xref: /openbmc/qemu/target/i386/hvf/x86_emu.c (revision 709395f8)
1 /*
2  * Copyright (C) 2016 Veertu Inc,
3  * Copyright (C) 2017 Google Inc,
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU Lesser General Public
7  * License as published by the Free Software Foundation; either
8  * version 2 of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public
16  * License along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 /////////////////////////////////////////////////////////////////////////
20 //
21 //  Copyright (C) 2001-2012  The Bochs Project
22 //
23 //  This library is free software; you can redistribute it and/or
24 //  modify it under the terms of the GNU Lesser General Public
25 //  License as published by the Free Software Foundation; either
26 //  version 2 of the License, or (at your option) any later version.
27 //
28 //  This library is distributed in the hope that it will be useful,
29 //  but WITHOUT ANY WARRANTY; without even the implied warranty of
30 //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
31 //  Lesser General Public License for more details.
32 //
33 //  You should have received a copy of the GNU Lesser General Public
34 //  License along with this library; if not, write to the Free Software
35 //  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
36 /////////////////////////////////////////////////////////////////////////
37 
38 #include "qemu/osdep.h"
39 #include "panic.h"
40 #include "qemu-common.h"
41 #include "x86_decode.h"
42 #include "x86.h"
43 #include "x86_emu.h"
44 #include "x86_mmu.h"
45 #include "x86_flags.h"
46 #include "vmcs.h"
47 #include "vmx.h"
48 
49 void hvf_handle_io(struct CPUState *cpu, uint16_t port, void *data,
50                    int direction, int size, uint32_t count);
51 
52 #define EXEC_2OP_FLAGS_CMD(env, decode, cmd, FLAGS_FUNC, save_res) \
53 {                                                       \
54     fetch_operands(env, decode, 2, true, true, false);  \
55     switch (decode->operand_size) {                     \
56     case 1:                                         \
57     {                                               \
58         uint8_t v1 = (uint8_t)decode->op[0].val;    \
59         uint8_t v2 = (uint8_t)decode->op[1].val;    \
60         uint8_t diff = v1 cmd v2;                   \
61         if (save_res) {                              \
62             write_val_ext(env, decode->op[0].ptr, diff, 1);  \
63         } \
64         FLAGS_FUNC##8(env, v1, v2, diff);           \
65         break;                                      \
66     }                                               \
67     case 2:                                        \
68     {                                               \
69         uint16_t v1 = (uint16_t)decode->op[0].val;  \
70         uint16_t v2 = (uint16_t)decode->op[1].val;  \
71         uint16_t diff = v1 cmd v2;                  \
72         if (save_res) {                              \
73             write_val_ext(env, decode->op[0].ptr, diff, 2); \
74         } \
75         FLAGS_FUNC##16(env, v1, v2, diff);          \
76         break;                                      \
77     }                                               \
78     case 4:                                        \
79     {                                               \
80         uint32_t v1 = (uint32_t)decode->op[0].val;  \
81         uint32_t v2 = (uint32_t)decode->op[1].val;  \
82         uint32_t diff = v1 cmd v2;                  \
83         if (save_res) {                              \
84             write_val_ext(env, decode->op[0].ptr, diff, 4); \
85         } \
86         FLAGS_FUNC##32(env, v1, v2, diff);          \
87         break;                                      \
88     }                                               \
89     default:                                        \
90         VM_PANIC("bad size\n");                    \
91     }                                                   \
92 }                                                       \
93 
94 target_ulong read_reg(CPUX86State *env, int reg, int size)
95 {
96     switch (size) {
97     case 1:
98         return env->hvf_emul->regs[reg].lx;
99     case 2:
100         return env->hvf_emul->regs[reg].rx;
101     case 4:
102         return env->hvf_emul->regs[reg].erx;
103     case 8:
104         return env->hvf_emul->regs[reg].rrx;
105     default:
106         abort();
107     }
108     return 0;
109 }
110 
111 void write_reg(CPUX86State *env, int reg, target_ulong val, int size)
112 {
113     switch (size) {
114     case 1:
115         env->hvf_emul->regs[reg].lx = val;
116         break;
117     case 2:
118         env->hvf_emul->regs[reg].rx = val;
119         break;
120     case 4:
121         env->hvf_emul->regs[reg].rrx = (uint32_t)val;
122         break;
123     case 8:
124         env->hvf_emul->regs[reg].rrx = val;
125         break;
126     default:
127         abort();
128     }
129 }
130 
131 target_ulong read_val_from_reg(target_ulong reg_ptr, int size)
132 {
133     target_ulong val;
134 
135     switch (size) {
136     case 1:
137         val = *(uint8_t *)reg_ptr;
138         break;
139     case 2:
140         val = *(uint16_t *)reg_ptr;
141         break;
142     case 4:
143         val = *(uint32_t *)reg_ptr;
144         break;
145     case 8:
146         val = *(uint64_t *)reg_ptr;
147         break;
148     default:
149         abort();
150     }
151     return val;
152 }
153 
154 void write_val_to_reg(target_ulong reg_ptr, target_ulong val, int size)
155 {
156     switch (size) {
157     case 1:
158         *(uint8_t *)reg_ptr = val;
159         break;
160     case 2:
161         *(uint16_t *)reg_ptr = val;
162         break;
163     case 4:
164         *(uint64_t *)reg_ptr = (uint32_t)val;
165         break;
166     case 8:
167         *(uint64_t *)reg_ptr = val;
168         break;
169     default:
170         abort();
171     }
172 }
173 
174 static bool is_host_reg(struct CPUX86State *env, target_ulong ptr)
175 {
176     return (ptr - (target_ulong)&env->hvf_emul->regs[0]) < sizeof(env->hvf_emul->regs);
177 }
178 
