xref: /openbmc/qemu/target/i386/helper.c (revision 666952ea7c12c4c44282a3b00b817509008df215)
1 /*
2  *  i386 helpers (without register variable usage)
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/qemu-print.h"
24 #include "sysemu/kvm.h"
25 #include "kvm_i386.h"
26 #ifndef CONFIG_USER_ONLY
27 #include "sysemu/sysemu.h"
28 #include "sysemu/tcg.h"
29 #include "sysemu/hw_accel.h"
30 #include "monitor/monitor.h"
31 #include "hw/i386/apic_internal.h"
32 #endif
33 
34 void cpu_sync_bndcs_hflags(CPUX86State *env)
35 {
36     uint32_t hflags = env->hflags;
37     uint32_t hflags2 = env->hflags2;
38     uint32_t bndcsr;
39 
40     if ((hflags & HF_CPL_MASK) == 3) {
41         bndcsr = env->bndcs_regs.cfgu;
42     } else {
43         bndcsr = env->msr_bndcfgs;
44     }
45 
46     if ((env->cr[4] & CR4_OSXSAVE_MASK)
47         && (env->xcr0 & XSTATE_BNDCSR_MASK)
48         && (bndcsr & BNDCFG_ENABLE)) {
49         hflags |= HF_MPX_EN_MASK;
50     } else {
51         hflags &= ~HF_MPX_EN_MASK;
52     }
53 
54     if (bndcsr & BNDCFG_BNDPRESERVE) {
55         hflags2 |= HF2_MPX_PR_MASK;
56     } else {
57         hflags2 &= ~HF2_MPX_PR_MASK;
58     }
59 
60     env->hflags = hflags;
61     env->hflags2 = hflags2;
62 }
63 
64 static void cpu_x86_version(CPUX86State *env, int *family, int *model)
65 {
66     int cpuver = env->cpuid_version;
67 
68     if (family == NULL || model == NULL) {
69         return;
70     }
71 
72     *family = (cpuver >> 8) & 0x0f;
73     *model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f);
74 }
75 
76 /* Broadcast MCA signal for processor version 06H_EH and above */
77 int cpu_x86_support_mca_broadcast(CPUX86State *env)
78 {
79     int family = 0;
80     int model = 0;
81 
82     cpu_x86_version(env, &family, &model);
83     if ((family == 6 && model >= 14) || family > 6) {
84         return 1;
85     }
86 
87     return 0;
88 }
89 
90 /***********************************************************/
91 /* x86 debug */
92 
93 static const char *cc_op_str[CC_OP_NB] = {
94     "DYNAMIC",
95     "EFLAGS",
96 
97     "MULB",
98     "MULW",
99     "MULL",
100     "MULQ",
101 
102     "ADDB",
103     "ADDW",
104     "ADDL",
105     "ADDQ",
106 
107     "ADCB",
108     "ADCW",
109     "ADCL",
110     "ADCQ",
111 
112     "SUBB",
113     "SUBW",
114     "SUBL",
115     "SUBQ",
116 
117     "SBBB",
118     "SBBW",
119     "SBBL",
120     "SBBQ",
121 
122     "LOGICB",
123     "LOGICW",
124     "LOGICL",
125     "LOGICQ",
126 
127     "INCB",
128     "INCW",
129     "INCL",
130     "INCQ",
131 
132     "DECB",
133     "DECW",
134     "DECL",
135     "DECQ",
136 
137     "SHLB",
138     "SHLW",
139     "SHLL",
140     "SHLQ",
141 
142     "SARB",
143     "SARW",
144     "SARL",
145     "SARQ",
146 
147     "BMILGB",
148     "BMILGW",
149     "BMILGL",
150     "BMILGQ",
151 
152     "ADCX",
153     "ADOX",
154     "ADCOX",
155 
156     "CLR",
157 };
158 
159 static void
160 cpu_x86_dump_seg_cache(CPUX86State *env, FILE *f,
161                        const char *name, struct SegmentCache *sc)
162 {
163 #ifdef TARGET_X86_64
164     if (env->hflags & HF_CS64_MASK) {
165         qemu_fprintf(f, "%-3s=%04x %016" PRIx64 " %08x %08x", name,
166                      sc->selector, sc->base, sc->limit,
167                      sc->flags & 0x00ffff00);
168     } else
169 #endif
170     {
171         qemu_fprintf(f, "%-3s=%04x %08x %08x %08x", name, sc->selector,
172                      (uint32_t)sc->base, sc->limit,
173                      sc->flags & 0x00ffff00);
174     }
175 
176     if (!(env->hflags & HF_PE_MASK) || !(sc->flags & DESC_P_MASK))
177         goto done;
178 
179     qemu_fprintf(f, " DPL=%d ",
180                  (sc->flags & DESC_DPL_MASK) >> DESC_DPL_SHIFT);
181     if (sc->flags & DESC_S_MASK) {
182         if (sc->flags & DESC_CS_MASK) {
183             qemu_fprintf(f, (sc->flags & DESC_L_MASK) ? "CS64" :
184                          ((sc->flags & DESC_B_MASK) ? "CS32" : "CS16"));
185             qemu_fprintf(f, " [%c%c", (sc->flags & DESC_C_MASK) ? 'C' : '-',
186                          (sc->flags & DESC_R_MASK) ? 'R' : '-');
187         } else {
188             qemu_fprintf(f, (sc->flags & DESC_B_MASK
189                              || env->hflags & HF_LMA_MASK)
190                          ? "DS  " : "DS16");
191             qemu_fprintf(f, " [%c%c", (sc->flags & DESC_E_MASK) ? 'E' : '-',
192                          (sc->flags & DESC_W_MASK) ? 'W' : '-');
193         }
194         qemu_fprintf(f, "%c]", (sc->flags & DESC_A_MASK) ? 'A' : '-');
195     } else {
196         static const char *sys_type_name[2][16] = {
197             { /* 32 bit mode */
198                 "Reserved", "TSS16-avl", "LDT", "TSS16-busy",
199                 "CallGate16", "TaskGate", "IntGate16", "TrapGate16",
200                 "Reserved", "TSS32-avl", "Reserved", "TSS32-busy",
201                 "CallGate32", "Reserved", "IntGate32", "TrapGate32"
202             },
203             { /* 64 bit mode */
204                 "<hiword>", "Reserved", "LDT", "Reserved", "Reserved",
205                 "Reserved", "Reserved", "Reserved", "Reserved",
206                 "TSS64-avl", "Reserved", "TSS64-busy", "CallGate64",
207                 "Reserved", "IntGate64", "TrapGate64"
208             }
209         };
210         qemu_fprintf(f, "%s",
211                      sys_type_name[(env->hflags & HF_LMA_MASK) ? 1 : 0]
212                      [(sc->flags & DESC_TYPE_MASK) >> DESC_TYPE_SHIFT]);
213     }
214 done:
215     qemu_fprintf(f, "\n");
216 }
217 
218 #ifndef CONFIG_USER_ONLY
219 
220 /* ARRAY_SIZE check is not required because
221  * DeliveryMode(dm) has a size of 3 bit.
