1 /* 2 * i386 helpers (without register variable usage) 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qapi/qapi-events-run-state.h" 22 #include "cpu.h" 23 #include "exec/exec-all.h" 24 #include "sysemu/runstate.h" 25 #include "kvm/kvm_i386.h" 26 #ifndef CONFIG_USER_ONLY 27 #include "sysemu/hw_accel.h" 28 #include "monitor/monitor.h" 29 #endif 30 #include "qemu/log.h" 31 32 void cpu_sync_bndcs_hflags(CPUX86State *env) 33 { 34 uint32_t hflags = env->hflags; 35 uint32_t hflags2 = env->hflags2; 36 uint32_t bndcsr; 37 38 if ((hflags & HF_CPL_MASK) == 3) { 39 bndcsr = env->bndcs_regs.cfgu; 40 } else { 41 bndcsr = env->msr_bndcfgs; 42 } 43 44 if ((env->cr[4] & CR4_OSXSAVE_MASK) 45 && (env->xcr0 & XSTATE_BNDCSR_MASK) 46 && (bndcsr & BNDCFG_ENABLE)) { 47 hflags |= HF_MPX_EN_MASK; 48 } else { 49 hflags &= ~HF_MPX_EN_MASK; 50 } 51 52 if (bndcsr & BNDCFG_BNDPRESERVE) { 53 hflags2 |= HF2_MPX_PR_MASK; 54 } else { 55 hflags2 &= ~HF2_MPX_PR_MASK; 56 } 57 58 env->hflags = hflags; 59 env->hflags2 = hflags2; 60 } 61 62 static void cpu_x86_version(CPUX86State *env, int *family, int *model) 63 { 64 int cpuver = env->cpuid_version; 65 66 if (family == NULL || model == NULL) { 67 return; 68 } 69 70 *family = (cpuver >> 8) & 0x0f; 71 *model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f); 72 } 73 74 /* Broadcast MCA signal for processor version 06H_EH and above */ 75 int cpu_x86_support_mca_broadcast(CPUX86State *env) 76 { 77 int family = 0; 78 int model = 0; 79 80 cpu_x86_version(env, &family, &model); 81 if ((family == 6 && model >= 14) || family > 6) { 82 return 1; 83 } 84 85 return 0; 86 } 87 88 /***********************************************************/ 89 /* x86 mmu */ 90 /* XXX: add PGE support */ 91 92 void x86_cpu_set_a20(X86CPU *cpu, int a20_state) 93 { 94 CPUX86State *env = &cpu->env; 95 96 a20_state = (a20_state != 0); 97 if (a20_state != ((env->a20_mask >> 20) & 1)) { 98 CPUState *cs = CPU(cpu); 99 100 qemu_log_mask(CPU_LOG_MMU, "A20 update: a20=%d\n", a20_state); 101 /* if the cpu is currently executing code, we must unlink it and 102 all the potentially executing TB */ 103 cpu_interrupt(cs, CPU_INTERRUPT_EXITTB); 104 105 /* when a20 is changed, all the MMU mappings are invalid, so 106 we must flush everything */ 107 tlb_flush(cs); 108 env->a20_mask = ~(1 << 20) | (a20_state << 20); 109 } 110 } 111 112 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0) 113 { 114 X86CPU *cpu = env_archcpu(env); 115 int pe_state; 116 117 qemu_log_mask(CPU_LOG_MMU, "CR0 update: CR0=0x%08x\n", new_cr0); 118 if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) != 119 (env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) { 120 tlb_flush(CPU(cpu)); 121 } 122 123 #ifdef TARGET_X86_64 124 if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) && 125 (env->efer & MSR_EFER_LME)) { 126 /* enter in long mode */ 127 /* XXX: generate an exception */ 128 if (!(env->cr[4] & CR4_PAE_MASK)) 129 return; 130 env->efer |= MSR_EFER_LMA; 131 env->hflags |= HF_LMA_MASK; 132 } else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) && 133 (env->efer & MSR_EFER_LMA)) { 134 /* exit long mode */ 135 env->efer &= ~MSR_EFER_LMA; 136 env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK); 137 env->eip &= 0xffffffff; 138 } 139 #endif 140 env->cr[0] = new_cr0 | CR0_ET_MASK; 141 142 /* update PE flag in hidden flags */ 143 pe_state = (env->cr[0] & CR0_PE_MASK); 144 env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT); 145 /* ensure that ADDSEG is always set in real mode */ 146 env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT); 147 /* update FPU flags */ 148 env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) | 