xref: /openbmc/qemu/target/i386/helper.c (revision 597f9b2d)
1 /*
2  *  i386 helpers (without register variable usage)
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qapi/qapi-events-run-state.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "sysemu/runstate.h"
25 #include "kvm/kvm_i386.h"
26 #ifndef CONFIG_USER_ONLY
27 #include "sysemu/hw_accel.h"
28 #include "monitor/monitor.h"
29 #endif
30 #include "qemu/log.h"
31 
32 void cpu_sync_avx_hflag(CPUX86State *env)
33 {
34     if ((env->cr[4] & CR4_OSXSAVE_MASK)
35         && (env->xcr0 & (XSTATE_SSE_MASK | XSTATE_YMM_MASK))
36             == (XSTATE_SSE_MASK | XSTATE_YMM_MASK)) {
37         env->hflags |= HF_AVX_EN_MASK;
38     } else{
39         env->hflags &= ~HF_AVX_EN_MASK;
40     }
41 }
42 
43 void cpu_sync_bndcs_hflags(CPUX86State *env)
44 {
45     uint32_t hflags = env->hflags;
46     uint32_t hflags2 = env->hflags2;
47     uint32_t bndcsr;
48 
49     if ((hflags & HF_CPL_MASK) == 3) {
50         bndcsr = env->bndcs_regs.cfgu;
51     } else {
52         bndcsr = env->msr_bndcfgs;
53     }
54 
55     if ((env->cr[4] & CR4_OSXSAVE_MASK)
56         && (env->xcr0 & XSTATE_BNDCSR_MASK)
57         && (bndcsr & BNDCFG_ENABLE)) {
58         hflags |= HF_MPX_EN_MASK;
59     } else {
60         hflags &= ~HF_MPX_EN_MASK;
61     }
62 
63     if (bndcsr & BNDCFG_BNDPRESERVE) {
64         hflags2 |= HF2_MPX_PR_MASK;
65     } else {
66         hflags2 &= ~HF2_MPX_PR_MASK;
67     }
68 
69     env->hflags = hflags;
70     env->hflags2 = hflags2;
71 }
72 
73 static void cpu_x86_version(CPUX86State *env, int *family, int *model)
74 {
75     int cpuver = env->cpuid_version;
76 
77     if (family == NULL || model == NULL) {
78         return;
79     }
80 
81     *family = (cpuver >> 8) & 0x0f;
82     *model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f);
83 }
84 
85 /* Broadcast MCA signal for processor version 06H_EH and above */
86 int cpu_x86_support_mca_broadcast(CPUX86State *env)
87 {
88     int family = 0;
89     int model = 0;
90 
91     cpu_x86_version(env, &family, &model);
92     if ((family == 6 && model >= 14) || family > 6) {
93         return 1;
94     }
95 
96     return 0;
97 }
98 
99 /***********************************************************/
100 /* x86 mmu */
101 /* XXX: add PGE support */
102 
103 void x86_cpu_set_a20(X86CPU *cpu, int a20_state)
104 {
105     CPUX86State *env = &cpu->env;
106 
107     a20_state = (a20_state != 0);
108     if (a20_state != ((env->a20_mask >> 20) & 1)) {
109         CPUState *cs = CPU(cpu);
110 
111         qemu_log_mask(CPU_LOG_MMU, "A20 update: a20=%d\n", a20_state);
112         /* if the cpu is currently executing code, we must unlink it and
113            all the potentially executing TB */
114         cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
115 
116         /* when a20 is changed, all the MMU mappings are invalid, so
117            we must flush everything */
118         tlb_flush(cs);
119         env->a20_mask = ~(1 << 20) | (a20_state << 20);
120     }
121 }
122 
123 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0)
124 {
125     X86CPU *cpu = env_archcpu(env);
126     int pe_state;
127 
128     qemu_log_mask(CPU_LOG_MMU, "CR0 update: CR0=0x%08x\n", new_cr0);
129     if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) !=
130         (env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) {
131         tlb_flush(CPU(cpu));
132     }
133 
134 #ifdef TARGET_X86_64
135     if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) &&
136         (env->efer & MSR_EFER_LME)) {
137         /* enter in long mode */
138         /* XXX: generate an exception */
139         if (!(env->cr[4] & CR4_PAE_MASK))
140             return;
141         env->efer |= MSR_EFER_LMA;
142         env->hflags |= HF_LMA_MASK;
143     } else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) &&
144                (env->efer & MSR_EFER_LMA)) {
145         /* exit long mode */
146         env->efer &= ~MSR_EFER_LMA;
147         env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
148         env->eip &= 0xffffffff;
