xref: /openbmc/qemu/target/i386/hvf/hvf.c (revision ccb23709)
1 /* Copyright 2008 IBM Corporation
2  *           2008 Red Hat, Inc.
3  * Copyright 2011 Intel Corporation
4  * Copyright 2016 Veertu, Inc.
5  * Copyright 2017 The Android Open Source Project
6  *
7  * QEMU Hypervisor.framework support
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of version 2 of the GNU General Public
11  * License as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, see <http://www.gnu.org/licenses/>.
20  *
21  * This file contain code under public domain from the hvdos project:
22  * https://github.com/mist64/hvdos
23  *
24  * Parts Copyright (c) 2011 NetApp, Inc.
25  * All rights reserved.
26  *
27  * Redistribution and use in source and binary forms, with or without
28  * modification, are permitted provided that the following conditions
29  * are met:
30  * 1. Redistributions of source code must retain the above copyright
31  *    notice, this list of conditions and the following disclaimer.
32  * 2. Redistributions in binary form must reproduce the above copyright
33  *    notice, this list of conditions and the following disclaimer in the
34  *    documentation and/or other materials provided with the distribution.
35  *
36  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
37  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
40  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46  * SUCH DAMAGE.
47  */
48 
49 #include "qemu/osdep.h"
50 #include "qemu-common.h"
51 #include "qemu/error-report.h"
52 
53 #include "sysemu/hvf.h"
54 #include "sysemu/runstate.h"
55 #include "hvf-i386.h"
56 #include "vmcs.h"
57 #include "vmx.h"
58 #include "x86.h"
59 #include "x86_descr.h"
60 #include "x86_mmu.h"
61 #include "x86_decode.h"
62 #include "x86_emu.h"
63 #include "x86_task.h"
64 #include "x86hvf.h"
65 
66 #include <Hypervisor/hv.h>
67 #include <Hypervisor/hv_vmx.h>
68 
69 #include "exec/address-spaces.h"
70 #include "hw/i386/apic_internal.h"
71 #include "qemu/main-loop.h"
72 #include "sysemu/accel.h"
73 #include "target/i386/cpu.h"
74 
75 HVFState *hvf_state;
76 
77 static void assert_hvf_ok(hv_return_t ret)
78 {
79     if (ret == HV_SUCCESS) {
80         return;
81     }
82 
83     switch (ret) {
84     case HV_ERROR:
85         error_report("Error: HV_ERROR");
86         break;
87     case HV_BUSY:
88         error_report("Error: HV_BUSY");
89         break;
90     case HV_BAD_ARGUMENT:
91         error_report("Error: HV_BAD_ARGUMENT");
92         break;
93     case HV_NO_RESOURCES:
94         error_report("Error: HV_NO_RESOURCES");
95         break;
96     case HV_NO_DEVICE:
97         error_report("Error: HV_NO_DEVICE");
98         break;
99     case HV_UNSUPPORTED:
100         error_report("Error: HV_UNSUPPORTED");
101         break;
102     default:
103         error_report("Unknown Error");
104     }
105 
106     abort();
107 }
108 
109 /* Memory slots */
110 hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t size)
111 {
112     hvf_slot *slot;
113     int x;
114     for (x = 0; x < hvf_state->num_slots; ++x) {
115         slot = &hvf_state->slots[x];
116         if (slot->size && start < (slot->start + slot->size) &&
117             (start + size) > slot->start) {
118             return slot;
119         }
120     }
121     return NULL;
122 }
123 
124 struct mac_slot {
125     int present;
126     uint64_t size;
127     uint64_t gpa_start;
128     uint64_t gva;
129 };
130 
131 struct mac_slot mac_slots[32];
132 
133 static int do_hvf_set_memory(hvf_slot *slot, hv_memory_flags_t flags)
134 {
135     struct mac_slot *macslot;
136     hv_return_t ret;
137 
138     macslot = &mac_slots[slot->slot_id];
139 
140     if (macslot->present) {
141         if (macslot->size != slot->size) {
142             macslot->present = 0;
143             ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
144             assert_hvf_ok(ret);
145         }
146     }
147 
148     if (!slot->size) {
149         return 0;
150     }
151 
152     macslot->present = 1;
153     macslot->gpa_start = slot->start;
154     macslot->size = slot->size;
155     ret = hv_vm_map((hv_uvaddr_t)slot->mem, slot->start, slot->size, flags);
156     assert_hvf_ok(ret);
157     return 0;
158 }
159 
160 void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
161 {
162     hvf_slot *mem;
163     MemoryRegion *area = section->mr;
164     bool writeable = !area->readonly && !area->rom_device;
165     hv_memory_flags_t flags;
166 
167     if (!memory_region_is_ram(area)) {
168         if (writeable) {
169             return;
170         } else if (!memory_region_is_romd(area)) {
171             /*
172              * If the memory device is not in romd_mode, then we actually want
173              * to remove the hvf memory slot so all accesses will trap.
