xref: /openbmc/qemu/target/i386/hvf/x86.c (revision eaf2bd29)
1 /*
2  * Copyright (C) 2016 Veertu Inc,
3  * Copyright (C) 2017 Google Inc,
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU Lesser General Public
7  * License as published by the Free Software Foundation; either
8  * version 2.1 of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public
16  * License along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "qemu/osdep.h"
20 
21 #include "cpu.h"
22 #include "x86_decode.h"
23 #include "x86_emu.h"
24 #include "vmcs.h"
25 #include "vmx.h"
26 #include "x86_mmu.h"
27 #include "x86_descr.h"
28 
29 /* static uint32_t x86_segment_access_rights(struct x86_segment_descriptor *var)
30 {
31    uint32_t ar;
32 
33    if (!var->p) {
34        ar = 1 << 16;
35        return ar;
36    }
37 
38    ar = var->type & 15;
39    ar |= (var->s & 1) << 4;
40    ar |= (var->dpl & 3) << 5;
41    ar |= (var->p & 1) << 7;
42    ar |= (var->avl & 1) << 12;
43    ar |= (var->l & 1) << 13;
44    ar |= (var->db & 1) << 14;
45    ar |= (var->g & 1) << 15;
46    return ar;
47 }*/
48 
49 bool x86_read_segment_descriptor(CPUState *cpu,
50                                  struct x86_segment_descriptor *desc,
51                                  x68_segment_selector sel)
52 {
53     target_ulong base;
54     uint32_t limit;
55 
56     memset(desc, 0, sizeof(*desc));
57 
58     /* valid gdt descriptors start from index 1 */
59     if (!sel.index && GDT_SEL == sel.ti) {
60         return false;
61     }
62 
63     if (GDT_SEL == sel.ti) {
64         base  = rvmcs(cpu->accel->fd, VMCS_GUEST_GDTR_BASE);
65         limit = rvmcs(cpu->accel->fd, VMCS_GUEST_GDTR_LIMIT);
66     } else {
67         base  = rvmcs(cpu->accel->fd, VMCS_GUEST_LDTR_BASE);
68         limit = rvmcs(cpu->accel->fd, VMCS_GUEST_LDTR_LIMIT);
69     }
70 
71     if (sel.index * 8 >= limit) {
72         return false;
73     }
74 
75     vmx_read_mem(cpu, desc, base + sel.index * 8, sizeof(*desc));
76     return true;
77 }
78 
79 bool x86_write_segment_descriptor(CPUState *cpu,
80                                   struct x86_segment_descriptor *desc,
81                                   x68_segment_selector sel)
82 {
83     target_ulong base;
84     uint32_t limit;
85 
86     if (GDT_SEL == sel.ti) {
87         base  = rvmcs(cpu->accel->fd, VMCS_GUEST_GDTR_BASE);
88         limit = rvmcs(cpu->accel->fd, VMCS_GUEST_GDTR_LIMIT);
89     } else {
90         base  = rvmcs(cpu->accel->fd, VMCS_GUEST_LDTR_BASE);
91         limit = rvmcs(cpu->accel->fd, VMCS_GUEST_LDTR_LIMIT);
92     }
93 
94     if (sel.index * 8 >= limit) {
95         printf("%s: gdt limit\n", __func__);
96         return false;
97     }
98     vmx_write_mem(cpu, base + sel.index * 8, desc, sizeof(*desc));
99     return true;
100 }
101 
102 bool x86_read_call_gate(CPUState *cpu, struct x86_call_gate *idt_desc,
103                         int gate)
104 {
105     target_ulong base  = rvmcs(cpu->accel->fd, VMCS_GUEST_IDTR_BASE);
106     uint32_t limit = rvmcs(cpu->accel->fd, VMCS_GUEST_IDTR_LIMIT);
107 
108     memset(idt_desc, 0, sizeof(*idt_desc));
109     if (gate * 8 >= limit) {
110         printf("%s: idt limit\n", __func__);
111         return false;
112     }
113 
114     vmx_read_mem(cpu, idt_desc, base + gate * 8, sizeof(*idt_desc));
115     return true;
116 }
117 
118 bool x86_is_protected(CPUState *cpu)
119 {
120     uint64_t cr0 = rvmcs(cpu->accel->fd, VMCS_GUEST_CR0);
121     return cr0 & CR0_PE_MASK;
122 }
123 
124 bool x86_is_real(CPUState *cpu)
125 {
126     return !x86_is_protected(cpu);
127 }
128 
129 bool x86_is_v8086(CPUState *cpu)
130 {
131     X86CPU *x86_cpu = X86_CPU(cpu);
132     CPUX86State *env = &x86_cpu->env;
133     return x86_is_protected(cpu) && (env->eflags & VM_MASK);
134 }
135 
136 bool x86_is_long_mode(CPUState *cpu)
137 {
138     return rvmcs(cpu->accel->fd, VMCS_GUEST_IA32_EFER) & MSR_EFER_LMA;
139 }
140 
141 bool x86_is_long64_mode(CPUState *cpu)
142 {
143     struct vmx_segment desc;
144     vmx_read_segment_descriptor(cpu, &desc, R_CS);
145 
146     return x86_is_long_mode(cpu) && ((desc.ar >> 13) & 1);
147 }
148 
149 bool x86_is_paging_mode(CPUState *cpu)
150 {
151     uint64_t cr0 = rvmcs(cpu->accel->fd, VMCS_GUEST_CR0);
152     return cr0 & CR0_PG_MASK;
153 }
154 
155 bool x86_is_pae_enabled(CPUState *cpu)
156 {
157     uint64_t cr4 = rvmcs(cpu->accel->fd, VMCS_GUEST_CR4);
158     return cr4 & CR4_PAE_MASK;
159 }
160 
161 target_ulong linear_addr(CPUState *cpu, target_ulong addr, X86Seg seg)
162 {
163     return vmx_read_segment_base(cpu, seg) + addr;
164 }
165 
166 target_ulong linear_addr_size(CPUState *cpu, target_ulong addr, int size,
167                               X86Seg seg)
168 {
169     switch (size) {
170     case 2:
171         addr = (uint16_t)addr;
172         break;
173     case 4:
174         addr = (uint32_t)addr;
175         break;
176     default:
177         break;
178     }
179     return linear_addr(cpu, addr, seg);
180 }
181 
182 target_ulong linear_rip(CPUState *cpu, target_ulong rip)
183 {
184     return linear_addr(cpu, rip, R_CS);
185 }
186