xref: /openbmc/qemu/target/i386/hvf/hvf.c (revision 7e450a8f)
1 /* Copyright 2008 IBM Corporation
2  *           2008 Red Hat, Inc.
3  * Copyright 2011 Intel Corporation
4  * Copyright 2016 Veertu, Inc.
5  * Copyright 2017 The Android Open Source Project
6  *
7  * QEMU Hypervisor.framework support
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of version 2 of the GNU General Public
11  * License as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 #include "qemu/osdep.h"
22 #include "qemu-common.h"
23 #include "qemu/error-report.h"
24 
25 #include "sysemu/hvf.h"
26 #include "hvf-i386.h"
27 #include "vmcs.h"
28 #include "vmx.h"
29 #include "x86.h"
30 #include "x86_descr.h"
31 #include "x86_mmu.h"
32 #include "x86_decode.h"
33 #include "x86_emu.h"
34 #include "x86_task.h"
35 #include "x86hvf.h"
36 
37 #include <Hypervisor/hv.h>
38 #include <Hypervisor/hv_vmx.h>
39 
40 #include "exec/address-spaces.h"
41 #include "exec/exec-all.h"
42 #include "exec/ioport.h"
43 #include "hw/i386/apic_internal.h"
44 #include "hw/boards.h"
45 #include "qemu/main-loop.h"
46 #include "strings.h"
47 #include "sysemu/accel.h"
48 #include "sysemu/sysemu.h"
49 #include "target/i386/cpu.h"
50 
51 pthread_rwlock_t mem_lock = PTHREAD_RWLOCK_INITIALIZER;
52 HVFState *hvf_state;
53 int hvf_disabled = 1;
54 
55 static void assert_hvf_ok(hv_return_t ret)
56 {
57     if (ret == HV_SUCCESS) {
58         return;
59     }
60 
61     switch (ret) {
62     case HV_ERROR:
63         error_report("Error: HV_ERROR\n");
64         break;
65     case HV_BUSY:
66         error_report("Error: HV_BUSY\n");
67         break;
68     case HV_BAD_ARGUMENT:
69         error_report("Error: HV_BAD_ARGUMENT\n");
70         break;
71     case HV_NO_RESOURCES:
72         error_report("Error: HV_NO_RESOURCES\n");
73         break;
74     case HV_NO_DEVICE:
75         error_report("Error: HV_NO_DEVICE\n");
76         break;
77     case HV_UNSUPPORTED:
78         error_report("Error: HV_UNSUPPORTED\n");
79         break;
80     default:
81         error_report("Unknown Error\n");
82     }
83 
84     abort();
85 }
86 
87 /* Memory slots */
88 hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t end)
89 {
90     hvf_slot *slot;
91     int x;
92     for (x = 0; x < hvf_state->num_slots; ++x) {
93         slot = &hvf_state->slots[x];
94         if (slot->size && start < (slot->start + slot->size) &&
95             end > slot->start) {
96             return slot;
97         }
98     }
99     return NULL;
100 }
101 
102 struct mac_slot {
103     int present;
104     uint64_t size;
105     uint64_t gpa_start;
106     uint64_t gva;
107 };
108 
109 struct mac_slot mac_slots[32];
110 #define ALIGN(x, y)  (((x) + (y) - 1) & ~((y) - 1))
111 
112 static int do_hvf_set_memory(hvf_slot *slot)
113 {
114     struct mac_slot *macslot;
115     hv_memory_flags_t flags;
116     hv_return_t ret;
117 
118     macslot = &mac_slots[slot->slot_id];
119 
120     if (macslot->present) {
121         if (macslot->size != slot->size) {
122             macslot->present = 0;
123             ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
124             assert_hvf_ok(ret);
125         }
126     }
127 
128     if (!slot->size) {
129         return 0;
130     }
131 
132     flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
133 
134     macslot->present = 1;
135     macslot->gpa_start = slot->start;
136     macslot->size = slot->size;
137     ret = hv_vm_map((hv_uvaddr_t)slot->mem, slot->start, slot->size, flags);
138     assert_hvf_ok(ret);
139     return 0;
140 }
141 
