xref: /openbmc/qemu/target/i386/hvf/hvf.c (revision 932a8d1f)
1 /* Copyright 2008 IBM Corporation
2  *           2008 Red Hat, Inc.
3  * Copyright 2011 Intel Corporation
4  * Copyright 2016 Veertu, Inc.
5  * Copyright 2017 The Android Open Source Project
6  *
7  * QEMU Hypervisor.framework support
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of version 2 of the GNU General Public
11  * License as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, see <http://www.gnu.org/licenses/>.
20  *
21  * This file contain code under public domain from the hvdos project:
22  * https://github.com/mist64/hvdos
23  *
24  * Parts Copyright (c) 2011 NetApp, Inc.
25  * All rights reserved.
26  *
27  * Redistribution and use in source and binary forms, with or without
28  * modification, are permitted provided that the following conditions
29  * are met:
30  * 1. Redistributions of source code must retain the above copyright
31  *    notice, this list of conditions and the following disclaimer.
32  * 2. Redistributions in binary form must reproduce the above copyright
33  *    notice, this list of conditions and the following disclaimer in the
34  *    documentation and/or other materials provided with the distribution.
35  *
36  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
37  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
40  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46  * SUCH DAMAGE.
47  */
48 
49 #include "qemu/osdep.h"
50 #include "qemu-common.h"
51 #include "qemu/error-report.h"
52 
53 #include "sysemu/hvf.h"
54 #include "sysemu/runstate.h"
55 #include "hvf-i386.h"
56 #include "vmcs.h"
57 #include "vmx.h"
58 #include "x86.h"
59 #include "x86_descr.h"
60 #include "x86_mmu.h"
61 #include "x86_decode.h"
62 #include "x86_emu.h"
63 #include "x86_task.h"
64 #include "x86hvf.h"
65 
66 #include <Hypervisor/hv.h>
67 #include <Hypervisor/hv_vmx.h>
68 
69 #include "exec/address-spaces.h"
70 #include "hw/i386/apic_internal.h"
71 #include "qemu/main-loop.h"
72 #include "qemu/accel.h"
73 #include "target/i386/cpu.h"
74 
75 #include "hvf-accel-ops.h"
76 
77 HVFState *hvf_state;
78 
79 static void assert_hvf_ok(hv_return_t ret)
80 {
81     if (ret == HV_SUCCESS) {
82         return;
83     }
84 
85     switch (ret) {
86     case HV_ERROR:
87         error_report("Error: HV_ERROR");
88         break;
89     case HV_BUSY:
90         error_report("Error: HV_BUSY");
91         break;
92     case HV_BAD_ARGUMENT:
93         error_report("Error: HV_BAD_ARGUMENT");
94         break;
95     case HV_NO_RESOURCES:
96         error_report("Error: HV_NO_RESOURCES");
97         break;
98     case HV_NO_DEVICE:
99         error_report("Error: HV_NO_DEVICE");
100         break;
101     case HV_UNSUPPORTED:
102         error_report("Error: HV_UNSUPPORTED");
103         break;
104     default:
105         error_report("Unknown Error");
106     }
107 
108     abort();
109 }
110 
111 /* Memory slots */
112 hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t size)
113 {
114     hvf_slot *slot;
115     int x;
116     for (x = 0; x < hvf_state->num_slots; ++x) {
117         slot = &hvf_state->slots[x];
118         if (slot->size && start < (slot->start + slot->size) &&
119             (start + size) > slot->start) {
120             return slot;
121         }
122     }
123     return NULL;
124 }
125 
126 struct mac_slot {
127     int present;
128     uint64_t size;
129     uint64_t gpa_start;
130     uint64_t gva;
131 };
132 
133 struct mac_slot mac_slots[32];
134 
135 static int do_hvf_set_memory(hvf_slot *slot, hv_memory_flags_t flags)
136 {
137     struct mac_slot *macslot;
138     hv_return_t ret;
139 
140     macslot = &mac_slots[slot->slot_id];
141 
142     if (macslot->present) {
143         if (macslot->size != slot->size) {
144             macslot->present = 0;
145             ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
146             assert_hvf_ok(ret);
147         }
148     }
149 
150     if (!slot->size) {
151         return 0;
152     }
153 
154     macslot->present = 1;
155     macslot->gpa_start = slot->start;
156     macslot->size = slot->size;
157     ret = hv_vm_map((hv_uvaddr_t)slot->mem, slot->start, slot->size, flags);
158     assert_hvf_ok(ret);
159     return 0;
160 }
161 
162 void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
163 {
164     hvf_slot *mem;
165     MemoryRegion *area = section->mr;
166     bool writeable = !area->readonly && !area->rom_device;
167     hv_memory_flags_t flags;
168 
169     if (!memory_region_is_ram(area)) {
170         if (writeable) {
171             return;
172         } else if (!memory_region_is_romd(area)) {
173             /*
174              * If the memory device is not in romd_mode, then we actually want
175              * to remove the hvf memory slot so all accesses will trap.
