xref: /openbmc/qemu/target/i386/helper.c (revision 22a7c2f239229b2ee9fcbac03cb598d9aebb9196)
1 /*
2  *  i386 helpers (without register variable usage)
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qapi/qapi-events-run-state.h"
22 #include "cpu.h"
23 #include "exec/cputlb.h"
24 #include "exec/translation-block.h"
25 #include "system/runstate.h"
26 #ifndef CONFIG_USER_ONLY
27 #include "system/hw_accel.h"
28 #include "system/memory.h"
29 #include "monitor/monitor.h"
30 #include "kvm/kvm_i386.h"
31 #endif
32 #include "qemu/log.h"
33 #ifdef CONFIG_TCG
34 #include "tcg/insn-start-words.h"
35 #endif
36 
37 void cpu_sync_avx_hflag(CPUX86State *env)
38 {
39     if ((env->cr[4] & CR4_OSXSAVE_MASK)
40         && (env->xcr0 & (XSTATE_SSE_MASK | XSTATE_YMM_MASK))
41             == (XSTATE_SSE_MASK | XSTATE_YMM_MASK)) {
42         env->hflags |= HF_AVX_EN_MASK;
43     } else{
44         env->hflags &= ~HF_AVX_EN_MASK;
45     }
46 }
47 
48 void cpu_sync_bndcs_hflags(CPUX86State *env)
49 {
50     uint32_t hflags = env->hflags;
51     uint32_t hflags2 = env->hflags2;
52     uint32_t bndcsr;
53 
54     if ((hflags & HF_CPL_MASK) == 3) {
55         bndcsr = env->bndcs_regs.cfgu;
56     } else {
57         bndcsr = env->msr_bndcfgs;
58     }
59 
60     if ((env->cr[4] & CR4_OSXSAVE_MASK)
61         && (env->xcr0 & XSTATE_BNDCSR_MASK)
62         && (bndcsr & BNDCFG_ENABLE)) {
63         hflags |= HF_MPX_EN_MASK;
64     } else {
65         hflags &= ~HF_MPX_EN_MASK;
66     }
67 
68     if (bndcsr & BNDCFG_BNDPRESERVE) {
69         hflags2 |= HF2_MPX_PR_MASK;
70     } else {
71         hflags2 &= ~HF2_MPX_PR_MASK;
72     }
73 
74     env->hflags = hflags;
75     env->hflags2 = hflags2;
76 }
77 
78 static void cpu_x86_version(CPUX86State *env, int *family, int *model)
79 {
80     int cpuver = env->cpuid_version;
81 
82     if (family == NULL || model == NULL) {
83         return;
84     }
85 
86     *family = (cpuver >> 8) & 0x0f;
87     *model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f);
88 }
89 
90 /* Broadcast MCA signal for processor version 06H_EH and above */
91 int cpu_x86_support_mca_broadcast(CPUX86State *env)
92 {
93     int family = 0;
94     int model = 0;
95 
96     if (IS_AMD_CPU(env)) {
97         return 0;
98     }
99 
100     cpu_x86_version(env, &family, &model);
101     if ((family == 6 && model >= 14) || family > 6) {
102         return 1;
103     }
104 
105     return 0;
106 }
107 
108 /***********************************************************/
109 /* x86 mmu */
110 /* XXX: add PGE support */
111 
112 void x86_cpu_set_a20(X86CPU *cpu, int a20_state)
113 {
114     CPUX86State *env = &cpu->env;
115 
116     a20_state = (a20_state != 0);
117     if (a20_state != ((env->a20_mask >> 20) & 1)) {
118         CPUState *cs = CPU(cpu);
119 
120         qemu_log_mask(CPU_LOG_MMU, "A20 update: a20=%d\n", a20_state);
121         /* if the cpu is currently executing code, we must unlink it and
122            all the potentially executing TB */
123         cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
124 
125         /* when a20 is changed, all the MMU mappings are invalid, so
126            we must flush everything */
127         tlb_flush(cs);
128         env->a20_mask = ~(1 << 20) | (a20_state << 20);
129     }
130 }
131 
132 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0)
133 {
134     X86CPU *cpu = env_archcpu(env);
135     int pe_state;
136 
137     qemu_log_mask(CPU_LOG_MMU, "CR0 update: CR0=0x%08x\n", new_cr0);
138     if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) !=
139         (env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) {
140         tlb_flush(CPU(cpu));
141     }
142 
143 #ifdef TARGET_X86_64
144     if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) &&
145         (env->efer & MSR_EFER_LME)) {
146         /* enter in long mode */
147         /* XXX: generate an exception */
148         if (!(env->cr[4] & CR4_PAE_MASK))
149             return;
150         env->efer |= MSR_EFER_LMA;
151         env->hflags |= HF_LMA_MASK;
152     } else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) &&
153                (env->efer & MSR_EFER_LMA)) {
154         /* exit long mode */
155         env->efer &= ~MSR_EFER_LMA;