142 void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
143 {
144     hvf_slot *mem;
145     MemoryRegion *area = section->mr;
146 
147     if (!memory_region_is_ram(area)) {
148         return;
149     }
150 
151     mem = hvf_find_overlap_slot(
152             section->offset_within_address_space,
153             section->offset_within_address_space + int128_get64(section->size));
154 
155     if (mem && add) {
156         if (mem->size == int128_get64(section->size) &&
157             mem->start == section->offset_within_address_space &&
158             mem->mem == (memory_region_get_ram_ptr(area) +
159             section->offset_within_region)) {
160             return; /* Same region was attempted to register, go away. */
161         }
162     }
163 
164     /* Region needs to be reset. set the size to 0 and remap it. */
165     if (mem) {
166         mem->size = 0;
167         if (do_hvf_set_memory(mem)) {
168             error_report("Failed to reset overlapping slot\n");
169             abort();
170         }
171     }
172 
173     if (!add) {
174         return;
175     }
176 
177     /* Now make a new slot. */
178     int x;
179 
180     for (x = 0; x < hvf_state->num_slots; ++x) {
181         mem = &hvf_state->slots[x];
182         if (!mem->size) {
183             break;
184         }
185     }
186 
187     if (x == hvf_state->num_slots) {
188         error_report("No free slots\n");
189         abort();
190     }
191 
192     mem->size = int128_get64(section->size);
193     mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
194     mem->start = section->offset_within_address_space;
195     mem->region = area;
196 
197     if (do_hvf_set_memory(mem)) {
198         error_report("Error registering new memory slot\n");
199         abort();
200     }
201 }
202 
203 void vmx_update_tpr(CPUState *cpu)
204 {
205     /* TODO: need integrate APIC handling */
206     X86CPU *x86_cpu = X86_CPU(cpu);
207     int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
208     int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
209 
210     wreg(cpu->hvf_fd, HV_X86_TPR, tpr);
211     if (irr == -1) {
212         wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
213     } else {
214         wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
215               irr >> 4);
216     }
217 }
218 
219 void update_apic_tpr(CPUState *cpu)
220 {
221     X86CPU *x86_cpu = X86_CPU(cpu);
222     int tpr = rreg(cpu->hvf_fd, HV_X86_TPR) >> 4;
223     cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
224 }
225 
226 #define VECTORING_INFO_VECTOR_MASK     0xff
227 
228 static void hvf_handle_interrupt(CPUState * cpu, int mask)
229 {
230     cpu->interrupt_request |= mask;
231     if (!qemu_cpu_is_self(cpu)) {
232         qemu_cpu_kick(cpu);
233     }
234 }
235 
236 void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer,
237                   int direction, int size, int count)
238 {
239     int i;
240     uint8_t *ptr = buffer;
241 
242     for (i = 0; i < count; i++) {
243         address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
244                          ptr, size,
245                          direction);
246         ptr += size;
247     }
248 }
249 
250 /* TODO: synchronize vcpu state */
251 static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
252 {
253     CPUState *cpu_state = cpu;
254     if (cpu_state->vcpu_dirty == 0) {
255         hvf_get_registers(cpu_state);
256     }
257 
258     cpu_state->vcpu_dirty = 1;
259 }
260 
261 void hvf_cpu_synchronize_state(CPUState *cpu_state)
262 {
263     if (cpu_state->vcpu_dirty == 0) {
