xref: /openbmc/qemu/target/i386/hvf/hvf.c (revision f76b348e)
1 /* Copyright 2008 IBM Corporation
2  *           2008 Red Hat, Inc.
3  * Copyright 2011 Intel Corporation
4  * Copyright 2016 Veertu, Inc.
5  * Copyright 2017 The Android Open Source Project
6  *
7  * QEMU Hypervisor.framework support
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of version 2 of the GNU General Public
11  * License as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, see <http://www.gnu.org/licenses/>.
20  *
21  * This file contain code under public domain from the hvdos project:
22  * https://github.com/mist64/hvdos
23  *
24  * Parts Copyright (c) 2011 NetApp, Inc.
25  * All rights reserved.
26  *
27  * Redistribution and use in source and binary forms, with or without
28  * modification, are permitted provided that the following conditions
29  * are met:
30  * 1. Redistributions of source code must retain the above copyright
31  *    notice, this list of conditions and the following disclaimer.
32  * 2. Redistributions in binary form must reproduce the above copyright
33  *    notice, this list of conditions and the following disclaimer in the
34  *    documentation and/or other materials provided with the distribution.
35  *
36  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
37  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
40  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46  * SUCH DAMAGE.
47  */
48 
49 #include "qemu/osdep.h"
50 #include "qemu-common.h"
51 #include "qemu/error-report.h"
52 
53 #include "sysemu/hvf.h"
54 #include "sysemu/runstate.h"
55 #include "hvf-i386.h"
56 #include "vmcs.h"
57 #include "vmx.h"
58 #include "x86.h"
59 #include "x86_descr.h"
60 #include "x86_mmu.h"
61 #include "x86_decode.h"
62 #include "x86_emu.h"
63 #include "x86_task.h"
64 #include "x86hvf.h"
65 
66 #include <Hypervisor/hv.h>
67 #include <Hypervisor/hv_vmx.h>
68 
69 #include "exec/address-spaces.h"
70 #include "hw/i386/apic_internal.h"
71 #include "qemu/main-loop.h"
72 #include "sysemu/accel.h"
73 #include "target/i386/cpu.h"
74 
75 HVFState *hvf_state;
76 
77 static void assert_hvf_ok(hv_return_t ret)
78 {
79     if (ret == HV_SUCCESS) {
80         return;
81     }
82 
83     switch (ret) {
84     case HV_ERROR:
85         error_report("Error: HV_ERROR");
86         break;
87     case HV_BUSY:
88         error_report("Error: HV_BUSY");
89         break;
90     case HV_BAD_ARGUMENT:
91         error_report("Error: HV_BAD_ARGUMENT");
92         break;
93     case HV_NO_RESOURCES:
94         error_report("Error: HV_NO_RESOURCES");
95         break;
96     case HV_NO_DEVICE:
97         error_report("Error: HV_NO_DEVICE");
98         break;
99     case HV_UNSUPPORTED:
100         error_report("Error: HV_UNSUPPORTED");
101         break;
102     default:
103         error_report("Unknown Error");
104     }
105 
106     abort();
107 }
108 
109 /* Memory slots */
110 hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t size)
111 {
112     hvf_slot *slot;
113     int x;
114     for (x = 0; x < hvf_state->num_slots; ++x) {
115         slot = &hvf_state->slots[x];
116         if (slot->size && start < (slot->start + slot->size) &&
117             (start + size) > slot->start) {
118             return slot;
119         }
120     }
121     return NULL;
122 }
123 
124 struct mac_slot {
125     int present;
126     uint64_t size;
127     uint64_t gpa_start;
128     uint64_t gva;
129 };
130 
131 struct mac_slot mac_slots[32];
132 
133 static int do_hvf_set_memory(hvf_slot *slot, hv_memory_flags_t flags)
134 {
135     struct mac_slot *macslot;
136     hv_return_t ret;
137 
138     macslot = &mac_slots[slot->slot_id];
139 
140     if (macslot->present) {
141         if (macslot->size != slot->size) {
142             macslot->present = 0;
143             ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
144             assert_hvf_ok(ret);
145         }
146     }
147 
148     if (!slot->size) {
149         return 0;
150     }
151 
152     macslot->present = 1;
153     macslot->gpa_start = slot->start;
154     macslot->size = slot->size;
155     ret = hv_vm_map((hv_uvaddr_t)slot->mem, slot->start, slot->size, flags);
156     assert_hvf_ok(ret);
157     return 0;
158 }
159 
160 void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
161 {
162     hvf_slot *mem;
163     MemoryRegion *area = section->mr;
164     bool writeable = !area->readonly && !area->rom_device;
165     hv_memory_flags_t flags;
166 
167     if (!memory_region_is_ram(area)) {
168         if (writeable) {
169             return;
170         } else if (!memory_region_is_romd(area)) {
171             /*
172              * If the memory device is not in romd_mode, then we actually want
173              * to remove the hvf memory slot so all accesses will trap.