222  */
223 static inline const char *dm2str(uint32_t dm)
224 {
225     static const char *str[] = {
226         "Fixed",
227         "...",
228         "SMI",
229         "...",
230         "NMI",
231         "INIT",
232         "...",
233         "ExtINT"
234     };
235     return str[dm];
236 }
237 
238 static void dump_apic_lvt(const char *name, uint32_t lvt, bool is_timer)
239 {
240     uint32_t dm = (lvt & APIC_LVT_DELIV_MOD) >> APIC_LVT_DELIV_MOD_SHIFT;
241     qemu_printf("%s\t 0x%08x %s %-5s %-6s %-7s %-12s %-6s",
242                 name, lvt,
243                 lvt & APIC_LVT_INT_POLARITY ? "active-lo" : "active-hi",
244                 lvt & APIC_LVT_LEVEL_TRIGGER ? "level" : "edge",
245                 lvt & APIC_LVT_MASKED ? "masked" : "",
246                 lvt & APIC_LVT_DELIV_STS ? "pending" : "",
247                 !is_timer ?
248                     "" : lvt & APIC_LVT_TIMER_PERIODIC ?
249                             "periodic" : lvt & APIC_LVT_TIMER_TSCDEADLINE ?
250                                             "tsc-deadline" : "one-shot",
251                 dm2str(dm));
252     if (dm != APIC_DM_NMI) {
253         qemu_printf(" (vec %u)\n", lvt & APIC_VECTOR_MASK);
254     } else {
255         qemu_printf("\n");
256     }
257 }
258 
259 /* ARRAY_SIZE check is not required because
260  * destination shorthand has a size of 2 bit.
261  */
262 static inline const char *shorthand2str(uint32_t shorthand)
263 {
264     const char *str[] = {
265         "no-shorthand", "self", "all-self", "all"
266     };
267     return str[shorthand];
268 }
269 
270 static inline uint8_t divider_conf(uint32_t divide_conf)
271 {
272     uint8_t divide_val = ((divide_conf & 0x8) >> 1) | (divide_conf & 0x3);
273 
274     return divide_val == 7 ? 1 : 2 << divide_val;
275 }
276 
277 static inline void mask2str(char *str, uint32_t val, uint8_t size)
278 {
279     while (size--) {
280         *str++ = (val >> size) & 1 ? '1' : '0';
281     }
282     *str = 0;
283 }
284 
285 #define MAX_LOGICAL_APIC_ID_MASK_SIZE 16
286 
287 static void dump_apic_icr(APICCommonState *s, CPUX86State *env)
288 {
289     uint32_t icr = s->icr[0], icr2 = s->icr[1];
290     uint8_t dest_shorthand = \
291         (icr & APIC_ICR_DEST_SHORT) >> APIC_ICR_DEST_SHORT_SHIFT;
292     bool logical_mod = icr & APIC_ICR_DEST_MOD;
293     char apic_id_str[MAX_LOGICAL_APIC_ID_MASK_SIZE + 1];
294     uint32_t dest_field;
295     bool x2apic;
296 
297     qemu_printf("ICR\t 0x%08x %s %s %s %s\n",
298                 icr,
299                 logical_mod ? "logical" : "physical",
300                 icr & APIC_ICR_TRIGGER_MOD ? "level" : "edge",
301                 icr & APIC_ICR_LEVEL ? "assert" : "de-assert",
302                 shorthand2str(dest_shorthand));
303 
304     qemu_printf("ICR2\t 0x%08x", icr2);
305     if (dest_shorthand != 0) {
306         qemu_printf("\n");
307         return;
308     }
309     x2apic = env->features[FEAT_1_ECX] & CPUID_EXT_X2APIC;
310     dest_field = x2apic ? icr2 : icr2 >> APIC_ICR_DEST_SHIFT;
311 
312     if (!logical_mod) {
313         if (x2apic) {
314             qemu_printf(" cpu %u (X2APIC ID)\n", dest_field);
315         } else {
316             qemu_printf(" cpu %u (APIC ID)\n",
317                         dest_field & APIC_LOGDEST_XAPIC_ID);
318         }
319         return;
320     }
321 
322     if (s->dest_mode == 0xf) { /* flat mode */
323         mask2str(apic_id_str, icr2 >> APIC_ICR_DEST_SHIFT, 8);
324         qemu_printf(" mask %s (APIC ID)\n", apic_id_str);
325     } else if (s->dest_mode == 0) { /* cluster mode */
326         if (x2apic) {
327             mask2str(apic_id_str, dest_field & APIC_LOGDEST_X2APIC_ID, 16);
328             qemu_printf(" cluster %u mask %s (X2APIC ID)\n",
329                         dest_field >> APIC_LOGDEST_X2APIC_SHIFT, apic_id_str);
330         } else {
331             mask2str(apic_id_str, dest_field & APIC_LOGDEST_XAPIC_ID, 4);
332             qemu_printf(" cluster %u mask %s (APIC ID)\n",
333                         dest_field >> APIC_LOGDEST_XAPIC_SHIFT, apic_id_str);
334         }
335     }
336 }
337 
338 static void dump_apic_interrupt(const char *name, uint32_t *ireg_tab,
339                                 uint32_t *tmr_tab)
340 {
341     int i, empty = true;
342 
343     qemu_printf("%s\t ", name);
344     for (i = 0; i < 256; i++) {
345         if (apic_get_bit(ireg_tab, i)) {
346             qemu_printf("%u%s ", i,
347                         apic_get_bit(tmr_tab, i) ? "(level)" : "");
348             empty = false;
349         }
350     }
351     qemu_printf("%s\n", empty ? "(none)" : "");
352 }
353 
354 void x86_cpu_dump_local_apic_state(CPUState *cs, int flags)
355 {
356     X86CPU *cpu = X86_CPU(cs);
357     APICCommonState *s = APIC_COMMON(cpu->apic_state);
358     if (!s) {
359         qemu_printf("local apic state not available\n");
360         return;