179 void write_val_ext(struct CPUX86State *env, target_ulong ptr, target_ulong val, int size)
180 {
181     if (is_host_reg(env, ptr)) {
182         write_val_to_reg(ptr, val, size);
183         return;
184     }
185     vmx_write_mem(ENV_GET_CPU(env), ptr, &val, size);
186 }
187 
188 uint8_t *read_mmio(struct CPUX86State *env, target_ulong ptr, int bytes)
189 {
190     vmx_read_mem(ENV_GET_CPU(env), env->hvf_emul->mmio_buf, ptr, bytes);
191     return env->hvf_emul->mmio_buf;
192 }
193 
194 
195 target_ulong read_val_ext(struct CPUX86State *env, target_ulong ptr, int size)
196 {
197     target_ulong val;
198     uint8_t *mmio_ptr;
199 
200     if (is_host_reg(env, ptr)) {
201         return read_val_from_reg(ptr, size);
202     }
203 
204     mmio_ptr = read_mmio(env, ptr, size);
205     switch (size) {
206     case 1:
207         val = *(uint8_t *)mmio_ptr;
208         break;
209     case 2:
210         val = *(uint16_t *)mmio_ptr;
211         break;
212     case 4:
213         val = *(uint32_t *)mmio_ptr;
214         break;
215     case 8:
216         val = *(uint64_t *)mmio_ptr;
217         break;
218     default:
219         VM_PANIC("bad size\n");
220         break;
221     }
222     return val;
223 }
224 
225 static void fetch_operands(struct CPUX86State *env, struct x86_decode *decode,
226                            int n, bool val_op0, bool val_op1, bool val_op2)
227 {
228     int i;
229     bool calc_val[3] = {val_op0, val_op1, val_op2};
230 
231     for (i = 0; i < n; i++) {
232         switch (decode->op[i].type) {
233         case X86_VAR_IMMEDIATE:
234             break;
235         case X86_VAR_REG:
236             VM_PANIC_ON(!decode->op[i].ptr);
237             if (calc_val[i]) {
238                 decode->op[i].val = read_val_from_reg(decode->op[i].ptr,
239                                                       decode->operand_size);
240             }
241             break;
242         case X86_VAR_RM:
243             calc_modrm_operand(env, decode, &decode->op[i]);
244             if (calc_val[i]) {
245                 decode->op[i].val = read_val_ext(env, decode->op[i].ptr,
246                                                  decode->operand_size);
247             }
248             break;
249         case X86_VAR_OFFSET:
250             decode->op[i].ptr = decode_linear_addr(env, decode,
251                                                    decode->op[i].ptr,
252                                                    R_DS);
253             if (calc_val[i]) {
254                 decode->op[i].val = read_val_ext(env, decode->op[i].ptr,
255                                                  decode->operand_size);
256             }
257             break;
258         default:
259             break;
260         }
261     }
262 }
263 
264 static void exec_mov(struct CPUX86State *env, struct x86_decode *decode)
265 {
266     fetch_operands(env, decode, 2, false, true, false);
267     write_val_ext(env, decode->op[0].ptr, decode->op[1].val,
268                   decode->operand_size);
269 
270     RIP(env) += decode->len;
271 }
272 
273 static void exec_add(struct CPUX86State *env, struct x86_decode *decode)
274 {
275     EXEC_2OP_FLAGS_CMD(env, decode, +, SET_FLAGS_OSZAPC_ADD, true);
276     RIP(env) += decode->len;
277 }
278 
279 static void exec_or(struct CPUX86State *env, struct x86_decode *decode)
280 {
281     EXEC_2OP_FLAGS_CMD(env, decode, |, SET_FLAGS_OSZAPC_LOGIC, true);
282     RIP(env) += decode->len;
283 }
284 
285 static void exec_adc(struct CPUX86State *env, struct x86_decode *decode)
286 {
287     EXEC_2OP_FLAGS_CMD(env, decode, +get_CF(env)+, SET_FLAGS_OSZAPC_ADD, true);
288     RIP(env) += decode->len;
289 }
290 
291 static void exec_sbb(struct CPUX86State *env, struct x86_decode *decode)
292 {
293     EXEC_2OP_FLAGS_CMD(env, decode, -get_CF(env)-, SET_FLAGS_OSZAPC_SUB, true);
294     RIP(env) += decode->len;
295 }
296 
297 static void exec_and(struct CPUX86State *env, struct x86_decode *decode)
298 {
299     EXEC_2OP_FLAGS_CMD(env, decode, &, SET_FLAGS_OSZAPC_LOGIC, true);
300     RIP(env) += decode->len;
301 }
302 
303 static void exec_sub(struct CPUX86State *env, struct x86_decode *decode)
304 {
305     EXEC_2OP_FLAGS_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, true);
306     RIP(env) += decode->len;
307 }
308 
309 static void exec_xor(struct CPUX86State *env, struct x86_decode *decode)
310 {
311     EXEC_2OP_FLAGS_CMD(env, decode, ^, SET_FLAGS_OSZAPC_LOGIC, true);
312     RIP(env) += decode->len;
313 }
314 
315 static void exec_neg(struct CPUX86State *env, struct x86_decode *decode)
316 {
317     /*EXEC_2OP_FLAGS_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false);*/
318     int32_t val;
319     fetch_operands(env, decode, 2, true, true, false);
320 
321     val = 0 - sign(decode->op[1].val, decode->operand_size);
322     write_val_ext(env, decode->op[1].ptr, val, decode->operand_size);
323 
324     if (4 == decode->operand_size) {
325         SET_FLAGS_OSZAPC_SUB32(env, 0, 0 - val, val);
326     } else if (2 == decode->operand_size) {
327         SET_FLAGS_OSZAPC_SUB16(env, 0, 0 - val, val);
328     } else if (1 == decode->operand_size) {
329         SET_FLAGS_OSZAPC_SUB8(env, 0, 0 - val, val);
330     } else {
331         VM_PANIC("bad op size\n");
332     }
333 
334     /*lflags_to_rflags(env);*/
335     RIP(env) += decode->len;
336 }
337 
338 static void exec_cmp(struct CPUX86State *env, struct x86_decode *decode)
339 {
340     EXEC_2OP_FLAGS_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false);
341     RIP(env) += decode->len;
342 }
343 
344 static void exec_inc(struct CPUX86State *env, struct x86_decode *decode)
345 {
346     decode->op[1].type = X86_VAR_IMMEDIATE;
347     decode->op[1].val = 0;
348 
349     EXEC_2OP_FLAGS_CMD(env, decode, +1+, SET_FLAGS_OSZAP_ADD, true);
350 
351     RIP(env) += decode->len;
352 }
353 
354 static void exec_dec(struct CPUX86State *env, struct x86_decode *decode)
355 {
356     decode->op[1].type = X86_VAR_IMMEDIATE;
357     decode->op[1].val = 0;
358 
359     EXEC_2OP_FLAGS_CMD(env, decode, -1-, SET_FLAGS_OSZAP_SUB, true);
360     RIP(env) += decode->len;
361 }
362 
363 static void exec_tst(struct CPUX86State *env, struct x86_decode *decode)
