1 /* Copyright 2008 IBM Corporation 2 * 2008 Red Hat, Inc. 3 * Copyright 2011 Intel Corporation 4 * Copyright 2016 Veertu, Inc. 5 * Copyright 2017 The Android Open Source Project 6 * 7 * QEMU Hypervisor.framework support 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of version 2 of the GNU General Public 11 * License as published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * Lesser General Public License for more details. 17 * 18 * You should have received a copy of the GNU Lesser General Public 19 * License along with this program; if not, see <http://www.gnu.org/licenses/>. 20 * 21 * This file contain code under public domain from the hvdos project: 22 * https://github.com/mist64/hvdos 23 * 24 * Parts Copyright (c) 2011 NetApp, Inc. 25 * All rights reserved. 26 * 27 * Redistribution and use in source and binary forms, with or without 28 * modification, are permitted provided that the following conditions 29 * are met: 30 * 1. Redistributions of source code must retain the above copyright 31 * notice, this list of conditions and the following disclaimer. 32 * 2. Redistributions in binary form must reproduce the above copyright 33 * notice, this list of conditions and the following disclaimer in the 34 * documentation and/or other materials provided with the distribution. 35 * 36 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 37 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 39 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 40 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 41 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 42 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 44 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 45 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 46 * SUCH DAMAGE. 47 */ 48 #include "qemu/osdep.h" 49 #include "qemu-common.h" 50 #include "qemu/error-report.h" 51 52 #include "sysemu/hvf.h" 53 #include "hvf-i386.h" 54 #include "vmcs.h" 55 #include "vmx.h" 56 #include "x86.h" 57 #include "x86_descr.h" 58 #include "x86_mmu.h" 59 #include "x86_decode.h" 60 #include "x86_emu.h" 61 #include "x86_task.h" 62 #include "x86hvf.h" 63 64 #include <Hypervisor/hv.h> 65 #include <Hypervisor/hv_vmx.h> 66 67 #include "exec/address-spaces.h" 68 #include "exec/exec-all.h" 69 #include "exec/ioport.h" 70 #include "hw/i386/apic_internal.h" 71 #include "hw/boards.h" 72 #include "qemu/main-loop.h" 73 #include "sysemu/accel.h" 74 #include "sysemu/sysemu.h" 75 #include "target/i386/cpu.h" 76 77 pthread_rwlock_t mem_lock = PTHREAD_RWLOCK_INITIALIZER; 78 HVFState *hvf_state; 79 int hvf_disabled = 1; 80 81 static void assert_hvf_ok(hv_return_t ret) 82 { 83 if (ret == HV_SUCCESS) { 84 return; 85 } 86 87 switch (ret) { 88 case HV_ERROR: 89 error_report("Error: HV_ERROR"); 90 break; 91 case HV_BUSY: 92 error_report("Error: HV_BUSY"); 93 break; 94 case HV_BAD_ARGUMENT: 95 error_report("Error: HV_BAD_ARGUMENT"); 96 break; 97 case HV_NO_RESOURCES: 98 error_report("Error: HV_NO_RESOURCES"); 99 break; 100 case HV_NO_DEVICE: 101 error_report("Error: HV_NO_DEVICE"); 102 break; 103 case HV_UNSUPPORTED: 104 error_report("Error: HV_UNSUPPORTED"); 105 break; 106 default: 107 error_report("Unknown Error"); 108 } 109 110 abort(); 111 } 112 113 /* Memory slots */ 114 hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t end) 115 { 116 hvf_slot *slot; 117 int x; 118 for (x = 0; x < hvf_state->num_slots; ++x) { 119 slot = &hvf_state->slots[x]; 120 if (slot->size && start < (slot->start + slot->size) && 121 end > slot->start) { 122 return slot; 123 } 124 } 125 return