174              */
175              add = false;
176         }
177     }
178 
179     mem = hvf_find_overlap_slot(
180             section->offset_within_address_space,
181             int128_get64(section->size));
182 
183     if (mem && add) {
184         if (mem->size == int128_get64(section->size) &&
185             mem->start == section->offset_within_address_space &&
186             mem->mem == (memory_region_get_ram_ptr(area) +
187             section->offset_within_region)) {
188             return; /* Same region was attempted to register, go away. */
189         }
190     }
191 
192     /* Region needs to be reset. set the size to 0 and remap it. */
193     if (mem) {
194         mem->size = 0;
195         if (do_hvf_set_memory(mem, 0)) {
196             error_report("Failed to reset overlapping slot");
197             abort();
198         }
199     }
200 
201     if (!add) {
202         return;
203     }
204 
205     if (area->readonly ||
206         (!memory_region_is_ram(area) && memory_region_is_romd(area))) {
207         flags = HV_MEMORY_READ | HV_MEMORY_EXEC;
208     } else {
209         flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
210     }
211 
212     /* Now make a new slot. */
213     int x;
214 
215     for (x = 0; x < hvf_state->num_slots; ++x) {
216         mem = &hvf_state->slots[x];
217         if (!mem->size) {
218             break;
219         }
220     }
221 
222     if (x == hvf_state->num_slots) {
223         error_report("No free slots");
224         abort();
225     }
226 
227     mem->size = int128_get64(section->size);
228     mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
229     mem->start = section->offset_within_address_space;
230     mem->region = area;
231 
232     if (do_hvf_set_memory(mem, flags)) {
233         error_report("Error registering new memory slot");
234         abort();
235     }
236 }
237 
238 void vmx_update_tpr(CPUState *cpu)
239 {
240     /* TODO: need integrate APIC handling */
241     X86CPU *x86_cpu = X86_CPU(cpu);
242     int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
243     int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
244 
245     wreg(cpu->hvf_fd, HV_X86_TPR, tpr);
246     if (irr == -1) {
247         wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
248     } else {
249         wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
250               irr >> 4);
251     }
252 }
253 
254 static void update_apic_tpr(CPUState *cpu)
255 {
256     X86CPU *x86_cpu = X86_CPU(cpu);
257     int tpr = rreg(cpu->hvf_fd, HV_X86_TPR) >> 4;
258     cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
259 }
260 
261 #define VECTORING_INFO_VECTOR_MASK     0xff
262 
263 static void hvf_handle_interrupt(CPUState * cpu, int mask)
264 {
265     cpu->interrupt_request |= mask;
266     if (!qemu_cpu_is_self(cpu)) {
267         qemu_cpu_kick(cpu);
268     }
269 }
270 
271 void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer,
272                   int direction, int size, int count)
273 {
274     int i;
275     uint8_t *ptr = buffer;
276 
277     for (i = 0; i < count; i++) {
278         address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
279                          ptr, size,
280                          direction);
281         ptr += size;
282     }
283 }
284 
285 /* TODO: synchronize vcpu state */
286 static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
287 {
288     CPUState *cpu_state = cpu;
289     if (cpu_state->vcpu_dirty == 0) {
290         hvf_get_registers(cpu_state);
291     }
292 
293     cpu_state->vcpu_dirty = 1;
294 }
295 
296 void hvf_cpu_synchronize_state(CPUState *cpu_state)
297 {
298     if (cpu_state->vcpu_dirty == 0) {
299         run_on_cpu(cpu_state, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
