xref: /openbmc/qemu/target/i386/helper.c (revision 5e140196)
1 /*
2  *  i386 helpers (without register variable usage)
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/qemu-print.h"
24 #include "sysemu/kvm.h"
25 #include "kvm_i386.h"
26 #ifndef CONFIG_USER_ONLY
27 #include "sysemu/sysemu.h"
28 #include "sysemu/hw_accel.h"
29 #include "monitor/monitor.h"
30 #include "hw/i386/apic_internal.h"
31 #endif
32 
33 void cpu_sync_bndcs_hflags(CPUX86State *env)
34 {
35     uint32_t hflags = env->hflags;
36     uint32_t hflags2 = env->hflags2;
37     uint32_t bndcsr;
38 
39     if ((hflags & HF_CPL_MASK) == 3) {
40         bndcsr = env->bndcs_regs.cfgu;
41     } else {
42         bndcsr = env->msr_bndcfgs;
43     }
44 
45     if ((env->cr[4] & CR4_OSXSAVE_MASK)
46         && (env->xcr0 & XSTATE_BNDCSR_MASK)
47         && (bndcsr & BNDCFG_ENABLE)) {
48         hflags |= HF_MPX_EN_MASK;
49     } else {
50         hflags &= ~HF_MPX_EN_MASK;
51     }
52 
53     if (bndcsr & BNDCFG_BNDPRESERVE) {
54         hflags2 |= HF2_MPX_PR_MASK;
55     } else {
56         hflags2 &= ~HF2_MPX_PR_MASK;
57     }
58 
59     env->hflags = hflags;
60     env->hflags2 = hflags2;
61 }
62 
63 static void cpu_x86_version(CPUX86State *env, int *family, int *model)
64 {
65     int cpuver = env->cpuid_version;
66 
67     if (family == NULL || model == NULL) {
68         return;
69     }
70 
71     *family = (cpuver >> 8) & 0x0f;
72     *model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f);
73 }
74 
75 /* Broadcast MCA signal for processor version 06H_EH and above */
76 int cpu_x86_support_mca_broadcast(CPUX86State *env)
77 {
78     int family = 0;
79     int model = 0;
80 
81     cpu_x86_version(env, &family, &model);
82     if ((family == 6 && model >= 14) || family > 6) {
83         return 1;
84     }
85 
86     return 0;
87 }
88 
89 /***********************************************************/
90 /* x86 debug */
91 
92 static const char *cc_op_str[CC_OP_NB] = {
93     "DYNAMIC",
94     "EFLAGS",
95 
96     "MULB",
97     "MULW",
98     "MULL",
99     "MULQ",
100 
101     "ADDB",
102     "ADDW",
103     "ADDL",
104     "ADDQ",
105 
106     "ADCB",
107     "ADCW",
108     "ADCL",
109     "ADCQ",
110 
111     "SUBB",
112     "SUBW",
113     "SUBL",
114     "SUBQ",
115 
116     "SBBB",
117     "SBBW",
118     "SBBL",
119     "SBBQ",
120 
121     "LOGICB",
122     "LOGICW",
123     "LOGICL",
124     "LOGICQ",
125 
126     "INCB",
127     "INCW",
128     "INCL",
129     "INCQ",
130 
131     "DECB",
132     "DECW",
133     "DECL",
134     "DECQ",
135 
136     "SHLB",
137     "SHLW",
138     "SHLL",
139     "SHLQ",
140 
141     "SARB",
142     "SARW",
143     "SARL",
144     "SARQ",
145 
146     "BMILGB",
147     "BMILGW",
148     "BMILGL",
149     "BMILGQ",
150 
151     "ADCX",
152     "ADOX",
153     "ADCOX",
154 
155     "CLR",
156 };
157 
158 static void
159 cpu_x86_dump_seg_cache(CPUX86State *env, FILE *f,
160                        const char *name, struct SegmentCache *sc)
161 {
162 #ifdef TARGET_X86_64
163     if (env->hflags & HF_CS64_MASK) {
164         qemu_fprintf(f, "%-3s=%04x %016" PRIx64 " %08x %08x", name,
165                      sc->selector, sc->base, sc->limit,
166                      sc->flags & 0x00ffff00);
167     } else
168 #endif
169     {
170         qemu_fprintf(f, "%-3s=%04x %08x %08x %08x", name, sc->selector,
171                      (uint32_t)sc->base, sc->limit,
172                      sc->flags & 0x00ffff00);
173     }
174 
175     if (!(env->hflags & HF_PE_MASK) || !(sc->flags & DESC_P_MASK))
176         goto done;
177 
178     qemu_fprintf(f, " DPL=%d ",
179                  (sc->flags & DESC_DPL_MASK) >> DESC_DPL_SHIFT);
180     if (sc->flags & DESC_S_MASK) {
181         if (sc->flags & DESC_CS_MASK) {
182             qemu_fprintf(f, (sc->flags & DESC_L_MASK) ? "CS64" :
183                          ((sc->flags & DESC_B_MASK) ? "CS32" : "CS16"));
184             qemu_fprintf(f, " [%c%c", (sc->flags & DESC_C_MASK) ? 'C' : '-',
185                          (sc->flags & DESC_R_MASK) ? 'R' : '-');
186         } else {
187             qemu_fprintf(f, (sc->flags & DESC_B_MASK
188                              || env->hflags & HF_LMA_MASK)
189                          ? "DS  " : "DS16");
190             qemu_fprintf(f, " [%c%c", (sc->flags & DESC_E_MASK) ? 'E' : '-',
191                          (sc->flags & DESC_W_MASK) ? 'W' : '-');
192         }
193         qemu_fprintf(f, "%c]", (sc->flags & DESC_A_MASK) ? 'A' : '-');
194     } else {
195         static const char *sys_type_name[2][16] = {
196             { /* 32 bit mode */
197                 "Reserved", "TSS16-avl", "LDT", "TSS16-busy",
198                 "CallGate16", "TaskGate", "IntGate16", "TrapGate16",
199                 "Reserved", "TSS32-avl", "Reserved", "TSS32-busy",
200                 "CallGate32", "Reserved", "IntGate32", "TrapGate32"
201             },
202             { /* 64 bit mode */
203                 "<hiword>", "Reserved", "LDT", "Reserved", "Reserved",
204                 "Reserved", "Reserved", "Reserved", "Reserved",
205                 "TSS64-avl", "Reserved", "TSS64-busy", "CallGate64",
206                 "Reserved", "IntGate64", "TrapGate64"
207             }
208         };
209         qemu_fprintf(f, "%s",
210                      sys_type_name[(env->hflags & HF_LMA_MASK) ? 1 : 0]
211                      [(sc->flags & DESC_TYPE_MASK) >> DESC_TYPE_SHIFT]);
212     }
213 done:
214     qemu_fprintf(f, "\n");
215 }
216 
217 #ifndef CONFIG_USER_ONLY
218 
219 /* ARRAY_SIZE check is not required because
220  * DeliveryMode(dm) has a size of 3 bit.
