1 /* 2 * i386 helpers (without register variable usage) 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qapi/qapi-events-run-state.h" 22 #include "cpu.h" 23 #include "exec/exec-all.h" 24 #include "sysemu/runstate.h" 25 #include "kvm/kvm_i386.h" 26 #ifndef CONFIG_USER_ONLY 27 #include "sysemu/hw_accel.h" 28 #include "monitor/monitor.h" 29 #endif 30 #include "qemu/log.h" 31 32 void cpu_sync_bndcs_hflags(CPUX86State *env) 33 { 34 uint32_t hflags = env->hflags; 35 uint32_t hflags2 = env->hflags2; 36 uint32_t bndcsr; 37 38 if ((hflags & HF_CPL_MASK) == 3) { 39 bndcsr = env->bndcs_regs.cfgu; 40 } else { 41 bndcsr = env->msr_bndcfgs; 42 } 43 44 if ((env->cr[4] & CR4_OSXSAVE_MASK) 45 && (env->xcr0 & XSTATE_BNDCSR_MASK) 46 && (bndcsr & BNDCFG_ENABLE)) { 47 hflags |= HF_MPX_EN_MASK; 48 } else { 49 hflags &= ~HF_MPX_EN_MASK; 50 } 51 52 if (bndcsr & BNDCFG_BNDPRESERVE) { 53 hflags2 |= HF2_MPX_PR_MASK; 54 } else { 55 hflags2 &= ~HF2_MPX_PR_MASK; 56 } 57 58 env->hflags = hflags; 59 env->hflags2 = hflags2; 60 } 61 62 static void cpu_x86_version(CPUX86State *env, int *family, int *model) 63 { 64 int cpuver = env->cpuid_version; 65 66 if (family == NULL || model == NULL) { 67 return; 68 } 69 70 *family = (cpuver >> 8) & 0x0f; 71 *model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f); 72 } 73 74 /* Broadcast MCA signal for processor version 06H_EH and above */ 75 int cpu_x86_support_mca_broadcast(CPUX86State *env) 76 { 77 int family = 0; 78 int model = 0; 79 80 cpu_x86_version(env, &family, &model); 81 if ((family == 6 && model >= 14) || family > 6) { 82 return 1; 83 } 84 85 return 0; 86 } 87 88 /***********************************************************/ 89 /* x86 mmu */ 90 /* XXX: add PGE support */ 91 92 void x86_cpu_set_a20(X86CPU *cpu, int a20_state) 93 { 94 CPUX86State *env = &cpu->env; 95 96 a20_state = (a20_state != 0); 97 if (a20_state != ((env->a20_mask >> 20) & 1)) { 98 CPUState *cs = CPU(cpu); 99 100 qemu_log_mask(CPU_LOG_MMU, "A20 update: a20=%d\n", a20_state); 101 /* if the cpu is currently executing code, we must unlink it and 102 all the potentially executing TB */ 103 cpu_interrupt(cs, CPU_INTERRUPT_EXITTB); 104 105 /* when a20 is changed, all the MMU mappings are invalid, so 106 we must flush everything */ 107 tlb_flush(cs); 108 env->a20_mask = ~(1 << 20) | (a20_state << 20); 109 } 110 } 111 112 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0) 113 { 114 X86CPU *cpu = env_archcpu(env); 115 int pe_state; 116 117 qemu_log_mask(CPU_LOG_MMU, "CR0 update: CR0=0x%08x\n", new_cr0); 118 if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) != 119 (env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) { 120 tlb_flush(CPU(cpu)); 121 } 122 123 #ifdef TARGET_X86_64 124 if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) && 125 (env->efer & MSR_EFER_LME)) { 126 /* enter in long mode */ 127 /* XXX: generate an exception */ 128 if (!