1 /* 2 * i386 helpers (without register variable usage) 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qapi/qapi-events-run-state.h" 22 #include "cpu.h" 23 #include "exec/exec-all.h" 24 #include "sysemu/runstate.h" 25 #include "kvm/kvm_i386.h" 26 #ifndef CONFIG_USER_ONLY 27 #include "sysemu/hw_accel.h" 28 #include "monitor/monitor.h" 29 #endif 30 31 void cpu_sync_bndcs_hflags(CPUX86State *env) 32 { 33 uint32_t hflags = env->hflags; 34 uint32_t hflags2 = env->hflags2; 35 uint32_t bndcsr; 36 37 if ((hflags & HF_CPL_MASK) == 3) { 38 bndcsr = env->bndcs_regs.cfgu; 39 } else { 40 bndcsr = env->msr_bndcfgs; 41 } 42 43 if ((env->cr[4] & CR4_OSXSAVE_MASK) 44 && (env->xcr0 & XSTATE_BNDCSR_MASK) 45 && (bndcsr & BNDCFG_ENABLE)) { 46 hflags |= HF_MPX_EN_MASK; 47 } else { 48 hflags &= ~HF_MPX_EN_MASK; 49 } 50 51 if (bndcsr & BNDCFG_BNDPRESERVE) { 52 hflags2 |= HF2_MPX_PR_MASK; 53 } else { 54 hflags2 &= ~HF2_MPX_PR_MASK; 55 } 56 57 env->hflags = hflags; 58 env->hflags2 = hflags2; 59 } 60 61 static void cpu_x86_version(CPUX86State *env, int *family, int *model) 62 { 63 int cpuver = env->cpuid_version; 64 65 if (family == NULL || model == NULL) { 66 return; 67 } 68 69 *family = (cpuver >> 8) & 0x0f; 70 *model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f); 71 } 72 73 /* Broadcast MCA signal for processor version 06H_EH and above */ 74 int cpu_x86_support_mca_broadcast(CPUX86State *env) 75 { 76 int family = 0; 77 int model = 0; 78 79 cpu_x86_version(env, &family, &model); 80 if ((family == 6 && model >= 14) || family > 6) { 81 return 1; 82 } 83 84 return 0; 85 } 86 87 /***********************************************************/ 88 /* x86 mmu */ 89 /* XXX: add PGE support */ 90 91 void x86_cpu_set_a20(X86CPU *cpu, int a20_state) 92 { 93 CPUX86State *env = &cpu->env; 94 95 a20_state = (a20_state != 0); 96 if (a20_state != ((env->a20_mask >> 20) & 1)) { 97 CPUState *cs = CPU(cpu); 98 99 qemu_log_mask(CPU_LOG_MMU, "A20 update: a20=%d\n", a20_state); 100 /* if the cpu is currently executing code, we must unlink it and 101 all the potentially executing TB */ 102 cpu_interrupt(cs, CPU_INTERRUPT_EXITTB); 103 104 /* when a20 is changed, all the MMU mappings are invalid, so 105 we must flush everything */ 106 tlb_flush(cs); 107 env->a20_mask = ~(1 << 20) | (a20_state << 20); 108 } 109 } 110 111 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0) 112 { 113 X86CPU *cpu = env_archcpu(env); 114 int pe_state; 115 116 qemu_log_mask(CPU_LOG_MMU, "CR0 update: CR0=0x%08x\n", new_cr0); 117 if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) != 118 (env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) { 119 tlb_flush(CPU(cpu)); 120 } 121 122 #ifdef TARGET_X86_64 123 if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) && 124 (env->efer & MSR_EFER_LME)) { 125 /* enter in long mode */ 126 /* XXX: generate an exception */ 127 if (!(env->cr[4] & CR4_PAE_MASK)) 128 return; 129 env->efer |= MSR_EFER_LMA; 130 env->hflags |= HF_LMA_MASK; 131 } else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) && 132 (env->efer & MSR_EFER_LMA)) { 133 /* exit long mode */ 134 env->efer &= ~MSR_EFER_LMA; 135 env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK); 136 env->eip &= 0xffffffff; 137 } 138 #endif 139 env->cr[0] = new_cr0 | CR0_ET_MASK; 140 141 /* update PE flag in hidden flags */ 142 pe_state = (env->cr[0] & CR0_PE_MASK); 143 env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT); 144 /* ensure that ADDSEG is always set in real mode */ 145 env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT); 146 /* update FPU flags */ 147 env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) | 148 ((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)); 149 } 150 151 /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in 152 the PDPT */ 153 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3) 154 { 155 env->cr[3] = new_cr3; 156 if (env->cr[0] & CR0_PG_MASK) { 157 qemu_log_mask(CPU_LOG_MMU, 158 "CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3); 159 tlb_flush(env_cpu(env)); 160 } 161 } 162 163 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4) 164 { 165 uint32_t hflags; 166 167 #if defined(DEBUG_MMU) 168 printf("CR4 update: %08x -> %08x\n", (uint32_t)env->cr[4], new_cr4); 169 #endif 170 if ((new_cr4 ^ env->cr[4]) & 171 (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK | 172 CR4_SMEP_MASK | CR4_SMAP_MASK | CR4_LA57_MASK)) { 173 tlb_flush(env_cpu(env)); 174 } 175 176 /* Clear bits we're going to recompute. */ 177 hflags = env->hflags & ~(HF_OSFXSR_MASK | HF_SMAP_MASK); 178 179 /* SSE handling */ 180 if (!(env->features[FEAT_1_EDX] & CPUID_SSE)) { 181 new_cr4 &= ~CR4_OSFXSR_MASK; 182 } 183 if (new_cr4 & CR4_OSFXSR_MASK) { 184 hflags |= HF_OSFXSR_MASK; 185 } 186 187 if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_SMAP)) { 188 new_cr4 &= ~CR4_SMAP_MASK; 189 } 190 if (new_cr4 & CR4_SMAP_MASK) { 191 hflags |= HF_SMAP_MASK; 192 } 193 194 if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKU)) { 195 new_cr4 &= ~CR4_PKE_MASK; 196 } 197 if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKS)) { 198 new_cr4 &= ~CR4_PKS_MASK; 199 } 200 201 env->cr[4] = new_cr4; 202 env->hflags = hflags; 203 204 cpu_sync_bndcs_hflags(env); 205 } 206 207 #if !defined(CONFIG_USER_ONLY) 208 hwaddr x86_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 209 MemTxAttrs *attrs) 210 { 211 X86CPU *cpu = X86_CPU(cs); 212 CPUX86State *env = &cpu->env; 213 target_ulong pde_addr, pte_addr; 214 uint64_t pte; 215 int32_t a20_mask; 216 uint32_t page_offset; 217 int page_size; 218 219 *attrs = cpu_get_mem_attrs(env); 220 221 a20_mask = x86_get_a20_mask(env); 222 if (!(env->cr[0] & CR0_PG_MASK)) { 223 pte = addr & a20_mask; 224 page_size = 4096; 225 } else if (env->cr[4] & CR4_PAE_MASK) { 226 target_ulong pdpe_addr; 227 uint64_t pde, pdpe; 228 229 #ifdef TARGET_X86_64 230 if (env->hflags & HF_LMA_MASK) { 231 bool la57 = env->cr[4] & CR4_LA57_MASK; 232 uint64_t pml5e_addr, pml5e; 233 uint64_t pml4e_addr, pml4e; 234 int32_t sext; 235 236 /* test virtual address sign extension */ 237 sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47; 238 if (sext != 0 && sext != -1) { 239 return -1; 240 } 241 242 if (la57) { 243 pml5e_addr = ((env->cr[3] & ~0xfff) + 244 (((addr >> 48) & 0x1ff) << 3)) & a20_mask; 245 pml5e = x86_ldq_phys(cs, pml5e_addr); 246 if (!(pml5e & PG_PRESENT_MASK)) { 247 return -1; 248 } 249 } else { 250 pml5e = env->cr[3]; 251 } 252 253 pml4e_addr = ((pml5e & PG_ADDRESS_MASK) + 254 (((addr >> 39) & 0x1ff) << 3)) & a20_mask; 255 pml4e = x86_ldq_phys(cs, pml4e_addr); 256 if (!(pml4e & PG_PRESENT_MASK)) { 257 return -1; 258 } 259 pdpe_addr = ((pml4e & PG_ADDRESS_MASK) + 260 (((addr >> 30) & 0x1ff) << 3)) & a20_mask; 261 pdpe = x86_ldq_phys(cs, pdpe_addr); 262 if (!(pdpe & PG_PRESENT_MASK)) { 263 return -1; 264 } 265 if (pdpe & PG_PSE_MASK) { 266 page_size = 1024 * 1024 * 1024; 267 pte = pdpe; 268 goto out; 269 } 270 271 } else 272 #endif 273 { 274 pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) & 275 a20_mask; 276 pdpe = x86_ldq_phys(cs, pdpe_addr); 277 if (!(pdpe & PG_PRESENT_MASK)) 278 return -1; 279 } 280 281 pde_addr = ((pdpe & PG_ADDRESS_MASK) + 282 (((addr >> 21) & 0x1ff) << 3)) & a20_mask; 283 pde = x86_ldq_phys(cs, pde_addr); 284 if (!