221  */
222 static inline const char *dm2str(uint32_t dm)
223 {
224     static const char *str[] = {
225         "Fixed",
226         "...",
227         "SMI",
228         "...",
229         "NMI",
230         "INIT",
231         "...",
232         "ExtINT"
233     };
234     return str[dm];
235 }
236 
237 static void dump_apic_lvt(const char *name, uint32_t lvt, bool is_timer)
238 {
239     uint32_t dm = (lvt & APIC_LVT_DELIV_MOD) >> APIC_LVT_DELIV_MOD_SHIFT;
240     qemu_printf("%s\t 0x%08x %s %-5s %-6s %-7s %-12s %-6s",
241                 name, lvt,
242                 lvt & APIC_LVT_INT_POLARITY ? "active-lo" : "active-hi",
243                 lvt & APIC_LVT_LEVEL_TRIGGER ? "level" : "edge",
244                 lvt & APIC_LVT_MASKED ? "masked" : "",
245                 lvt & APIC_LVT_DELIV_STS ? "pending" : "",
246                 !is_timer ?
247                     "" : lvt & APIC_LVT_TIMER_PERIODIC ?
248                             "periodic" : lvt & APIC_LVT_TIMER_TSCDEADLINE ?
249                                             "tsc-deadline" : "one-shot",
250                 dm2str(dm));
251     if (dm != APIC_DM_NMI) {
252         qemu_printf(" (vec %u)\n", lvt & APIC_VECTOR_MASK);
253     } else {
254         qemu_printf("\n");
255     }
256 }
257 
258 /* ARRAY_SIZE check is not required because
259  * destination shorthand has a size of 2 bit.
260  */
261 static inline const char *shorthand2str(uint32_t shorthand)
262 {
263     const char *str[] = {
264         "no-shorthand", "self", "all-self", "all"
265     };
266     return str[shorthand];
267 }
268 
269 static inline uint8_t divider_conf(uint32_t divide_conf)
270 {
271     uint8_t divide_val = ((divide_conf & 0x8) >> 1) | (divide_conf & 0x3);
272 
273     return divide_val == 7 ? 1 : 2 << divide_val;
274 }
275 
276 static inline void mask2str(char *str, uint32_t val, uint8_t size)
277 {
278     while (size--) {
279         *str++ = (val >> size) & 1 ? '1' : '0';
280     }
281     *str = 0;
282 }
283 
284 #define MAX_LOGICAL_APIC_ID_MASK_SIZE 16
285 
286 static void dump_apic_icr(APICCommonState *s, CPUX86State *env)
287 {
288     uint32_t icr = s->icr[0], icr2 = s->icr[1];
289     uint8_t dest_shorthand = \
290         (icr & APIC_ICR_DEST_SHORT) >> APIC_ICR_DEST_SHORT_SHIFT;
291     bool logical_mod = icr & APIC_ICR_DEST_MOD;
292     char apic_id_str[MAX_LOGICAL_APIC_ID_MASK_SIZE + 1];
293     uint32_t dest_field;
294     bool x2apic;
295 
296     qemu_printf("ICR\t 0x%08x %s %s %s %s\n",
297                 icr,
298                 logical_mod ? "logical" : "physical",
299                 icr & APIC_ICR_TRIGGER_MOD ? "level" : "edge",
300                 icr & APIC_ICR_LEVEL ? "assert" : "de-assert",
301                 shorthand2str(dest_shorthand));
302 
303     qemu_printf("ICR2\t 0x%08x", icr2);
304     if (dest_shorthand != 0) {
305         qemu_printf("\n");
306         return;
307     }
308     x2apic = env->features[FEAT_1_ECX] & CPUID_EXT_X2APIC;
309     dest_field = x2apic ? icr2 : icr2 >> APIC_ICR_DEST_SHIFT;
310 
311     if (!logical_mod) {
312         if (x2apic) {
313             qemu_printf(" cpu %u (X2APIC ID)\n", dest_field);
314         } else {
315             qemu_printf(" cpu %u (APIC ID)\n",
316                         dest_field & APIC_LOGDEST_XAPIC_ID);
317         }
318         return;
319     }
320 
321     if (s->dest_mode == 0xf) { /* flat mode */
322         mask2str(apic_id_str, icr2 >> APIC_ICR_DEST_SHIFT, 8);
323         qemu_printf(" mask %s (APIC ID)\n", apic_id_str);
324     } else if (s->dest_mode == 0) { /* cluster mode */
325         if (x2apic) {
326             mask2str(apic_id_str, dest_field & APIC_LOGDEST_X2APIC_ID, 16);
327             qemu_printf(" cluster %u mask %s (X2APIC ID)\n",
328                         dest_field >> APIC_LOGDEST_X2APIC_SHIFT, apic_id_str);
329         } else {
330             mask2str(apic_id_str, dest_field & APIC_LOGDEST_XAPIC_ID, 4);
331             qemu_printf(" cluster %u mask %s (APIC ID)\n",
332                         dest_field >> APIC_LOGDEST_XAPIC_SHIFT, apic_id_str);
333         }
334     }
335 }
336 
337 static void dump_apic_interrupt(const char *name, uint32_t *ireg_tab,
338                                 uint32_t *tmr_tab)
339 {
340     int i, empty = true;
341 
342     qemu_printf("%s\t ", name);
343     for (i = 0; i < 256; i++) {
344         if (apic_get_bit(ireg_tab, i)) {
345             qemu_printf("%u%s ", i,
346                         apic_get_bit(tmr_tab, i) ? "(level)" : "");
347             empty = false;
348         }
349     }
350     qemu_printf("%s\n", empty ? "(none)" : "");
351 }
352 
353 void x86_cpu_dump_local_apic_state(CPUState *cs, int flags)
354 {
355     X86CPU *cpu = X86_CPU(cs);
356     APICCommonState *s = APIC_COMMON(cpu->apic_state);
357     if (!s) {
358         qemu_printf("local apic state not available\n");
359         return;