300     }
301 }
302 
303 static void do_hvf_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
304 {
305     CPUState *cpu_state = cpu;
306     hvf_put_registers(cpu_state);
307     cpu_state->vcpu_dirty = false;
308 }
309 
310 void hvf_cpu_synchronize_post_reset(CPUState *cpu_state)
311 {
312     run_on_cpu(cpu_state, do_hvf_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
313 }
314 
315 static void do_hvf_cpu_synchronize_post_init(CPUState *cpu,
316                                              run_on_cpu_data arg)
317 {
318     CPUState *cpu_state = cpu;
319     hvf_put_registers(cpu_state);
320     cpu_state->vcpu_dirty = false;
321 }
322 
323 void hvf_cpu_synchronize_post_init(CPUState *cpu_state)
324 {
325     run_on_cpu(cpu_state, do_hvf_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
326 }
327 
328 static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual)
329 {
330     int read, write;
331 
332     /* EPT fault on an instruction fetch doesn't make sense here */
333     if (ept_qual & EPT_VIOLATION_INST_FETCH) {
334         return false;
335     }
336 
337     /* EPT fault must be a read fault or a write fault */
338     read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
339     write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
340     if ((read | write) == 0) {
341         return false;
342     }
343 
344     if (write && slot) {
345         if (slot->flags & HVF_SLOT_LOG) {
346             memory_region_set_dirty(slot->region, gpa - slot->start, 1);
347             hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
348                           HV_MEMORY_READ | HV_MEMORY_WRITE);
349         }
350     }
351 
352     /*
353      * The EPT violation must have been caused by accessing a
354      * guest-physical address that is a translation of a guest-linear
355      * address.
356      */
357     if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
358         (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
359         return false;
360     }
361 
362     if (!slot) {
363         return true;
364     }
365     if (!memory_region_is_ram(slot->region) &&
366         !(read && memory_region_is_romd(slot->region))) {
367         return true;
368     }
369     return false;
370 }
371 
372 static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
373 {
374     hvf_slot *slot;
375 
376     slot = hvf_find_overlap_slot(
377             section->offset_within_address_space,
378             int128_get64(section->size));
379 
380     /* protect region against writes; begin tracking it */
381     if (on) {
382         slot->flags |= HVF_SLOT_LOG;
383         hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
384                       HV_MEMORY_READ);
385     /* stop tracking region*/
386     } else {
387         slot->flags &= ~HVF_SLOT_LOG;
388         hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
389                       HV_MEMORY_READ | HV_MEMORY_WRITE);
390     }
391 }
392 
393 static void hvf_log_start(MemoryListener *listener,
394                           MemoryRegionSection *section, int old, int new)
395 {
396     if (old != 0) {
397         return;
398     }
399 
400     hvf_set_dirty_tracking(section, 1);
401 }
402 
403 static void hvf_log_stop(MemoryListener *listener,
404                          MemoryRegionSection *section, int old, int new)
405 {
406     if (new != 0) {
407         return;
408     }
409 
410     hvf_set_dirty_tracking(section, 0);
411 }
412 
413 static void hvf_log_sync(MemoryListener *listener,
414                          MemoryRegionSection *section)
415 {
416     /*
417      * sync of dirty pages is handled elsewhere; just make sure we keep
418      * tracking the region.