156         env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
157         env->eip &= 0xffffffff;
158     }
159 #endif
160     env->cr[0] = new_cr0 | CR0_ET_MASK;
161 
162     /* update PE flag in hidden flags */
163     pe_state = (env->cr[0] & CR0_PE_MASK);
164     env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT);
165     /* ensure that ADDSEG is always set in real mode */
166     env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT);
167     /* update FPU flags */
168     env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
169         ((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
170 }
171 
172 /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
173    the PDPT */
174 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3)
175 {
176     env->cr[3] = new_cr3;
177     if (env->cr[0] & CR0_PG_MASK) {
178         qemu_log_mask(CPU_LOG_MMU,
179                         "CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3);
180         tlb_flush(env_cpu(env));
181     }
182 }
183 
184 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4)
185 {
186     uint32_t hflags;
187 
188 #if defined(DEBUG_MMU)
189     printf("CR4 update: %08x -> %08x\n", (uint32_t)env->cr[4], new_cr4);
190 #endif
191     if ((new_cr4 ^ env->cr[4]) &
192         (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK |
193          CR4_SMEP_MASK | CR4_SMAP_MASK | CR4_LA57_MASK)) {
194         tlb_flush(env_cpu(env));
195     }
196 
197     /* Clear bits we're going to recompute.  */
198     hflags = env->hflags & ~(HF_OSFXSR_MASK | HF_SMAP_MASK | HF_UMIP_MASK);
199 
200     /* SSE handling */
201     if (!(env->features[FEAT_1_EDX] & CPUID_SSE)) {
202         new_cr4 &= ~CR4_OSFXSR_MASK;
203     }
204     if (new_cr4 & CR4_OSFXSR_MASK) {
205         hflags |= HF_OSFXSR_MASK;
206     }
207 
208     if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_SMAP)) {
209         new_cr4 &= ~CR4_SMAP_MASK;
210     }
211     if (new_cr4 & CR4_SMAP_MASK) {
212         hflags |= HF_SMAP_MASK;
213     }
214     if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_UMIP)) {
215         new_cr4 &= ~CR4_UMIP_MASK;
216     }
217     if (new_cr4 & CR4_UMIP_MASK) {
218         hflags |= HF_UMIP_MASK;
219     }
220 
221     if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKU)) {
222         new_cr4 &= ~CR4_PKE_MASK;
223     }
224     if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKS)) {
225         new_cr4 &= ~CR4_PKS_MASK;
226     }
227 
228     if (!(env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_LAM)) {
229         new_cr4 &= ~CR4_LAM_SUP_MASK;
230     }
231 
232     env->cr[4] = new_cr4;
233     env->hflags = hflags;
234 
235     cpu_sync_bndcs_hflags(env);
236     cpu_sync_avx_hflag(env);
237 }
238 
239 #if !defined(CONFIG_USER_ONLY)
240 hwaddr x86_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
241                                          MemTxAttrs *attrs)
242 {
243     X86CPU *cpu = X86_CPU(cs);
244     CPUX86State *env = &cpu->env;
245     target_ulong pde_addr, pte_addr;
246     uint64_t pte;
247     int32_t a20_mask;
248     uint32_t page_offset;
249     int page_size;
250 
251     *attrs = cpu_get_mem_attrs(env);
252 
253     a20_mask = x86_get_a20_mask(env);
254     if (!(env->cr[0] & CR0_PG_MASK)) {
255         pte = addr & a20_mask;
256         page_size = 4096;
257     } else if (env->cr[4] & CR4_PAE_MASK) {
258         target_ulong pdpe_addr;
259         uint64_t pde, pdpe;
260 
261 #ifdef TARGET_X86_64
262         if (env->hflags & HF_LMA_MASK) {
263             bool la57 = env->cr[4] & CR4_LA57_MASK;
264             uint64_t pml5e_addr, pml5e;
265             uint64_t pml4e_addr, pml4e;
266             int32_t sext;
267 
268             /* test virtual address sign extension */
269             sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47;
270             if (sext != 0 && sext != -1) {
271                 return -1;
272             }
273 
274             if (la57) {
275                 pml5e_addr = ((env->cr[3] & ~0xfff) +
276                         (((addr >> 48) & 0x1ff) << 3)) & a20_mask;
277                 pml5e = x86_ldq_phys(cs, pml5e_addr);
278                 if (!(pml5e & PG_PRESENT_MASK)) {