149     }
150 #endif
151     env->cr[0] = new_cr0 | CR0_ET_MASK;
152 
153     /* update PE flag in hidden flags */
154     pe_state = (env->cr[0] & CR0_PE_MASK);
155     env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT);
156     /* ensure that ADDSEG is always set in real mode */
157     env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT);
158     /* update FPU flags */
159     env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
160         ((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
161 }
162 
163 /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
164    the PDPT */
165 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3)
166 {
167     env->cr[3] = new_cr3;
168     if (env->cr[0] & CR0_PG_MASK) {
169         qemu_log_mask(CPU_LOG_MMU,
170                         "CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3);
171         tlb_flush(env_cpu(env));
172     }
173 }
174 
175 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4)
176 {
177     uint32_t hflags;
178 
179 #if defined(DEBUG_MMU)
180     printf("CR4 update: %08x -> %08x\n", (uint32_t)env->cr[4], new_cr4);
181 #endif
182     if ((new_cr4 ^ env->cr[4]) &
183         (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK |
184          CR4_SMEP_MASK | CR4_SMAP_MASK | CR4_LA57_MASK)) {
185         tlb_flush(env_cpu(env));
186     }
187 
188     /* Clear bits we're going to recompute.  */
189     hflags = env->hflags & ~(HF_OSFXSR_MASK | HF_SMAP_MASK | HF_UMIP_MASK);
190 
191     /* SSE handling */
192     if (!(env->features[FEAT_1_EDX] & CPUID_SSE)) {
193         new_cr4 &= ~CR4_OSFXSR_MASK;
194     }
195     if (new_cr4 & CR4_OSFXSR_MASK) {
196         hflags |= HF_OSFXSR_MASK;
197     }
198 
199     if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_SMAP)) {
200         new_cr4 &= ~CR4_SMAP_MASK;
201     }
202     if (new_cr4 & CR4_SMAP_MASK) {
203         hflags |= HF_SMAP_MASK;
204     }
205     if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_UMIP)) {
206         new_cr4 &= ~CR4_UMIP_MASK;
207     }
208     if (new_cr4 & CR4_UMIP_MASK) {
209         hflags |= HF_UMIP_MASK;
210     }
211 
212     if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKU)) {
213         new_cr4 &= ~CR4_PKE_MASK;
214     }
215     if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKS)) {
216         new_cr4 &= ~CR4_PKS_MASK;
217     }
218 
219     env->cr[4] = new_cr4;
220     env->hflags = hflags;
221 
222     cpu_sync_bndcs_hflags(env);
223     cpu_sync_avx_hflag(env);
224 }
225 
226 #if !defined(CONFIG_USER_ONLY)
227 hwaddr x86_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
228                                          MemTxAttrs *attrs)
229 {
230     X86CPU *cpu = X86_CPU(cs);
231     CPUX86State *env = &cpu->env;
232     target_ulong pde_addr, pte_addr;
233     uint64_t pte;
234     int32_t a20_mask;
235     uint32_t page_offset;
236     int page_size;
237 
238     *attrs = cpu_get_mem_attrs(env);
239 
240     a20_mask = x86_get_a20_mask(env);
241     if (!(env->cr[0] & CR0_PG_MASK)) {
242         pte = addr & a20_mask;
243         page_size = 4096;
244     } else if (env->cr[4] & CR4_PAE_MASK) {
245         target_ulong pdpe_addr;
246         uint64_t pde, pdpe;
247 
248 #ifdef TARGET_X86_64
249         if (env->hflags & HF_LMA_MASK) {
250             bool la57 = env->cr[4] & CR4_LA57_MASK;
251             uint64_t pml5e_addr, pml5e;
252             uint64_t pml4e_addr, pml4e;
253             int32_t sext;
254 
255             /* test virtual address sign extension */
256             sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47;
257             if (sext != 0 && sext != -1) {
258                 return -1;
259             }
260 
261             if (la57) {
262                 pml5e_addr = ((env->cr[3] & ~0xfff) +
263                         (((addr >> 48) & 0x1ff) << 3)) & a20_mask;
264                 pml5e = x86_ldq_phys(cs, pml5e_addr);
265                 if (!(pml5e & PG_PRESENT_MASK)) {
266                     return -1;
267                 }
268             } else {
269                 pml5e = env->cr[3];