264         run_on_cpu(cpu_state, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
265     }
266 }
267 
268 static void do_hvf_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
269 {
270     CPUState *cpu_state = cpu;
271     hvf_put_registers(cpu_state);
272     cpu_state->vcpu_dirty = false;
273 }
274 
275 void hvf_cpu_synchronize_post_reset(CPUState *cpu_state)
276 {
277     run_on_cpu(cpu_state, do_hvf_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
278 }
279 
280 void _hvf_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
281 {
282     CPUState *cpu_state = cpu;
283     hvf_put_registers(cpu_state);
284     cpu_state->vcpu_dirty = false;
285 }
286 
287 void hvf_cpu_synchronize_post_init(CPUState *cpu_state)
288 {
289     run_on_cpu(cpu_state, _hvf_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
290 }
291 
292 static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual)
293 {
294     int read, write;
295 
296     /* EPT fault on an instruction fetch doesn't make sense here */
297     if (ept_qual & EPT_VIOLATION_INST_FETCH) {
298         return false;
299     }
300 
301     /* EPT fault must be a read fault or a write fault */
302     read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
303     write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
304     if ((read | write) == 0) {
305         return false;
306     }
307 
308     if (write && slot) {
309         if (slot->flags & HVF_SLOT_LOG) {
310             memory_region_set_dirty(slot->region, gpa - slot->start, 1);
311             hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
312                           HV_MEMORY_READ | HV_MEMORY_WRITE);
313         }
314     }
315 
316     /*
317      * The EPT violation must have been caused by accessing a
318      * guest-physical address that is a translation of a guest-linear
319      * address.
320      */
321     if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
322         (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
323         return false;
324     }
325 
326     return !slot;
327 }
328 
329 static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
330 {
331     hvf_slot *slot;
332 
333     slot = hvf_find_overlap_slot(
334             section->offset_within_address_space,
335             section->offset_within_address_space + int128_get64(section->size));
336 
337     /* protect region against writes; begin tracking it */
338     if (on) {
339         slot->flags |= HVF_SLOT_LOG;
340         hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
341                       HV_MEMORY_READ);
342     /* stop tracking region*/
343     } else {
344         slot->flags &= ~HVF_SLOT_LOG;
345         hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
346                       HV_MEMORY_READ | HV_MEMORY_WRITE);
347     }
348 }
349 
350 static void hvf_log_start(MemoryListener *listener,
351                           MemoryRegionSection *section, int old, int new)
352 {
353     if (old != 0) {
354         return;
355     }
356 
357     hvf_set_dirty_tracking(section, 1);
358 }
359 
360 static void hvf_log_stop(MemoryListener *listener,
361                          MemoryRegionSection *section, int old, int new)
362 {
363     if (new != 0) {
364         return;
365     }
366 
367     hvf_set_dirty_tracking(section, 0);
368 }
369 
370 static void hvf_log_sync(MemoryListener *listener,
371                          MemoryRegionSection *section)
372 {
373     /*
374      * sync of dirty pages is handled elsewhere; just make sure we keep
375      * tracking the region.
