode->rep) { 636 string_rep(env, decode, exec_scas_single, decode->rep); 637 } else { 638 exec_scas_single(env, decode); 639 } 640 641 RIP(env) += decode->len; 642 } 643 644 static void exec_lods_single(struct CPUX86State *env, struct x86_decode *decode) 645 { 646 target_ulong addr; 647 target_ulong val = 0; 648 649 addr = decode_linear_addr(env, decode, RSI(env), R_DS); 650 vmx_read_mem(env_cpu(env), &val, addr, decode->operand_size); 651 write_reg(env, R_EAX, val, decode->operand_size); 652 653 string_increment_reg(env, R_ESI, decode); 654 } 655 656 static void exec_lods(struct CPUX86State *env, struct x86_decode *decode) 657 { 658 if (decode->rep) { 659 string_rep(env, decode, exec_lods_single, 0); 660 } else { 661 exec_lods_single(env, decode); 662 } 663 664 RIP(env) += decode->len; 665 } 666 667 void simulate_rdmsr(struct CPUState *cpu) 668 { 669 X86CPU *x86_cpu = X86_CPU(cpu); 670 CPUX86State *env = &x86_cpu->env; 671 uint32_t msr = ECX(env); 672 uint64_t val = 0; 673 674 switch (msr) { 675 case MSR_IA32_TSC: 676 val = rdtscp() + rvmcs(cpu->hvf_fd, VMCS_TSC_OFFSET); 677 break; 678 case MSR_IA32_APICBASE: 679 val = cpu_get_apic_base(X86_CPU(cpu)->apic_state); 680 break; 681 case MSR_IA32_UCODE_REV: 682 val = x86_cpu->ucode_rev; 683 break; 684 case MSR_EFER: 685 val = rvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER); 686 break; 687 case MSR_FSBASE: 688 val = rvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE); 689 break; 690 case MSR_GSBASE: 691 val = rvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE); 692 break; 693 case MSR_KERNELGSBASE: 694 val = rvmcs(cpu->hvf_fd, VMCS_HOST_FS_BASE); 695 break; 696 case MSR_STAR: 697 abort(); 698 break; 699 case MSR_LSTAR: 700 abort(); 701 break; 702 case MSR_CSTAR: 703 abort(); 704 break; 705 case MSR_IA32_MISC_ENABLE: 706 val = env->msr_ia32_misc_enable; 707 break; 708 case MSR_MTRRphysBase(0): 709 case MSR_MTRRphysBase(1): 710 case MSR_MTRRphysBase(2): 711 case MSR_MTRRphysBase(3): 712 case MSR_MTRRphysBase(4): 713 case MSR_MTRRphysBase(5): 714 case MSR_MTRRphysBase(6): 715 case MSR_MTRRphysBase(7): 716 val = env->mtrr_var[(ECX(env) - MSR_MTRRphysBase(0)) / 2].base; 717 break; 718 case MSR_MTRRphysMask(0): 719 case MSR_MTRRphysMask(1): 720 case MSR_MTRRphysMask(2): 721 case MSR_MTRRphysMask(3): 722 case MSR_MTRRphysMask(4): 723 case MSR_MTRRphysMask(5): 724 case MSR_MTRRphysMask(6): 725 case MSR_MTRRphysMask(7): 726 val = env->mtrr_var[(ECX(env) - MSR_MTRRphysMask(0)) / 2].mask; 727 break; 728 case MSR_MTRRfix64K_00000: 729 val = env->mtrr_fixed[0]; 730 break; 731 case MSR_MTRRfix16K_80000: 732 case MSR_MTRRfix16K_A0000: 733 val = env->mtrr_fixed[ECX(env) - MSR_MTRRfix16K_80000 + 1]; 734 break; 735 case MSR_MTRRfix4K_C0000: 736 case MSR_MTRRfix4K_C8000: 737 case MSR_MTRRfix4K_D0000: 738 case MSR_MTRRfix4K_D8000: 739 case MSR_MTRRfix4K_E0000: 740 case