xref: /openbmc/qemu/target/i386/helper.c (revision 542b10bd)
1 /*
2  *  i386 helpers (without register variable usage)
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qapi/qapi-events-run-state.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "sysemu/runstate.h"
25 #ifndef CONFIG_USER_ONLY
26 #include "sysemu/hw_accel.h"
27 #include "monitor/monitor.h"
28 #include "kvm/kvm_i386.h"
29 #endif
30 #include "qemu/log.h"
31 #ifdef CONFIG_TCG
32 #include "tcg/insn-start-words.h"
33 #endif
34 
35 void cpu_sync_avx_hflag(CPUX86State *env)
36 {
37     if ((env->cr[4] & CR4_OSXSAVE_MASK)
38         && (env->xcr0 & (XSTATE_SSE_MASK | XSTATE_YMM_MASK))
39             == (XSTATE_SSE_MASK | XSTATE_YMM_MASK)) {
40         env->hflags |= HF_AVX_EN_MASK;
41     } else{
42         env->hflags &= ~HF_AVX_EN_MASK;
43     }
44 }
45 
46 void cpu_sync_bndcs_hflags(CPUX86State *env)
47 {
48     uint32_t hflags = env->hflags;
49     uint32_t hflags2 = env->hflags2;
50     uint32_t bndcsr;
51 
52     if ((hflags & HF_CPL_MASK) == 3) {
53         bndcsr = env->bndcs_regs.cfgu;
54     } else {
55         bndcsr = env->msr_bndcfgs;
56     }
57 
58     if ((env->cr[4] & CR4_OSXSAVE_MASK)
59         && (env->xcr0 & XSTATE_BNDCSR_MASK)
60         && (bndcsr & BNDCFG_ENABLE)) {
61         hflags |= HF_MPX_EN_MASK;
62     } else {
63         hflags &= ~HF_MPX_EN_MASK;
64     }
65 
66     if (bndcsr & BNDCFG_BNDPRESERVE) {
67         hflags2 |= HF2_MPX_PR_MASK;
68     } else {
69         hflags2 &= ~HF2_MPX_PR_MASK;
70     }
71 
72     env->hflags = hflags;
73     env->hflags2 = hflags2;
74 }
75 
76 static void cpu_x86_version(CPUX86State *env, int *family, int *model)
77 {
78     int cpuver = env->cpuid_version;
79 
80     if (family == NULL || model == NULL) {
81         return;
82     }
83 
84     *family = (cpuver >> 8) & 0x0f;
85     *model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f);
86 }
87 
88 /* Broadcast MCA signal for processor version 06H_EH and above */
89 int cpu_x86_support_mca_broadcast(CPUX86State *env)
90 {
91     int family = 0;
92     int model = 0;
93 
94     cpu_x86_version(env, &family, &model);
95     if ((family == 6 && model >= 14) || family > 6) {
96         return 1;
97     }
98 
99     return 0;
100 }
101 
102 /***********************************************************/
103 /* x86 mmu */
104 /* XXX: add PGE support */
105 
106 void x86_cpu_set_a20(X86CPU *cpu, int a20_state)
107 {
108     CPUX86State *env = &cpu->env;
109 
110     a20_state = (a20_state != 0);
111     if (a20_state != ((env->a20_mask >> 20) & 1)) {
112         CPUState *cs = CPU(cpu);
113 
114         qemu_log_mask(CPU_LOG_MMU, "A20 update: a20=%d\n", a20_state);
115         /* if the cpu is currently executing code, we must unlink it and
116            all the potentially executing TB */
117         cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
118 
119         /* when a20 is changed, all the MMU mappings are invalid, so
120            we must flush everything */
121         tlb_flush(cs);
122         env->a20_mask = ~(1 << 20) | (a20_state << 20);
123     }
124 }
125 
126 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0)
127 {
128     X86CPU *cpu = env_archcpu(env);
129     int pe_state;
130 
131     qemu_log_mask(CPU_LOG_MMU, "CR0 update: CR0=0x%08x\n", new_cr0);
132     if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) !=
133         (env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) {
134         tlb_flush(CPU(cpu));
135     }
136 
137 #ifdef TARGET_X86_64
138     if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) &&
139         (env->efer & MSR_EFER_LME)) {
140         /* enter in long mode */
141         /* XXX: generate an exception */
142         if (!(env->cr[4] & CR4_PAE_MASK))
143             return;
144         env->efer |= MSR_EFER_LMA;
145         env->hflags |= HF_LMA_MASK;
146     } else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) &&
147                (env->efer & MSR_EFER_LMA)) {
148         /* exit long mode */
149         env->efer &= ~MSR_EFER_LMA;
150         env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
