1 /* 2 * Copyright (C) 2016 Veertu Inc, 3 * Copyright (C) 2017 Google Inc, 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU Lesser General Public 7 * License as published by the Free Software Foundation; either 8 * version 2 of the License, or (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 13 * Lesser General Public License for more details. 14 * 15 * You should have received a copy of the GNU Lesser General Public 16 * License along with this program; if not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 ///////////////////////////////////////////////////////////////////////// 20 // 21 // Copyright (C) 2001-2012 The Bochs Project 22 // 23 // This library is free software; you can redistribute it and/or 24 // modify it under the terms of the GNU Lesser General Public 25 // License as published by the Free Software Foundation; either 26 // version 2 of the License, or (at your option) any later version. 27 // 28 // This library is distributed in the hope that it will be useful, 29 // but WITHOUT ANY WARRANTY; without even the implied warranty of 30 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 31 // Lesser General Public License for more details. 32 // 33 // You should have received a copy of the GNU Lesser General Public 34 // License along with this library; if not, write to the Free Software 35 // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA 36 ///////////////////////////////////////////////////////////////////////// 37 38 #include "qemu/osdep.h" 39 #include "panic.h" 40 #include "qemu-common.h" 41 #include "x86_decode.h" 42 #include "x86.h" 43 #include "x86_emu.h" 44 #include "x86_mmu.h" 45 #include "x86_flags.h" 46 #include "vmcs.h" 47 #include "vmx.h" 48 49 void hvf_handle_io(struct CPUState *cpu, uint16_t port, void *data, 50 int direction, int size, uint32_t count); 51 52 #define EXEC_2OP_FLAGS_CMD(env, decode, cmd, FLAGS_FUNC, save_res) \ 53 { \ 54 fetch_operands(env, decode, 2, true, true, false); \ 55 switch (decode->operand_size) { \ 56 case 1: \ 57 { \ 58 uint8_t v1 = (uint8_t)decode->op[0].val; \ 59 uint8_t v2 = (uint8_t)decode->op[1].val; \ 60 uint8_t diff = v1 cmd v2; \ 61 if (save_res) { \ 62 write_val_ext(env, decode->op[0].ptr, diff, 1); \ 63 } \ 64 FLAGS_FUNC##8(env, v1, v2, diff); \ 65 break; \ 66 } \ 67 case 2: \ 68 { \ 69 uint16_t v1 = (uint16_t)decode->op[0].val; \ 70 uint16_t v2 = (uint16_t)decode->op[1].val; \ 71 uint16_t diff = v1 cmd v2; \ 72 if (save_res) { \ 73 write_val_ext(env, decode->op[0].ptr, diff, 2); \ 74 } \ 75 FLAGS_FUNC##16(env, v1, v2, diff); \ 76 break; \ 77 } \ 78 case 4: \ 79 { \ 80 uint32_t v1 = (uint32_t)decode->op[0].val; \ 81 uint32_t v2 = (uint32_t)decode->op[1].val; \ 82 uint32_t diff = v1 cmd v2; \ 83 if (save_res) { \ 84 write_val_ext(env, decode->op[0].ptr, diff, 4); \ 85 } \ 86 FLAGS_FUNC##32(env, v1, v2, diff); \ 87 break; \ 88 } \ 89 default: \ 90 VM_PANIC("bad size\n"); \ 91 } \ 92 } \ 93 94 target_ulong read_reg(CPUX86State *env, int reg, int size) 95 { 96 switch (size) { 97 case 1: 98 return env->hvf_emul->regs[reg].lx; 99 case 2: 100 return env->hvf_emul->regs[reg].rx; 101 case 4: 102 return env->hvf_emul->regs[reg].erx; 103 case 8: 104 return env->hvf_emul->regs[reg].rrx; 105 default: 106 abort(); 107 } 108 return 0; 109 } 110 111 void write_reg(CPUX86State *env, int reg, target_ulong val, int size) 112 { 113 switch (size) { 114 case 1: 115 env->hvf_emul->regs[reg].lx = val; 116 break; 117 case 2: 118 env->hvf_emul->regs[reg].rx = val; 119 break; 120 case 4: 121 env->hvf_emul->regs[reg].rrx = (uint32_t)val; 122 break; 123 case 8: 124 env->hvf_emul->regs[reg].rrx = val; 125 break; 126 default: 127 abort(); 128 } 129 } 130 131 target_ulong read_val_from_reg(target_ulong reg_ptr, int size) 132 { 133 target_ulong val; 134 135 switch (size) { 136 case 1: 137 val = *(uint8_t *)reg_ptr; 138 break; 139 case 2: 140 val = *(uint16_t *)reg_ptr; 141 break; 142 case 4: 143 val = *(uint32_t *)reg_ptr; 144 break; 145 case 8: 146 val = *(uint64_t *)reg_ptr; 147 break; 148 default: 149 abort(); 150 } 151 return val; 152 } 153 154 void write_val_to_reg(target_ulong reg_ptr, target_ulong val, int size) 155 { 156 switch (size) { 157 case 1: 158 *(uint8_t *)reg_ptr = val; 159 break; 160 case 2: 161 *(uint16_t *)reg_ptr = val; 162 break; 163 case 4: 164 *(uint64_t *)reg_ptr = (uint32_t)val; 165 break; 166 case 8: 167 *(uint64_t *)reg_ptr = val; 168 break; 169 default: 170 abort(); 171 } 172 } 173 174 static bool is_host_reg(struct CPUX86State *env, target_ulong ptr) 175 { 176 return (ptr - (target_ulong)&env->hvf_emul->regs[0]) < sizeof(env->hvf_emul->regs); 177 } 178 179 void write_val_ext(struct CPUX86State *env, target_ulong ptr, target_ulong val, int size) 180 { 181 if (is_host_reg(env, ptr)) { 182 write_val_to_reg(ptr, val, size); 183 return; 184 } 185 vmx_write_mem(env_cpu(env), ptr, &val, size); 186 } 187 188 uint8_t *read_mmio(struct CPUX86State *env, target_ulong ptr, int bytes) 189 { 190 vmx_read_mem(env_cpu(env), env->hvf_emul->mmio_buf, ptr, bytes); 191 return env->hvf_emul->mmio_buf; 192 } 193 194 195 