279                     return -1;
280                 }
281             } else {
282                 pml5e = env->cr[3];
283             }
284 
285             pml4e_addr = ((pml5e & PG_ADDRESS_MASK) +
286                     (((addr >> 39) & 0x1ff) << 3)) & a20_mask;
287             pml4e = x86_ldq_phys(cs, pml4e_addr);
288             if (!(pml4e & PG_PRESENT_MASK)) {
289                 return -1;
290             }
291             pdpe_addr = ((pml4e & PG_ADDRESS_MASK) +
292                          (((addr >> 30) & 0x1ff) << 3)) & a20_mask;
293             pdpe = x86_ldq_phys(cs, pdpe_addr);
294             if (!(pdpe & PG_PRESENT_MASK)) {
295                 return -1;
296             }
297             if (pdpe & PG_PSE_MASK) {
298                 page_size = 1024 * 1024 * 1024;
299                 pte = pdpe;
300                 goto out;
301             }
302 
303         } else
304 #endif
305         {
306             pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
307                 a20_mask;
308             pdpe = x86_ldq_phys(cs, pdpe_addr);
309             if (!(pdpe & PG_PRESENT_MASK))
310                 return -1;
311         }
312 
313         pde_addr = ((pdpe & PG_ADDRESS_MASK) +
314                     (((addr >> 21) & 0x1ff) << 3)) & a20_mask;
315         pde = x86_ldq_phys(cs, pde_addr);
316         if (!(pde & PG_PRESENT_MASK)) {
317             return -1;
318         }
319         if (pde & PG_PSE_MASK) {
320             /* 2 MB page */
321             page_size = 2048 * 1024;
322             pte = pde;
323         } else {
324             /* 4 KB page */
325             pte_addr = ((pde & PG_ADDRESS_MASK) +
326                         (((addr >> 12) & 0x1ff) << 3)) & a20_mask;
327             page_size = 4096;
328             pte = x86_ldq_phys(cs, pte_addr);
329         }
330         if (!(pte & PG_PRESENT_MASK)) {
331             return -1;
332         }
333     } else {
334         uint32_t pde;
335 
336         /* page directory entry */
337         pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & a20_mask;
338         pde = x86_ldl_phys(cs, pde_addr);
339         if (!(pde & PG_PRESENT_MASK))
340             return -1;
341         if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
342             pte = pde | ((pde & 0x1fe000LL) << (32 - 13));
343             page_size = 4096 * 1024;
344         } else {
345             /* page directory entry */
346             pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & a20_mask;
347             pte = x86_ldl_phys(cs, pte_addr);
348             if (!(pte & PG_PRESENT_MASK)) {
349                 return -1;
350             }
351             page_size = 4096;
352         }
353         pte = pte & a20_mask;
354     }
355 
356 #ifdef TARGET_X86_64
357 out:
358 #endif
359     pte &= PG_ADDRESS_MASK & ~(page_size - 1);
360     page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
361     return pte | page_offset;
362 }
363 
364 typedef struct MCEInjectionParams {
365     Monitor *mon;
366     int bank;
367     uint64_t status;
368     uint64_t mcg_status;
369     uint64_t addr;
370     uint64_t misc;
371     int flags;
372 } MCEInjectionParams;
373 
374 static void emit_guest_memory_failure(MemoryFailureAction action, bool ar,
375                                       bool recursive)
376 {
377     MemoryFailureFlags mff = {.action_required = ar, .recursive = recursive};
378 
379     qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_GUEST, action,
380                                    &mff);
381 }
382 
383 static void do_inject_x86_mce(CPUState *cs, run_on_cpu_data data)
384 {
385     MCEInjectionParams *params = data.host_ptr;
386     X86CPU *cpu = X86_CPU(cs);
387     CPUX86State *cenv = &cpu->env;
388     uint64_t *banks = cenv->mce_banks + 4 * params->bank;
389     g_autofree char *msg = NULL;
390     bool need_reset = false;
391     bool recursive;
392     bool ar = !!(params->status & MCI_STATUS_AR);
393 
394     cpu_synchronize_state(cs);
395     recursive = !!(cenv->mcg_status & MCG_STATUS_MCIP);
396 
397     /*
398      * If there is an MCE exception being processed, ignore this SRAO MCE
399      * unless unconditional injection was requested.