151         env->eip &= 0xffffffff;
152     }
153 #endif
154     env->cr[0] = new_cr0 | CR0_ET_MASK;
155 
156     /* update PE flag in hidden flags */
157     pe_state = (env->cr[0] & CR0_PE_MASK);
158     env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT);
159     /* ensure that ADDSEG is always set in real mode */
160     env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT);
161     /* update FPU flags */
162     env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
163         ((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
164 }
165 
166 /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
167    the PDPT */
168 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3)
169 {
170     env->cr[3] = new_cr3;
171     if (env->cr[0] & CR0_PG_MASK) {
172         qemu_log_mask(CPU_LOG_MMU,
173                         "CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3);
174         tlb_flush(env_cpu(env));
175     }
176 }
177 
178 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4)
179 {
180     uint32_t hflags;
181 
182 #if defined(DEBUG_MMU)
183     printf("CR4 update: %08x -> %08x\n", (uint32_t)env->cr[4], new_cr4);
184 #endif
185     if ((new_cr4 ^ env->cr[4]) &
186         (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK |
187          CR4_SMEP_MASK | CR4_SMAP_MASK | CR4_LA57_MASK)) {
188         tlb_flush(env_cpu(env));
189     }
190 
191     /* Clear bits we're going to recompute.  */
192     hflags = env->hflags & ~(HF_OSFXSR_MASK | HF_SMAP_MASK | HF_UMIP_MASK);
193 
194     /* SSE handling */
195     if (!(env->features[FEAT_1_EDX] & CPUID_SSE)) {
196         new_cr4 &= ~CR4_OSFXSR_MASK;
197     }
198     if (new_cr4 & CR4_OSFXSR_MASK) {
199         hflags |= HF_OSFXSR_MASK;
200     }
201 
202     if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_SMAP)) {
203         new_cr4 &= ~CR4_SMAP_MASK;
204     }
205     if (new_cr4 & CR4_SMAP_MASK) {
206         hflags |= HF_SMAP_MASK;
207     }
208     if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_UMIP)) {
209         new_cr4 &= ~CR4_UMIP_MASK;
210     }
211     if (new_cr4 & CR4_UMIP_MASK) {
212         hflags |= HF_UMIP_MASK;
213     }
214 
215     if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKU)) {
216         new_cr4 &= ~CR4_PKE_MASK;
217     }
218     if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKS)) {
219         new_cr4 &= ~CR4_PKS_MASK;
220     }
221 
222     env->cr[4] = new_cr4;
223     env->hflags = hflags;
224 
225     cpu_sync_bndcs_hflags(env);
226     cpu_sync_avx_hflag(env);
227 }
228 
229 #if !defined(CONFIG_USER_ONLY)
230 hwaddr x86_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
231                                          MemTxAttrs *attrs)
232 {
233     X86CPU *cpu = X86_CPU(cs);
234     CPUX86State *env = &cpu->env;
235     target_ulong pde_addr, pte_addr;
236     uint64_t pte;
237     int32_t a20_mask;
238     uint32_t page_offset;
239     int page_size;
240 
241     *attrs = cpu_get_mem_attrs(env);
242 
243     a20_mask = x86_get_a20_mask(env);
244     if (!(env->cr[0] & CR0_PG_MASK)) {
245         pte = addr & a20_mask;
246         page_size = 4096;
247     } else if (env->cr[4] & CR4_PAE_MASK) {
248         target_ulong pdpe_addr;
249         uint64_t pde, pdpe;
250 
251 #ifdef TARGET_X86_64
252         if (env->hflags & HF_LMA_MASK) {
253             bool la57 = env->cr[4] & CR4_LA57_MASK;
254             uint64_t pml5e_addr, pml5e;
255             uint64_t pml4e_addr, pml4e;
256             int32_t sext;
257 
258             /* test virtual address sign extension */
259             sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47;
260             if (sext != 0 && sext != -1) {
261                 return -1;
262             }
263 
264             if (la57) {
265                 pml5e_addr = ((env->cr[3] & ~0xfff) +
266                         (((addr >> 48) & 0x1ff) << 3)) & a20_mask;
267                 pml5e = x86_ldq_phys(cs, pml5e_addr);
268                 if (!(pml5e & PG_PRESENT_MASK)) {
269                     return -1;
270                 }
271             } else {