174              */
175              add = false;
176         }
177     }
178 
179     mem = hvf_find_overlap_slot(
180             section->offset_within_address_space,
181             int128_get64(section->size));
182 
183     if (mem && add) {
184         if (mem->size == int128_get64(section->size) &&
185             mem->start == section->offset_within_address_space &&
186             mem->mem == (memory_region_get_ram_ptr(area) +
187             section->offset_within_region)) {
188             return; /* Same region was attempted to register, go away. */
189         }
190     }
191 
192     /* Region needs to be reset. set the size to 0 and remap it. */
193     if (mem) {
194         mem->size = 0;
195         if (do_hvf_set_memory(mem, 0)) {
196             error_report("Failed to reset overlapping slot");
197             abort();
198         }
199     }
200 
201     if (!add) {
202         return;
203     }
204 
205     if (area->readonly ||
206         (!memory_region_is_ram(area) && memory_region_is_romd(area))) {
207         flags = HV_MEMORY_READ | HV_MEMORY_EXEC;
208     } else {
209         flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
210     }
211 
212     /* Now make a new slot. */
213     int x;
214 
215     for (x = 0; x < hvf_state->num_slots; ++x) {
216         mem = &hvf_state->slots[x];
217         if (!mem->size) {
218             break;
219         }
220     }
221 
222     if (x == hvf_state->num_slots) {
223         error_report("No free slots");
224         abort();
225     }
226 
227     mem->size = int128_get64(section->size);
228     mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
229     mem->start = section->offset_within_address_space;
230     mem->region = area;
231 
232     if (do_hvf_set_memory(mem, flags)) {
233         error_report("Error registering new memory slot");
234         abort();
235     }
236 }
237 
238 void vmx_update_tpr(CPUState *cpu)
239 {
240     /* TODO: need integrate APIC handling */
241     X86CPU *x86_cpu = X86_CPU(cpu);
242     int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
243     int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
244 
245     wreg(cpu->hvf_fd, HV_X86_TPR, tpr);
246     if (irr == -1) {
247         wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
248     } else {
249         wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
250               irr >> 4);
251     }
252 }
253 
254 static void update_apic_tpr(CPUState *cpu)
255 {
256     X86CPU *x86_cpu = X86_CPU(cpu);
257     int tpr = rreg(cpu->hvf_fd, HV_X86_TPR) >> 4;
258     cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
259 }
260 
261 #define VECTORING_INFO_VECTOR_MASK     0xff
262 
263 static void hvf_handle_interrupt(CPUState * cpu, int mask)
264 {
265     cpu->interrupt_request |= mask;
266     if (!qemu_cpu_is_self(cpu)) {
267         qemu_cpu_kick(cpu);
268     }
269 }
270 
271 void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer,
272                   int direction, int size, int count)
273 {
274     int i;
275     uint8_t *ptr = buffer;
276 
277     for (i = 0; i < count; i++) {
278         address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
279                          ptr, size,
280                          direction);
281         ptr += size;
282     }
283 }
284 
285 static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
286 {
287     if (!cpu->vcpu_dirty) {
288         hvf_get_registers(cpu);
289         cpu->vcpu_dirty = true;
290     }
291 }
292 
293 void hvf_cpu_synchronize_state(CPUState *cpu)
294 {
295     if (!cpu->vcpu_dirty) {
296         run_on_cpu(cpu, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
297     }
298 }
299 
300 static void do_hvf_cpu_synchronize_post_reset(CPUState *cpu,
301                                               run_on_cpu_data arg)
302 {
