1 /* 2 * i386 helpers (without register variable usage) 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qapi/qapi-events-run-state.h" 22 #include "cpu.h" 23 #include "exec/exec-all.h" 24 #include "sysemu/runstate.h" 25 #include "kvm/kvm_i386.h" 26 #ifndef CONFIG_USER_ONLY 27 #include "sysemu/hw_accel.h" 28 #include "monitor/monitor.h" 29 #endif 30 #include "qemu/log.h" 31 32 void cpu_sync_avx_hflag(CPUX86State *env) 33 { 34 if ((env->cr[4] & CR4_OSXSAVE_MASK) 35 && (env->xcr0 & (XSTATE_SSE_MASK | XSTATE_YMM_MASK)) 36 == (XSTATE_SSE_MASK | XSTATE_YMM_MASK)) { 37 env->hflags |= HF_AVX_EN_MASK; 38 } else{ 39 env->hflags &= ~HF_AVX_EN_MASK; 40 } 41 } 42 43 void cpu_sync_bndcs_hflags(CPUX86State *env) 44 { 45 uint32_t hflags = env->hflags; 46 uint32_t hflags2 = env->hflags2; 47 uint32_t bndcsr; 48 49 if ((hflags & HF_CPL_MASK) == 3) { 50 bndcsr = env->bndcs_regs.cfgu; 51 } else { 52 bndcsr = env->msr_bndcfgs; 53 } 54 55 if ((env->cr[4] & CR4_OSXSAVE_MASK) 56 && (env->xcr0 & XSTATE_BNDCSR_MASK) 57 && (bndcsr & BNDCFG_ENABLE)) { 58 hflags |= HF_MPX_EN_MASK; 59 } else { 60 hflags &= ~HF_MPX_EN_MASK; 61 } 62 63 if (bndcsr & BNDCFG_BNDPRESERVE) { 64 hflags2 |= HF2_MPX_PR_MASK; 65 } else { 66 hflags2 &= ~HF2_MPX_PR_MASK; 67 } 68 69 env->hflags = hflags; 70 env->hflags2 = hflags2; 71 } 72 73 static void cpu_x86_version(CPUX86State *env, int *family, int *model) 74 { 75 int cpuver = env->cpuid_version; 76 77 if (family == NULL || model == NULL) { 78 return; 79 } 80 81 *family = (cpuver >> 8) & 0x0f; 82 *model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f); 83 } 84 85 /* Broadcast MCA signal for processor version 06H_EH and above */ 86 int cpu_x86_support_mca_broadcast(CPUX86State *env) 87 { 88 int family = 0; 89 int model = 0; 90 91 cpu_x86_version(env, &family, &model); 92 if ((family == 6 && model >= 14) || family > 6) { 93 return 1; 94 } 95 96 return 0; 97 } 98 99 /***********************************************************/ 100 /* x86 mmu */ 101 /* XXX: add PGE support */ 102 103 void x86_cpu_set_a20(X86CPU *cpu, int a20_state) 104 { 105 CPUX86State *env = &cpu->env; 106 107 a20_state = (a20_state != 0); 108 if (a20_state != ((env->a20_mask >> 20) & 1)) { 109 CPUState *cs = CPU(cpu); 110 111 qemu_log_mask(CPU_LOG_MMU, "A20 update: a20=%d\n", a20_state); 112 /* if the cpu is currently executing code, we must unlink it and 113 all the potentially executing TB */ 114 cpu_interrupt(cs, CPU_INTERRUPT_EXITTB); 115 116 /* when a20 is changed, all the MMU mappings are invalid, so 117 we must flush everything */ 118 tlb_flush(cs); 119 env->a20_mask = ~(1 << 20) | (a20_state << 20); 120 } 121 } 122 123 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0) 124 { 125 X86CPU *cpu = env_archcpu(env); 126 int pe_state; 127 128 qemu_log_mask(CPU_LOG_MMU, "CR0 update: CR0=0x%08x\n", new_cr0); 129 if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) != 130 (env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) { 131 tlb_flush(CPU(cpu)); 132 } 133 134 #ifdef TARGET_X86_64 135 if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) && 136 (env->efer & MSR_EFER_LME)) { 137 /* enter in long mode */ 138 /* XXX: generate an exception */ 139 if (!