419      */
420     hvf_set_dirty_tracking(section, 1);
421 }
422 
423 static void hvf_region_add(MemoryListener *listener,
424                            MemoryRegionSection *section)
425 {
426     hvf_set_phys_mem(section, true);
427 }
428 
429 static void hvf_region_del(MemoryListener *listener,
430                            MemoryRegionSection *section)
431 {
432     hvf_set_phys_mem(section, false);
433 }
434 
435 static MemoryListener hvf_memory_listener = {
436     .priority = 10,
437     .region_add = hvf_region_add,
438     .region_del = hvf_region_del,
439     .log_start = hvf_log_start,
440     .log_stop = hvf_log_stop,
441     .log_sync = hvf_log_sync,
442 };
443 
444 void hvf_reset_vcpu(CPUState *cpu) {
445     uint64_t pdpte[4] = {0, 0, 0, 0};
446     int i;
447 
448     /* TODO: this shouldn't be needed; there is already a call to
449      * cpu_synchronize_all_post_reset in vl.c
450      */
451     wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, 0);
452     wvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER, 0);
453 
454     /* Initialize PDPTE */
455     for (i = 0; i < 4; i++) {
456         wvmcs(cpu->hvf_fd, VMCS_GUEST_PDPTE0 + i * 2, pdpte[i]);
457     }
458 
459     macvm_set_cr0(cpu->hvf_fd, 0x60000010);
460 
461     wvmcs(cpu->hvf_fd, VMCS_CR4_MASK, CR4_VMXE_MASK);
462     wvmcs(cpu->hvf_fd, VMCS_CR4_SHADOW, 0x0);
463     wvmcs(cpu->hvf_fd, VMCS_GUEST_CR4, CR4_VMXE_MASK);
464 
465     /* set VMCS guest state fields */
466     wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_SELECTOR, 0xf000);
467     wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_LIMIT, 0xffff);
468     wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_ACCESS_RIGHTS, 0x9b);
469     wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_BASE, 0xffff0000);
470 
471     wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_SELECTOR, 0);
472     wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_LIMIT, 0xffff);
473     wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_ACCESS_RIGHTS, 0x93);
474     wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_BASE, 0);
475 
476     wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_SELECTOR, 0);
477     wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_LIMIT, 0xffff);
478     wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_ACCESS_RIGHTS, 0x93);
479     wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_BASE, 0);
480 
481     wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_SELECTOR, 0);
482     wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_LIMIT, 0xffff);
483     wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_ACCESS_RIGHTS, 0x93);
484     wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE, 0);
485 
486     wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_SELECTOR, 0);
487     wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_LIMIT, 0xffff);
488     wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_ACCESS_RIGHTS, 0x93);
489     wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE, 0);
490 
491     wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_SELECTOR, 0);
492     wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_LIMIT, 0xffff);
493     wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_ACCESS_RIGHTS, 0x93);
494     wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_BASE, 0);
495 
496     wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_SELECTOR, 0);
497     wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_LIMIT, 0);
498     wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_ACCESS_RIGHTS, 0x10000);
499     wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_BASE, 0);
500 
501     wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_SELECTOR, 0);
502     wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_LIMIT, 0);
503     wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_ACCESS_RIGHTS, 0x83);
504     wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_BASE, 0);
505 
506     wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_LIMIT, 0);
507     wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_BASE, 0);
508 
509     wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_LIMIT, 0);
510     wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_BASE, 0);
511 
512     /*wvmcs(cpu->hvf_fd, VMCS_GUEST_CR2, 0x0);*/
513     wvmcs(cpu->hvf_fd, VMCS_GUEST_CR3, 0x0);