149 ((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)); 150 } 151 152 /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in 153 the PDPT */ 154 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3) 155 { 156 env->cr[3] = new_cr3; 157 if (env->cr[0] & CR0_PG_MASK) { 158 qemu_log_mask(CPU_LOG_MMU, 159 "CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3); 160 tlb_flush(env_cpu(env)); 161 } 162 } 163 164 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4) 165 { 166 uint32_t hflags; 167 168 #if defined(DEBUG_MMU) 169 printf("CR4 update: %08x -> %08x\n", (uint32_t)env->cr[4], new_cr4); 170 #endif 171 if ((new_cr4 ^ env->cr[4]) & 172 (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK | 173 CR4_SMEP_MASK | CR4_SMAP_MASK | CR4_LA57_MASK)) { 174 tlb_flush(env_cpu(env)); 175 } 176 177 /* Clear bits we're going to recompute. */ 178 hflags = env->hflags & ~(HF_OSFXSR_MASK | HF_SMAP_MASK); 179 180 /* SSE handling */ 181 if (!(env->features[FEAT_1_EDX] & CPUID_SSE)) { 182 new_cr4 &= ~CR4_OSFXSR_MASK; 183 } 184 if (new_cr4 & CR4_OSFXSR_MASK) { 185 hflags |= HF_OSFXSR_MASK; 186 } 187 188 if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_SMAP)) { 189 new_cr4 &= ~CR4_SMAP_MASK; 190 } 191 if (new_cr4 & CR4_SMAP_MASK) { 192 hflags |= HF_SMAP_MASK; 193 } 194 195 if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKU)) { 196 new_cr4 &= ~CR4_PKE_MASK; 197 } 198 if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKS)) { 199 new_cr4 &= ~CR4_PKS_MASK; 200 } 201 202 env->cr[4] = new_cr4; 203 env->hflags = hflags; 204 205 cpu_sync_bndcs_hflags(env); 206 } 207 208 #if !defined(CONFIG_USER_ONLY) 209 hwaddr x86_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 210 MemTxAttrs *attrs) 211 { 212 X86CPU *cpu = X86_CPU(cs); 213 CPUX86State *env = &cpu->env; 214 target_ulong pde_addr, pte_addr; 215 uint64_t pte; 216 int32_t a20_mask; 217 uint32_t page_offset; 218 int page_size; 219 220 *attrs = cpu_get_mem_attrs(env); 221 222 a20_mask = x86_get_a20_mask(env); 223 if (!(env->cr[0] & CR0_PG_MASK)) { 224 pte = addr & a20_mask; 225 page_size = 4096; 226 } else if (env->cr[4] & CR4_PAE_MASK) { 227 target_ulong pdpe_addr; 228 uint64_t pde, pdpe; 229 230 #ifdef TARGET_X86_64 231 if (env->hflags & HF_LMA_MASK) { 232 bool la57 = env->cr[4] & CR4_LA57_MASK; 233 uint64_t pml5e_addr, pml5e; 234 uint64_t pml4e_addr, pml4e; 235 int32_t sext; 236 237 /* test virtual address sign extension */ 238 sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47; 239 if (sext != 0 && sext != -1) { 240 return -1; 241 } 242 243 if (la57) { 244 pml5e_addr = ((env->cr[3] & ~0xfff) + 245 (((addr >> 48) & 0x1ff) << 3)) & a20_mask; 246 pml5e = x86_ldq_phys(cs, pml5e_addr); 247 if (!(pml5e & PG_PRESENT_MASK)) { 248 return -1; 249 } 250 } else { 251 pml5e = env->cr[3]; 252 } 253 254 pml4e_addr = ((pml5e & PG_ADDRESS_MASK) + 255 (((addr >> 39) & 0x1ff) << 3)) & a20_mask; 256 pml4e = x86_ldq_phys(cs, pml4e_addr); 257 if (!(pml4e & PG_PRESENT_MASK)) { 258 return -1; 259 } 260 pdpe_addr = ((pml4e & PG_ADDRESS_MASK) + 261 (((addr >> 30) & 0x1ff) << 3)) & a20_mask; 262 pdpe = x86_ldq_phys(cs, pdpe_addr); 263 if (!(pdpe & PG_PRESENT_MASK)) { 264 return -1; 265 } 266 if (pdpe & PG_PSE_MASK) { 267 page_size = 1024 * 1024 * 1024; 268 pte = pdpe; 269 goto out; 270 } 271 272 } else 273 #endif 274 { 275 pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) & 276 a20_mask; 277 pdpe = x86_ldq_phys(cs, pdpe_addr); 278 if (!(pdpe & PG_PRESENT_MASK)) 279 return -1; 280 } 281 282 pde_addr = ((pdpe & PG_ADDRESS_MASK) + 283 (((addr >> 21) & 0x1ff) << 3)) & a20_mask; 284 pde = x86_ldq_phys(cs, pde_addr); 285 if (!