1 /* Copyright 2008 IBM Corporation 2 * 2008 Red Hat, Inc. 3 * Copyright 2011 Intel Corporation 4 * Copyright 2016 Veertu, Inc. 5 * Copyright 2017 The Android Open Source Project 6 * 7 * QEMU Hypervisor.framework support 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of version 2 of the GNU General Public 11 * License as published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, see <http://www.gnu.org/licenses/>. 20 * 21 * This file contain code under public domain from the hvdos project: 22 * https://github.com/mist64/hvdos 23 * 24 * Parts Copyright (c) 2011 NetApp, Inc. 25 * All rights reserved. 26 * 27 * Redistribution and use in source and binary forms, with or without 28 * modification, are permitted provided that the following conditions 29 * are met: 30 * 1. Redistributions of source code must retain the above copyright 31 * notice, this list of conditions and the following disclaimer. 32 * 2. Redistributions in binary form must reproduce the above copyright 33 * notice, this list of conditions and the following disclaimer in the 34 * documentation and/or other materials provided with the distribution. 35 * 36 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 37 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 39 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 40 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 41 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 42 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 44 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 45 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 46 * SUCH DAMAGE. 47 */ 48 49 #include "qemu/osdep.h" 50 #include "qemu/error-report.h" 51 #include "qemu/memalign.h" 52 53 #include "sysemu/hvf.h" 54 #include "sysemu/hvf_int.h" 55 #include "sysemu/runstate.h" 56 #include "sysemu/cpus.h" 57 #include "hvf-i386.h" 58 #include "vmcs.h" 59 #include "vmx.h" 60 #include "x86.h" 61 #include "x86_descr.h" 62 #include "x86_mmu.h" 63 #include "x86_decode.h" 64 #include "x86_emu.h" 65 #include "x86_task.h" 66 #include "x86hvf.h" 67 68 #include <Hypervisor/hv.h> 69 #include <Hypervisor/hv_vmx.h> 70 #include <sys/sysctl.h> 71 72 #include "hw/i386/apic_internal.h" 73 #include "qemu/main-loop.h" 74 #include "qemu/accel.h" 75 #include "target/i386/cpu.h" 76 77 void vmx_update_tpr(CPUState *cpu) 78 { 79 /* TODO: need integrate APIC handling */ 80 X86CPU *x86_cpu = X86_CPU(cpu); 81 int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4; 82 int irr = apic_get_highest_priority_irr(x86_cpu->apic_state); 83 84 wreg(cpu->hvf->fd, HV_X86_TPR, tpr); 85 if (irr == -1) { 86 wvmcs(cpu->hvf->fd, VMCS_TPR_THRESHOLD, 0); 87 } else { 88 wvmcs(cpu->hvf->fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 : 89 irr >> 4); 90 } 91 } 92 93 static void update_apic_tpr(CPUState *cpu) 94 { 95 X86CPU *x86_cpu = X86_CPU(cpu); 96 int tpr = rreg(cpu->hvf->fd, HV_X86_TPR) >> 4; 97 cpu_set_apic_tpr(x86_cpu->apic_state, tpr); 98 } 99 100 #define VECTORING_INFO_VECTOR_MASK 0xff 101 102 void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer, 103 int direction, int size, int count) 104 { 105 int i; 106 uint8_t *ptr = buffer; 107 108 for (i = 0; i < count; i++) { 109 address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED, 110 ptr, size, 111 direction); 112 ptr += size; 113 } 114 } 115 