176              */
177              add = false;
178         }
179     }
180 
181     mem = hvf_find_overlap_slot(
182             section->offset_within_address_space,
183             int128_get64(section->size));
184 
185     if (mem && add) {
186         if (mem->size == int128_get64(section->size) &&
187             mem->start == section->offset_within_address_space &&
188             mem->mem == (memory_region_get_ram_ptr(area) +
189             section->offset_within_region)) {
190             return; /* Same region was attempted to register, go away. */
191         }
192     }
193 
194     /* Region needs to be reset. set the size to 0 and remap it. */
195     if (mem) {
196         mem->size = 0;
197         if (do_hvf_set_memory(mem, 0)) {
198             error_report("Failed to reset overlapping slot");
199             abort();
200         }
201     }
202 
203     if (!add) {
204         return;
205     }
206 
207     if (area->readonly ||
208         (!memory_region_is_ram(area) && memory_region_is_romd(area))) {
209         flags = HV_MEMORY_READ | HV_MEMORY_EXEC;
210     } else {
211         flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
212     }
213 
214     /* Now make a new slot. */
215     int x;
216 
217     for (x = 0; x < hvf_state->num_slots; ++x) {
218         mem = &hvf_state->slots[x];
219         if (!mem->size) {
220             break;
221         }
222     }
223 
224     if (x == hvf_state->num_slots) {
225         error_report("No free slots");
226         abort();
227     }
228 
229     mem->size = int128_get64(section->size);
230     mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
231     mem->start = section->offset_within_address_space;
232     mem->region = area;
233 
234     if (do_hvf_set_memory(mem, flags)) {
235         error_report("Error registering new memory slot");
236         abort();
237     }
238 }
239 
240 void vmx_update_tpr(CPUState *cpu)
241 {
242     /* TODO: need integrate APIC handling */
243     X86CPU *x86_cpu = X86_CPU(cpu);
244     int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
245     int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
246 
247     wreg(cpu->hvf_fd, HV_X86_TPR, tpr);
248     if (irr == -1) {
249         wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
250     } else {
251         wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
252               irr >> 4);
253     }
254 }
255 
256 static void update_apic_tpr(CPUState *cpu)
257 {
258     X86CPU *x86_cpu = X86_CPU(cpu);
259     int tpr = rreg(cpu->hvf_fd, HV_X86_TPR) >> 4;
260     cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
261 }
262 
263 #define VECTORING_INFO_VECTOR_MASK     0xff
264 
265 void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer,
266                   int direction, int size, int count)
267 {
268     int i;
269     uint8_t *ptr = buffer;
270 
271     for (i = 0; i < count; i++) {
272         address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
273                          ptr, size,
274                          direction);
275         ptr += size;
276     }
277 }
278 
279 static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
280 {
281     if (!cpu->vcpu_dirty) {
282         hvf_get_registers(cpu);
283         cpu->vcpu_dirty = true;
284     }
285 }
286 
287 void hvf_cpu_synchronize_state(CPUState *cpu)
288 {
289     if (!cpu->vcpu_dirty) {
290         run_on_cpu(cpu, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
291     }
292 }
293 
294 static void do_hvf_cpu_synchronize_post_reset(CPUState *cpu,
295                                               run_on_cpu_data arg)
296 {
297     hvf_put_registers(cpu);
298     cpu->vcpu_dirty = false;
299 }
300 