514 
515     wreg(cpu->hvf_fd, HV_X86_RIP, 0xfff0);
516     wreg(cpu->hvf_fd, HV_X86_RDX, 0x623);
517     wreg(cpu->hvf_fd, HV_X86_RFLAGS, 0x2);
518     wreg(cpu->hvf_fd, HV_X86_RSP, 0x0);
519     wreg(cpu->hvf_fd, HV_X86_RAX, 0x0);
520     wreg(cpu->hvf_fd, HV_X86_RBX, 0x0);
521     wreg(cpu->hvf_fd, HV_X86_RCX, 0x0);
522     wreg(cpu->hvf_fd, HV_X86_RSI, 0x0);
523     wreg(cpu->hvf_fd, HV_X86_RDI, 0x0);
524     wreg(cpu->hvf_fd, HV_X86_RBP, 0x0);
525 
526     for (int i = 0; i < 8; i++) {
527         wreg(cpu->hvf_fd, HV_X86_R8 + i, 0x0);
528     }
529 
530     hv_vcpu_invalidate_tlb(cpu->hvf_fd);
531     hv_vcpu_flush(cpu->hvf_fd);
532 }
533 
534 void hvf_vcpu_destroy(CPUState *cpu)
535 {
536     X86CPU *x86_cpu = X86_CPU(cpu);
537     CPUX86State *env = &x86_cpu->env;
538 
539     hv_return_t ret = hv_vcpu_destroy((hv_vcpuid_t)cpu->hvf_fd);
540     g_free(env->hvf_mmio_buf);
541     assert_hvf_ok(ret);
542 }
543 
544 static void dummy_signal(int sig)
545 {
546 }
547 
548 int hvf_init_vcpu(CPUState *cpu)
549 {
550 
551     X86CPU *x86cpu = X86_CPU(cpu);
552     CPUX86State *env = &x86cpu->env;
553     int r;
554 
555     /* init cpu signals */
556     sigset_t set;
557     struct sigaction sigact;
558 
559     memset(&sigact, 0, sizeof(sigact));
560     sigact.sa_handler = dummy_signal;
561     sigaction(SIG_IPI, &sigact, NULL);
562 
563     pthread_sigmask(SIG_BLOCK, NULL, &set);
564     sigdelset(&set, SIG_IPI);
565 
566     init_emu();
567     init_decoder();
568 
569     hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
570     env->hvf_mmio_buf = g_new(char, 4096);
571 
572     r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf_fd, HV_VCPU_DEFAULT);
573     cpu->vcpu_dirty = 1;
574     assert_hvf_ok(r);
575 
576     if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
577         &hvf_state->hvf_caps->vmx_cap_pinbased)) {
578         abort();
579     }
580     if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
581         &hvf_state->hvf_caps->vmx_cap_procbased)) {
582         abort();
583     }
584     if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
585         &hvf_state->hvf_caps->vmx_cap_procbased2)) {
586         abort();
587     }
588     if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
589         &hvf_state->hvf_caps->vmx_cap_entry)) {
590         abort();
591     }
592 
593     /* set VMCS control fields */
594     wvmcs(cpu->hvf_fd, VMCS_PIN_BASED_CTLS,
595           cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
596           VMCS_PIN_BASED_CTLS_EXTINT |
597           VMCS_PIN_BASED_CTLS_NMI |
598           VMCS_PIN_BASED_CTLS_VNMI));
599     wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS,
600           cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
601           VMCS_PRI_PROC_BASED_CTLS_HLT |
602           VMCS_PRI_PROC_BASED_CTLS_MWAIT |
603           VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
604           VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
605           VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);
606     wvmcs(cpu->hvf_fd, VMCS_SEC_PROC_BASED_CTLS,
607           cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2,
608                    VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES));
609 
610     wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry,
611           0));
612     wvmcs(cpu->hvf_fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
613 
614     wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
615 
616     x86cpu = X86_CPU(cpu);
617     x86cpu->env.xsave_buf = qemu_memalign(4096, 4096);
618 
619     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_STAR, 1);
620     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_LSTAR, 1);
621     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_CSTAR, 1);
622     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FMASK, 1);
623     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FSBASE, 1);
624     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_GSBASE, 1);
625     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_KERNELGSBASE, 1);
626     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_TSC_AUX, 1);
627     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_TSC, 1);
628     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_CS, 1);
629     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_EIP, 1);