360     }
361     uint32_t *lvt = s->lvt;
362 
363     qemu_printf("dumping local APIC state for CPU %-2u\n\n",
364                 CPU(cpu)->cpu_index);
365     dump_apic_lvt("LVT0", lvt[APIC_LVT_LINT0], false);
366     dump_apic_lvt("LVT1", lvt[APIC_LVT_LINT1], false);
367     dump_apic_lvt("LVTPC", lvt[APIC_LVT_PERFORM], false);
368     dump_apic_lvt("LVTERR", lvt[APIC_LVT_ERROR], false);
369     dump_apic_lvt("LVTTHMR", lvt[APIC_LVT_THERMAL], false);
370     dump_apic_lvt("LVTT", lvt[APIC_LVT_TIMER], true);
371 
372     qemu_printf("Timer\t DCR=0x%x (divide by %u) initial_count = %u\n",
373                 s->divide_conf & APIC_DCR_MASK,
374                 divider_conf(s->divide_conf),
375                 s->initial_count);
376 
377     qemu_printf("SPIV\t 0x%08x APIC %s, focus=%s, spurious vec %u\n",
378                 s->spurious_vec,
379                 s->spurious_vec & APIC_SPURIO_ENABLED ? "enabled" : "disabled",
380                 s->spurious_vec & APIC_SPURIO_FOCUS ? "on" : "off",
381                 s->spurious_vec & APIC_VECTOR_MASK);
382 
383     dump_apic_icr(s, &cpu->env);
384 
385     qemu_printf("ESR\t 0x%08x\n", s->esr);
386 
387     dump_apic_interrupt("ISR", s->isr, s->tmr);
388     dump_apic_interrupt("IRR", s->irr, s->tmr);
389 
390     qemu_printf("\nAPR 0x%02x TPR 0x%02x DFR 0x%02x LDR 0x%02x",
391                 s->arb_id, s->tpr, s->dest_mode, s->log_dest);
392     if (s->dest_mode == 0) {
393         qemu_printf("(cluster %u: id %u)",
394                     s->log_dest >> APIC_LOGDEST_XAPIC_SHIFT,
395                     s->log_dest & APIC_LOGDEST_XAPIC_ID);
396     }
397     qemu_printf(" PPR 0x%02x\n", apic_get_ppr(s));
398 }
399 #else
400 void x86_cpu_dump_local_apic_state(CPUState *cs, int flags)
401 {
402 }
403 #endif /* !CONFIG_USER_ONLY */
404 
405 #define DUMP_CODE_BYTES_TOTAL    50
406 #define DUMP_CODE_BYTES_BACKWARD 20
407 
408 void x86_cpu_dump_state(CPUState *cs, FILE *f, int flags)
409 {
410     X86CPU *cpu = X86_CPU(cs);
411     CPUX86State *env = &cpu->env;
412     int eflags, i, nb;
413     char cc_op_name[32];
414     static const char *seg_name[6] = { "ES", "CS", "SS", "DS", "FS", "GS" };
415 
416     eflags = cpu_compute_eflags(env);
417 #ifdef TARGET_X86_64
418     if (env->hflags & HF_CS64_MASK) {
419         qemu_fprintf(f, "RAX=%016" PRIx64 " RBX=%016" PRIx64 " RCX=%016" PRIx64 " RDX=%016" PRIx64 "\n"
420                      "RSI=%016" PRIx64 " RDI=%016" PRIx64 " RBP=%016" PRIx64 " RSP=%016" PRIx64 "\n"
421                      "R8 =%016" PRIx64 " R9 =%016" PRIx64 " R10=%016" PRIx64 " R11=%016" PRIx64 "\n"
422                      "R12=%016" PRIx64 " R13=%016" PRIx64 " R14=%016" PRIx64 " R15=%016" PRIx64 "\n"
423                      "RIP=%016" PRIx64 " RFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
424                      env->regs[R_EAX],
425                      env->regs[R_EBX],
426                      env->regs[R_ECX],
427                      env->regs[R_EDX],
428                      env->regs[R_ESI],
429                      env->regs[R_EDI],
430                      env->regs[R_EBP],
431                      env->regs[R_ESP],
432                      env->regs[8],
433                      env->regs[9],
434                      env->regs[10],
435                      env->regs[11],
436                      env->regs[12],
437                      env->regs[13],
438                      env->regs[14],
439                      env->regs[15],
440                      env->eip, eflags,
441                      eflags & DF_MASK ? 'D' : '-',
442                      eflags & CC_O ? 'O' : '-',
443                      eflags & CC_S ? 'S' : '-',
444                      eflags & CC_Z ? 'Z' : '-',
445                      eflags & CC_A ? 'A' : '-',
446                      eflags & CC_P ? 'P' : '-',
447                      eflags & CC_C ? 'C' : '-',
448                      env->hflags & HF_CPL_MASK,
449                      (env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1,
450                      (env->a20_mask >> 20) & 1,
451                      (env->hflags >> HF_SMM_SHIFT) & 1,
452                      cs->halted);
453     } else
454 #endif
455     {
456         qemu_fprintf(f, "EAX=%08x EBX=%08x ECX=%08x EDX=%08x\n"
457                      "ESI=%08x EDI=%08x EBP=%08x ESP=%08x\n"
458                      "EIP=%08x EFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
459                      (uint32_t)env->regs[R_EAX],
460                      (uint32_t)env->regs[R_EBX],
461                      (uint32_t)env->regs[R_ECX],
462                      (uint32_t)env->regs[R_EDX],
463                      (uint32_t)env->regs[R_ESI],
464                      (uint32_t)env->regs[R_EDI],
465                      (uint32_t)env->regs[R_EBP],
466                      (uint32_t)env->regs[R_ESP],
467                      (uint32_t)env->eip, eflags,