272                 pml5e = env->cr[3];
273             }
274 
275             pml4e_addr = ((pml5e & PG_ADDRESS_MASK) +
276                     (((addr >> 39) & 0x1ff) << 3)) & a20_mask;
277             pml4e = x86_ldq_phys(cs, pml4e_addr);
278             if (!(pml4e & PG_PRESENT_MASK)) {
279                 return -1;
280             }
281             pdpe_addr = ((pml4e & PG_ADDRESS_MASK) +
282                          (((addr >> 30) & 0x1ff) << 3)) & a20_mask;
283             pdpe = x86_ldq_phys(cs, pdpe_addr);
284             if (!(pdpe & PG_PRESENT_MASK)) {
285                 return -1;
286             }
287             if (pdpe & PG_PSE_MASK) {
288                 page_size = 1024 * 1024 * 1024;
289                 pte = pdpe;
290                 goto out;
291             }
292 
293         } else
294 #endif
295         {
296             pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
297                 a20_mask;
298             pdpe = x86_ldq_phys(cs, pdpe_addr);
299             if (!(pdpe & PG_PRESENT_MASK))
300                 return -1;
301         }
302 
303         pde_addr = ((pdpe & PG_ADDRESS_MASK) +
304                     (((addr >> 21) & 0x1ff) << 3)) & a20_mask;
305         pde = x86_ldq_phys(cs, pde_addr);
306         if (!(pde & PG_PRESENT_MASK)) {
307             return -1;
308         }
309         if (pde & PG_PSE_MASK) {
310             /* 2 MB page */
311             page_size = 2048 * 1024;
312             pte = pde;
313         } else {
314             /* 4 KB page */
315             pte_addr = ((pde & PG_ADDRESS_MASK) +
316                         (((addr >> 12) & 0x1ff) << 3)) & a20_mask;
317             page_size = 4096;
318             pte = x86_ldq_phys(cs, pte_addr);
319         }
320         if (!(pte & PG_PRESENT_MASK)) {
321             return -1;
322         }
323     } else {
324         uint32_t pde;
325 
326         /* page directory entry */
327         pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & a20_mask;
328         pde = x86_ldl_phys(cs, pde_addr);
329         if (!(pde & PG_PRESENT_MASK))
330             return -1;
331         if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
332             pte = pde | ((pde & 0x1fe000LL) << (32 - 13));
333             page_size = 4096 * 1024;
334         } else {
335             /* page directory entry */
336             pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & a20_mask;
337             pte = x86_ldl_phys(cs, pte_addr);
338             if (!(pte & PG_PRESENT_MASK)) {
339                 return -1;
340             }
341             page_size = 4096;
342         }
343         pte = pte & a20_mask;
344     }
345 
346 #ifdef TARGET_X86_64
347 out:
348 #endif
349     pte &= PG_ADDRESS_MASK & ~(page_size - 1);
350     page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
351     return pte | page_offset;
352 }
353 
354 typedef struct MCEInjectionParams {
355     Monitor *mon;
356     int bank;
357     uint64_t status;
358     uint64_t mcg_status;
359     uint64_t addr;
360     uint64_t misc;
361     int flags;
362 } MCEInjectionParams;
363 
364 static void emit_guest_memory_failure(MemoryFailureAction action, bool ar,
365                                       bool recursive)
366 {
367     MemoryFailureFlags mff = {.action_required = ar, .recursive = recursive};
368 
369     qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_GUEST, action,
370                                    &mff);
371 }
372 
373 static void do_inject_x86_mce(CPUState *cs, run_on_cpu_data data)
374 {
375     MCEInjectionParams *params = data.host_ptr;
376     X86CPU *cpu = X86_CPU(cs);
377     CPUX86State *cenv = &cpu->env;
378     uint64_t *banks = cenv->mce_banks + 4 * params->bank;
379     g_autofree char *msg = NULL;
380     bool need_reset = false;
381     bool recursive;
382     bool ar = !!(params->status & MCI_STATUS_AR);
383 
384     cpu_synchronize_state(cs);
385     recursive = !!(cenv->mcg_status & MCG_STATUS_MCIP);
386 
387     /*
388      * If there is an MCE exception being processed, ignore this SRAO MCE
389      * unless unconditional injection was requested.