630     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_ESP, 1);
631 
632     return 0;
633 }
634 
635 static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
636 {
637     X86CPU *x86_cpu = X86_CPU(cpu);
638     CPUX86State *env = &x86_cpu->env;
639 
640     env->exception_nr = -1;
641     env->exception_pending = 0;
642     env->exception_injected = 0;
643     env->interrupt_injected = -1;
644     env->nmi_injected = false;
645     env->ins_len = 0;
646     env->has_error_code = false;
647     if (idtvec_info & VMCS_IDT_VEC_VALID) {
648         switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
649         case VMCS_IDT_VEC_HWINTR:
650         case VMCS_IDT_VEC_SWINTR:
651             env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
652             break;
653         case VMCS_IDT_VEC_NMI:
654             env->nmi_injected = true;
655             break;
656         case VMCS_IDT_VEC_HWEXCEPTION:
657         case VMCS_IDT_VEC_SWEXCEPTION:
658             env->exception_nr = idtvec_info & VMCS_IDT_VEC_VECNUM;
659             env->exception_injected = 1;
660             break;
661         case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
662         default:
663             abort();
664         }
665         if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
666             (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
667             env->ins_len = ins_len;
668         }
669         if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
670             env->has_error_code = true;
671             env->error_code = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_ERROR);
672         }
673     }
674     if ((rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
675         VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
676         env->hflags2 |= HF2_NMI_MASK;
677     } else {
678         env->hflags2 &= ~HF2_NMI_MASK;
679     }
680     if (rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
681          (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
682          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
683         env->hflags |= HF_INHIBIT_IRQ_MASK;
684     } else {
685         env->hflags &= ~HF_INHIBIT_IRQ_MASK;
686     }
687 }
688 
689 int hvf_vcpu_exec(CPUState *cpu)
690 {
691     X86CPU *x86_cpu = X86_CPU(cpu);
692     CPUX86State *env = &x86_cpu->env;
693     int ret = 0;
694     uint64_t rip = 0;
695 
696     if (hvf_process_events(cpu)) {
697         return EXCP_HLT;
698     }
699 
700     do {
701         if (cpu->vcpu_dirty) {
702             hvf_put_registers(cpu);
703             cpu->vcpu_dirty = false;
704         }
705 
706         if (hvf_inject_interrupts(cpu)) {
707             return EXCP_INTERRUPT;
708         }
709         vmx_update_tpr(cpu);
710 
711         qemu_mutex_unlock_iothread();
712         if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
713             qemu_mutex_lock_iothread();
714             return EXCP_HLT;
715         }
716 
717         hv_return_t r  = hv_vcpu_run(cpu->hvf_fd);
718         assert_hvf_ok(r);
719 
720         /* handle VMEXIT */
721         uint64_t exit_reason = rvmcs(cpu->hvf_fd, VMCS_EXIT_REASON);
722         uint64_t exit_qual = rvmcs(cpu->hvf_fd, VMCS_EXIT_QUALIFICATION);
723         uint32_t ins_len = (uint32_t)rvmcs(cpu->hvf_fd,
724                                            VMCS_EXIT_INSTRUCTION_LENGTH);
725 
726         uint64_t idtvec_info = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
727 
728         hvf_store_events(cpu, ins_len, idtvec_info);
729         rip = rreg(cpu->hvf_fd, HV_X86_RIP);
730         env->eflags = rreg(cpu->hvf_fd, HV_X86_RFLAGS);
731 
732         qemu_mutex_lock_iothread();
733 
734         update_apic_tpr(cpu);
735         current_cpu = cpu;
736 
737         ret = 0;
738         switch (exit_reason) {
739         case EXIT_REASON_HLT: {
740             macvm_set_rip(cpu, rip + ins_len);
741             if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
742                 (env->eflags & IF_MASK))
743                 && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
744                 !(idtvec_info & VMCS_IDT_VEC_VALID)) {
745                 cpu->halted = 1;
746                 ret = EXCP_HLT;
747                 break;
748             }
749             ret = EXCP_INTERRUPT;
750             break;
751         }
752         case EXIT_REASON_MWAIT: {