400      */
401     if (!(params->flags & MCE_INJECT_UNCOND_AO) && !ar && recursive) {
402         emit_guest_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, ar, recursive);
403         return;
404     }
405 
406     if (params->status & MCI_STATUS_UC) {
407         /*
408          * if MSR_MCG_CTL is not all 1s, the uncorrected error
409          * reporting is disabled
410          */
411         if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) {
412             monitor_printf(params->mon,
413                            "CPU %d: Uncorrected error reporting disabled\n",
414                            cs->cpu_index);
415             return;
416         }
417 
418         /*
419          * if MSR_MCi_CTL is not all 1s, the uncorrected error
420          * reporting is disabled for the bank
421          */
422         if (banks[0] != ~(uint64_t)0) {
423             monitor_printf(params->mon,
424                            "CPU %d: Uncorrected error reporting disabled for"
425                            " bank %d\n",
426                            cs->cpu_index, params->bank);
427             return;
428         }
429 
430         if (!(cenv->cr[4] & CR4_MCE_MASK)) {
431             need_reset = true;
432             msg = g_strdup_printf("CPU %d: MCE capability is not enabled, "
433                                   "raising triple fault", cs->cpu_index);
434         } else if (recursive) {
435             need_reset = true;
436             msg = g_strdup_printf("CPU %d: Previous MCE still in progress, "
437                                   "raising triple fault", cs->cpu_index);
438         }
439 
440         if (need_reset) {
441             emit_guest_memory_failure(MEMORY_FAILURE_ACTION_RESET, ar,
442                                       recursive);
443             monitor_printf(params->mon, "%s", msg);
444             qemu_log_mask(CPU_LOG_RESET, "%s\n", msg);
445             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
446             return;
447         }
448 
449         if (banks[1] & MCI_STATUS_VAL) {
450             params->status |= MCI_STATUS_OVER;
451         }
452         banks[2] = params->addr;
453         banks[3] = params->misc;
454         cenv->mcg_status = params->mcg_status;
455         banks[1] = params->status;
456         cpu_interrupt(cs, CPU_INTERRUPT_MCE);
457     } else if (!(banks[1] & MCI_STATUS_VAL)
458                || !(banks[1] & MCI_STATUS_UC)) {
459         if (banks[1] & MCI_STATUS_VAL) {
460             params->status |= MCI_STATUS_OVER;
461         }
462         banks[2] = params->addr;
463         banks[3] = params->misc;
464         banks[1] = params->status;
465     } else {
466         banks[1] |= MCI_STATUS_OVER;
467     }
468 
469     emit_guest_memory_failure(MEMORY_FAILURE_ACTION_INJECT, ar, recursive);
470 }
471 
472 void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank,
473                         uint64_t status, uint64_t mcg_status, uint64_t addr,
474                         uint64_t misc, int flags)
475 {
476     CPUState *cs = CPU(cpu);
477     CPUX86State *cenv = &cpu->env;
478     MCEInjectionParams params = {
479         .mon = mon,
480         .bank = bank,
481         .status = status,
482         .mcg_status = mcg_status,
483         .addr = addr,
484         .misc = misc,
485         .flags = flags,
486     };
487     unsigned bank_num = cenv->mcg_cap & 0xff;
488 
489     if (!cenv->mcg_cap) {
490         monitor_printf(mon, "MCE injection not supported\n");
491         return;
492     }
493     if (bank >= bank_num) {
494         monitor_printf(mon, "Invalid MCE bank number\n");