MSR_MTRRfix4K_E8000: 741 case MSR_MTRRfix4K_F0000: 742 case MSR_MTRRfix4K_F8000: 743 val = env->mtrr_fixed[ECX(env) - MSR_MTRRfix4K_C0000 + 3]; 744 break; 745 case MSR_MTRRdefType: 746 val = env->mtrr_deftype; 747 break; 748 default: 749 /* fprintf(stderr, "%s: unknown msr 0x%x\n", __func__, msr); */ 750 val = 0; 751 break; 752 } 753 754 RAX(env) = (uint32_t)val; 755 RDX(env) = (uint32_t)(val >> 32); 756 } 757 758 static void exec_rdmsr(struct CPUX86State *env, struct x86_decode *decode) 759 { 760 simulate_rdmsr(env_cpu(env)); 761 RIP(env) += decode->len; 762 } 763 764 void simulate_wrmsr(struct CPUState *cpu) 765 { 766 X86CPU *x86_cpu = X86_CPU(cpu); 767 CPUX86State *env = &x86_cpu->env; 768 uint32_t msr = ECX(env); 769 uint64_t data = ((uint64_t)EDX(env) << 32) | EAX(env); 770 771 switch (msr) { 772 case MSR_IA32_TSC: 773 break; 774 case MSR_IA32_APICBASE: 775 cpu_set_apic_base(X86_CPU(cpu)->apic_state, data); 776 break; 777 case MSR_FSBASE: 778 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE, data); 779 break; 780 case MSR_GSBASE: 781 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE, data); 782 break; 783 case MSR_KERNELGSBASE: 784 wvmcs(cpu->hvf_fd, VMCS_HOST_FS_BASE, data); 785 break; 786 case MSR_STAR: 787 abort(); 788 break; 789 case MSR_LSTAR: 790 abort(); 791 break; 792 case MSR_CSTAR: 793 abort(); 794 break; 795 case MSR_EFER: 796 /*printf("new efer %llx\n", EFER(cpu));*/ 797 wvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER, data); 798 if (data & MSR_EFER_NXE) { 799 hv_vcpu_invalidate_tlb(cpu->hvf_fd); 800 } 801 break; 802 case MSR_MTRRphysBase(0): 803 case MSR_MTRRphysBase(1): 804 case MSR_MTRRphysBase(2): 805 case MSR_MTRRphysBase(3): 806 case MSR_MTRRphysBase(4): 807 case MSR_MTRRphysBase(5): 808 case MSR_MTRRphysBase(6): 809 case MSR_MTRRphysBase(7): 810 env->mtrr_var[(ECX(env) - MSR_MTRRphysBase(0)) / 2].base = data; 811 break; 812 case MSR_MTRRphysMask(0): 813 case MSR_MTRRphysMask(1): 814 case MSR_MTRRphysMask(2): 815 case MSR_MTRRphysMask(3): 816 case MSR_MTRRphysMask(4): 817 case MSR_MTRRphysMask(5): 818 case MSR_MTRRphysMask(6): 819 case MSR_MTRRphysMask(7): 820 env->mtrr_var[(ECX(env) - MSR_MTRRphysMask(0)) / 2].mask = data; 821 break; 822 case MSR_MTRRfix64K_00000: 823 env->mtrr_fixed[ECX(env) - MSR_MTRRfix64K_00000] = data; 824 break; 825 case MSR_MTRRfix16K_80000: 826 case MSR_MTRRfix16K_A0000: 827 env->mtrr_fixed[ECX(env) - MSR_MTRRfix16K_80000 + 1] = data; 828 break; 829 case MSR_MTRRfix4K_C0000: 830 case MSR_MTRRfix4K_C8000: 831 case MSR_MTRRfix4K_D0000: 832 case MSR_MTRRfix4K_D8000: 833 case MSR_MTRRfix4K_E0000: 834 case MSR_MTRRfix4K_E8000: 835 case MSR_MTRRfix4K_F0000: 836 case MSR_MTRRfix4K_F8000: 837 env->mtrr_fixed[ECX(env) - MSR_MTRRfix4K_C0000 + 3] = data; 838 break; 839 case MSR_MTRRdefType: 840 env->mtrr_deftype = data; 841 break; 842 default: 843 break; 844 } 845 846 /* Related to support known hypervisor interface */ 847 /* if (g_hypervisor_iface) 848 g_hypervisor_iface->wrmsr_handler(cpu, msr, data); 849 850 printf("write msr %llx\n", RCX(cpu));*/ 851 } 852 853 static void exec_wrmsr(struct CPUX86State *env, struct x86_decode *decode) 854 { 855 simulate_wrmsr(env_cpu(env)); 856 RIP(env) += decode->len; 857 } 858 859 /* 860 * flag: 861 * 0 - bt, 1 - btc, 2 - bts, 3 - btr 862 */ 863 static void do_bt(struct CPUX86State *env, struct x86_decode *decode, int flag) 864 { 865 int32_t displacement; 866 uint8_t index; 867 bool cf; 868 int mask = (4 == decode->operand_size) ? 0x1f : 0xf; 869 870 VM_PANIC_ON(decode->rex.rex); 871 872 fetch_operands(env, decode, 2, false, true, false); 873 index = decode->op[1].val & mask; 874 875 if (decode->op[0].type != X86_VAR_REG) { 876 if (4 == decode->operand_size) { 877 displacement = ((int32_t) (decode->op[1].val & 0xffffffe0)) / 32; 878 decode->op[0].ptr += 4 * displacement; 879 } else if (2 == decode->operand_size) { 880 displacement = ((int16_t) (decode->op[1].val & 0xfff0)) / 16; 881 decode->op[0].ptr += 2 * displacement; 882 } else { 883 VM_PANIC("bt 64bit\n"); 884 } 885 } 886 decode->op[0].val = read_val_ext(env, decode->op[0].ptr, 887 decode->operand_size); 888 cf = (decode->op[0].val >> index) & 0x01; 889 890 switch (flag) { 891 case 0: 892 set_CF(env, cf); 893 return; 894 case 1: 895 decode->op[0].val ^= (1u << index); 896 break; 897 case 2: 898 decode->op[0].val |= (1u << index); 899 break; 900 case 3: 901 decode->op[0].val &= ~(1u << index); 902 break; 903 } 904 write_val_ext(env, decode->op[0].ptr, decode->op[0].val, 905 decode->operand_size); 906 set_CF(env, cf); 907 } 908 909 static void exec_bt(struct CPUX86State *env, struct x86_decode *decode) 910 { 911 do_bt(env, decode, 0); 912 RIP(env) += decode->len; 913 } 914 915 static void exec_btc(struct CPUX86State *env, struct x86_decode *decode) 916 { 917 do_bt(env, decode, 1); 918 RIP(env) += decode->len; 919 } 920 921 static void exec_btr(struct CPUX86State *env, struct x86_decode *decode) 922 { 923 do_bt(env, decode, 3); 924 RIP(env) += decode->len; 925 } 926 927 static void exec_bts(struct CPUX86State *env, struct x86_decode *decode) 928 { 929 do_bt(env, decode, 2); 930 RIP(env) += decode->len; 931 } 932 933 void exec_shl(struct CPUX86State *env, struct x86_decode *decode) 934 { 935 uint8_t count; 936 int of = 0, cf = 0; 937 938 fetch_operands(env, decode, 2, true, true, false); 939 940 count = decode->op[1].val; 941 count &= 0x1f; /* count is masked to 5 bits*/ 942 if (!count) { 943 goto exit; 944 } 945 946 switch (decode->operand_size) { 947 case 1: 948 { 949 uint8_t res = 0; 950 if (count <= 8) { 951 res = (decode->op[0].val << count); 952 cf = (decode->op[0].val >> (8 - count)) & 0x1; 953 of = cf ^ (res >> 7); 954 } 955 956 write_val_ext(env, decode->op[0].ptr, res, 