xref: /openbmc/qemu/target/i386/hvf/vmx.h (revision b14df228)
1 /*
2  * Copyright (C) 2016 Veertu Inc,
3  * Copyright (C) 2017 Google Inc,
4  * Based on Veertu vddh/vmm/vmx.h
5  *
6  * Interfaces to Hypervisor.framework to read/write X86 registers and VMCS.
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with this program; if not, see <http://www.gnu.org/licenses/>.
20  *
21  * This file contain code under public domain from the hvdos project:
22  * https://github.com/mist64/hvdos
23  */
24 
25 #ifndef VMX_H
26 #define VMX_H
27 
28 #include <Hypervisor/hv.h>
29 #include <Hypervisor/hv_vmx.h>
30 #include "vmcs.h"
31 #include "cpu.h"
32 #include "x86.h"
33 #include "sysemu/hvf.h"
34 #include "sysemu/hvf_int.h"
35 
36 #include "exec/address-spaces.h"
37 
38 static inline uint64_t rreg(hv_vcpuid_t vcpu, hv_x86_reg_t reg)
39 {
40     uint64_t v;
41 
42     if (hv_vcpu_read_register(vcpu, reg, &v)) {
43         abort();
44     }
45 
46     return v;
47 }
48 
49 /* write GPR */
50 static inline void wreg(hv_vcpuid_t vcpu, hv_x86_reg_t reg, uint64_t v)
51 {
52     if (hv_vcpu_write_register(vcpu, reg, v)) {
53         abort();
54     }
55 }
56 
57 /* read VMCS field */
58 static inline uint64_t rvmcs(hv_vcpuid_t vcpu, uint32_t field)
59 {
60     uint64_t v;
61 
62     hv_vmx_vcpu_read_vmcs(vcpu, field, &v);
63 
64     return v;
65 }
66 
67 /* write VMCS field */
68 static inline void wvmcs(hv_vcpuid_t vcpu, uint32_t field, uint64_t v)
69 {
70     hv_vmx_vcpu_write_vmcs(vcpu, field, v);
71 }
72 
73 /* desired control word constrained by hardware/hypervisor capabilities */
74 static inline uint64_t cap2ctrl(uint64_t cap, uint64_t ctrl)
75 {
76     return (ctrl | (cap & 0xffffffff)) & (cap >> 32);
77 }
78 
79 #define VM_ENTRY_GUEST_LMA (1LL << 9)
80 
81 #define AR_TYPE_ACCESSES_MASK 1
82 #define AR_TYPE_READABLE_MASK (1 << 1)
83 #define AR_TYPE_WRITABLE_MASK (1 << 2)
84 #define AR_TYPE_CODE_MASK (1 << 3)
85 #define AR_TYPE_MASK 0x0f
86 #define AR_TYPE_BUSY_64_TSS 11
87 #define AR_TYPE_BUSY_32_TSS 11
88 #define AR_TYPE_BUSY_16_TSS 3
89 #define AR_TYPE_LDT 2
90 
91 static void enter_long_mode(hv_vcpuid_t vcpu, uint64_t cr0, uint64_t efer)
92 {
93     uint64_t entry_ctls;
94 
95     efer |= MSR_EFER_LMA;
96     wvmcs(vcpu, VMCS_GUEST_IA32_EFER, efer);
97     entry_ctls = rvmcs(vcpu, VMCS_ENTRY_CTLS);
98     wvmcs(vcpu, VMCS_ENTRY_CTLS, rvmcs(vcpu, VMCS_ENTRY_CTLS) |
99           VM_ENTRY_GUEST_LMA);
100 
101     uint64_t guest_tr_ar = rvmcs(vcpu, VMCS_GUEST_TR_ACCESS_RIGHTS);
102     if ((efer & MSR_EFER_LME) &&
103         (guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
104         wvmcs(vcpu, VMCS_GUEST_TR_ACCESS_RIGHTS,
105               (guest_tr_ar & ~AR_TYPE_MASK) | AR_TYPE_BUSY_64_TSS);
106     }
107 }
108 
109 static void exit_long_mode(hv_vcpuid_t vcpu, uint64_t cr0, uint64_t efer)
110 {
111     uint64_t entry_ctls;
112 
113     entry_ctls = rvmcs(vcpu, VMCS_ENTRY_CTLS);
114     wvmcs(vcpu, VMCS_ENTRY_CTLS, entry_ctls & ~VM_ENTRY_GUEST_LMA);
115 
116     efer &= ~MSR_EFER_LMA;
117     wvmcs(vcpu, VMCS_GUEST_IA32_EFER, efer);
118 }
119 
120 static inline void macvm_set_cr0(hv_vcpuid_t vcpu, uint64_t cr0)
121 {
122     int i;
123     uint64_t pdpte[4] = {0, 0, 0, 0};
124     uint64_t efer = rvmcs(vcpu, VMCS_GUEST_IA32_EFER);
125     uint64_t old_cr0 = rvmcs(vcpu, VMCS_GUEST_CR0);
126     uint64_t changed_cr0 = old_cr0 ^ cr0;
127     uint64_t mask = CR0_PG_MASK | CR0_CD_MASK | CR0_NW_MASK |
128                     CR0_NE_MASK | CR0_ET_MASK;
129     uint64_t entry_ctls;
130 
131     if ((cr0 & CR0_PG_MASK) && (rvmcs(vcpu, VMCS_GUEST_CR4) & CR4_PAE_MASK) &&
132         !(efer & MSR_EFER_LME)) {
133         address_space_read(&address_space_memory,
134                            rvmcs(vcpu, VMCS_GUEST_CR3) & ~0x1f,