NULL; 126 } 127 128 struct mac_slot { 129 int present; 130 uint64_t size; 131 uint64_t gpa_start; 132 uint64_t gva; 133 }; 134 135 struct mac_slot mac_slots[32]; 136 #define ALIGN(x, y) (((x) + (y) - 1) & ~((y) - 1)) 137 138 static int do_hvf_set_memory(hvf_slot *slot) 139 { 140 struct mac_slot *macslot; 141 hv_memory_flags_t flags; 142 hv_return_t ret; 143 144 macslot = &mac_slots[slot->slot_id]; 145 146 if (macslot->present) { 147 if (macslot->size != slot->size) { 148 macslot->present = 0; 149 ret = hv_vm_unmap(macslot->gpa_start, macslot->size); 150 assert_hvf_ok(ret); 151 } 152 } 153 154 if (!slot->size) { 155 return 0; 156 } 157 158 flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC; 159 160 macslot->present = 1; 161 macslot->gpa_start = slot->start; 162 macslot->size = slot->size; 163 ret = hv_vm_map((hv_uvaddr_t)slot->mem, slot->start, slot->size, flags); 164 assert_hvf_ok(ret); 165 return 0; 166 } 167 168 void hvf_set_phys_mem(MemoryRegionSection *section, bool add) 169 { 170 hvf_slot *mem; 171 MemoryRegion *area = section->mr; 172 173 if (!memory_region_is_ram(area)) { 174 return; 175 } 176 177 mem = hvf_find_overlap_slot( 178 section->offset_within_address_space, 179 section->offset_within_address_space + int128_get64(section->size)); 180 181 if (mem && add) { 182 if (mem->size == int128_get64(section->size) && 183 mem->start == section->offset_within_address_space && 184 mem->mem == (memory_region_get_ram_ptr(area) + 185 section->offset_within_region)) { 186 return; /* Same region was attempted to register, go away. */ 187 } 188 } 189 190 /* Region needs to be reset. set the size to 0 and remap it. */ 191 if (mem) { 192 mem->size = 0; 193 if (do_hvf_set_memory(mem)) { 194 error_report("Failed to reset overlapping slot"); 195 abort(); 196 } 197 } 198 199 if (!add) { 200 return; 201 } 202 203 /* Now make a new slot. */ 204 int x; 205 206 for (x = 0; x < hvf_state->num_slots; ++x) { 207 mem = &hvf_state->slots[x]; 208 if (!mem->size) { 209 break; 210 } 211 } 212 213 if (x == hvf_state->num_slots) { 214 error_report("No free slots"); 215 abort(); 216 } 217 218 mem->size = int128_get64(section->size); 219 mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region; 220 mem->start = section->offset_within_address_space; 221 mem->region = area; 222 223 if (do_hvf_set_memory(mem)) { 224 error_report("Error registering new memory slot"); 225 abort(); 226 } 227 } 228 229 void vmx_update_tpr(CPUState *cpu) 230 { 231 /* TODO: need integrate APIC handling */ 232 X86CPU *x86_cpu = X86_CPU(cpu); 233 int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4; 234 int irr = apic_get_highest_priority_irr(x86_cpu->apic_state); 235 236 wreg(cpu->hvf_fd, HV_X86_TPR, tpr); 237 if (irr == -1) { 238 wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0); 239 } else { 240 wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 : 241 irr >> 4); 242 } 243 } 244 245 void update_apic_tpr(CPUState *cpu) 246 { 247 X86CPU *x86_cpu = X86_CPU(cpu); 248 int tpr = rreg(cpu->hvf_fd, HV_X86_TPR) >> 4; 249 cpu_set_apic_tpr(x86_cpu->apic_state, tpr); 250 } 251 252 #define VECTORING_INFO_VECTOR_MASK 0xff 253 254 static void hvf_handle_interrupt(CPUState * cpu, int mask) 255 { 256 cpu->interrupt_request |= mask; 257 if (!qemu_cpu_is_self(cpu)) { 258 qemu_cpu_kick(cpu); 259 } 260 } 261 262 void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer, 263 int direction, int size, int count) 264 { 265 int i; 266 uint8_t *ptr = buffer; 267 268 for (i = 0; i < count; i++) { 269 address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED, 