753             ret = EXCP_INTERRUPT;
754             break;
755         }
756         /* Need to check if MMIO or unmapped fault */
757         case EXIT_REASON_EPT_FAULT:
758         {
759             hvf_slot *slot;
760             uint64_t gpa = rvmcs(cpu->hvf_fd, VMCS_GUEST_PHYSICAL_ADDRESS);
761 
762             if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
763                 ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
764                 vmx_set_nmi_blocking(cpu);
765             }
766 
767             slot = hvf_find_overlap_slot(gpa, 1);
768             /* mmio */
769             if (ept_emulation_fault(slot, gpa, exit_qual)) {
770                 struct x86_decode decode;
771 
772                 load_regs(cpu);
773                 decode_instruction(env, &decode);
774                 exec_instruction(env, &decode);
775                 store_regs(cpu);
776                 break;
777             }
778             break;
779         }
780         case EXIT_REASON_INOUT:
781         {
782             uint32_t in = (exit_qual & 8) != 0;
783             uint32_t size =  (exit_qual & 7) + 1;
784             uint32_t string =  (exit_qual & 16) != 0;
785             uint32_t port =  exit_qual >> 16;
786             /*uint32_t rep = (exit_qual & 0x20) != 0;*/
787 
788             if (!string && in) {
789                 uint64_t val = 0;
790                 load_regs(cpu);
791                 hvf_handle_io(env, port, &val, 0, size, 1);
792                 if (size == 1) {
793                     AL(env) = val;
794                 } else if (size == 2) {
795                     AX(env) = val;
796                 } else if (size == 4) {
797                     RAX(env) = (uint32_t)val;
798                 } else {
799                     RAX(env) = (uint64_t)val;
800                 }
801                 env->eip += ins_len;
802                 store_regs(cpu);
803                 break;
804             } else if (!string && !in) {
805                 RAX(env) = rreg(cpu->hvf_fd, HV_X86_RAX);
806                 hvf_handle_io(env, port, &RAX(env), 1, size, 1);
807                 macvm_set_rip(cpu, rip + ins_len);
808                 break;
809             }
810             struct x86_decode decode;
811 
812             load_regs(cpu);
813             decode_instruction(env, &decode);
814             assert(ins_len == decode.len);
815             exec_instruction(env, &decode);
816             store_regs(cpu);
817 
818             break;
819         }
820         case EXIT_REASON_CPUID: {
821             uint32_t rax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
822             uint32_t rbx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RBX);
823             uint32_t rcx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
824             uint32_t rdx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
825 
826             cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
827 
828             wreg(cpu->hvf_fd, HV_X86_RAX, rax);
829             wreg(cpu->hvf_fd, HV_X86_RBX, rbx);
830             wreg(cpu->hvf_fd, HV_X86_RCX, rcx);
831             wreg(cpu->hvf_fd, HV_X86_RDX, rdx);
832 
833             macvm_set_rip(cpu, rip + ins_len);
834             break;
835         }
836         case EXIT_REASON_XSETBV: {
837             X86CPU *x86_cpu = X86_CPU(cpu);
838             CPUX86State *env = &x86_cpu->env;
839             uint32_t eax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
840             uint32_t ecx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
841             uint32_t edx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
842 
843             if (ecx) {
844                 macvm_set_rip(cpu, rip + ins_len);
845                 break;
846             }
847             env->xcr0 = ((uint64_t)edx << 32) | eax;
848             wreg(cpu->hvf_fd, HV_X86_XCR0, env->xcr0 | 1);
849             macvm_set_rip(cpu, rip + ins_len);
850             break;
851         }
852         case EXIT_REASON_INTR_WINDOW:
853             vmx_clear_int_window_exiting(cpu);
854             ret = EXCP_INTERRUPT;
855             break;
856         case EXIT_REASON_NMI_WINDOW:
857             vmx_clear_nmi_window_exiting(cpu);
858             ret = EXCP_INTERRUPT;
859             break;
860         case EXIT_REASON_EXT_INTR:
861             /* force exit and allow io handling */
862             ret = EXCP_INTERRUPT;