303     hvf_put_registers(cpu);
304     cpu->vcpu_dirty = false;
305 }
306 
307 void hvf_cpu_synchronize_post_reset(CPUState *cpu)
308 {
309     run_on_cpu(cpu, do_hvf_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
310 }
311 
312 static void do_hvf_cpu_synchronize_post_init(CPUState *cpu,
313                                              run_on_cpu_data arg)
314 {
315     hvf_put_registers(cpu);
316     cpu->vcpu_dirty = false;
317 }
318 
319 void hvf_cpu_synchronize_post_init(CPUState *cpu)
320 {
321     run_on_cpu(cpu, do_hvf_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
322 }
323 
324 static void do_hvf_cpu_synchronize_pre_loadvm(CPUState *cpu,
325                                               run_on_cpu_data arg)
326 {
327     cpu->vcpu_dirty = true;
328 }
329 
330 void hvf_cpu_synchronize_pre_loadvm(CPUState *cpu)
331 {
332     run_on_cpu(cpu, do_hvf_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
333 }
334 
335 static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual)
336 {
337     int read, write;
338 
339     /* EPT fault on an instruction fetch doesn't make sense here */
340     if (ept_qual & EPT_VIOLATION_INST_FETCH) {
341         return false;
342     }
343 
344     /* EPT fault must be a read fault or a write fault */
345     read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
346     write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
347     if ((read | write) == 0) {
348         return false;
349     }
350 
351     if (write && slot) {
352         if (slot->flags & HVF_SLOT_LOG) {
353             memory_region_set_dirty(slot->region, gpa - slot->start, 1);
354             hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
355                           HV_MEMORY_READ | HV_MEMORY_WRITE);
356         }
357     }
358 
359     /*
360      * The EPT violation must have been caused by accessing a
361      * guest-physical address that is a translation of a guest-linear
362      * address.
363      */
364     if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
365         (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
366         return false;
367     }
368 
369     if (!slot) {
370         return true;
371     }
372     if (!memory_region_is_ram(slot->region) &&
373         !(read && memory_region_is_romd(slot->region))) {
374         return true;
375     }
376     return false;
377 }
378 
379 static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
380 {
381     hvf_slot *slot;
382 
383     slot = hvf_find_overlap_slot(
384             section->offset_within_address_space,
385             int128_get64(section->size));
386 
387     /* protect region against writes; begin tracking it */
388     if (on) {
389         slot->flags |= HVF_SLOT_LOG;
390         hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
391                       HV_MEMORY_READ);
392     /* stop tracking region*/
393     } else {
394         slot->flags &= ~HVF_SLOT_LOG;
395         hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
396                       HV_MEMORY_READ | HV_MEMORY_WRITE);
397     }
398 }
399 
400 static void hvf_log_start(MemoryListener *listener,
401                           MemoryRegionSection *section, int old, int new)
402 {
403     if (old != 0) {
404         return;
405     }
406 
407     hvf_set_dirty_tracking(section, 1);
408 }
409 
410 static void hvf_log_stop(MemoryListener *listener,
411                          MemoryRegionSection *section, int old, int new)
412 {
413     if (new != 0) {
414         return;
415     }
416 
417     hvf_set_dirty_tracking(section, 0);
418 }
419 
420 static void hvf_log_sync(MemoryListener *listener,
421                          MemoryRegionSection *section)
422 {
423     /*
424      * sync of dirty pages is handled elsewhere; just make sure we keep
425      * tracking the region.