target_ulong read_val_ext(struct CPUX86State *env, target_ulong ptr, int size) 196 { 197 target_ulong val; 198 uint8_t *mmio_ptr; 199 200 if (is_host_reg(env, ptr)) { 201 return read_val_from_reg(ptr, size); 202 } 203 204 mmio_ptr = read_mmio(env, ptr, size); 205 switch (size) { 206 case 1: 207 val = *(uint8_t *)mmio_ptr; 208 break; 209 case 2: 210 val = *(uint16_t *)mmio_ptr; 211 break; 212 case 4: 213 val = *(uint32_t *)mmio_ptr; 214 break; 215 case 8: 216 val = *(uint64_t *)mmio_ptr; 217 break; 218 default: 219 VM_PANIC("bad size\n"); 220 break; 221 } 222 return val; 223 } 224 225 static void fetch_operands(struct CPUX86State *env, struct x86_decode *decode, 226 int n, bool val_op0, bool val_op1, bool val_op2) 227 { 228 int i; 229 bool calc_val[3] = {val_op0, val_op1, val_op2}; 230 231 for (i = 0; i < n; i++) { 232 switch (decode->op[i].type) { 233 case X86_VAR_IMMEDIATE: 234 break; 235 case X86_VAR_REG: 236 VM_PANIC_ON(!decode->op[i].ptr); 237 if (calc_val[i]) { 238 decode->op[i].val = read_val_from_reg(decode->op[i].ptr, 239 decode->operand_size); 240 } 241 break; 242 case X86_VAR_RM: 243 calc_modrm_operand(env, decode, &decode->op[i]); 244 if (calc_val[i]) { 245 decode->op[i].val = read_val_ext(env, decode->op[i].ptr, 246 decode->operand_size); 247 } 248 break; 249 case X86_VAR_OFFSET: 250 decode->op[i].ptr = decode_linear_addr(env, decode, 251 decode->op[i].ptr, 252 R_DS); 253 if (calc_val[i]) { 254 decode->op[i].val = read_val_ext(env, decode->op[i].ptr, 255 decode->operand_size); 256 } 257 break; 258 default: 259 break; 260 } 261 } 262 } 263 264 static void exec_mov(struct CPUX86State *env, struct x86_decode *decode) 265 { 266 fetch_operands(env, decode, 2, false, true, false); 267 write_val_ext(env, decode->op[0].ptr, decode->op[1].val, 268 decode->operand_size); 269 270 RIP(env) += decode->len; 271 } 272 273 static void exec_add(struct CPUX86State *env, struct x86_decode *decode) 274 { 275 EXEC_2OP_FLAGS_CMD(env, decode, +, SET_FLAGS_OSZAPC_ADD, true); 276 RIP(env) += decode->len; 277 } 278 279 static void exec_or(struct CPUX86State *env, struct x86_decode *decode) 280 { 281 EXEC_2OP_FLAGS_CMD(env, decode, |, SET_FLAGS_OSZAPC_LOGIC, true); 282 RIP(env) += decode->len; 283 } 284 285 static void exec_adc(struct CPUX86State *env, struct x86_decode *decode) 286 { 287 EXEC_2OP_FLAGS_CMD(env, decode, +get_CF(env)+, SET_FLAGS_OSZAPC_ADD, true); 288 RIP(env) += decode->len; 289 } 290 291 static void exec_sbb(struct CPUX86State *env, struct x86_decode *decode) 292 { 293 EXEC_2OP_FLAGS_CMD(env, decode, -get_CF(env)-, SET_FLAGS_OSZAPC_SUB, true); 294 RIP(env) += decode->len; 295 } 296 297 static void exec_and(struct CPUX86State *env, struct x86_decode *decode) 298 { 299 EXEC_2OP_FLAGS_CMD(env, decode, &, SET_FLAGS_OSZAPC_LOGIC, true); 300 RIP(env) += decode->len; 301 } 302 303 static void exec_sub(struct CPUX86State *env, struct x86_decode *decode) 304 { 305 EXEC_2OP_FLAGS_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, true); 306 RIP(env) += decode->len; 307 } 308 309 static void exec_xor(struct CPUX86State *env, struct x86_decode *decode) 310 { 311 EXEC_2OP_FLAGS_CMD(env, decode, ^, SET_FLAGS_OSZAPC_LOGIC, true); 312 RIP(env) += decode->len; 313 } 314 315 static void exec_neg(struct CPUX86State *env, struct x86_decode *decode) 316 { 317 /*EXEC_2OP_FLAGS_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false);*/ 318 int32_t val; 319 fetch_operands(env, decode, 2, true, true, false); 320 321 val = 0 - sign(decode->op[1].val, decode->operand_size); 322 write_val_ext(env, decode->op[1].ptr, val, decode->operand_size); 323 324 if (4 == decode->operand_size) { 325 SET_FLAGS_OSZAPC_SUB32(env, 0, 0 - val, val); 326 } else if (2 == decode->operand_size) { 327 SET_FLAGS_OSZAPC_SUB16(env, 0, 0 - val, val); 328 } else if (1 == decode->operand_size) { 329 SET_FLAGS_OSZAPC_SUB8(env, 0, 0 - val, val); 330 } else { 331 VM_PANIC("bad op size\n"); 332 } 333 334 /*lflags_to_rflags(env);*/ 335 RIP(env) += decode->len; 336 } 337 338 static void exec_cmp(struct CPUX86State *env, struct x86_decode *decode) 339 { 340 EXEC_2OP_FLAGS_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false); 341 RIP(env) += decode->len; 342 } 343 344 static void exec_inc(struct CPUX86State *env, struct x86_decode *decode) 345 { 346 decode->op[1].type = X86_VAR_IMMEDIATE; 347 decode->op[1].val = 0; 348 349 EXEC_2OP_FLAGS_CMD(env, decode, +1+, SET_FLAGS_OSZAP_ADD, true); 350 351 RIP(env) += decode->len; 352 } 353 354 static void exec_dec(struct CPUX86State *env, struct x86_decode *decode) 355 { 356 decode->op[1].type = X86_VAR_IMMEDIATE; 357 decode->op[1].val = 0; 358 359 EXEC_2OP_FLAGS_CMD(env, decode, -1-, SET_FLAGS_OSZAP_SUB, true); 360 RIP(env) += decode->len; 361 } 362 363 static void exec_tst(struct CPUX86State *env, struct x86_decode *decode) 364 { 365 EXEC_2OP_FLAGS_CMD(env, decode, &, SET_FLAGS_OSZAPC_LOGIC, false); 366 RIP(env) += decode->len; 367 } 368 369 static void exec_not(struct CPUX86State *env, struct x86_decode *decode) 370 { 371 fetch_operands(env, decode, 1, true, false, false); 372 373 