116 static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual) 117 { 118 int read, write; 119 120 /* EPT fault on an instruction fetch doesn't make sense here */ 121 if (ept_qual & EPT_VIOLATION_INST_FETCH) { 122 return false; 123 } 124 125 /* EPT fault must be a read fault or a write fault */ 126 read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0; 127 write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0; 128 if ((read | write) == 0) { 129 return false; 130 } 131 132 if (write && slot) { 133 if (slot->flags & HVF_SLOT_LOG) { 134 memory_region_set_dirty(slot->region, gpa - slot->start, 1); 135 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size, 136 HV_MEMORY_READ | HV_MEMORY_WRITE); 137 } 138 } 139 140 /* 141 * The EPT violation must have been caused by accessing a 142 * guest-physical address that is a translation of a guest-linear 143 * address. 144 */ 145 if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 || 146 (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) { 147 return false; 148 } 149 150 if (!slot) { 151 return true; 152 } 153 if (!memory_region_is_ram(slot->region) && 154 !(read && memory_region_is_romd(slot->region))) { 155 return true; 156 } 157 return false; 158 } 159 160 void hvf_arch_vcpu_destroy(CPUState *cpu) 161 { 162 X86CPU *x86_cpu = X86_CPU(cpu); 163 CPUX86State *env = &x86_cpu->env; 164 165 g_free(env->hvf_mmio_buf); 166 } 167 168 static void init_tsc_freq(CPUX86State *env) 169 { 170 size_t length; 171 uint64_t tsc_freq; 172 173 if (env->tsc_khz != 0) { 174 return; 175 } 176 177 length = sizeof(uint64_t); 178 if (sysctlbyname("machdep.tsc.frequency", &tsc_freq, &length, NULL, 0)) { 179 return; 180 } 181 env->tsc_khz = tsc_freq / 1000; /* Hz to KHz */ 182 } 183 184 static void init_apic_bus_freq(CPUX86State *env) 185 { 186 size_t length; 187 uint64_t bus_freq; 188 189 if (env->apic_bus_freq != 0) { 190 return; 191 } 192 193 length = sizeof(uint64_t); 194 if (sysctlbyname("hw.busfrequency", &bus_freq, &length, NULL, 0)) { 195 return; 196 } 197 env->apic_bus_freq = bus_freq; 198 } 199 200 static inline bool tsc_is_known(CPUX86State *env) 201 { 202 return env->tsc_khz != 0; 203 } 204 205 static inline bool apic_bus_freq_is_known(CPUX86State *env) 206 { 207 return env->apic_bus_freq != 0; 208 } 209 210 void hvf_kick_vcpu_thread(CPUState *cpu) 211 { 212 cpus_kick_thread(cpu); 213 } 214 215 int hvf_arch_init(void) 216 { 217 return 0; 218 } 219 220 int hvf_arch_init_vcpu(CPUState *cpu) 221 { 222 X86CPU *x86cpu = X86_CPU(cpu); 223 CPUX86State *env = &x86cpu->env; 224 uint64_t reqCap; 225 226 init_emu(); 227 init_decoder(); 228 229 hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1); 230 env->hvf_mmio_buf = g_new(char, 4096); 231 232 if (x86cpu->vmware_cpuid_freq) { 233 init_tsc_freq(env); 234 init_apic_bus_freq(env); 235 236 if (!tsc_is_known(env) || !apic_bus_freq_is_known(env)) { 237 error_report("vmware-cpuid-freq: feature couldn't be enabled"); 238 } 239 } 240 241 if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED, 242 &hvf_state->hvf_caps->vmx_cap_pinbased)) { 243 abort(); 244 } 245 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED, 246 &hvf_state->hvf_caps->vmx_cap_procbased)) { 247 abort(); 248 } 249 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2, 250 &hvf_state->hvf_caps->vmx_cap_procbased2)) { 