(pde & PG_PRESENT_MASK)) { 286 return -1; 287 } 288 if (pde & PG_PSE_MASK) { 289 /* 2 MB page */ 290 page_size = 2048 * 1024; 291 pte = pde; 292 } else { 293 /* 4 KB page */ 294 pte_addr = ((pde & PG_ADDRESS_MASK) + 295 (((addr >> 12) & 0x1ff) << 3)) & a20_mask; 296 page_size = 4096; 297 pte = x86_ldq_phys(cs, pte_addr); 298 } 299 if (!(pte & PG_PRESENT_MASK)) { 300 return -1; 301 } 302 } else { 303 uint32_t pde; 304 305 /* page directory entry */ 306 pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & a20_mask; 307 pde = x86_ldl_phys(cs, pde_addr); 308 if (!(pde & PG_PRESENT_MASK)) 309 return -1; 310 if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) { 311 pte = pde | ((pde & 0x1fe000LL) << (32 - 13)); 312 page_size = 4096 * 1024; 313 } else { 314 /* page directory entry */ 315 pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & a20_mask; 316 pte = x86_ldl_phys(cs, pte_addr); 317 if (!(pte & PG_PRESENT_MASK)) { 318 return -1; 319 } 320 page_size = 4096; 321 } 322 pte = pte & a20_mask; 323 } 324 325 #ifdef TARGET_X86_64 326 out: 327 #endif 328 pte &= PG_ADDRESS_MASK & ~(page_size - 1); 329 page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1); 330 return pte | page_offset; 331 } 332 333 typedef struct MCEInjectionParams { 334 Monitor *mon; 335 int bank; 336 uint64_t status; 337 uint64_t mcg_status; 338 uint64_t addr; 339 uint64_t misc; 340 int flags; 341 } MCEInjectionParams; 342 343 static void emit_guest_memory_failure(MemoryFailureAction action, bool ar, 344 bool recursive) 345 { 346 MemoryFailureFlags mff = {.action_required = ar, .recursive = recursive}; 347 348 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_GUEST, action, 349 &mff); 350 } 351 352 static void do_inject_x86_mce(CPUState *cs, run_on_cpu_data data) 353 { 354 MCEInjectionParams *params = data.host_ptr; 355 X86CPU *cpu = X86_CPU(cs); 356 CPUX86State *cenv = &cpu->env; 357 uint64_t *banks = cenv->mce_banks + 4 * params->bank; 358 g_autofree char *msg = NULL; 359 bool need_reset = false; 360 bool recursive; 361 bool ar = !!(params->status & MCI_STATUS_AR); 362 363 cpu_synchronize_state(cs); 364 recursive = !!(cenv->mcg_status & MCG_STATUS_MCIP); 365 366 /* 367 * If there is an MCE exception being processed, ignore this SRAO MCE 368 * unless unconditional injection was requested. 369 */ 370 if (!(params->flags & MCE_INJECT_UNCOND_AO) && !ar && recursive) { 371 emit_guest_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, ar, recursive); 372 return; 373 } 374 375 if (params->status & MCI_STATUS_UC) { 376 /* 377 * if MSR_MCG_CTL is not all 1s, the uncorrected error 378 * reporting is disabled 379 */ 380 if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) { 381 monitor_printf(params->mon, 382 "CPU %d: Uncorrected error reporting disabled\n", 383 cs->cpu_index); 384 return; 385 } 386 387 /* 388 * if MSR_MCi_CTL is not all 1s, the uncorrected error 389 * reporting is disabled for the bank 390 */ 391 if (banks[0] != ~(uint64_t)0) { 392 monitor_printf(params->mon, 393 "CPU %d: Uncorrected error reporting disabled for" 394 " bank %d\n", 395 cs->cpu_index, params->bank); 396 return; 397 } 398 399 if (!(cenv->cr[4] & CR4_MCE_MASK)) { 400 need_reset = true; 401 msg = g_strdup_printf("CPU %d: MCE capability is not enabled, " 402 "raising triple fault", cs->cpu_index); 403 } else if (recursive) { 404 need_reset = true; 405 msg = g_strdup_printf("CPU %d: Previous MCE still in progress, " 406 "raising triple fault", cs->cpu_index); 407 } 408 409 if (need_reset) { 410 emit_guest_memory_failure(MEMORY_FAILURE_ACTION_RESET, ar, 411 recursive); 412 monitor_printf(params->mon, "%s", msg); 413 qemu_log_mask(CPU_LOG_RESET, "%s\n", msg); 414 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 415 return; 416 } 417 418 if (banks[1] & MCI_STATUS_VAL) { 419 params->status |= MCI_STATUS_OVER; 420 } 421 banks[2] = params->addr; 422 banks[3] = params->misc; 423 cenv->mcg_status = params->mcg_status; 424 banks[1] = params->status; 425 cpu_interrupt(cs, CPU_INTERRUPT_MCE); 426 } else if (!