write_val_ext(env, decode->op[0].ptr, ~decode->op[0].val, 374 decode->operand_size); 375 RIP(env) += decode->len; 376 } 377 378 void exec_movzx(struct CPUX86State *env, struct x86_decode *decode) 379 { 380 int src_op_size; 381 int op_size = decode->operand_size; 382 383 fetch_operands(env, decode, 1, false, false, false); 384 385 if (0xb6 == decode->opcode[1]) { 386 src_op_size = 1; 387 } else { 388 src_op_size = 2; 389 } 390 decode->operand_size = src_op_size; 391 calc_modrm_operand(env, decode, &decode->op[1]); 392 decode->op[1].val = read_val_ext(env, decode->op[1].ptr, src_op_size); 393 write_val_ext(env, decode->op[0].ptr, decode->op[1].val, op_size); 394 395 RIP(env) += decode->len; 396 } 397 398 static void exec_out(struct CPUX86State *env, struct x86_decode *decode) 399 { 400 switch (decode->opcode[0]) { 401 case 0xe6: 402 hvf_handle_io(env_cpu(env), decode->op[0].val, &AL(env), 1, 1, 1); 403 break; 404 case 0xe7: 405 hvf_handle_io(env_cpu(env), decode->op[0].val, &RAX(env), 1, 406 decode->operand_size, 1); 407 break; 408 case 0xee: 409 hvf_handle_io(env_cpu(env), DX(env), &AL(env), 1, 1, 1); 410 break; 411 case 0xef: 412 hvf_handle_io(env_cpu(env), DX(env), &RAX(env), 1, 413 decode->operand_size, 1); 414 break; 415 default: 416 VM_PANIC("Bad out opcode\n"); 417 break; 418 } 419 RIP(env) += decode->len; 420 } 421 422 static void exec_in(struct CPUX86State *env, struct x86_decode *decode) 423 { 424 target_ulong val = 0; 425 switch (decode->opcode[0]) { 426 case 0xe4: 427 hvf_handle_io(env_cpu(env), decode->op[0].val, &AL(env), 0, 1, 1); 428 break; 429 case 0xe5: 430 hvf_handle_io(env_cpu(env), decode->op[0].val, &val, 0, 431 decode->operand_size, 1); 432 if (decode->operand_size == 2) { 433 AX(env) = val; 434 } else { 435 RAX(env) = (uint32_t)val; 436 } 437 break; 438 case 0xec: 439 hvf_handle_io(env_cpu(env), DX(env), &AL(env), 0, 1, 1); 440 break; 441 case 0xed: 442 hvf_handle_io(env_cpu(env), DX(env), &val, 0, decode->operand_size, 1); 443 if (decode->operand_size == 2) { 444 AX(env) = val; 445 } else { 446 RAX(env) = (uint32_t)val; 447 } 448 449 break; 450 default: 451 VM_PANIC("Bad in opcode\n"); 452 break; 453 } 454 455 RIP(env) += decode->len; 456 } 457 458 static inline void string_increment_reg(struct CPUX86State *env, int reg, 459 struct x86_decode *decode) 460 { 461 target_ulong val = read_reg(env, reg, decode->addressing_size); 462 if (env->hvf_emul->rflags.df) { 463 val -= decode->operand_size; 464 } else { 465 val += decode->operand_size; 466 } 467 write_reg(env, reg, val, decode->addressing_size); 468 } 469 470 static inline void string_rep(struct CPUX86State *env, struct x86_decode *decode, 471 void (*func)(struct CPUX86State *env, 472 struct x86_decode *ins), int rep) 473 { 474 target_ulong rcx = read_reg(env, R_ECX, decode->addressing_size); 475 while (rcx--) { 476 func(env, decode); 477 write_reg(env, R_ECX, rcx, decode->addressing_size); 478 if ((PREFIX_REP == rep) && !get_ZF(env)) { 479 break; 480 } 481 if ((PREFIX_REPN == rep) && get_ZF(env)) { 482 break; 483 } 484 } 485 } 486 487 static void exec_ins_single(struct CPUX86State *env, struct x86_decode *decode) 488 { 489 target_ulong addr = linear_addr_size(env_cpu(env), RDI(env), 490 decode->addressing_size, R_ES); 491 492 hvf_handle_io(env_cpu(env), DX(env), env->hvf_emul->mmio_buf, 0, 493 decode->operand_size, 1); 494 vmx_write_mem(env_cpu(env), addr, env->hvf_emul->mmio_buf, 495 decode->operand_size); 496 497 string_increment_reg(env, R_EDI, decode); 498 } 499 500 static void exec_ins(struct CPUX86State *env, struct x86_decode *decode) 501 { 502 if (decode->rep) { 503 string_rep(env, decode, exec_ins_single, 0); 504 } else { 505 exec_ins_single(env, decode); 506 } 507 508 RIP(env) += decode->len; 509 } 510 511 static void exec_outs_single(struct CPUX86State *env, struct x86_decode *decode) 512 { 513 target_ulong addr = decode_linear_addr(env, decode, RSI(env), R_DS); 514 515 vmx_read_mem(env_cpu(env), env->hvf_emul->mmio_buf, addr, 516 decode->operand_size); 517 hvf_handle_io(env_cpu(env), DX(env), env->hvf_emul->mmio_buf, 1, 518 decode->operand_size, 1); 519 520 string_increment_reg(env, R_ESI, decode); 521 } 522 523 static void exec_outs(struct CPUX86State *env, struct x86_decode *decode) 524 { 525 if (decode->rep) { 526 string_rep(env, decode, exec_outs_single, 0); 527 } else { 528 exec_outs_single(env, decode); 529 } 530 531 RIP(env) += decode->len; 532 } 533 534 static void exec_movs_single(struct CPUX86State *env, struct x86_decode *decode) 535 { 536 target_ulong src_addr; 537 target_ulong dst_addr; 538 target_ulong val; 539 540 src_addr = decode_linear_addr(env, decode, RSI(env), R_DS); 541 dst_addr = linear_addr_size(env_cpu(env), RDI(env), 542 decode->addressing_size, R_ES); 543 544 val = read_val_ext(env, src_addr, decode->operand_size); 545 write_val_ext(env, dst_addr, val, decode->operand_size); 546 547 string_increment_reg(env, R_ESI, decode); 548 string_increment_reg(env, R_EDI, decode); 549 } 550 551 static void exec_movs(struct CPUX86State *env, struct x86_decode *decode) 552 { 553 if (decode->rep) { 554 