251 abort(); 252 } 253 if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY, 254 &hvf_state->hvf_caps->vmx_cap_entry)) { 255 abort(); 256 } 257 258 /* set VMCS control fields */ 259 wvmcs(cpu->hvf->fd, VMCS_PIN_BASED_CTLS, 260 cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased, 261 VMCS_PIN_BASED_CTLS_EXTINT | 262 VMCS_PIN_BASED_CTLS_NMI | 263 VMCS_PIN_BASED_CTLS_VNMI)); 264 wvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS, 265 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased, 266 VMCS_PRI_PROC_BASED_CTLS_HLT | 267 VMCS_PRI_PROC_BASED_CTLS_MWAIT | 268 VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET | 269 VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) | 270 VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL); 271 272 reqCap = VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES; 273 274 /* Is RDTSCP support in CPUID? If so, enable it in the VMCS. */ 275 if (hvf_get_supported_cpuid(0x80000001, 0, R_EDX) & CPUID_EXT2_RDTSCP) { 276 reqCap |= VMCS_PRI_PROC_BASED2_CTLS_RDTSCP; 277 } 278 279 wvmcs(cpu->hvf->fd, VMCS_SEC_PROC_BASED_CTLS, 280 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2, reqCap)); 281 282 wvmcs(cpu->hvf->fd, VMCS_ENTRY_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry, 283 0)); 284 wvmcs(cpu->hvf->fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */ 285 286 wvmcs(cpu->hvf->fd, VMCS_TPR_THRESHOLD, 0); 287 288 x86cpu = X86_CPU(cpu); 289 x86cpu->env.xsave_buf_len = 4096; 290 x86cpu->env.xsave_buf = qemu_memalign(4096, x86cpu->env.xsave_buf_len); 291 292 /* 293 * The allocated storage must be large enough for all of the 294 * possible XSAVE state components. 295 */ 296 assert(hvf_get_supported_cpuid(0xd, 0, R_ECX) <= x86cpu->env.xsave_buf_len); 297 298 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_STAR, 1); 299 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_LSTAR, 1); 300 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_CSTAR, 1); 301 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_FMASK, 1); 302 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_FSBASE, 1); 303 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_GSBASE, 1); 304 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_KERNELGSBASE, 1); 305 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_TSC_AUX, 1); 306 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_TSC, 1); 307 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_SYSENTER_CS, 1); 308 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_SYSENTER_EIP, 1); 309 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_SYSENTER_ESP, 1); 310 311 return 0; 312 } 313 314 static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info) 315 { 316 X86CPU *x86_cpu = X86_CPU(cpu); 317 CPUX86State *env = &x86_cpu->env; 318 319 env->exception_nr = -1; 320 env->exception_pending = 0; 321 env->exception_injected = 0; 322 env->interrupt_injected = -1; 323 env->nmi_injected = false; 324 env->ins_len = 0; 325 env->has_error_code = false; 326 if (idtvec_info & VMCS_IDT_VEC_VALID) { 327 switch (idtvec_info & VMCS_IDT_VEC_TYPE) { 328 case VMCS_IDT_VEC_HWINTR: 329 case VMCS_IDT_VEC_SWINTR: 330 env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM; 331 break; 332 case VMCS_IDT_VEC_NMI: 333 env->nmi_injected = true; 334 break; 335 case VMCS_IDT_VEC_HWEXCEPTION: 