361     }
362     uint32_t *lvt = s->lvt;
363 
364     qemu_printf("dumping local APIC state for CPU %-2u\n\n",
365                 CPU(cpu)->cpu_index);
366     dump_apic_lvt("LVT0", lvt[APIC_LVT_LINT0], false);
367     dump_apic_lvt("LVT1", lvt[APIC_LVT_LINT1], false);
368     dump_apic_lvt("LVTPC", lvt[APIC_LVT_PERFORM], false);
369     dump_apic_lvt("LVTERR", lvt[APIC_LVT_ERROR], false);
370     dump_apic_lvt("LVTTHMR", lvt[APIC_LVT_THERMAL], false);
371     dump_apic_lvt("LVTT", lvt[APIC_LVT_TIMER], true);
372 
373     qemu_printf("Timer\t DCR=0x%x (divide by %u) initial_count = %u\n",
374                 s->divide_conf & APIC_DCR_MASK,
375                 divider_conf(s->divide_conf),
376                 s->initial_count);
377 
378     qemu_printf("SPIV\t 0x%08x APIC %s, focus=%s, spurious vec %u\n",
379                 s->spurious_vec,
380                 s->spurious_vec & APIC_SPURIO_ENABLED ? "enabled" : "disabled",
381                 s->spurious_vec & APIC_SPURIO_FOCUS ? "on" : "off",
382                 s->spurious_vec & APIC_VECTOR_MASK);
383 
384     dump_apic_icr(s, &cpu->env);
385 
386     qemu_printf("ESR\t 0x%08x\n", s->esr);
387 
388     dump_apic_interrupt("ISR", s->isr, s->tmr);
389     dump_apic_interrupt("IRR", s->irr, s->tmr);
390 
391     qemu_printf("\nAPR 0x%02x TPR 0x%02x DFR 0x%02x LDR 0x%02x",
392                 s->arb_id, s->tpr, s->dest_mode, s->log_dest);
393     if (s->dest_mode == 0) {
394         qemu_printf("(cluster %u: id %u)",
395                     s->log_dest >> APIC_LOGDEST_XAPIC_SHIFT,
396                     s->log_dest & APIC_LOGDEST_XAPIC_ID);
397     }
398     qemu_printf(" PPR 0x%02x\n", apic_get_ppr(s));
399 }
400 #else
401 void x86_cpu_dump_local_apic_state(CPUState *cs, int flags)
402 {
403 }
404 #endif /* !CONFIG_USER_ONLY */
405 
406 #define DUMP_CODE_BYTES_TOTAL    50
407 #define DUMP_CODE_BYTES_BACKWARD 20
408 
409 void x86_cpu_dump_state(CPUState *cs, FILE *f, int flags)
410 {
411     X86CPU *cpu = X86_CPU(cs);
412     CPUX86State *env = &cpu->env;
413     int eflags, i, nb;
414     char cc_op_name[32];
415     static const char *seg_name[6] = { "ES", "CS", "SS", "DS", "FS", "GS" };
416 
417     eflags = cpu_compute_eflags(env);
418 #ifdef TARGET_X86_64
419     if (env->hflags & HF_CS64_MASK) {
420         qemu_fprintf(f, "RAX=%016" PRIx64 " RBX=%016" PRIx64 " RCX=%016" PRIx64 " RDX=%016" PRIx64 "\n"
421                      "RSI=%016" PRIx64 " RDI=%016" PRIx64 " RBP=%016" PRIx64 " RSP=%016" PRIx64 "\n"
422                      "R8 =%016" PRIx64 " R9 =%016" PRIx64 " R10=%016" PRIx64 " R11=%016" PRIx64 "\n"
423                      "R12=%016" PRIx64 " R13=%016" PRIx64 " R14=%016" PRIx64 " R15=%016" PRIx64 "\n"
424                      "RIP=%016" PRIx64 " RFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
425                      env->regs[R_EAX],
426                      env->regs[R_EBX],
427                      env->regs[R_ECX],
428                      env->regs[R_EDX],
429                      env->regs[R_ESI],
430                      env->regs[R_EDI],
431                      env->regs[R_EBP],
432                      env->regs[R_ESP],
433                      env->regs[8],
434                      env->regs[9],
435                      env->regs[10],
436                      env->regs[11],
437                      env->regs[12],
438                      env->regs[13],
439                      env->regs[14],
440                      env->regs[15],
441                      env->eip, eflags,
442                      eflags & DF_MASK ? 'D' : '-',
443                      eflags & CC_O ? 'O' : '-',
444                      eflags & CC_S ? 'S' : '-',
445                      eflags & CC_Z ? 'Z' : '-',
446                      eflags & CC_A ? 'A' : '-',
447                      eflags & CC_P ? 'P' : '-',
448                      eflags & CC_C ? 'C' : '-',
449                      env->hflags & HF_CPL_MASK,
450                      (env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1,
451                      (env->a20_mask >> 20) & 1,
452                      (env->hflags >> HF_SMM_SHIFT) & 1,
453                      cs->halted);
454     } else
455 #endif
456     {
457         qemu_fprintf(f, "EAX=%08x EBX=%08x ECX=%08x EDX=%08x\n"
458                      "ESI=%08x EDI=%08x EBP=%08x ESP=%08x\n"
459                      "EIP=%08x EFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
460                      (uint32_t)env->regs[R_EAX],
461                      (uint32_t)env->regs[R_EBX],
462                      (uint32_t)env->regs[R_ECX],
463                      (uint32_t)env->regs[R_EDX],
464                      (uint32_t)env->regs[R_ESI],
465                      (uint32_t)env->regs[R_EDI],
466                      (uint32_t)env->regs[R_EBP],
467                      (uint32_t)env->regs[R_ESP],
468                      (uint32_t)env->eip, eflags,