string_rep(env, decode, exec_movs_single, 0); 555 } else { 556 exec_movs_single(env, decode); 557 } 558 559 RIP(env) += decode->len; 560 } 561 562 static void exec_cmps_single(struct CPUX86State *env, struct x86_decode *decode) 563 { 564 target_ulong src_addr; 565 target_ulong dst_addr; 566 567 src_addr = decode_linear_addr(env, decode, RSI(env), R_DS); 568 dst_addr = linear_addr_size(env_cpu(env), RDI(env), 569 decode->addressing_size, R_ES); 570 571 decode->op[0].type = X86_VAR_IMMEDIATE; 572 decode->op[0].val = read_val_ext(env, src_addr, decode->operand_size); 573 decode->op[1].type = X86_VAR_IMMEDIATE; 574 decode->op[1].val = read_val_ext(env, dst_addr, decode->operand_size); 575 576 EXEC_2OP_FLAGS_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false); 577 578 string_increment_reg(env, R_ESI, decode); 579 string_increment_reg(env, R_EDI, decode); 580 } 581 582 static void exec_cmps(struct CPUX86State *env, struct x86_decode *decode) 583 { 584 if (decode->rep) { 585 string_rep(env, decode, exec_cmps_single, decode->rep); 586 } else { 587 exec_cmps_single(env, decode); 588 } 589 RIP(env) += decode->len; 590 } 591 592 593 static void exec_stos_single(struct CPUX86State *env, struct x86_decode *decode) 594 { 595 target_ulong addr; 596 target_ulong val; 597 598 addr = linear_addr_size(env_cpu(env), RDI(env), 599 decode->addressing_size, R_ES); 600 val = read_reg(env, R_EAX, decode->operand_size); 601 vmx_write_mem(env_cpu(env), addr, &val, decode->operand_size); 602 603 string_increment_reg(env, R_EDI, decode); 604 } 605 606 607 static void exec_stos(struct CPUX86State *env, struct x86_decode *decode) 608 { 609 if (decode->rep) { 610 string_rep(env, decode, exec_stos_single, 0); 611 } else { 612 exec_stos_single(env, decode); 613 } 614 615 RIP(env) += decode->len; 616 } 617 618 static void exec_scas_single(struct CPUX86State *env, struct x86_decode *decode) 619 { 620 target_ulong addr; 621 622 addr = linear_addr_size(env_cpu(env), RDI(env), 623 decode->addressing_size, R_ES); 624 decode->op[1].type = X86_VAR_IMMEDIATE; 625 vmx_read_mem(env_cpu(env), &decode->op[1].val, addr, decode->operand_size); 626 627 EXEC_2OP_FLAGS_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false); 628 string_increment_reg(env, R_EDI, decode); 629 } 630 631 static void exec_scas(struct CPUX86State *env, struct x86_decode *decode) 632 { 633 decode->op[0].type = X86_VAR_REG; 634 decode->op[0].reg = R_EAX; 635 if (decode->rep) { 636 string_rep(env, decode, exec_scas_single, decode->rep); 637 } else { 638 exec_scas_single(env, decode); 639 } 640 641 RIP(env) += decode->len; 642 } 643 644 static void exec_lods_single(struct CPUX86State *env, struct x86_decode *decode) 645 { 646 target_ulong addr; 647 target_ulong val = 0; 648 649 addr = decode_linear_addr(env, decode, RSI(env), R_DS); 650 vmx_read_mem(env_cpu(env), &val, addr, decode->operand_size); 651 write_reg(env, R_EAX, val, decode->operand_size); 652 653 string_increment_reg(env, R_ESI, decode); 654 } 655 656 static void exec_lods(struct CPUX86State *env, struct x86_decode *decode) 657 { 658 if (decode->rep) { 659 string_rep(env, decode, exec_lods_single, 0); 660 } else { 661 exec_lods_single(env, decode); 662 } 663 664 RIP(env) += decode->len; 665 } 666 667 #define MSR_IA32_UCODE_REV 0x00000017 668 669 void simulate_rdmsr(struct CPUState *cpu) 670 { 671 X86CPU *x86_cpu = X86_CPU(cpu); 672 CPUX86State *env = &x86_cpu->env; 673 uint32_t msr = ECX(env); 674 uint64_t val = 0; 675 676 switch (msr) { 677 case MSR_IA32_TSC: 678 val = rdtscp() + rvmcs(cpu->hvf_fd, VMCS_TSC_OFFSET); 679 break; 680 case MSR_IA32_APICBASE: 681 val = cpu_get_apic_base(X86_CPU(cpu)->apic_state); 682 break; 683 case MSR_IA32_UCODE_REV: 684 val = (0x100000000ULL << 32) | 0x100000000ULL; 685 break; 686 case MSR_EFER: 687 val = rvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER); 688 break; 689 case MSR_FSBASE: 690 val = rvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE); 691 break; 692 case MSR_GSBASE: 693 val = rvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE); 694 break; 695 case MSR_KERNELGSBASE: 696 val = rvmcs(cpu->hvf_fd, VMCS_HOST_FS_BASE); 697 break; 698 case MSR_STAR: 699 abort(); 700 break; 701 case MSR_LSTAR: 702 abort(); 703 break; 704 case MSR_CSTAR: 705 abort(); 706 break; 707 case MSR_IA32_MISC_ENABLE: 708 val = env->msr_ia32_misc_enable; 709 break; 710 case MSR_MTRRphysBase(0): 711 case MSR_MTRRphysBase(1): 712 case MSR_MTRRphysBase(2): 713 case MSR_MTRRphysBase(3): 714 case MSR_MTRRphysBase(4): 715 case MSR_MTRRphysBase(5): 716 case MSR_MTRRphysBase(6): 717 case MSR_MTRRphysBase(7): 718 val = env->mtrr_var[(ECX(env) - MSR_MTRRphysBase(0)) / 2].base; 719 break; 720 case MSR_MTRRphysMask(0): 721 case MSR_MTRRphysMask(1): 722 case MSR_MTRRphysMask(2): 723 case MSR_MTRRphysMask(3): 724 case MSR_MTRRphysMask(4): 725 case MSR_MTRRphysMask(5): 726 case MSR_MTRRphysMask(6): 727 case MSR_MTRRphysMask(7): 728 val = env->mtrr_var[(ECX(env) - MSR_MTRRphysMask(0)) / 2].mask; 729 break; 730 case MSR_MTRRfix64K_00000: 731 val = env->mtrr_fixed[0]; 732 break; 733 case