301 void hvf_cpu_synchronize_post_reset(CPUState *cpu)
302 {
303     run_on_cpu(cpu, do_hvf_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
304 }
305 
306 static void do_hvf_cpu_synchronize_post_init(CPUState *cpu,
307                                              run_on_cpu_data arg)
308 {
309     hvf_put_registers(cpu);
310     cpu->vcpu_dirty = false;
311 }
312 
313 void hvf_cpu_synchronize_post_init(CPUState *cpu)
314 {
315     run_on_cpu(cpu, do_hvf_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
316 }
317 
318 static void do_hvf_cpu_synchronize_pre_loadvm(CPUState *cpu,
319                                               run_on_cpu_data arg)
320 {
321     cpu->vcpu_dirty = true;
322 }
323 
324 void hvf_cpu_synchronize_pre_loadvm(CPUState *cpu)
325 {
326     run_on_cpu(cpu, do_hvf_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
327 }
328 
329 static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual)
330 {
331     int read, write;
332 
333     /* EPT fault on an instruction fetch doesn't make sense here */
334     if (ept_qual & EPT_VIOLATION_INST_FETCH) {
335         return false;
336     }
337 
338     /* EPT fault must be a read fault or a write fault */
339     read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
340     write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
341     if ((read | write) == 0) {
342         return false;
343     }
344 
345     if (write && slot) {
346         if (slot->flags & HVF_SLOT_LOG) {
347             memory_region_set_dirty(slot->region, gpa - slot->start, 1);
348             hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
349                           HV_MEMORY_READ | HV_MEMORY_WRITE);
350         }
351     }
352 
353     /*
354      * The EPT violation must have been caused by accessing a
355      * guest-physical address that is a translation of a guest-linear
356      * address.
357      */
358     if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
359         (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
360         return false;
361     }
362 
363     if (!slot) {
364         return true;
365     }
366     if (!memory_region_is_ram(slot->region) &&
367         !(read && memory_region_is_romd(slot->region))) {
368         return true;
369     }
370     return false;
371 }
372 
373 static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
374 {
375     hvf_slot *slot;
376 
377     slot = hvf_find_overlap_slot(
378             section->offset_within_address_space,
379             int128_get64(section->size));
380 
381     /* protect region against writes; begin tracking it */
382     if (on) {
383         slot->flags |= HVF_SLOT_LOG;
384         hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
385                       HV_MEMORY_READ);
386     /* stop tracking region*/
387     } else {
388         slot->flags &= ~HVF_SLOT_LOG;
389         hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
390                       HV_MEMORY_READ | HV_MEMORY_WRITE);
391     }
392 }
393 
394 static void hvf_log_start(MemoryListener *listener,
395                           MemoryRegionSection *section, int old, int new)
396 {
397     if (old != 0) {
398         return;
399     }
400 
401     hvf_set_dirty_tracking(section, 1);
402 }
403 
404 static void hvf_log_stop(MemoryListener *listener,
405                          MemoryRegionSection *section, int old, int new)
406 {
407     if (new != 0) {
408         return;
409     }
410 
411     hvf_set_dirty_tracking(section, 0);
412 }
413 
414 static void hvf_log_sync(MemoryListener *listener,
415                          MemoryRegionSection *section)
416 {
417     /*
418      * sync of dirty pages is handled elsewhere; just make sure we keep
419      * tracking the region.