(env->cr[4] & CR4_PAE_MASK)) 129 return; 130 env->efer |= MSR_EFER_LMA; 131 env->hflags |= HF_LMA_MASK; 132 } else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) && 133 (env->efer & MSR_EFER_LMA)) { 134 /* exit long mode */ 135 env->efer &= ~MSR_EFER_LMA; 136 env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK); 137 env->eip &= 0xffffffff; 138 } 139 #endif 140 env->cr[0] = new_cr0 | CR0_ET_MASK; 141 142 /* update PE flag in hidden flags */ 143 pe_state = (env->cr[0] & CR0_PE_MASK); 144 env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT); 145 /* ensure that ADDSEG is always set in real mode */ 146 env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT); 147 /* update FPU flags */ 148 env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) | 149 ((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)); 150 } 151 152 /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in 153 the PDPT */ 154 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3) 155 { 156 env->cr[3] = new_cr3; 157 if (env->cr[0] & CR0_PG_MASK) { 158 qemu_log_mask(CPU_LOG_MMU, 159 "CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3); 160 tlb_flush(env_cpu(env)); 161 } 162 } 163 164 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4) 165 { 166 uint32_t hflags; 167 168 #if defined(DEBUG_MMU) 169 printf("CR4 update: %08x -> %08x\n", (uint32_t)env->cr[4], new_cr4); 170 #endif 171 if ((new_cr4 ^ env->cr[4]) & 172 (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK | 173 CR4_SMEP_MASK | CR4_SMAP_MASK | CR4_LA57_MASK)) { 174 tlb_flush(env_cpu(env)); 175 } 176 177 /* Clear bits we're going to recompute. */ 178 hflags = env->hflags & ~(HF_OSFXSR_MASK | HF_SMAP_MASK | HF_UMIP_MASK); 179 180 /* SSE handling */ 181 if (!(env->features[FEAT_1_EDX] & CPUID_SSE)) { 182 new_cr4 &= ~CR4_OSFXSR_MASK; 183 } 184 if (new_cr4 & CR4_OSFXSR_MASK) { 185 hflags |= HF_OSFXSR_MASK; 186 } 187 188 if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_SMAP)) { 189 new_cr4 &= ~CR4_SMAP_MASK; 190 } 191 if (new_cr4 & CR4_SMAP_MASK) { 192 hflags |= HF_SMAP_MASK; 193 } 194 if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_UMIP)) { 195 new_cr4 &= ~CR4_UMIP_MASK; 196 } 197 if (new_cr4 & CR4_UMIP_MASK) { 198 hflags |= HF_UMIP_MASK; 199 } 200 201 if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKU)) { 202 new_cr4 &= ~CR4_PKE_MASK; 203 } 204 if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKS)) { 205 new_cr4 &= ~CR4_PKS_MASK; 206 } 207 208 env->cr[4] = new_cr4; 209 env->hflags = hflags; 210 211 cpu_sync_bndcs_hflags(env); 212 } 213 214 #if !defined(CONFIG_USER_ONLY) 215 hwaddr x86_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 216 MemTxAttrs *attrs) 217 { 218 X86CPU *cpu = X86_CPU(cs); 219 CPUX86State *env = &cpu->env; 220 target_ulong pde_addr, pte_addr; 221 uint64_t pte; 222 int32_t a20_mask; 223 uint32_t page_offset; 224 int page_size; 225 226 *attrs = cpu_get_mem_attrs(env); 227 228 a20_mask = x86_get_a20_mask(env); 229 if (!