270             }
271 
272             pml4e_addr = ((pml5e & PG_ADDRESS_MASK) +
273                     (((addr >> 39) & 0x1ff) << 3)) & a20_mask;
274             pml4e = x86_ldq_phys(cs, pml4e_addr);
275             if (!(pml4e & PG_PRESENT_MASK)) {
276                 return -1;
277             }
278             pdpe_addr = ((pml4e & PG_ADDRESS_MASK) +
279                          (((addr >> 30) & 0x1ff) << 3)) & a20_mask;
280             pdpe = x86_ldq_phys(cs, pdpe_addr);
281             if (!(pdpe & PG_PRESENT_MASK)) {
282                 return -1;
283             }
284             if (pdpe & PG_PSE_MASK) {
285                 page_size = 1024 * 1024 * 1024;
286                 pte = pdpe;
287                 goto out;
288             }
289 
290         } else
291 #endif
292         {
293             pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
294                 a20_mask;
295             pdpe = x86_ldq_phys(cs, pdpe_addr);
296             if (!(pdpe & PG_PRESENT_MASK))
297                 return -1;
298         }
299 
300         pde_addr = ((pdpe & PG_ADDRESS_MASK) +
301                     (((addr >> 21) & 0x1ff) << 3)) & a20_mask;
302         pde = x86_ldq_phys(cs, pde_addr);
303         if (!(pde & PG_PRESENT_MASK)) {
304             return -1;
305         }
306         if (pde & PG_PSE_MASK) {
307             /* 2 MB page */
308             page_size = 2048 * 1024;
309             pte = pde;
310         } else {
311             /* 4 KB page */
312             pte_addr = ((pde & PG_ADDRESS_MASK) +
313                         (((addr >> 12) & 0x1ff) << 3)) & a20_mask;
314             page_size = 4096;
315             pte = x86_ldq_phys(cs, pte_addr);
316         }
317         if (!(pte & PG_PRESENT_MASK)) {
318             return -1;
319         }
320     } else {
321         uint32_t pde;
322 
323         /* page directory entry */
324         pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & a20_mask;
325         pde = x86_ldl_phys(cs, pde_addr);
326         if (!(pde & PG_PRESENT_MASK))
327             return -1;
328         if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
329             pte = pde | ((pde & 0x1fe000LL) << (32 - 13));
330             page_size = 4096 * 1024;
331         } else {
332             /* page directory entry */
333             pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & a20_mask;
334             pte = x86_ldl_phys(cs, pte_addr);
335             if (!(pte & PG_PRESENT_MASK)) {
336                 return -1;
337             }
338             page_size = 4096;
339         }
340         pte = pte & a20_mask;
341     }
342 
343 #ifdef TARGET_X86_64
344 out:
345 #endif
346     pte &= PG_ADDRESS_MASK & ~(page_size - 1);
347     page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
348     return pte | page_offset;
349 }
350 
351 typedef struct MCEInjectionParams {
352     Monitor *mon;
353     int bank;
354     uint64_t status;
355     uint64_t mcg_status;
356     uint64_t addr;
357     uint64_t misc;
358     int flags;
359 } MCEInjectionParams;
360 
361 static void emit_guest_memory_failure(MemoryFailureAction action, bool ar,
362                                       bool recursive)
363 {
364     MemoryFailureFlags mff = {.action_required = ar, .recursive = recursive};
365 
366     qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_GUEST, action,
367                                    &mff);
368 }
369 
370 static void do_inject_x86_mce(CPUState *cs, run_on_cpu_data data)
371 {
372     MCEInjectionParams *params = data.host_ptr;
373     X86CPU *cpu = X86_CPU(cs);
374     CPUX86State *cenv = &cpu->env;
375     uint64_t *banks = cenv->mce_banks + 4 * params->bank;
376     g_autofree char *msg = NULL;
377     bool need_reset = false;
378     bool recursive;
379     bool ar = !!(params->status & MCI_STATUS_AR);
380 
381     cpu_synchronize_state(cs);
382     recursive = !!(cenv->mcg_status & MCG_STATUS_MCIP);
383 
384     /*
385      * If there is an MCE exception being processed, ignore this SRAO MCE
386      * unless unconditional injection was requested.