(pde & PG_PRESENT_MASK)) { 285 return -1; 286 } 287 if (pde & PG_PSE_MASK) { 288 /* 2 MB page */ 289 page_size = 2048 * 1024; 290 pte = pde; 291 } else { 292 /* 4 KB page */ 293 pte_addr = ((pde & PG_ADDRESS_MASK) + 294 (((addr >> 12) & 0x1ff) << 3)) & a20_mask; 295 page_size = 4096; 296 pte = x86_ldq_phys(cs, pte_addr); 297 } 298 if (!(pte & PG_PRESENT_MASK)) { 299 return -1; 300 } 301 } else { 302 uint32_t pde; 303 304 /* page directory entry */ 305 pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & a20_mask; 306 pde = x86_ldl_phys(cs, pde_addr); 307 if (!(pde & PG_PRESENT_MASK)) 308 return -1; 309 if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) { 310 pte = pde | ((pde & 0x1fe000LL) << (32 - 13)); 311 page_size = 4096 * 1024; 312 } else { 313 /* page directory entry */ 314 pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & a20_mask; 315 pte = x86_ldl_phys(cs, pte_addr); 316 if (!(pte & PG_PRESENT_MASK)) { 317 return -1; 318 } 319 page_size = 4096; 320 } 321 pte = pte & a20_mask; 322 } 323 324 #ifdef TARGET_X86_64 325 out: 326 #endif 327 pte &= PG_ADDRESS_MASK & ~(page_size - 1); 328 page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1); 329 return pte | page_offset; 330 } 331 332 typedef struct MCEInjectionParams { 333 Monitor *mon; 334 int bank; 335 uint64_t status; 336 uint64_t mcg_status; 337 uint64_t addr; 338 uint64_t misc; 339 int flags; 340 } MCEInjectionParams; 341 342 static void emit_guest_memory_failure(MemoryFailureAction action, bool ar, 343 bool recursive) 344 { 345 MemoryFailureFlags mff = {.action_required = ar, .recursive = recursive}; 346 347 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_GUEST, action, 348 &mff); 349 } 350 351 static void do_inject_x86_mce(CPUState *cs, run_on_cpu_data data) 352 { 353 MCEInjectionParams *params = data.host_ptr; 354 X86CPU *cpu = X86_CPU(cs); 355 CPUX86State *cenv = &cpu->env; 356 uint64_t *banks = cenv->mce_banks + 4 * params->bank; 357 g_autofree char *msg = NULL; 358 bool need_reset = false; 359 bool recursive; 360 bool ar = !!(params->status & MCI_STATUS_AR); 361 362 cpu_synchronize_state(cs); 363 recursive = !!(cenv->mcg_status & MCG_STATUS_MCIP); 364 365 /* 366 * If there is an MCE exception being processed, ignore this SRAO MCE 367 * unless unconditional injection was requested. 368 */ 369 if (!(params->flags & MCE_INJECT_UNCOND_AO) && !ar && recursive) { 370 emit_guest_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, ar, recursive); 371 return; 372 } 373 374 if (params->status & MCI_STATUS_UC) { 375 /* 376 * if MSR_MCG_CTL is not all 1s, the uncorrected error 377 * reporting is disabled 378 */ 379 if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) { 380 monitor_printf(params->mon, 381 "CPU %d: Uncorrected error reporting disabled\n", 382 cs->cpu_index); 383 return; 384 } 385 386 /* 387 * if MSR_MCi_CTL is not all 1s, the uncorrected error 388 * reporting is disabled for the bank 389 */ 390 if (banks[0] != ~(uint64_t)0) { 391 monitor_printf(params->mon, 392 "CPU %d: Uncorrected error reporting disabled for" 393 " bank %d\n", 394 cs->cpu_index, params->bank); 395 return; 396 } 397 398 if (!(cenv->cr[4] & CR4_MCE_MASK)) { 399 need_reset = true; 400 msg = g_strdup_printf("CPU %d: MCE capability is not enabled, " 401 "raising triple fault", cs->cpu_index); 402 } else if (recursive) { 403 need_reset = true; 404 msg = g_strdup_printf("CPU %d: Previous MCE still in progress, " 405 "raising triple fault", cs->cpu_index); 406 } 407 408 if (need_reset) { 409 emit_guest_memory_failure(MEMORY_FAILURE_ACTION_RESET, ar, 410 recursive); 411 monitor_printf(params->mon, "%s", msg); 412 qemu_log_mask(CPU_LOG_RESET, "%s\n", msg); 413 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 414 return; 415 } 416 417 if (banks[1] & MCI_STATUS_VAL) { 418 params->status |= MCI_STATUS_OVER; 419 } 420 banks[2] = params->addr; 421 banks[3] = params->misc; 422 cenv->mcg_status = params->mcg_status; 423 banks[1] = params->status; 424 cpu_interrupt(cs, CPU_INTERRUPT_MCE); 425 } else if (!