495         return;
496     }
497     if (!(status & MCI_STATUS_VAL)) {
498         monitor_printf(mon, "Invalid MCE status code\n");
499         return;
500     }
501     if ((flags & MCE_INJECT_BROADCAST)
502         && !cpu_x86_support_mca_broadcast(cenv)) {
503         monitor_printf(mon, "Guest CPU does not support MCA broadcast\n");
504         return;
505     }
506 
507     run_on_cpu(cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
508     if (flags & MCE_INJECT_BROADCAST) {
509         CPUState *other_cs;
510 
511         params.bank = 1;
512         params.status = MCI_STATUS_VAL | MCI_STATUS_UC;
513         params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
514         params.addr = 0;
515         params.misc = 0;
516         CPU_FOREACH(other_cs) {
517             if (other_cs == cs) {
518                 continue;
519             }
520             run_on_cpu(other_cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
521         }
522     }
523 }
524 
525 static inline target_ulong get_memio_eip(CPUX86State *env)
526 {
527 #ifdef CONFIG_TCG
528     uint64_t data[TARGET_INSN_START_WORDS];
529     CPUState *cs = env_cpu(env);
530 
531     if (!cpu_unwind_state_data(cs, cs->mem_io_pc, data)) {
532         return env->eip;
533     }
534 
535     /* Per x86_restore_state_to_opc. */
536     if (tcg_cflags_has(cs, CF_PCREL)) {
537         return (env->eip & TARGET_PAGE_MASK) | data[0];
538     } else {
539         return data[0] - env->segs[R_CS].base;
540     }
541 #else
542     qemu_build_not_reached();
543 #endif
544 }
545 
546 void cpu_report_tpr_access(CPUX86State *env, TPRAccess access)
547 {
548     X86CPU *cpu = env_archcpu(env);
549     CPUState *cs = env_cpu(env);
550 
551     if (kvm_enabled() || whpx_enabled() || nvmm_enabled()) {
552         env->tpr_access_type = access;
553 
554         cpu_interrupt(cs, CPU_INTERRUPT_TPR);
555     } else if (tcg_enabled()) {
556         target_ulong eip = get_memio_eip(env);
557 
558         apic_handle_tpr_access_report(cpu->apic_state, eip, access);
559     }
560 }
561 #endif /* !CONFIG_USER_ONLY */
562 
563 int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector,
564                             target_ulong *base, unsigned int *limit,
565                             unsigned int *flags)
566 {
567     CPUState *cs = env_cpu(env);
568     SegmentCache *dt;
569     target_ulong ptr;
570     uint32_t e1, e2;
571     int index;
572 
573     if (selector & 0x4)
574         dt = &env->ldt;
575     else
576         dt = &env->gdt;
577     index = selector & ~7;
578     ptr = dt->base + index;
579     if ((index + 7) > dt->limit
580         || cpu_memory_rw_debug(cs, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0
581         || cpu_memory_rw_debug(cs, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0)
582         return 0;
583 
584     *base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
585     *limit = (e1 & 0xffff) | (e2 & 0x000f0000);
586     if (e2 & DESC_G_MASK)
587         *limit = (*limit << 12) | 0xfff;
588     *flags = e2;
589 
590     return 1;
591 }
592 
593 void do_cpu_init(X86CPU *cpu)
594 {
595 #if !defined(CONFIG_USER_ONLY)
596     CPUState *cs = CPU(cpu);
597     CPUX86State *env = &cpu->env;
598     CPUX86State *save = g_new(CPUX86State, 1);
599     int sipi = cs->interrupt_request & CPU_INTERRUPT_SIPI;
600 
601     *save = *env;
602 
603     cpu_reset(cs);
604     cs->interrupt_request = sipi;
605     memcpy(&env->start_init_save, &save->start_init_save,
606            offsetof(CPUX86State, end_init_save) -