MSR_MTRRfix16K_80000: 734 case MSR_MTRRfix16K_A0000: 735 val = env->mtrr_fixed[ECX(env) - MSR_MTRRfix16K_80000 + 1]; 736 break; 737 case MSR_MTRRfix4K_C0000: 738 case MSR_MTRRfix4K_C8000: 739 case MSR_MTRRfix4K_D0000: 740 case MSR_MTRRfix4K_D8000: 741 case MSR_MTRRfix4K_E0000: 742 case MSR_MTRRfix4K_E8000: 743 case MSR_MTRRfix4K_F0000: 744 case MSR_MTRRfix4K_F8000: 745 val = env->mtrr_fixed[ECX(env) - MSR_MTRRfix4K_C0000 + 3]; 746 break; 747 case MSR_MTRRdefType: 748 val = env->mtrr_deftype; 749 break; 750 default: 751 /* fprintf(stderr, "%s: unknown msr 0x%x\n", __func__, msr); */ 752 val = 0; 753 break; 754 } 755 756 RAX(env) = (uint32_t)val; 757 RDX(env) = (uint32_t)(val >> 32); 758 } 759 760 static void exec_rdmsr(struct CPUX86State *env, struct x86_decode *decode) 761 { 762 simulate_rdmsr(env_cpu(env)); 763 RIP(env) += decode->len; 764 } 765 766 void simulate_wrmsr(struct CPUState *cpu) 767 { 768 X86CPU *x86_cpu = X86_CPU(cpu); 769 CPUX86State *env = &x86_cpu->env; 770 uint32_t msr = ECX(env); 771 uint64_t data = ((uint64_t)EDX(env) << 32) | EAX(env); 772 773 switch (msr) { 774 case MSR_IA32_TSC: 775 break; 776 case MSR_IA32_APICBASE: 777 cpu_set_apic_base(X86_CPU(cpu)->apic_state, data); 778 break; 779 case MSR_FSBASE: 780 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE, data); 781 break; 782 case MSR_GSBASE: 783 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE, data); 784 break; 785 case MSR_KERNELGSBASE: 786 wvmcs(cpu->hvf_fd, VMCS_HOST_FS_BASE, data); 787 break; 788 case MSR_STAR: 789 abort(); 790 break; 791 case MSR_LSTAR: 792 abort(); 793 break; 794 case MSR_CSTAR: 795 abort(); 796 break; 797 case MSR_EFER: 798 /*printf("new efer %llx\n", EFER(cpu));*/ 799 wvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER, data); 800 if (data & MSR_EFER_NXE) { 801 hv_vcpu_invalidate_tlb(cpu->hvf_fd); 802 } 803 break; 804 case MSR_MTRRphysBase(0): 805 case MSR_MTRRphysBase(1): 806 case MSR_MTRRphysBase(2): 807 case MSR_MTRRphysBase(3): 808 case MSR_MTRRphysBase(4): 809 case MSR_MTRRphysBase(5): 810 case MSR_MTRRphysBase(6): 811 case MSR_MTRRphysBase(7): 812 env->mtrr_var[(ECX(env) - MSR_MTRRphysBase(0)) / 2].base = data; 813 break; 814 case MSR_MTRRphysMask(0): 815 case MSR_MTRRphysMask(1): 816 case MSR_MTRRphysMask(2): 817 case MSR_MTRRphysMask(3): 818 case MSR_MTRRphysMask(4): 819 case MSR_MTRRphysMask(5): 820 case MSR_MTRRphysMask(6): 821 case MSR_MTRRphysMask(7): 822 env->mtrr_var[(ECX(env) - MSR_MTRRphysMask(0)) / 2].mask = data; 823 break; 824 case MSR_MTRRfix64K_00000: 825 env->mtrr_fixed[ECX(env) - MSR_MTRRfix64K_00000] = data; 826 break; 827 case MSR_MTRRfix16K_80000: 828 case MSR_MTRRfix16K_A0000: 829 env->mtrr_fixed[ECX(env) - MSR_MTRRfix16K_80000 + 1] = data; 830 break; 831 case MSR_MTRRfix4K_C0000: 832 case MSR_MTRRfix4K_C8000: 833 case MSR_MTRRfix4K_D0000: 834 case MSR_MTRRfix4K_D8000: 835 case MSR_MTRRfix4K_E0000: 836 case MSR_MTRRfix4K_E8000: 837 case MSR_MTRRfix4K_F0000: 838 case MSR_MTRRfix4K_F8000: 839 env->mtrr_fixed[ECX(env) - MSR_MTRRfix4K_C0000 + 3] = data; 840 break; 841 case MSR_MTRRdefType: 842 env->mtrr_deftype = data; 843 break; 844 default: 845 break; 846 } 847 848 /* Related to support known hypervisor interface */ 849 /* if (g_hypervisor_iface) 850 g_hypervisor_iface->wrmsr_handler(cpu, msr, data); 851 852 printf("write msr %llx\n", RCX(cpu));*/ 853 } 854 855 static void exec_wrmsr(struct CPUX86State *env, struct x86_decode *decode) 856 { 857 simulate_wrmsr(env_cpu(env)); 858 RIP(env) += decode->len; 859 } 860 861 /* 862 * flag: 863 * 0 - bt, 1 - btc, 2 - bts, 3 - btr 864 */ 865 static void do_bt(struct CPUX86State *env, struct x86_decode *decode, int flag) 866 { 867 int32_t displacement; 868 uint8_t index; 869 bool cf; 870 int mask = (4 == decode->operand_size) ? 0x1f : 0xf; 871 872 VM_PANIC_ON(decode->rex.rex); 873 874 fetch_operands(env, decode, 2, false, true, false); 875 index = decode->op[1].val & mask; 876 877 if (decode->op[0].type != X86_VAR_REG) { 878 if (4 == decode->operand_size) { 879 displacement = ((int32_t) (decode->op[1].val & 0xffffffe0)) / 32; 880 decode->op[0].ptr += 4 * displacement; 881 } else if (2 == decode->operand_size) { 882 displacement = ((int16_t) (decode->op[1].val & 0xfff0)) / 16; 883 decode->op[0].ptr += 2 * displacement; 884 } else { 885 VM_PANIC("bt 64bit\n"); 886 } 887 } 888 decode->op[0].val = read_val_ext(env, decode->op[0].ptr, 889 decode->operand_size); 890 cf = (decode->op[0].val >> index) & 0x01; 891 892 switch (flag) { 893 case 0: 894 set_CF(env, cf); 895 return; 896 case 1: 897 decode->op[0].val ^= (1u << index); 898 break; 899 case 2: 900 decode->op[0].val |= (1u << index); 901 break; 902 case 3: 903 decode->op[0].val &= ~(1u << index); 904 break; 905 } 906 write_val_ext(env, decode->op[0].ptr, decode->op[0].val, 907 decode->operand_size); 908 set_CF(env, cf); 909 } 910 911 static void exec_bt(struct CPUX86State *env, struct x86_decode *decode) 912 { 913 do_bt(env, decode, 0); 914 RIP(env) += decode->len; 915 } 916 917 static void exec_btc(struct CPUX86State *env, struct x86_decode *decode) 918 { 919 do_bt(env, decode, 