469                      eflags & DF_MASK ? 'D' : '-',
470                      eflags & CC_O ? 'O' : '-',
471                      eflags & CC_S ? 'S' : '-',
472                      eflags & CC_Z ? 'Z' : '-',
473                      eflags & CC_A ? 'A' : '-',
474                      eflags & CC_P ? 'P' : '-',
475                      eflags & CC_C ? 'C' : '-',
476                      env->hflags & HF_CPL_MASK,
477                      (env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1,
478                      (env->a20_mask >> 20) & 1,
479                      (env->hflags >> HF_SMM_SHIFT) & 1,
480                      cs->halted);
481     }
482 
483     for(i = 0; i < 6; i++) {
484         cpu_x86_dump_seg_cache(env, f, seg_name[i], &env->segs[i]);
485     }
486     cpu_x86_dump_seg_cache(env, f, "LDT", &env->ldt);
487     cpu_x86_dump_seg_cache(env, f, "TR", &env->tr);
488 
489 #ifdef TARGET_X86_64
490     if (env->hflags & HF_LMA_MASK) {
491         qemu_fprintf(f, "GDT=     %016" PRIx64 " %08x\n",
492                      env->gdt.base, env->gdt.limit);
493         qemu_fprintf(f, "IDT=     %016" PRIx64 " %08x\n",
494                      env->idt.base, env->idt.limit);
495         qemu_fprintf(f, "CR0=%08x CR2=%016" PRIx64 " CR3=%016" PRIx64 " CR4=%08x\n",
496                      (uint32_t)env->cr[0],
497                      env->cr[2],
498                      env->cr[3],
499                      (uint32_t)env->cr[4]);
500         for(i = 0; i < 4; i++)
501             qemu_fprintf(f, "DR%d=%016" PRIx64 " ", i, env->dr[i]);
502         qemu_fprintf(f, "\nDR6=%016" PRIx64 " DR7=%016" PRIx64 "\n",
503                      env->dr[6], env->dr[7]);
504     } else
505 #endif
506     {
507         qemu_fprintf(f, "GDT=     %08x %08x\n",
508                      (uint32_t)env->gdt.base, env->gdt.limit);
509         qemu_fprintf(f, "IDT=     %08x %08x\n",
510                      (uint32_t)env->idt.base, env->idt.limit);
511         qemu_fprintf(f, "CR0=%08x CR2=%08x CR3=%08x CR4=%08x\n",
512                      (uint32_t)env->cr[0],
513                      (uint32_t)env->cr[2],
514                      (uint32_t)env->cr[3],
515                      (uint32_t)env->cr[4]);
516         for(i = 0; i < 4; i++) {
517             qemu_fprintf(f, "DR%d=" TARGET_FMT_lx " ", i, env->dr[i]);
518         }
519         qemu_fprintf(f, "\nDR6=" TARGET_FMT_lx " DR7=" TARGET_FMT_lx "\n",
520                      env->dr[6], env->dr[7]);
521     }
522     if (flags & CPU_DUMP_CCOP) {
523         if ((unsigned)env->cc_op < CC_OP_NB)
524             snprintf(cc_op_name, sizeof(cc_op_name), "%s", cc_op_str[env->cc_op]);
525         else
526             snprintf(cc_op_name, sizeof(cc_op_name), "[%d]", env->cc_op);
527 #ifdef TARGET_X86_64
528         if (env->hflags & HF_CS64_MASK) {
529             qemu_fprintf(f, "CCS=%016" PRIx64 " CCD=%016" PRIx64 " CCO=%-8s\n",
530                          env->cc_src, env->cc_dst,
531                          cc_op_name);
532         } else
533 #endif
534         {
535             qemu_fprintf(f, "CCS=%08x CCD=%08x CCO=%-8s\n",
536                          (uint32_t)env->cc_src, (uint32_t)env->cc_dst,
537                          cc_op_name);
538         }
539     }
540     qemu_fprintf(f, "EFER=%016" PRIx64 "\n", env->efer);
541     if (flags & CPU_DUMP_FPU) {
542         int fptag;
543         fptag = 0;
544         for(i = 0; i < 8; i++) {
545             fptag |= ((!env->fptags[i]) << i);
546         }
547         qemu_fprintf(f, "FCW=%04x FSW=%04x [ST=%d] FTW=%02x MXCSR=%08x\n",
548                      env->fpuc,
549                      (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11,
550                      env->fpstt,
551                      fptag,
552                      env->mxcsr);
553         for(i=0;i<8;i++) {
554             CPU_LDoubleU u;
555             u.d = env->fpregs[i].d;
556             qemu_fprintf(f, "FPR%d=%016" PRIx64 " %04x",
557                          i, u.l.lower, u.l.upper);
558             if ((i & 1) == 1)
559                 qemu_fprintf(f, "\n");
560             else
561                 qemu_fprintf(f, " ");
562         }
563         if (env->hflags & HF_CS64_MASK)
564             nb = 16;
565         else
566             nb = 8;
567         for(i=0;i<nb;i++) {
568             qemu_fprintf(f, "XMM%02d=%08x%08x%08x%08x",
569                          i,
570                          env->xmm_regs[i].ZMM_L(3),
571                          env->xmm_regs[i].ZMM_L(2),
572                          env->xmm_regs[i].ZMM_L(1),
573                          env->xmm_regs[i].ZMM_L(0));
574             if ((i & 1) == 1)
575                 qemu_fprintf(f, "\n");
576             else
577                 qemu_fprintf(f, " ");
578         }
579     }
580     if (flags & CPU_DUMP_CODE) {
581         target_ulong base = env->segs[R_CS].base + env->eip;