607            offsetof(CPUX86State, start_init_save));
608     g_free(save);
609 
610     if (kvm_enabled()) {
611         kvm_arch_do_init_vcpu(cpu);
612     }
613     apic_init_reset(cpu->apic_state);
614 #endif /* CONFIG_USER_ONLY */
615 }
616 
617 #ifndef CONFIG_USER_ONLY
618 
619 void do_cpu_sipi(X86CPU *cpu)
620 {
621     apic_sipi(cpu->apic_state);
622 }
623 
624 void cpu_load_efer(CPUX86State *env, uint64_t val)
625 {
626     env->efer = val;
627     env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
628     if (env->efer & MSR_EFER_LMA) {
629         env->hflags |= HF_LMA_MASK;
630     }
631     if (env->efer & MSR_EFER_SVME) {
632         env->hflags |= HF_SVME_MASK;
633     }
634 }
635 
636 uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr)
637 {
638     X86CPU *cpu = X86_CPU(cs);
639     CPUX86State *env = &cpu->env;
640     MemTxAttrs attrs = cpu_get_mem_attrs(env);
641     AddressSpace *as = cpu_addressspace(cs, attrs);
642 
643     return address_space_ldub(as, addr, attrs, NULL);
644 }
645 
646 uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr)
647 {
648     X86CPU *cpu = X86_CPU(cs);
649     CPUX86State *env = &cpu->env;
650     MemTxAttrs attrs = cpu_get_mem_attrs(env);
651     AddressSpace *as = cpu_addressspace(cs, attrs);
652 
653     return address_space_lduw(as, addr, attrs, NULL);
654 }
655 
656 uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr)
657 {
658     X86CPU *cpu = X86_CPU(cs);
659     CPUX86State *env = &cpu->env;
660     MemTxAttrs attrs = cpu_get_mem_attrs(env);
661     AddressSpace *as = cpu_addressspace(cs, attrs);
662 
663     return address_space_ldl(as, addr, attrs, NULL);
664 }
665 
666 uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr)
667 {
668     X86CPU *cpu = X86_CPU(cs);
669     CPUX86State *env = &cpu->env;
670     MemTxAttrs attrs = cpu_get_mem_attrs(env);
671     AddressSpace *as = cpu_addressspace(cs, attrs);
672 
673     return address_space_ldq(as, addr, attrs, NULL);
674 }
675 
676 void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val)
677 {
678     X86CPU *cpu = X86_CPU(cs);
679     CPUX86State *env = &cpu->env;
680     MemTxAttrs attrs = cpu_get_mem_attrs(env);
681     AddressSpace *as = cpu_addressspace(cs, attrs);
682 
683     address_space_stb(as, addr, val, attrs, NULL);
684 }
685 
686 void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val)
687 {
688     X86CPU *cpu = X86_CPU(cs);
689     CPUX86State *env = &cpu->env;
690     MemTxAttrs attrs = cpu_get_mem_attrs(env);
691     AddressSpace *as = cpu_addressspace(cs, attrs);
692 
693     address_space_stl_notdirty(as, addr, val, attrs, NULL);
694 }
695 
696 void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val)
697 {
698     X86CPU *cpu = X86_CPU(cs);
699     CPUX86State *env = &cpu->env;
700     MemTxAttrs attrs = cpu_get_mem_attrs(env);
701     AddressSpace *as = cpu_addressspace(cs, attrs);
702 
703     address_space_stw(as, addr, val, attrs, NULL);
704 }
705 
706 void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val)
707 {
708     X86CPU *cpu = X86_CPU(cs);
709     CPUX86State *env = &cpu->env;
710     MemTxAttrs attrs = cpu_get_mem_attrs(env);
711     AddressSpace *as = cpu_addressspace(cs, attrs);
712 
713     address_space_stl(as, addr, val, attrs, NULL);
714 }
715 
716 void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val)
717 {
718     X86CPU *cpu = X86_CPU(cs);
719     CPUX86State *env = &cpu->env;
720     MemTxAttrs attrs = cpu_get_mem_attrs(env);
721     AddressSpace *as = cpu_addressspace(cs, attrs);
722 
723     address_space_stq(as, addr, val, attrs, NULL);
724 }
725 #endif
726