(env->cr[0] & CR0_PG_MASK)) { 230 pte = addr & a20_mask; 231 page_size = 4096; 232 } else if (env->cr[4] & CR4_PAE_MASK) { 233 target_ulong pdpe_addr; 234 uint64_t pde, pdpe; 235 236 #ifdef TARGET_X86_64 237 if (env->hflags & HF_LMA_MASK) { 238 bool la57 = env->cr[4] & CR4_LA57_MASK; 239 uint64_t pml5e_addr, pml5e; 240 uint64_t pml4e_addr, pml4e; 241 int32_t sext; 242 243 /* test virtual address sign extension */ 244 sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47; 245 if (sext != 0 && sext != -1) { 246 return -1; 247 } 248 249 if (la57) { 250 pml5e_addr = ((env->cr[3] & ~0xfff) + 251 (((addr >> 48) & 0x1ff) << 3)) & a20_mask; 252 pml5e = x86_ldq_phys(cs, pml5e_addr); 253 if (!(pml5e & PG_PRESENT_MASK)) { 254 return -1; 255 } 256 } else { 257 pml5e = env->cr[3]; 258 } 259 260 pml4e_addr = ((pml5e & PG_ADDRESS_MASK) + 261 (((addr >> 39) & 0x1ff) << 3)) & a20_mask; 262 pml4e = x86_ldq_phys(cs, pml4e_addr); 263 if (!(pml4e & PG_PRESENT_MASK)) { 264 return -1; 265 } 266 pdpe_addr = ((pml4e & PG_ADDRESS_MASK) + 267 (((addr >> 30) & 0x1ff) << 3)) & a20_mask; 268 pdpe = x86_ldq_phys(cs, pdpe_addr); 269 if (!(pdpe & PG_PRESENT_MASK)) { 270 return -1; 271 } 272 if (pdpe & PG_PSE_MASK) { 273 page_size = 1024 * 1024 * 1024; 274 pte = pdpe; 275 goto out; 276 } 277 278 } else 279 #endif 280 { 281 pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) & 282 a20_mask; 283 pdpe = x86_ldq_phys(cs, pdpe_addr); 284 if (!(pdpe & PG_PRESENT_MASK)) 285 return -1; 286 } 287 288 pde_addr = ((pdpe & PG_ADDRESS_MASK) + 289 (((addr >> 21) & 0x1ff) << 3)) & a20_mask; 290 pde = x86_ldq_phys(cs, pde_addr); 291 if (!(pde & PG_PRESENT_MASK)) { 292 return -1; 293 } 294 if (pde & PG_PSE_MASK) { 295 /* 2 MB page */ 296 page_size = 2048 * 1024; 297 pte = pde; 298 } else { 299 /* 4 KB page */ 300 pte_addr = ((pde & PG_ADDRESS_MASK) + 301 (((addr >> 12) & 0x1ff) << 3)) & a20_mask; 302 page_size = 4096; 303 pte = x86_ldq_phys(cs, pte_addr); 304 } 305 if (!(pte & PG_PRESENT_MASK)) { 306 return -1; 307 } 308 } else { 309 uint32_t pde; 310 311 /* page directory entry */ 312 pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & a20_mask; 313 pde = x86_ldl_phys(cs, pde_addr); 314 if (!(pde & PG_PRESENT_MASK)) 315 return -1; 316 if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) { 317 pte = pde | ((pde & 0x1fe000LL) << (32 - 13)); 318 page_size = 4096 * 1024; 319 } else { 320 /* page directory entry */ 321 pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & a20_mask; 322 pte = x86_ldl_phys(cs, pte_addr); 323 if (!(pte & PG_PRESENT_MASK)) { 324 return -1; 325 } 326 page_size = 4096; 327 } 328 pte = pte & a20_mask; 329 } 330 331 #ifdef TARGET_X86_64 332 out: 333 #endif 334 pte &= PG_ADDRESS_MASK & ~(page_size - 1); 335 page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1); 336 return pte | page_offset; 337 } 338 339 typedef struct MCEInjectionParams { 340 Monitor *mon; 341 int bank; 342 uint64_t status; 343 uint64_t mcg_status; 344 uint64_t addr; 345 uint64_t misc; 346 int flags; 347 } MCEInjectionParams; 348 349 static void emit_guest_memory_failure(MemoryFailureAction action, bool ar, 350 bool recursive) 351 { 352 MemoryFailureFlags mff = {.action_required = ar, .recursive = recursive}; 353 354 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_GUEST, action, 355 &mff); 356 } 357 358 static void do_inject_x86_mce(CPUState *cs, run_on_cpu_data data) 359 { 360 MCEInjectionParams *params = data.host_ptr; 361 X86CPU *cpu = X86_CPU(cs); 362 CPUX86State *cenv = &cpu->env; 363 uint64_t *banks = cenv->mce_banks + 4 * params->bank; 364 g_autofree char *msg = NULL; 365 bool need_reset = false; 366 bool recursive; 367 bool ar = !!