135                            MEMTXATTRS_UNSPECIFIED, pdpte, 32);
136         /* Only set PDPTE when appropriate. */
137         for (i = 0; i < 4; i++) {
138             wvmcs(vcpu, VMCS_GUEST_PDPTE0 + i * 2, pdpte[i]);
139         }
140     }
141 
142     wvmcs(vcpu, VMCS_CR0_MASK, mask);
143     wvmcs(vcpu, VMCS_CR0_SHADOW, cr0);
144 
145     if (efer & MSR_EFER_LME) {
146         if (changed_cr0 & CR0_PG_MASK) {
147             if (cr0 & CR0_PG_MASK) {
148                 enter_long_mode(vcpu, cr0, efer);
149             } else {
150                 exit_long_mode(vcpu, cr0, efer);
151             }
152         }
153     } else {
154         entry_ctls = rvmcs(vcpu, VMCS_ENTRY_CTLS);
155         wvmcs(vcpu, VMCS_ENTRY_CTLS, entry_ctls & ~VM_ENTRY_GUEST_LMA);
156     }
157 
158     /* Filter new CR0 after we are finished examining it above. */
159     cr0 = (cr0 & ~(mask & ~CR0_PG_MASK));
160     wvmcs(vcpu, VMCS_GUEST_CR0, cr0 | CR0_NE_MASK | CR0_ET_MASK);
161 
162     hv_vcpu_invalidate_tlb(vcpu);
163 }
164 
165 static inline void macvm_set_cr4(hv_vcpuid_t vcpu, uint64_t cr4)
166 {
167     uint64_t guest_cr4 = cr4 | CR4_VMXE_MASK;
168 
169     wvmcs(vcpu, VMCS_GUEST_CR4, guest_cr4);
170     wvmcs(vcpu, VMCS_CR4_SHADOW, cr4);
171     wvmcs(vcpu, VMCS_CR4_MASK, CR4_VMXE_MASK);
172 
173     hv_vcpu_invalidate_tlb(vcpu);
174 }
175 
176 static inline void macvm_set_rip(CPUState *cpu, uint64_t rip)
177 {
178     X86CPU *x86_cpu = X86_CPU(cpu);
179     CPUX86State *env = &x86_cpu->env;
180     uint64_t val;
181 
182     /* BUG, should take considering overlap.. */
183     wreg(cpu->hvf->fd, HV_X86_RIP, rip);
184     env->eip = rip;
185 
186     /* after moving forward in rip, we need to clean INTERRUPTABILITY */
187    val = rvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY);
188    if (val & (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
189                VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
190         env->hflags &= ~HF_INHIBIT_IRQ_MASK;
191         wvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY,
192                val & ~(VMCS_INTERRUPTIBILITY_STI_BLOCKING |
193                VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING));
194    }
195 }
196 
197 static inline void vmx_clear_nmi_blocking(CPUState *cpu)
198 {
199     X86CPU *x86_cpu = X86_CPU(cpu);
200     CPUX86State *env = &x86_cpu->env;
201 
202     env->hflags2 &= ~HF2_NMI_MASK;
203     uint32_t gi = (uint32_t) rvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY);
204     gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
205     wvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY, gi);
206 }
207 
208 static inline void vmx_set_nmi_blocking(CPUState *cpu)
209 {
210     X86CPU *x86_cpu = X86_CPU(cpu);
211     CPUX86State *env = &x86_cpu->env;
212 
213     env->hflags2 |= HF2_NMI_MASK;
214     uint32_t gi = (uint32_t)rvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY);
215     gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
216     wvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY, gi);
217 }
218 
219 static inline void vmx_set_nmi_window_exiting(CPUState *cpu)
220 {
221     uint64_t val;
222     val = rvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS);
223     wvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS, val |
224           VMCS_PRI_PROC_BASED_CTLS_NMI_WINDOW_EXITING);
225 
226 }
227 
228 static inline void vmx_clear_nmi_window_exiting(CPUState *cpu)
229 {
230 
231     uint64_t val;
232     val = rvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS);
233     wvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS, val &
234           ~VMCS_PRI_PROC_BASED_CTLS_NMI_WINDOW_EXITING);
235 }
236 
237 #endif
238