(env->cr[4] & CR4_PAE_MASK)) 140 return; 141 env->efer |= MSR_EFER_LMA; 142 env->hflags |= HF_LMA_MASK; 143 } else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) && 144 (env->efer & MSR_EFER_LMA)) { 145 /* exit long mode */ 146 env->efer &= ~MSR_EFER_LMA; 147 env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK); 148 env->eip &= 0xffffffff; 149 } 150 #endif 151 env->cr[0] = new_cr0 | CR0_ET_MASK; 152 153 /* update PE flag in hidden flags */ 154 pe_state = (env->cr[0] & CR0_PE_MASK); 155 env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT); 156 /* ensure that ADDSEG is always set in real mode */ 157 env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT); 158 /* update FPU flags */ 159 env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) | 160 ((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)); 161 } 162 163 /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in 164 the PDPT */ 165 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3) 166 { 167 env->cr[3] = new_cr3; 168 if (env->cr[0] & CR0_PG_MASK) { 169 qemu_log_mask(CPU_LOG_MMU, 170 "CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3); 171 tlb_flush(env_cpu(env)); 172 } 173 } 174 175 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4) 176 { 177 uint32_t hflags; 178 179 #if defined(DEBUG_MMU) 180 printf("CR4 update: %08x -> %08x\n", (uint32_t)env->cr[4], new_cr4); 181 #endif 182 if ((new_cr4 ^ env->cr[4]) & 183 (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK | 184 CR4_SMEP_MASK | CR4_SMAP_MASK | CR4_LA57_MASK)) { 185 tlb_flush(env_cpu(env)); 186 } 187 188 /* Clear bits we're going to recompute. */ 189 hflags = env->hflags & ~(HF_OSFXSR_MASK | HF_SMAP_MASK | HF_UMIP_MASK); 190 191 /* SSE handling */ 192 if (!(env->features[FEAT_1_EDX] & CPUID_SSE)) { 193 new_cr4 &= ~CR4_OSFXSR_MASK; 194 } 195 if (new_cr4 & CR4_OSFXSR_MASK) { 196 hflags |= HF_OSFXSR_MASK; 197 } 198 199 if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_SMAP)) { 200 new_cr4 &= ~CR4_SMAP_MASK; 201 } 202 if (new_cr4 & CR4_SMAP_MASK) { 203 hflags |= HF_SMAP_MASK; 204 } 205 if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_UMIP)) { 206 new_cr4 &= ~CR4_UMIP_MASK; 207 } 208 if (new_cr4 & CR4_UMIP_MASK) { 209 hflags |= HF_UMIP_MASK; 210 } 211 212 if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKU)) { 213 new_cr4 &= ~CR4_PKE_MASK; 214 } 215 if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKS)) { 216 new_cr4 &= ~CR4_PKS_MASK; 217 } 218 219 env->cr[4] = new_cr4; 220 env->hflags = hflags; 221 222 cpu_sync_bndcs_hflags(env); 223 cpu_sync_avx_hflag(env); 224 } 225 226 #if !defined(CONFIG_USER_ONLY) 227 hwaddr x86_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 228 MemTxAttrs *attrs) 229 { 230 X86CPU *cpu = X86_CPU(cs); 231 CPUX86State *env = &cpu->env; 232 target_ulong pde_addr, pte_addr; 233 uint64_t pte; 234 int32_t a20_mask; 235 uint32_t page_offset; 236 int page_size; 237 238 *attrs = cpu_get_mem_attrs(env); 239 240 a20_mask = x86_get_a20_mask(env); 241 if (!