387      */
388     if (!(params->flags & MCE_INJECT_UNCOND_AO) && !ar && recursive) {
389         emit_guest_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, ar, recursive);
390         return;
391     }
392 
393     if (params->status & MCI_STATUS_UC) {
394         /*
395          * if MSR_MCG_CTL is not all 1s, the uncorrected error
396          * reporting is disabled
397          */
398         if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) {
399             monitor_printf(params->mon,
400                            "CPU %d: Uncorrected error reporting disabled\n",
401                            cs->cpu_index);
402             return;
403         }
404 
405         /*
406          * if MSR_MCi_CTL is not all 1s, the uncorrected error
407          * reporting is disabled for the bank
408          */
409         if (banks[0] != ~(uint64_t)0) {
410             monitor_printf(params->mon,
411                            "CPU %d: Uncorrected error reporting disabled for"
412                            " bank %d\n",
413                            cs->cpu_index, params->bank);
414             return;
415         }
416 
417         if (!(cenv->cr[4] & CR4_MCE_MASK)) {
418             need_reset = true;
419             msg = g_strdup_printf("CPU %d: MCE capability is not enabled, "
420                                   "raising triple fault", cs->cpu_index);
421         } else if (recursive) {
422             need_reset = true;
423             msg = g_strdup_printf("CPU %d: Previous MCE still in progress, "
424                                   "raising triple fault", cs->cpu_index);
425         }
426 
427         if (need_reset) {
428             emit_guest_memory_failure(MEMORY_FAILURE_ACTION_RESET, ar,
429                                       recursive);
430             monitor_puts(params->mon, msg);
431             qemu_log_mask(CPU_LOG_RESET, "%s\n", msg);
432             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
433             return;
434         }
435 
436         if (banks[1] & MCI_STATUS_VAL) {
437             params->status |= MCI_STATUS_OVER;
438         }
439         banks[2] = params->addr;
440         banks[3] = params->misc;
441         cenv->mcg_status = params->mcg_status;
442         banks[1] = params->status;
443         cpu_interrupt(cs, CPU_INTERRUPT_MCE);
444     } else if (!(banks[1] & MCI_STATUS_VAL)
445                || !(banks[1] & MCI_STATUS_UC)) {
446         if (banks[1] & MCI_STATUS_VAL) {
447             params->status |= MCI_STATUS_OVER;
448         }
449         banks[2] = params->addr;
450         banks[3] = params->misc;
451         banks[1] = params->status;
452     } else {
453         banks[1] |= MCI_STATUS_OVER;
454     }
455 
456     emit_guest_memory_failure(MEMORY_FAILURE_ACTION_INJECT, ar, recursive);
457 }
458 
459 void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank,
460                         uint64_t status, uint64_t mcg_status, uint64_t addr,
461                         uint64_t misc, int flags)
462 {
463     CPUState *cs = CPU(cpu);
464     CPUX86State *cenv = &cpu->env;
465     MCEInjectionParams params = {
466         .mon = mon,
467         .bank = bank,
468         .status = status,
469         .mcg_status = mcg_status,
470         .addr = addr,
471         .misc = misc,
472         .flags = flags,
473     };
474     unsigned bank_num = cenv->mcg_cap & 0xff;
475 
476     if (!cenv->mcg_cap) {
477         monitor_printf(mon, "MCE injection not supported\n");
478         return;
479     }
480     if (bank >= bank_num) {
481         monitor_printf(mon, "Invalid MCE bank number\n");