426      */
427     hvf_set_dirty_tracking(section, 1);
428 }
429 
430 static void hvf_region_add(MemoryListener *listener,
431                            MemoryRegionSection *section)
432 {
433     hvf_set_phys_mem(section, true);
434 }
435 
436 static void hvf_region_del(MemoryListener *listener,
437                            MemoryRegionSection *section)
438 {
439     hvf_set_phys_mem(section, false);
440 }
441 
442 static MemoryListener hvf_memory_listener = {
443     .priority = 10,
444     .region_add = hvf_region_add,
445     .region_del = hvf_region_del,
446     .log_start = hvf_log_start,
447     .log_stop = hvf_log_stop,
448     .log_sync = hvf_log_sync,
449 };
450 
451 void hvf_vcpu_destroy(CPUState *cpu)
452 {
453     X86CPU *x86_cpu = X86_CPU(cpu);
454     CPUX86State *env = &x86_cpu->env;
455 
456     hv_return_t ret = hv_vcpu_destroy((hv_vcpuid_t)cpu->hvf_fd);
457     g_free(env->hvf_mmio_buf);
458     assert_hvf_ok(ret);
459 }
460 
461 static void dummy_signal(int sig)
462 {
463 }
464 
465 int hvf_init_vcpu(CPUState *cpu)
466 {
467 
468     X86CPU *x86cpu = X86_CPU(cpu);
469     CPUX86State *env = &x86cpu->env;
470     int r;
471 
472     /* init cpu signals */
473     sigset_t set;
474     struct sigaction sigact;
475 
476     memset(&sigact, 0, sizeof(sigact));
477     sigact.sa_handler = dummy_signal;
478     sigaction(SIG_IPI, &sigact, NULL);
479 
480     pthread_sigmask(SIG_BLOCK, NULL, &set);
481     sigdelset(&set, SIG_IPI);
482 
483     init_emu();
484     init_decoder();
485 
486     hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
487     env->hvf_mmio_buf = g_new(char, 4096);
488 
489     r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf_fd, HV_VCPU_DEFAULT);
490     cpu->vcpu_dirty = 1;
491     assert_hvf_ok(r);
492 
493     if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
494         &hvf_state->hvf_caps->vmx_cap_pinbased)) {
495         abort();
496     }
497     if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
498         &hvf_state->hvf_caps->vmx_cap_procbased)) {
499         abort();
500     }
501     if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
502         &hvf_state->hvf_caps->vmx_cap_procbased2)) {
503         abort();
504     }
505     if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
506         &hvf_state->hvf_caps->vmx_cap_entry)) {
507         abort();
508     }
509 
510     /* set VMCS control fields */
511     wvmcs(cpu->hvf_fd, VMCS_PIN_BASED_CTLS,
512           cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
513           VMCS_PIN_BASED_CTLS_EXTINT |
514           VMCS_PIN_BASED_CTLS_NMI |
515           VMCS_PIN_BASED_CTLS_VNMI));
516     wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS,
517           cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
518           VMCS_PRI_PROC_BASED_CTLS_HLT |
519           VMCS_PRI_PROC_BASED_CTLS_MWAIT |
520           VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
521           VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
522           VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);
523     wvmcs(cpu->hvf_fd, VMCS_SEC_PROC_BASED_CTLS,
524           cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2,
525                    VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES));
526 
527     wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry,
528           0));
529     wvmcs(cpu->hvf_fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
530 
531     wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
532 
533     x86cpu = X86_CPU(cpu);
534     x86cpu->env.xsave_buf = qemu_memalign(4096, 4096);
535 
536     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_STAR, 1);
537     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_LSTAR, 1);
538     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_CSTAR, 1);
539     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FMASK, 1);
540     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FSBASE, 1);
541     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_GSBASE, 1);
542     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_KERNELGSBASE, 1);
543     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_TSC_AUX, 1);
544     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_TSC, 1);
545     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_CS, 1);
546     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_EIP, 1);