(banks[1] & MCI_STATUS_VAL) 426 || !(banks[1] & MCI_STATUS_UC)) { 427 if (banks[1] & MCI_STATUS_VAL) { 428 params->status |= MCI_STATUS_OVER; 429 } 430 banks[2] = params->addr; 431 banks[3] = params->misc; 432 banks[1] = params->status; 433 } else { 434 banks[1] |= MCI_STATUS_OVER; 435 } 436 437 emit_guest_memory_failure(MEMORY_FAILURE_ACTION_INJECT, ar, recursive); 438 } 439 440 void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank, 441 uint64_t status, uint64_t mcg_status, uint64_t addr, 442 uint64_t misc, int flags) 443 { 444 CPUState *cs = CPU(cpu); 445 CPUX86State *cenv = &cpu->env; 446 MCEInjectionParams params = { 447 .mon = mon, 448 .bank = bank, 449 .status = status, 450 .mcg_status = mcg_status, 451 .addr = addr, 452 .misc = misc, 453 .flags = flags, 454 }; 455 unsigned bank_num = cenv->mcg_cap & 0xff; 456 457 if (!cenv->mcg_cap) { 458 monitor_printf(mon, "MCE injection not supported\n"); 459 return; 460 } 461 if (bank >= bank_num) { 462 monitor_printf(mon, "Invalid MCE bank number\n"); 463 return; 464 } 465 if (!(status & MCI_STATUS_VAL)) { 466 monitor_printf(mon, "Invalid MCE status code\n"); 467 return; 468 } 469 if ((flags & MCE_INJECT_BROADCAST) 470 && !cpu_x86_support_mca_broadcast(cenv)) { 471 monitor_printf(mon, "Guest CPU does not support MCA broadcast\n"); 472 return; 473 } 474 475 run_on_cpu(cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(¶ms)); 476 if (flags & MCE_INJECT_BROADCAST) { 477 CPUState *other_cs; 478 479 params.bank = 1; 480 params.status = MCI_STATUS_VAL | MCI_STATUS_UC; 481 params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV; 482 params.addr = 0; 483 params.misc = 0; 484 CPU_FOREACH(other_cs) { 485 if (other_cs == cs) { 486 continue; 487 } 488 run_on_cpu(other_cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(¶ms)); 489 } 490 } 491 } 492 493 void cpu_report_tpr_access(CPUX86State *env, TPRAccess access) 494 { 495 X86CPU *cpu = env_archcpu(env); 496 CPUState *cs = env_cpu(env); 497 498 if (kvm_enabled() || whpx_enabled() || nvmm_enabled()) { 499 env->tpr_access_type = access; 500 501 cpu_interrupt(cs, CPU_INTERRUPT_TPR); 502 } else if (tcg_enabled()) { 503 cpu_restore_state(cs, cs->mem_io_pc, false); 504 505 apic_handle_tpr_access_report(cpu->apic_state, env->eip, access); 506 } 507 } 508 #endif /* !CONFIG_USER_ONLY */ 509 510 int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector, 511 target_ulong *base, unsigned int *limit, 512 unsigned int *flags) 513 { 514 CPUState *cs = env_cpu(env); 515 SegmentCache *dt; 516 target_ulong ptr; 517 uint32_t e1, e2; 518 int index; 519 520 if (selector & 0x4) 521 dt = &env->ldt; 522 else 523 dt = &env->gdt; 524 index = selector & ~7; 525 ptr = dt->base + index; 526 if ((index + 7) > dt->limit 527 || cpu_memory_rw_debug(cs, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0 528 || cpu_memory_rw_debug(cs, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0) 529 return 0; 530 531 *base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000)); 532 *limit = (e1 & 0xffff) | (e2 & 0x000f0000); 533 if (e2 & DESC_G_MASK) 534 *limit = (*limit << 12) | 0xfff; 535 *flags = e2; 536 537 return 1; 538 } 539 540 #if !defined(CONFIG_USER_ONLY) 541 void do_cpu_init(X86CPU *cpu) 542 { 543 CPUState *cs = CPU(cpu); 544 CPUX86State *env = &cpu->env; 545 CPUX86State *save = g_new(CPUX86State, 1); 546 