482         return;
483     }
484     if (!(status & MCI_STATUS_VAL)) {
485         monitor_printf(mon, "Invalid MCE status code\n");
486         return;
487     }
488     if ((flags & MCE_INJECT_BROADCAST)
489         && !cpu_x86_support_mca_broadcast(cenv)) {
490         monitor_printf(mon, "Guest CPU does not support MCA broadcast\n");
491         return;
492     }
493 
494     run_on_cpu(cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
495     if (flags & MCE_INJECT_BROADCAST) {
496         CPUState *other_cs;
497 
498         params.bank = 1;
499         params.status = MCI_STATUS_VAL | MCI_STATUS_UC;
500         params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
501         params.addr = 0;
502         params.misc = 0;
503         CPU_FOREACH(other_cs) {
504             if (other_cs == cs) {
505                 continue;
506             }
507             run_on_cpu(other_cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
508         }
509     }
510 }
511 
512 static inline target_ulong get_memio_eip(CPUX86State *env)
513 {
514 #ifdef CONFIG_TCG
515     uint64_t data[TARGET_INSN_START_WORDS];
516     CPUState *cs = env_cpu(env);
517 
518     if (!cpu_unwind_state_data(cs, cs->mem_io_pc, data)) {
519         return env->eip;
520     }
521 
522     /* Per x86_restore_state_to_opc. */
523     if (cs->tcg_cflags & CF_PCREL) {
524         return (env->eip & TARGET_PAGE_MASK) | data[0];
525     } else {
526         return data[0] - env->segs[R_CS].base;
527     }
528 #else
529     qemu_build_not_reached();
530 #endif
531 }
532 
533 void cpu_report_tpr_access(CPUX86State *env, TPRAccess access)
534 {
535     X86CPU *cpu = env_archcpu(env);
536     CPUState *cs = env_cpu(env);
537 
538     if (kvm_enabled() || whpx_enabled() || nvmm_enabled()) {
539         env->tpr_access_type = access;
540 
541         cpu_interrupt(cs, CPU_INTERRUPT_TPR);
542     } else if (tcg_enabled()) {
543         target_ulong eip = get_memio_eip(env);
544 
545         apic_handle_tpr_access_report(cpu->apic_state, eip, access);
546     }
547 }
548 #endif /* !CONFIG_USER_ONLY */
549 
550 int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector,
551                             target_ulong *base, unsigned int *limit,
552                             unsigned int *flags)
553 {
554     CPUState *cs = env_cpu(env);
555     SegmentCache *dt;
556     target_ulong ptr;
557     uint32_t e1, e2;
558     int index;
559 
560     if (selector & 0x4)
561         dt = &env->ldt;
562     else
563         dt = &env->gdt;
564     index = selector & ~7;
565     ptr = dt->base + index;
566     if ((index + 7) > dt->limit
567         || cpu_memory_rw_debug(cs, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0
568         || cpu_memory_rw_debug(cs, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0)
569         return 0;
570 
571     *base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
572     *limit = (e1 & 0xffff) | (e2 & 0x000f0000);
573     if (e2 & DESC_G_MASK)
574         *limit = (*limit << 12) | 0xfff;
575     *flags = e2;
576 
577     return 1;
578 }
579 
580 #if !defined(CONFIG_USER_ONLY)
581 void do_cpu_init(X86CPU *cpu)
582 {
583     CPUState *cs = CPU(cpu);
584     CPUX86State *env = &cpu->env;
585     CPUX86State *save = g_new(CPUX86State, 1);
586     int sipi = cs->interrupt_request & CPU_INTERRUPT_SIPI;
587 
588     *save = *env;
589 
590     cpu_reset(cs);
591     cs->interrupt_request = sipi;
592     memcpy(&env->start_init_save, &save->start_init_save,
593            offsetof(CPUX86State, end_init_save) -
594            offsetof(CPUX86State, start_init_save));
595     g_free(save);