(params->status & MCI_STATUS_AR); 368 369 cpu_synchronize_state(cs); 370 recursive = !!(cenv->mcg_status & MCG_STATUS_MCIP); 371 372 /* 373 * If there is an MCE exception being processed, ignore this SRAO MCE 374 * unless unconditional injection was requested. 375 */ 376 if (!(params->flags & MCE_INJECT_UNCOND_AO) && !ar && recursive) { 377 emit_guest_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, ar, recursive); 378 return; 379 } 380 381 if (params->status & MCI_STATUS_UC) { 382 /* 383 * if MSR_MCG_CTL is not all 1s, the uncorrected error 384 * reporting is disabled 385 */ 386 if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) { 387 monitor_printf(params->mon, 388 "CPU %d: Uncorrected error reporting disabled\n", 389 cs->cpu_index); 390 return; 391 } 392 393 /* 394 * if MSR_MCi_CTL is not all 1s, the uncorrected error 395 * reporting is disabled for the bank 396 */ 397 if (banks[0] != ~(uint64_t)0) { 398 monitor_printf(params->mon, 399 "CPU %d: Uncorrected error reporting disabled for" 400 " bank %d\n", 401 cs->cpu_index, params->bank); 402 return; 403 } 404 405 if (!(cenv->cr[4] & CR4_MCE_MASK)) { 406 need_reset = true; 407 msg = g_strdup_printf("CPU %d: MCE capability is not enabled, " 408 "raising triple fault", cs->cpu_index); 409 } else if (recursive) { 410 need_reset = true; 411 msg = g_strdup_printf("CPU %d: Previous MCE still in progress, " 412 "raising triple fault", cs->cpu_index); 413 } 414 415 if (need_reset) { 416 emit_guest_memory_failure(MEMORY_FAILURE_ACTION_RESET, ar, 417 recursive); 418 monitor_printf(params->mon, "%s", msg); 419 qemu_log_mask(CPU_LOG_RESET, "%s\n", msg); 420 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 421 return; 422 } 423 424 if (banks[1] & MCI_STATUS_VAL) { 425 params->status |= MCI_STATUS_OVER; 426 } 427 banks[2] = params->addr; 428 banks[3] = params->misc; 429 cenv->mcg_status = params->mcg_status; 430 banks[1] = params->status; 431 cpu_interrupt(cs, CPU_INTERRUPT_MCE); 432 } else if (!(banks[1] & MCI_STATUS_VAL) 433 || !(banks[1] & MCI_STATUS_UC)) { 434 if (banks[1] & MCI_STATUS_VAL) { 435 params->status |= MCI_STATUS_OVER; 436 } 437 banks[2] = params->addr; 438 banks[3] = params->misc; 439 banks[1] = params->status; 440 } else { 441 banks[1] |= MCI_STATUS_OVER; 442 } 443 444 emit_guest_memory_failure(MEMORY_FAILURE_ACTION_INJECT, ar, recursive); 445 } 446 447 void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank, 448 uint64_t status, uint64_t mcg_status, uint64_t addr, 449 uint64_t misc, int flags) 450 { 451 CPUState *cs = CPU(cpu); 452 CPUX86State *cenv = &cpu->env; 453 MCEInjectionParams params = { 454 .mon = mon, 455 .bank = bank, 456 .status = status, 457 .mcg_status = mcg_status, 458 .addr = addr, 459 .misc = misc, 460 .flags = flags, 461 }; 462 unsigned bank_num = cenv->mcg_cap & 0xff; 463 464 if (!cenv->mcg_cap) { 465 monitor_printf(mon, "MCE injection not supported\n"); 466 return; 467 } 468 if (bank >= bank_num) { 469 monitor_printf(mon, "Invalid MCE bank number\n"); 470 return; 471 } 472 if (!