int sipi = cs->interrupt_request & CPU_INTERRUPT_SIPI; 547 548 *save = *env; 549 550 cpu_reset(cs); 551 cs->interrupt_request = sipi; 552 memcpy(&env->start_init_save, &save->start_init_save, 553 offsetof(CPUX86State, end_init_save) - 554 offsetof(CPUX86State, start_init_save)); 555 g_free(save); 556 557 if (kvm_enabled()) { 558 kvm_arch_do_init_vcpu(cpu); 559 } 560 apic_init_reset(cpu->apic_state); 561 } 562 563 void do_cpu_sipi(X86CPU *cpu) 564 { 565 apic_sipi(cpu->apic_state); 566 } 567 #else 568 void do_cpu_init(X86CPU *cpu) 569 { 570 } 571 void do_cpu_sipi(X86CPU *cpu) 572 { 573 } 574 #endif 575 576 #ifndef CONFIG_USER_ONLY 577 578 void cpu_load_efer(CPUX86State *env, uint64_t val) 579 { 580 env->efer = val; 581 env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK); 582 if (env->efer & MSR_EFER_LMA) { 583 env->hflags |= HF_LMA_MASK; 584 } 585 if (env->efer & MSR_EFER_SVME) { 586 env->hflags |= HF_SVME_MASK; 587 } 588 } 589 590 uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr) 591 { 592 X86CPU *cpu = X86_CPU(cs); 593 CPUX86State *env = &cpu->env; 594 MemTxAttrs attrs = cpu_get_mem_attrs(env); 595 AddressSpace *as = cpu_addressspace(cs, attrs); 596 597 return address_space_ldub(as, addr, attrs, NULL); 598 } 599 600 uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr) 601 { 602 X86CPU *cpu = X86_CPU(cs); 603 CPUX86State *env = &cpu->env; 604 MemTxAttrs attrs = cpu_get_mem_attrs(env); 605 AddressSpace *as = cpu_addressspace(cs, attrs); 606 607 return address_space_lduw(as, addr, attrs, NULL); 608 } 609 610 uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr) 611 { 612 X86CPU *cpu = X86_CPU(cs); 613 CPUX86State *env = &cpu->env; 614 MemTxAttrs attrs = cpu_get_mem_attrs(env); 615 AddressSpace *as = cpu_addressspace(cs, attrs); 616 617 return address_space_ldl(as, addr, attrs, NULL); 618 } 619 620 uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr) 621 { 622 X86CPU *cpu = X86_CPU(cs); 623 CPUX86State *env = &cpu->env; 624 MemTxAttrs attrs = cpu_get_mem_attrs(env); 625 AddressSpace *as = cpu_addressspace(cs, attrs); 626 627 return address_space_ldq(as, addr, attrs, NULL); 628 } 629 630 void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val) 631 { 632 X86CPU *cpu = X86_CPU(cs); 633 CPUX86State *env = &cpu->env; 634 MemTxAttrs attrs = cpu_get_mem_attrs(env); 635 AddressSpace *as = cpu_addressspace(cs, attrs); 636 637 address_space_stb(as, addr, val, attrs, NULL); 638 } 639 640 void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val) 641 { 642 X86CPU *cpu = X86_CPU(cs); 643 CPUX86State *env = &cpu->env; 644 MemTxAttrs attrs = cpu_get_mem_attrs(env); 645 AddressSpace *as = cpu_addressspace(cs, attrs); 646 647 address_space_stl_notdirty(as, addr, val, attrs, NULL); 648 } 649 650 void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val) 651 { 652 X86CPU *cpu = X86_CPU(cs); 653 CPUX86State *env = &cpu->env; 654 MemTxAttrs attrs = cpu_get_mem_attrs(env); 655 AddressSpace *as = cpu_addressspace(cs, attrs); 656 657 address_space_stw(as, addr, val, attrs, NULL); 658 } 659 660 void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val) 661 { 662 X86CPU *cpu = X86_CPU(cs); 663 CPUX86State *env = &cpu->env; 664 MemTxAttrs attrs = cpu_get_mem_attrs(env); 665 AddressSpace *as = cpu_addressspace(cs, attrs); 666 667 address_space_stl(as, addr, val, attrs, NULL); 668 } 669 670 void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val) 671 { 672 X86CPU *cpu = X86_CPU(cs); 673 CPUX86State *env = &cpu->env; 674 MemTxAttrs attrs = cpu_get_mem_attrs(env); 675 AddressSpace *as = cpu_addressspace(cs, attrs); 676 677 address_space_stq(as, addr, val, attrs, NULL); 678 } 679 #endif 680