390      */
391     if (!(params->flags & MCE_INJECT_UNCOND_AO) && !ar && recursive) {
392         emit_guest_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, ar, recursive);
393         return;
394     }
395 
396     if (params->status & MCI_STATUS_UC) {
397         /*
398          * if MSR_MCG_CTL is not all 1s, the uncorrected error
399          * reporting is disabled
400          */
401         if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) {
402             monitor_printf(params->mon,
403                            "CPU %d: Uncorrected error reporting disabled\n",
404                            cs->cpu_index);
405             return;
406         }
407 
408         /*
409          * if MSR_MCi_CTL is not all 1s, the uncorrected error
410          * reporting is disabled for the bank
411          */
412         if (banks[0] != ~(uint64_t)0) {
413             monitor_printf(params->mon,
414                            "CPU %d: Uncorrected error reporting disabled for"
415                            " bank %d\n",
416                            cs->cpu_index, params->bank);
417             return;
418         }
419 
420         if (!(cenv->cr[4] & CR4_MCE_MASK)) {
421             need_reset = true;
422             msg = g_strdup_printf("CPU %d: MCE capability is not enabled, "
423                                   "raising triple fault", cs->cpu_index);
424         } else if (recursive) {
425             need_reset = true;
426             msg = g_strdup_printf("CPU %d: Previous MCE still in progress, "
427                                   "raising triple fault", cs->cpu_index);
428         }
429 
430         if (need_reset) {
431             emit_guest_memory_failure(MEMORY_FAILURE_ACTION_RESET, ar,
432                                       recursive);
433             monitor_puts(params->mon, msg);
434             qemu_log_mask(CPU_LOG_RESET, "%s\n", msg);
435             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
436             return;
437         }
438 
439         if (banks[1] & MCI_STATUS_VAL) {
440             params->status |= MCI_STATUS_OVER;
441         }
442         banks[2] = params->addr;
443         banks[3] = params->misc;
444         cenv->mcg_status = params->mcg_status;
445         banks[1] = params->status;
446         cpu_interrupt(cs, CPU_INTERRUPT_MCE);
447     } else if (!(banks[1] & MCI_STATUS_VAL)
448                || !(banks[1] & MCI_STATUS_UC)) {
449         if (banks[1] & MCI_STATUS_VAL) {
450             params->status |= MCI_STATUS_OVER;
451         }
452         banks[2] = params->addr;
453         banks[3] = params->misc;
454         banks[1] = params->status;
455     } else {
456         banks[1] |= MCI_STATUS_OVER;
457     }
458 
459     emit_guest_memory_failure(MEMORY_FAILURE_ACTION_INJECT, ar, recursive);
460 }
461 
462 void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank,
463                         uint64_t status, uint64_t mcg_status, uint64_t addr,
464                         uint64_t misc, int flags)
465 {
466     CPUState *cs = CPU(cpu);
467     CPUX86State *cenv = &cpu->env;
468     MCEInjectionParams params = {
469         .mon = mon,
470         .bank = bank,
471         .status = status,
472         .mcg_status = mcg_status,
473         .addr = addr,
474         .misc = misc,
475         .flags = flags,
476     };
477     unsigned bank_num = cenv->mcg_cap & 0xff;
478 
479     if (!cenv->mcg_cap) {
480         monitor_printf(mon, "MCE injection not supported\n");
481         return;
482     }
483     if (bank >= bank_num) {
484         monitor_printf(mon, "Invalid MCE bank number\n");