336 case VMCS_IDT_VEC_SWEXCEPTION: 337 env->exception_nr = idtvec_info & VMCS_IDT_VEC_VECNUM; 338 env->exception_injected = 1; 339 break; 340 case VMCS_IDT_VEC_PRIV_SWEXCEPTION: 341 default: 342 abort(); 343 } 344 if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION || 345 (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) { 346 env->ins_len = ins_len; 347 } 348 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) { 349 env->has_error_code = true; 350 env->error_code = rvmcs(cpu->hvf->fd, VMCS_IDT_VECTORING_ERROR); 351 } 352 } 353 if ((rvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY) & 354 VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) { 355 env->hflags2 |= HF2_NMI_MASK; 356 } else { 357 env->hflags2 &= ~HF2_NMI_MASK; 358 } 359 if (rvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY) & 360 (VMCS_INTERRUPTIBILITY_STI_BLOCKING | 361 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) { 362 env->hflags |= HF_INHIBIT_IRQ_MASK; 363 } else { 364 env->hflags &= ~HF_INHIBIT_IRQ_MASK; 365 } 366 } 367 368 static void hvf_cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count, 369 uint32_t *eax, uint32_t *ebx, 370 uint32_t *ecx, uint32_t *edx) 371 { 372 /* 373 * A wrapper extends cpu_x86_cpuid with 0x40000000 and 0x40000010 leafs, 374 * leafs 0x40000001-0x4000000F are filled with zeros 375 * Provides vmware-cpuid-freq support to hvf 376 * 377 * Note: leaf 0x40000000 not exposes HVF, 378 * leaving hypervisor signature empty 379 */ 380 381 if (index < 0x40000000 || index > 0x40000010 || 382 !tsc_is_known(env) || !apic_bus_freq_is_known(env)) { 383 384 cpu_x86_cpuid(env, index, count, eax, ebx, ecx, edx); 385 return; 386 } 387 388 switch (index) { 389 case 0x40000000: 390 *eax = 0x40000010; /* Max available cpuid leaf */ 391 *ebx = 0; /* Leave signature empty */ 392 *ecx = 0; 393 *edx = 0; 394 break; 395 case 0x40000010: 396 *eax = env->tsc_khz; 397 *ebx = env->apic_bus_freq / 1000; /* Hz to KHz */ 398 *ecx = 0; 399 *edx = 0; 400 break; 401 default: 402 *eax = 0; 403 *ebx = 0; 404 *ecx = 0; 405 *edx = 0; 406 break; 407 } 408 } 409 410 int hvf_vcpu_exec(CPUState *cpu) 411 { 412 X86CPU *x86_cpu = X86_CPU(cpu); 413 CPUX86State *env = &x86_cpu->env; 414 int ret = 0; 415 uint64_t rip = 0; 416 417 if (hvf_process_events(cpu)) { 418 return EXCP_HLT; 419 } 420 421 do { 422 if (cpu->vcpu_dirty) { 423 hvf_put_registers(cpu); 424 cpu->vcpu_dirty = false; 425 } 426 427 if (hvf_inject_interrupts(cpu)) { 428 return EXCP_INTERRUPT; 429 } 430 vmx_update_tpr(cpu); 431 432 qemu_mutex_unlock_iothread(); 433 if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) { 434 qemu_mutex_lock_iothread(); 435 return EXCP_HLT; 436 } 437 438 hv_return_t r = hv_vcpu_run(cpu->hvf->fd); 439 assert_hvf_ok(r); 440 441 /* handle VMEXIT */ 442 uint64_t exit_reason = rvmcs(cpu->hvf->fd, VMCS_EXIT_REASON); 443 uint64_t exit_qual = rvmcs(cpu->hvf->fd, VMCS_EXIT_QUALIFICATION); 444 uint32_t ins_len = (uint32_t)rvmcs(cpu->hvf->fd, 445 VMCS_EXIT_INSTRUCTION_LENGTH); 446 447 uint64_t idtvec_info = rvmcs(cpu->hvf->fd, VMCS_IDT_VECTORING_INFO); 448 449 hvf_store_events(cpu, ins_len, idtvec_info); 450 rip = rreg(cpu->hvf->fd, HV_X86_RIP); 451 env->eflags = rreg(cpu->hvf->fd, HV_X86_RFLAGS); 452 453 qemu_mutex_lock_iothread(); 454 455 update_apic_tpr(cpu); 456 current_cpu = cpu; 457 458 ret = 0; 459 switch (exit_reason) { 460 case EXIT_REASON_HLT: { 461 macvm_set_rip(cpu, rip + ins_len); 462 if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) && 463 (env->eflags & IF_MASK)) 464 && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) && 465 !