420      */
421     hvf_set_dirty_tracking(section, 1);
422 }
423 
424 static void hvf_region_add(MemoryListener *listener,
425                            MemoryRegionSection *section)
426 {
427     hvf_set_phys_mem(section, true);
428 }
429 
430 static void hvf_region_del(MemoryListener *listener,
431                            MemoryRegionSection *section)
432 {
433     hvf_set_phys_mem(section, false);
434 }
435 
436 static MemoryListener hvf_memory_listener = {
437     .priority = 10,
438     .region_add = hvf_region_add,
439     .region_del = hvf_region_del,
440     .log_start = hvf_log_start,
441     .log_stop = hvf_log_stop,
442     .log_sync = hvf_log_sync,
443 };
444 
445 void hvf_vcpu_destroy(CPUState *cpu)
446 {
447     X86CPU *x86_cpu = X86_CPU(cpu);
448     CPUX86State *env = &x86_cpu->env;
449 
450     hv_return_t ret = hv_vcpu_destroy((hv_vcpuid_t)cpu->hvf_fd);
451     g_free(env->hvf_mmio_buf);
452     assert_hvf_ok(ret);
453 }
454 
455 static void dummy_signal(int sig)
456 {
457 }
458 
459 int hvf_init_vcpu(CPUState *cpu)
460 {
461 
462     X86CPU *x86cpu = X86_CPU(cpu);
463     CPUX86State *env = &x86cpu->env;
464     int r;
465 
466     /* init cpu signals */
467     sigset_t set;
468     struct sigaction sigact;
469 
470     memset(&sigact, 0, sizeof(sigact));
471     sigact.sa_handler = dummy_signal;
472     sigaction(SIG_IPI, &sigact, NULL);
473 
474     pthread_sigmask(SIG_BLOCK, NULL, &set);
475     sigdelset(&set, SIG_IPI);
476 
477     init_emu();
478     init_decoder();
479 
480     hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
481     env->hvf_mmio_buf = g_new(char, 4096);
482 
483     r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf_fd, HV_VCPU_DEFAULT);
484     cpu->vcpu_dirty = 1;
485     assert_hvf_ok(r);
486 
487     if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
488         &hvf_state->hvf_caps->vmx_cap_pinbased)) {
489         abort();
490     }
491     if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
492         &hvf_state->hvf_caps->vmx_cap_procbased)) {
493         abort();
494     }
495     if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
496         &hvf_state->hvf_caps->vmx_cap_procbased2)) {
497         abort();
498     }
499     if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
500         &hvf_state->hvf_caps->vmx_cap_entry)) {
501         abort();
502     }
503 
504     /* set VMCS control fields */
505     wvmcs(cpu->hvf_fd, VMCS_PIN_BASED_CTLS,
506           cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
507           VMCS_PIN_BASED_CTLS_EXTINT |
508           VMCS_PIN_BASED_CTLS_NMI |
509           VMCS_PIN_BASED_CTLS_VNMI));
510     wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS,
511           cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
512           VMCS_PRI_PROC_BASED_CTLS_HLT |
513           VMCS_PRI_PROC_BASED_CTLS_MWAIT |
514           VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
515           VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
516           VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);
517     wvmcs(cpu->hvf_fd, VMCS_SEC_PROC_BASED_CTLS,
518           cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2,
519                    VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES));
520 
521     wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry,
522           0));
523     wvmcs(cpu->hvf_fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
524 
525     wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
526 
527     x86cpu = X86_CPU(cpu);
528     x86cpu->env.xsave_buf = qemu_memalign(4096, 4096);
529 
530     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_STAR, 1);
531     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_LSTAR, 1);
532     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_CSTAR, 1);
533     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FMASK, 1);
534     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FSBASE, 1);
535     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_GSBASE, 1);
536     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_KERNELGSBASE, 1);
537     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_TSC_AUX, 1);
538     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_TSC, 1);
539     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_CS, 1);