485         return;
486     }
487     if (!(status & MCI_STATUS_VAL)) {
488         monitor_printf(mon, "Invalid MCE status code\n");
489         return;
490     }
491     if ((flags & MCE_INJECT_BROADCAST)
492         && !cpu_x86_support_mca_broadcast(cenv)) {
493         monitor_printf(mon, "Guest CPU does not support MCA broadcast\n");
494         return;
495     }
496 
497     run_on_cpu(cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
498     if (flags & MCE_INJECT_BROADCAST) {
499         CPUState *other_cs;
500 
501         params.bank = 1;
502         params.status = MCI_STATUS_VAL | MCI_STATUS_UC;
503         params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
504         params.addr = 0;
505         params.misc = 0;
506         CPU_FOREACH(other_cs) {
507             if (other_cs == cs) {
508                 continue;
509             }
510             run_on_cpu(other_cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
511         }
512     }
513 }
514 
515 static inline target_ulong get_memio_eip(CPUX86State *env)
516 {
517 #ifdef CONFIG_TCG
518     uint64_t data[TARGET_INSN_START_WORDS];
519     CPUState *cs = env_cpu(env);
520 
521     if (!cpu_unwind_state_data(cs, cs->mem_io_pc, data)) {
522         return env->eip;
523     }
524 
525     /* Per x86_restore_state_to_opc. */
526     if (cs->tcg_cflags & CF_PCREL) {
527         return (env->eip & TARGET_PAGE_MASK) | data[0];
528     } else {
529         return data[0] - env->segs[R_CS].base;
530     }
531 #else
532     qemu_build_not_reached();
533 #endif
534 }
535 
536 void cpu_report_tpr_access(CPUX86State *env, TPRAccess access)
537 {
538     X86CPU *cpu = env_archcpu(env);
539     CPUState *cs = env_cpu(env);
540 
541     if (kvm_enabled() || whpx_enabled() || nvmm_enabled()) {
542         env->tpr_access_type = access;
543 
544         cpu_interrupt(cs, CPU_INTERRUPT_TPR);
545     } else if (tcg_enabled()) {
546         target_ulong eip = get_memio_eip(env);
547 
548         apic_handle_tpr_access_report(cpu->apic_state, eip, access);
549     }
550 }
551 #endif /* !CONFIG_USER_ONLY */
552 
553 int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector,
554                             target_ulong *base, unsigned int *limit,
555                             unsigned int *flags)
556 {
557     CPUState *cs = env_cpu(env);
558     SegmentCache *dt;
559     target_ulong ptr;
560     uint32_t e1, e2;
561     int index;
562 
563     if (selector & 0x4)
564         dt = &env->ldt;
565     else
566         dt = &env->gdt;
567     index = selector & ~7;
568     ptr = dt->base + index;
569     if ((index + 7) > dt->limit
570         || cpu_memory_rw_debug(cs, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0
571         || cpu_memory_rw_debug(cs, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0)
572         return 0;
573 
574     *base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
575     *limit = (e1 & 0xffff) | (e2 & 0x000f0000);
576     if (e2 & DESC_G_MASK)
577         *limit = (*limit << 12) | 0xfff;
578     *flags = e2;
579 
580     return 1;
581 }
582 
583 void do_cpu_init(X86CPU *cpu)
584 {
585 #if !defined(CONFIG_USER_ONLY)
586     CPUState *cs = CPU(cpu);
587     CPUX86State *env = &cpu->env;
588     CPUX86State *save = g_new(CPUX86State, 1);
589     int sipi = cs->interrupt_request & CPU_INTERRUPT_SIPI;
590 
591     *save = *env;
592 
593     cpu_reset(cs);
594     cs->interrupt_request = sipi;
595     memcpy(&env->start_init_save, &save->start_init_save,
596            offsetof(CPUX86State, end_init_save) -