468                      eflags & DF_MASK ? 'D' : '-',
469                      eflags & CC_O ? 'O' : '-',
470                      eflags & CC_S ? 'S' : '-',
471                      eflags & CC_Z ? 'Z' : '-',
472                      eflags & CC_A ? 'A' : '-',
473                      eflags & CC_P ? 'P' : '-',
474                      eflags & CC_C ? 'C' : '-',
475                      env->hflags & HF_CPL_MASK,
476                      (env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1,
477                      (env->a20_mask >> 20) & 1,
478                      (env->hflags >> HF_SMM_SHIFT) & 1,
479                      cs->halted);
480     }
481 
482     for(i = 0; i < 6; i++) {
483         cpu_x86_dump_seg_cache(env, f, seg_name[i], &env->segs[i]);
484     }
485     cpu_x86_dump_seg_cache(env, f, "LDT", &env->ldt);
486     cpu_x86_dump_seg_cache(env, f, "TR", &env->tr);
487 
488 #ifdef TARGET_X86_64
489     if (env->hflags & HF_LMA_MASK) {
490         qemu_fprintf(f, "GDT=     %016" PRIx64 " %08x\n",
491                      env->gdt.base, env->gdt.limit);
492         qemu_fprintf(f, "IDT=     %016" PRIx64 " %08x\n",
493                      env->idt.base, env->idt.limit);
494         qemu_fprintf(f, "CR0=%08x CR2=%016" PRIx64 " CR3=%016" PRIx64 " CR4=%08x\n",
495                      (uint32_t)env->cr[0],
496                      env->cr[2],
497                      env->cr[3],
498                      (uint32_t)env->cr[4]);
499         for(i = 0; i < 4; i++)
500             qemu_fprintf(f, "DR%d=%016" PRIx64 " ", i, env->dr[i]);
501         qemu_fprintf(f, "\nDR6=%016" PRIx64 " DR7=%016" PRIx64 "\n",
502                      env->dr[6], env->dr[7]);
503     } else
504 #endif
505     {
506         qemu_fprintf(f, "GDT=     %08x %08x\n",
507                      (uint32_t)env->gdt.base, env->gdt.limit);
508         qemu_fprintf(f, "IDT=     %08x %08x\n",
509                      (uint32_t)env->idt.base, env->idt.limit);
510         qemu_fprintf(f, "CR0=%08x CR2=%08x CR3=%08x CR4=%08x\n",
511                      (uint32_t)env->cr[0],
512                      (uint32_t)env->cr[2],
513                      (uint32_t)env->cr[3],
514                      (uint32_t)env->cr[4]);
515         for(i = 0; i < 4; i++) {
516             qemu_fprintf(f, "DR%d=" TARGET_FMT_lx " ", i, env->dr[i]);
517         }
518         qemu_fprintf(f, "\nDR6=" TARGET_FMT_lx " DR7=" TARGET_FMT_lx "\n",
519                      env->dr[6], env->dr[7]);
520     }
521     if (flags & CPU_DUMP_CCOP) {
522         if ((unsigned)env->cc_op < CC_OP_NB)
523             snprintf(cc_op_name, sizeof(cc_op_name), "%s", cc_op_str[env->cc_op]);
524         else
525             snprintf(cc_op_name, sizeof(cc_op_name), "[%d]", env->cc_op);
526 #ifdef TARGET_X86_64
527         if (env->hflags & HF_CS64_MASK) {
528             qemu_fprintf(f, "CCS=%016" PRIx64 " CCD=%016" PRIx64 " CCO=%-8s\n",
529                          env->cc_src, env->cc_dst,
530                          cc_op_name);
531         } else
532 #endif
533         {
534             qemu_fprintf(f, "CCS=%08x CCD=%08x CCO=%-8s\n",
535                          (uint32_t)env->cc_src, (uint32_t)env->cc_dst,
536                          cc_op_name);
537         }
538     }
539     qemu_fprintf(f, "EFER=%016" PRIx64 "\n", env->efer);
540     if (flags & CPU_DUMP_FPU) {
541         int fptag;
542         fptag = 0;
543         for(i = 0; i < 8; i++) {
544             fptag |= ((!env->fptags[i]) << i);
545         }
546         qemu_fprintf(f, "FCW=%04x FSW=%04x [ST=%d] FTW=%02x MXCSR=%08x\n",
547                      env->fpuc,
548                      (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11,
549                      env->fpstt,
550                      fptag,
551                      env->mxcsr);
552         for(i=0;i<8;i++) {
553             CPU_LDoubleU u;
554             u.d = env->fpregs[i].d;
555             qemu_fprintf(f, "FPR%d=%016" PRIx64 " %04x",
556                          i, u.l.lower, u.l.upper);
557             if ((i & 1) == 1)
558                 qemu_fprintf(f, "\n");
559             else
560                 qemu_fprintf(f, " ");
561         }
562         if (env->hflags & HF_CS64_MASK)
563             nb = 16;
564         else
565             nb = 8;
566         for(i=0;i<nb;i++) {
567             qemu_fprintf(f, "XMM%02d=%08x%08x%08x%08x",
568                          i,
569                          env->xmm_regs[i].ZMM_L(3),
570                          env->xmm_regs[i].ZMM_L(2),
571                          env->xmm_regs[i].ZMM_L(1),
572                          env->xmm_regs[i].ZMM_L(0));
573             if ((i & 1) == 1)
574                 qemu_fprintf(f, "\n");
575             else
576                 qemu_fprintf(f, " ");
577         }
578     }
579     if (flags & CPU_DUMP_CODE) {
580         target_ulong base = env->segs[R_CS].base + env->eip;