364 {
365     EXEC_2OP_FLAGS_CMD(env, decode, &, SET_FLAGS_OSZAPC_LOGIC, false);
366     RIP(env) += decode->len;
367 }
368 
369 static void exec_not(struct CPUX86State *env, struct x86_decode *decode)
370 {
371     fetch_operands(env, decode, 1, true, false, false);
372 
373     write_val_ext(env, decode->op[0].ptr, ~decode->op[0].val,
374                   decode->operand_size);
375     RIP(env) += decode->len;
376 }
377 
378 void exec_movzx(struct CPUX86State *env, struct x86_decode *decode)
379 {
380     int src_op_size;
381     int op_size = decode->operand_size;
382 
383     fetch_operands(env, decode, 1, false, false, false);
384 
385     if (0xb6 == decode->opcode[1]) {
386         src_op_size = 1;
387     } else {
388         src_op_size = 2;
389     }
390     decode->operand_size = src_op_size;
391     calc_modrm_operand(env, decode, &decode->op[1]);
392     decode->op[1].val = read_val_ext(env, decode->op[1].ptr, src_op_size);
393     write_val_ext(env, decode->op[0].ptr, decode->op[1].val, op_size);
394 
395     RIP(env) += decode->len;
396 }
397 
398 static void exec_out(struct CPUX86State *env, struct x86_decode *decode)
399 {
400     switch (decode->opcode[0]) {
401     case 0xe6:
402         hvf_handle_io(ENV_GET_CPU(env), decode->op[0].val, &AL(env), 1, 1, 1);
403         break;
404     case 0xe7:
405         hvf_handle_io(ENV_GET_CPU(env), decode->op[0].val, &RAX(env), 1,
406                       decode->operand_size, 1);
407         break;
408     case 0xee:
409         hvf_handle_io(ENV_GET_CPU(env), DX(env), &AL(env), 1, 1, 1);
410         break;
411     case 0xef:
412         hvf_handle_io(ENV_GET_CPU(env), DX(env), &RAX(env), 1, decode->operand_size, 1);
413         break;
414     default:
415         VM_PANIC("Bad out opcode\n");
416         break;
417     }
418     RIP(env) += decode->len;
419 }
420 
421 static void exec_in(struct CPUX86State *env, struct x86_decode *decode)
422 {
423     target_ulong val = 0;
424     switch (decode->opcode[0]) {
425     case 0xe4:
426         hvf_handle_io(ENV_GET_CPU(env), decode->op[0].val, &AL(env), 0, 1, 1);
427         break;
428     case 0xe5:
429         hvf_handle_io(ENV_GET_CPU(env), decode->op[0].val, &val, 0, decode->operand_size, 1);
430         if (decode->operand_size == 2) {
431             AX(env) = val;
432         } else {
433             RAX(env) = (uint32_t)val;
434         }
435         break;
436     case 0xec:
437         hvf_handle_io(ENV_GET_CPU(env), DX(env), &AL(env), 0, 1, 1);
438         break;
439     case 0xed:
440         hvf_handle_io(ENV_GET_CPU(env), DX(env), &val, 0, decode->operand_size, 1);
441         if (decode->operand_size == 2) {
442             AX(env) = val;
443         } else {
444             RAX(env) = (uint32_t)val;
445         }
446 
447         break;
448     default:
449         VM_PANIC("Bad in opcode\n");
450         break;
451     }
452 
453     RIP(env) += decode->len;
454 }
455 
456 static inline void string_increment_reg(struct CPUX86State *env, int reg,
457                                         struct x86_decode *decode)
458 {
459     target_ulong val = read_reg(env, reg, decode->addressing_size);
460     if (env->hvf_emul->rflags.df) {
461         val -= decode->operand_size;
462     } else {
463         val += decode->operand_size;
464     }
465     write_reg(env, reg, val, decode->addressing_size);
466 }
467 
468 static inline void string_rep(struct CPUX86State *env, struct x86_decode *decode,
469                               void (*func)(struct CPUX86State *env,
470                                            struct x86_decode *ins), int rep)
471 {
472     target_ulong rcx = read_reg(env, R_ECX, decode->addressing_size);
473     while (rcx--) {
474         func(env, decode);
475         write_reg(env, R_ECX, rcx, decode->addressing_size);
476         if ((PREFIX_REP == rep) && !get_ZF(env)) {
477             break;
478         }
479         if ((PREFIX_REPN == rep) && get_ZF(env)) {
480             break;
481         }
482     }
483 }
484 
485 static void exec_ins_single(struct CPUX86State *env, struct x86_decode *decode)
486 {
487     target_ulong addr = linear_addr_size(ENV_GET_CPU(env), RDI(env), decode->addressing_size,
488                                    R_ES);
489 
490     hvf_handle_io(ENV_GET_CPU(env), DX(env), env->hvf_emul->mmio_buf, 0,
491                   decode->operand_size, 1);
492     vmx_write_mem(ENV_GET_CPU(env), addr, env->hvf_emul->mmio_buf, decode->operand_size);
493 
494     string_increment_reg(env, R_EDI, decode);
495 }
496 
497 static void exec_ins(struct CPUX86State *env, struct x86_decode *decode)
498 {
499     if (decode->rep) {
500         string_rep(env, decode, exec_ins_single, 0);
501     } else {
502         exec_ins_single(env, decode);
503     }
504 
505     RIP(env) += decode->len;
506 }
507 
508 static void exec_outs_single(struct CPUX86State *env, struct x86_decode *decode)
509 {
510     target_ulong addr = decode_linear_addr(env, decode, RSI(env), R_DS);
511 
512     vmx_read_mem(ENV_GET_CPU(env), env->hvf_emul->mmio_buf, addr, decode->operand_size);
513     hvf_handle_io(ENV_GET_CPU(env), DX(env), env->hvf_emul->mmio_buf, 1,
514                   decode->operand_size, 1);
515 
516     string_increment_reg(env, R_ESI, decode);
517 }
518 
519 static void exec_outs(struct CPUX86State *env, struct x86_decode *decode)
520 {
521     if (decode->rep) {
522         string_rep(env, decode, exec_outs_single, 0);
523     } else {
524         exec_outs_single(env, decode);
525     }
526 
527     RIP(env) += decode->len;
528 }
529 
530 static void exec_movs_single(struct CPUX86State *env, struct x86_decode *decode)
531 {
532     target_ulong src_addr;
533     target_ulong dst_addr;
534     target_ulong val;
535 
536     src_addr = decode_linear_addr(env, decode, RSI(env), R_DS);
537     dst_addr = linear_addr_size(ENV_GET_CPU(env), RDI(env), decode->addressing_size,
538                                 R_ES);
539 
540     val = read_val_ext(env, src_addr, decode->operand_size);
541     write_val_ext(env, dst_addr, val, decode->operand_size);
542 
543     string_increment_reg(env, R_ESI, decode);