376      */
377     hvf_set_dirty_tracking(section, 1);
378 }
379 
380 static void hvf_region_add(MemoryListener *listener,
381                            MemoryRegionSection *section)
382 {
383     hvf_set_phys_mem(section, true);
384 }
385 
386 static void hvf_region_del(MemoryListener *listener,
387                            MemoryRegionSection *section)
388 {
389     hvf_set_phys_mem(section, false);
390 }
391 
392 static MemoryListener hvf_memory_listener = {
393     .priority = 10,
394     .region_add = hvf_region_add,
395     .region_del = hvf_region_del,
396     .log_start = hvf_log_start,
397     .log_stop = hvf_log_stop,
398     .log_sync = hvf_log_sync,
399 };
400 
401 void hvf_reset_vcpu(CPUState *cpu) {
402 
403     /* TODO: this shouldn't be needed; there is already a call to
404      * cpu_synchronize_all_post_reset in vl.c
405      */
406     wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, 0);
407     wvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER, 0);
408     macvm_set_cr0(cpu->hvf_fd, 0x60000010);
409 
410     wvmcs(cpu->hvf_fd, VMCS_CR4_MASK, CR4_VMXE_MASK);
411     wvmcs(cpu->hvf_fd, VMCS_CR4_SHADOW, 0x0);
412     wvmcs(cpu->hvf_fd, VMCS_GUEST_CR4, CR4_VMXE_MASK);
413 
414     /* set VMCS guest state fields */
415     wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_SELECTOR, 0xf000);
416     wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_LIMIT, 0xffff);
417     wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_ACCESS_RIGHTS, 0x9b);
418     wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_BASE, 0xffff0000);
419 
420     wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_SELECTOR, 0);
421     wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_LIMIT, 0xffff);
422     wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_ACCESS_RIGHTS, 0x93);
423     wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_BASE, 0);
424 
425     wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_SELECTOR, 0);
426     wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_LIMIT, 0xffff);
427     wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_ACCESS_RIGHTS, 0x93);
428     wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_BASE, 0);
429 
430     wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_SELECTOR, 0);
431     wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_LIMIT, 0xffff);
432     wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_ACCESS_RIGHTS, 0x93);
433     wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE, 0);
434 
435     wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_SELECTOR, 0);
436     wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_LIMIT, 0xffff);
437     wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_ACCESS_RIGHTS, 0x93);
438     wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE, 0);
439 
440     wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_SELECTOR, 0);
441     wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_LIMIT, 0xffff);
442     wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_ACCESS_RIGHTS, 0x93);
443     wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_BASE, 0);
444 
445     wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_SELECTOR, 0);
446     wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_LIMIT, 0);
447     wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_ACCESS_RIGHTS, 0x10000);
448     wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_BASE, 0);
449 
450     wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_SELECTOR, 0);
451     wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_LIMIT, 0);
452     wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_ACCESS_RIGHTS, 0x83);
453     wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_BASE, 0);
454 
455     wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_LIMIT, 0);
456     wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_BASE, 0);
457 
458     wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_LIMIT, 0);
459     wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_BASE, 0);
460 
461     /*wvmcs(cpu->hvf_fd, VMCS_GUEST_CR2, 0x0);*/
462     wvmcs(cpu->hvf_fd, VMCS_GUEST_CR3, 0x0);
463 
464     wreg(cpu->hvf_fd, HV_X86_RIP, 0xfff0);
465     wreg(cpu->hvf_fd, HV_X86_RDX, 0x623);
466     wreg(cpu->hvf_fd, HV_X86_RFLAGS, 0x2);
467     wreg(cpu->hvf_fd, HV_X86_RSP, 0x0);