581         target_ulong offs = MIN(env->eip, DUMP_CODE_BYTES_BACKWARD);
582         uint8_t code;
583         char codestr[3];
584 
585         qemu_fprintf(f, "Code=");
586         for (i = 0; i < DUMP_CODE_BYTES_TOTAL; i++) {
587             if (cpu_memory_rw_debug(cs, base - offs + i, &code, 1, 0) == 0) {
588                 snprintf(codestr, sizeof(codestr), "%02x", code);
589             } else {
590                 snprintf(codestr, sizeof(codestr), "??");
591             }
592             qemu_fprintf(f, "%s%s%s%s", i > 0 ? " " : "",
593                          i == offs ? "<" : "", codestr, i == offs ? ">" : "");
594         }
595         qemu_fprintf(f, "\n");
596     }
597 }
598 
599 /***********************************************************/
600 /* x86 mmu */
601 /* XXX: add PGE support */
602 
603 void x86_cpu_set_a20(X86CPU *cpu, int a20_state)
604 {
605     CPUX86State *env = &cpu->env;
606 
607     a20_state = (a20_state != 0);
608     if (a20_state != ((env->a20_mask >> 20) & 1)) {
609         CPUState *cs = CPU(cpu);
610 
611         qemu_log_mask(CPU_LOG_MMU, "A20 update: a20=%d\n", a20_state);
612         /* if the cpu is currently executing code, we must unlink it and
613            all the potentially executing TB */
614         cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
615 
616         /* when a20 is changed, all the MMU mappings are invalid, so
617            we must flush everything */
618         tlb_flush(cs);
619         env->a20_mask = ~(1 << 20) | (a20_state << 20);
620     }
621 }
622 
623 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0)
624 {
625     X86CPU *cpu = env_archcpu(env);
626     int pe_state;
627 
628     qemu_log_mask(CPU_LOG_MMU, "CR0 update: CR0=0x%08x\n", new_cr0);
629     if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) !=
630         (env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) {
631         tlb_flush(CPU(cpu));
632     }
633 
634 #ifdef TARGET_X86_64
635     if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) &&
636         (env->efer & MSR_EFER_LME)) {
637         /* enter in long mode */
638         /* XXX: generate an exception */
639         if (!(env->cr[4] & CR4_PAE_MASK))
640             return;
641         env->efer |= MSR_EFER_LMA;
642         env->hflags |= HF_LMA_MASK;
643     } else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) &&
644                (env->efer & MSR_EFER_LMA)) {
645         /* exit long mode */
646         env->efer &= ~MSR_EFER_LMA;
647         env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
648         env->eip &= 0xffffffff;
649     }
650 #endif
651     env->cr[0] = new_cr0 | CR0_ET_MASK;
652 
653     /* update PE flag in hidden flags */
654     pe_state = (env->cr[0] & CR0_PE_MASK);
655     env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT);
656     /* ensure that ADDSEG is always set in real mode */
657     env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT);
658     /* update FPU flags */
659     env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
660         ((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
661 }
662 
663 /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
664    the PDPT */
665 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3)
666 {
667     env->cr[3] = new_cr3;
668     if (env->cr[0] & CR0_PG_MASK) {
669         qemu_log_mask(CPU_LOG_MMU,
670                         "CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3);
671         tlb_flush(env_cpu(env));
672     }
673 }
674 
675 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4)
676 {
677     uint32_t hflags;
678 
679 #if defined(DEBUG_MMU)
680     printf("CR4 update: %08x -> %08x\n", (uint32_t)env->cr[4], new_cr4);
681 #endif
682     if ((new_cr4 ^ env->cr[4]) &
683         (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK |
684          CR4_SMEP_MASK | CR4_SMAP_MASK | CR4_LA57_MASK)) {
685         tlb_flush(env_cpu(env));
686     }
687 
688     /* Clear bits we're going to recompute.  */
689     hflags = env->hflags & ~(HF_OSFXSR_MASK | HF_SMAP_MASK);
690 
691     /* SSE handling */
692     if (!(env->features[FEAT_1_EDX] & CPUID_SSE)) {
693         new_cr4 &= ~CR4_OSFXSR_MASK;
694     }
695     if (new_cr4 & CR4_OSFXSR_MASK) {
696         hflags |= HF_OSFXSR_MASK;
697     }
698 
699     if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_SMAP)) {
700         new_cr4 &= ~CR4_SMAP_MASK;
701     }
702     if (new_cr4 & CR4_SMAP_MASK) {
703         hflags |= HF_SMAP_MASK;
704     }
705 
706     if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKU)) {
707         new_cr4 &= ~CR4_PKE_MASK;
708     }
709 
710     env->cr[4] = new_cr4;
711     env->hflags = hflags;
712 
713     cpu_sync_bndcs_hflags(env);
714 }
715 
716 #if !defined(CONFIG_USER_ONLY)
717 hwaddr x86_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