270 ptr, size, 271 direction); 272 ptr += size; 273 } 274 } 275 276 /* TODO: synchronize vcpu state */ 277 static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 278 { 279 CPUState *cpu_state = cpu; 280 if (cpu_state->vcpu_dirty == 0) { 281 hvf_get_registers(cpu_state); 282 } 283 284 cpu_state->vcpu_dirty = 1; 285 } 286 287 void hvf_cpu_synchronize_state(CPUState *cpu_state) 288 { 289 if (cpu_state->vcpu_dirty == 0) { 290 run_on_cpu(cpu_state, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL); 291 } 292 } 293 294 static void do_hvf_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 295 { 296 CPUState *cpu_state = cpu; 297 hvf_put_registers(cpu_state); 298 cpu_state->vcpu_dirty = false; 299 } 300 301 void hvf_cpu_synchronize_post_reset(CPUState *cpu_state) 302 { 303 run_on_cpu(cpu_state, do_hvf_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 304 } 305 306 void _hvf_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 307 { 308 CPUState *cpu_state = cpu; 309 hvf_put_registers(cpu_state); 310 cpu_state->vcpu_dirty = false; 311 } 312 313 void hvf_cpu_synchronize_post_init(CPUState *cpu_state) 314 { 315 run_on_cpu(cpu_state, _hvf_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 316 } 317 318 static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual) 319 { 320 int read, write; 321 322 /* EPT fault on an instruction fetch doesn't make sense here */ 323 if (ept_qual & EPT_VIOLATION_INST_FETCH) { 324 return false; 325 } 326 327 /* EPT fault must be a read fault or a write fault */ 328 read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0; 329 write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0; 330 if ((read | write) == 0) { 331 return false; 332 } 333 334 if (write && slot) { 335 if (slot->flags & HVF_SLOT_LOG) { 336 memory_region_set_dirty(slot->region, gpa - slot->start, 1); 337 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size, 338 HV_MEMORY_READ | HV_MEMORY_WRITE); 339 } 340 } 341 342 /* 343 * The EPT violation must have been caused by accessing a 344 * guest-physical address that is a translation of a guest-linear 345 * address. 346 */ 347 if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 || 348 (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) { 349 return false; 350 } 351 352 return !slot; 353 } 354 355 static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on) 356 { 357 hvf_slot *slot; 358 359 slot = hvf_find_overlap_slot( 360 section->offset_within_address_space, 361 section->offset_within_address_space + int128_get64(section->size)); 362 363 /* protect region against writes; begin tracking it */ 364 if (on) { 365 slot->flags |= HVF_SLOT_LOG; 366 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size, 367 HV_MEMORY_READ); 368 /* stop tracking region*/ 369 } else { 370 slot->flags &= ~HVF_SLOT_LOG; 371 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size, 372 HV_MEMORY_READ | HV_MEMORY_WRITE); 373 } 374 } 375 376 static void hvf_log_start(MemoryListener *listener, 377 MemoryRegionSection *section, int old, int new) 378 { 379 if (old != 0) { 380 return; 381 } 382 383 hvf_set_dirty_tracking(section, 1); 384 } 385 386 static void hvf_log_stop(MemoryListener *listener, 387 MemoryRegionSection *section, int old, int new) 388 { 389 if (new != 0) { 390 return; 391 } 392 393 hvf_set_dirty_tracking(section, 0); 394 } 395 396 static void hvf_log_sync(MemoryListener *listener, 397 MemoryRegionSection *section) 398 { 399 /* 400 * sync of dirty pages is handled elsewhere; just make sure we keep 401 * tracking the region. 