468     wreg(cpu->hvf_fd, HV_X86_RAX, 0x0);
469     wreg(cpu->hvf_fd, HV_X86_RBX, 0x0);
470     wreg(cpu->hvf_fd, HV_X86_RCX, 0x0);
471     wreg(cpu->hvf_fd, HV_X86_RSI, 0x0);
472     wreg(cpu->hvf_fd, HV_X86_RDI, 0x0);
473     wreg(cpu->hvf_fd, HV_X86_RBP, 0x0);
474 
475     for (int i = 0; i < 8; i++) {
476         wreg(cpu->hvf_fd, HV_X86_R8 + i, 0x0);
477     }
478 
479     hv_vm_sync_tsc(0);
480     cpu->halted = 0;
481     hv_vcpu_invalidate_tlb(cpu->hvf_fd);
482     hv_vcpu_flush(cpu->hvf_fd);
483 }
484 
485 void hvf_vcpu_destroy(CPUState *cpu)
486 {
487     hv_return_t ret = hv_vcpu_destroy((hv_vcpuid_t)cpu->hvf_fd);
488     assert_hvf_ok(ret);
489 }
490 
491 static void dummy_signal(int sig)
492 {
493 }
494 
495 int hvf_init_vcpu(CPUState *cpu)
496 {
497 
498     X86CPU *x86cpu = X86_CPU(cpu);
499     CPUX86State *env = &x86cpu->env;
500     int r;
501 
502     /* init cpu signals */
503     sigset_t set;
504     struct sigaction sigact;
505 
506     memset(&sigact, 0, sizeof(sigact));
507     sigact.sa_handler = dummy_signal;
508     sigaction(SIG_IPI, &sigact, NULL);
509 
510     pthread_sigmask(SIG_BLOCK, NULL, &set);
511     sigdelset(&set, SIG_IPI);
512 
513     init_emu();
514     init_decoder();
515 
516     hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
517     env->hvf_emul = g_new0(HVFX86EmulatorState, 1);
518 
519     r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf_fd, HV_VCPU_DEFAULT);
520     cpu->vcpu_dirty = 1;
521     assert_hvf_ok(r);
522 
523     if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
524         &hvf_state->hvf_caps->vmx_cap_pinbased)) {
525         abort();
526     }
527     if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
528         &hvf_state->hvf_caps->vmx_cap_procbased)) {
529         abort();
530     }
531     if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
532         &hvf_state->hvf_caps->vmx_cap_procbased2)) {
533         abort();
534     }
535     if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
536         &hvf_state->hvf_caps->vmx_cap_entry)) {
537         abort();
538     }
539 
540     /* set VMCS control fields */
541     wvmcs(cpu->hvf_fd, VMCS_PIN_BASED_CTLS,
542           cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
543           VMCS_PIN_BASED_CTLS_EXTINT |
544           VMCS_PIN_BASED_CTLS_NMI |
545           VMCS_PIN_BASED_CTLS_VNMI));
546     wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS,
547           cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
548           VMCS_PRI_PROC_BASED_CTLS_HLT |
549           VMCS_PRI_PROC_BASED_CTLS_MWAIT |
550           VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
551           VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
552           VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);
553     wvmcs(cpu->hvf_fd, VMCS_SEC_PROC_BASED_CTLS,
554           cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2,
555                    VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES));
556 
557     wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry,
558           0));
559     wvmcs(cpu->hvf_fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
560 
561     wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
562 
563     hvf_reset_vcpu(cpu);
564 
565     x86cpu = X86_CPU(cpu);
566     x86cpu->env.kvm_xsave_buf = qemu_memalign(4096, 4096);
567 
568     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_STAR, 1);
569     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_LSTAR, 1);
570     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_CSTAR, 1);
571     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FMASK, 1);
572     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FSBASE, 1);
573     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_GSBASE, 1);
574     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_KERNELGSBASE, 1);
575     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_TSC_AUX, 1);
576     /*hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_TSC, 1);*/
577     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_CS, 1);
578     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_EIP, 1);
579     hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_ESP, 1);
580 
581     return 0;
582 }
583 
584 void hvf_disable(int shouldDisable)
585 {
586     hvf_disabled = shouldDisable;
587 }