540     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_EIP, 1);
541     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_ESP, 1);
542 
543     return 0;
544 }
545 
546 static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
547 {
548     X86CPU *x86_cpu = X86_CPU(cpu);
549     CPUX86State *env = &x86_cpu->env;
550 
551     env->exception_nr = -1;
552     env->exception_pending = 0;
553     env->exception_injected = 0;
554     env->interrupt_injected = -1;
555     env->nmi_injected = false;
556     env->ins_len = 0;
557     env->has_error_code = false;
558     if (idtvec_info & VMCS_IDT_VEC_VALID) {
559         switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
560         case VMCS_IDT_VEC_HWINTR:
561         case VMCS_IDT_VEC_SWINTR:
562             env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
563             break;
564         case VMCS_IDT_VEC_NMI:
565             env->nmi_injected = true;
566             break;
567         case VMCS_IDT_VEC_HWEXCEPTION:
568         case VMCS_IDT_VEC_SWEXCEPTION:
569             env->exception_nr = idtvec_info & VMCS_IDT_VEC_VECNUM;
570             env->exception_injected = 1;
571             break;
572         case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
573         default:
574             abort();
575         }
576         if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
577             (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
578             env->ins_len = ins_len;
579         }
580         if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
581             env->has_error_code = true;
582             env->error_code = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_ERROR);
583         }
584     }
585     if ((rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
586         VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
587         env->hflags2 |= HF2_NMI_MASK;
588     } else {
589         env->hflags2 &= ~HF2_NMI_MASK;
590     }
591     if (rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
592          (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
593          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
594         env->hflags |= HF_INHIBIT_IRQ_MASK;
595     } else {
596         env->hflags &= ~HF_INHIBIT_IRQ_MASK;
597     }
598 }
599 
600 int hvf_vcpu_exec(CPUState *cpu)
601 {
602     X86CPU *x86_cpu = X86_CPU(cpu);
603     CPUX86State *env = &x86_cpu->env;
604     int ret = 0;
605     uint64_t rip = 0;
606 
607     if (hvf_process_events(cpu)) {
608         return EXCP_HLT;
609     }
610 
611     do {
612         if (cpu->vcpu_dirty) {
613             hvf_put_registers(cpu);
614             cpu->vcpu_dirty = false;
615         }
616 
617         if (hvf_inject_interrupts(cpu)) {
618             return EXCP_INTERRUPT;
619         }
620         vmx_update_tpr(cpu);
621 
622         qemu_mutex_unlock_iothread();
623         if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
624             qemu_mutex_lock_iothread();
625             return EXCP_HLT;
626         }
627 
628         hv_return_t r  = hv_vcpu_run(cpu->hvf_fd);
629         assert_hvf_ok(r);
630 
631         /* handle VMEXIT */
632         uint64_t exit_reason = rvmcs(cpu->hvf_fd, VMCS_EXIT_REASON);
633         uint64_t exit_qual = rvmcs(cpu->hvf_fd, VMCS_EXIT_QUALIFICATION);
634         uint32_t ins_len = (uint32_t)rvmcs(cpu->hvf_fd,
635                                            VMCS_EXIT_INSTRUCTION_LENGTH);
636 
637         uint64_t idtvec_info = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
638 
639         hvf_store_events(cpu, ins_len, idtvec_info);
640         rip = rreg(cpu->hvf_fd, HV_X86_RIP);
641         env->eflags = rreg(cpu->hvf_fd, HV_X86_RFLAGS);
642 
643         qemu_mutex_lock_iothread();
644 
645         update_apic_tpr(cpu);
646         current_cpu = cpu;
647 
648         ret = 0;
649         switch (exit_reason) {
650         case EXIT_REASON_HLT: {
651             macvm_set_rip(cpu, rip + ins_len);
652             if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
653                 (env->eflags & IF_MASK))
654                 && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
655                 !(idtvec_info & VMCS_IDT_VEC_VALID)) {
656                 cpu->halted = 1;
657                 ret = EXCP_HLT;
658                 break;
659             }
660             ret = EXCP_INTERRUPT;
661             break;