718 {
719     X86CPU *cpu = X86_CPU(cs);
720     CPUX86State *env = &cpu->env;
721     target_ulong pde_addr, pte_addr;
722     uint64_t pte;
723     int32_t a20_mask;
724     uint32_t page_offset;
725     int page_size;
726 
727     a20_mask = x86_get_a20_mask(env);
728     if (!(env->cr[0] & CR0_PG_MASK)) {
729         pte = addr & a20_mask;
730         page_size = 4096;
731     } else if (env->cr[4] & CR4_PAE_MASK) {
732         target_ulong pdpe_addr;
733         uint64_t pde, pdpe;
734 
735 #ifdef TARGET_X86_64
736         if (env->hflags & HF_LMA_MASK) {
737             bool la57 = env->cr[4] & CR4_LA57_MASK;
738             uint64_t pml5e_addr, pml5e;
739             uint64_t pml4e_addr, pml4e;
740             int32_t sext;
741 
742             /* test virtual address sign extension */
743             sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47;
744             if (sext != 0 && sext != -1) {
745                 return -1;
746             }
747 
748             if (la57) {
749                 pml5e_addr = ((env->cr[3] & ~0xfff) +
750                         (((addr >> 48) & 0x1ff) << 3)) & a20_mask;
751                 pml5e = x86_ldq_phys(cs, pml5e_addr);
752                 if (!(pml5e & PG_PRESENT_MASK)) {
753                     return -1;
754                 }
755             } else {
756                 pml5e = env->cr[3];
757             }
758 
759             pml4e_addr = ((pml5e & PG_ADDRESS_MASK) +
760                     (((addr >> 39) & 0x1ff) << 3)) & a20_mask;
761             pml4e = x86_ldq_phys(cs, pml4e_addr);
762             if (!(pml4e & PG_PRESENT_MASK)) {
763                 return -1;
764             }
765             pdpe_addr = ((pml4e & PG_ADDRESS_MASK) +
766                          (((addr >> 30) & 0x1ff) << 3)) & a20_mask;
767             pdpe = x86_ldq_phys(cs, pdpe_addr);
768             if (!(pdpe & PG_PRESENT_MASK)) {
769                 return -1;
770             }
771             if (pdpe & PG_PSE_MASK) {
772                 page_size = 1024 * 1024 * 1024;
773                 pte = pdpe;
774                 goto out;
775             }
776 
777         } else
778 #endif
779         {
780             pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
781                 a20_mask;
782             pdpe = x86_ldq_phys(cs, pdpe_addr);
783             if (!(pdpe & PG_PRESENT_MASK))
784                 return -1;
785         }
786 
787         pde_addr = ((pdpe & PG_ADDRESS_MASK) +
788                     (((addr >> 21) & 0x1ff) << 3)) & a20_mask;
789         pde = x86_ldq_phys(cs, pde_addr);
790         if (!(pde & PG_PRESENT_MASK)) {
791             return -1;
792         }
793         if (pde & PG_PSE_MASK) {
794             /* 2 MB page */
795             page_size = 2048 * 1024;
796             pte = pde;
797         } else {
798             /* 4 KB page */
799             pte_addr = ((pde & PG_ADDRESS_MASK) +
800                         (((addr >> 12) & 0x1ff) << 3)) & a20_mask;
801             page_size = 4096;
802             pte = x86_ldq_phys(cs, pte_addr);
803         }
804         if (!(pte & PG_PRESENT_MASK)) {
805             return -1;
806         }
807     } else {
808         uint32_t pde;
809 
810         /* page directory entry */
811         pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & a20_mask;
812         pde = x86_ldl_phys(cs, pde_addr);
813         if (!(pde & PG_PRESENT_MASK))
814             return -1;
815         if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
816             pte = pde | ((pde & 0x1fe000LL) << (32 - 13));
817             page_size = 4096 * 1024;
818         } else {
819             /* page directory entry */
820             pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & a20_mask;
821             pte = x86_ldl_phys(cs, pte_addr);
822             if (!(pte & PG_PRESENT_MASK)) {
823                 return -1;
824             }
825             page_size = 4096;
826         }
827         pte = pte & a20_mask;
828     }
829 
830 #ifdef TARGET_X86_64
831 out:
832 #endif
833     pte &= PG_ADDRESS_MASK & ~(page_size - 1);
834     page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
835     return pte | page_offset;
836 }
837 
838 typedef struct MCEInjectionParams {
839     Monitor *mon;
840     int bank;
841     uint64_t status;
842     uint64_t mcg_status;
843     uint64_t addr;
844     uint64_t misc;
845     int flags;
846 } MCEInjectionParams;
847 
848 static void do_inject_x86_mce(CPUState *cs, run_on_cpu_data data)
849 {
850     MCEInjectionParams *params = data.host_ptr;
851     X86CPU *cpu = X86_CPU(cs);
852     CPUX86State *cenv = &cpu->env;
853     uint64_t *banks = cenv->mce_banks + 4 * params->bank;
854 
855     cpu_synchronize_state(cs);
856 
857     /*
858      * If there is an MCE exception being processed, ignore this SRAO MCE
859      * unless unconditional injection was requested.