402 */ 403 hvf_set_dirty_tracking(section, 1); 404 } 405 406 static void hvf_region_add(MemoryListener *listener, 407 MemoryRegionSection *section) 408 { 409 hvf_set_phys_mem(section, true); 410 } 411 412 static void hvf_region_del(MemoryListener *listener, 413 MemoryRegionSection *section) 414 { 415 hvf_set_phys_mem(section, false); 416 } 417 418 static MemoryListener hvf_memory_listener = { 419 .priority = 10, 420 .region_add = hvf_region_add, 421 .region_del = hvf_region_del, 422 .log_start = hvf_log_start, 423 .log_stop = hvf_log_stop, 424 .log_sync = hvf_log_sync, 425 }; 426 427 void hvf_reset_vcpu(CPUState *cpu) { 428 429 /* TODO: this shouldn't be needed; there is already a call to 430 * cpu_synchronize_all_post_reset in vl.c 431 */ 432 wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, 0); 433 wvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER, 0); 434 macvm_set_cr0(cpu->hvf_fd, 0x60000010); 435 436 wvmcs(cpu->hvf_fd, VMCS_CR4_MASK, CR4_VMXE_MASK); 437 wvmcs(cpu->hvf_fd, VMCS_CR4_SHADOW, 0x0); 438 wvmcs(cpu->hvf_fd, VMCS_GUEST_CR4, CR4_VMXE_MASK); 439 440 /* set VMCS guest state fields */ 441 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_SELECTOR, 0xf000); 442 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_LIMIT, 0xffff); 443 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_ACCESS_RIGHTS, 0x9b); 444 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_BASE, 0xffff0000); 445 446 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_SELECTOR, 0); 447 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_LIMIT, 0xffff); 448 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_ACCESS_RIGHTS, 0x93); 449 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_BASE, 0); 450 451 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_SELECTOR, 0); 452 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_LIMIT, 0xffff); 453 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_ACCESS_RIGHTS, 0x93); 454 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_BASE, 0); 455 456 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_SELECTOR, 0); 457 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_LIMIT, 0xffff); 458 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_ACCESS_RIGHTS, 0x93); 459 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE, 0); 460 461 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_SELECTOR, 0); 462 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_LIMIT, 0xffff); 463 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_ACCESS_RIGHTS, 0x93); 464 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE, 0); 465 466 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_SELECTOR, 0); 467 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_LIMIT, 0xffff); 468 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_ACCESS_RIGHTS, 0x93); 469 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_BASE, 0); 470 471 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_SELECTOR, 0); 472 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_LIMIT, 0); 473 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_ACCESS_RIGHTS, 0x10000); 474 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_BASE, 0); 475 476 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_SELECTOR, 0); 477 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_LIMIT, 0); 478 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_ACCESS_RIGHTS, 0x83); 479 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_BASE, 0); 480 481 wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_LIMIT, 0); 482 wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_BASE, 0); 483 484 wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_LIMIT, 0); 485 wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_BASE, 0); 486 487 /*wvmcs(cpu->hvf_fd, VMCS_GUEST_CR2, 0x0);*/ 488 wvmcs(cpu->hvf_fd, VMCS_GUEST_CR3, 0x0); 489 490 wreg(cpu->hvf_fd, HV_X86_RIP, 0xfff0); 491 wreg(cpu->hvf_fd, HV_X86_RDX, 0x623); 492 wreg(cpu->hvf_fd, HV_X86_RFLAGS, 0x2); 493 wreg(cpu->hvf_fd, HV_X86_RSP, 0x0); 494 wreg(cpu->hvf_fd, HV_X86_RAX, 0x0); 495 wreg(cpu->hvf_fd, HV_X86_RBX, 0x0); 496 wreg(cpu->hvf_fd, HV_X86_RCX, 0x0); 497 wreg(cpu->hvf_fd, HV_X86_RSI, 0x0); 498 wreg(cpu->hvf_fd, HV_X86_RDI, 0x0); 499 wreg(cpu->hvf_fd, HV_X86_RBP, 0x0); 500 501 for (int i = 0; i < 8; i++) { 502 wreg(cpu->hvf_fd, HV_X86_R8 + i, 0x0); 503 } 504 505 hv_vm_sync_tsc(0); 506 cpu->halted = 0; 507 hv_vcpu_invalidate_tlb(cpu->hvf_fd); 508 hv_vcpu_flush(cpu->hvf_fd); 509 } 510 511 void hvf_vcpu_destroy(CPUState *cpu) 512 { 513 hv_return_t ret = hv_vcpu_destroy((hv_vcpuid_t)cpu->hvf_fd); 514 assert_hvf_ok(ret); 515 } 516 517 static void dummy_signal(int sig) 518 { 519 } 520 521 int hvf_init_vcpu(CPUState *cpu) 522 { 523 524 X86CPU *x86cpu = X86_CPU(cpu); 525 CPUX86State *env = &x86cpu->env; 526 int r; 527 528 /* init cpu signals */ 529 sigset_t set; 530 struct sigaction sigact; 531 532 memset(&sigact, 0, sizeof(sigact)); 533 sigact.sa_handler = dummy_signal; 534 sigaction(SIG_IPI, &sigact, NULL); 535 536 pthread_sigmask(SIG_BLOCK, NULL, &set); 537 sigdelset(&set, SIG_IPI); 538 539 init_emu(); 540 init_decoder(); 541 542 hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1); 543 env->hvf_emul = g_new0(HVFX86EmulatorState, 1); 544 545 r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf_fd, HV_VCPU_DEFAULT); 546 cpu->vcpu_dirty = 1; 547 assert_hvf_ok(r); 548 549 if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED, 550 &hvf_state->hvf_caps->vmx_cap_pinbased)) { 551 abort(); 552 } 553 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED, 554 &hvf_state->hvf_caps->vmx_cap_procbased)) { 555 abort(); 556 } 557 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2, 558 &hvf_state->hvf_caps->vmx_cap_procbased2)) { 559 abort(); 560 } 561 if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY, 562 &hvf_state->hvf_caps->vmx_cap_entry)) { 563 abort(); 564 } 565 566 /* set VMCS control fields */ 567 wvmcs(cpu->hvf_fd, VMCS_PIN_BASED_CTLS, 568 cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased, 569 VMCS_PIN_BASED_CTLS_EXTINT | 570 VMCS_PIN_BASED_CTLS_NMI | 571 VMCS_PIN_BASED_CTLS_VNMI)); 572 wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS, 573 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased, 574 VMCS_PRI_PROC_BASED_CTLS_HLT | 575 VMCS_PRI_PROC_BASED_CTLS_MWAIT | 576 VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET | 577 VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) | 578 VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL); 579 wvmcs(cpu->hvf_fd, VMCS_SEC_PROC_BASED_CTLS, 580 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2, 581 VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES)); 582 583 wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry, 584 0)); 585 wvmcs(cpu->hvf_fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */ 586 587 wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0); 588 589 hvf_reset_vcpu(cpu); 590 591 x86cpu = X86_CPU(cpu); 592 x86cpu->env.kvm_xsave_buf = qemu_memalign(4096, 4096); 593 594 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_STAR, 1); 595 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_LSTAR, 