582         target_ulong offs = MIN(env->eip, DUMP_CODE_BYTES_BACKWARD);
583         uint8_t code;
584         char codestr[3];
585 
586         qemu_fprintf(f, "Code=");
587         for (i = 0; i < DUMP_CODE_BYTES_TOTAL; i++) {
588             if (cpu_memory_rw_debug(cs, base - offs + i, &code, 1, 0) == 0) {
589                 snprintf(codestr, sizeof(codestr), "%02x", code);
590             } else {
591                 snprintf(codestr, sizeof(codestr), "??");
592             }
593             qemu_fprintf(f, "%s%s%s%s", i > 0 ? " " : "",
594                          i == offs ? "<" : "", codestr, i == offs ? ">" : "");
595         }
596         qemu_fprintf(f, "\n");
597     }
598 }
599 
600 /***********************************************************/
601 /* x86 mmu */
602 /* XXX: add PGE support */
603 
604 void x86_cpu_set_a20(X86CPU *cpu, int a20_state)
605 {
606     CPUX86State *env = &cpu->env;
607 
608     a20_state = (a20_state != 0);
609     if (a20_state != ((env->a20_mask >> 20) & 1)) {
610         CPUState *cs = CPU(cpu);
611 
612         qemu_log_mask(CPU_LOG_MMU, "A20 update: a20=%d\n", a20_state);
613         /* if the cpu is currently executing code, we must unlink it and
614            all the potentially executing TB */
615         cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
616 
617         /* when a20 is changed, all the MMU mappings are invalid, so
618            we must flush everything */
619         tlb_flush(cs);
620         env->a20_mask = ~(1 << 20) | (a20_state << 20);
621     }
622 }
623 
624 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0)
625 {
626     X86CPU *cpu = env_archcpu(env);
627     int pe_state;
628 
629     qemu_log_mask(CPU_LOG_MMU, "CR0 update: CR0=0x%08x\n", new_cr0);
630     if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) !=
631         (env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) {
632         tlb_flush(CPU(cpu));
633     }
634 
635 #ifdef TARGET_X86_64
636     if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) &&
637         (env->efer & MSR_EFER_LME)) {
638         /* enter in long mode */
639         /* XXX: generate an exception */
640         if (!(env->cr[4] & CR4_PAE_MASK))
641             return;
642         env->efer |= MSR_EFER_LMA;
643         env->hflags |= HF_LMA_MASK;
644     } else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) &&
645                (env->efer & MSR_EFER_LMA)) {
646         /* exit long mode */
647         env->efer &= ~MSR_EFER_LMA;
648         env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
649         env->eip &= 0xffffffff;
650     }
651 #endif
652     env->cr[0] = new_cr0 | CR0_ET_MASK;
653 
654     /* update PE flag in hidden flags */
655     pe_state = (env->cr[0] & CR0_PE_MASK);
656     env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT);
657     /* ensure that ADDSEG is always set in real mode */
658     env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT);
659     /* update FPU flags */
660     env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
661         ((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
662 }
663 
664 /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
665    the PDPT */
666 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3)
667 {
668     env->cr[3] = new_cr3;
669     if (env->cr[0] & CR0_PG_MASK) {
670         qemu_log_mask(CPU_LOG_MMU,
671                         "CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3);
672         tlb_flush(env_cpu(env));
673     }
674 }
675 
676 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4)
677 {
678     uint32_t hflags;
679 
680 #if defined(DEBUG_MMU)
681     printf("CR4 update: %08x -> %08x\n", (uint32_t)env->cr[4], new_cr4);
682 #endif
683     if ((new_cr4 ^ env->cr[4]) &
684         (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK |
685          CR4_SMEP_MASK | CR4_SMAP_MASK | CR4_LA57_MASK)) {
686         tlb_flush(env_cpu(env));
687     }
688 
689     /* Clear bits we're going to recompute.  */
690     hflags = env->hflags & ~(HF_OSFXSR_MASK | HF_SMAP_MASK);
691 
692     /* SSE handling */
693     if (!(env->features[FEAT_1_EDX] & CPUID_SSE)) {
694         new_cr4 &= ~CR4_OSFXSR_MASK;
695     }
696     if (new_cr4 & CR4_OSFXSR_MASK) {
697         hflags |= HF_OSFXSR_MASK;
698     }
699 
700     if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_SMAP)) {
701         new_cr4 &= ~CR4_SMAP_MASK;
702     }
703     if (new_cr4 & CR4_SMAP_MASK) {
704         hflags |= HF_SMAP_MASK;
705     }
706 
707     if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKU)) {
708         new_cr4 &= ~CR4_PKE_MASK;
709     }
710 
711     env->cr[4] = new_cr4;
712     env->hflags = hflags;
713 
714     cpu_sync_bndcs_hflags(env);
715 }
716 
717 #if !defined(CONFIG_USER_ONLY)
718 hwaddr x86_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