860      */
861     if (!(params->flags & MCE_INJECT_UNCOND_AO)
862         && !(params->status & MCI_STATUS_AR)
863         && (cenv->mcg_status & MCG_STATUS_MCIP)) {
864         return;
865     }
866 
867     if (params->status & MCI_STATUS_UC) {
868         /*
869          * if MSR_MCG_CTL is not all 1s, the uncorrected error
870          * reporting is disabled
871          */
872         if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) {
873             monitor_printf(params->mon,
874                            "CPU %d: Uncorrected error reporting disabled\n",
875                            cs->cpu_index);
876             return;
877         }
878 
879         /*
880          * if MSR_MCi_CTL is not all 1s, the uncorrected error
881          * reporting is disabled for the bank
882          */
883         if (banks[0] != ~(uint64_t)0) {
884             monitor_printf(params->mon,
885                            "CPU %d: Uncorrected error reporting disabled for"
886                            " bank %d\n",
887                            cs->cpu_index, params->bank);
888             return;
889         }
890 
891         if ((cenv->mcg_status & MCG_STATUS_MCIP) ||
892             !(cenv->cr[4] & CR4_MCE_MASK)) {
893             monitor_printf(params->mon,
894                            "CPU %d: Previous MCE still in progress, raising"
895                            " triple fault\n",
896                            cs->cpu_index);
897             qemu_log_mask(CPU_LOG_RESET, "Triple fault\n");
898             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
899             return;
900         }
901         if (banks[1] & MCI_STATUS_VAL) {
902             params->status |= MCI_STATUS_OVER;
903         }
904         banks[2] = params->addr;
905         banks[3] = params->misc;
906         cenv->mcg_status = params->mcg_status;
907         banks[1] = params->status;
908         cpu_interrupt(cs, CPU_INTERRUPT_MCE);
909     } else if (!(banks[1] & MCI_STATUS_VAL)
910                || !(banks[1] & MCI_STATUS_UC)) {
911         if (banks[1] & MCI_STATUS_VAL) {
912             params->status |= MCI_STATUS_OVER;
913         }
914         banks[2] = params->addr;
915         banks[3] = params->misc;
916         banks[1] = params->status;
917     } else {
918         banks[1] |= MCI_STATUS_OVER;
919     }
920 }
921 
922 void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank,
923                         uint64_t status, uint64_t mcg_status, uint64_t addr,
924                         uint64_t misc, int flags)
925 {
926     CPUState *cs = CPU(cpu);
927     CPUX86State *cenv = &cpu->env;
928     MCEInjectionParams params = {
929         .mon = mon,
930         .bank = bank,
931         .status = status,
932         .mcg_status = mcg_status,
933         .addr = addr,
934         .misc = misc,
935         .flags = flags,
936     };
937     unsigned bank_num = cenv->mcg_cap & 0xff;
938 
939     if (!cenv->mcg_cap) {
940         monitor_printf(mon, "MCE injection not supported\n");
941         return;
942     }
943     if (bank >= bank_num) {
944         monitor_printf(mon, "Invalid MCE bank number\n");
945         return;
946     }
947     if (!(status & MCI_STATUS_VAL)) {
948         monitor_printf(mon, "Invalid MCE status code\n");
949         return;
950     }
951     if ((flags & MCE_INJECT_BROADCAST)
952         && !cpu_x86_support_mca_broadcast(cenv)) {
953         monitor_printf(mon, "Guest CPU does not support MCA broadcast\n");
954         return;
955     }
956 
957     run_on_cpu(cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
958     if (flags & MCE_INJECT_BROADCAST) {
959         CPUState *other_cs;
960 
961         params.bank = 1;
962         params.status = MCI_STATUS_VAL | MCI_STATUS_UC;
963         params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
964         params.addr = 0;
965         params.misc = 0;
966         CPU_FOREACH(other_cs) {
967             if (other_cs == cs) {
968                 continue;
969             }
970             run_on_cpu(other_cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
971         }
972     }
973 }
974 
975 void cpu_report_tpr_access(CPUX86State *env, TPRAccess access)
976 {
977     X86CPU *cpu = env_archcpu(env);
978     CPUState *cs = env_cpu(env);
979 
980     if (kvm_enabled() || whpx_enabled()) {
981         env->tpr_access_type = access;
982 
983         cpu_interrupt(cs, CPU_INTERRUPT_TPR);
984     } else if (tcg_enabled()) {
985         cpu_restore_state(cs, cs->mem_io_pc, false);
986 
987         apic_handle_tpr_access_report(cpu->apic_state, env->eip, access);
988     }
989 }
990 #endif /* !CONFIG_USER_ONLY */
991 
992 int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector,
993                             target_ulong *base, unsigned int *limit,
994                             unsigned int *flags)
995 {
996     CPUState *cs = env_cpu(env);
997     SegmentCache *dt;
998     target_ulong ptr;
999     uint32_t e1, e2;
1000     int index;
1001 
1002     if (selector & 0x4)
1003         dt = &env->ldt;
1004     else
1005         dt = &env->gdt;