(idtvec_info & VMCS_IDT_VEC_VALID)) { 466 cpu->halted = 1; 467 ret = EXCP_HLT; 468 break; 469 } 470 ret = EXCP_INTERRUPT; 471 break; 472 } 473 case EXIT_REASON_MWAIT: { 474 ret = EXCP_INTERRUPT; 475 break; 476 } 477 /* Need to check if MMIO or unmapped fault */ 478 case EXIT_REASON_EPT_FAULT: 479 { 480 hvf_slot *slot; 481 uint64_t gpa = rvmcs(cpu->hvf->fd, VMCS_GUEST_PHYSICAL_ADDRESS); 482 483 if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) && 484 ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) { 485 vmx_set_nmi_blocking(cpu); 486 } 487 488 slot = hvf_find_overlap_slot(gpa, 1); 489 /* mmio */ 490 if (ept_emulation_fault(slot, gpa, exit_qual)) { 491 struct x86_decode decode; 492 493 load_regs(cpu); 494 decode_instruction(env, &decode); 495 exec_instruction(env, &decode); 496 store_regs(cpu); 497 break; 498 } 499 break; 500 } 501 case EXIT_REASON_INOUT: 502 { 503 uint32_t in = (exit_qual & 8) != 0; 504 uint32_t size = (exit_qual & 7) + 1; 505 uint32_t string = (exit_qual & 16) != 0; 506 uint32_t port = exit_qual >> 16; 507 /*uint32_t rep = (exit_qual & 0x20) != 0;*/ 508 509 if (!string && in) { 510 uint64_t val = 0; 511 load_regs(cpu); 512 hvf_handle_io(env, port, &val, 0, size, 1); 513 if (size == 1) { 514 AL(env) = val; 515 } else if (size == 2) { 516 AX(env) = val; 517 } else if (size == 4) { 518 RAX(env) = (uint32_t)val; 519 } else { 520 RAX(env) = (uint64_t)val; 521 } 522 env->eip += ins_len; 523 store_regs(cpu); 524 break; 525 } else if (!string && !in) { 526 RAX(env) = rreg(cpu->hvf->fd, HV_X86_RAX); 527 hvf_handle_io(env, port, &RAX(env), 1, size, 1); 528 macvm_set_rip(cpu, rip + ins_len); 529 break; 530 } 531 struct x86_decode decode; 532 533 load_regs(cpu); 534 decode_instruction(env, &decode); 535 assert(ins_len == decode.len); 536 exec_instruction(env, &decode); 537 store_regs(cpu); 538 539 break; 540 } 541 case EXIT_REASON_CPUID: { 542 uint32_t rax = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RAX); 543 uint32_t rbx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RBX); 544 uint32_t rcx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RCX); 545 uint32_t rdx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RDX); 546 547 if (rax == 1) { 548 /* CPUID1.ecx.OSXSAVE needs to know CR4 */ 549 env->cr[4] = rvmcs(cpu->hvf->fd, VMCS_GUEST_CR4); 550 } 551 hvf_cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx); 552 553 wreg(cpu->hvf->fd, HV_X86_RAX, rax); 554 wreg(cpu->hvf->fd, HV_X86_RBX, rbx); 555 wreg(cpu->hvf->fd, HV_X86_RCX, rcx); 556 wreg(cpu->hvf->fd, HV_X86_RDX, rdx); 557 558 macvm_set_rip(cpu, rip + ins_len); 559 break; 560 } 561 case EXIT_REASON_XSETBV: { 562 X86CPU *x86_cpu = X86_CPU(cpu); 563 CPUX86State *env = &x86_cpu->env; 564 uint32_t eax = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RAX); 565 uint32_t ecx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RCX); 566 uint32_t edx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RDX); 567 568 if (ecx) { 569 macvm_set_rip(cpu, rip + ins_len); 570 break; 571 } 572 env->xcr0 = ((uint64_t)edx << 