547     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_ESP, 1);
548 
549     return 0;
550 }
551 
552 static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
553 {
554     X86CPU *x86_cpu = X86_CPU(cpu);
555     CPUX86State *env = &x86_cpu->env;
556 
557     env->exception_nr = -1;
558     env->exception_pending = 0;
559     env->exception_injected = 0;
560     env->interrupt_injected = -1;
561     env->nmi_injected = false;
562     env->ins_len = 0;
563     env->has_error_code = false;
564     if (idtvec_info & VMCS_IDT_VEC_VALID) {
565         switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
566         case VMCS_IDT_VEC_HWINTR:
567         case VMCS_IDT_VEC_SWINTR:
568             env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
569             break;
570         case VMCS_IDT_VEC_NMI:
571             env->nmi_injected = true;
572             break;
573         case VMCS_IDT_VEC_HWEXCEPTION:
574         case VMCS_IDT_VEC_SWEXCEPTION:
575             env->exception_nr = idtvec_info & VMCS_IDT_VEC_VECNUM;
576             env->exception_injected = 1;
577             break;
578         case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
579         default:
580             abort();
581         }
582         if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
583             (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
584             env->ins_len = ins_len;
585         }
586         if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
587             env->has_error_code = true;
588             env->error_code = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_ERROR);
589         }
590     }
591     if ((rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
592         VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
593         env->hflags2 |= HF2_NMI_MASK;
594     } else {
595         env->hflags2 &= ~HF2_NMI_MASK;
596     }
597     if (rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
598          (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
599          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
600         env->hflags |= HF_INHIBIT_IRQ_MASK;
601     } else {
602         env->hflags &= ~HF_INHIBIT_IRQ_MASK;
603     }
604 }
605 
606 int hvf_vcpu_exec(CPUState *cpu)
607 {
608     X86CPU *x86_cpu = X86_CPU(cpu);
609     CPUX86State *env = &x86_cpu->env;
610     int ret = 0;
611     uint64_t rip = 0;
612 
613     if (hvf_process_events(cpu)) {
614         return EXCP_HLT;
615     }
616 
617     do {
618         if (cpu->vcpu_dirty) {
619             hvf_put_registers(cpu);
620             cpu->vcpu_dirty = false;
621         }
622 
623         if (hvf_inject_interrupts(cpu)) {
624             return EXCP_INTERRUPT;
625         }
626         vmx_update_tpr(cpu);
627 
628         qemu_mutex_unlock_iothread();
629         if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
630             qemu_mutex_lock_iothread();
631             return EXCP_HLT;
632         }
633 
634         hv_return_t r  = hv_vcpu_run(cpu->hvf_fd);
635         assert_hvf_ok(r);
636 
637         /* handle VMEXIT */
638         uint64_t exit_reason = rvmcs(cpu->hvf_fd, VMCS_EXIT_REASON);
639         uint64_t exit_qual = rvmcs(cpu->hvf_fd, VMCS_EXIT_QUALIFICATION);
640         uint32_t ins_len = (uint32_t)rvmcs(cpu->hvf_fd,
641                                            VMCS_EXIT_INSTRUCTION_LENGTH);
642 
643         uint64_t idtvec_info = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
644 
645         hvf_store_events(cpu, ins_len, idtvec_info);
646         rip = rreg(cpu->hvf_fd, HV_X86_RIP);
647         env->eflags = rreg(cpu->hvf_fd, HV_X86_RFLAGS);
648 
649         qemu_mutex_lock_iothread();
650 
651         update_apic_tpr(cpu);
652         current_cpu = cpu;
653 
654         ret = 0;
655         switch (exit_reason) {
656         case EXIT_REASON_HLT: {
657             macvm_set_rip(cpu, rip + ins_len);
658             if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
659                 (env->eflags & IF_MASK))
660                 && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
661                 !(idtvec_info & VMCS_IDT_VEC_VALID)) {
662                 cpu->halted = 1;
663                 ret = EXCP_HLT;
664                 break;
665             }
666             ret = EXCP_INTERRUPT;
667             break;
668         }