588 
589 static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
590 {
591     X86CPU *x86_cpu = X86_CPU(cpu);
592     CPUX86State *env = &x86_cpu->env;
593 
594     env->exception_injected = -1;
595     env->interrupt_injected = -1;
596     env->nmi_injected = false;
597     if (idtvec_info & VMCS_IDT_VEC_VALID) {
598         switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
599         case VMCS_IDT_VEC_HWINTR:
600         case VMCS_IDT_VEC_SWINTR:
601             env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
602             break;
603         case VMCS_IDT_VEC_NMI:
604             env->nmi_injected = true;
605             break;
606         case VMCS_IDT_VEC_HWEXCEPTION:
607         case VMCS_IDT_VEC_SWEXCEPTION:
608             env->exception_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
609             break;
610         case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
611         default:
612             abort();
613         }
614         if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
615             (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
616             env->ins_len = ins_len;
617         }
618         if (idtvec_info & VMCS_INTR_DEL_ERRCODE) {
619             env->has_error_code = true;
620             env->error_code = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_ERROR);
621         }
622     }
623     if ((rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
624         VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
625         env->hflags2 |= HF2_NMI_MASK;
626     } else {
627         env->hflags2 &= ~HF2_NMI_MASK;
628     }
629     if (rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
630          (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
631          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
632         env->hflags |= HF_INHIBIT_IRQ_MASK;
633     } else {
634         env->hflags &= ~HF_INHIBIT_IRQ_MASK;
635     }
636 }
637 
638 int hvf_vcpu_exec(CPUState *cpu)
639 {
640     X86CPU *x86_cpu = X86_CPU(cpu);
641     CPUX86State *env = &x86_cpu->env;
642     int ret = 0;
643     uint64_t rip = 0;
644 
645     cpu->halted = 0;
646 
647     if (hvf_process_events(cpu)) {
648         return EXCP_HLT;
649     }
650 
651     do {
652         if (cpu->vcpu_dirty) {
653             hvf_put_registers(cpu);
654             cpu->vcpu_dirty = false;
655         }
656 
657         if (hvf_inject_interrupts(cpu)) {
658             return EXCP_INTERRUPT;
659         }
660         vmx_update_tpr(cpu);
661 
662         qemu_mutex_unlock_iothread();
663         if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
664             qemu_mutex_lock_iothread();
665             return EXCP_HLT;
666         }
667 
668         hv_return_t r  = hv_vcpu_run(cpu->hvf_fd);
669         assert_hvf_ok(r);
670 
671         /* handle VMEXIT */
672         uint64_t exit_reason = rvmcs(cpu->hvf_fd, VMCS_EXIT_REASON);
673         uint64_t exit_qual = rvmcs(cpu->hvf_fd, VMCS_EXIT_QUALIFICATION);
674         uint32_t ins_len = (uint32_t)rvmcs(cpu->hvf_fd,
675                                            VMCS_EXIT_INSTRUCTION_LENGTH);
676 
677         uint64_t idtvec_info = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
678 
679         hvf_store_events(cpu, ins_len, idtvec_info);
680         rip = rreg(cpu->hvf_fd, HV_X86_RIP);
681         RFLAGS(env) = rreg(cpu->hvf_fd, HV_X86_RFLAGS);
682         env->eflags = RFLAGS(env);
683 
684         qemu_mutex_lock_iothread();
685 
686         update_apic_tpr(cpu);
687         current_cpu = cpu;
688 
689         ret = 0;
690         switch (exit_reason) {
691         case EXIT_REASON_HLT: {
692             macvm_set_rip(cpu, rip + ins_len);
693             if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
694                 (EFLAGS(env) & IF_MASK))
695                 && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
696                 !(idtvec_info & VMCS_IDT_VEC_VALID)) {
697                 cpu->halted = 1;
698                 ret = EXCP_HLT;
699             }
700             ret = EXCP_INTERRUPT;
701             break;
702         }
703         case EXIT_REASON_MWAIT: {
704             ret = EXCP_INTERRUPT;
705             break;
706         }
707             /* Need to check if MMIO or unmmaped fault */
708         case EXIT_REASON_EPT_FAULT:
709         {
710             hvf_slot *slot;