1); 596 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_CSTAR, 1); 597 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FMASK, 1); 598 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FSBASE, 1); 599 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_GSBASE, 1); 600 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_KERNELGSBASE, 1); 601 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_TSC_AUX, 1); 602 /*hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_TSC, 1);*/ 603 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_CS, 1); 604 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_EIP, 1); 605 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_ESP, 1); 606 607 return 0; 608 } 609 610 void hvf_disable(int shouldDisable) 611 { 612 hvf_disabled = shouldDisable; 613 } 614 615 static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info) 616 { 617 X86CPU *x86_cpu = X86_CPU(cpu); 618 CPUX86State *env = &x86_cpu->env; 619 620 env->exception_injected = -1; 621 env->interrupt_injected = -1; 622 env->nmi_injected = false; 623 if (idtvec_info & VMCS_IDT_VEC_VALID) { 624 switch (idtvec_info & VMCS_IDT_VEC_TYPE) { 625 case VMCS_IDT_VEC_HWINTR: 626 case VMCS_IDT_VEC_SWINTR: 627 env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM; 628 break; 629 case VMCS_IDT_VEC_NMI: 630 env->nmi_injected = true; 631 break; 632 case VMCS_IDT_VEC_HWEXCEPTION: 633 case VMCS_IDT_VEC_SWEXCEPTION: 634 env->exception_injected = idtvec_info & VMCS_IDT_VEC_VECNUM; 635 break; 636 case VMCS_IDT_VEC_PRIV_SWEXCEPTION: 637 default: 638 abort(); 639 } 640 if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION || 641 (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) { 642 env->ins_len = ins_len; 643 } 644 if (idtvec_info & VMCS_INTR_DEL_ERRCODE) { 645 env->has_error_code = true; 646 env->error_code = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_ERROR); 647 } 648 } 649 if ((rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) & 650 VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) { 651 env->hflags2 |= HF2_NMI_MASK; 652 } else { 653 env->hflags2 &= ~HF2_NMI_MASK; 654 } 655 if (rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) & 656 (VMCS_INTERRUPTIBILITY_STI_BLOCKING | 657 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) { 658 env->hflags |= HF_INHIBIT_IRQ_MASK; 659 } else { 660 env->hflags &= ~HF_INHIBIT_IRQ_MASK; 661 } 662 } 663 664 int hvf_vcpu_exec(CPUState *cpu) 665 { 666 X86CPU *x86_cpu = X86_CPU(cpu); 667 CPUX86State *env = &x86_cpu->env; 668 int ret = 0; 669 uint64_t rip = 0; 670 671 cpu->halted = 0; 672 673 if (hvf_process_events(cpu)) { 674 return EXCP_HLT; 675 } 676 677 do { 678 if (cpu->vcpu_dirty) { 679 hvf_put_registers(cpu); 680 cpu->vcpu_dirty = false; 681 } 682 683 if (hvf_inject_interrupts(cpu)) { 684 return EXCP_INTERRUPT; 685 } 686 vmx_update_tpr(cpu); 687 688 qemu_mutex_unlock_iothread(); 689 if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) { 690 qemu_mutex_lock_iothread(); 691 return EXCP_HLT; 692 } 693 694 hv_return_t r = hv_vcpu_run(cpu->hvf_fd); 695 assert_hvf_ok(r); 696 697 /* handle VMEXIT */ 698 uint64_t exit_reason = rvmcs(cpu->hvf_fd, VMCS_EXIT_REASON); 699 uint64_t exit_qual = rvmcs(cpu->hvf_fd, VMCS_EXIT_QUALIFICATION); 700 uint32_t ins_len = (uint32_t)rvmcs(cpu->hvf_fd, 701 VMCS_EXIT_INSTRUCTION_LENGTH); 702 703 uint64_t idtvec_info = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO); 704 705 hvf_store_events(cpu, ins_len, idtvec_info); 706 rip = rreg(cpu->hvf_fd, HV_X86_RIP); 707 RFLAGS(env) = rreg(cpu->hvf_fd, HV_X86_RFLAGS); 708 env->eflags = RFLAGS(env); 709 710 qemu_mutex_lock_iothread(); 711 712 update_apic_tpr(cpu); 713 current_cpu = cpu; 714 715 ret = 0; 716 switch (exit_reason) { 717 case EXIT_REASON_HLT: { 718 macvm_set_rip(cpu, rip + ins_len); 719 if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) && 720 (EFLAGS(env) & IF_MASK)) 721 && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) && 722 !