863             break;
864         case EXIT_REASON_RDMSR:
865         case EXIT_REASON_WRMSR:
866         {
867             load_regs(cpu);
868             if (exit_reason == EXIT_REASON_RDMSR) {
869                 simulate_rdmsr(cpu);
870             } else {
871                 simulate_wrmsr(cpu);
872             }
873             env->eip += ins_len;
874             store_regs(cpu);
875             break;
876         }
877         case EXIT_REASON_CR_ACCESS: {
878             int cr;
879             int reg;
880 
881             load_regs(cpu);
882             cr = exit_qual & 15;
883             reg = (exit_qual >> 8) & 15;
884 
885             switch (cr) {
886             case 0x0: {
887                 macvm_set_cr0(cpu->hvf_fd, RRX(env, reg));
888                 break;
889             }
890             case 4: {
891                 macvm_set_cr4(cpu->hvf_fd, RRX(env, reg));
892                 break;
893             }
894             case 8: {
895                 X86CPU *x86_cpu = X86_CPU(cpu);
896                 if (exit_qual & 0x10) {
897                     RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
898                 } else {
899                     int tpr = RRX(env, reg);
900                     cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
901                     ret = EXCP_INTERRUPT;
902                 }
903                 break;
904             }
905             default:
906                 error_report("Unrecognized CR %d", cr);
907                 abort();
908             }
909             env->eip += ins_len;
910             store_regs(cpu);
911             break;
912         }
913         case EXIT_REASON_APIC_ACCESS: { /* TODO */
914             struct x86_decode decode;
915 
916             load_regs(cpu);
917             decode_instruction(env, &decode);
918             exec_instruction(env, &decode);
919             store_regs(cpu);
920             break;
921         }
922         case EXIT_REASON_TPR: {
923             ret = 1;
924             break;
925         }
926         case EXIT_REASON_TASK_SWITCH: {
927             uint64_t vinfo = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
928             x68_segment_selector sel = {.sel = exit_qual & 0xffff};
929             vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
930              vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
931              & VMCS_INTR_T_MASK);
932             break;
933         }
934         case EXIT_REASON_TRIPLE_FAULT: {
935             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
936             ret = EXCP_INTERRUPT;
937             break;
938         }
939         case EXIT_REASON_RDPMC:
940             wreg(cpu->hvf_fd, HV_X86_RAX, 0);
941             wreg(cpu->hvf_fd, HV_X86_RDX, 0);
942             macvm_set_rip(cpu, rip + ins_len);
943             break;
944         case VMX_REASON_VMCALL:
945             env->exception_nr = EXCP0D_GPF;
946             env->exception_injected = 1;
947             env->has_error_code = true;
948             env->error_code = 0;
949             break;
950         default:
951             error_report("%llx: unhandled exit %llx", rip, exit_reason);
952         }
953     } while (ret == 0);
954 
955     return ret;
956 }
957 
958 bool hvf_allowed;
959 
960 static int hvf_accel_init(MachineState *ms)
961 {
962     int x;
963     hv_return_t ret;
964     HVFState *s;
965 
966     ret = hv_vm_create(HV_VM_DEFAULT);
967     assert_hvf_ok(ret);
968 
969     s = g_new0(HVFState, 1);
970 
971     s->num_slots = 32;
972     for (x = 0; x < s->num_slots; ++x) {
973         s->slots[x].size = 0;
974         s->slots[x].slot_id = x;
975     }
976 
977     hvf_state = s;
978     cpu_interrupt_handler = hvf_handle_interrupt;
979     memory_listener_register(&hvf_memory_listener, &address_space_memory);
980     return 0;
981 }
982 
983 static void hvf_accel_class_init(ObjectClass *oc, void *data)
984 {
985     AccelClass *ac = ACCEL_CLASS(oc);
986     ac->name = "HVF";
987     ac->init_machine = hvf_accel_init;
988     ac->allowed = &hvf_allowed;
989 }
990 
991 static const TypeInfo hvf_accel_type = {
992     .name = TYPE_HVF_ACCEL,
993     .parent = TYPE_ACCEL,
994     .class_init = hvf_accel_class_init,
995 };
996 
997 static void hvf_type_init(void)
998 {
999     type_register_static(&hvf_accel_type);
1000 }
1001 
1002 type_init(hvf_type_init);
1003