662         }
663         case EXIT_REASON_MWAIT: {
664             ret = EXCP_INTERRUPT;
665             break;
666         }
667         /* Need to check if MMIO or unmapped fault */
668         case EXIT_REASON_EPT_FAULT:
669         {
670             hvf_slot *slot;
671             uint64_t gpa = rvmcs(cpu->hvf_fd, VMCS_GUEST_PHYSICAL_ADDRESS);
672 
673             if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
674                 ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
675                 vmx_set_nmi_blocking(cpu);
676             }
677 
678             slot = hvf_find_overlap_slot(gpa, 1);
679             /* mmio */
680             if (ept_emulation_fault(slot, gpa, exit_qual)) {
681                 struct x86_decode decode;
682 
683                 load_regs(cpu);
684                 decode_instruction(env, &decode);
685                 exec_instruction(env, &decode);
686                 store_regs(cpu);
687                 break;
688             }
689             break;
690         }
691         case EXIT_REASON_INOUT:
692         {
693             uint32_t in = (exit_qual & 8) != 0;
694             uint32_t size =  (exit_qual & 7) + 1;
695             uint32_t string =  (exit_qual & 16) != 0;
696             uint32_t port =  exit_qual >> 16;
697             /*uint32_t rep = (exit_qual & 0x20) != 0;*/
698 
699             if (!string && in) {
700                 uint64_t val = 0;
701                 load_regs(cpu);
702                 hvf_handle_io(env, port, &val, 0, size, 1);
703                 if (size == 1) {
704                     AL(env) = val;
705                 } else if (size == 2) {
706                     AX(env) = val;
707                 } else if (size == 4) {
708                     RAX(env) = (uint32_t)val;
709                 } else {
710                     RAX(env) = (uint64_t)val;
711                 }
712                 env->eip += ins_len;
713                 store_regs(cpu);
714                 break;
715             } else if (!string && !in) {
716                 RAX(env) = rreg(cpu->hvf_fd, HV_X86_RAX);
717                 hvf_handle_io(env, port, &RAX(env), 1, size, 1);
718                 macvm_set_rip(cpu, rip + ins_len);
719                 break;
720             }
721             struct x86_decode decode;
722 
723             load_regs(cpu);
724             decode_instruction(env, &decode);
725             assert(ins_len == decode.len);
726             exec_instruction(env, &decode);
727             store_regs(cpu);
728 
729             break;
730         }
731         case EXIT_REASON_CPUID: {
732             uint32_t rax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
733             uint32_t rbx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RBX);
734             uint32_t rcx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
735             uint32_t rdx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
736 
737             cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
738 
739             wreg(cpu->hvf_fd, HV_X86_RAX, rax);
740             wreg(cpu->hvf_fd, HV_X86_RBX, rbx);
741             wreg(cpu->hvf_fd, HV_X86_RCX, rcx);
742             wreg(cpu->hvf_fd, HV_X86_RDX, rdx);
743 
744             macvm_set_rip(cpu, rip + ins_len);
745             break;
746         }
747         case EXIT_REASON_XSETBV: {
748             X86CPU *x86_cpu = X86_CPU(cpu);
749             CPUX86State *env = &x86_cpu->env;
750             uint32_t eax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
751             uint32_t ecx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
752             uint32_t edx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
753 
754             if (ecx) {
755                 macvm_set_rip(cpu, rip + ins_len);
756                 break;
757             }
758             env->xcr0 = ((uint64_t)edx << 32) | eax;
759             wreg(cpu->hvf_fd, HV_X86_XCR0, env->xcr0 | 1);
760             macvm_set_rip(cpu, rip + ins_len);
761             break;
762         }
763         case EXIT_REASON_INTR_WINDOW:
764             vmx_clear_int_window_exiting(cpu);
765             ret = EXCP_INTERRUPT;
766             break;
767         case EXIT_REASON_NMI_WINDOW:
768             vmx_clear_nmi_window_exiting(cpu);
769             ret = EXCP_INTERRUPT;
770             break;
771         case EXIT_REASON_EXT_INTR:
772             /* force exit and allow io handling */