(env->cr[0] & CR0_PG_MASK)) { 242 pte = addr & a20_mask; 243 page_size = 4096; 244 } else if (env->cr[4] & CR4_PAE_MASK) { 245 target_ulong pdpe_addr; 246 uint64_t pde, pdpe; 247 248 #ifdef TARGET_X86_64 249 if (env->hflags & HF_LMA_MASK) { 250 bool la57 = env->cr[4] & CR4_LA57_MASK; 251 uint64_t pml5e_addr, pml5e; 252 uint64_t pml4e_addr, pml4e; 253 int32_t sext; 254 255 /* test virtual address sign extension */ 256 sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47; 257 if (sext != 0 && sext != -1) { 258 return -1; 259 } 260 261 if (la57) { 262 pml5e_addr = ((env->cr[3] & ~0xfff) + 263 (((addr >> 48) & 0x1ff) << 3)) & a20_mask; 264 pml5e = x86_ldq_phys(cs, pml5e_addr); 265 if (!(pml5e & PG_PRESENT_MASK)) { 266 return -1; 267 } 268 } else { 269 pml5e = env->cr[3]; 270 } 271 272 pml4e_addr = ((pml5e & PG_ADDRESS_MASK) + 273 (((addr >> 39) & 0x1ff) << 3)) & a20_mask; 274 pml4e = x86_ldq_phys(cs, pml4e_addr); 275 if (!(pml4e & PG_PRESENT_MASK)) { 276 return -1; 277 } 278 pdpe_addr = ((pml4e & PG_ADDRESS_MASK) + 279 (((addr >> 30) & 0x1ff) << 3)) & a20_mask; 280 pdpe = x86_ldq_phys(cs, pdpe_addr); 281 if (!(pdpe & PG_PRESENT_MASK)) { 282 return -1; 283 } 284 if (pdpe & PG_PSE_MASK) { 285 page_size = 1024 * 1024 * 1024; 286 pte = pdpe; 287 goto out; 288 } 289 290 } else 291 #endif 292 { 293 pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) & 294 a20_mask; 295 pdpe = x86_ldq_phys(cs, pdpe_addr); 296 if (!(pdpe & PG_PRESENT_MASK)) 297 return -1; 298 } 299 300 pde_addr = ((pdpe & PG_ADDRESS_MASK) + 301 (((addr >> 21) & 0x1ff) << 3)) & a20_mask; 302 pde = x86_ldq_phys(cs, pde_addr); 303 if (!(pde & PG_PRESENT_MASK)) { 304 return -1; 305 } 306 if (pde & PG_PSE_MASK) { 307 /* 2 MB page */ 308 page_size = 2048 * 1024; 309 pte = pde; 310 } else { 311 /* 4 KB page */ 312 pte_addr = ((pde & PG_ADDRESS_MASK) + 313 (((addr >> 12) & 0x1ff) << 3)) & a20_mask; 314 page_size = 4096; 315 pte = x86_ldq_phys(cs, pte_addr); 316 } 317 if (!(pte & PG_PRESENT_MASK)) { 318 return -1; 319 } 320 } else { 321 uint32_t pde; 322 323 /* page directory entry */ 324 pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & a20_mask; 325 pde = x86_ldl_phys(cs, pde_addr); 326 if (!(pde & PG_PRESENT_MASK)) 327 return -1; 328 if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) { 329 pte = pde | ((pde & 0x1fe000LL) << (32 - 13)); 330 page_size = 4096 * 1024; 331 } else { 332 /* page directory entry */ 333 pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & a20_mask; 334 pte = x86_ldl_phys(cs, pte_addr); 335 if (!(pte & PG_PRESENT_MASK)) { 336 return -1; 337 } 338 page_size = 4096; 339 } 340 pte = pte & a20_mask; 341 } 342 343 #ifdef TARGET_X86_64 344 out: 345 #endif 346 pte &= PG_ADDRESS_MASK & ~(page_size - 1); 347 page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1); 348 return pte | page_offset; 349 } 350 351 typedef struct MCEInjectionParams { 352 Monitor *mon; 353 int bank; 354 uint64_t status; 355 uint64_t mcg_status; 356 uint64_t addr; 357 uint64_t misc; 358 int flags; 359 } MCEInjectionParams; 360 361 static void emit_guest_memory_failure(MemoryFailureAction action, bool ar, 362 bool recursive) 363 { 364 MemoryFailureFlags mff = {.action_required = ar, .recursive = recursive}; 365 366 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_GUEST, action, 367 &mff); 368 } 369 370 static void do_inject_x86_mce(CPUState *cs, run_on_cpu_data data) 371 { 372 MCEInjectionParams *params = data.host_ptr; 373 X86CPU *cpu = X86_CPU(cs); 374 CPUX86State *cenv = &cpu->env; 375 uint64_t *banks = cenv->mce_banks + 4 * params->bank; 376 g_autofree char *msg = NULL; 377 bool need_reset = false; 378 bool recursive; 379 bool ar = !!