1); 957 SET_FLAGS_OSZAPC_LOGIC8(env, 0, 0, res); 958 SET_FLAGS_OxxxxC(env, of, cf); 959 break; 960 } 961 case 2: 962 { 963 uint16_t res = 0; 964 965 /* from bochs */ 966 if (count <= 16) { 967 res = (decode->op[0].val << count); 968 cf = (decode->op[0].val >> (16 - count)) & 0x1; 969 of = cf ^ (res >> 15); /* of = cf ^ result15 */ 970 } 971 972 write_val_ext(env, decode->op[0].ptr, res, 2); 973 SET_FLAGS_OSZAPC_LOGIC16(env, 0, 0, res); 974 SET_FLAGS_OxxxxC(env, of, cf); 975 break; 976 } 977 case 4: 978 { 979 uint32_t res = decode->op[0].val << count; 980 981 write_val_ext(env, decode->op[0].ptr, res, 4); 982 SET_FLAGS_OSZAPC_LOGIC32(env, 0, 0, res); 983 cf = (decode->op[0].val >> (32 - count)) & 0x1; 984 of = cf ^ (res >> 31); /* of = cf ^ result31 */ 985 SET_FLAGS_OxxxxC(env, of, cf); 986 break; 987 } 988 default: 989 abort(); 990 } 991 992 exit: 993 /* lflags_to_rflags(env); */ 994 RIP(env) += decode->len; 995 } 996 997 void exec_movsx(CPUX86State *env, struct x86_decode *decode) 998 { 999 int src_op_size; 1000 int op_size = decode->operand_size; 1001 1002 fetch_operands(env, decode, 2, false, false, false); 1003 1004 if (0xbe == decode->opcode[1]) { 1005 src_op_size = 1; 1006 } else { 1007 src_op_size = 2; 1008 } 1009 1010 decode->operand_size = src_op_size; 1011 calc_modrm_operand(env, decode, &decode->op[1]); 1012 decode->op[1].val = sign(read_val_ext(env, decode->op[1].ptr, src_op_size), 1013 src_op_size); 1014 1015 write_val_ext(env, decode->op[0].ptr, decode->op[1].val, op_size); 1016 1017 RIP(env) += decode->len; 1018 } 1019 1020 void exec_ror(struct CPUX86State *env, struct x86_decode *decode) 1021 { 1022 uint8_t count; 1023 1024 fetch_operands(env, decode, 2, true, true, false); 1025 count = decode->op[1].val; 1026 1027 switch (decode->operand_size) { 1028 case 1: 1029 { 1030 uint32_t bit6, bit7; 1031 uint8_t res; 1032 1033 if ((count & 0x07) == 0) { 1034 if (count & 0x18) { 1035 bit6 = ((uint8_t)decode->op[0].val >> 6) & 1; 1036 bit7 = ((uint8_t)decode->op[0].val >> 7) & 1; 1037 SET_FLAGS_OxxxxC(env, bit6 ^ bit7, bit7); 1038 } 1039 } else { 1040 count &= 0x7; /* use only bottom 3 bits */ 1041 res = ((uint8_t)decode->op[0].val >> count) | 1042 ((uint8_t)decode->op[0].val << (8 - count)); 1043 write_val_ext(env, decode->op[0].ptr, res, 1); 1044 bit6 = (res >> 6) & 1; 1045 bit7 = (res >> 7) & 1; 1046 /* set eflags: ROR count affects the following flags: C, O */ 1047 SET_FLAGS_OxxxxC(env, bit6 ^ bit7, bit7); 1048 } 1049 break; 1050 } 1051 case 2: 1052 { 1053 uint32_t bit14, bit15; 1054 uint16_t res; 1055 1056 if ((count & 0x0f) == 0) { 1057 if (count & 0x10) { 1058 bit14 = ((uint16_t)decode->op[0].val >> 14) & 1; 1059 bit15 = ((uint16_t)decode->op[0].val >> 15) & 1; 1060 /* of = result14 ^ result15 */ 1061 SET_FLAGS_OxxxxC(env, bit14 ^ bit15, bit15); 1062 } 1063 } else { 1064 count &= 0x0f; /* use only 4 LSB's */ 1065 res = ((uint16_t)decode->op[0].val >> count) | 1066 ((uint16_t)decode->op[0].val << (16 - count)); 1067 write_val_ext(env, decode->op[0].ptr, res, 2); 1068 1069 bit14 = (res >> 14) & 1; 1070 bit15 = (res >> 15) & 1; 1071 /* of = result14 ^ result15 */ 1072 SET_FLAGS_OxxxxC(env, bit14 ^ bit15, bit15); 1073 } 1074 break; 1075 } 1076 case 4: 1077 { 1078 uint32_t bit31, bit30; 1079 uint32_t res; 1080 1081 count &= 0x1f; 1082 if (count) { 1083 res = ((uint32_t)decode->op[0].val >> count) | 1084 ((uint32_t)decode->op[0].val << (32 - count)); 1085 write_val_ext(env, decode->op[0].ptr, res, 4); 1086 1087 bit31 = (res >> 31) & 1; 1088 bit30 = (res >> 30) & 1; 1089 /* of = result30 ^ result31 */ 1090 SET_FLAGS_OxxxxC(env, bit30 ^ bit31, bit31); 1091 } 1092 break; 1093 } 1094 } 1095 RIP(env) += decode->len; 1096 } 1097 1098 void exec_rol(struct CPUX86State *env, struct x86_decode *decode) 1099 { 1100 uint8_t count; 1101 1102 fetch_operands(env, decode, 2, true, true, false); 1103 count = decode->op[1].val; 1104 1105 switch (decode->operand_size) { 1106 case 1: 1107 { 1108 uint32_t bit0, bit7; 1109 uint8_t res; 1110 1111 if ((count & 0x07) == 0) { 1112 if (count & 0x18) { 1113 bit0 = ((uint8_t)decode->op[0].val & 1); 1114 bit7 = ((uint8_t)decode->op[0].val >> 7); 1115 SET_FLAGS_OxxxxC(env, bit0 ^ bit7, bit0); 1116 } 1117 } else { 1118 count &= 0x7; /* use only lowest 3 bits */ 1119 res = ((uint8_t)decode->op[0].val << count) | 1120 ((uint8_t)decode->op[0].val >> (8 - count)); 1121 1122 write_val_ext(env, decode->op[0].ptr, res, 1); 1123 /* set eflags: 1124 * ROL count affects the following flags: C, O 1125 */ 1126 bit0 = (res & 1); 1127 bit7 = (res >> 7); 1128 SET_FLAGS_OxxxxC(env, bit0 ^ bit7, bit0); 1129 } 1130 break; 1131 } 1132 case 2: 1133 { 1134 uint32_t bit0, bit15; 1135 uint16_t res; 1136 1137 if ((count & 0x0f) == 0) { 1138 if (count & 0x10) { 1139 bit0 = ((uint16_t)decode->op[0].val & 0x1); 1140 bit15 = ((uint16_t)decode->op[0].val >> 15); 1141 /* of = cf ^ result15 */ 1142 SET_FLAGS_OxxxxC(env, bit0 ^ bit15, bit0); 1143 } 1144 } else { 1145 count &= 0x0f; /* only use bottom 4 bits */ 1146 res = ((uint16_t)decode->op[0].val << count) | 1147 ((uint16_t)decode->op[0].val >> (16 - count)); 1148 1149 write_val_ext(env, decode->op[0].ptr, res, 2); 1150 bit0 = (res & 0x1); 1151 bit15 = (res >> 15); 1152 /* of = cf ^ result15 */ 1153 SET_FLAGS_OxxxxC(env, bit0 ^ bit15, bit0); 1154 } 1155 break; 1156 } 1157 case 4: 1158 { 1159 uint32_t bit0, bit31; 1160 uint32_t res; 1161 1162 count &= 0x1f; 1163 if (count) { 1164 res = ((uint32_t)decode->op[0].val << count) | 1165 ((uint32_t)decode->op[0].val >> (32 - count)); 1166 1167 write_val_ext(env, decode->op[0].ptr, res, 4); 1168 bit0 = (res & 0x1); 1169 bit31 = (res >> 31); 1170 /* of = cf ^ result31 */ 1171 SET_FLAGS_OxxxxC(env, bit0 ^ bit31, bit0); 1172 } 1173 break; 1174 } 1175 } 1176 RIP(env) += decode->len; 1177 } 1178 1179 1180 void exec_rcl(struct CPUX86State *env, struct x86_decode *decode) 1181 { 1182 uint8_t count; 1183 int of = 0, cf = 0; 1184 1185 fetch_operands(env, decode, 2, true, true, false); 1186 count = decode->op[1].val & 0x1f; 1187 1188 switch (decode->operand_size) { 1189 case 1: 1190 { 1191 uint8_t op1_8 = decode->op[0].val; 1192 uint8_t res; 1193 count %= 9; 1194 if (!count) { 1195 break; 1196 } 1197 1198 if (1 == count) { 1199 res = (op1_8 << 1) | get_CF(env); 1200 } else { 1201 res = (op1_8 << count) | (get_CF(env) << (count - 1)) | 1202 (op1_8 >> (9 - count)); 1203 } 1204 1205 write_val_ext(env, decode->op[0].ptr, res, 1); 1206 1207 cf = (op1_8 >> (8 - count)) & 0x01; 1208 of = cf ^ (res >> 7); /* of = cf ^ result7 */ 1209 SET_FLAGS_OxxxxC(env, of, cf); 1210 break; 1211 } 1212 case 2: 1213 { 1214 uint16_t res; 1215 uint16_t op1_16 = decode->op[0].val; 1216 1217 count %= 17; 1218 if (!count) { 1219 break; 1220 } 1221 1222 if (1 == count) { 1223 res = (op1_16 << 1) | get_CF(env); 1224 } else if (count == 16) { 1225 res = (get_CF(env) << 15) | (op1_16 >> 1); 1226 } else { /* 2..15 */ 1227 res = (op1_16 << count) | (get_CF(env) << (count - 1)) | 1228 (op1_16 >> (17 - count)); 1229 } 1230 1231 write_val_ext(env, decode->op[0].ptr, res, 2); 1232 1233 cf = (op1_16 >> (16 - count)) & 0x1; 1234 of = cf ^ (res >> 15); /* of = cf ^ result15 */ 1235 SET_FLAGS_OxxxxC(env, of, cf); 1236 break; 1237 } 1238 case 4: 1239 { 1240 uint32_t res; 1241 uint32_t op1_32 = decode->op[0].val; 1242 1243 if (!count) { 1244 break; 1245 } 1246 1247 if (1 == count) { 1248 res = (op1_32 << 1) | get_CF(env); 1249 } else { 1250 res = (op1_32 << count) | (get_CF(env) << (count - 1)) | 1251 (op1_32 >> (33 - count)); 1252 } 1253 1254 write_val_ext(env, decode->op[0].ptr, res, 4); 1255 1256 cf = (op1_32 >> (32 - count)) & 0x1; 1257 of = cf ^ (res >> 31); /* of = cf ^ result31 */ 1258 SET_FLAGS_OxxxxC(env, of, cf); 1259 break; 1260 } 1261 } 1262 RIP(env) += decode->len; 1263 } 1264 1265 void exec_rcr(struct CPUX86State *env, struct x86_decode *decode) 1266 { 1267 uint8_t count; 1268 int of = 0, cf = 0; 1269 1270 fetch_operands(env, decode, 2, true, true, false); 1271 count = decode->op[1].val & 0x1f; 1272 1273 switch (decode->operand_size) { 1274 case 1: 1275 { 1276 uint8_t op1_8 = decode->op[0].val; 1277 uint8_t res; 1278 1279 count %= 9; 1280 if (!count) { 1281 break; 1282 } 1283 res = (op1_8 >> count) | (get_CF(env) << (8 - count)) | 1284 (op1_8 << (9 - count)); 1285 1286 write_val_ext(env, decode->op[0].ptr, res, 1); 1287 1288 cf = (op1_8 >> (count - 1)) & 0x1; 1289 of = (((res << 1) ^ res) >> 7) & 0x1; /* of = result6 ^ result7 */ 1290 SET_FLAGS_OxxxxC(env, of, cf); 1291 break; 1292 } 1293 case 2: 1294 { 1295 uint16_t op1_16 = decode->op[0].val; 1296 uint16_t res; 1297 1298 count %= 17; 1299 