773             ret = EXCP_INTERRUPT;
774             break;
775         case EXIT_REASON_RDMSR:
776         case EXIT_REASON_WRMSR:
777         {
778             load_regs(cpu);
779             if (exit_reason == EXIT_REASON_RDMSR) {
780                 simulate_rdmsr(cpu);
781             } else {
782                 simulate_wrmsr(cpu);
783             }
784             env->eip += ins_len;
785             store_regs(cpu);
786             break;
787         }
788         case EXIT_REASON_CR_ACCESS: {
789             int cr;
790             int reg;
791 
792             load_regs(cpu);
793             cr = exit_qual & 15;
794             reg = (exit_qual >> 8) & 15;
795 
796             switch (cr) {
797             case 0x0: {
798                 macvm_set_cr0(cpu->hvf_fd, RRX(env, reg));
799                 break;
800             }
801             case 4: {
802                 macvm_set_cr4(cpu->hvf_fd, RRX(env, reg));
803                 break;
804             }
805             case 8: {
806                 X86CPU *x86_cpu = X86_CPU(cpu);
807                 if (exit_qual & 0x10) {
808                     RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
809                 } else {
810                     int tpr = RRX(env, reg);
811                     cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
812                     ret = EXCP_INTERRUPT;
813                 }
814                 break;
815             }
816             default:
817                 error_report("Unrecognized CR %d", cr);
818                 abort();
819             }
820             env->eip += ins_len;
821             store_regs(cpu);
822             break;
823         }
824         case EXIT_REASON_APIC_ACCESS: { /* TODO */
825             struct x86_decode decode;
826 
827             load_regs(cpu);
828             decode_instruction(env, &decode);
829             exec_instruction(env, &decode);
830             store_regs(cpu);
831             break;
832         }
833         case EXIT_REASON_TPR: {
834             ret = 1;
835             break;
836         }
837         case EXIT_REASON_TASK_SWITCH: {
838             uint64_t vinfo = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
839             x68_segment_selector sel = {.sel = exit_qual & 0xffff};
840             vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
841              vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
842              & VMCS_INTR_T_MASK);
843             break;
844         }
845         case EXIT_REASON_TRIPLE_FAULT: {
846             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
847             ret = EXCP_INTERRUPT;
848             break;
849         }
850         case EXIT_REASON_RDPMC:
851             wreg(cpu->hvf_fd, HV_X86_RAX, 0);
852             wreg(cpu->hvf_fd, HV_X86_RDX, 0);
853             macvm_set_rip(cpu, rip + ins_len);
854             break;
855         case VMX_REASON_VMCALL:
856             env->exception_nr = EXCP0D_GPF;
857             env->exception_injected = 1;
858             env->has_error_code = true;
859             env->error_code = 0;
860             break;
861         default:
862             error_report("%llx: unhandled exit %llx", rip, exit_reason);
863         }
864     } while (ret == 0);
865 
866     return ret;
867 }
868 
869 bool hvf_allowed;
870 
871 static int hvf_accel_init(MachineState *ms)
872 {
873     int x;
874     hv_return_t ret;
875     HVFState *s;
876 
877     ret = hv_vm_create(HV_VM_DEFAULT);
878     assert_hvf_ok(ret);
879 
880     s = g_new0(HVFState, 1);
881 
882     s->num_slots = 32;
883     for (x = 0; x < s->num_slots; ++x) {
884         s->slots[x].size = 0;
885         s->slots[x].slot_id = x;
886     }
887 
888     hvf_state = s;
889     memory_listener_register(&hvf_memory_listener, &address_space_memory);
890     return 0;
891 }
892 
893 static void hvf_accel_class_init(ObjectClass *oc, void *data)
894 {
895     AccelClass *ac = ACCEL_CLASS(oc);
896     ac->name = "HVF";
897     ac->init_machine = hvf_accel_init;
898     ac->allowed = &hvf_allowed;
899 }
900 
901 static const TypeInfo hvf_accel_type = {
902     .name = TYPE_HVF_ACCEL,
903     .parent = TYPE_ACCEL,
904     .class_init = hvf_accel_class_init,
905 };
906 
907 static void hvf_type_init(void)
908 {
909     type_register_static(&hvf_accel_type);
910 }
911 
912 type_init(hvf_type_init);
913