(params->status & MCI_STATUS_AR); 380 381 cpu_synchronize_state(cs); 382 recursive = !!(cenv->mcg_status & MCG_STATUS_MCIP); 383 384 /* 385 * If there is an MCE exception being processed, ignore this SRAO MCE 386 * unless unconditional injection was requested. 387 */ 388 if (!(params->flags & MCE_INJECT_UNCOND_AO) && !ar && recursive) { 389 emit_guest_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, ar, recursive); 390 return; 391 } 392 393 if (params->status & MCI_STATUS_UC) { 394 /* 395 * if MSR_MCG_CTL is not all 1s, the uncorrected error 396 * reporting is disabled 397 */ 398 if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) { 399 monitor_printf(params->mon, 400 "CPU %d: Uncorrected error reporting disabled\n", 401 cs->cpu_index); 402 return; 403 } 404 405 /* 406 * if MSR_MCi_CTL is not all 1s, the uncorrected error 407 * reporting is disabled for the bank 408 */ 409 if (banks[0] != ~(uint64_t)0) { 410 monitor_printf(params->mon, 411 "CPU %d: Uncorrected error reporting disabled for" 412 " bank %d\n", 413 cs->cpu_index, params->bank); 414 return; 415 } 416 417 if (!(cenv->cr[4] & CR4_MCE_MASK)) { 418 need_reset = true; 419 msg = g_strdup_printf("CPU %d: MCE capability is not enabled, " 420 "raising triple fault", cs->cpu_index); 421 } else if (recursive) { 422 need_reset = true; 423 msg = g_strdup_printf("CPU %d: Previous MCE still in progress, " 424 "raising triple fault", cs->cpu_index); 425 } 426 427 if (need_reset) { 428 emit_guest_memory_failure(MEMORY_FAILURE_ACTION_RESET, ar, 429 recursive); 430 monitor_puts(params->mon, msg); 431 qemu_log_mask(CPU_LOG_RESET, "%s\n", msg); 432 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 433 return; 434 } 435 436 if (banks[1] & MCI_STATUS_VAL) { 437 params->status |= MCI_STATUS_OVER; 438 } 439 banks[2] = params->addr; 440 banks[3] = params->misc; 441 cenv->mcg_status = params->mcg_status; 442 banks[1] = params->status; 443 cpu_interrupt(cs, CPU_INTERRUPT_MCE); 444 } else if (!(banks[1] & MCI_STATUS_VAL) 445 || !(banks[1] & MCI_STATUS_UC)) { 446 if (banks[1] & MCI_STATUS_VAL) { 447 params->status |= MCI_STATUS_OVER; 448 } 449 banks[2] = params->addr; 450 banks[3] = params->misc; 451 banks[1] = params->status; 452 } else { 453 banks[1] |= MCI_STATUS_OVER; 454 } 455 456 emit_guest_memory_failure(MEMORY_FAILURE_ACTION_INJECT, ar, recursive); 457 } 458 459 void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank, 460 uint64_t status, uint64_t mcg_status, uint64_t addr, 461 uint64_t misc, int flags) 462 { 463 CPUState *cs = CPU(cpu); 464 CPUX86State *cenv = &cpu->env; 465 MCEInjectionParams params = { 466 .mon = mon, 467 .bank = bank, 468 .status = status, 469 .mcg_status = mcg_status, 470 .addr = addr, 471 .misc = misc, 472 .flags = flags, 473 }; 474 unsigned bank_num = cenv->mcg_cap & 0xff; 475 476 if (!cenv->mcg_cap) { 477 monitor_printf(mon, "MCE injection not supported\n"); 478 return; 479 } 480 if (bank >= bank_num) { 481 monitor_printf(mon, "Invalid MCE bank number\n"); 482 return; 483 } 484 if (!