597            offsetof(CPUX86State, start_init_save));
598     g_free(save);
599 
600     if (kvm_enabled()) {
601         kvm_arch_do_init_vcpu(cpu);
602     }
603     apic_init_reset(cpu->apic_state);
604 #endif /* CONFIG_USER_ONLY */
605 }
606 
607 #ifndef CONFIG_USER_ONLY
608 
609 void do_cpu_sipi(X86CPU *cpu)
610 {
611     apic_sipi(cpu->apic_state);
612 }
613 
614 void cpu_load_efer(CPUX86State *env, uint64_t val)
615 {
616     env->efer = val;
617     env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
618     if (env->efer & MSR_EFER_LMA) {
619         env->hflags |= HF_LMA_MASK;
620     }
621     if (env->efer & MSR_EFER_SVME) {
622         env->hflags |= HF_SVME_MASK;
623     }
624 }
625 
626 uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr)
627 {
628     X86CPU *cpu = X86_CPU(cs);
629     CPUX86State *env = &cpu->env;
630     MemTxAttrs attrs = cpu_get_mem_attrs(env);
631     AddressSpace *as = cpu_addressspace(cs, attrs);
632 
633     return address_space_ldub(as, addr, attrs, NULL);
634 }
635 
636 uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr)
637 {
638     X86CPU *cpu = X86_CPU(cs);
639     CPUX86State *env = &cpu->env;
640     MemTxAttrs attrs = cpu_get_mem_attrs(env);
641     AddressSpace *as = cpu_addressspace(cs, attrs);
642 
643     return address_space_lduw(as, addr, attrs, NULL);
644 }
645 
646 uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr)
647 {
648     X86CPU *cpu = X86_CPU(cs);
649     CPUX86State *env = &cpu->env;
650     MemTxAttrs attrs = cpu_get_mem_attrs(env);
651     AddressSpace *as = cpu_addressspace(cs, attrs);
652 
653     return address_space_ldl(as, addr, attrs, NULL);
654 }
655 
656 uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr)
657 {
658     X86CPU *cpu = X86_CPU(cs);
659     CPUX86State *env = &cpu->env;
660     MemTxAttrs attrs = cpu_get_mem_attrs(env);
661     AddressSpace *as = cpu_addressspace(cs, attrs);
662 
663     return address_space_ldq(as, addr, attrs, NULL);
664 }
665 
666 void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val)
667 {
668     X86CPU *cpu = X86_CPU(cs);
669     CPUX86State *env = &cpu->env;
670     MemTxAttrs attrs = cpu_get_mem_attrs(env);
671     AddressSpace *as = cpu_addressspace(cs, attrs);
672 
673     address_space_stb(as, addr, val, attrs, NULL);
674 }
675 
676 void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val)
677 {
678     X86CPU *cpu = X86_CPU(cs);
679     CPUX86State *env = &cpu->env;
680     MemTxAttrs attrs = cpu_get_mem_attrs(env);
681     AddressSpace *as = cpu_addressspace(cs, attrs);
682 
683     address_space_stl_notdirty(as, addr, val, attrs, NULL);
684 }
685 
686 void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val)
687 {
688     X86CPU *cpu = X86_CPU(cs);
689     CPUX86State *env = &cpu->env;
690     MemTxAttrs attrs = cpu_get_mem_attrs(env);
691     AddressSpace *as = cpu_addressspace(cs, attrs);
692 
693     address_space_stw(as, addr, val, attrs, NULL);
694 }
695 
696 void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val)
697 {
698     X86CPU *cpu = X86_CPU(cs);
699     CPUX86State *env = &cpu->env;
700     MemTxAttrs attrs = cpu_get_mem_attrs(env);
701     AddressSpace *as = cpu_addressspace(cs, attrs);
702 
703     address_space_stl(as, addr, val, attrs, NULL);
704 }
705 
706 void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val)
707 {
708     X86CPU *cpu = X86_CPU(cs);
709     CPUX86State *env = &cpu->env;
710     MemTxAttrs attrs = cpu_get_mem_attrs(env);
711     AddressSpace *as = cpu_addressspace(cs, attrs);
712 
713     address_space_stq(as, addr, val, attrs, NULL);
714 }
715 #endif
716