1); 920 RIP(env) += decode->len; 921 } 922 923 static void exec_btr(struct CPUX86State *env, struct x86_decode *decode) 924 { 925 do_bt(env, decode, 3); 926 RIP(env) += decode->len; 927 } 928 929 static void exec_bts(struct CPUX86State *env, struct x86_decode *decode) 930 { 931 do_bt(env, decode, 2); 932 RIP(env) += decode->len; 933 } 934 935 void exec_shl(struct CPUX86State *env, struct x86_decode *decode) 936 { 937 uint8_t count; 938 int of = 0, cf = 0; 939 940 fetch_operands(env, decode, 2, true, true, false); 941 942 count = decode->op[1].val; 943 count &= 0x1f; /* count is masked to 5 bits*/ 944 if (!count) { 945 goto exit; 946 } 947 948 switch (decode->operand_size) { 949 case 1: 950 { 951 uint8_t res = 0; 952 if (count <= 8) { 953 res = (decode->op[0].val << count); 954 cf = (decode->op[0].val >> (8 - count)) & 0x1; 955 of = cf ^ (res >> 7); 956 } 957 958 write_val_ext(env, decode->op[0].ptr, res, 1); 959 SET_FLAGS_OSZAPC_LOGIC8(env, 0, 0, res); 960 SET_FLAGS_OxxxxC(env, of, cf); 961 break; 962 } 963 case 2: 964 { 965 uint16_t res = 0; 966 967 /* from bochs */ 968 if (count <= 16) { 969 res = (decode->op[0].val << count); 970 cf = (decode->op[0].val >> (16 - count)) & 0x1; 971 of = cf ^ (res >> 15); /* of = cf ^ result15 */ 972 } 973 974 write_val_ext(env, decode->op[0].ptr, res, 2); 975 SET_FLAGS_OSZAPC_LOGIC16(env, 0, 0, res); 976 SET_FLAGS_OxxxxC(env, of, cf); 977 break; 978 } 979 case 4: 980 { 981 uint32_t res = decode->op[0].val << count; 982 983 write_val_ext(env, decode->op[0].ptr, res, 4); 984 SET_FLAGS_OSZAPC_LOGIC32(env, 0, 0, res); 985 cf = (decode->op[0].val >> (32 - count)) & 0x1; 986 of = cf ^ (res >> 31); /* of = cf ^ result31 */ 987 SET_FLAGS_OxxxxC(env, of, cf); 988 break; 989 } 990 default: 991 abort(); 992 } 993 994 exit: 995 /* lflags_to_rflags(env); */ 996 RIP(env) += decode->len; 997 } 998 999 void exec_movsx(CPUX86State *env, struct x86_decode *decode) 1000 { 1001 int src_op_size; 1002 int op_size = decode->operand_size; 1003 1004 fetch_operands(env, decode, 2, false, false, false); 1005 1006 if (0xbe == decode->opcode[1]) { 1007 src_op_size = 1; 1008 } else { 1009 src_op_size = 2; 1010 } 1011 1012 decode->operand_size = src_op_size; 1013 calc_modrm_operand(env, decode, &decode->op[1]); 1014 decode->op[1].val = sign(read_val_ext(env, decode->op[1].ptr, src_op_size), 1015 src_op_size); 1016 1017 write_val_ext(env, decode->op[0].ptr, decode->op[1].val, op_size); 1018 1019 RIP(env) += decode->len; 1020 } 1021 1022 void exec_ror(struct CPUX86State *env, struct x86_decode *decode) 1023 { 1024 uint8_t count; 1025 1026 fetch_operands(env, decode, 2, true, true, false); 1027 count = decode->op[1].val; 1028 1029 switch (decode->operand_size) { 1030 case 1: 1031 { 1032 uint32_t bit6, bit7; 1033 uint8_t res; 1034 1035 if ((count & 0x07) == 0) { 1036 if (count & 0x18) { 1037 bit6 = ((uint8_t)decode->op[0].val >> 6) & 1; 1038 bit7 = ((uint8_t)decode->op[0].val >> 7) & 1; 1039 SET_FLAGS_OxxxxC(env, bit6 ^ bit7, bit7); 1040 } 1041 } else { 1042 count &= 0x7; /* use only bottom 3 bits */ 1043 res = ((uint8_t)decode->op[0].val >> count) | 1044 ((uint8_t)decode->op[0].val << (8 - count)); 1045 write_val_ext(env, decode->op[0].ptr, res, 1); 1046 bit6 = (res >> 6) & 1; 1047 bit7 = (res >> 7) & 1; 1048 /* set eflags: ROR count affects the following flags: C, O */ 1049 SET_FLAGS_OxxxxC(env, bit6 ^ bit7, bit7); 1050 } 1051 break; 1052 } 1053 case 2: 1054 { 1055 uint32_t bit14, bit15; 1056 uint16_t res; 1057 1058 if ((count & 0x0f) == 0) { 1059 if (count & 0x10) { 1060 bit14 = ((uint16_t)decode->op[0].val >> 14) & 1; 1061 bit15 = ((uint16_t)decode->op[0].val >> 15) & 1; 1062 /* of = result14 ^ result15 */ 1063 SET_FLAGS_OxxxxC(env, bit14 ^ bit15, bit15); 1064 } 1065 } else { 1066 count &= 0x0f; /* use only 4 LSB's */ 1067 res = ((uint16_t)decode->op[0].val >> count) | 1068 ((uint16_t)decode->op[0].val << (16 - count)); 1069 write_val_ext(env, decode->op[0].ptr, res, 2); 1070 1071 bit14 = (res >> 14) & 1; 1072 bit15 = (res >> 15) & 1; 1073 /* of = result14 ^ result15 */ 1074 SET_FLAGS_OxxxxC(env, bit14 ^ bit15, bit15); 1075 } 1076 break; 1077 } 1078 case 4: 1079 { 1080 uint32_t bit31, bit30; 1081 uint32_t res; 1082 1083 count &= 0x1f; 1084 if (count) { 1085 res = ((uint32_t)decode->op[0].val >> count) | 1086 ((uint32_t)decode->op[0].val << (32 - count)); 1087 write_val_ext(env, decode->op[0].ptr, res, 4); 1088 1089 bit31 = (res >> 31) & 1; 1090 bit30 = (res >> 30) & 1; 1091 /* of = result30 ^ result31 */ 1092 SET_FLAGS_OxxxxC(env, bit30 ^ bit31, bit31); 1093 } 1094 break; 1095 } 1096 } 1097 RIP(env) += decode->len; 1098 } 1099 1100 void exec_rol(struct CPUX86State *env, struct x86_decode *decode) 1101 { 1102 uint8_t count; 1103 1104 fetch_operands(env, decode, 2, true, true, false); 1105 count = decode->op[1].val; 1106 1107 switch (decode->operand_size) { 1108 case 1: 1109 { 1110 uint32_t bit0, bit7; 1111 uint8_t res; 1112 1113 if ((count & 0x07) == 0) { 1114 if (count & 0x18) { 1115 bit0 = ((uint8_t)decode->op[0].val & 1); 1116 bit7 = ((uint8_t)decode->op[0].val >> 7); 1117 