(banks[1] & MCI_STATUS_VAL) 427 || !(banks[1] & MCI_STATUS_UC)) { 428 if (banks[1] & MCI_STATUS_VAL) { 429 params->status |= MCI_STATUS_OVER; 430 } 431 banks[2] = params->addr; 432 banks[3] = params->misc; 433 banks[1] = params->status; 434 } else { 435 banks[1] |= MCI_STATUS_OVER; 436 } 437 438 emit_guest_memory_failure(MEMORY_FAILURE_ACTION_INJECT, ar, recursive); 439 } 440 441 void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank, 442 uint64_t status, uint64_t mcg_status, uint64_t addr, 443 uint64_t misc, int flags) 444 { 445 CPUState *cs = CPU(cpu); 446 CPUX86State *cenv = &cpu->env; 447 MCEInjectionParams params = { 448 .mon = mon, 449 .bank = bank, 450 .status = status, 451 .mcg_status = mcg_status, 452 .addr = addr, 453 .misc = misc, 454 .flags = flags, 455 }; 456 unsigned bank_num = cenv->mcg_cap & 0xff; 457 458 if (!cenv->mcg_cap) { 459 monitor_printf(mon, "MCE injection not supported\n"); 460 return; 461 } 462 if (bank >= bank_num) { 463 monitor_printf(mon, "Invalid MCE bank number\n"); 464 return; 465 } 466 if (!(status & MCI_STATUS_VAL)) { 467 monitor_printf(mon, "Invalid MCE status code\n"); 468 return; 469 } 470 if ((flags & MCE_INJECT_BROADCAST) 471 && !cpu_x86_support_mca_broadcast(cenv)) { 472 monitor_printf(mon, "Guest CPU does not support MCA broadcast\n"); 473 return; 474 } 475 476 run_on_cpu(cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(¶ms)); 477 if (flags & MCE_INJECT_BROADCAST) { 478 CPUState *other_cs; 479 480 params.bank = 1; 481 params.status = MCI_STATUS_VAL | MCI_STATUS_UC; 482 params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV; 483 params.addr = 0; 484 params.misc = 0; 485 CPU_FOREACH(other_cs) { 486 if (other_cs == cs) { 487 continue; 488 } 489 run_on_cpu(other_cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(¶ms)); 490 } 491 } 492 } 493 494 void cpu_report_tpr_access(CPUX86State *env, TPRAccess access) 495 { 496 X86CPU *cpu = env_archcpu(env); 497 CPUState *cs = env_cpu(env); 498 499 if (kvm_enabled() || whpx_enabled() || nvmm_enabled()) { 500 env->tpr_access_type = access; 501 502 cpu_interrupt(cs, CPU_INTERRUPT_TPR); 503 } else if (tcg_enabled()) { 504 cpu_restore_state(cs, cs->mem_io_pc, false); 505 506 apic_handle_tpr_access_report(cpu->apic_state, env->eip, access); 507 } 508 } 509 #endif /* !CONFIG_USER_ONLY */ 510 511 int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector, 512 target_ulong *base, unsigned int *limit, 513 unsigned int *flags) 514 { 515 CPUState *cs = env_cpu(env); 516 SegmentCache *dt; 517 target_ulong ptr; 518 uint32_t e1, e2; 519 int index; 520 521 if (selector & 0x4) 522 dt = &env->ldt; 523 else 524 dt = &env->gdt; 525 index = selector & ~7; 526 ptr = dt->base + index; 527 if ((index + 7) > dt->limit 528 || cpu_memory_rw_debug(cs, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0 529 || cpu_memory_rw_debug(cs, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0) 530 return 0; 531 532 *base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000)); 533 *limit = (e1 & 0xffff) | (e2 & 0x000f0000); 534 if (e2 & DESC_G_MASK) 535 *limit = (*limit << 12) | 0xfff; 536 *flags = e2; 537 538 return 1; 539 } 540 541 #if !defined(CONFIG_USER_ONLY) 542 void do_cpu_init(X86CPU *cpu) 543 { 544 CPUState *cs = CPU(cpu); 545 CPUX86State *env = &cpu->env; 546 CPUX86State *save = g_new(CPUX86State, 1); 