544     string_increment_reg(env, R_EDI, decode);
545 }
546 
547 static void exec_movs(struct CPUX86State *env, struct x86_decode *decode)
548 {
549     if (decode->rep) {
550         string_rep(env, decode, exec_movs_single, 0);
551     } else {
552         exec_movs_single(env, decode);
553     }
554 
555     RIP(env) += decode->len;
556 }
557 
558 static void exec_cmps_single(struct CPUX86State *env, struct x86_decode *decode)
559 {
560     target_ulong src_addr;
561     target_ulong dst_addr;
562 
563     src_addr = decode_linear_addr(env, decode, RSI(env), R_DS);
564     dst_addr = linear_addr_size(ENV_GET_CPU(env), RDI(env), decode->addressing_size,
565                                 R_ES);
566 
567     decode->op[0].type = X86_VAR_IMMEDIATE;
568     decode->op[0].val = read_val_ext(env, src_addr, decode->operand_size);
569     decode->op[1].type = X86_VAR_IMMEDIATE;
570     decode->op[1].val = read_val_ext(env, dst_addr, decode->operand_size);
571 
572     EXEC_2OP_FLAGS_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false);
573 
574     string_increment_reg(env, R_ESI, decode);
575     string_increment_reg(env, R_EDI, decode);
576 }
577 
578 static void exec_cmps(struct CPUX86State *env, struct x86_decode *decode)
579 {
580     if (decode->rep) {
581         string_rep(env, decode, exec_cmps_single, decode->rep);
582     } else {
583         exec_cmps_single(env, decode);
584     }
585     RIP(env) += decode->len;
586 }
587 
588 
589 static void exec_stos_single(struct CPUX86State *env, struct x86_decode *decode)
590 {
591     target_ulong addr;
592     target_ulong val;
593 
594     addr = linear_addr_size(ENV_GET_CPU(env), RDI(env), decode->addressing_size, R_ES);
595     val = read_reg(env, R_EAX, decode->operand_size);
596     vmx_write_mem(ENV_GET_CPU(env), addr, &val, decode->operand_size);
597 
598     string_increment_reg(env, R_EDI, decode);
599 }
600 
601 
602 static void exec_stos(struct CPUX86State *env, struct x86_decode *decode)
603 {
604     if (decode->rep) {
605         string_rep(env, decode, exec_stos_single, 0);
606     } else {
607         exec_stos_single(env, decode);
608     }
609 
610     RIP(env) += decode->len;
611 }
612 
613 static void exec_scas_single(struct CPUX86State *env, struct x86_decode *decode)
614 {
615     target_ulong addr;
616 
617     addr = linear_addr_size(ENV_GET_CPU(env), RDI(env), decode->addressing_size, R_ES);
618     decode->op[1].type = X86_VAR_IMMEDIATE;
619     vmx_read_mem(ENV_GET_CPU(env), &decode->op[1].val, addr, decode->operand_size);
620 
621     EXEC_2OP_FLAGS_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false);
622     string_increment_reg(env, R_EDI, decode);
623 }
624 
625 static void exec_scas(struct CPUX86State *env, struct x86_decode *decode)
626 {
627     decode->op[0].type = X86_VAR_REG;
628     decode->op[0].reg = R_EAX;
629     if (decode->rep) {
630         string_rep(env, decode, exec_scas_single, decode->rep);
631     } else {
632         exec_scas_single(env, decode);
633     }
634 
635     RIP(env) += decode->len;
636 }
637 
638 static void exec_lods_single(struct CPUX86State *env, struct x86_decode *decode)
639 {
640     target_ulong addr;
641     target_ulong val = 0;
642 
643     addr = decode_linear_addr(env, decode, RSI(env), R_DS);
644     vmx_read_mem(ENV_GET_CPU(env), &val, addr,  decode->operand_size);
645     write_reg(env, R_EAX, val, decode->operand_size);
646 
647     string_increment_reg(env, R_ESI, decode);
648 }
649 
650 static void exec_lods(struct CPUX86State *env, struct x86_decode *decode)
651 {
652     if (decode->rep) {
653         string_rep(env, decode, exec_lods_single, 0);
654     } else {
655         exec_lods_single(env, decode);
656     }
657 
658     RIP(env) += decode->len;
659 }
660 
661 #define MSR_IA32_UCODE_REV 0x00000017
662 
663 void simulate_rdmsr(struct CPUState *cpu)
664 {
665     X86CPU *x86_cpu = X86_CPU(cpu);
666     CPUX86State *env = &x86_cpu->env;
667     uint32_t msr = ECX(env);
668     uint64_t val = 0;
669 
670     switch (msr) {
671     case MSR_IA32_TSC:
672         val = rdtscp() + rvmcs(cpu->hvf_fd, VMCS_TSC_OFFSET);
673         break;
674     case MSR_IA32_APICBASE:
675         val = cpu_get_apic_base(X86_CPU(cpu)->apic_state);
676         break;
677     case MSR_IA32_UCODE_REV:
678         val = (0x100000000ULL << 32) | 0x100000000ULL;
679         break;
680     case MSR_EFER:
681         val = rvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER);
682         break;
683     case MSR_FSBASE:
684         val = rvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE);
685         break;
686     case MSR_GSBASE:
687         val = rvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE);
688         break;
689     case MSR_KERNELGSBASE:
690         val = rvmcs(cpu->hvf_fd, VMCS_HOST_FS_BASE);
691         break;
692     case MSR_STAR:
693         abort();
694         break;
695     case MSR_LSTAR:
696         abort();
697         break;
698     case MSR_CSTAR:
699         abort();
700         break;
701     case MSR_IA32_MISC_ENABLE:
702         val = env->msr_ia32_misc_enable;
703         break;
704     case MSR_MTRRphysBase(0):
705     case MSR_MTRRphysBase(1):
706     case MSR_MTRRphysBase(2):
707     case MSR_MTRRphysBase(3):
708     case MSR_MTRRphysBase(4):
709     case MSR_MTRRphysBase(5):
710     case MSR_MTRRphysBase(6):
711     case MSR_MTRRphysBase(7):
712         val = env->mtrr_var[(ECX(env) - MSR_MTRRphysBase(0)) / 2].base;
713         break;
714     case MSR_MTRRphysMask(0):
715     case MSR_MTRRphysMask(1):
716     case MSR_MTRRphysMask(2):
717     case MSR_MTRRphysMask(3):
718     case MSR_MTRRphysMask(4):
719     case MSR_MTRRphysMask(5):
720     case MSR_MTRRphysMask(6):
721     case MSR_MTRRphysMask(7):
722         val = env->mtrr_var[(ECX(env) - MSR_MTRRphysMask(0)) / 2].mask;
723         break;
724     case MSR_MTRRfix64K_00000:
725         val = env->mtrr_fixed[0];
726         break;
727     case MSR_MTRRfix16K_80000:
728     case MSR_MTRRfix16K_A0000:
729         val = env->mtrr_fixed[ECX(env) - MSR_MTRRfix16K_80000 + 1];
730         break;
731     case MSR_MTRRfix4K_C0000:
732     case MSR_MTRRfix4K_C8000:
733     case MSR_MTRRfix4K_D0000:
734     case MSR_MTRRfix4K_D8000:
735     case MSR_MTRRfix4K_E0000:
736     case MSR_MTRRfix4K_E8000:
737     case MSR_MTRRfix4K_F0000:
738     case MSR_MTRRfix4K_F8000:
739         val = env->mtrr_fixed[ECX(env) - MSR_MTRRfix4K_C0000 + 3];
740         break;
741     case MSR_MTRRdefType:
742         val = env->mtrr_deftype;
743         break;
744     default:
745         /* fprintf(stderr, "%s: unknown msr 0x%x\n", __func__, msr); */
746         val = 0;
747         break;
748     }
749 
750     RAX(env) = (uint32_t)val;
751     RDX(env) = (uint32_t)(val >> 32);
752 }
753 
754 static void exec_rdmsr(struct CPUX86State *env, struct x86_decode *decode)
755 {
756     simulate_rdmsr(ENV_GET_CPU(env));
757     RIP(env) += decode->len;
758 }
759 
760 void simulate_wrmsr(struct CPUState *cpu)
761 {
762     X86CPU *x86_cpu = X86_CPU(cpu);
763     CPUX86State *env = &x86_cpu->env;
764     uint32_t msr = ECX(env);
765     uint64_t data = ((uint64_t)EDX(env) << 32) | EAX(env);
766 
767     switch (msr) {
768     case MSR_IA32_TSC:
769         /* if (!osx_is_sierra())
770              wvmcs(cpu->hvf_fd, VMCS_TSC_OFFSET, data - rdtscp());
771         hv_vm_sync_tsc(data);*/
772         break;
773     case MSR_IA32_APICBASE:
774         cpu_set_apic_base(X86_CPU(cpu)->apic_state, data);
775         break;
776     case MSR_FSBASE:
777         wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE, data);
778         break;
779     case MSR_GSBASE:
780         wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE, data);
781         break;
782     case MSR_KERNELGSBASE:
783         wvmcs(cpu->hvf_fd, VMCS_HOST_FS_BASE, data);
784         break;
785     case MSR_STAR:
786         abort();
787         break;
788     case MSR_LSTAR:
789         abort();
790         break;
791     case MSR_CSTAR:
792         abort();
793         break;
794     case MSR_EFER:
795         /*printf("new efer %llx\n", EFER(cpu));*/
796         wvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER, data);
797         if (data & MSR_EFER_NXE) {
798             hv_vcpu_invalidate_tlb(cpu->hvf_fd);
799         }
800         break;
801     case MSR_MTRRphysBase(0):
802     case MSR_MTRRphysBase(1):
803     case MSR_MTRRphysBase(2):
804     case MSR_MTRRphysBase(3):
805     case MSR_MTRRphysBase(4):
806     case MSR_MTRRphysBase(5):
807     case MSR_MTRRphysBase(6):
808     case MSR_MTRRphysBase(7):
809         env->mtrr_var[(ECX(env) - MSR_MTRRphysBase(0)) / 2].base = data;
810         break;
811     case MSR_MTRRphysMask(0):
812     case MSR_MTRRphysMask(1):
813     case MSR_MTRRphysMask(2):
814     case MSR_MTRRphysMask(3):
815     case MSR_MTRRphysMask(4):
816     case MSR_MTRRphysMask(5):
817     case MSR_MTRRphysMask(6):
818     case MSR_MTRRphysMask(7):
819         env->mtrr_var[(ECX(env) - MSR_MTRRphysMask(0)) / 2].mask = data;
820         break;
821     case MSR_MTRRfix64K_00000:
822         env->mtrr_fixed[ECX(env) - MSR_MTRRfix64K_00000] = data;
823         break;
824     case MSR_MTRRfix16K_80000:
825     case MSR_MTRRfix16K_A0000:
826         env->mtrr_fixed[ECX(env) - MSR_MTRRfix16K_80000 + 1] = data;
827         break;
828     case MSR_MTRRfix4K_C0000:
829     case MSR_MTRRfix4K_C8000:
830     case MSR_MTRRfix4K_D0000:
831     case MSR_MTRRfix4K_D8000:
832     case MSR_MTRRfix4K_E0000:
833     case MSR_MTRRfix4K_E8000:
834     case MSR_MTRRfix4K_F0000:
835     case MSR_MTRRfix4K_F8000:
836         env->mtrr_fixed[ECX(env) - MSR_MTRRfix4K_C0000 + 3] = data;
837         break;
838     case MSR_MTRRdefType:
839         env->mtrr_deftype = data;
840         break;
841     default:
842         break;
843     }
844 
845     /* Related to support known hypervisor interface */
846     /* if (g_hypervisor_iface)
847          g_hypervisor_iface->wrmsr_handler(cpu, msr, data);
848 
849     printf("write msr %llx\n", RCX(cpu));*/
850 }
851 
852 static void exec_wrmsr(struct CPUX86State *env, struct x86_decode *decode)
853 {
854     simulate_wrmsr(ENV_GET_CPU(env));
855     RIP(env) += decode->len;
856 }
857 
858 /*
859  * flag:
860  * 0 - bt, 1 - btc, 2 - bts, 3 - btr
861  */
862 static void do_bt(struct CPUX86State *env, struct x86_decode *decode, int flag)
863 {
864     int32_t displacement;
865     uint8_t index;
866     bool cf;
867     int mask = (4 == decode->operand_size) ? 0x1f : 0xf;
868 
869     VM_PANIC_ON(decode->rex.rex);
870 
871     fetch_operands(env, decode, 2, false, true, false);
872     index = decode->op[1].val & mask;
873 
874     if (decode->op[0].type != X86_VAR_REG) {
875         if (4 == decode->operand_size) {
876             displacement = ((int32_t) (decode->op[1].val & 0xffffffe0)) / 32;
877             decode->op[0].ptr += 4 * displacement;
878         } else if (2 == decode->operand_size) {
879             displacement = ((int16_t) (decode->op[1].val & 0xfff0)) / 16;
880             decode->op[0].ptr += 2 * displacement;
881         } else {
882             VM_PANIC("bt 64bit\n");
883         }
884     }
885     decode->op[0].val = read_val_ext(env, decode->op[0].ptr,
886                                      decode->operand_size);
887     cf = (decode->op[0].val >> index) & 0x01;
888 
889     switch (flag) {
890     case 0:
891         set_CF(env, cf);
892         return;
893     case 1:
894         decode->op[0].val ^= (1u << index);
895         break;
896     case 2:
897         decode->op[0].val |= (1u << index);
898         break;
899     case 3:
900         decode->op[0].val &= ~(1u << index);
901         break;
902     }
903     write_val_ext(env, decode->op[0].ptr, decode->op[0].val,
904                   decode->operand_size);
905     set_CF(env, cf);
906 }
907 
908 static void exec_bt(struct CPUX86State *env, struct x86_decode *decode)
909 {
910     do_bt(env, decode, 0);
911     RIP(env) += decode->len;
912 }
913 
914 static void exec_btc(struct CPUX86State *env, struct x86_decode *decode)
915 {
916     do_bt(env, decode, 1);
917     RIP(env) += decode->len;
918 }
919 
920 static void exec_btr(struct CPUX86State *env, struct x86_decode *decode)
921 {
922     do_bt(env, decode, 3);
923     RIP(env) += decode->len;