711             uint64_t gpa = rvmcs(cpu->hvf_fd, VMCS_GUEST_PHYSICAL_ADDRESS);
712 
713             if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
714                 ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
715                 vmx_set_nmi_blocking(cpu);
716             }
717 
718             slot = hvf_find_overlap_slot(gpa, gpa);
719             /* mmio */
720             if (ept_emulation_fault(slot, gpa, exit_qual)) {
721                 struct x86_decode decode;
722 
723                 load_regs(cpu);
724                 env->hvf_emul->fetch_rip = rip;
725 
726                 decode_instruction(env, &decode);
727                 exec_instruction(env, &decode);
728                 store_regs(cpu);
729                 break;
730             }
731             break;
732         }
733         case EXIT_REASON_INOUT:
734         {
735             uint32_t in = (exit_qual & 8) != 0;
736             uint32_t size =  (exit_qual & 7) + 1;
737             uint32_t string =  (exit_qual & 16) != 0;
738             uint32_t port =  exit_qual >> 16;
739             /*uint32_t rep = (exit_qual & 0x20) != 0;*/
740 
741             if (!string && in) {
742                 uint64_t val = 0;
743                 load_regs(cpu);
744                 hvf_handle_io(env, port, &val, 0, size, 1);
745                 if (size == 1) {
746                     AL(env) = val;
747                 } else if (size == 2) {
748                     AX(env) = val;
749                 } else if (size == 4) {
750                     RAX(env) = (uint32_t)val;
751                 } else {
752                     RAX(env) = (uint64_t)val;
753                 }
754                 RIP(env) += ins_len;
755                 store_regs(cpu);
756                 break;
757             } else if (!string && !in) {
758                 RAX(env) = rreg(cpu->hvf_fd, HV_X86_RAX);
759                 hvf_handle_io(env, port, &RAX(env), 1, size, 1);
760                 macvm_set_rip(cpu, rip + ins_len);
761                 break;
762             }
763             struct x86_decode decode;
764 
765             load_regs(cpu);
766             env->hvf_emul->fetch_rip = rip;
767 
768             decode_instruction(env, &decode);
769             assert(ins_len == decode.len);
770             exec_instruction(env, &decode);
771             store_regs(cpu);
772 
773             break;
774         }
775         case EXIT_REASON_CPUID: {
776             uint32_t rax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
777             uint32_t rbx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RBX);
778             uint32_t rcx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
779             uint32_t rdx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
780 
781             cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
782 
783             wreg(cpu->hvf_fd, HV_X86_RAX, rax);
784             wreg(cpu->hvf_fd, HV_X86_RBX, rbx);
785             wreg(cpu->hvf_fd, HV_X86_RCX, rcx);
786             wreg(cpu->hvf_fd, HV_X86_RDX, rdx);
787 
788             macvm_set_rip(cpu, rip + ins_len);
789             break;
790         }
791         case EXIT_REASON_XSETBV: {
792             X86CPU *x86_cpu = X86_CPU(cpu);
793             CPUX86State *env = &x86_cpu->env;
794             uint32_t eax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
795             uint32_t ecx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
796             uint32_t edx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
797 
798             if (ecx) {
799                 macvm_set_rip(cpu, rip + ins_len);
800                 break;
801             }
802             env->xcr0 = ((uint64_t)edx << 32) | eax;
803             wreg(cpu->hvf_fd, HV_X86_XCR0, env->xcr0 | 1);
804             macvm_set_rip(cpu, rip + ins_len);
805             break;
806         }
807         case EXIT_REASON_INTR_WINDOW:
808             vmx_clear_int_window_exiting(cpu);
809             ret = EXCP_INTERRUPT;
810             break;
811         case EXIT_REASON_NMI_WINDOW:
812             vmx_clear_nmi_window_exiting(cpu);
813             ret = EXCP_INTERRUPT;
814             break;
815         case EXIT_REASON_EXT_INTR:
816             /* force exit and allow io handling */
817             ret = EXCP_INTERRUPT;
818             break;
819         case EXIT_REASON_RDMSR:
820         case EXIT_REASON_WRMSR:
821         {
822             load_regs(cpu);
823             if (exit_reason == EXIT_REASON_RDMSR) {
824                 simulate_rdmsr(cpu);
825             } else {
826                 simulate_wrmsr(cpu);
827             }
828             RIP(env) += rvmcs(cpu->hvf_fd, VMCS_EXIT_INSTRUCTION_LENGTH);
829             store_regs(cpu);
830             break;
831         }
832         case EXIT_REASON_CR_ACCESS: {
833             int cr;
834             int reg;
835 
836             load_regs(cpu);
837             cr = exit_qual & 15;
838             reg = (exit_qual >> 8) & 15;
839 
840             switch (cr) {
841             case 0x0: {
842                 macvm_set_cr0(cpu->hvf_fd, RRX(env, reg));
843                 break;
844             }
845             case 4: {
846                 macvm_set_cr4(cpu->hvf_fd, RRX(env, reg));
847                 break;
848             }
849             case 8: {
850                 X86CPU *x86_cpu = X86_CPU(cpu);
851                 if (exit_qual & 0x10) {
852                     RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
853                 } else {
854                     int tpr = RRX(env, reg);
855                     cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
856                     ret = EXCP_INTERRUPT;
857                 }
858                 break;
859             }
860             default:
861                 error_report("Unrecognized CR %d\n", cr);
862                 abort();
863             }
864             RIP(env) += ins_len;
865             store_regs(cpu);
866             break;
867         }
868         case EXIT_REASON_APIC_ACCESS: { /* TODO */
869             struct x86_decode decode;
870 
871             load_regs(cpu);
872             env->hvf_emul->fetch_rip = rip;
873 
874             decode_instruction(env, &decode);
875             exec_instruction(env, &decode);
876             store_regs(cpu);
877             break;
878         }
879         case EXIT_REASON_TPR: {
880             ret = 1;
881             break;
882         }
883         case EXIT_REASON_TASK_SWITCH: {
884             uint64_t vinfo = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
885             x68_segment_selector sel = {.sel = exit_qual & 0xffff};
886             vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
887              vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
888              & VMCS_INTR_T_MASK);
889             break;
890         }
891         case EXIT_REASON_TRIPLE_FAULT: {
892             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
893             ret = EXCP_INTERRUPT;
894             break;
895         }
896         case EXIT_REASON_RDPMC:
897             wreg(cpu->hvf_fd, HV_X86_RAX, 0);
898             wreg(cpu->hvf_fd, HV_X86_RDX, 0);
899             macvm_set_rip(cpu, rip + ins_len);
900             break;
901         case VMX_REASON_VMCALL:
902             env->exception_injected = EXCP0D_GPF;
903             env->has_error_code = true;
904             env->error_code = 0;
905             break;
906         default:
907             error_report("%llx: unhandled exit %llx\n", rip, exit_reason);
908         }
909     } while (ret == 0);
910 
911     return ret;
912 }
913 
914 static bool hvf_allowed;
915 
916 static int hvf_accel_init(MachineState *ms)
917 {
918     int x;
919     hv_return_t ret;
920     HVFState *s;
921 
922     hvf_disable(0);
923     ret = hv_vm_create(HV_VM_DEFAULT);
924     assert_hvf_ok(ret);
925 
926     s = g_new0(HVFState, 1);
927 
928     s->num_slots = 32;
929     for (x = 0; x < s->num_slots; ++x) {
930         s->slots[x].size = 0;
931         s->slots[x].slot_id = x;
932     }
933 
934     hvf_state = s;
935     cpu_interrupt_handler = hvf_handle_interrupt;
936     memory_listener_register(&hvf_memory_listener, &address_space_memory);
937     return 0;
938 }
939 
940 static void hvf_accel_class_init(ObjectClass *oc, void *data)
941 {
942     AccelClass *ac = ACCEL_CLASS(oc);
943     ac->name = "HVF";
944     ac->init_machine = hvf_accel_init;
945     ac->allowed = &hvf_allowed;
946 }
947 
948 static const TypeInfo hvf_accel_type = {
949     .name = TYPE_HVF_ACCEL,
950     .parent = TYPE_ACCEL,
951     .class_init = hvf_accel_class_init,
952 };
953 
954 static void hvf_type_init(void)
955 {
956     type_register_static(&hvf_accel_type);
957 }
958 
959 type_init(hvf_type_init);
960