596 
597     if (kvm_enabled()) {
598         kvm_arch_do_init_vcpu(cpu);
599     }
600     apic_init_reset(cpu->apic_state);
601 }
602 
603 void do_cpu_sipi(X86CPU *cpu)
604 {
605     apic_sipi(cpu->apic_state);
606 }
607 #else
608 void do_cpu_init(X86CPU *cpu)
609 {
610 }
611 void do_cpu_sipi(X86CPU *cpu)
612 {
613 }
614 #endif
615 
616 #ifndef CONFIG_USER_ONLY
617 
618 void cpu_load_efer(CPUX86State *env, uint64_t val)
619 {
620     env->efer = val;
621     env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
622     if (env->efer & MSR_EFER_LMA) {
623         env->hflags |= HF_LMA_MASK;
624     }
625     if (env->efer & MSR_EFER_SVME) {
626         env->hflags |= HF_SVME_MASK;
627     }
628 }
629 
630 uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr)
631 {
632     X86CPU *cpu = X86_CPU(cs);
633     CPUX86State *env = &cpu->env;
634     MemTxAttrs attrs = cpu_get_mem_attrs(env);
635     AddressSpace *as = cpu_addressspace(cs, attrs);
636 
637     return address_space_ldub(as, addr, attrs, NULL);
638 }
639 
640 uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr)
641 {
642     X86CPU *cpu = X86_CPU(cs);
643     CPUX86State *env = &cpu->env;
644     MemTxAttrs attrs = cpu_get_mem_attrs(env);
645     AddressSpace *as = cpu_addressspace(cs, attrs);
646 
647     return address_space_lduw(as, addr, attrs, NULL);
648 }
649 
650 uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr)
651 {
652     X86CPU *cpu = X86_CPU(cs);
653     CPUX86State *env = &cpu->env;
654     MemTxAttrs attrs = cpu_get_mem_attrs(env);
655     AddressSpace *as = cpu_addressspace(cs, attrs);
656 
657     return address_space_ldl(as, addr, attrs, NULL);
658 }
659 
660 uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr)
661 {
662     X86CPU *cpu = X86_CPU(cs);
663     CPUX86State *env = &cpu->env;
664     MemTxAttrs attrs = cpu_get_mem_attrs(env);
665     AddressSpace *as = cpu_addressspace(cs, attrs);
666 
667     return address_space_ldq(as, addr, attrs, NULL);
668 }
669 
670 void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val)
671 {
672     X86CPU *cpu = X86_CPU(cs);
673     CPUX86State *env = &cpu->env;
674     MemTxAttrs attrs = cpu_get_mem_attrs(env);
675     AddressSpace *as = cpu_addressspace(cs, attrs);
676 
677     address_space_stb(as, addr, val, attrs, NULL);
678 }
679 
680 void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val)
681 {
682     X86CPU *cpu = X86_CPU(cs);
683     CPUX86State *env = &cpu->env;
684     MemTxAttrs attrs = cpu_get_mem_attrs(env);
685     AddressSpace *as = cpu_addressspace(cs, attrs);
686 
687     address_space_stl_notdirty(as, addr, val, attrs, NULL);
688 }
689 
690 void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val)
691 {
692     X86CPU *cpu = X86_CPU(cs);
693     CPUX86State *env = &cpu->env;
694     MemTxAttrs attrs = cpu_get_mem_attrs(env);
695     AddressSpace *as = cpu_addressspace(cs, attrs);
696 
697     address_space_stw(as, addr, val, attrs, NULL);
698 }
699 
700 void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val)
701 {
702     X86CPU *cpu = X86_CPU(cs);
703     CPUX86State *env = &cpu->env;
704     MemTxAttrs attrs = cpu_get_mem_attrs(env);
705     AddressSpace *as = cpu_addressspace(cs, attrs);
706 
707     address_space_stl(as, addr, val, attrs, NULL);
708 }
709 
710 void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val)
711 {
712     X86CPU *cpu = X86_CPU(cs);
713     CPUX86State *env = &cpu->env;
714     MemTxAttrs attrs = cpu_get_mem_attrs(env);
715     AddressSpace *as = cpu_addressspace(cs, attrs);
716 
717     address_space_stq(as, addr, val, attrs, NULL);
718 }
719 #endif
720