924 }
925 
926 static void exec_bts(struct CPUX86State *env, struct x86_decode *decode)
927 {
928     do_bt(env, decode, 2);
929     RIP(env) += decode->len;
930 }
931 
932 void exec_shl(struct CPUX86State *env, struct x86_decode *decode)
933 {
934     uint8_t count;
935     int of = 0, cf = 0;
936 
937     fetch_operands(env, decode, 2, true, true, false);
938 
939     count = decode->op[1].val;
940     count &= 0x1f;      /* count is masked to 5 bits*/
941     if (!count) {
942         goto exit;
943     }
944 
945     switch (decode->operand_size) {
946     case 1:
947     {
948         uint8_t res = 0;
949         if (count <= 8) {
950             res = (decode->op[0].val << count);
951             cf = (decode->op[0].val >> (8 - count)) & 0x1;
952             of = cf ^ (res >> 7);
953         }
954 
955         write_val_ext(env, decode->op[0].ptr, res, 1);
956         SET_FLAGS_OSZAPC_LOGIC8(env, 0, 0, res);
957         SET_FLAGS_OxxxxC(env, of, cf);
958         break;
959     }
960     case 2:
961     {
962         uint16_t res = 0;
963 
964         /* from bochs */
965         if (count <= 16) {
966             res = (decode->op[0].val << count);
967             cf = (decode->op[0].val >> (16 - count)) & 0x1;
968             of = cf ^ (res >> 15); /* of = cf ^ result15 */
969         }
970 
971         write_val_ext(env, decode->op[0].ptr, res, 2);
972         SET_FLAGS_OSZAPC_LOGIC16(env, 0, 0, res);
973         SET_FLAGS_OxxxxC(env, of, cf);
974         break;
975     }
976     case 4:
977     {
978         uint32_t res = decode->op[0].val << count;
979 
980         write_val_ext(env, decode->op[0].ptr, res, 4);
981         SET_FLAGS_OSZAPC_LOGIC32(env, 0, 0, res);
982         cf = (decode->op[0].val >> (32 - count)) & 0x1;
983         of = cf ^ (res >> 31); /* of = cf ^ result31 */
984         SET_FLAGS_OxxxxC(env, of, cf);
985         break;
986     }
987     default:
988         abort();
989     }
990 
991 exit:
992     /* lflags_to_rflags(env); */
993     RIP(env) += decode->len;
994 }
995 
996 void exec_movsx(CPUX86State *env, struct x86_decode *decode)
997 {
998     int src_op_size;
999     int op_size = decode->operand_size;
1000 
1001     fetch_operands(env, decode, 2, false, false, false);
1002 
1003     if (0xbe == decode->opcode[1]) {
1004         src_op_size = 1;
1005     } else {
1006         src_op_size = 2;
1007     }
1008 
1009     decode->operand_size = src_op_size;
1010     calc_modrm_operand(env, decode, &decode->op[1]);
1011     decode->op[1].val = sign(read_val_ext(env, decode->op[1].ptr, src_op_size),
1012                              src_op_size);
1013 
1014     write_val_ext(env, decode->op[0].ptr, decode->op[1].val, op_size);
1015 
1016     RIP(env) += decode->len;
1017 }
1018 
1019 void exec_ror(struct CPUX86State *env, struct x86_decode *decode)
1020 {
1021     uint8_t count;
1022 
1023     fetch_operands(env, decode, 2, true, true, false);
1024     count = decode->op[1].val;
1025 
1026     switch (decode->operand_size) {
1027     case 1:
1028     {
1029         uint32_t bit6, bit7;
1030         uint8_t res;
1031 
1032         if ((count & 0x07) == 0) {
1033             if (count & 0x18) {
1034                 bit6 = ((uint8_t)decode->op[0].val >> 6) & 1;
1035                 bit7 = ((uint8_t)decode->op[0].val >> 7) & 1;
1036                 SET_FLAGS_OxxxxC(env, bit6 ^ bit7, bit7);
1037              }
1038         } else {
1039             count &= 0x7; /* use only bottom 3 bits */
1040             res = ((uint8_t)decode->op[0].val >> count) |
1041                    ((uint8_t)decode->op[0].val << (8 - count));
1042             write_val_ext(env, decode->op[0].ptr, res, 1);
1043             bit6 = (res >> 6) & 1;
1044             bit7 = (res >> 7) & 1;
1045             /* set eflags: ROR count affects the following flags: C, O */
1046             SET_FLAGS_OxxxxC(env, bit6 ^ bit7, bit7);
1047         }
1048         break;
1049     }
1050     case 2:
1051     {
1052         uint32_t bit14, bit15;
1053         uint16_t res;
1054 
1055         if ((count & 0x0f) == 0) {
1056             if (count & 0x10) {
1057                 bit14 = ((uint16_t)decode->op[0].val >> 14) & 1;
1058                 bit15 = ((uint16_t)decode->op[0].val >> 15) & 1;
1059                 /* of = result14 ^ result15 */
1060                 SET_FLAGS_OxxxxC(env, bit14 ^ bit15, bit15);
1061             }
1062         } else {
1063             count &= 0x0f;  /* use only 4 LSB's */
1064             res = ((uint16_t)decode->op[0].val >> count) |
1065                    ((uint16_t)decode->op[0].val << (16 - count));
1066             write_val_ext(env, decode->op[0].ptr, res, 2);
1067 
1068             bit14 = (res >> 14) & 1;
1069             bit15 = (res >> 15) & 1;
1070             /* of = result14 ^ result15 */
1071             SET_FLAGS_OxxxxC(env, bit14 ^ bit15, bit15);
1072         }
1073         break;
1074     }
1075     case 4:
1076     {
1077         uint32_t bit31, bit30;
1078         uint32_t res;
1079 
1080         count &= 0x1f;
1081         if (count) {
1082             res = ((uint32_t)decode->op[0].val >> count) |
1083                    ((uint32_t)decode->op[0].val << (32 - count));
1084             write_val_ext(env, decode->op[0].ptr, res, 4);
1085 
1086             bit31 = (res >> 31) & 1;
1087             bit30 = (res >> 30) & 1;
1088             /* of = result30 ^ result31 */
1089             SET_FLAGS_OxxxxC(env, bit30 ^ bit31, bit31);
1090         }
1091         break;
1092         }
1093     }
1094     RIP(env) += decode->len;
1095 }
1096 
1097 void exec_rol(struct CPUX86State *env, struct x86_decode *decode)
1098 {
1099     uint8_t count;
1100 
1101     fetch_operands(env, decode, 2, true, true, false);
1102     count = decode->op[1].val;
1103 
1104     switch (decode->operand_size) {
1105     case 1:
1106     {
1107         uint32_t bit0, bit7;
1108         uint8_t res;
1109 
1110         if ((count & 0x07) == 0) {
1111             if (count & 0x18) {
1112                 bit0 = ((uint8_t)decode->op[0].val & 1);
1113                 bit7 = ((uint8_t)decode->op[0].val >> 7);
1114                 SET_FLAGS_OxxxxC(env, bit0 ^ bit7, bit0);