SET_FLAGS_OxxxxC(env, bit0 ^ bit7, bit0); 1118 } 1119 } else { 1120 count &= 0x7; /* use only lowest 3 bits */ 1121 res = ((uint8_t)decode->op[0].val << count) | 1122 ((uint8_t)decode->op[0].val >> (8 - count)); 1123 1124 write_val_ext(env, decode->op[0].ptr, res, 1); 1125 /* set eflags: 1126 * ROL count affects the following flags: C, O 1127 */ 1128 bit0 = (res & 1); 1129 bit7 = (res >> 7); 1130 SET_FLAGS_OxxxxC(env, bit0 ^ bit7, bit0); 1131 } 1132 break; 1133 } 1134 case 2: 1135 { 1136 uint32_t bit0, bit15; 1137 uint16_t res; 1138 1139 if ((count & 0x0f) == 0) { 1140 if (count & 0x10) { 1141 bit0 = ((uint16_t)decode->op[0].val & 0x1); 1142 bit15 = ((uint16_t)decode->op[0].val >> 15); 1143 /* of = cf ^ result15 */ 1144 SET_FLAGS_OxxxxC(env, bit0 ^ bit15, bit0); 1145 } 1146 } else { 1147 count &= 0x0f; /* only use bottom 4 bits */ 1148 res = ((uint16_t)decode->op[0].val << count) | 1149 ((uint16_t)decode->op[0].val >> (16 - count)); 1150 1151 write_val_ext(env, decode->op[0].ptr, res, 2); 1152 bit0 = (res & 0x1); 1153 bit15 = (res >> 15); 1154 /* of = cf ^ result15 */ 1155 SET_FLAGS_OxxxxC(env, bit0 ^ bit15, bit0); 1156 } 1157 break; 1158 } 1159 case 4: 1160 { 1161 uint32_t bit0, bit31; 1162 uint32_t res; 1163 1164 count &= 0x1f; 1165 if (count) { 1166 res = ((uint32_t)decode->op[0].val << count) | 1167 ((uint32_t)decode->op[0].val >> (32 - count)); 1168 1169 write_val_ext(env, decode->op[0].ptr, res, 4); 1170 bit0 = (res & 0x1); 1171 bit31 = (res >> 31); 1172 /* of = cf ^ result31 */ 1173 SET_FLAGS_OxxxxC(env, bit0 ^ bit31, bit0); 1174 } 1175 break; 1176 } 1177 } 1178 RIP(env) += decode->len; 1179 } 1180 1181 1182 void exec_rcl(struct CPUX86State *env, struct x86_decode *decode) 1183 { 1184 uint8_t count; 1185 int of = 0, cf = 0; 1186 1187 fetch_operands(env, decode, 2, true, true, false); 1188 count = decode->op[1].val & 0x1f; 1189 1190 switch (decode->operand_size) { 1191 case 1: 1192 { 1193 uint8_t op1_8 = decode->op[0].val; 1194 uint8_t res; 1195 count %= 9; 1196 if (!count) { 1197 break; 1198 } 1199 1200 if (1 == count) { 1201 res = (op1_8 << 1) | get_CF(env); 1202 } else { 1203 res = (op1_8 << count) | (get_CF(env) << (count - 1)) | 1204 (op1_8 >> (9 - count)); 1205 } 1206 1207 write_val_ext(env, decode->op[0].ptr, res, 1); 1208 1209 cf = (op1_8 >> (8 - count)) & 0x01; 1210 of = cf ^ (res >> 7); /* of = cf ^ result7 */ 1211 SET_FLAGS_OxxxxC(env, of, cf); 1212 break; 1213 } 1214 case 2: 1215 { 1216 uint16_t res; 1217 uint16_t op1_16 = decode->op[0].val; 1218 1219 count %= 17; 1220 if (!count) { 1221 break; 1222 } 1223 1224 if (1 == count) { 1225 res = (op1_16 << 1) | get_CF(env); 1226 } else if (count == 16) { 1227 res = (get_CF(env) << 15) | (op1_16 >> 1); 1228 } else { /* 2..15 */ 1229 res = (op1_16 << count) | (get_CF(env) << (count - 1)) | 1230 (op1_16 >> (17 - count)); 1231 } 1232 1233 write_val_ext(env, decode->op[0].ptr, res, 2); 1234 1235 cf = (op1_16 >> (16 - count)) & 0x1; 1236 of = cf ^ (res >> 15); /* of = cf ^ result15 */ 1237 SET_FLAGS_OxxxxC(env, of, cf); 1238 break; 1239 } 1240 case 4: 1241 { 1242 uint32_t res; 1243 uint32_t op1_32 = decode->op[0].val; 1244 1245 if (!count) { 1246 break; 1247 } 1248 1249 if (1 == count) { 1250 res = (op1_32 << 1) | get_CF(env); 1251 } else { 1252 res = (op1_32 << count) | (get_CF(env) << (count - 1)) | 1253 (op1_32 >> (33 - count)); 1254 } 1255 1256 write_val_ext(env, decode->op[0].ptr, res, 4); 1257 1258 cf = (op1_32 >> (32 - count)) & 0x1; 1259 of = cf ^ (res >> 31); /* of = cf ^ result31 */ 1260 SET_FLAGS_OxxxxC(env, of, cf); 1261 break; 1262 } 1263 } 1264 RIP(env) += decode->len; 1265 } 1266 1267 void exec_rcr(struct CPUX86State *env, struct x86_decode *decode) 1268 { 1269 uint8_t count; 1270 int of = 0, cf = 0; 1271 1272 fetch_operands(env, decode, 2, true, true, false); 1273 count = decode->op[1].val & 0x1f; 1274 1275 switch (decode->operand_size) { 1276 case 1: 1277 { 1278 uint8_t op1_8 = decode->op[0].val; 1279 uint8_t res; 1280 1281 count %= 9; 1282 if (!count) { 1283 break; 1284 } 1285 res = (op1_8 >> count) | (get_CF(env) << (8 - count)) | 1286 (op1_8 << (9 - count)); 1287 1288 write_val_ext(env, decode->op[0].ptr, res, 1); 1289 1290 cf = (op1_8 >> (count - 1)) & 0x1; 1291 of = (((res << 1) ^ res) >> 7) & 0x1; /* of = result6 ^ result7 */ 1292 SET_FLAGS_OxxxxC(env, of, cf); 1293 break; 1294 } 1295 case 2: 1296 { 1297 uint16_t op1_16 = decode->op[0].val; 1298 uint16_t res; 1299 1300 count %= 17; 1301 if (!count) { 1302 break; 1303 } 1304 res = (op1_16 >> count) | (get_CF(env) << (16 - count)) | 1305 (op1_16 << (17 - count)); 1306 1307 write_val_ext(env, decode->op[0].ptr, res, 2); 1308 1309 cf = (op1_16 >> (count - 1)) & 0x1; 1310 of = ((uint16_t)((res << 1) ^ res) >> 15) & 0x1; /* of = result15 ^ 1311 result14 */ 1312 SET_FLAGS_OxxxxC(env, of, cf); 1313 break; 1314 } 1315 case 4: 1316 { 1317 uint32_t res; 1318 uint32_t op1_32 = decode->op[0].val; 1319 1320 if (!count) { 1321 break; 1322 } 1323 1324 if (1 == count) { 1325 res = (op1_32 >> 1) | (get_CF(env) << 31); 1326 } else { 1327 res = (op1_32 >> count) | (get_CF(env) << (32 - count)) | 