if (!count) { 1300 break; 1301 } 1302 res = (op1_16 >> count) | (get_CF(env) << (16 - count)) | 1303 (op1_16 << (17 - count)); 1304 1305 write_val_ext(env, decode->op[0].ptr, res, 2); 1306 1307 cf = (op1_16 >> (count - 1)) & 0x1; 1308 of = ((uint16_t)((res << 1) ^ res) >> 15) & 0x1; /* of = result15 ^ 1309 result14 */ 1310 SET_FLAGS_OxxxxC(env, of, cf); 1311 break; 1312 } 1313 case 4: 1314 { 1315 uint32_t res; 1316 uint32_t op1_32 = decode->op[0].val; 1317 1318 if (!count) { 1319 break; 1320 } 1321 1322 if (1 == count) { 1323 res = (op1_32 >> 1) | (get_CF(env) << 31); 1324 } else { 1325 res = (op1_32 >> count) | (get_CF(env) << (32 - count)) | 1326 (op1_32 << (33 - count)); 1327 } 1328 1329 write_val_ext(env, decode->op[0].ptr, res, 4); 1330 1331 cf = (op1_32 >> (count - 1)) & 0x1; 1332 of = ((res << 1) ^ res) >> 31; /* of = result30 ^ result31 */ 1333 SET_FLAGS_OxxxxC(env, of, cf); 1334 break; 1335 } 1336 } 1337 RIP(env) += decode->len; 1338 } 1339 1340 static void exec_xchg(struct CPUX86State *env, struct x86_decode *decode) 1341 { 1342 fetch_operands(env, decode, 2, true, true, false); 1343 1344 write_val_ext(env, decode->op[0].ptr, decode->op[1].val, 1345 decode->operand_size); 1346 write_val_ext(env, decode->op[1].ptr, decode->op[0].val, 1347 decode->operand_size); 1348 1349 RIP(env) += decode->len; 1350 } 1351 1352 static void exec_xadd(struct CPUX86State *env, struct x86_decode *decode) 1353 { 1354 EXEC_2OP_FLAGS_CMD(env, decode, +, SET_FLAGS_OSZAPC_ADD, true); 1355 write_val_ext(env, decode->op[1].ptr, decode->op[0].val, 1356 decode->operand_size); 1357 1358 RIP(env) += decode->len; 1359 } 1360 1361 static struct cmd_handler { 1362 enum x86_decode_cmd cmd; 1363 void (*handler)(struct CPUX86State *env, struct x86_decode *ins); 1364 } handlers[] = { 1365 {X86_DECODE_CMD_INVL, NULL,}, 1366 {X86_DECODE_CMD_MOV, exec_mov}, 1367 {X86_DECODE_CMD_ADD, exec_add}, 1368 {X86_DECODE_CMD_OR, exec_or}, 1369 {X86_DECODE_CMD_ADC, exec_adc}, 1370 {X86_DECODE_CMD_SBB, exec_sbb}, 1371 {X86_DECODE_CMD_AND, exec_and}, 1372 {X86_DECODE_CMD_SUB, exec_sub}, 1373 {X86_DECODE_CMD_NEG, exec_neg}, 1374 {X86_DECODE_CMD_XOR, exec_xor}, 1375 {X86_DECODE_CMD_CMP, exec_cmp}, 1376 {X86_DECODE_CMD_INC, exec_inc}, 1377 {X86_DECODE_CMD_DEC, exec_dec}, 1378 {X86_DECODE_CMD_TST, exec_tst}, 1379 {X86_DECODE_CMD_NOT, exec_not}, 1380 {X86_DECODE_CMD_MOVZX, exec_movzx}, 1381 {X86_DECODE_CMD_OUT, exec_out}, 1382 {X86_DECODE_CMD_IN, exec_in}, 1383 {X86_DECODE_CMD_INS, exec_ins}, 1384 {X86_DECODE_CMD_OUTS, exec_outs}, 1385 {X86_DECODE_CMD_RDMSR, exec_rdmsr}, 1386 {X86_DECODE_CMD_WRMSR, exec_wrmsr}, 1387 {X86_DECODE_CMD_BT, exec_bt}, 1388 {X86_DECODE_CMD_BTR, exec_btr}, 1389 {X86_DECODE_CMD_BTC, exec_btc}, 1390 {X86_DECODE_CMD_BTS, exec_bts}, 1391 {X86_DECODE_CMD_SHL, exec_shl}, 1392 {X86_DECODE_CMD_ROL, exec_rol}, 1393 {X86_DECODE_CMD_ROR, exec_ror}, 1394 {X86_DECODE_CMD_RCR, exec_rcr}, 1395 {X86_DECODE_CMD_RCL, exec_rcl}, 1396 /*{X86_DECODE_CMD_CPUID, exec_cpuid},*/ 1397 {X86_DECODE_CMD_MOVS, exec_movs}, 1398 {X86_DECODE_CMD_CMPS, exec_cmps}, 1399 {X86_DECODE_CMD_STOS, exec_stos}, 1400 {X86_DECODE_CMD_SCAS, exec_scas}, 1401 {X86_DECODE_CMD_LODS, exec_lods}, 1402 {X86_DECODE_CMD_MOVSX, exec_movsx}, 1403 {X86_DECODE_CMD_XCHG, exec_xchg}, 1404 {X86_DECODE_CMD_XADD, exec_xadd}, 1405 }; 1406 1407 static struct cmd_handler _cmd_handler[X86_DECODE_CMD_LAST]; 1408 1409 static void init_cmd_handler() 1410 { 1411 int i; 1412 for (i = 0; i < ARRAY_SIZE(handlers); i++) { 1413 _cmd_handler[handlers[i].cmd] = handlers[i]; 1414 } 1415 } 1416 1417 void load_regs(struct CPUState *cpu) 1418 { 1419 X86CPU *x86_cpu = X86_CPU(cpu); 1420 CPUX86State *env = &x86_cpu->env; 1421 1422 int i = 0; 1423 RRX(env, R_EAX) = rreg(cpu->hvf_fd, HV_X86_RAX); 1424 RRX(env, R_EBX) = rreg(cpu->hvf_fd, HV_X86_RBX); 1425 RRX(env, R_ECX) = rreg(cpu->hvf_fd, HV_X86_RCX); 1426 RRX(env, R_EDX) = rreg(cpu->hvf_fd, HV_X86_RDX); 1427 RRX(env, R_ESI) = rreg(cpu->hvf_fd, HV_X86_RSI); 1428 RRX(env, R_EDI) = rreg(cpu->hvf_fd, HV_X86_RDI); 1429 RRX(env, R_ESP) = rreg(cpu->hvf_fd, HV_X86_RSP); 1430 RRX(env, R_EBP) = rreg(cpu->hvf_fd, HV_X86_RBP); 1431 for (i = 8; i < 16; i++) { 1432 RRX(env, i) = rreg(cpu->hvf_fd, HV_X86_RAX + i); 1433 } 1434 1435 RFLAGS(env) = rreg(cpu->hvf_fd, HV_X86_RFLAGS); 1436 rflags_to_lflags(env); 1437 RIP(env) = rreg(cpu->hvf_fd, HV_X86_RIP); 1438 } 1439 1440 void store_regs(struct CPUState *cpu) 1441 { 1442 X86CPU *x86_cpu = X86_CPU(cpu); 1443 CPUX86State *env = &x86_cpu->env; 1444 1445 int i = 0; 1446 wreg(cpu->hvf_fd, HV_X86_RAX, RAX(env)); 1447 wreg(cpu->hvf_fd, HV_X86_RBX, RBX(env)); 1448 wreg(cpu->hvf_fd, HV_X86_RCX, RCX(env)); 1449 wreg(cpu->hvf_fd, HV_X86_RDX, RDX(env)); 1450 wreg(cpu->hvf_fd, HV_X86_RSI, RSI(env)); 1451 wreg(cpu->hvf_fd, HV_X86_RDI, RDI(env)); 1452 wreg(cpu->hvf_fd, HV_X86_RBP, RBP(env)); 1453 wreg(cpu->hvf_fd, HV_X86_RSP, RSP(env)); 1454 for (i = 8; i < 16; i++) { 1455 wreg(cpu->hvf_fd, HV_X86_RAX + i, RRX(env, i)); 1456 } 1457 1458 lflags_to_rflags(env); 1459 wreg(cpu->hvf_fd, HV_X86_RFLAGS, RFLAGS(env)); 1460 macvm_set_rip(cpu, RIP(env)); 1461 } 1462 1463 bool exec_instruction(struct CPUX86State *env, struct x86_decode *ins) 1464 { 1465 /*if (hvf_vcpu_id(cpu)) 1466 printf("%d, %llx: exec_instruction %s\n", hvf_vcpu_id(cpu), RIP(cpu), 1467 decode_cmd_to_string(ins->cmd));*/ 1468 1469 if (!_cmd_handler[ins->cmd].handler) { 1470 printf("Unimplemented handler (%llx) for %d (%x %x) \n", RIP(env), 1471 ins->cmd, ins->opcode[0], 1472 ins->opcode_len > 1 ? ins->opcode[1] : 0); 1473 RIP(env) += ins->len; 1474 return true; 1475 } 1476 1477 _cmd_handler[ins->cmd].handler(env, ins); 1478 return true; 1479 } 1480 1481 void init_emu() 1482 { 1483 init_cmd_handler(); 1484 } 1485