719 {
720     X86CPU *cpu = X86_CPU(cs);
721     CPUX86State *env = &cpu->env;
722     target_ulong pde_addr, pte_addr;
723     uint64_t pte;
724     int32_t a20_mask;
725     uint32_t page_offset;
726     int page_size;
727 
728     a20_mask = x86_get_a20_mask(env);
729     if (!(env->cr[0] & CR0_PG_MASK)) {
730         pte = addr & a20_mask;
731         page_size = 4096;
732     } else if (env->cr[4] & CR4_PAE_MASK) {
733         target_ulong pdpe_addr;
734         uint64_t pde, pdpe;
735 
736 #ifdef TARGET_X86_64
737         if (env->hflags & HF_LMA_MASK) {
738             bool la57 = env->cr[4] & CR4_LA57_MASK;
739             uint64_t pml5e_addr, pml5e;
740             uint64_t pml4e_addr, pml4e;
741             int32_t sext;
742 
743             /* test virtual address sign extension */
744             sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47;
745             if (sext != 0 && sext != -1) {
746                 return -1;
747             }
748 
749             if (la57) {
750                 pml5e_addr = ((env->cr[3] & ~0xfff) +
751                         (((addr >> 48) & 0x1ff) << 3)) & a20_mask;
752                 pml5e = x86_ldq_phys(cs, pml5e_addr);
753                 if (!(pml5e & PG_PRESENT_MASK)) {
754                     return -1;
755                 }
756             } else {
757                 pml5e = env->cr[3];
758             }
759 
760             pml4e_addr = ((pml5e & PG_ADDRESS_MASK) +
761                     (((addr >> 39) & 0x1ff) << 3)) & a20_mask;
762             pml4e = x86_ldq_phys(cs, pml4e_addr);
763             if (!(pml4e & PG_PRESENT_MASK)) {
764                 return -1;
765             }
766             pdpe_addr = ((pml4e & PG_ADDRESS_MASK) +
767                          (((addr >> 30) & 0x1ff) << 3)) & a20_mask;
768             pdpe = x86_ldq_phys(cs, pdpe_addr);
769             if (!(pdpe & PG_PRESENT_MASK)) {
770                 return -1;
771             }
772             if (pdpe & PG_PSE_MASK) {
773                 page_size = 1024 * 1024 * 1024;
774                 pte = pdpe;
775                 goto out;
776             }
777 
778         } else
779 #endif
780         {
781             pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
782                 a20_mask;
783             pdpe = x86_ldq_phys(cs, pdpe_addr);
784             if (!(pdpe & PG_PRESENT_MASK))
785                 return -1;
786         }
787 
788         pde_addr = ((pdpe & PG_ADDRESS_MASK) +
789                     (((addr >> 21) & 0x1ff) << 3)) & a20_mask;
790         pde = x86_ldq_phys(cs, pde_addr);
791         if (!(pde & PG_PRESENT_MASK)) {
792             return -1;
793         }
794         if (pde & PG_PSE_MASK) {
795             /* 2 MB page */
796             page_size = 2048 * 1024;
797             pte = pde;
798         } else {
799             /* 4 KB page */
800             pte_addr = ((pde & PG_ADDRESS_MASK) +
801                         (((addr >> 12) & 0x1ff) << 3)) & a20_mask;
802             page_size = 4096;
803             pte = x86_ldq_phys(cs, pte_addr);
804         }
805         if (!(pte & PG_PRESENT_MASK)) {
806             return -1;
807         }
808     } else {
809         uint32_t pde;
810 
811         /* page directory entry */
812         pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & a20_mask;
813         pde = x86_ldl_phys(cs, pde_addr);
814         if (!(pde & PG_PRESENT_MASK))
815             return -1;
816         if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
817             pte = pde | ((pde & 0x1fe000LL) << (32 - 13));
818             page_size = 4096 * 1024;
819         } else {
820             /* page directory entry */
821             pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & a20_mask;
822             pte = x86_ldl_phys(cs, pte_addr);
823             if (!(pte & PG_PRESENT_MASK)) {
824                 return -1;
825             }
826             page_size = 4096;
827         }
828         pte = pte & a20_mask;
829     }
830 
831 #ifdef TARGET_X86_64
832 out:
833 #endif
834     pte &= PG_ADDRESS_MASK & ~(page_size - 1);
835     page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
836     return pte | page_offset;
837 }
838 
839 typedef struct MCEInjectionParams {
840     Monitor *mon;
841     int bank;
842     uint64_t status;
843     uint64_t mcg_status;
844     uint64_t addr;
845     uint64_t misc;
846     int flags;
847 } MCEInjectionParams;
848 
849 static void do_inject_x86_mce(CPUState *cs, run_on_cpu_data data)
850 {
851     MCEInjectionParams *params = data.host_ptr;
852     X86CPU *cpu = X86_CPU(cs);
853     CPUX86State *cenv = &cpu->env;
854     uint64_t *banks = cenv->mce_banks + 4 * params->bank;
855 
856     cpu_synchronize_state(cs);
857 
858     /*
859      * If there is an MCE exception being processed, ignore this SRAO MCE
860      * unless unconditional injection was requested.