1006     index = selector & ~7;
1007     ptr = dt->base + index;
1008     if ((index + 7) > dt->limit
1009         || cpu_memory_rw_debug(cs, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0
1010         || cpu_memory_rw_debug(cs, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0)
1011         return 0;
1012 
1013     *base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
1014     *limit = (e1 & 0xffff) | (e2 & 0x000f0000);
1015     if (e2 & DESC_G_MASK)
1016         *limit = (*limit << 12) | 0xfff;
1017     *flags = e2;
1018 
1019     return 1;
1020 }
1021 
1022 #if !defined(CONFIG_USER_ONLY)
1023 void do_cpu_init(X86CPU *cpu)
1024 {
1025     CPUState *cs = CPU(cpu);
1026     CPUX86State *env = &cpu->env;
1027     CPUX86State *save = g_new(CPUX86State, 1);
1028     int sipi = cs->interrupt_request & CPU_INTERRUPT_SIPI;
1029 
1030     *save = *env;
1031 
1032     cpu_reset(cs);
1033     cs->interrupt_request = sipi;
1034     memcpy(&env->start_init_save, &save->start_init_save,
1035            offsetof(CPUX86State, end_init_save) -
1036            offsetof(CPUX86State, start_init_save));
1037     g_free(save);
1038 
1039     if (kvm_enabled()) {
1040         kvm_arch_do_init_vcpu(cpu);
1041     }
1042     apic_init_reset(cpu->apic_state);
1043 }
1044 
1045 void do_cpu_sipi(X86CPU *cpu)
1046 {
1047     apic_sipi(cpu->apic_state);
1048 }
1049 #else
1050 void do_cpu_init(X86CPU *cpu)
1051 {
1052 }
1053 void do_cpu_sipi(X86CPU *cpu)
1054 {
1055 }
1056 #endif
1057 
1058 /* Frob eflags into and out of the CPU temporary format.  */
1059 
1060 void x86_cpu_exec_enter(CPUState *cs)
1061 {
1062     X86CPU *cpu = X86_CPU(cs);
1063     CPUX86State *env = &cpu->env;
1064 
1065     CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1066     env->df = 1 - (2 * ((env->eflags >> 10) & 1));
1067     CC_OP = CC_OP_EFLAGS;
1068     env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1069 }
1070 
1071 void x86_cpu_exec_exit(CPUState *cs)
1072 {
1073     X86CPU *cpu = X86_CPU(cs);
1074     CPUX86State *env = &cpu->env;
1075 
1076     env->eflags = cpu_compute_eflags(env);
1077 }
1078 
1079 #ifndef CONFIG_USER_ONLY
1080 uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr)
1081 {
1082     X86CPU *cpu = X86_CPU(cs);
1083     CPUX86State *env = &cpu->env;
1084     MemTxAttrs attrs = cpu_get_mem_attrs(env);
1085     AddressSpace *as = cpu_addressspace(cs, attrs);
1086 
1087     return address_space_ldub(as, addr, attrs, NULL);
1088 }
1089 
1090 uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr)
1091 {
1092     X86CPU *cpu = X86_CPU(cs);
1093     CPUX86State *env = &cpu->env;
1094     MemTxAttrs attrs = cpu_get_mem_attrs(env);
1095     AddressSpace *as = cpu_addressspace(cs, attrs);
1096 
1097     return address_space_lduw(as, addr, attrs, NULL);
1098 }
1099 
1100 uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr)
1101 {
1102     X86CPU *cpu = X86_CPU(cs);
1103     CPUX86State *env = &cpu->env;
1104     MemTxAttrs attrs = cpu_get_mem_attrs(env);
1105     AddressSpace *as = cpu_addressspace(cs, attrs);
1106 
1107     return address_space_ldl(as, addr, attrs, NULL);
1108 }
1109 
1110 uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr)
1111 {
1112     X86CPU *cpu = X86_CPU(cs);
1113     CPUX86State *env = &cpu->env;
1114     MemTxAttrs attrs = cpu_get_mem_attrs(env);
1115     AddressSpace *as = cpu_addressspace(cs, attrs);
1116 
1117     return address_space_ldq(as, addr, attrs, NULL);
1118 }
1119 
1120 void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val)
1121 {
1122     X86CPU *cpu = X86_CPU(cs);
1123     CPUX86State *env = &cpu->env;
1124     MemTxAttrs attrs = cpu_get_mem_attrs(env);
1125     AddressSpace *as = cpu_addressspace(cs, attrs);
1126 
1127     address_space_stb(as, addr, val, attrs, NULL);
1128 }
1129 
1130 void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val)
1131 {
1132     X86CPU *cpu = X86_CPU(cs);
1133     CPUX86State *env = &cpu->env;
1134     MemTxAttrs attrs = cpu_get_mem_attrs(env);
1135     AddressSpace *as = cpu_addressspace(cs, attrs);
1136 
1137     address_space_stl_notdirty(as, addr, val, attrs, NULL);
1138 }
1139 
1140 void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val)
1141 {
1142     X86CPU *cpu = X86_CPU(cs);
1143     CPUX86State *env = &cpu->env;
1144     MemTxAttrs attrs = cpu_get_mem_attrs(env);
1145     AddressSpace *as = cpu_addressspace(cs, attrs);
1146 
1147     address_space_stw(as, addr, val, attrs, NULL);
1148 }
1149 
1150 void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val)
1151 {
1152     X86CPU *cpu = X86_CPU(cs);
1153     CPUX86State *env = &cpu->env;
1154     MemTxAttrs attrs = cpu_get_mem_attrs(env);
1155     AddressSpace *as = cpu_addressspace(cs, attrs);
1156 
1157     address_space_stl(as, addr, val, attrs, NULL);
1158 }
1159 
1160 void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val)
1161 {
1162     X86CPU *cpu = X86_CPU(cs);
1163     CPUX86State *env = &cpu->env;
1164     MemTxAttrs attrs = cpu_get_mem_attrs(env);
1165     AddressSpace *as = cpu_addressspace(cs, attrs);
1166 
1167     address_space_stq(as, addr, val, attrs, NULL);
1168 }
1169 #endif
1170