547 int sipi = cs->interrupt_request & CPU_INTERRUPT_SIPI; 548 549 *save = *env; 550 551 cpu_reset(cs); 552 cs->interrupt_request = sipi; 553 memcpy(&env->start_init_save, &save->start_init_save, 554 offsetof(CPUX86State, end_init_save) - 555 offsetof(CPUX86State, start_init_save)); 556 g_free(save); 557 558 if (kvm_enabled()) { 559 kvm_arch_do_init_vcpu(cpu); 560 } 561 apic_init_reset(cpu->apic_state); 562 } 563 564 void do_cpu_sipi(X86CPU *cpu) 565 { 566 apic_sipi(cpu->apic_state); 567 } 568 #else 569 void do_cpu_init(X86CPU *cpu) 570 { 571 } 572 void do_cpu_sipi(X86CPU *cpu) 573 { 574 } 575 #endif 576 577 #ifndef CONFIG_USER_ONLY 578 579 void cpu_load_efer(CPUX86State *env, uint64_t val) 580 { 581 env->efer = val; 582 env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK); 583 if (env->efer & MSR_EFER_LMA) { 584 env->hflags |= HF_LMA_MASK; 585 } 586 if (env->efer & MSR_EFER_SVME) { 587 env->hflags |= HF_SVME_MASK; 588 } 589 } 590 591 uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr) 592 { 593 X86CPU *cpu = X86_CPU(cs); 594 CPUX86State *env = &cpu->env; 595 MemTxAttrs attrs = cpu_get_mem_attrs(env); 596 AddressSpace *as = cpu_addressspace(cs, attrs); 597 598 return address_space_ldub(as, addr, attrs, NULL); 599 } 600 601 uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr) 602 { 603 X86CPU *cpu = X86_CPU(cs); 604 CPUX86State *env = &cpu->env; 605 MemTxAttrs attrs = cpu_get_mem_attrs(env); 606 AddressSpace *as = cpu_addressspace(cs, attrs); 607 608 return address_space_lduw(as, addr, attrs, NULL); 609 } 610 611 uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr) 612 { 613 X86CPU *cpu = X86_CPU(cs); 614 CPUX86State *env = &cpu->env; 615 MemTxAttrs attrs = cpu_get_mem_attrs(env); 616 AddressSpace *as = cpu_addressspace(cs, attrs); 617 618 return address_space_ldl(as, addr, attrs, NULL); 619 } 620 621 uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr) 622 { 623 X86CPU *cpu = X86_CPU(cs); 624 CPUX86State *env = &cpu->env; 625 MemTxAttrs attrs = cpu_get_mem_attrs(env); 626 AddressSpace *as = cpu_addressspace(cs, attrs); 627 628 return address_space_ldq(as, addr, attrs, NULL); 629 } 630 631 void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val) 632 { 633 X86CPU *cpu = X86_CPU(cs); 634 CPUX86State *env = &cpu->env; 635 MemTxAttrs attrs = cpu_get_mem_attrs(env); 636 AddressSpace *as = cpu_addressspace(cs, attrs); 637 638 address_space_stb(as, addr, val, attrs, NULL); 639 } 640 641 void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val) 642 { 643 X86CPU *cpu = X86_CPU(cs); 644 CPUX86State *env = &cpu->env; 645 MemTxAttrs attrs = cpu_get_mem_attrs(env); 646 AddressSpace *as = cpu_addressspace(cs, attrs); 647 648 address_space_stl_notdirty(as, addr, val, attrs, NULL); 649 } 650 651 void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val) 652 { 653 X86CPU *cpu = X86_CPU(cs); 654 CPUX86State *env = &cpu->env; 655 MemTxAttrs attrs = cpu_get_mem_attrs(env); 656 AddressSpace *as = cpu_addressspace(cs, attrs); 657 658 address_space_stw(as, addr, val, attrs, NULL); 659 } 660 661 void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val) 662 { 663 X86CPU *cpu = X86_CPU(cs); 664 CPUX86State *env = &cpu->env; 665 MemTxAttrs attrs = cpu_get_mem_attrs(env); 666 AddressSpace *as = cpu_addressspace(cs, attrs); 667 668 address_space_stl(as, addr, val, attrs, NULL); 669 } 670 671 void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val) 672 { 673 X86CPU *cpu = X86_CPU(cs); 674 CPUX86State *env = &cpu->env; 675 MemTxAttrs attrs = cpu_get_mem_attrs(env); 676 AddressSpace *as = cpu_addressspace(cs, attrs); 677 678 address_space_stq(as, addr, val, attrs, NULL); 679 } 680 #endif 681