861      */
862     if (!(params->flags & MCE_INJECT_UNCOND_AO)
863         && !(params->status & MCI_STATUS_AR)
864         && (cenv->mcg_status & MCG_STATUS_MCIP)) {
865         return;
866     }
867 
868     if (params->status & MCI_STATUS_UC) {
869         /*
870          * if MSR_MCG_CTL is not all 1s, the uncorrected error
871          * reporting is disabled
872          */
873         if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) {
874             monitor_printf(params->mon,
875                            "CPU %d: Uncorrected error reporting disabled\n",
876                            cs->cpu_index);
877             return;
878         }
879 
880         /*
881          * if MSR_MCi_CTL is not all 1s, the uncorrected error
882          * reporting is disabled for the bank
883          */
884         if (banks[0] != ~(uint64_t)0) {
885             monitor_printf(params->mon,
886                            "CPU %d: Uncorrected error reporting disabled for"
887                            " bank %d\n",
888                            cs->cpu_index, params->bank);
889             return;
890         }
891 
892         if ((cenv->mcg_status & MCG_STATUS_MCIP) ||
893             !(cenv->cr[4] & CR4_MCE_MASK)) {
894             monitor_printf(params->mon,
895                            "CPU %d: Previous MCE still in progress, raising"
896                            " triple fault\n",
897                            cs->cpu_index);
898             qemu_log_mask(CPU_LOG_RESET, "Triple fault\n");
899             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
900             return;
901         }
902         if (banks[1] & MCI_STATUS_VAL) {
903             params->status |= MCI_STATUS_OVER;
904         }
905         banks[2] = params->addr;
906         banks[3] = params->misc;
907         cenv->mcg_status = params->mcg_status;
908         banks[1] = params->status;
909         cpu_interrupt(cs, CPU_INTERRUPT_MCE);
910     } else if (!(banks[1] & MCI_STATUS_VAL)
911                || !(banks[1] & MCI_STATUS_UC)) {
912         if (banks[1] & MCI_STATUS_VAL) {
913             params->status |= MCI_STATUS_OVER;
914         }
915         banks[2] = params->addr;
916         banks[3] = params->misc;
917         banks[1] = params->status;
918     } else {
919         banks[1] |= MCI_STATUS_OVER;
920     }
921 }
922 
923 void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank,
924                         uint64_t status, uint64_t mcg_status, uint64_t addr,
925                         uint64_t misc, int flags)
926 {
927     CPUState *cs = CPU(cpu);
928     CPUX86State *cenv = &cpu->env;
929     MCEInjectionParams params = {
930         .mon = mon,
931         .bank = bank,
932         .status = status,
933         .mcg_status = mcg_status,
934         .addr = addr,
935         .misc = misc,
936         .flags = flags,
937     };
938     unsigned bank_num = cenv->mcg_cap & 0xff;
939 
940     if (!cenv->mcg_cap) {
941         monitor_printf(mon, "MCE injection not supported\n");
942         return;
943     }
944     if (bank >= bank_num) {
945         monitor_printf(mon, "Invalid MCE bank number\n");
946         return;
947     }
948     if (!(status & MCI_STATUS_VAL)) {
949         monitor_printf(mon, "Invalid MCE status code\n");
950         return;
951     }
952     if ((flags & MCE_INJECT_BROADCAST)
953         && !cpu_x86_support_mca_broadcast(cenv)) {
954         monitor_printf(mon, "Guest CPU does not support MCA broadcast\n");
955         return;
956     }
957 
958     run_on_cpu(cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
959     if (flags & MCE_INJECT_BROADCAST) {
960         CPUState *other_cs;
961 
962         params.bank = 1;
963         params.status = MCI_STATUS_VAL | MCI_STATUS_UC;
964         params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
965         params.addr = 0;
966         params.misc = 0;
967         CPU_FOREACH(other_cs) {
968             if (other_cs == cs) {
969                 continue;
970             }
971             run_on_cpu(other_cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
972         }
973     }
974 }
975 
976 void cpu_report_tpr_access(CPUX86State *env, TPRAccess access)
977 {
978     X86CPU *cpu = env_archcpu(env);
979     CPUState *cs = env_cpu(env);
980 
981     if (kvm_enabled() || whpx_enabled()) {
982         env->tpr_access_type = access;
983 
984         cpu_interrupt(cs, CPU_INTERRUPT_TPR);
985     } else if (tcg_enabled()) {
986         cpu_restore_state(cs, cs->mem_io_pc, false);
987 
988         apic_handle_tpr_access_report(cpu->apic_state, env->eip, access);
989     }
990 }
991 #endif /* !CONFIG_USER_ONLY */
992 
993 int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector,
994                             target_ulong *base, unsigned int *limit,
995                             unsigned int *flags)
996 {
997     CPUState *cs = env_cpu(env);
998     SegmentCache *dt;
999     target_ulong ptr;
1000     uint32_t e1, e2;
1001     int index;
1002 
1003     if (selector & 0x4)
1004         dt = &env->ldt;
1005     else
1006         dt = &env->gdt;