(status & MCI_STATUS_VAL)) { 473 monitor_printf(mon, "Invalid MCE status code\n"); 474 return; 475 } 476 if ((flags & MCE_INJECT_BROADCAST) 477 && !cpu_x86_support_mca_broadcast(cenv)) { 478 monitor_printf(mon, "Guest CPU does not support MCA broadcast\n"); 479 return; 480 } 481 482 run_on_cpu(cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(¶ms)); 483 if (flags & MCE_INJECT_BROADCAST) { 484 CPUState *other_cs; 485 486 params.bank = 1; 487 params.status = MCI_STATUS_VAL | MCI_STATUS_UC; 488 params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV; 489 params.addr = 0; 490 params.misc = 0; 491 CPU_FOREACH(other_cs) { 492 if (other_cs == cs) { 493 continue; 494 } 495 run_on_cpu(other_cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(¶ms)); 496 } 497 } 498 } 499 500 void cpu_report_tpr_access(CPUX86State *env, TPRAccess access) 501 { 502 X86CPU *cpu = env_archcpu(env); 503 CPUState *cs = env_cpu(env); 504 505 if (kvm_enabled() || whpx_enabled() || nvmm_enabled()) { 506 env->tpr_access_type = access; 507 508 cpu_interrupt(cs, CPU_INTERRUPT_TPR); 509 } else if (tcg_enabled()) { 510 cpu_restore_state(cs, cs->mem_io_pc, false); 511 512 apic_handle_tpr_access_report(cpu->apic_state, env->eip, access); 513 } 514 } 515 #endif /* !CONFIG_USER_ONLY */ 516 517 int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector, 518 target_ulong *base, unsigned int *limit, 519 unsigned int *flags) 520 { 521 CPUState *cs = env_cpu(env); 522 SegmentCache *dt; 523 target_ulong ptr; 524 uint32_t e1, e2; 525 int index; 526 527 if (selector & 0x4) 528 dt = &env->ldt; 529 else 530 dt = &env->gdt; 531 index = selector & ~7; 532 ptr = dt->base + index; 533 if ((index + 7) > dt->limit 534 || cpu_memory_rw_debug(cs, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0 535 || cpu_memory_rw_debug(cs, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0) 536 return 0; 537 538 *base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000)); 539 *limit = (e1 & 0xffff) | (e2 & 0x000f0000); 540 if (e2 & DESC_G_MASK) 541 *limit = (*limit << 12) | 0xfff; 542 *flags = e2; 543 544 return 1; 545 } 546 547 #if !defined(CONFIG_USER_ONLY) 548 void do_cpu_init(X86CPU *cpu) 549 { 550 CPUState *cs = CPU(cpu); 551 CPUX86State *env = &cpu->env; 552 CPUX86State *save = g_new(CPUX86State, 1); 553 int sipi = cs->interrupt_request & CPU_INTERRUPT_SIPI; 554 555 *save = *env; 556 557 cpu_reset(cs); 558 cs->interrupt_request = sipi; 559 memcpy(&env->start_init_save, &save->start_init_save, 560 offsetof(CPUX86State, end_init_save) - 561 offsetof(CPUX86State, start_init_save)); 562 g_free(save); 563 564 if (kvm_enabled()) { 565 kvm_arch_do_init_vcpu(cpu); 566 } 567 apic_init_reset(cpu->apic_state); 568 } 569 570 void do_cpu_sipi(X86CPU *cpu) 571 { 572 apic_sipi(cpu->apic_state); 573 } 574 #else 575 void do_cpu_init(X86CPU *cpu) 576 { 577 } 578 void do_cpu_sipi(X86CPU *cpu) 579 { 580 } 581 #endif 582 583 #ifndef CONFIG_USER_ONLY 584 585 void cpu_load_efer(CPUX86State *env, uint64_t val) 586 { 587 env->efer = val; 588 env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK); 589 if (env->efer & MSR_EFER_LMA) { 590 env->hflags |= HF_LMA_MASK; 591 } 592 if (env->efer & MSR_EFER_SVME) { 593 env->hflags |= HF_SVME_MASK; 594 } 595 } 596 597 uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr) 598 { 599 X86CPU *cpu = X86_CPU(cs); 600 CPUX86State *env = &cpu->env; 601 MemTxAttrs attrs = cpu_get_mem_attrs(env); 602 AddressSpace *as = cpu_addressspace(cs, attrs); 603 604 return address_space_ldub(as, addr, attrs, NULL); 605 } 606 607 uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr) 608 { 609 X86CPU *cpu = X86_CPU(cs); 610 CPUX86State *env = &cpu->env; 611 MemTxAttrs attrs = cpu_get_mem_attrs(env); 612 AddressSpace *as = cpu_addressspace(cs, attrs); 613 614 return address_space_lduw(as, addr, attrs, NULL); 615 } 616 617 uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr) 618 { 619 X86CPU *cpu = X86_CPU(cs); 620 CPUX86State *env = &cpu->env; 621 MemTxAttrs attrs = cpu_get_mem_attrs(env); 622 AddressSpace *as = cpu_addressspace(cs, attrs); 623 624 return address_space_ldl(as, addr, attrs, NULL); 625 } 626 627 uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr) 628 { 629 X86CPU *cpu = X86_CPU(cs); 630 CPUX86State *env = &cpu->env; 631 MemTxAttrs attrs = cpu_get_mem_attrs(env); 632 AddressSpace *as = cpu_addressspace(cs, attrs); 633 634 return address_space_ldq(as, addr, attrs, NULL); 635 } 636 637 void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val) 638 { 639 X86CPU *cpu = X86_CPU(cs); 640 CPUX86State *env = &cpu->env; 641 MemTxAttrs attrs = cpu_get_mem_attrs(env); 642 AddressSpace *as = cpu_addressspace(cs, attrs); 643 644 address_space_stb(as, addr, val, attrs, NULL); 645 } 646 647 void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val) 648 { 649 X86CPU *cpu = X86_CPU(cs); 650 CPUX86State *env = &cpu->env; 651 MemTxAttrs attrs = cpu_get_mem_attrs(env); 652 AddressSpace *as = cpu_addressspace(cs, attrs); 653 654 address_space_stl_notdirty(as, addr, val, attrs, NULL); 655 } 656 657 void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val) 658 { 659 X86CPU *cpu = X86_CPU(cs); 660 CPUX86State *env = &cpu->env; 661 MemTxAttrs attrs = cpu_get_mem_attrs(env); 662 AddressSpace *as = cpu_addressspace(cs, attrs); 663 664 address_space_stw(as, addr, val, attrs, NULL); 665 } 666 667 void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val) 668 { 669 X86CPU *cpu = X86_CPU(cs); 670 CPUX86State *env = &cpu->env; 671 MemTxAttrs attrs = cpu_get_mem_attrs(env); 672 AddressSpace *as = cpu_addressspace(cs, attrs); 673 674 address_space_stl(as, addr, val, attrs, NULL); 675 } 676 677 void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val) 678 { 679 X86CPU *cpu = X86_CPU(cs); 680 CPUX86State *env = &cpu->env; 681 MemTxAttrs attrs = cpu_get_mem_attrs(env); 682 AddressSpace *as = cpu_addressspace(cs, attrs); 683 684 address_space_stq(as, addr, val, attrs, NULL); 685 } 686 #endif 687