(status & MCI_STATUS_VAL)) { 485 monitor_printf(mon, "Invalid MCE status code\n"); 486 return; 487 } 488 if ((flags & MCE_INJECT_BROADCAST) 489 && !cpu_x86_support_mca_broadcast(cenv)) { 490 monitor_printf(mon, "Guest CPU does not support MCA broadcast\n"); 491 return; 492 } 493 494 run_on_cpu(cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(¶ms)); 495 if (flags & MCE_INJECT_BROADCAST) { 496 CPUState *other_cs; 497 498 params.bank = 1; 499 params.status = MCI_STATUS_VAL | MCI_STATUS_UC; 500 params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV; 501 params.addr = 0; 502 params.misc = 0; 503 CPU_FOREACH(other_cs) { 504 if (other_cs == cs) { 505 continue; 506 } 507 run_on_cpu(other_cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(¶ms)); 508 } 509 } 510 } 511 512 void cpu_report_tpr_access(CPUX86State *env, TPRAccess access) 513 { 514 X86CPU *cpu = env_archcpu(env); 515 CPUState *cs = env_cpu(env); 516 517 if (kvm_enabled() || whpx_enabled() || nvmm_enabled()) { 518 env->tpr_access_type = access; 519 520 cpu_interrupt(cs, CPU_INTERRUPT_TPR); 521 } else if (tcg_enabled()) { 522 cpu_restore_state(cs, cs->mem_io_pc, false); 523 524 apic_handle_tpr_access_report(cpu->apic_state, env->eip, access); 525 } 526 } 527 #endif /* !CONFIG_USER_ONLY */ 528 529 int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector, 530 target_ulong *base, unsigned int *limit, 531 unsigned int *flags) 532 { 533 CPUState *cs = env_cpu(env); 534 SegmentCache *dt; 535 target_ulong ptr; 536 uint32_t e1, e2; 537 int index; 538 539 if (selector & 0x4) 540 dt = &env->ldt; 541 else 542 dt = &env->gdt; 543 index = selector & ~7; 544 ptr = dt->base + index; 545 if ((index + 7) > dt->limit 546 || cpu_memory_rw_debug(cs, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0 547 || cpu_memory_rw_debug(cs, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0) 548 return 0; 549 550 *base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000)); 551 *limit = (e1 & 0xffff) | (e2 & 0x000f0000); 552 if (e2 & DESC_G_MASK) 553 *limit = (*limit << 12) | 0xfff; 554 *flags = e2; 555 556 return 1; 557 } 558 559 #if !defined(CONFIG_USER_ONLY) 560 void do_cpu_init(X86CPU *cpu) 561 { 562 CPUState *cs = CPU(cpu); 563 CPUX86State *env = &cpu->env; 564 CPUX86State *save = g_new(CPUX86State, 1); 565 int sipi = cs->interrupt_request & CPU_INTERRUPT_SIPI; 566 567 *save = *env; 568 569 cpu_reset(cs); 570 cs->interrupt_request = sipi; 571 memcpy(&env->start_init_save, &save->start_init_save, 572 offsetof(CPUX86State, end_init_save) - 573 offsetof(CPUX86State, start_init_save)); 574 g_free(save); 575 576 if (kvm_enabled()) { 577 kvm_arch_do_init_vcpu(cpu); 578 } 579 apic_init_reset(cpu->apic_state); 580 } 581 582 void do_cpu_sipi(X86CPU *cpu) 583 { 584 apic_sipi(cpu->apic_state); 585 } 586 #else 587 void do_cpu_init(X86CPU *cpu) 588 { 589 } 590 void do_cpu_sipi(X86CPU *cpu) 591 { 592 } 593 #endif 594 595 #ifndef CONFIG_USER_ONLY 596 597 void cpu_load_efer(CPUX86State *env, uint64_t val) 598 { 599 env->efer = val; 600 env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK); 601 if (env->efer & MSR_EFER_LMA) { 602 env->hflags |= HF_LMA_MASK; 603 } 604 if (env->efer & MSR_EFER_SVME) { 605 env->hflags |= HF_SVME_MASK; 606 } 607 } 608 609 uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr) 610 { 611 X86CPU *cpu = X86_CPU(cs); 612 CPUX86State *env = &cpu->env; 613 MemTxAttrs attrs = cpu_get_mem_attrs(env); 614 AddressSpace *as = cpu_addressspace(cs, attrs); 615 616 return address_space_ldub(as, addr, attrs, NULL); 617 } 618 619 uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr) 620 { 621 X86CPU *cpu = X86_CPU(cs); 622 CPUX86State *env = &cpu->env; 623 MemTxAttrs attrs = cpu_get_mem_attrs(env); 624 AddressSpace *as = cpu_addressspace(cs, attrs); 625 626 return address_space_lduw(as, addr, attrs, NULL); 627 } 628 629 uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr) 630 { 631 X86CPU *cpu = X86_CPU(cs); 632 CPUX86State *env = &cpu->env; 633 MemTxAttrs attrs = cpu_get_mem_attrs(env); 634 AddressSpace *as = cpu_addressspace(cs, attrs); 635 636 return address_space_ldl(as, addr, attrs, NULL); 637 } 638 639 uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr) 640 { 641 X86CPU *cpu = X86_CPU(cs); 642 CPUX86State *env = &cpu->env; 643 MemTxAttrs attrs = cpu_get_mem_attrs(env); 644 AddressSpace *as = cpu_addressspace(cs, attrs); 645 646 return address_space_ldq(as, addr, attrs, NULL); 647 } 648 649 void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val) 650 { 651 X86CPU *cpu = X86_CPU(cs); 652 CPUX86State *env = &cpu->env; 653 MemTxAttrs attrs = cpu_get_mem_attrs(env); 654 AddressSpace *as = cpu_addressspace(cs, attrs); 655 656 address_space_stb(as, addr, val, attrs, NULL); 657 } 658 659 void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val) 660 { 661 X86CPU *cpu = X86_CPU(cs); 662 CPUX86State *env = &cpu->env; 663 MemTxAttrs attrs = cpu_get_mem_attrs(env); 664 AddressSpace *as = cpu_addressspace(cs, attrs); 665 666 address_space_stl_notdirty(as, addr, val, attrs, NULL); 667 } 668 669 void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val) 670 { 671 X86CPU *cpu = X86_CPU(cs); 672 CPUX86State *env = &cpu->env; 673 MemTxAttrs attrs = cpu_get_mem_attrs(env); 674 AddressSpace *as = cpu_addressspace(cs, attrs); 675 676 address_space_stw(as, addr, val, attrs, NULL); 677 } 678 679 void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val) 680 { 681 X86CPU *cpu = X86_CPU(cs); 682 CPUX86State *env = &cpu->env; 683 MemTxAttrs attrs = cpu_get_mem_attrs(env); 684 AddressSpace *as = cpu_addressspace(cs, attrs); 685 686 address_space_stl(as, addr, val, attrs, NULL); 687 } 688 689 void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val) 690 { 691 X86CPU *cpu = X86_CPU(cs); 692 CPUX86State *env = &cpu->env; 693 MemTxAttrs attrs = cpu_get_mem_attrs(env); 694 AddressSpace *as = cpu_addressspace(cs, attrs); 695 696 address_space_stq(as, addr, val, attrs, NULL); 697 } 698 #endif 699