1328 (op1_32 << (33 - count)); 1329 } 1330 1331 write_val_ext(env, decode->op[0].ptr, res, 4); 1332 1333 cf = (op1_32 >> (count - 1)) & 0x1; 1334 of = ((res << 1) ^ res) >> 31; /* of = result30 ^ result31 */ 1335 SET_FLAGS_OxxxxC(env, of, cf); 1336 break; 1337 } 1338 } 1339 RIP(env) += decode->len; 1340 } 1341 1342 static void exec_xchg(struct CPUX86State *env, struct x86_decode *decode) 1343 { 1344 fetch_operands(env, decode, 2, true, true, false); 1345 1346 write_val_ext(env, decode->op[0].ptr, decode->op[1].val, 1347 decode->operand_size); 1348 write_val_ext(env, decode->op[1].ptr, decode->op[0].val, 1349 decode->operand_size); 1350 1351 RIP(env) += decode->len; 1352 } 1353 1354 static void exec_xadd(struct CPUX86State *env, struct x86_decode *decode) 1355 { 1356 EXEC_2OP_FLAGS_CMD(env, decode, +, SET_FLAGS_OSZAPC_ADD, true); 1357 write_val_ext(env, decode->op[1].ptr, decode->op[0].val, 1358 decode->operand_size); 1359 1360 RIP(env) += decode->len; 1361 } 1362 1363 static struct cmd_handler { 1364 enum x86_decode_cmd cmd; 1365 void (*handler)(struct CPUX86State *env, struct x86_decode *ins); 1366 } handlers[] = { 1367 {X86_DECODE_CMD_INVL, NULL,}, 1368 {X86_DECODE_CMD_MOV, exec_mov}, 1369 {X86_DECODE_CMD_ADD, exec_add}, 1370 {X86_DECODE_CMD_OR, exec_or}, 1371 {X86_DECODE_CMD_ADC, exec_adc}, 1372 {X86_DECODE_CMD_SBB, exec_sbb}, 1373 {X86_DECODE_CMD_AND, exec_and}, 1374 {X86_DECODE_CMD_SUB, exec_sub}, 1375 {X86_DECODE_CMD_NEG, exec_neg}, 1376 {X86_DECODE_CMD_XOR, exec_xor}, 1377 {X86_DECODE_CMD_CMP, exec_cmp}, 1378 {X86_DECODE_CMD_INC, exec_inc}, 1379 {X86_DECODE_CMD_DEC, exec_dec}, 1380 {X86_DECODE_CMD_TST, exec_tst}, 1381 {X86_DECODE_CMD_NOT, exec_not}, 1382 {X86_DECODE_CMD_MOVZX, exec_movzx}, 1383 {X86_DECODE_CMD_OUT, exec_out}, 1384 {X86_DECODE_CMD_IN, exec_in}, 1385 {X86_DECODE_CMD_INS, exec_ins}, 1386 {X86_DECODE_CMD_OUTS, exec_outs}, 1387 {X86_DECODE_CMD_RDMSR, exec_rdmsr}, 1388 {X86_DECODE_CMD_WRMSR, exec_wrmsr}, 1389 {X86_DECODE_CMD_BT, exec_bt}, 1390 {X86_DECODE_CMD_BTR, exec_btr}, 1391 {X86_DECODE_CMD_BTC, exec_btc}, 1392 {X86_DECODE_CMD_BTS, exec_bts}, 1393 {X86_DECODE_CMD_SHL, exec_shl}, 1394 {X86_DECODE_CMD_ROL, exec_rol}, 1395 {X86_DECODE_CMD_ROR, exec_ror}, 1396 {X86_DECODE_CMD_RCR, exec_rcr}, 1397 {X86_DECODE_CMD_RCL, exec_rcl}, 1398 /*{X86_DECODE_CMD_CPUID, exec_cpuid},*/ 1399 {X86_DECODE_CMD_MOVS, exec_movs}, 1400 {X86_DECODE_CMD_CMPS, exec_cmps}, 1401 {X86_DECODE_CMD_STOS, exec_stos}, 1402 {X86_DECODE_CMD_SCAS, exec_scas}, 1403 {X86_DECODE_CMD_LODS, exec_lods}, 1404 {X86_DECODE_CMD_MOVSX, exec_movsx}, 1405 {X86_DECODE_CMD_XCHG, exec_xchg}, 1406 {X86_DECODE_CMD_XADD, exec_xadd}, 1407 }; 1408 1409 static struct cmd_handler _cmd_handler[X86_DECODE_CMD_LAST]; 1410 1411 static void init_cmd_handler() 1412 { 1413 int i; 1414 for (i = 0; i < ARRAY_SIZE(handlers); i++) { 1415 _cmd_handler[handlers[i].cmd] = handlers[i]; 1416 } 1417 } 1418 1419 void load_regs(struct CPUState *cpu) 1420 { 1421 X86CPU *x86_cpu = X86_CPU(cpu); 1422 CPUX86State *env = &x86_cpu->env; 1423 1424 int i = 0; 1425 RRX(env, R_EAX) = rreg(cpu->hvf_fd, HV_X86_RAX); 1426 RRX(env, R_EBX) = rreg(cpu->hvf_fd, HV_X86_RBX); 1427 RRX(env, R_ECX) = rreg(cpu->hvf_fd, HV_X86_RCX); 1428 RRX(env, R_EDX) = rreg(cpu->hvf_fd, HV_X86_RDX); 1429 RRX(env, R_ESI) = rreg(cpu->hvf_fd, HV_X86_RSI); 1430 RRX(env, R_EDI) = rreg(cpu->hvf_fd, HV_X86_RDI); 1431 RRX(env, R_ESP) = rreg(cpu->hvf_fd, HV_X86_RSP); 1432 RRX(env, R_EBP) = rreg(cpu->hvf_fd, HV_X86_RBP); 1433 for (i = 8; i < 16; i++) { 1434 RRX(env, i) = rreg(cpu->hvf_fd, HV_X86_RAX + i); 1435 } 1436 1437 RFLAGS(env) = rreg(cpu->hvf_fd, HV_X86_RFLAGS); 1438 rflags_to_lflags(env); 1439 RIP(env) = rreg(cpu->hvf_fd, HV_X86_RIP); 1440 } 1441 1442 void store_regs(struct CPUState *cpu) 1443 { 1444 X86CPU *x86_cpu = X86_CPU(cpu); 1445 CPUX86State *env = &x86_cpu->env; 1446 1447 int i = 0; 1448 wreg(cpu->hvf_fd, HV_X86_RAX, RAX(env)); 1449 wreg(cpu->hvf_fd, HV_X86_RBX, RBX(env)); 1450 wreg(cpu->hvf_fd, HV_X86_RCX, RCX(env)); 1451 wreg(cpu->hvf_fd, HV_X86_RDX, RDX(env)); 1452 wreg(cpu->hvf_fd, HV_X86_RSI, RSI(env)); 1453 wreg(cpu->hvf_fd, HV_X86_RDI, RDI(env)); 1454 wreg(cpu->hvf_fd, HV_X86_RBP, RBP(env)); 1455 wreg(cpu->hvf_fd, HV_X86_RSP, RSP(env)); 1456 for (i = 8; i < 16; i++) { 1457 wreg(cpu->hvf_fd, HV_X86_RAX + i, RRX(env, i)); 1458 } 1459 1460 lflags_to_rflags(env); 1461 wreg(cpu->hvf_fd, HV_X86_RFLAGS, RFLAGS(env)); 1462 macvm_set_rip(cpu, RIP(env)); 1463 } 1464 1465 bool exec_instruction(struct CPUX86State *env, struct x86_decode *ins) 1466 { 1467 /*if (hvf_vcpu_id(cpu)) 1468 printf("%d, %llx: exec_instruction %s\n", hvf_vcpu_id(cpu), RIP(cpu), 1469 decode_cmd_to_string(ins->cmd));*/ 1470 1471 if (!_cmd_handler[ins->cmd].handler) { 1472 printf("Unimplemented handler (%llx) for %d (%x %x) \n", RIP(env), 1473 ins->cmd, ins->opcode[0], 1474 ins->opcode_len > 1 ? ins->opcode[1] : 0); 1475 RIP(env) += ins->len; 1476 return true; 1477 } 1478 1479 _cmd_handler[ins->cmd].handler(env, ins); 1480 return true; 1481 } 1482 1483 void init_emu() 1484 { 1485 init_cmd_handler(); 1486 } 1487