1007     index = selector & ~7;
1008     ptr = dt->base + index;
1009     if ((index + 7) > dt->limit
1010         || cpu_memory_rw_debug(cs, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0
1011         || cpu_memory_rw_debug(cs, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0)
1012         return 0;
1013 
1014     *base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
1015     *limit = (e1 & 0xffff) | (e2 & 0x000f0000);
1016     if (e2 & DESC_G_MASK)
1017         *limit = (*limit << 12) | 0xfff;
1018     *flags = e2;
1019 
1020     return 1;
1021 }
1022 
1023 #if !defined(CONFIG_USER_ONLY)
1024 void do_cpu_init(X86CPU *cpu)
1025 {
1026     CPUState *cs = CPU(cpu);
1027     CPUX86State *env = &cpu->env;
1028     CPUX86State *save = g_new(CPUX86State, 1);
1029     int sipi = cs->interrupt_request & CPU_INTERRUPT_SIPI;
1030 
1031     *save = *env;
1032 
1033     cpu_reset(cs);
1034     cs->interrupt_request = sipi;
1035     memcpy(&env->start_init_save, &save->start_init_save,
1036            offsetof(CPUX86State, end_init_save) -
1037            offsetof(CPUX86State, start_init_save));
1038     g_free(save);
1039 
1040     if (kvm_enabled()) {
1041         kvm_arch_do_init_vcpu(cpu);
1042     }
1043     apic_init_reset(cpu->apic_state);
1044 }
1045 
1046 void do_cpu_sipi(X86CPU *cpu)
1047 {
1048     apic_sipi(cpu->apic_state);
1049 }
1050 #else
1051 void do_cpu_init(X86CPU *cpu)
1052 {
1053 }
1054 void do_cpu_sipi(X86CPU *cpu)
1055 {
1056 }
1057 #endif
1058 
1059 /* Frob eflags into and out of the CPU temporary format.  */
1060 
1061 void x86_cpu_exec_enter(CPUState *cs)
1062 {
1063     X86CPU *cpu = X86_CPU(cs);
1064     CPUX86State *env = &cpu->env;
1065 
1066     CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1067     env->df = 1 - (2 * ((env->eflags >> 10) & 1));
1068     CC_OP = CC_OP_EFLAGS;
1069     env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1070 }
1071 
1072 void x86_cpu_exec_exit(CPUState *cs)
1073 {
1074     X86CPU *cpu = X86_CPU(cs);
1075     CPUX86State *env = &cpu->env;
1076 
1077     env->eflags = cpu_compute_eflags(env);
1078 }
1079 
1080 #ifndef CONFIG_USER_ONLY
1081 uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr)
1082 {
1083     X86CPU *cpu = X86_CPU(cs);
1084     CPUX86State *env = &cpu->env;
1085     MemTxAttrs attrs = cpu_get_mem_attrs(env);
1086     AddressSpace *as = cpu_addressspace(cs, attrs);
1087 
1088     return address_space_ldub(as, addr, attrs, NULL);
1089 }
1090 
1091 uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr)
1092 {
1093     X86CPU *cpu = X86_CPU(cs);
1094     CPUX86State *env = &cpu->env;
1095     MemTxAttrs attrs = cpu_get_mem_attrs(env);
1096     AddressSpace *as = cpu_addressspace(cs, attrs);
1097 
1098     return address_space_lduw(as, addr, attrs, NULL);
1099 }
1100 
1101 uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr)
1102 {
1103     X86CPU *cpu = X86_CPU(cs);
1104     CPUX86State *env = &cpu->env;
1105     MemTxAttrs attrs = cpu_get_mem_attrs(env);
1106     AddressSpace *as = cpu_addressspace(cs, attrs);
1107 
1108     return address_space_ldl(as, addr, attrs, NULL);
1109 }
1110 
1111 uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr)
1112 {
1113     X86CPU *cpu = X86_CPU(cs);
1114     CPUX86State *env = &cpu->env;
1115     MemTxAttrs attrs = cpu_get_mem_attrs(env);
1116     AddressSpace *as = cpu_addressspace(cs, attrs);
1117 
1118     return address_space_ldq(as, addr, attrs, NULL);
1119 }
1120 
1121 void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val)
1122 {
1123     X86CPU *cpu = X86_CPU(cs);
1124     CPUX86State *env = &cpu->env;
1125     MemTxAttrs attrs = cpu_get_mem_attrs(env);
1126     AddressSpace *as = cpu_addressspace(cs, attrs);
1127 
1128     address_space_stb(as, addr, val, attrs, NULL);
1129 }
1130 
1131 void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val)
1132 {
1133     X86CPU *cpu = X86_CPU(cs);
1134     CPUX86State *env = &cpu->env;
1135     MemTxAttrs attrs = cpu_get_mem_attrs(env);
1136     AddressSpace *as = cpu_addressspace(cs, attrs);
1137 
1138     address_space_stl_notdirty(as, addr, val, attrs, NULL);
1139 }
1140 
1141 void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val)
1142 {
1143     X86CPU *cpu = X86_CPU(cs);
1144     CPUX86State *env = &cpu->env;
1145     MemTxAttrs attrs = cpu_get_mem_attrs(env);
1146     AddressSpace *as = cpu_addressspace(cs, attrs);
1147 
1148     address_space_stw(as, addr, val, attrs, NULL);
1149 }
1150 
1151 void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val)
1152 {
1153     X86CPU *cpu = X86_CPU(cs);
1154     CPUX86State *env = &cpu->env;
1155     MemTxAttrs attrs = cpu_get_mem_attrs(env);
1156     AddressSpace *as = cpu_addressspace(cs, attrs);
1157 
1158     address_space_stl(as, addr, val, attrs, NULL);
1159 }
1160 
1161 void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val)
1162 {
1163     X86CPU *cpu = X86_CPU(cs);
1164     CPUX86State *env = &cpu->env;
1165     MemTxAttrs attrs = cpu_get_mem_attrs(env);
1166     AddressSpace *as = cpu_addressspace(cs, attrs);
1167 
1168     address_space_stq(as, addr, val, attrs, NULL);
1169 }
1170 #endif
1171