1115             }
1116         }  else {
1117             count &= 0x7; /* use only lowest 3 bits */
1118             res = ((uint8_t)decode->op[0].val << count) |
1119                    ((uint8_t)decode->op[0].val >> (8 - count));
1120 
1121             write_val_ext(env, decode->op[0].ptr, res, 1);
1122             /* set eflags:
1123              * ROL count affects the following flags: C, O
1124              */
1125             bit0 = (res &  1);
1126             bit7 = (res >> 7);
1127             SET_FLAGS_OxxxxC(env, bit0 ^ bit7, bit0);
1128         }
1129         break;
1130     }
1131     case 2:
1132     {
1133         uint32_t bit0, bit15;
1134         uint16_t res;
1135 
1136         if ((count & 0x0f) == 0) {
1137             if (count & 0x10) {
1138                 bit0  = ((uint16_t)decode->op[0].val & 0x1);
1139                 bit15 = ((uint16_t)decode->op[0].val >> 15);
1140                 /* of = cf ^ result15 */
1141                 SET_FLAGS_OxxxxC(env, bit0 ^ bit15, bit0);
1142             }
1143         } else {
1144             count &= 0x0f; /* only use bottom 4 bits */
1145             res = ((uint16_t)decode->op[0].val << count) |
1146                    ((uint16_t)decode->op[0].val >> (16 - count));
1147 
1148             write_val_ext(env, decode->op[0].ptr, res, 2);
1149             bit0  = (res & 0x1);
1150             bit15 = (res >> 15);
1151             /* of = cf ^ result15 */
1152             SET_FLAGS_OxxxxC(env, bit0 ^ bit15, bit0);
1153         }
1154         break;
1155     }
1156     case 4:
1157     {
1158         uint32_t bit0, bit31;
1159         uint32_t res;
1160 
1161         count &= 0x1f;
1162         if (count) {
1163             res = ((uint32_t)decode->op[0].val << count) |
1164                    ((uint32_t)decode->op[0].val >> (32 - count));
1165 
1166             write_val_ext(env, decode->op[0].ptr, res, 4);
1167             bit0  = (res & 0x1);
1168             bit31 = (res >> 31);
1169             /* of = cf ^ result31 */
1170             SET_FLAGS_OxxxxC(env, bit0 ^ bit31, bit0);
1171         }
1172         break;
1173         }
1174     }
1175     RIP(env) += decode->len;
1176 }
1177 
1178 
1179 void exec_rcl(struct CPUX86State *env, struct x86_decode *decode)
1180 {
1181     uint8_t count;
1182     int of = 0, cf = 0;
1183 
1184     fetch_operands(env, decode, 2, true, true, false);
1185     count = decode->op[1].val & 0x1f;
1186 
1187     switch (decode->operand_size) {
1188     case 1:
1189     {
1190         uint8_t op1_8 = decode->op[0].val;
1191         uint8_t res;
1192         count %= 9;
1193         if (!count) {
1194             break;
1195         }
1196 
1197         if (1 == count) {
1198             res = (op1_8 << 1) | get_CF(env);
1199         } else {
1200             res = (op1_8 << count) | (get_CF(env) << (count - 1)) |
1201                    (op1_8 >> (9 - count));
1202         }
1203 
1204         write_val_ext(env, decode->op[0].ptr, res, 1);
1205 
1206         cf = (op1_8 >> (8 - count)) & 0x01;
1207         of = cf ^ (res >> 7); /* of = cf ^ result7 */
1208         SET_FLAGS_OxxxxC(env, of, cf);
1209         break;
1210     }
1211     case 2:
1212     {
1213         uint16_t res;
1214         uint16_t op1_16 = decode->op[0].val;
1215 
1216         count %= 17;
1217         if (!count) {
1218             break;
1219         }
1220 
1221         if (1 == count) {
1222             res = (op1_16 << 1) | get_CF(env);
1223         } else if (count == 16) {
1224             res = (get_CF(env) << 15) | (op1_16 >> 1);
1225         } else { /* 2..15 */
1226             res = (op1_16 << count) | (get_CF(env) << (count - 1)) |
1227                    (op1_16 >> (17 - count));
1228         }
1229 
1230         write_val_ext(env, decode->op[0].ptr, res, 2);
1231 
1232         cf = (op1_16 >> (16 - count)) & 0x1;
1233         of = cf ^ (res >> 15); /* of = cf ^ result15 */
1234         SET_FLAGS_OxxxxC(env, of, cf);
1235         break;
1236     }
1237     case 4:
1238     {
1239         uint32_t res;
1240         uint32_t op1_32 = decode->op[0].val;
1241 
1242         if (!count) {
1243             break;
1244         }
1245 
1246         if (1 == count) {
1247             res = (op1_32 << 1) | get_CF(env);
1248         } else {
1249             res = (op1_32 << count) | (get_CF(env) << (count - 1)) |
1250                    (op1_32 >> (33 - count));
1251         }
1252 
1253         write_val_ext(env, decode->op[0].ptr, res, 4);
1254 
1255         cf = (op1_32 >> (32 - count)) & 0x1;
1256         of = cf ^ (res >> 31); /* of = cf ^ result31 */
1257         SET_FLAGS_OxxxxC(env, of, cf);
1258         break;
1259         }
1260     }
1261     RIP(env) += decode->len;
1262 }
1263 
1264 void exec_rcr(struct CPUX86State *env, struct x86_decode *decode)
1265 {
1266     uint8_t count;
1267     int of = 0, cf = 0;
1268 
1269     fetch_operands(env, decode, 2, true, true, false);
1270     count = decode->op[1].val & 0x1f;
1271 
1272     switch (decode->operand_size) {
1273     case 1:
1274     {
1275         uint8_t op1_8 = decode->op[0].val;
1276         uint8_t res;
1277 
1278         count %= 9;
1279         if (!count) {
1280             break;
1281         }
1282         res = (op1_8 >> count) | (get_CF(env) << (8 - count)) |
1283                (op1_8 << (9 - count));
1284 
1285         write_val_ext(env, decode->op[0].ptr, res, 1);
1286 
1287         cf = (op1_8 >> (count - 1)) & 0x1;
1288         of = (((res << 1) ^ res) >> 7) & 0x1; /* of = result6 ^ result7 */
1289         SET_FLAGS_OxxxxC(env, of, cf);
1290         break;
1291     }
1292     case 2:
1293     {
1294         uint16_t op1_16 = decode->op[0].val;
1295         uint16_t res;
1296 
1297         count %= 17;
1298         if (!count) {
1299             break;
1300         }
1301         res = (op1_16 >> count) | (get_CF(env) << (16 - count)) |
1302                (op1_16 << (17 - count));
1303 
1304         write_val_ext(env, decode->op[0].ptr, res, 2);
1305 
1306         cf = (op1_16 >> (count - 1)) & 0x1;
1307         of = ((uint16_t)((res << 1) ^ res) >> 15) & 0x1; /* of = result15 ^