32) | eax; 573 wreg(cpu->hvf->fd, HV_X86_XCR0, env->xcr0 | 1); 574 macvm_set_rip(cpu, rip + ins_len); 575 break; 576 } 577 case EXIT_REASON_INTR_WINDOW: 578 vmx_clear_int_window_exiting(cpu); 579 ret = EXCP_INTERRUPT; 580 break; 581 case EXIT_REASON_NMI_WINDOW: 582 vmx_clear_nmi_window_exiting(cpu); 583 ret = EXCP_INTERRUPT; 584 break; 585 case EXIT_REASON_EXT_INTR: 586 /* force exit and allow io handling */ 587 ret = EXCP_INTERRUPT; 588 break; 589 case EXIT_REASON_RDMSR: 590 case EXIT_REASON_WRMSR: 591 { 592 load_regs(cpu); 593 if (exit_reason == EXIT_REASON_RDMSR) { 594 simulate_rdmsr(cpu); 595 } else { 596 simulate_wrmsr(cpu); 597 } 598 env->eip += ins_len; 599 store_regs(cpu); 600 break; 601 } 602 case EXIT_REASON_CR_ACCESS: { 603 int cr; 604 int reg; 605 606 load_regs(cpu); 607 cr = exit_qual & 15; 608 reg = (exit_qual >> 8) & 15; 609 610 switch (cr) { 611 case 0x0: { 612 macvm_set_cr0(cpu->hvf->fd, RRX(env, reg)); 613 break; 614 } 615 case 4: { 616 macvm_set_cr4(cpu->hvf->fd, RRX(env, reg)); 617 break; 618 } 619 case 8: { 620 X86CPU *x86_cpu = X86_CPU(cpu); 621 if (exit_qual & 0x10) { 622 RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state); 623 } else { 624 int tpr = RRX(env, reg); 625 cpu_set_apic_tpr(x86_cpu->apic_state, tpr); 626 ret = EXCP_INTERRUPT; 627 } 628 break; 629 } 630 default: 631 error_report("Unrecognized CR %d", cr); 632 abort(); 633 } 634 env->eip += ins_len; 635 store_regs(cpu); 636 break; 637 } 638 case EXIT_REASON_APIC_ACCESS: { /* TODO */ 639 struct x86_decode decode; 640 641 load_regs(cpu); 642 decode_instruction(env, &decode); 643 exec_instruction(env, &decode); 644 store_regs(cpu); 645 break; 646 } 647 case EXIT_REASON_TPR: { 648 ret = 1; 649 break; 650 } 651 case EXIT_REASON_TASK_SWITCH: { 652 uint64_t vinfo = rvmcs(cpu->hvf->fd, VMCS_IDT_VECTORING_INFO); 653 x68_segment_selector sel = {.sel = exit_qual & 0xffff}; 654 vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3, 655 vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo 656 & VMCS_INTR_T_MASK); 657 break; 658 } 659 case EXIT_REASON_TRIPLE_FAULT: { 660 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 661 ret = EXCP_INTERRUPT; 662 break; 663 } 664 case EXIT_REASON_RDPMC: 665 wreg(cpu->hvf->fd, HV_X86_RAX, 0); 666 wreg(cpu->hvf->fd, HV_X86_RDX, 0); 667 macvm_set_rip(cpu, rip + ins_len); 668 break; 669 case VMX_REASON_VMCALL: 670 env->exception_nr = EXCP0D_GPF; 671 env->exception_injected = 1; 672 env->has_error_code = true; 673 env->error_code = 0; 674 break; 675 default: 676 error_report("%llx: unhandled exit %llx", rip, exit_reason); 677 } 678 } while (ret == 0); 679 680 return ret; 681 } 682 683 int hvf_arch_insert_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp) 684 { 685 return -ENOSYS; 686 } 687 688 int hvf_arch_remove_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp) 689 { 690 return -ENOSYS; 691 } 692 693 int hvf_arch_insert_hw_breakpoint(target_ulong addr, target_ulong len, int type) 694 { 695 return -ENOSYS; 696 } 697 698 int hvf_arch_remove_hw_breakpoint(target_ulong addr, target_ulong len, int type) 699 { 700 return -ENOSYS; 701 } 702 703 void hvf_arch_remove_all_hw_breakpoints(void) 704 { 705 } 706 707 void hvf_arch_update_guest_debug(CPUState *cpu) 708 { 709 } 710 711 inline bool hvf_arch_supports_guest_debug(void) 712 { 713 return false; 714 } 715