(idtvec_info & VMCS_IDT_VEC_VALID)) { 723 cpu->halted = 1; 724 ret = EXCP_HLT; 725 } 726 ret = EXCP_INTERRUPT; 727 break; 728 } 729 case EXIT_REASON_MWAIT: { 730 ret = EXCP_INTERRUPT; 731 break; 732 } 733 /* Need to check if MMIO or unmmaped fault */ 734 case EXIT_REASON_EPT_FAULT: 735 { 736 hvf_slot *slot; 737 uint64_t gpa = rvmcs(cpu->hvf_fd, VMCS_GUEST_PHYSICAL_ADDRESS); 738 739 if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) && 740 ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) { 741 vmx_set_nmi_blocking(cpu); 742 } 743 744 slot = hvf_find_overlap_slot(gpa, gpa); 745 /* mmio */ 746 if (ept_emulation_fault(slot, gpa, exit_qual)) { 747 struct x86_decode decode; 748 749 load_regs(cpu); 750 env->hvf_emul->fetch_rip = rip; 751 752 decode_instruction(env, &decode); 753 exec_instruction(env, &decode); 754 store_regs(cpu); 755 break; 756 } 757 break; 758 } 759 case EXIT_REASON_INOUT: 760 { 761 uint32_t in = (exit_qual & 8) != 0; 762 uint32_t size = (exit_qual & 7) + 1; 763 uint32_t string = (exit_qual & 16) != 0; 764 uint32_t port = exit_qual >> 16; 765 /*uint32_t rep = (exit_qual & 0x20) != 0;*/ 766 767 if (!string && in) { 768 uint64_t val = 0; 769 load_regs(cpu); 770 hvf_handle_io(env, port, &val, 0, size, 1); 771 if (size == 1) { 772 AL(env) = val; 773 } else if (size == 2) { 774 AX(env) = val; 775 } else if (size == 4) { 776 RAX(env) = (uint32_t)val; 777 } else { 778 RAX(env) = (uint64_t)val; 779 } 780 RIP(env) += ins_len; 781 store_regs(cpu); 782 break; 783 } else if (!string && !in) { 784 RAX(env) = rreg(cpu->hvf_fd, HV_X86_RAX); 785 hvf_handle_io(env, port, &RAX(env), 1, size, 1); 786 macvm_set_rip(cpu, rip + ins_len); 787 break; 788 } 789 struct x86_decode decode; 790 791 load_regs(cpu); 792 env->hvf_emul->fetch_rip = rip; 793 794 decode_instruction(env, &decode); 795 assert(ins_len == decode.len); 796 exec_instruction(env, &decode); 797 store_regs(cpu); 798 799 break; 800 } 801 case EXIT_REASON_CPUID: { 802 uint32_t rax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX); 803 uint32_t rbx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RBX); 804 uint32_t rcx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX); 805 uint32_t rdx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX); 806 807 cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx); 808 809 wreg(cpu->hvf_fd, HV_X86_RAX, rax); 810 wreg(cpu->hvf_fd, HV_X86_RBX, rbx); 811 wreg(cpu->hvf_fd, HV_X86_RCX, rcx); 812 wreg(cpu->hvf_fd, HV_X86_RDX, rdx); 813 814 macvm_set_rip(cpu, rip + ins_len); 815 break; 816 } 817 case EXIT_REASON_XSETBV: { 818 X86CPU *x86_cpu = X86_CPU(cpu); 819 CPUX86State *env = &x86_cpu->env; 820 uint32_t eax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX); 821 uint32_t ecx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX); 822 uint32_t edx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX); 823 824 if (ecx) { 825 macvm_set_rip(cpu, rip + ins_len); 826 break; 827 } 828 env->xcr0 = ((uint64_t)edx << 32) | eax; 829 wreg(cpu->hvf_fd, HV_X86_XCR0, env->xcr0 | 1); 830 macvm_set_rip(cpu, rip + ins_len); 831 break; 832 } 833 case EXIT_REASON_INTR_WINDOW: 834 vmx_clear_int_window_exiting(cpu); 