1308                                                             result14 */
1309         SET_FLAGS_OxxxxC(env, of, cf);
1310         break;
1311     }
1312     case 4:
1313     {
1314         uint32_t res;
1315         uint32_t op1_32 = decode->op[0].val;
1316 
1317         if (!count) {
1318             break;
1319         }
1320 
1321         if (1 == count) {
1322             res = (op1_32 >> 1) | (get_CF(env) << 31);
1323         } else {
1324             res = (op1_32 >> count) | (get_CF(env) << (32 - count)) |
1325                    (op1_32 << (33 - count));
1326         }
1327 
1328         write_val_ext(env, decode->op[0].ptr, res, 4);
1329 
1330         cf = (op1_32 >> (count - 1)) & 0x1;
1331         of = ((res << 1) ^ res) >> 31; /* of = result30 ^ result31 */
1332         SET_FLAGS_OxxxxC(env, of, cf);
1333         break;
1334         }
1335     }
1336     RIP(env) += decode->len;
1337 }
1338 
1339 static void exec_xchg(struct CPUX86State *env, struct x86_decode *decode)
1340 {
1341     fetch_operands(env, decode, 2, true, true, false);
1342 
1343     write_val_ext(env, decode->op[0].ptr, decode->op[1].val,
1344                   decode->operand_size);
1345     write_val_ext(env, decode->op[1].ptr, decode->op[0].val,
1346                   decode->operand_size);
1347 
1348     RIP(env) += decode->len;
1349 }
1350 
1351 static void exec_xadd(struct CPUX86State *env, struct x86_decode *decode)
1352 {
1353     EXEC_2OP_FLAGS_CMD(env, decode, +, SET_FLAGS_OSZAPC_ADD, true);
1354     write_val_ext(env, decode->op[1].ptr, decode->op[0].val,
1355                   decode->operand_size);
1356 
1357     RIP(env) += decode->len;
1358 }
1359 
1360 static struct cmd_handler {
1361     enum x86_decode_cmd cmd;
1362     void (*handler)(struct CPUX86State *env, struct x86_decode *ins);
1363 } handlers[] = {
1364     {X86_DECODE_CMD_INVL, NULL,},
1365     {X86_DECODE_CMD_MOV, exec_mov},
1366     {X86_DECODE_CMD_ADD, exec_add},
1367     {X86_DECODE_CMD_OR, exec_or},
1368     {X86_DECODE_CMD_ADC, exec_adc},
1369     {X86_DECODE_CMD_SBB, exec_sbb},
1370     {X86_DECODE_CMD_AND, exec_and},
1371     {X86_DECODE_CMD_SUB, exec_sub},
1372     {X86_DECODE_CMD_NEG, exec_neg},
1373     {X86_DECODE_CMD_XOR, exec_xor},
1374     {X86_DECODE_CMD_CMP, exec_cmp},
1375     {X86_DECODE_CMD_INC, exec_inc},
1376     {X86_DECODE_CMD_DEC, exec_dec},
1377     {X86_DECODE_CMD_TST, exec_tst},
1378     {X86_DECODE_CMD_NOT, exec_not},
1379     {X86_DECODE_CMD_MOVZX, exec_movzx},
1380     {X86_DECODE_CMD_OUT, exec_out},
1381     {X86_DECODE_CMD_IN, exec_in},
1382     {X86_DECODE_CMD_INS, exec_ins},
1383     {X86_DECODE_CMD_OUTS, exec_outs},
1384     {X86_DECODE_CMD_RDMSR, exec_rdmsr},
1385     {X86_DECODE_CMD_WRMSR, exec_wrmsr},
1386     {X86_DECODE_CMD_BT, exec_bt},
1387     {X86_DECODE_CMD_BTR, exec_btr},
1388     {X86_DECODE_CMD_BTC, exec_btc},
1389     {X86_DECODE_CMD_BTS, exec_bts},
1390     {X86_DECODE_CMD_SHL, exec_shl},
1391     {X86_DECODE_CMD_ROL, exec_rol},
1392     {X86_DECODE_CMD_ROR, exec_ror},
1393     {X86_DECODE_CMD_RCR, exec_rcr},
1394     {X86_DECODE_CMD_RCL, exec_rcl},
1395     /*{X86_DECODE_CMD_CPUID, exec_cpuid},*/
1396     {X86_DECODE_CMD_MOVS, exec_movs},
1397     {X86_DECODE_CMD_CMPS, exec_cmps},
1398     {X86_DECODE_CMD_STOS, exec_stos},
1399     {X86_DECODE_CMD_SCAS, exec_scas},
1400     {X86_DECODE_CMD_LODS, exec_lods},
1401     {X86_DECODE_CMD_MOVSX, exec_movsx},
1402     {X86_DECODE_CMD_XCHG, exec_xchg},
1403     {X86_DECODE_CMD_XADD, exec_xadd},
1404 };
1405 
1406 static struct cmd_handler _cmd_handler[X86_DECODE_CMD_LAST];
1407 
1408 static void init_cmd_handler()
1409 {
1410     int i;
1411     for (i = 0; i < ARRAY_SIZE(handlers); i++) {
1412         _cmd_handler[handlers[i].cmd] = handlers[i];
1413     }
1414 }
1415 
1416 void load_regs(struct CPUState *cpu)
1417 {
1418     X86CPU *x86_cpu = X86_CPU(cpu);
1419     CPUX86State *env = &x86_cpu->env;
1420 
1421     int i = 0;
1422     RRX(env, R_EAX) = rreg(cpu->hvf_fd, HV_X86_RAX);
1423     RRX(env, R_EBX) = rreg(cpu->hvf_fd, HV_X86_RBX);
1424     RRX(env, R_ECX) = rreg(cpu->hvf_fd, HV_X86_RCX);
1425     RRX(env, R_EDX) = rreg(cpu->hvf_fd, HV_X86_RDX);
1426     RRX(env, R_ESI) = rreg(cpu->hvf_fd, HV_X86_RSI);
1427     RRX(env, R_EDI) = rreg(cpu->hvf_fd, HV_X86_RDI);
1428     RRX(env, R_ESP) = rreg(cpu->hvf_fd, HV_X86_RSP);
1429     RRX(env, R_EBP) = rreg(cpu->hvf_fd, HV_X86_RBP);
1430     for (i = 8; i < 16; i++) {
1431         RRX(env, i) = rreg(cpu->hvf_fd, HV_X86_RAX + i);
1432     }
1433 
1434     RFLAGS(env) = rreg(cpu->hvf_fd, HV_X86_RFLAGS);
1435     rflags_to_lflags(env);
1436     RIP(env) = rreg(cpu->hvf_fd, HV_X86_RIP);
1437 }
1438 
1439 void store_regs(struct CPUState *cpu)
1440 {
1441     X86CPU *x86_cpu = X86_CPU(cpu);
1442     CPUX86State *env = &x86_cpu->env;
1443 
1444     int i = 0;
1445     wreg(cpu->hvf_fd, HV_X86_RAX, RAX(env));
1446     wreg(cpu->hvf_fd, HV_X86_RBX, RBX(env));
1447     wreg(cpu->hvf_fd, HV_X86_RCX, RCX(env));
1448     wreg(cpu->hvf_fd, HV_X86_RDX, RDX(env));
1449     wreg(cpu->hvf_fd, HV_X86_RSI, RSI(env));
1450     wreg(cpu->hvf_fd, HV_X86_RDI, RDI(env));
1451     wreg(cpu->hvf_fd, HV_X86_RBP, RBP(env));
1452     wreg(cpu->hvf_fd, HV_X86_RSP, RSP(env));
1453     for (i = 8; i < 16; i++) {
1454         wreg(cpu->hvf_fd, HV_X86_RAX + i, RRX(env, i));
1455     }
1456 
1457     lflags_to_rflags(env);
1458     wreg(cpu->hvf_fd, HV_X86_RFLAGS, RFLAGS(env));
1459     macvm_set_rip(cpu, RIP(env));
1460 }
1461 
1462 bool exec_instruction(struct CPUX86State *env, struct x86_decode *ins)
1463 {
1464     /*if (hvf_vcpu_id(cpu))
1465     printf("%d, %llx: exec_instruction %s\n", hvf_vcpu_id(cpu),  RIP(cpu),
1466           decode_cmd_to_string(ins->cmd));*/
1467 
1468     if (!_cmd_handler[ins->cmd].handler) {
1469         printf("Unimplemented handler (%llx) for %d (%x %x) \n", RIP(env),
1470                 ins->cmd, ins->opcode[0],
1471                 ins->opcode_len > 1 ? ins->opcode[1] : 0);
1472         RIP(env) += ins->len;
1473         return true;
1474     }
1475 
1476     _cmd_handler[ins->cmd].handler(env, ins);
1477     return true;
1478 }
1479 
1480 void init_emu()
1481 {
1482     init_cmd_handler();
1483 }
1484