669         case EXIT_REASON_MWAIT: {
670             ret = EXCP_INTERRUPT;
671             break;
672         }
673         /* Need to check if MMIO or unmapped fault */
674         case EXIT_REASON_EPT_FAULT:
675         {
676             hvf_slot *slot;
677             uint64_t gpa = rvmcs(cpu->hvf_fd, VMCS_GUEST_PHYSICAL_ADDRESS);
678 
679             if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
680                 ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
681                 vmx_set_nmi_blocking(cpu);
682             }
683 
684             slot = hvf_find_overlap_slot(gpa, 1);
685             /* mmio */
686             if (ept_emulation_fault(slot, gpa, exit_qual)) {
687                 struct x86_decode decode;
688 
689                 load_regs(cpu);
690                 decode_instruction(env, &decode);
691                 exec_instruction(env, &decode);
692                 store_regs(cpu);
693                 break;
694             }
695             break;
696         }
697         case EXIT_REASON_INOUT:
698         {
699             uint32_t in = (exit_qual & 8) != 0;
700             uint32_t size =  (exit_qual & 7) + 1;
701             uint32_t string =  (exit_qual & 16) != 0;
702             uint32_t port =  exit_qual >> 16;
703             /*uint32_t rep = (exit_qual & 0x20) != 0;*/
704 
705             if (!string && in) {
706                 uint64_t val = 0;
707                 load_regs(cpu);
708                 hvf_handle_io(env, port, &val, 0, size, 1);
709                 if (size == 1) {
710                     AL(env) = val;
711                 } else if (size == 2) {
712                     AX(env) = val;
713                 } else if (size == 4) {
714                     RAX(env) = (uint32_t)val;
715                 } else {
716                     RAX(env) = (uint64_t)val;
717                 }
718                 env->eip += ins_len;
719                 store_regs(cpu);
720                 break;
721             } else if (!string && !in) {
722                 RAX(env) = rreg(cpu->hvf_fd, HV_X86_RAX);
723                 hvf_handle_io(env, port, &RAX(env), 1, size, 1);
724                 macvm_set_rip(cpu, rip + ins_len);
725                 break;
726             }
727             struct x86_decode decode;
728 
729             load_regs(cpu);
730             decode_instruction(env, &decode);
731             assert(ins_len == decode.len);
732             exec_instruction(env, &decode);
733             store_regs(cpu);
734 
735             break;
736         }
737         case EXIT_REASON_CPUID: {
738             uint32_t rax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
739             uint32_t rbx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RBX);
740             uint32_t rcx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
741             uint32_t rdx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
742 
743             cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
744 
745             wreg(cpu->hvf_fd, HV_X86_RAX, rax);
746             wreg(cpu->hvf_fd, HV_X86_RBX, rbx);
747             wreg(cpu->hvf_fd, HV_X86_RCX, rcx);
748             wreg(cpu->hvf_fd, HV_X86_RDX, rdx);
749 
750             macvm_set_rip(cpu, rip + ins_len);
751             break;
752         }
753         case EXIT_REASON_XSETBV: {
754             X86CPU *x86_cpu = X86_CPU(cpu);
755             CPUX86State *env = &x86_cpu->env;
756             uint32_t eax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
757             uint32_t ecx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
758             uint32_t edx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
759 
760             if (ecx) {
761                 macvm_set_rip(cpu, rip + ins_len);
762                 break;
763             }
764             env->xcr0 = ((uint64_t)edx << 32) | eax;
765             wreg(cpu->hvf_fd, HV_X86_XCR0, env->xcr0 | 1);
766             macvm_set_rip(cpu, rip + ins_len);
767             break;
768         }
769         case EXIT_REASON_INTR_WINDOW:
770             vmx_clear_int_window_exiting(cpu);
771             ret = EXCP_INTERRUPT;
772             break;
773         case EXIT_REASON_NMI_WINDOW:
774             vmx_clear_nmi_window_exiting(cpu);
775             ret = EXCP_INTERRUPT;
776             break;
777         case EXIT_REASON_EXT_INTR:
778             /* force exit and allow io handling */
779             ret = EXCP_INTERRUPT;