835 ret = EXCP_INTERRUPT; 836 break; 837 case EXIT_REASON_NMI_WINDOW: 838 vmx_clear_nmi_window_exiting(cpu); 839 ret = EXCP_INTERRUPT; 840 break; 841 case EXIT_REASON_EXT_INTR: 842 /* force exit and allow io handling */ 843 ret = EXCP_INTERRUPT; 844 break; 845 case EXIT_REASON_RDMSR: 846 case EXIT_REASON_WRMSR: 847 { 848 load_regs(cpu); 849 if (exit_reason == EXIT_REASON_RDMSR) { 850 simulate_rdmsr(cpu); 851 } else { 852 simulate_wrmsr(cpu); 853 } 854 RIP(env) += rvmcs(cpu->hvf_fd, VMCS_EXIT_INSTRUCTION_LENGTH); 855 store_regs(cpu); 856 break; 857 } 858 case EXIT_REASON_CR_ACCESS: { 859 int cr; 860 int reg; 861 862 load_regs(cpu); 863 cr = exit_qual & 15; 864 reg = (exit_qual >> 8) & 15; 865 866 switch (cr) { 867 case 0x0: { 868 macvm_set_cr0(cpu->hvf_fd, RRX(env, reg)); 869 break; 870 } 871 case 4: { 872 macvm_set_cr4(cpu->hvf_fd, RRX(env, reg)); 873 break; 874 } 875 case 8: { 876 X86CPU *x86_cpu = X86_CPU(cpu); 877 if (exit_qual & 0x10) { 878 RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state); 879 } else { 880 int tpr = RRX(env, reg); 881 cpu_set_apic_tpr(x86_cpu->apic_state, tpr); 882 ret = EXCP_INTERRUPT; 883 } 884 break; 885 } 886 default: 887 error_report("Unrecognized CR %d", cr); 888 abort(); 889 } 890 RIP(env) += ins_len; 891 store_regs(cpu); 892 break; 893 } 894 case EXIT_REASON_APIC_ACCESS: { /* TODO */ 895 struct x86_decode decode; 896 897 load_regs(cpu); 898 env->hvf_emul->fetch_rip = rip; 899 900 decode_instruction(env, &decode); 901 exec_instruction(env, &decode); 902 store_regs(cpu); 903 break; 904 } 905 case EXIT_REASON_TPR: { 906 ret = 1; 907 break; 908 } 909 case EXIT_REASON_TASK_SWITCH: { 910 uint64_t vinfo = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO); 911 x68_segment_selector sel = {.sel = exit_qual & 0xffff}; 912 vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3, 913 vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo 914 & VMCS_INTR_T_MASK); 915 break; 916 } 917 case EXIT_REASON_TRIPLE_FAULT: { 918 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 919 ret = EXCP_INTERRUPT; 920 break; 921 } 922 case EXIT_REASON_RDPMC: 923 wreg(cpu->hvf_fd, HV_X86_RAX, 0); 924 wreg(cpu->hvf_fd, HV_X86_RDX, 0); 925 macvm_set_rip(cpu, rip + ins_len); 926 break; 927 case VMX_REASON_VMCALL: 928 env->exception_injected = EXCP0D_GPF; 929 env->has_error_code = true; 930 env->error_code = 0; 931 break; 932 default: 933 error_report("%llx: unhandled exit %llx", rip, exit_reason); 934 } 935 } while (ret == 0); 936 937 return ret; 938 } 939 940 static bool hvf_allowed; 941 942 static int hvf_accel_init(MachineState *ms) 943 { 944 int x; 945 hv_return_t ret; 946 HVFState *s; 947 948 hvf_disable(0); 949 ret = hv_vm_create(HV_VM_DEFAULT); 950 assert_hvf_ok(ret); 951 952 s = g_new0(HVFState, 1); 953 954 s->num_slots = 32; 955 for (x = 0; x < s->num_slots; ++x) { 956 s->slots[x].size = 0; 957 s->slots[x].slot_id = x; 958 } 959 960 hvf_state = s; 961 cpu_interrupt_handler = hvf_handle_interrupt; 962 memory_listener_register(&hvf_memory_listener, &address_space_memory); 963 return 0; 964 } 965 966 static void hvf_accel_class_init(ObjectClass *oc, void *data) 967 { 968 AccelClass *ac = ACCEL_CLASS(oc); 969 ac->name = "HVF"; 970 ac->init_machine = hvf_accel_init; 971 ac->allowed = &hvf_allowed; 972 } 973 974 static const TypeInfo hvf_accel_type = { 975 .name = TYPE_HVF_ACCEL, 976 .parent = TYPE_ACCEL, 977 .class_init = hvf_accel_class_init, 978 }; 979 980 static void hvf_type_init(void) 981 { 982 type_register_static(&hvf_accel_type); 983 } 984 985 type_init(hvf_type_init); 986