780             break;
781         case EXIT_REASON_RDMSR:
782         case EXIT_REASON_WRMSR:
783         {
784             load_regs(cpu);
785             if (exit_reason == EXIT_REASON_RDMSR) {
786                 simulate_rdmsr(cpu);
787             } else {
788                 simulate_wrmsr(cpu);
789             }
790             env->eip += ins_len;
791             store_regs(cpu);
792             break;
793         }
794         case EXIT_REASON_CR_ACCESS: {
795             int cr;
796             int reg;
797 
798             load_regs(cpu);
799             cr = exit_qual & 15;
800             reg = (exit_qual >> 8) & 15;
801 
802             switch (cr) {
803             case 0x0: {
804                 macvm_set_cr0(cpu->hvf_fd, RRX(env, reg));
805                 break;
806             }
807             case 4: {
808                 macvm_set_cr4(cpu->hvf_fd, RRX(env, reg));
809                 break;
810             }
811             case 8: {
812                 X86CPU *x86_cpu = X86_CPU(cpu);
813                 if (exit_qual & 0x10) {
814                     RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
815                 } else {
816                     int tpr = RRX(env, reg);
817                     cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
818                     ret = EXCP_INTERRUPT;
819                 }
820                 break;
821             }
822             default:
823                 error_report("Unrecognized CR %d", cr);
824                 abort();
825             }
826             env->eip += ins_len;
827             store_regs(cpu);
828             break;
829         }
830         case EXIT_REASON_APIC_ACCESS: { /* TODO */
831             struct x86_decode decode;
832 
833             load_regs(cpu);
834             decode_instruction(env, &decode);
835             exec_instruction(env, &decode);
836             store_regs(cpu);
837             break;
838         }
839         case EXIT_REASON_TPR: {
840             ret = 1;
841             break;
842         }
843         case EXIT_REASON_TASK_SWITCH: {
844             uint64_t vinfo = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
845             x68_segment_selector sel = {.sel = exit_qual & 0xffff};
846             vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
847              vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
848              & VMCS_INTR_T_MASK);
849             break;
850         }
851         case EXIT_REASON_TRIPLE_FAULT: {
852             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
853             ret = EXCP_INTERRUPT;
854             break;
855         }
856         case EXIT_REASON_RDPMC:
857             wreg(cpu->hvf_fd, HV_X86_RAX, 0);
858             wreg(cpu->hvf_fd, HV_X86_RDX, 0);
859             macvm_set_rip(cpu, rip + ins_len);
860             break;
861         case VMX_REASON_VMCALL:
862             env->exception_nr = EXCP0D_GPF;
863             env->exception_injected = 1;
864             env->has_error_code = true;
865             env->error_code = 0;
866             break;
867         default:
868             error_report("%llx: unhandled exit %llx", rip, exit_reason);
869         }
870     } while (ret == 0);
871 
872     return ret;
873 }
874 
875 bool hvf_allowed;
876 
877 static int hvf_accel_init(MachineState *ms)
878 {
879     int x;
880     hv_return_t ret;
881     HVFState *s;
882 
883     ret = hv_vm_create(HV_VM_DEFAULT);
884     assert_hvf_ok(ret);
885 
886     s = g_new0(HVFState, 1);
887 
888     s->num_slots = 32;
889     for (x = 0; x < s->num_slots; ++x) {
890         s->slots[x].size = 0;
891         s->slots[x].slot_id = x;
892     }
893 
894     hvf_state = s;
895     cpu_interrupt_handler = hvf_handle_interrupt;
896     memory_listener_register(&hvf_memory_listener, &address_space_memory);
897     return 0;
898 }
899 
900 static void hvf_accel_class_init(ObjectClass *oc, void *data)
901 {
902     AccelClass *ac = ACCEL_CLASS(oc);
903     ac->name = "HVF";
904     ac->init_machine = hvf_accel_init;
905     ac->allowed = &hvf_allowed;
906 }
907 
908 static const TypeInfo hvf_accel_type = {
909     .name = TYPE_HVF_ACCEL,
910     .parent = TYPE_ACCEL,
911     .class_init = hvf_accel_class_init,
912 };
913 
914 static void hvf_type_init(void)
915 {
916     type_register_static(&hvf_accel_type);
917 }
918 
919 type_init(hvf_type_init);
920